
A DISSERTATION
Submitted hi pawl fulfilment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY

ELECTRICAL ENGINEERING
(With Specialization in System Engineering and Operations Research)

-By

PARVEEN KWNDU

Ord® 	~ gel

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE®247 667 (INDIA)

JUNE, 2005

T .- 3 vo 120 o S -3' (t- rs r- I "i r

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation entitled "FPGA BASED

DESIGN OF ON-CHIP PERIPHERAL (OPB) BUS BRIDGES FOR MULTIMEDIA

APPLICATIONS" submitted in partial, fulfillment of the requirements for the award of degree

of Master of Technology in Electrical Engineering with specialization"in System Engineering

and Operations Research, in the Department of Electrical Engineering, Indian Institute of

Technology Roorkee, Roorkee, is an authentic record of my own work carried out from July

2004 to June 2005 under the guidance of Prof.IYI.K.Vasantha, Professor and Dr.Indra Gupta,

Asstt Professor, Department of Electrical Engineering, Indian Institute of Technology Roorkee,

Roorkee.

The matter embodied in this report has not been submitted by me for the award of any

other degree or diploma.

Date: o~~ ~r~E 2obs
Place: Roorkee (PARVEEN KUNDU)

CERTIFICATE

This is to certify that the above statement made by the candidate is true to the best of my

knowledge and belief.

rof. 	.V sa a t a
rofessor

Department Of Electrical Engineering
Indian Institute of Technology Roorkee.
Roorkee.

Dr. ndra Gupta
Asst Professor

Department of Electrical Engineering
Indian Institute of Technology Roorkee
Roorkee.

I

ACKNOWLEDGEMENTS

I take this opportunity to express my sincere gratitude to Prof.M.K.Vasantha, Professor,

and Dr.Indra Gupta, Asstt Professor, Department of Electrical Engineering, Indian Institute of

Technology Roorkee, Roorkee for encouraging me to undertake this dissertation as well as

providing me their valuable guidance and inspirational support without which this work would

not have been in present shape.

I consider myself extremely fortunate for having got the opportunity to learn and work

under their able supervision. They provided me the latest technology to work on and state of the

art facilities and equipments at the lab. Their able guidance ensured me that I should not have

any lack of resources while carrying out my thesis work. I have deep sense of admiration for

their innate .goodness and inexhaustible enthusiasm. The valuable hours of discussions and

suggestions that I had with them have undoubtedly helped in supplementing my thoughts in the

right direction for attaining the desired objective. Working under their guidance will always

remain a cherished experience in my memory and I will adore it throughout my life.

I am also thankful to Dr. H.O Gupta, Professor and Head of Department of Electrical

Engineering, lIT Roorkee for helping me in my dissertation work. I am especially thankful to

him- for providing us the technical training in M/S Mechtaronics, Pune which was pivotal in

completion of my work.
My heartfelt gratitude and indebtedness goes to all the teachers of SEOR group who, with

their encouraging and caring words, constructive criticism and suggestions, have contributed

directly or indirectly in a significant way towards completion of this report.

I am highly grateful to Mr.Rahul Dubey, Research scholar; Department of Electrical

Engineering, Indian Institute of Technology Roorkee, and Roorkee for his keen interest and

generous encouragement during this venture.

I am -especially thankful to Major Seby Thomas for his feedback in the class. His ideas

and discussions not only helped in technical areas but also in personality development. 	-

I am also thankful to Mr.Vishal Saxena and Mr.Vijender Singh Research Scholar for

their valuable guidance in the hour of need.

I am thankful to Mr. Kalyan Singh and Mr. C.M Joshi, Laboratory staff of Micro

Processor & Computer Lab for providing the required facilities and co-operation during this

work.

Special, sincere and heartfelt gratitude goes to my parents and my friends whose sincere

prayers, best wishes, support and encouragement have been a constant source ' of assurance,

guidance, strength and inspiration to me.

PARVEEN KUNDU

r

IIl

ABSTRACT

With the recent advancements in silicon densities it is now possible to integrate numerous

functions onto a single silicon chip. With this increased density, the peripherals that were for-

merly attached to the processor at the card level are now integrated onto the same chip as the

processor. Even it is possible now that the chip may contain several processors. Now a days this

technology is popularly known as System-on-Chip (SoC).

As large numbers of peripherals are present on the single - chip, on—chip buses are

required to connect peripherals and the processor. With this aim in mind on-chip peripheral bus

(OPB) and Processor Local Bus (PLB) were designed to integrate the different components as a

complete system.

On-chip Peripheral Bus (OPB) and Processor Local Bus (PLB) have different functions

to perform.OPB is used for connecting slower peripherals and PLB for connecting faster

peripherals that operate almost at the same speed as that of the processor .For carrying out the

transaction between slower and faster components attached to the different buses bridges are

designed called PLB to OPB bridge and OPB to PLB bridge.

'Xilinx has designed a tool called Embedded Development Kit (EDK) 6.3 that eases the

designing of the complete embedded system This dissertation uses this tool to design

application. OPB, PLB and bus bridges have been used to carry out the connectivity of the

peripherals and the processor. Virtex-II Pro FPGA, one of the most sophisticated - FPGA

available till date is used to realize the design in real time.

Virtex-II Pro-PCI Video Card has been used in this dissertation for implementing the

Multimedia Application. Power PC that is embedded into the Virtex-II Pro FPGA has been used

as processing unit of the embedded'design.PLB to OPB Bridge has been used to connect the

multimedia application to the Power PC.These bridges acts as a link between devices connected

to different buses.
Xilinx design tool ISE 6.3 has been used to actually Place and Route the design on the

Virtex-II Pro FPGA.

Ill

CONTENTS

Page No.

CANDIDATES'S DECLARATION I

ACKNOWLEDGEMENTS II

ABSTRACT IV

LIST OF FIGURES VII

ABBREVIATION AND ACRONYMS VIII

INTRODUCTION 1

CHAPTER 1: TECHNOLOGY AND BACKGROUND 	 3
1.1. System on Chip (SoC) 	 3
1.2. Application Specific Integrated Circuits (ASIC's) 	 3
1.3. Programmable Logic Devices (PLD's) 	 4
1.4. Field Programmable Gate Arrays (FPGA's) 	 4
1.5. Hardware Description Languages (HDL's) 	 4
1.6. Active HDL. 	 4
1.7. Processors Cores 	 4

1.7.1. Soft Processor. 	 5
1.7.2. Hard Processor 	 5

1.8. IBM Core connect Bus Architecture 	 5
1.9. Embedded Development Kit 	 6
1.10. ISE. 	 7
1.11. Bus Bridges 	 7

CHAPTER 2: EMBEDDED SYSTEM TOOLS 8
2.1. Embedded development Kit (EDK) 8

2.1.1. Xilinx Platform Studio 9
2.1.2. Base System Builder
2.1.3. Create/Import IP Wizard 10
2.1.4. Platform Generator 10
2.1.5. Simulation Model Generator 10
2.1.6. Library Generator 10
2.1.7. Bitstream Initializer 10
2.1.8. GNU Compiler Tools 11

2.2. Tools Flow In the creation of Embedded System 11
2.2.1. Hardware Platform Creation 11
2.2.2. Verification Platform Creation 12
2.2.3. Software Platform Creation 12
2.2.4. Software Application Creation and Verification 13

U

CHAPTER 3: BUS BRIDGES IN EMBEDDED SYSTFMS 	 15
3.1. Introduction 	 15
3.2. Bridges in Embedded system design. 	 . 15
3.3. PLB to OPB Bridge 	 17

3.3.1. Interfaces in PLB to OPB Bridge. 	 19
3.4.OPB to PLB Bridge. 	 20

3.4.1-. Interfaces in OPB to PLB Bridge. 	 22

CHAPTER 4: DESIGN OF EMBEDDED SYSTEM USING BUS BRIDGES 23
4.1. Introduction 23
4.2. Microblaze 23
4.3. Power PC 24.
4.4. Design of embedded system using MicroBlaze 27
4.5. Design of embedded system using Power PC 28
4.6. On-chip Peripheral (OPB) Bus. 29
4.7. General Purpose Input Output 29
4.8. Virtex-II Pro FPGA. 30
4.9. Digital to Analog Converter (DAC) THS8133. 32
4.10. Multimedia Application using Virtex-II Pro and bridges 37

CONCLUSIONS 	 40

FUTURE SCOPE 	 41

REFERENCES 	 42

APPENDIX
A. Virtex-II Pro —PCI Video Board

B. Program Code (VHDL).

C. Program Code (C)
D. RESULTS

VI

LIST OF FIGURES

Figure No. Title Page no.

1.1 IBM Core Connect Structure. 6

2.1 Embedded Software Tool Architecture 9

2.2 Hardware Platform Creation 11

. 2.3 Verification Platform 12

2.4 Software Platform. 13

2.5 Software Application Creation and Verification 14

3.1 On-chip bus structure 16

3.2 Block Diagram of PLB to OPB Bridge 18

3.3 Block Diagram of OPB to PLB Bridge 21

4.1 MicroBlaze Core Block Diagram 23

4.2 Power PC organization 26

4.3 Embedded System Design using MicroBlaze 27

4.4 Embedded System Design using Power PC 28

4.5 Block Diagram of DAC TIIS 8133 34

4.6 THS8133 DAC Pin Diagram 	. 36

4.7 Multimedia Application using bus bridge 37

4.8 IPIF Module connecting IP core 39

VII -

ABBREVIATIONS

ADC Analog to Digital

ASIC Application-Specific Integrated Circuits

BRAM 	 I Block Random Access Memory

BSB Base. System Builder 	.

CLB Configurable Logic BIocks

DAC Digital to Analog

DCM Digital Clock Manager

DCR Device Control Register Bus

DLMB Data Local Memory Bus

DMA Direct Memory Access

DOPB . Data On-Chip Peripheral Bus

EDIF Electronic Design Interchange Format

EDK Embedded Development Kit

EMAC Ethernet Media Access Control

FIFO First In First Out

FPGA Field Programmable Gate Arrays

FSL Fast Simplex Link

GPIO General Purpose Input Output

GUI General User Interface

HDL Hardware Description Language.

HW Hardware

IBM International Business Machines

IOB Input Output Blocks

IP Intellectual Property

IPIF Intellectual Property Interface

JTAG Joint Test Action Group

LUT Look Up Tables

MB MicroBlaze

VIII

INTRODUCTION

In near future, the microelectronics industry will face the reality of a billion transistors on

a chip. Now it is not economical to use the chip for a single function, as large resources will

remain unutilized. Therefore these days there is a growing trend towards designing the complete

system on a single chip. This is popularly known as System-on-Chip (SoC) Technology. This

technology allows the designer to implement a complete system on a single chip dedicated to

particular application.

In an effort to implement the system from scratch the costs incurred are enormous and

only a few companies can build the needed competency in all the design areas. In most cases,

designers have to use intellectual property (IP) blocks, possibly originating from external

vendors. IP blocks are, predefined, large grained blocks, such as filters, peripherals, memories,

and processors, whose function has been precisely specified. Designing a system based on

reusable IP blocks challenges industry to develop new design methodologies and tools.

Xilinx has developed a tool called Embedded Development Kit (EDK) [6] to provide a

solution to the problem of placing a complete system on the single chip using IP blocks from
r

different sources. It provides the platform to integrate the IP's from different vendors with the

resources available within -the -tool to design the system according to particular application. This

approach is known as a plug and play environment.

Such an integration environment as provided by the Xilinx is typically a design platform

for a specific application domain. The IP blocks are standard building blocks that can be easily

integrated within the application domain. The integration platform consists of components such

as a target hardware and software architecture, a portfolio of virtual components (IP blocks), and

a design validation methodology.

A simple general-purpose processor core is the basic component in the integration

platform. Xilinx have included two processor cores into the design, Microblaze [8] which is a soft

processor and Power PC [11] core which is hard processor. These. processor cores are integrated

into the fabric , of the chip. All the IP blocks are glued together through buses that communicate

with the processor.

1

Two kinds of buses are introduced for the purpose of connecting different peripherals on

the chip: the processor local bus (PLB) and the on-chip peripheral, bus (OPB) [10]. The OPB is

connected to the PLB through a module interface called Bus Bridge: There are two bus bridges

available PLB to OPB Bridge[2] and OPB to PLB Bridge[4]. The PLB arbiter controls the PLB

communications among the processor, memory and OPB bridge. The OPB arbiter controls the

OPB communications among the IP blocks.

The IP blocks can be user-defined logic blocks or third party IP blocks. Other company

which is also working in this area is ARM and they have designed there own on-chip bus known

as AMBA.

FPGA's are the programmable logic devices that are used for real time testing for the

system designed for the chips.Virtex-II Pro FPGA's [14] are the latest in the family of Xilinx

devices which has almost all the features for designing the complex embedded system.

2

CHAPTER-1
TECHNOLOGY AND BACKGROUND

1.1. System-on chip (SoC)

System-on chip is referred to devices where whole of the computing system is integrated on

the one chip. Main features of SoC are:

1. Reduced chip interconnect.

2. Reduced power dissipation.

3. Reduced device size.
A typical SoC may contain one or many processor, on-chip memory, different types of bus

structures, bridges to connect the different buses, an arbitrary number of peripherals connected to

each other to form a, complete circuit. The system on chip aims at providing only one circuit for

any particular application. A SoC contains a large number of I/O interfaces to connect to the

other circuits.

A SoC are designed with limited applications in mind and need less processing power

then general purpose computer An SoC processor works on only few MHz range while modern

PC run on 500 MHz —GHz range: Frequency required to operate the SoC is just sufficient to run

the design. Due to low frequency the power consumption and chip temperature is reduced and

the system operates with less cooling devices and better battery utilization.

12. Application Specific Integrated Circuits (ASIC's)
Application Specific Integrated Circuits (ASIC) is one of the common types of chip types

ASIC can implement designs .ranging from very simple to complex which are dedicated to

specific application.ASIC are therefore customized for reduced power dissipation, less area and

greater clock frequencies.ASIC have low mass production costs.

Main disadvantages of ASIC's are long design phases, low configurability and high start up

costs. ASIC's are mainly used for large scale manufacturing of verified designs but not for

prototypes.

1.3. Programmable Logic Device (PLD's)
This are also used to design systems whose complexity varies from simple combinatorial design

to complex SoC's.

1.4. Field Programmable Gate Arrays (FPGA's)
Field Programmable Gate Arrays (FPGA) are a type of Programmable Logic Devices.FPGA is a

general architecture consisting of configurable logic blocks and programmable interconnections.

Several, FPGA has enough logic to implement complex SoC's. FPGA's are not optimized for a

particular design and therefore consume more power or implement a design less efficient then

the ASIC's. Price per chip is high.

Advantages of FPGA's is that they are easy to reprogram, which shortens design cycles

and allow early real world tests. This makes FPGA's well suited for prototypes and small

production volumes.

1.5. Hardware Description Languages (HDL's)
Hardware Description Language (HDL) provides ways to design hardware .VHDL and Verilog

are two popular hardware description Languages

1.6. Active HDL
This is the simulation software used to simulate VHDL design.Version 6.1 of this software has

been used.

1.7. Processor Cores. 	 4

Processor cores refer to a processor excluding any peripherals that are connected to it In SoC

one or more processors are connected to peripherals in a single chip.

There are three different types of processor cores:

1. Soft Processor core: Cores delivered as technology dependent gate-level netlist or HDL

source code.

2. Firm processor cores: Cores delivered as library elements.

4

3. Hard processor cores: Cores which has a fixed physical layout and which are

incorporated into the design as standard cell.

1.7.1. Soft Processor:

Soft Processor Core: These are the cores delivered as technology dependent gate-level

netlist or HDL source code for synthesis. Soft processors have recently gained wide popularity

.This popularity appears to more amongst the FPGA developers.

This popularity is mainly due to several factors as:

1. Increase in performance,

2. Increased in performance/price ratio on-FPGA's.

3. Increased availability of both commercial and academic cores.

4. Free soft processors have been released by teams consisting of professionals,

academics and enthusiasts (FPGACPU, OPENCORES).

Microblaze [8]. is such a soft processor core provided by the Xilinx.

1.7.2 Hard Processor:

Power PC[11] is the hard processor .Xilinx have embedded the these hard processor into

the FPGA Fabric from Virtex-II Pro FPGA families onwards.

1.8. IBM Coreconnect Bus Architecture:
IBM Coreconnect Bus[l] Architecture is a small set of buses intended for SoC designs.

The block diagram IBM Coreconnect structure is shown above in the Figure 1-1:

IBM Coreconnect features three buses:

1. Processor Local Bus (PLB): High performance bus for connecting fast processor

cores and high performance peripherals (PCI interface, memory controllers) etc.

2. On-Chip Peripheral Bus (OPB): This is a simple bus for connecting slow peripherals

like UART are connected to this bus.

3. Device Control Register bus (DCR): Control Bus that links to all of the devices,

controllers and bridges.

By using these buses the overall SoC can be optimized for performance while simple peripherals

may be optimized for simplicity.

E

DCR BUS

Peripheral 	Peripheral
System Core 	System Core 	System Core 	Core 	 Core

Arbiter I Processor Local Bus (PLB) Bus 	I On-Chip Peripheral Bus (OPB) B ridge
Arbiter

On-Chip 	 Processor
	

Auxiliary

Memory 	 Core
	

Processor

DCR BUS

Figurel.1: IBM Core Connect Structure

Xilinx has developed the IBM Core connect OPB with most configurable OPB

parameters set to specific values. Xilinx OPB is based on OR-Gates and does not use enable

inputs which are used in IBM OPB which are used to assert when the bus is not used.

Xilinx OPB devices share the same parameters because of which they are compatible.

Xilinx devices include Xilinx Microblaze Soft processor core, Xilinx Picoblaze Soft processor

core and a large set of OPB peripherals.

1,9, Embedded Development Kit:

EDK[6] is a series of software tools for designing embedded programmable systems, and

supports designs of processor sub-systems using the IBM PowerPC hard processor core and the

Xilinx Microblaze soft processor core. It has graphical user interface Platform Studio that

integrates all the processes from design entry to design debug and verification. This is used to

design both simple and complex designs .EDK 6.3 has been used in this dissertation work though
EDK7.1 has been launched in the market.

1.10. ISE:

This software is used to place and route the design into the FPGA.

1.11. Bus Bridges:
There are two bridges core recently introduced:

1. PLB to OPB Bridge.

2. OPB to PLB Bridge.
These two bridges PLB to OPB Bridge[2] and OPB to PLB[4] Bridge allow the PPC 405 to be

connected to OPB devices. These bridges are used in the recently built Virtex -2 Pro boards.

7

CHAPTER-2
EMBEDDED SYSTEM TOOLS

2.1. Embedded. Development Kit (EDK)

Embedded Development Kit (EDK)[6] 6.3 contains the rich set design tools and a wide

selection of standard peripherals required to build embedded processor systems using

MicroBlaze, the industry's fastest soft processor solution, and the new and unique feature in

Virtex-II. Pro, _the IBM PowerPC CPU.

These tools, contains processor platform for particular application, software application

development tool, a full featured debug tool chain and device drivers and libraries, which allows

the developer to develop a System-On-Chip(SoC) design with the help of MicroBlaze[8] and

Virtex-II Pro[14] based Power PC[I I].

Figure 2.1 below shows embedded software tool architecture. Multiple tools based on a

common framework allow the user to design the complete embedded system. System design

consists of the creation of the hardware and software components of the embedded processor

system, and optionally, a verification or simulation component as well. The hardware component

consists of an automatically generated hardware platform that can be optionally .extended to

include other hardware functionality specified by the user.

The software component of the design consists of the software platform generated by the

tools, along with the user designed application software. The verification component consists of

automatically generated simulation models targeted to a specific simulator, based on the

hardware and software components.

A typical embedded system design project involves the following phases:

1. Hardware platform creation,

2. Hardware platform verification (simulation),

3. Software platform creation,

4. Software application creation, and

5. Software verification (debugging).

BSB Wizard
	 SW Spec. Ed.

J

HW Spec Ed. 	 SW Plat Gen.

HW Plat Gen. 	 SW Source Ed

Sim Spec Ed
	

SW Compilers
XPS

Sim Plat Gen
	 SW Debuggers

Simulators

ISE-HW Impl. 	 Bitinit

Figure 2.1 Embedded Software Tool Architecture

Embedded Development Kit contains the following tools in the design:

2.1.1. Xilinx Platform Studio

The Xilinx Platform Studio (XPS)[9] tool- provides a GUI (General User Interface) for

creating the MHS and MSS files for the hardware and software flow. XPS also provides source

file editor capability and project and process management capability. XPS is used for managing

the complete tool flow, that is, both hardware and software implementation flows.

2.1.2. Base System Builder

The Base System Builder (BSB) wizard is a software tool that helps users quickly build a

working system targeted at a specific development board. BSB is invoked by XPS when the user

wants to create a new system.

0

2.1.3. Create/Import IP Wizard

The Create/Import Peripheral[131. Wizard helps to create own peripherals, and import

them into EDK compliant repositories or -Xilinx Platform Studio (XPS) projects. This wizard

uses the Psf Utility tool to create the necessary Platform Specification files.

2.1.4. Platform Generator

The embedded processor system in the form of hardware net lists (HDL and EDIF files)

is customized and generated by the Platform Generator (PlatGen).

2.1.5 Simulation Model Generator

The Simulation Platform Generation tool (simgen) generates and configures various

simulation models for the hardware. It takes a Microprocessor Hardware Specification (MHS)

file as input.

2.1.6. Library Generator ..

XPS calls the Library Generator tool for- configuring the software flow. .The Library

Generator. (LibGen) tool configures libraries, device drivers, file systems and interrupt handlers

for the embedded processor system. The input to LibGen is an MSS file.

2.1.7. Bitstream Initializer

The Bitstream Initializer tool initializes the instruction memory of processors on the

FPGA. The instruction -memories of processors are stored in BlockRAMs in the FPGA. This

utility reads an MHS file, and invokes the Data2MEM utility provided in ISE to initialize the

FPGA BlockRAMs.

2.1.8. Platform Generator
r

The embedded processor system in the form of hardware net lists (HDL and EDIF files)

is customized and generated by the Platform Generator (PlatGen).

2.1.9. Simulation Model Generator
The Simulation Platform Generation tool (simgen) generates and configures various

simulation models for the hardware. It takes a Microprocessor Hardware Specification (MHS)

file as input.

2.1.10. Library Generator
XPS calls the Library Generator tool for configuring the software flow. The Library

Generator (LibGen) tool configures libraries, device drivers, file systems and interrupt handlers

for the embedded processor system. The input to LibGen is an MSS file.

10

2.1.11. GNU Compiler Tools

XPS calls GNU compiler tools for compiling and linking application executables for each

processor in the system.

2.2. Tools Flow In the creation of Embedded System:

2.2.1. Hardware Platform Creation

Xilinx Platform Studio[9] provides the Base System Builder Wizard for creating the

Hardware Platform.Details of hardware platform creation are depicted in Figure 2.2

MHS File

HW Spec Ed.

MHS File 	I P

HW Plat Gen. 	 ' S

EDF, NGC,
VHD, V,BMM

Platgen

Figure 2.2 Hardware Platform Creation

Microprocessor Hardware Specification (MHS):

The hardware -platform is defined by the MHS (Microprocessor Hardware Specification)

file. The hardware platform consists of one or more processors and peripherals connected to the

processor buses. Several peripherals are provided with, the software. Peripherals can be designed

according to any particular applications and can be included into the MHS. The MHS file is a

simple text file and any text editor can be used to create this file. The. XPS tool provides

graphical means to create the MHS file.

The MHS file defines the system architecture, peripherals and embedded processors. The

MHS file also defines the connectivity of the system, the address map. of each peripheral in the

system and configurable options for each peripheral. Multiple processor instances connected to

one or more peripheral's through one or more buses. and bridges can also be specified in the

MHS.

11

Platform Generator tool (PlatGen):

The Platform Generator tool (PlatGen) creates the hardware platform using the MHS file

as input. PlatGen creates netlist files in-various formats (NGC, EDIF), as well as support files for

downstream tools, and top-level HDL wrappers to allow designers to add other components to
the automatically generated hardware platform.

2.2.2. Verification Platform Creation

VJID,V for
Simgen 	sim

Figure 2.3 Verification Platform

The verification platform is based on the hardware platform. The MHS file is processed

by the Simgen tool to create simulation files (VHDL, Verilog or various compiled models) along

with some command files .for, specific simulators supported by the tool. As in the case of the

hardware platform, edit these simulation files can be edited to add other components to the

automatically - generated verification platform. If the software application that runs on the

hardware platform is available in executable format, it can be used to initialize memories in the

verification platform. The processor of verification is shown in Figure 2.3.

2.2.3. Software Platform Creation:

Microprocessor Software Specification (MSS) File:

The software platform is defined by the MSS (Microprocessor Software Specification)

file. The MSS file defines driver and library customization parameters for peripherals, processor

customization parameters, standard input/output devices, interrupt handler routines, and other

12

related software features. The MSS file is a simple text file and any text editor can be used to

create this file. The XPS tool provides a graphical user interface for creating the MSS file.

The MSS file is an input to the Library Generator tool (LibGen) for customization of

drivers, libraries and interrupt handlers. The entire process of creating the software platform is

shown in Figure 2-4.

HISS File

SW Spec Ed.

XPS Hiss 	
MSS, MHS, 	X Editor

lib/*.c,Iib/*.h 	P

SW Plat Gen.

libc.a, IibXil.a

Libecn

Figure 2-4: Software Platform

2.2.4. Software Application Creation and Verification:

Software Application:

The software application is the code that runs on the hardware and software platforms.

The source code for the application is written in a high level language such as C or C++, or in

assembly language. XPS [9] provides a source editor for creating these files, but any other text

editor may be used here. Once the source files are created, they are compiled and linked to

generate executable files in the ELF (Executable and Link Format) format. GNU compiler tools

for PowerPC and MicroBlaze are used by default.

Verification:

XMD (Xilinx Microprocessor Debugger) and the GNU debugger (GDB) are used together to

debug the software application. XMD provides an instruction set simulator, and optionally

connects to a working hardware platform to allow GDB to run the user application. This process

of Software Application Creation and Verification is depicted in Figure 2-5.

13

.c and .hfiles
SW Source Ed.

XPS Source
Editor

.'c and .h files
Iibc.a, libXil.a 	XPS

SW Compliers

MB-gcc, FPC-gec 	 . c and .h files
. elf file

SW Debuggers

M B-gdb,

XMD

Figure 2-5 Software Application Creation and Verification

These processes help in the hardware and software co-design.

14.

CHAPTER-3
BUS BRIDGES IN EMBEDDED SYSTEMS

3.1. Introduction:

There are large numbers of buses following. different standards for communicating with the

peripherals attached to them. If a peripheral attached to a particular bus wants to carry out am

transaction with any other peripheral attached to different bus then it will cause a problem it

carrying out the desired operations. To solve this issue bridges are designed so that they take care o

all the factors to make the communication work.The bridge takes care of all the issues of differen

buses operating at different frequencies, and having different data width. There are large number o.

bridges like PCI bridge that is used for providing the compatibility between the Processor and thf

outer peripherals. Similarly when a system is designed on the chip then processor will have its owr

bus system and it will work at higher speed then the other peripherals. So a bridge becomes E

necessity to connect on chip peripherals and also off chip peripherals.

2. Bridges in Embedded system design.

In embedded system there are two, different types buses The PLB and the OPB.So there

are two bridges that are designed for carrying out the transactions between the devices connected

to the either.bus.

The two bridges available are:

1. PLB to OPB Bridge.

2. OPB to PLB Bridge.

These bridges and the Processor Local Bus (PLB) are supported only with PowerPC, which are

available with the Xilinx Virtex-2 Pro Devices onwards. Xilinx Microblaze soft processor core is

used for designing simple systems with OPB.Microblaze does not support bridges architecture

and Processor Local Bus (PLB). Microblaze is attached directly with OPB bus. Figure 3-1

demonstrates how the PLB to OPB Bridge and OPB to PLB Bridge are connected for the

purpose of development of system-on-a-chip design.

15

it biter

rrc essw Core

wc unr, :avme wu+ 	t cnritter 	mnaUe 	orgy®e 	 - - -°

I 	 I 	 1' 	 1

Mister
a

6
SId

I
CD

E rternal Periphs al Costr ller
SR4h!
ROM

E 	errs 	-

Peripheral
=rers1

Bus Master

Figure 3-1 On-Chip Bus Structure

As shown in Figure 3-1, the on-chip bus structure provides a link between the processor core and

other peripherals which consist of PLB and OPB master and slave devices.

The processor local bus (PLB) is the high performance bus used to access memory

through the bus interface units. The two bus interface units shown above: external peripheral

controller and memory controller are the PLB slaves. The processor core has two PLB master

connections, one for instruction cache and one for data cache. Attached to the PLB is also the

direct memory access (DMA) controller, which is a PLB master device, used in data intensive

applications to improve data transfer performance.

Lower performance peripherals (such as .0PB, master, slave, and other internal

peripherals) are attached to the on-chip peripheral ,bus (OPB). A bridge is provided between the

PLB and OPB to enable data transfer by PLB masters to and from OPB slaves. In the Figure 1

we have two bridges, a PLB to OPB Bridge which is a slave on the PLB and a master on the

OPB and an OPB to PLB Bridge which is a slave on the OPB and a master on the PLB. OPB

peripherals may also comprise DMA peripherals.

The device control register (DCR) bus is used primarily, for accessing status and control

registers within the various PLB and OPB masters and slaves. It is meant to off-load the PLB

from the lower performance status and control read and writes transfers. The DCR bus

architecture allows data transfers among OPB peripherals to occur. independently from and

concurrent with, data transfers between the processor and memory, or among other PLB devices.

an err .
1 ei ary Corrro3 r 	 Pt hear

cca

16

3.3. PLB to OPB Bridge:
The Processor Local Bus (PLB) to On-chip Peripheral Bus (OPB) Bridge translates PLB

transactions into OPB transactions. It functions as a slave on the PLB side and a master on the

OPB side. The bridge isrequired in those system designs which have OPB slave devices, which

must be accessed by the processor.

Features of PLB to OPB Bridge[2]:

1. PLB slave device and OPB master device

2. External programmable address space via address decode pin (this allows the PLB to

OPB bridge to be located anywhere in the address map.

3. Supports 8 PLB masters.

4. 64-bit PLB slave interface supports.

— Double Word (64-bit) writes or (32-bit writes) and Word (32-bit) reads

— All partial transfers

5. Supports word, halfword, and byte burst reads and writes, including fixed-length

bursts.

6. Supports pipelining for read transfers.

7. Compliant with quad-, and octal-word bursts for upward compatibility.

8. Supports 4-, 8-, and 16-word line transfers.

9. OPB master performs dynamic bus sizing for varying width slave devices

10. Bus error log accessible through device control registers

17

Processor Local Bus

OPB Data In 	OPB Data Out 	 OPB Addr 	 OPB Ctrl

On-Chip Peripheral Bus

Figure 3-2 Block Diagram of PLB to OPB Bridge

18

11. 66± MHz OPB clock frequency.

12. Support for PLB bus-speeds at lx, 2x, 3x, or 4x the frequency of the OPB.

13. Watchdog timer for implementations omitting OPB arbiter.

3.3.1. Interfaces in PLB to OPB Bridge

PLB Interface:

The PLB to OPB Bridge [2] interfaces to the PLB as a 64-bit slave device for write

operations, and as a 32-bit slave for reads. It has a single input for address decode so that the OPB

slaves may be relocated in the system address map. The PLB to OPB bridge has the logic which

steps down the PLB frequency by an integer amount (2:1, 3:1, etc.), allowing the OPB side of the

bridge to run at the same (slower) frequency as the OPB. The PLB side always runs at the PLB bus

frequency.. All PLB to OPB bridge operations on the OPB are performed in the order accepted by

the PLB. This insures that coherency is preserved.

OPB Interface:

The PLB .to OPB Bridge interfaces to the OPB as a 32-bit master device. It fully implement

the OPB architecture on the OPB side, performing dynamic bus sizing transfers as necessary. In case

when the PLB to OPB Bridge is the only master device on the OPB, and the arbiter need not b~

attached.

PLB to OPB Bridge Buffering:

The PLB to OPB . bridge buffering has three sections called data buffering, address and

transfer qualifiers, buffering and error registers.

Data Buffering:

The PLB to OPB Bridge contains an 8 byte write data buffer, dynamically configurable

as a single 64-bit, or two independent 32-bit data registers, and a separate 4 byte read data

register. The write buffer resources are dynamically configured to the width of the requested

write data transfer.

Address and Transfer Qualifiers Buffering:

The PLB to OPB Bridge contains three. sets of address and PLB transfer qualifier

registers. These FIFO address and qualifier registers are dynamically allocated between reads

and writes. The PLB to OPB Bridge may accept a secondary read request or a second primary

19

write request, depending on the current allocation of data buffer resources and the state of the

current transfer.

Error Registers:

The PLB to OPB Bridge also contains a set of error reporting registers accessed through

the device control register (DCR) bus. There are two 32-bit registers, one for the address that the

error occurred at - Bridge Error Address Register (BEAR), and one that contains what type of

error occurred and for which master - Bridge Error Status Register (BESR).

Address Registers:

Separate 32-bit PLB addresses are registered by the PLB to OPB Bridge for each operation.

Byte addresses are incremented as necessary to implement dynamic bus sizing on the OPB. Word

addresses are incremented only for PLB burst and line transfers.

3.4. OPB to PLB Bridge:

The On-Chip Peripheral Bus (OPB) to Processor Local Bus. (PLB) Bridge module

translates OPB transactions into PLB transactions. It functions as a slave on the OPB side and a

master on the PLB side. The OPB to PLB Bridge [4] is necessary in systems where an OPB

master device, such as an OPB based coprocessor, requires access to PLB devices (i.e. high

speed memory devices, etc.).

Features of the OPB to PLB Bridge Include:

1. Serves as OPB slave device and/or PLB master device.

2. Can be mapped to any OPB address space.

3. As a 64-bit PLB master interface it supports.

— Doubleword (64-bit) reads, and

— Doubleword, word, halfword, and byte write

4. Provides data packing on writes, up to 4-doublewords

5. Operates at 66+ MHz OPB clock frequency

6. Supports PLB at 1, 2, 3, or 4 times the frequency of the OPB

7. Utilizes clockand power management.

The block diagram of the OPB to PLB Bridge [4] is shown below in Figure 3-3

20

processor Local Bus

OPB Data In 	OPB Data Out 	 OPB Addr 	 OPB Cntrl

On-Chip Peripheral Bus

Figure 3-3 Block Diagram of OPB to PLB Bridge

21

Any application that has an OPB and a PLB can operate in one of two modes:

1-. The XBM (external bus master) mode.

2. The OPB mode.

In the XMB mode the OPB to PLB Bridge uses four byte enable signals . to decode

requested data sizes and the core accepts unaligned half words and-three-byte transfers.

In the OPB mode the OPB to PLB Bridge uses the OPB_fwXfer, OPB hwXfer, and OPB ABus

(30:31) to decode requested data sizes. The core will only respond properly

to byte, aligned halfword, and fullword transfers, as defined by the OPB architecture.

3.4.1. Interfaces in OPB to PLB Bridge

PLB Interface:
The OPB to PLB Bridge interfaces to the PLB as a 64-bit master, device. It supports all

single write transfers, and fixed-length two, three, or four doubleword write bursts. It performs a

doubleword read to service all single read requests, and fixed length read bursts and four

doublewords to service read burst requests.

OPB Interface:

The OPB to PLB Bridge interfaces to the OPB as a 32-bit slave device. It is selected by

an externally decoded select line, so that the PLB slaves may be mapped anywhere in the OPB

address map. The OPB to PLB Bridge supports 64-bit and 32-bit slaves. Conversion cycles are

performed where necessary to support 32-bit slaves.

Address Registers

The OPB to PLB bridge contains a single 32-bit OPB address and transfer qualifier

register. Addresses are incremented as necessary to affect transfers on the PLB.

Internal Data Buffer Structure

PLB Bridge contains a 32-byte data buffer, used for both read and write operations.

During write operations, the buffer is organized as a 4-doubleword FIFO .During read

operations; the buffer is organized as a fully associative cache with a line size of one fullword.

Operation of the buffer, differs for both read and write requests depending on the state of the

OPB_segAddr signal.

22

CHAPTER 4
DESIGN OF EMBEDDED SYSTEM USING BUS BRIDGES

4-1 INTRODUCTION
In the design of embedded system processors are considered to be main unit. Xilinx have

provided both the soft processor core and hard processor cores.Microblaze[8] is the soft processor

and Power PC is the hard processor core. This section gives the brief introduction of design of

embedded systems using MicroBlaze and Power PC. The architectural details of the two processors,

OPB bus and peripherals are discussed in brief.

r

4-2 MICROBLAZE
The Microblaze[8] is an embedded soft core RISC (Reduced Instruction Set Computing)

optimized for implementation in Xilinx FPGA's and it operates at 125 MHz.

The architecture of MicroBlaze is given in figure 4-1.

instruct on-side 	 Data-side
bits intedoce
	 bus rnter`ace

Add/Sub

CXCL_M

IOPB 	 ~ DoPB

	

~ m . 	 Shif'Logical
 H - IXCL M

	

Multlply 	
DXCL_S LXCL_S

Instruction

	

Bus 	 Di a 	 Bus 	MFSL 0..7

	

IF 	
Instruetlon 	 Register File 	IF 	SFSL 8..7

Buffer 	 32 X 32b

Figure -4.1 Microblaze core Block Diagram

MicroBlaze core implements separate buses for instruction fetch and data access, denoted by the

I-side and D side buses, respectively.

These buses are split into two buses types:

1. OPB buses for OPB peripherals and memory controllers.

23

2. Local Memory Bus used exclusively for high. speed access to internal block RAM

(BRAM).

DOPB: Data interface, On-chip peripheral bus.

DLMB: Data interface, Local Memory bus (BRAM only).

IOPB: Instruction interface, On-chip peripheral bus.

IOPB: Instruction interface, Local Memory bus (BRAM only).

Features of Microblaze:

Thirty-two 32-bit general purpose registers

o 32-bit instruction word with three operands and two addressing modes.

• Separate 32-bit instruction and data buses that conform to IBM's OPB (On-chip

Peripheral Bus) specification.

• Separate 32-bit instruction and data buses with.1irect connection to on-chip.

Block RAM through a LMB (Local Memory Bus).

• 32-bit address bus

• Single issue pipeline

• Instruction cache

• Data cache .

• Fast Simplex Link (FSL) support.

4-3 POWER PC

The IBM Power PC [I1] is a RISC processor which can provide performance of up to

300+MHz. The PPC405 RISC CPU can execute instructions at a sustained rate of one instruction

per cycle. On-chip instruction and data cache reduce design complexity and improve system

throughput.

The features of Power PC are:

• Implements the PowerPC User Instruction Set Architecture (UISA) and

extensions for Embedded applications.

• Thirty-two 32-bit general purpose registers (GPRs).

• Hardware multiply/divide for faster integer arithmetic (4-cycle multiply, 35-

cycle divide).

FZl

• Big/little endian operation support.

• Separate instruction and data cache units.

• Virtual mode memory management unit (MMU) which can translate the 4

GB logical address space into physical addresses.

• Debug support which can be in internal mode or external debug mode or

real time debug support.

• Two hardware interrupt levels support.

• Low Power Consumption 0.9mW/MHz.

• Dedicated On Chip Memory (OCM) Interface

The organization of Xilinx Power PC is given below. in Figure 4-2

Central Processing Unit (:CPU)

• Five Stage Instruction pipeline consisting of fetch, decode, execute, write

back and load write back stages.

• Fetch Queue.

Memory Management Unit (MMU)

• Supports 4GB Address Space.

• Provides Address Translation, protection functions and storage attribute

control for the address space.

• TLB used to 'control memory translation and protection, avoids TLB

contention.

Instruction and Data Caches

• Each array is of 16KB size.

• Each is 2 way set Associative.

• ICU supplies two instructions every cycle to the fetch and decode unit.

64 Bit incrementing Time Base Counter.

• Programmable Interval Timer (PIT) - 32 Bit register that is decremented at time

base incrementing frequency. PIT interrupt occurs when PIT Count reaches 0

• Fixed Interval Timer - Causes an interrupt when a selected bit in the time base

register changes from 0 to 1.

25

Watchdog Timer - Causes a hardware reset when a selected bit in the time base

register changes from 0 to 1.

4

PLB Master 	Instruction
Read Interface 	0CM

I.Cache 	i I•Cache

MMU CPU

Fetch
Array 	; Ccntroller lnstructun I 	and 	; 	B•Element
-------1-------- ShaduaTLB Decode 	Fetch Queue Timers
Instruction-Cache (4-Entry) Logic

Unit

Timers
• Cache Units U nif

fied
ied TLB

LB and U
Debug

Data-Cache
• Unit Data Execute Unit N4

-------r-------- Shada~v-TL6 -----•~ ------~ --- Login
D-Cache 	D-Cache (8-Entry) 2x22 	ALU 	' fv1AC Array 	Ccntroller

I tT
GPR

I ___ ___

I L
PL6 piaster 	PLB Master 	Data 	 External-Interrupt 	 Instruction

Read Interface Write Interface 	0CM
	

Controller Interface 	JTAG 	Trace

Figure 4-2 Power PC Organization

Special Debug modes that support various types of debugging.

o 	Internal Debug mode for use by ROM monitors and software debuggers.

s 	External Debug mode for use by JTAG debuggers.

26

Debug wait mode, which allows the servicing of interrupts while the processor
appears to be stopped.

• Real time trace mode, which supports event triggering for real time tracing.

Internal Debug and External Debug mode can be enabled simultaneously

4-4 Design of embedded system using Microblaze

Figure 4-3 shows the overall idea of how to design the embedded system using

Microblaze. Microblaze is soft processor that acts as a master on the OPB bus. There can be
other masters on the .OPB bus as well like DATA controller. Peripherals -like UART, Interrupt

controller, GPIO (General Purpose Input Output) acts as slaves on the OPB bus.
These cores are provided by the Xilinx IP's.The whole design can implement the complete

system on chip (SoC) design.

OPB Arbiter

OPB Slave
(Ex.UART)

Microblaze
as OPB
Master 	 OPB Slave

(Ex.Interrupt
controller

OPB Master
(Ex.DMA)

OPB Slave
(Ex.GPIO)

OPB Bus

Figure 4-3 Embedded system design using Microblaze

27

4-5 Design. of embedded system using Power PC

The design of embedded system using the Power PC is shown below in the Figure 4-4.

The block diagram shows that more resources can be used when an embedded system is

designed with Power PC[1 1].

PLB
Arbiter

PLB to OPB
Bridge

OPB
Arbiter

OPB
Peripheral

D Side
PLB I/F

I_Side
PLB I/F

PPC 405
Processor
Block

OPB to PLB
Bridge

PLB
Peripheral

OPB
Peripheral

OPB
Peripheral

PLB
	

OPB
Peripheral
	

Peripheral

PLB Bus 	 OPB Bus

Figure 4-4 Embedded System using Power PC

Figure 4-4 shows the block diagram an embedded system that can be developed using PLB to

OPB bus bridges and OPB to PLB bus bridges .These bridges facilitate the transfer of data

between the peripherals of different speeds. With.the help of these bridges it is possible to carry

out the transaction between the processor and the fast peripherals that operate at system

frequency and the slower peripherals. The processor and fast peripherals are connected to the

Processor Local Bus (PLB) and slower peripherals that operate at much, lower frequency like

UART, USB, Ethernet card etc. are connected to the on-chip peripheral bus'

28

(OPB)[10].MicroBlaze does not support these bridges as it is connected to the OPB only.

Bridges help in designing the system that has multiple processing units.

4-6 On-Chip Peripheral (OPB) Bus
The OPB[10j is full featured bus architecture and is one element of the IBM Coreconnect

architecture. It is general—purpose synchronous bus designed for easy connection of on-chip

peripheral devices. The OPB interface connects both on-chip and off-chip peripherals and

memory. Most of the features of OPB map well to the FPGA architecture ,however some can

lower system, clock rates.So,Xilinx uses an efficient subset of the OPB for Xilinx developed

OPB devices.

Features of OPB:

1. Fully synchronous.

2. 32-bit address bus, 32-bit data bus.

3. Single transfer of data between OPB master and OPB slave.

4. Supports master byte enables.

5. Supports slave timeout suppress..

6. Supports slave retry.

7. No tri-state drivers required.

4-7 General Purpose Input Output (GPIO)

The GPIO is a 32-bit peripheral that attaches to OPB.

The features of GPIO are given below:

1. Configurable as single or dual GPIO channel(s).

2. Each GPIO bit dynamically programmable as input or output.

3. Number of GPIO bits configurable from 1-32 bits.

4. Can be configured as inputs-only to reduce resource utilization.

5. Ports for both three-state and non-three-state connections.

6. Optional Interrupt request generation.

7. Independent reset values for each bit of all registers.

W

4-8 Virtex-II Pro FPGA
The Virtex-II Pro Platform FPGA [14] is said to be the most technically advanced silicon

and software product development in the history of the programmable logic industry. The Virtex-

II Pro family FPGA has changed the technology focus from programmable logic to

programmable systems, with enormous applications in leading areas of system architectures in

networking applications, multimedia applications embedded systems, and digital signal

processing systems. It allows custom user-defined system architectures to be synthesized and

complex hardware and software systems to be co-developed rapidly. It also helps in-system

debugging at system speeds.

Virtex-II Pro ordering Information:

XC2VP30-5 FF 1152C - - - -
	TTemperature E1=p=W=JLange C (commercial)

Device Type 	 Number of pins

Speed Grade 	 Package Type

Virtex-II Pro devices are user-programmable gate arrays with configurable elements and

embedded blocks optimized for high density and high performance system designs. A brief

overview of the components of Virtex-II Pro. is:

1. Embedded High-Speed Serial Transceivers:

These devices have RocketlO Multi-Gigabits Transceivers which is a flexible

parallel-to-serial and serial-to-parallel embedded transceiver used for high bandwidth

interconnections between buses, back-planes and other subsystems. 	Multiple user

instantiations are possible, with _a speed of upto 120 Gb/s of full-duplex raw data transfer.

Each channel can be operated at a maximum data transfer rate of 3.125 Gb/s:

2. Power PC:

The Power PC is the hard processor core that is embedded into the FPGA fabric. The

architectural details of Power PC are discussed above.

30.

3. Input/Output Blocks (1013s):

I/O blocks provide the interface between package pins and the internal configurable

logic. Most popular and leading-edge 110 standards are supported by the programmable
IOBs

4. Configurable Logic Blocks (CLBs):

Configurable Logic Blocks (CLBs) provide functional elements for combinatorial

and synchronous logic, including basic storage elements. CLB resources include

four slices and two 3-state buffers.

Each slice is equivalent and contains:

Two function generators (F & G)

• Two storage elements

• Arithmetic logic gates

• Large multiplexers

• Wide function capability

The function generators F & G are configurable as 4-input look-up tables (LUTs),

as 16-bit shift registers, or as 16-bit distributed Select RAM+ memory. In

addition, the two storage elements are either edge-triggered D-type flip-flops or

level-sensitive latches. Each CLB has internal fast interconnect and connects to a

switch matrix to access general routing resources.

5 Block Select RAM+ Memory:

Block Select TEAM+ memory modules provide large 18 Kb storage elements of

True Dual-Port RAM. Block Select RAM+ memory is cascadable to implement 	large

embedded storage blocks.

6 . Embedded 18-bit x 18-bit dedicated multiplier blocks:

18-bit x 18-bit help in making Read/multiply/accumulate operations and DSP filter

structures are extremely efficient.

7 Digital Clock Manager (DCM):

Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital

solutions for clock distribution delay compensation, clock multiplication and

division. The DCM and global clock multiplexer buffers provide a complete

solution for designing high-speed clock schemes. Up to eight DCM blocks are

31.

available. To generate deskewed internal or external clocks, each DCM can be

used to eliminate clock distribution delay. The DCM also provides 90-, 180-, and

270-degree phase-shifted versions of its output clocks.

Virtex-II Pro Family has 10 members. In the dissertation XC2VP30 device is used which has

following resources:

Number of Rocket IO Transceivers Blocks: 10

Power PC Processor Blocks: 2

Logic cells: 30816

Slices: 13696

18 X 18 Multipliers Blocks:136

Block Select RAM+(1 8Kb blocks): 136,Max.BlockRAM(kb):2448

DCM:8

Maximum User I/O Pads:644

4-9 DIGITAL TO ANALOG CONVERTER (DAC) THS8133-
A brief description of how DAC THS8133 [5] works is given below .It also shows how

different signals are used to generate some pattern on the TV signal.

The features of DAC THS8133 are:

• Triple 10-bit D/A Converters

• Minimum 80 MSPS Operation.
• Direct Drive of Doubly-Terminated 75-W load into Standard Video levels.
• 3 x l 0 Bit 4:4:4, 2x 10 Bit 4:2:2 or 1 x 10 Bit 4:2:2 (ITU-BT.656) Multiplexed

YPbPr/GBR Input Modes.

• Bi-Level (EIA) or Tri-Level (SMPTE) Sync Generation With 7:3 Video/Sync

Ratio.

• Integrated Insertion of Sync-On-Green/Luminance or Sync-On-All channels.

• Configurable Blanking Level.

• Internal Voltage Reference.

The THS8133 is a general-purpose triple high-speed D/A converter (DAC) used in

video/graphics applications. The device operates from a 5-V analog supply and a 3-V to 5-V

32

range digital supply. The THS8133 has a sampling rate up to 80 MSPS. The device consists of

three 10-bit 1)/A converters and additional circuitry for bi-level/tri-level sync and blanking level

generation in video applications.

THS8133 is suited for applications High-Definition Television (HDTV) Set-Top

Boxes/Receivers, High-Resolution Image Processing and in communication systems.

Its output drivers are specifically designed to produce standard video output levels when directly

connected to a single-ended doubly-terminated 75 W coaxial cable.

The THS8133 can generate both a bi-level sync or a tri-level sync signal, as per the

SMPTE standards, via a digital control interface. The sync signal is inserted on one of the analog

output channels (sync-on-green/luminance) or on all output channels. Also, a blanking control .

signal sets the outputs to defined levels during the nonactive video window.

The input format can be either 3x10 bit 4:4:4, 2x10 bit 4:2:2 or I x 10 bit 4:2:2. This

enables a direct interface to a wide range of video DSP/ASICs including parts generating ITU-

BT.656 formatted output data. The block diagram of THS8133 is given below in Figure 4-5.

33

DV OD DVSS

RPr(9:01
1

GY(9:O) I 	Input
Formatter

8Pb[9:0]

COMP Vj

Bandpap
Reference

RegIs ar DAC ARPr

(

Repfster DAC AGY

BTFb DAC (ABPb

CL 	 ConSpuraition 	 SYNCYBIANK
Control 	 Control

M

----}---t-------------------- ----~
AVOD AV SS SYNC BLANK

SYNC T

Figure 4-5 Block Diagram of DAC THS8133

The brief descriptions of various signals used are:

BPbO-BPb9, GYO-GY9 and RPrO-PPRr9 are pixels Input corresponding to Blue,

Green and Red signals respectively. ABPb, AGY, ARPr: These are the analog red, green and

blue respectively Pr, Y and Pb. current outputs, capable of directly driving a doubly terminated

75- SZ coaxial cable.

BLANK: It is active low Blanking control input, and it is -latched on the rising edge of CLK.

When asserted, the ARPr, AGY and ABPb outputs are driven to the blanking level, irrespective

of the value on the data inputs.

SYNC: It is also the active low Sync control input which is latched on the rising edge on

34

CLK When asserted, only the AGY output or ARPr, AGY and ABPb outputs are driven to the

sync level, irrespective of the values on the data or BLANK inputs. SYNC takes precedence

over BLANK, so asserting SYNC (low) while BLANK is active (low) will result in sync
generation.

SYNC T: This signal is Sync tri-level control, active high. It is latched on rising edge of

the CLK. When asserted, a positive sync (higher than blanking level) is generated when SYNC

is low. When disabled, a negative sync (lower than blanking level) is generated when SYNC is
low. When generating a tri-level (negative-to-positive) sync, a L to H transition on this signal

positions the start of the positive transition. The value on SYNC_T is ignored when SYNC is not
asserted (high).

CLK: It is the Clock input. A rising edge on CLK latches RPrO-9, GYO-9, BPbO-9,

BLANK, SYNC, and SYNC T. The M2 input is latched by a rising edge on CLK also, but only

when additional conditions are satisfied.

M1: This is the configuration signal used for the mode control 1.It is directly interpreted

by the device and is not latched by the CLK.

M2: This is also the configuration signal. It is latched when the second rising edge on

CLK takes place after the transition on SYNC.

The interpretation of M2 is dependent upon the polarity of the last SYNC transition.

When SYNC L (Low) goes to H (High) M2 is latched as M2 INT. When SYNC goes H (High) to

L (Low) M2 is latched as INS3_INT.The Pin Diagram of THS8133 DAC is given below in the

Figure 4-6

35

a

' 4e47 48 45 4443 42 41 40 30 2a 37
BPb9. 1 30 GYO
3Pb8 2 3 JGY1
BPb7I 3 34 GY2
3Pb6 4 . 	33 GY3
SPb5f 5 32. GY4
3Pb4 ® 31]GYS
5Pb3 7 30 JGY6
BPb2 8 29 JGV7
BPb1 a 28 JGY8
3PbO 10 27 JGV9
DVW 11 J CLK
DVpp 12 2 J SYND T

13 14 15 16 17 18 10 20 21 22 23 24

~ a 	 o::
m

Figure 4-6 THS8133 DAC Pin Diagram

The device is configured using M1, M2 TNT as shown in Table 4.1.

M1 M2INT CONFIGURATION DESCRIPTION
L L GBR GBR mode 4:4:4. Data clocked in on each rising edge of CLK from G,

3x1 Ob-4:4:4 B, and R input channels.

L H YPbPr YPbPr mode 4:4:4. Data clocked in on each rising edge of CLK from
3x10b-4:4:4 Y, Pb and Pr input channels.

H L YPbPr _ YPbPr mode 4:2:2 2x10 bit, Data clocked in on each rising edge of
2x 1 Ob-4:2:2 CLK from Y & Pr input channels. A sample sequence of Pb—Pr—...

should be applied to the Pr port. At the first rising edge of CLK after

BLANK is taken high, Pb should be present on this port
H H YPbPr YPbPr mode 4:2:2 1x10 bit (ITU-BT.656 compliant). Data clocked in

1x10b-4:2:2 on each rising edge of CLK from Y input channel.

Table 4.1 THS8133 Configuration

One channel of Video DAC is used for monochrome image processing. In case of INS3_INT

signal if this signal is high, the sync output is inserted on all DAC outputs and when it is low

sync output will be inserted only on the AGY output. The value of M2 at power up is

undetermined. Therefore at least 1 L —>H transition on SYNC is required to set M2.

36

Virtex-II Pro FPGA and THS8133 DAC are used for multimedia application. The program is

stored in the FPGA and then it controls the interfacing of the DAC THS8133. It resembles the

complete system-on—chip design (SoC).The whole design is developed with the help of EDK 6.3

with the help of PowerPC and bus Bridges. Here as there is no slave on the PLB bus therefore

OPB to PLB Bridge is not used.

4.10. Multimedia Application using the Virtex-II Pro
FPGA based board is used for TV interface according to CCIR/PAL[19] standard. The

blanking and sync signal are generated to display the pattern on the TV monitor. A pattern is

generated in FPGA which is displayed in the TV monitor with the help of THS8133 DAC.The

general block diagram of the application is shown in the Figure 4-7 below:

IBM
PowerPC

PLB BUS OPB BUS

FPCA
PLB Logic THS
To For

8133 OPB DAC
DAC Bridge Control

!....: OPB y'
• PLB 	- •
• Bridge

GPIO

rl~1dalfluIKID

Figure 4-7 Multimedia Application using Bus Bridge

The figure 5-4 give the general block diagram of the Multimedia application using bus bridge

The function of different blocks is given below.

GPIO: It is General Purpose Input Output Block which is used for giving the input to the

processor and transmits the output. It can be configured as input, output or both. It is configured

as an output block to send the instruction to the processor The instructions are written in the C

code which are converted into the assembly level by the GNU C cross compiler.

37

Power PC: This is the processor core which is inserted in the FPGA fabric to carry out the

instructions given by the user.

PLB Bus: This is the bus connected to the Power PC core. No peripheral is attached to this Bus

as it is used for connecting the faster peripherals that operate at system frequency.

PLB to OPB Bridge: The Iink has been designed which connects the PLB and OPB Bus. This

PLB to OPB bus bridge is the soft core available with in the Xilinx library .The parameters can

be set according to the design requirements and the system requirements. This bridge acts as the

slave on the PLB and master on the OPB bus. The OPB to PLB Bridge is used to map a range of

PLB addresses onto OPB addresses.

OPB to PLB Bridge: This Bridge is not used in this application so it is shown dotted.

This bridge is used when there is some master on the OPB and it want to communicate with the

peripheral -attached to the PLB.

The create and import peripheral block has IPIF (Intellectual Property Interface) block

which help in attaching the IP created in the design to the OPB.

FPGA Logic for DAC control: This is logic designed to control the DAC THS8133 The

Code for this is written in VHDL and it is attached to the OPB with the help of Create/Import

Wizard of the EDK tool.

The block diagram of IPIF[13] connecting IP Core is shqwn in the figure 4-8. Base System

Builder (BSB) is used to design the basic design using Xilinx Platform Studio (XPS).Then IP

core is attached to the system using IPIF.

38

Reset
IPIC

Slave 	And
Attachment Register I/F

Glue 	 IP
P
O

B 	 Master 	 Write FIFO 	
CORE

Attachment
Read FIFO

External
I/F

DMA

IPIF_

Device

Figure 4-8 IPIF module connecting IP Core

The output from the design is used to-control the output of the DAC so that a desired pattern can

be generated. The output signals sent to DAC are used for configuring the various modes that are

used to control the DAC.

DAC THS8133: This is the 10 bit Digital to analog converter used for video and graphics

applications. The operation of this DAC THS8133 [5] is explained above.

The complete embedded system is generated and compiled using the EDK Version 6.3 tool. The

different files that are generated during compilation along with the brief overview is given below

.The design was tested successfully using Virtex-II Pro-PCI Video card.

39

FUTURE SCOPE

Virtex-II Pro is the first platform FPGA solution capable of implementing ultra high bandwidth

SoC designs that were previously in the exclusive domain of ASIC's.The Virtex-II Pro presents

all the capabilitiesdf the ASIC's and still maintain the flexibilities and low development costs of

programmable logic devices. The Virtex-II Pro solution enables the high performance

programmable systems especially in the areas of wired and wireless networking, storage systems,

professional broadcast, embedded systems, and digital signal processing systems.

With the help of EDK IP cores we can develop the complete embedded systems . in any of the

areas and carry out the real time test using the Virtex-II Pro FPGA's.The flexibility

Of the EDK to add IP cores from the third party or from the particular user helps in completely

design the particular application with the minimum cost and less time. The future scope in this

area is unlimited and it even depends relatively less on the market conditions because these are

upward compatible of the tools and their flexible nature.

This approach helps in codesign in which software and hardware are connected simultaneously

which is improvement of the earlier approach in which hardware and software platform were

developed independently and there was problem in the integration of the platforms.

This thesis work can be extended to develop any video game. The PCI slot can also be used to

send the data from the PC to the board through the PCI slot.

41

REFERENCES

I.IBM Coreconnect Architecture
h1ti:f/www-03.ibni.com/cIiips/roducts/coreconnectf

2.User Guide 64-Bit PLB to OPB Bridge Core (SA-27E and Cu-I I)Version 3.1 2"d Edition 2002
http://www306ibrn.com/cjps/tcchIib/tech lib.nsf7techdocs/Virtex 2
6iro.docl.);+1388(15C:8081+ 811 E.287256A21.1(10616A49

3.Product Brief -64-Bit PLB to OPB Bridge Core(SA-12)
http://w-ww3O6.il»n.com/chips/techlib/tec1i lil,i.nsf/tecJ)does/.I'42A6677067F64EE2872.56I39.E,O
05ACBEB

4. User Guide 64-Bit OPB to PLB Bridge Core(C27E318_um.pdf)Version 3.3 2"d Edition 2002
littn://www3f)(i.ibna_cotn/chips/teelilil./teefili b.iisf/techdoes/460F4792A.C4DFEI CS7256A2B
006361113/ f le/C27E318 um.ndf

5.Texas Instruments -THS 8133 Video DAC Data Sheet 08 September 2000
bttt)://.focus.ti.coin./lit/ds/synilinli/tlis81.33b.pc1 t'

6.EDK 6.3 Getting started with EDK 6.3 August 10, 2004
http://www.xilinxcorn/ise/enibed(led/edli6;3docs/edk getstarted.pdf

7.Embedded System Tools Reference Guide August 20,2004
httf);//www.xilinx.com/isc/enlbcdd.ed/edk6 ww.xilinx.com/ise/einbedd.e(l/edk6 3docslest rm. df

8.Microblaze Reference Guide June 14,2004
http://www..xilinx.com/ise/em.bedded/edk6 3docs/mb ref guide.pdf

9.Platform Studio Tools User Guide August 24,2004
ht}t:f/www.xilinx.com/ise/embedded/edk6 3docs/ps ug.F,df

I0.On-chip Peripheral Bus Architecture Specification Version 2.1 April 2001
http://ww.vi_l..cs.coleiinl,ia.edu/—se(livt irds/claasses/2005/4840/onb ibm spec.pdf

42

11. Power PC 405 Processor Block Reference Guide August 20,2004
htt-r)://www.xilinx.corn/bvdocs/ijscrguicles/ugOl 8.pdf

12. Xilinx Device Driver Documentation 24 June,2004
httii://ii;ww.xilinx.com/ise/embedded/cc dk6 2docs/xilinx drivers.pdf

13. Usercore Templates Reference Guide January 2004
htp://www.xi1inx.corn/ise/emI,edded/edk6 2docs/usercore templates ref guide.ndf

14.Virtex-II Pro Platform FPGA Handbook October 24,2002
bttn://,vvww.x.ilinx.coin/bvdocs/user<(uides/up,01.2.ndf

15. J.Bhaskar, VHDL Primer 3" Edition, Addision Wesley Longman Singapore

Pte.Ltd.

16. DougIas.L.Perry, Programming by Example 4 h̀' Edition, Tata McGraw Hill.

17. Ben Cohen, VHDL Coding Styles and Methodologies,2"d Edition Kluwer Academic

Publishers.

18 Ram Kumar,Rakesh Agarwal, Programming inANSI C,Tata McGraw Hill

19. R R Gulati,Monochrome and Colour Television,New Age International

(P)Limited, Publishers.

43

APPENDIX

APPENDIX A

Virtex-II Pro-PCI Video Board
Virtex-II Pro—PCI Video Board is used for developing multimedia application using Power PC

with the help of Embedded Development Kit (EDK).

The. applications where this card can be used is:

■ Image Processing.

■ Digital video Processing

■ Digital TV

■ Video capture

■ Video editing

■ Multimedia

■ Embedded systems

■ Embedded microprocessor

■ Data storage.

Specifications of Virtex-II Pro-PCI Video board are:

Analog Input: ADC — 14 bit, 10 MSPS single channel is available using AD9240

Video Input: Video ADC —3 channel, 8 bit, 30MSPS single Video Input channel is available

using Video ADC TLV5734.

Video Output: DAC - Two Video Output channels provides NTSC, PAL compliant component

video signal using 10 bit Video DAC THS8133.

User I0's:

1. 16 IO's are available with XC2VP30 device (Maximum 32 XC2VP40 & XC2VP50)

2. 1O's are provided on two 20 pin box type FRC connectors.

Memory

1. 5 fully independent banks of 1 M X 16 SRAM (NEC make uPD4416016).

2. 3 fully independent banks of 512K X 16 FIash PROM (LH28F800)

Serial Interface —

1. Two RS-232 channels (MAX3223)

2. One MIL-STD 1553 channel. (optional)

45

36
39

Flash Prom
Video DAC 512K X 16

Video DAC 39
Video 36 Flash Prom

Output 512K X 16
--- -►

24

Video ADC 39

SRAM 1MX 16
Component 6
Video Input 39

14
ADC SRAM 1MX16

Analog 6 39
input

SYNC SRAM IMX16
SEPARATOR

Video 6 39
Signal SYNC
Input SEPARATOR

FPGA SRAM 1MX16

SYNC Virtex-II Pro
SEPARATOR XC2VP30 16 USER 1O'S

Package-
78 FFl 152

Histogram
Equalizer 16 USER 10'S

4
2 channel Full

Duplex RS232 FRC CONNECTORS
FRC connector

2 Channel 8 USER LED's

MIL-STD-1553 Serial coon. Interface

Configuration
40 MHz Crystal, Oscillator

Crystal Oscillator Socket JTAG PROM PCI
(Optional)

LOCAL BUS

Clock sources PCI Bus Master Interface

PCI BUS

Figure A.1 	Virtex -II Pro based video processing board with PCI Interface

46

PCI Interface:

32 bit 33 MHz master interface, with facility for DMA transfers.

Block Diagram of the Virtex-II Pro—PCI Video Board is shown above in the figure 5-2.

47

APPENDIX B

Program Code (VHDL)

--The VHDL code for the control of DAC THS8133 is given below.

--GIVEN BELOW IS THE PROGRAM FOR GENERATING
--ANY PATTERN USING THE THS8 133 DAC.
--THE PROGRAM WAS TESTED SUCCESSFULLY ON VIRTEX-II PRO
--FPGA'S.HERE MOVING II T PATTERN IS GENERATED
--SIGNALS gen_1,gen_2 and gen_t are used

--respectively for generating
--the I,I and T RESPECTIVELY.

library IEEE;
use IEEE.STD_LOGIC 1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity pattern is
Port (

rst,clk,gen_ 1,gen_2,gen_t: in std_logic;
dac clk, sync_dac, blank dac:out std_logic;--DAC SIGNALS

mode_1, mode_2:out std_logic; -- DAC SIGNAL FOR MODE SELECTION Y

CHANNEL IS SELECTED

sync_t:out std_logic;

dac data:out std logic_vector(9 downto 0));-- DATA FOR PATTERN

end pattern;

architecture Behavioral of pattern is

signal sync,m2_sl,m2_s2,rst en:std_logic; -- signal for dac intialization for selecting particular

channel

signal Config_Over,master en:stdlogic;

signal clk 8m:std logic;

signal clk div :std logic_vector(5 downto 0);

signal hblank,hblank l,hblank1,vblank,vblank1,frame marker:stdlogic; 	--signals for

horizontal blanking vertical blanking ,composite blanking

signal count _h :std logic_vector(15 downto 0);--counter for horizontal pixel counting 320 pixel

trace period and 192 retrace period total 512 pixel

signal count _v :std logic_vector(25 downto 0);

signal hsync,serrl:std logic; --signals for horizontal and vertical syncronization. these signal is

generated in between the blanking period

signal en_p1,en_p2,en_p3,en_p4,en il,en ilv,en i2,en i2v 	:std logic_VECTOR(9

DOWNTO 0);

signal add_en,sync_dac1,sync_dac_m:stdlogic; 	--

type state is (start,sync_h 1,dlyl,dly2,dly3,sync_l_h,dly4,dly5,dly6,dly7);

signal ps,ns: state;

begin

--===CLOCK DIVIDER FOR 8MHz CLOCK =

process(clk,rst)

begin

if rst=' l' then

clk div<= "000000";

elsif clk'event and clk ='1' then

clk div<= clk div+'1;

end if;

end process;

clk 8m 	<= clk div(1);

--===FSM FOR CONFIGURATION SELECTION= == =

49

process(rst,cIk 8m)
begin

if rst=' 1' then
ps<=start;

elsif clk 8m'event and clk 8m='0' then
ps<=ns;

n 	end if;
end process;

process(ps,rst)

begin

case ps is
when start => ns<=sync_h_l;

when sync_h_l => ns<=dlyl;

when dlyl => ns<=dly2;
when dly2 => ns<=dly3;

when dly3 => ns<=dly4;

when dly4 => ns<=dly5;

when dly5 => ns<=dlyG;

when dly6 => ns<=dly7;

when dly7 => ns<=sync_1__h;

when sync_1_h => ns<=sync_1_h;

when others => ns<=sync_h_l;

end case;

end process;

process(ps)
begin
case ps is

when start 	=> sync

Config Over <='0';

50

r 1Roo .

master en <='0;

when synch 1=> sync <=0';

Config_Over <='O';

master en <='O';

when dlyl => sync <'0;

Config_Over <='0;

master en <='0';

when dly2 => sync <='0';

Config_Over <=0';

master en <=0';

when dly3 => sync <=1';

Config_Over. <='0';

master en <=0';

when dly4 => sync <='l';

Config_Over <=0';

master en <=0';

when dly5 => sync <=1';

Config_Over <='0';

master en <=0';

when dly6 => sync <=1';

Config_Over <='0';

master en <='0';

when dly7 => sync <=1';

Config_Over ='l'; -- DAC configuration over in' this

cycle

master en <=1';

when sync_1_h => sync <=1;

Config_Over <='l';

master en <=0';

•end case;

end process;

51

---=end of mode selection for dac-----_=_

process(rst,clk 8m,sync)
begin
if rst=' 1' then

m2_sl <='1;
m2_s2 <='l';
elsif clk 8m'event and clk 8m='1' then

m2_s I <= sync;
m2_s2 <= m2_ s 1;

end if;
end process;
---GENERATE H-blanking =----= - — -- ---

process(clk 8m,master en,Config_Over,rst)
begin
if master en =' 1' or rst = ' 1' then

count h<=(others =>'O');
elsif clk 8m'event and elk 8m ='1' then

if Config Over=' 1' then
if count _h = 511 then
count _h <= (others =>'O'); -- 	H line period counter

else
count _h <= count _h +' 1';

end if;
end if;

end if;
end process;

process(rst, clk)
I

52

begin

if rst=' 1' then

hblank <='1' ;

vblank <_ ' 1' ;

sync dac_m <= ' 1' ;

elsif clk'event and clk=' I' then
hblank <= hblankl ;
vblank <= vblankl ;
sync_dac_m <= sync_dac 1;

end if;
end process;

process(rst, clk 8m)

begin

if rst=' 1' then

sync_dac <= ' 1' ;

elsif clk 8m'event and elk 8m=' 1' then

if Config Over=' 1' then

sync_dac <= sync_dac_m ;
else

sync_dac <= sync ;
end if;

end if;
end process;

hblankl <='1' when (count _h <416) and (master en='0') else
lt.

53

---_=-------I.I.T PATTERN
p

--generation of T --
en_pl <_ "1111111111" 	when (count _h <= 280) 	else

"0000000000" 	WHEN (count h > 280 AND count _h <= 370) else
"1111111111";

en_p2 <= "1111111111" 	when COUNT _V <= 60000 else
"0000000000" WHEN COUNT _V > 60000 AND COUNT _V <= 75000 else

"1111111111";
en_p3 <= 	"1111111111" 	when (count h <= 310) 	else

"0000000000" 	WHEN (count h > 310 AND count _h <= 340) else
"1111111111";

en_p4 <= 	"1111111111" 	when COUNT V <= 75000 else
"0000000000". WHEN COUNTY > 75000 AND COUNT _V <= 100000 else

"1111111111";

-- Generation of 1st I --

en i 1 <= "l l 11111111" 	when (count h. <= 60) 	else

"0000000000" 	WHEN (count h > 60 AND count _h <= 85) else
"1111111111";

en i lv <=1111111111" 	when COUNT _V <= 60000 else

"0000000000" WHEN COUNT V > 60000 AND COUNT _V <= 100000 else

"1111111111";
--Generation Of 2nd I --
en i2 <-- "1111111111" 	when (count h <= 170) 	else

"0000000000" 	WHEN (count h > 170 AND count _h <= 200) else

"1111111111";

en i2v <_ "1111111111" 	when COUNT V <= 60000 else

55

"0000000000" WHEN COUNTY > 60000 AND COUNT _V <= 100000 else
"1111111111";

--generation of I.I.T --
dac_data <= (en_pI or en_p2) and (en_p3 or en_p4) when (gent='1') else

(en i l or en_i l v) when (gen_ 1=' 1') else
(en_i2 or en_i2v) when (gen_2=' I') else
"1111111111";

sync_t 	<='0';
mode_2 	 <= m2_s2;
sync dad 	<= hsync and serrl ;
model 	 <='0';
dac clk 	 <= elk 8m;
blank dac <= hblank and vblank when config_over ='1' else

'0' - 	 r
f

end Behavioral;

56

APPENDIX C

Program Code (C)
C code for controlling the processor.
This C code gives the instructions to the microprocessor to carry out the desired operations.This
C code is converted into the assembly code by GNU GCC compiler.Here the drivers are given in
the EDK which controls the given devices .In this program the driver programs for GPIO's.
#include<xparameters.h>
#include<xgpiol.h>
#include<xio.h>
#include<xgpi.o.h>

void delay(void);

main()

{
int i;
/*
* Routine to write a pattern out to a GPIO
* which is configured as an output
* PARAMETER C ALL INPUTS = 0

while (1)
{

XGpio_mSetDataDirection(XPAR_IITDISPLAY-0_BASEADDR,1,Ox00000000); 	/*
Set as outputs */

XGpio_mWriteReg(XPAR_IITDISPLAY—O—BASEADDR,Ox00,Ox00000001);
delay();
XGpio_mWriteReg(XPAR—IITDISPLAY_0—BASEADDR,Ox00, 0x00000002);
delay();
XGpio_mWriteReg(XPAR_IITDISPLAY_0—BASEADDR,Ox00, 0x00000004);
delay 0;

}
}
void delay(void)
{
int i;
for(i=0;i<=400000;i++)
{}
}

57

APPENDIX D

RESULTS:

Microprocessor Hardware Specification (MHS) File:

These file gives the information about the peripherals and processors used while designing the

hardware system. It shows that it has Power PC ,LED's ,DIP switches, Reset Block, Bram Block

,PLB-IF- controller ,PLB-to-OPB Bridge, PLB bus ,OPB bus, iitrdisplay,DCM clock module in

this hardware design. This file also gives the Base Address, Higher Address, Version, clock to

which the module is connected nad&also the bus interface i.e on which bus the component acts as

slave or as master.

In short MHS file give the general overview otf the complete hardware involved in the

design.The MHS file generated is given below.

Created by Base System Builder Wizard for Xilinx EDK 6.3 Build EDK_Gmm.10
Thu Jun 23 14:57:58 2005
Target Board: Custom
Family: virtex2p
Device: xc2vp30
# Package: 	ff1152
Speed Grade:. -5
Processor: PPC 405
Processor clock frequency: 32.000000 MHz
Bus clock frequency: 32.000000 MHz
Debug interface: No Debug
On Chip Memory: 16KB

PARAMETER VERSION = 2.1.0
PORT fpga_0_LEDS GPIO_d_out pin = fpga_0_LEDS_GPIO_d_out, VEC = [0:31], DIR

= OUTPUT
PORT fpga 0 DIP_Switches_GPIO_in pin = fpga 0_ DIP_Switches_GPIO_in, VEC =

[0:31], DIR = INPUT
PORT sys_clkj,in = dcm_clk_s, DIR =INPUT, SIGIS = CLK
PORT sys rst_pin = sys_rst s, DIR = INPUT
PORT iitdisplay_0_dac_clk = iitdisplay_0_dac_clk, DIR = 0
PORT iitdisplay_0_sync dac = iitdisplay_OLsync_dac, DiR =0
PORT iitdisplay_0_blank dac = iitdisplay_0_blank dac, DIR = 0
PORT iitdisplay_0 mode_1= iitdisplay_0_mode 1, DIR =0
PORT iitdisplay_0_mode 2 = iitdisplay_0_mode_2, DIR = 0
PORT iitdisplay_0_sync t = iitdisplay_0_sync_t, DIR =0
PORT iitdisplay 0_dac_data = iitdisplay_0 . dac _data, VEC = [9:0], DIR 0

BEGIN proc_sys_reset
• PARAMETER INSTANCE = reset block
PARAMETER HW_VER = 1.00.a
PARAMETER C_EXT_RESET_HIGH = 1
PORT Ext_Reset_In = sys rst s
PORT Slowest_sync_clk = sys_clk s
PORT Chip_Reset Req = C405RSTCHIPRESETREQ
PORT Core_Reset_Req = C405RSTCORERESETREQ
PORT System Reset_Req = C405RSTSYSRESETREQ
PORT Rstc405resetchip = RSTC405RESETCHIP
PORT Rstc405resetcore = RSTC405RESETCORE
PORT Rstc405resetsys = RSTC405RESETSYS
PORT Bus_Struct_Reset = sys_bus_reset
PORT Dcm_locked = dcm_0_lock

END

BEGIN ppc405
PARAMETER INSTANCE = ppc405_0
PARAMETER HWVER = 2.00.c
BUS_INTERFACE IPLB = plb
BUS_INTERFACE DPLB = plb
PORT PLBCLK = sys_clk s
PORT C405RSTCHIPRESETREQ = C405RSTCHIPRESETREQ
PORT C405RSTCORERESETREQ = C405RSTCORERESETREQ
PORT C405RSTSYSRESETREQ = C405RSTSYSRESETREQ
PORT RSTC405RESETCHIP = RSTC405RESETCHIP
PORT RSTC405RESETCORE = RSTC405RESETCORE
PORT RSTC405RESETSYS = RSTC405RESETSYS
PORT CPMC405CLOCK = sys_clk_s

END

BEGIN bram_block
PARAMETER INSTANCE = plb_bram_if_cntlr_1_bram
PARAMETER HW_VER = 1.00.a .
BUS_INTERFACE PORTA = plb_bram_if_cntlr_l_port
END

BEGIN plb_bram_if_cntlr
PARAMETER INSTANCE = plb_bram_if_cntlr_1
PARAMETER HW_VER = 1.00.b
PARAMETER c_plb_clk_period_ps- = 31250
PARAMETER c_baseaddr = Oxffffc000
PARAMETER c_highaddr = Oxffffffff
BUS_INTERFACE SPLB = plb
BUS_INTERFACE PORTA = plb brain if cntlr 1_port

A-
59

PORT PLB_Clk = sys_clk_s
END

BEGIN plb2opb_bridge
PARAMETER INSTANCE = plb2opb
PARAMETER HW_VER =1.01 .a
PARAMETER C_DCR INTFCE = 0
PARAMETER C NUM_ADDR_RNG = I
PARAMETER' C_RNGO_BASEADDR = Ox7fffe000
PARAMETER C_RNGO_HIGHADDR = Ox7fffefff
BUS INTERFACE SPLB = plb
BUS -INTERFACE MOPB = opb
PORT PLB_Clk = sys_clk s
PORT OPB. Clk = sys_clk s

END

BEGIN plb _v34
PARAMETER INSTANCE = plb
PARAMETER HW_VER = 1.02.a
PARAMETER -C DCR_INTFCE =0
PARAMETER C EXT_RESET_HIGH =
PORT SYS_Rst = sys_bus_reset
PORT PLB_Clk = sys_clk s

END

BEGIN opb_v20
PARAMETER INSTANCE = opb
PARAMETER HW_VER = 1.1.O.b
PARAMETER C_EXT RESET_HIGH =
PORT SYS_Rst = sys_bus_reset
PORT OPB_Clk = sys_clk s

END

BEGIN iitdisplay
PARAMETER INSTANCE = iitdisplay_0
PARAMETER HW_VER = 3.03.a
PARAMETER C BASEADDR = Ox7fffe400
PARAMETER C__HIGHADDR = Ox7fffe7ff
BUS_INTERFACE SOPB = opb
PORT dac clk = iitdisplay_0_dac_clk
PORT sync dac = iitdisplay_0_sync dac
PORT blank_dac = iitdisplay_0_blank_dac
PORT mode_1 = iitdisplay_0_mode_1
PORT mode_2 = iitdisplay_0_mode_2
PORT sync_t = iitdisplay_0_sync_t
PORT dac data = iitdisplay_0_dac_data

60

PORT OPB_Clk = sys_clk s
END

BEGIN dcm_module
PARAMETER INSTANCE = dcm_0
PARAMETER HW_VER = 1.00.a
PARAMETER C_CLKO_BUF = TRUE
PARAMETER C_CLKIN_PERIOD = 31.250000
PARAMETER C_CLK_FEEDBACK = 1X
PARAMETER C_EXT_RESET_HIGH = .1
PORT CLKIN = dcm_clk_s
PORT CLKO = sys_clk s
PORT CLKFB = sys_clk s
PORT RST = net_gnd
PORT LOCKED = dcm 0 lock

END 	 — —

BEGIN opb_gpio
PARAMETER INSTANCE = LEDS
PARAMETER HW_VER = 3.01.a
PARAMETER C_GPIO_WIDTH =32
PARAMETER C_IS_DUAL = 0
PARAMETER C_ALL_INPUTS = 0
PARAMETER C_IS_BIDIR = 0
PARAMETER C_BASEADDR = Ox7fffe200
PARAMETER C_HIGHADDR = Ox7fffe3ff
BUS_INTERFACE SOPS = opb
PORT OPB_Clk = sys_clk s
PORT GPIO_d_out = fpga_0_LEDS_GPIO_d_out

END

BEGIN opb_gpio
PARAMETER INSTANCE = DIP_Switches
PARAMETER HW_VER = 3.01.a
PARAMETER C_GPIO_WIDTH = 32
PARAMETER C_IS_DUAL = 0
PARAMETER C_ALL_INPUTS = 1
PARAMETER C_IS_BIDIR = 0
PARAMETER C_BASEADDR = Ox7fffe000
PARAMETER C_HIGHADDR = Ox7fffe 1 ff
BUS_INTERFACE SOPB = opb
PORT OPB_Clk = sys_clk s
PORT GPIO_in = fpga_0_DIP_Switches_GPIO_in

END

61

The Platform Generator tool (PlatGen) creates the hardware platform using the MHS file as

input. PlatGen creates netlist files in various formats (NGC, EDIF), as well as support files for

downstream tools, and top-level HDL wrappers to allow users to add other

components to the automatically generated hardware platform.

The file created by the Platgen is given below:
Release 6.3i = platgen EDK_Gmm.10
Copyright (c) 1995-2004 Xilinx, Inc. All rights reserved.

Command Line: platgen -p xc2vp30ffl 152-5 -lang vhdl -lp E:/RAHUL/ -St xst
system.mhs
Parse system.mhs ...
Read MPD definitions ...
WARNING:MDT - Search path E:\RAHUL\ directly contains pcores directory. Search

path should point to a directory two levels above pcores.Sourcing tcl file
F:/EDK/hw/XilinxP.rocessorlPLib/Acores/ppc405_v2,00_c/data/ppc405_v2_1_0.tcl ...Done
Sourcing tcl file
F:/EDK/hw/Xi linxProcessorlPLib/pcores/plb_bram_if cntlr_vl_00_b/data/plb_bram_if
_cntlr v2_1 O.tcl ...Done
Sourcing tel file
F:/EDK/hw/XilinxProcessorlPLib/pcores/plb2opb_bridge_v 1_O 1 _a/data/plb2opb_bridge
_v2_1 0.tcl ...Done
Sourcing tel file
F:/EDK/hw/XilinxProcessorlPLib/pcores/plb_v34_v l_02_a/data/plb_v34_v2_1_0.tcl
...Done
Sourcing tcl file
F:IEDK/hw/XilinxProcessorlPLib/pcores/opb_v2O_vl_10_b/data/opb v20_v2_1_0.tcl
...Done
Overriding IP level properties ...
bram block (plb bram_if cntlr 1_bram) -
F:\EDK\hw\XilinxProcessorIPLib\pcores\bram block_vl_00_a\data\bram_block_v2_1_0.mpd:3
8 - overriding. c_family value virtex2 to virtex2p dcm_module (dcm_0) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\dcm_module v1_00_a\data\dcm_module_v2_1_0.mpd
:55 - overriding c_family value virtex2 to virtex2p opb_gpio (leds) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\opb_gpio_v3_01_a\data\opb_gpio_v2_1_0.mpd:37
overridingc_family value virtex2 to virtex2p-opb_gpio (dip switches) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\opb_gpio_v3_01_a\data\opb_gpio_v2_1_O.mpd:37
overriding c_faniily value virtex2 to virtex2p

Performing IP level DRCs on properties...

62

Running DRC Tcl procedures for OPTION IPLEVEL_DRC_PROC...
Address Map for Processor ppc405_0
(Ox7fffe000-0x7fffe 1 If) DIP_Switches 	plb->plb2opb->opb
(0x7fffe200-0x7fffe3ff) LEDS 	plb->plb2opb->opb
(Ox7fffe400-0x7fffe7ff) iitdisplay_0 	plb->plb2opb->opb
(Oxffffc000-Oxffffffff) plb bram_if cntlr 1 plb

Check platform configuration ...
plb_v34 (plb) - E:\myiitr\system.mhs:94 - 2 master(s) : 2 slave(s)
opb_v20 (opb) - E:\myiitr\system.mhs:103 - 1 master(s) : 3 slave(s)

Check port drivers...
Check platform address map ...
Overriding system level properties ...
brain block (plb bram_if cntlr 1_bram) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\bram_block vl_00_a\data\brain block_v2 1_0.mpd:3
4- overriding c_memsize value 2048 to 16384 brain block (plb_bram_if cntlr _1_bram) -
F: \EDK\hw\XilinxProcess orlPLib\pcores\bram_block_v 1 _00_a\data\bram_block_v2_ 1 _0.mpd:3
5 - overriding c_port dwidth value 32 to 64 bram_block (plb_bram_if_cntlr _1_bram) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\bram_block_vl_00_a\data\brain block v2_1_0.mpd:3
7 - overriding c num we value 4 to 8 plb_bram_if_cntlr (plb_bram if_cntlr_1) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb_bram_if_cntlr_vl_00_b\data\plb_bram if
_cntlr_v2_1_0.mpd:39 - overriding c num masters value 8 to 2 .plb bram_if cntlr
(plb_ bram_if cntlr 1) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb_bram if cntlr_vl 00 b\data\plb brain if

cntlr v2 l_0.mpd:46 - overriding c_plb_mid_width value 3 to 1 plb2opb_bridge (plb2opb) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb2opb_bridge v1_01_a\data\plb2opb_bridge
_v2_1_0.mpd:47 - overriding c_plb_num_masters value 4 to 2 plb2opb bridge (plb2opb)
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb2opb_bridge_vl_01_a\data\plb2opb bridge

v2_1_0.mpd:48 - overriding c_plb_mid_width value 4 to 1 plb_v34 (plb) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb_v34_vl_02 a\data\plb_v34 v2_1_0.mpd:38 	-
overriding cplb_num_masters value 4 to 2 plb_v34 (plb) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb_v34 v1_02_a\data\plb_v34 v2_1_0.mpd:39 	-
overriding c_plb_num_slaves value 4 to 2 plb_v34 (plb) -
F:\EDK\hw\XilinxProcessorIPLib\pcores\plb v34 v1_02_a\data\plb v34 v2_1_0.mp4:40 	-
overriding c_plb_mid width value 2 to 1 opb_v20 .(opb) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\opb_v20_v 1_10_b\data\opb_v20_v2_1_0.mpd:39 	-
overriding c_num_masters value 4 to 1 opb_v20 (opb) -
F:\EDK\hw\XilinxProcessorIPLib\pcores\opb v20_vl_10 b\data\opb_v20_v2_1_0.mpd:40 	-
overriding c_num_slaves value 4 to 3

Running DRC Tel procedures for OPTION SYSLEVEL DRC PROC...

Performing System level DRCs on properties..'.

63

Runnung UPDATE Tcl procedures for OPTION PLATGEN_SYSLEVEL_UPDATE_
PROC
Modify defaults ...
Performing XLPP processing on licensed instances ...
Completion time: 0.00 seconds
Creating hardware output directories ...
Managing hardware (BBD-specified) netlist files ...
Managing cache ...
Elaborating instances ...
bram_block (plb_bram_if_cntlr_1_bram) - E:\myiitr\system.mhs:64 - elaborating IP
Writing HDL for elaborated instances ...
Inserting wrapper level .:.
Completion time: 6.00 seconds
Constructing platform-level signal connectivity ...
Completion time: 15.00 seconds
Writing (top-level) BMM ...
Writing BMM - E:\myiitr\implementation\system.bmm
Writing (top-level and wrappers) HDL ...
Generating synthesis project file ...

Running XST synthesis ...
INFO:MDT - The following instances are synthesized with XST. The MPD option

IMP_NETLIST=TRUE indicates that a NGC file is to be produced using XST
synthesis. IMP_NETLIST=FALSE (default) instances are not synthesized. A batch
file, synthesis.sh, has been created that allows you to synthesize those
instances in your specified synthesis tool of choice.

reset_block_wrapper (reset. block) - E:\myiitr\system.mhs:33 - Running XST
synthesis ppc405_0_wrapper (ppc405_0) -
E:\myiitr.\system.mhs:49 - Running XST synthesis plb_bram_if_cntlr_1_bram_wrapper
(plb_bram_if_cntlr_1_bram) -
E:\myiitr\system.mhs:64 - Running XST synthesis plb_bram_if_cntlr_1_wrapper
(plb bram if_cntlr_l) - E:\myiitr\system.mhs:70 -
Running XST synthesis
plb2opb wrapper (plb2opb) - E:\myiitr\system.mhs:81 - Running XST synthesis
pib_wrapper (plb) - E:\myiitr\system.mhs:94 - Running XST synthesis
opb wrapper (opb) - E:\myiitr\system.mhs:103 - Running XST synthesis
iitdisplay_0_wrapper (iitdisplay_0) - E:\myiitr\system.mhs:11 11 - Running XST
synthesis dcm_0_wrapper (dcm_0) - E:\myiitr\system.mhs:127 - Running XST synthesis
leds_wrapper (leds) - E:\myiitr\system.mhs:141 - Running XST synthesis
dip_switches_wrapper (dip switches) - E:\myiitr\system.mhs:155 - Running XST
synthesis
Running NGCBUILD ...

Rebuilding cache ...
Total run time: 332.00 seconds

Microprocessor Peripheral Description (MPD) File

Figure 5-5 Microprocessor Peripheral Description

Microprocessor Peripheral Description gives the block diagram of the various components

that are connected in the design. It is automatically generated and from here we can change

the parameters of the various components which show the complete flexibility offered by the

tool while designing the embedded tool.

In addition to the processor ,buses and user blocks there are addition blocks called BRAM

blocks. One Bram block is attached to the PLB and the other to the OPB. Two controllers

65

control access from the OPB to its BlockRAM (`opb_bram_if cntlr') and PLB to its

B1ockRAM (`plb_-bram_if cntlr'). This controller acts as an interface between the bus and

the BlockRAM.These are shown in the PBD diagram shown below in Figure 5-5.

Microprocessor Software Specification (MSS) File:

The MSS file defines driver and library customization parameters for peripherals, processor

customization parameters, standard input/output devices, interrupt handler routines, and

other related software features. The MSS File generated for the design is given below.

PARAMETER VERSION = 2.2.0

BEGIN OS
PARAMETER OS_NAME = standalone
PARAMETER OS_VER = 1.00.a
PARAMETER PROC_INSTANCE = ppc405_0

END
BEGIN PROCESSOR
PARAMETER DRIVER_NAME = cpu_ppc405
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = ppc405_O
PARAMETER COMPILER = powerpc-eabi-gcc
PARAMETER ARCHIVER = powerpc-eabi-ar
PARAMETER CORE CLOCK FREQHZ = 32000000

END
BEGIN DRIVER
PARAMETER DRIVER_NAME = plbarb
PARAMETER DRIVER_VER =1.01 .a
PARAMETER HW_INSTANCE = plb

END
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER ' VER = 1.00.a
PARAMETER HW_INSTANCE = opb

END
BEGIN DRIVER
PARAMETER"DRIVER NAME = plb2opb
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = plb2opb
END
BEGIN DRIVER
PARAMETER DRIVER_NAME = gpio
PARAMETER DRIVER_VER = 2.00.a
PARAMETER HW INSTANCE = DIP_Switches

END

66

BEGIN DRIVER
PARAMETER DRIVER_NAME = gpio
PARAMETER DRIVER_VER = 2.00.a
PARAMETER 11W _INSTANCE = LEDS
END
BEGIN DRIVER
PARAMETER DRIVER_NAME = bram
PARAMETER DRIVER_VER = 1.00.a
PARAMETER 11W _INSTANCE = plb_bram_if_cntlr_1

END
BEGIN DRIVER
PARAMETER DRIVER_NAME = generic
PARAMETER DRIVER_VER = 1.00.a
PARAMETER HW_INSTANCE = dcm_0
END
BEGIN DRIVER
PARAMETER DRIVER_NAME = iitdisplay
PARAMETER DRIVER_VER = 3.03.a
PARAMETER HW_INSTANCE = iitdisplay_0

END

The MSS.file is an input to the Library Generator tool (LibGen) for customization of

drivers, libraries and interrupt handlers. This process is used for creating the software

platform. The Library tool (LibGen) creates the following report file.

Release 6.3i - libgen Xilinx EDK 6.3

Copyright (c) 1995-2004 Xilinx, Inc. All rights reserved.

Command Line: libgen -mhs system.mhs -p xc2vp3 Off! 152-5 -lp E:/RAHUL/system
.mss
Output Directory (-od) 	: E:\myiitr\
Part (-p) 	 : virtex2p
Software Specification file 	: system.mss
WARNING:MDT - Search path E:\RAHUL\ directly'contains pcores directory. Search path
should point to a directory two levels above pcores.Sourcing tel file
F:/EDK/hw/XilinxProcessorIPLib/pcores/ppc405_v2_00_c/data/ppc405_v2_1_0.tcl ...Done
Sourcing tel file
F:/EDK/hw/XilinxProcessorlPLib/pcores/plb_bram_if_cntlr_v 1_00 _b/data/plb bram_if_cnt
lr_v2 1_0.tcl ...Done
Sourcing tel file
F:/EDK/hw/XilinxProcessorlPLib/pcores/plb2opb_bridge_vl_01_a/data/plb2opb bridge_v2
_1_0.tcl ...Done
Sourcing tcl file
F:/EDK/hw/XilinxProcessorlPLib/pcores/plb_v34_v 1_02_a/data/plb_v34_v2_1_0.tcl...Done

Sourcing tcl file
F: /EDK/hw/Xil inx Proces s orlP Lib/p cores/opb_v20_v 1_i O_b/datalopb_v20_v2_ 1 _O. tcl... Do
ne
Overriding IP level properties ...
bram_block (plb_bram_ifcntlr 1_bram) -
F: \EDK\hw\Xi linxProcess orlPLib\pcores\bram_block_v 1 _00_a\data\bram_blo ck_v2_ 1 _0.m
pd:38 - overriding c_family value virtex2 to virtex2p dcm_module (dcm_0) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\dcm_module_v 1_00_a\data\dcm_module_v2_ 1_0.
mpd:55 - overriding c_family value virtex2 to virtex2p opb_gpio (leds) -
F:\EDK\hw\Xi l inxProcessorlPLib\pcores\opb_gp i o_v3_01 _a\data\opb_gpio_v2_ l _0.mpd: 3
7 - overriding c_family value virtex2 to virtex2p opb_gpio (dip_switches) -
F:\EDK\hw\Xi 1 inxProcessorlPLib\pcores\opb_gpio_v3_01_a\data\opb_gpio_v2_ 1_0.mpd:3
7 - overriding c_family value virtex2 to virtex2p

Performing IP level DRCs on properties...
Running DRC Tcl procedures for OPTION IPLEVEL_DRC_PROC...
Address Map for Processor ppc405_O
(Ox7fffe000-0x7fffe I ff) DIP_Switches plb->plb2opb->opb
(Qx7fffe200-0x7fffe3ff) LEDS plb->plb2opb->opb
(0x7fffe400-Qx7fffe7ff) iitdisplay_O plb->plb2opb->opb
(Qxffffc000-0xffffffff) plb_bram_if cntlr 1 plb

Check platform configuration ...
plb_v34 (plb) - E:\myiitr\system.mhs:94 - 2 master(s) : 2 slave(s)
opb_v20 (opb) - E:\myiitr\system.mhs:103 - 1 master(s) : 3 slave(s)

Check port drivers...
Check platform address map ...
Overriding system level properties ...
bram_block (plb_bram_if_cntlr 1_bram) -
F:\EDK\hw\Xi linxProcessorlPLib\pcores\bram_block_v 1 _00_a\data\bram_bl ock_v2_ 1_0.m
pd:34 - overriding c_memsize value 2048 to 16384 bram_block (plb_bram if
_cntlr 1_bram) -
F:\EDK\hw\XilinxProcessorIPLib\pcores\bram_block_v 1_0Q_a\data\bram_block_v2_ 1_0.m
pd:35 - overriding c_port dwidth value 32 to 64 bram_block (plb_bram_if _cntlr_1_bram) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\bram_block vl_00_a\data\bram_block_v2_1_O.m
pd:37 - overriding c_num_we value 4 to 8 plb_bram_if_cntlr (plb_bram_if _cntlr 1) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb_bram_if_cntlr_v 1_00_b\data\plb_bram_if
_cntlr v2_1_0.mpd:39 - overriding c_num_masters value 8 to 2 plb_bram_if _cntlr
(plb bram_if_cntlr_1) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb_bram_if_cntlr_v 1_00_b\data\plb_bram_if
_cntlr_v2_1_O.mpd:46 - overriding c_plb_mid_width value 3 to 1 plb2opb_
bridge (plb2opb) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb2opb_bridge_v l_01 _a\data\plb2opb_bridge
_v2_1_0.mpd:47 - overriding c_plb_num_masters value 4 to 2 plb2opb_bridge
(plb2opb) -

F:\EDK\hw\XilinxProcessorlPLib\pcores\plb2opb_bridge_v 101_a\data\plb2opb_bridge •
_v2_1_0.mpd:48 - overriding c_plb mid width value 4 to 1 plb_v34 (plb) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb_v34 vl_02_a\data\plb_v34 v2_1_0.mpd:38 -
overriding c_plb_num_masters value 4 to 2 plb_v34 (plb) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb_v34_vT_02_a\data\plb_v34_v2_1_0.mpd:39 -
overriding c_p1b_num slaves value 4 to 2. plb_v34 (pib) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\plb_v34_v 1_02_a\data\plb_v3 4_v2_1_0 .mpd:40 -
overriding c_plb_mid_width value 2 to I opb_v20 (opb) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\opb_v20_v1_10_b\data\opb v20_v2_1_0.mpd:39
- overriding c_num_masters value 4 to 1 opb v20 (opb) -
F:\EDK\hw\XilinxProcessorlPLib\pcores\opb_v20_v 1_i 0_b\data\opb_v20_v2_1_0.mpd:40
- overriding c_num_slaves value 4 to 3

Running DRC Tel procedures for OPTION SYSLEVEL DRC_PROC...

Performing System level DRCs on properties...
WARNING:MDT - Search path E:\RAHUL\ directly contains pcores directory. Search
path should point to a directory two levels above pcores.INFO:MDT - List of peripherals
addressable from processor instance ppc405_0 :
- plb_bram if_cntlr_1
- iitdisplay_0
-LEDS
- DIP Switches

Building Directory Structure for ppc405_O
Generating platform libraries and device drivers ...
Running CopyFiles ...

Copying files for os standalone_v1_00_a from
F:\EDK\sw\lib\bsp\standalone_v 1_00_a\src\ to
E:\myiitr\ppc405_O\libsrc\standalone v1_00_a\ ...

Copying files for driver iitdisplay_v3_03_a from
E:\myiitr\drivers\iitdisplay_v3_03_a\src\ to
E:\myiitr\ppc405_O\libsrc\iitdisplay_v3_03_a\ ...

Copying files for driver gpio_v2_00_a from
F:\EDK\sw\XilinxProcessorlPLib\drivers\gpio_v2_00_a\src\ to
E:\myiitr\ppc405_O\libsrc\gpio_v2_00_a\ ...

Copying files for driver cpu_ppc405_vl_00_a from
F:\EDK\sw\XilinxProcessorlPLib\drivers\cpu_ppc405_vl_00_a\src\ to
E:\myiitr\ppc405_O\libsrc\cpu_ppc4O5 v1_00_a\ ...

Running DRCs for OSes, Drivers and Libraries ...
Running generate for OS'es, Drivers and Libraries ...

Running post generate for OS'es, Drivers and Libraries ...
Running make for Drivers and Libraries ...
Configuring make for target include using:
make -s include "COMPILER=powerpc-eabi-gcc" "ARCHIVER=powerpc-eabi-ar"
"COMPILER_ FLAGS= -02 -c" "EXTRA_COMPILER_FLAGS=-g"
Configuring make for target libs using:
make -s libs "COMPILER=powerpc-eabi-gcc" "ARCHIVER=powerpc-eabi-ar"
"COMPILER_ FLAGS= -02 -c" "EXTRA_COMPILER_FLAGS=-g"
Libraries generated in E:\myiitr\ppc405_0\lib\ directory
Running execs_generate for OS'es, Drivers and Libraries ...
LibGen Done..

User Constrained File (UCF) File:
This file is used to assign the pin numbers to connect the FPGA to the outer world.

This system.ucf file is generated by Base System Builder based on the
settings in the selected Xilinx Board Definition file. Please add other
user constraints to this file based on customer design specifications.

Net sys_clk_pin LOC="D 18";
Net sys rst_pin LOC="AD3";
System level constraints
Net sys_clk_pin PERIOD = 31250 ps;
Net sys_rst_pin TIG;
Net "RSTC405RESETCORE" TPTHRU = "RST_GRP";
NET "RSTC405RESETCHIP" TPTHRU = "RST_GRP";
NET "RSTC405RESETSYS" TPTHRU = "RST_GRP' ;
NET "C405RSTCORERESETREQ" TPTHRU = "RST_GRP";
NET "C405RSTCHIPRESETREQ" TPTHRU = "RST_GRP";
NET "C405RSTSYSRESETREQ" TPTHRU = "RST_GRP';
TIMESPEC "TS_RST 1" = FROM CPUS THRU RST_GRP TO FFS TIG;
TIMESPEC "TSRST2" = FROM FFS THRU RST GRP TO FFS TIG;
TIMESPEC "TS RST3" = FROM FFS THRU RST_GRP TO CPUS TIG;

r
Net iitdisplay_0_dac_data<O> LOC="AE30";
Net iitdisplay_0_dac_data <1> LOC="AE27";
Net iitdisplay_0_dac_data <2> LOC="AE28";
Net iitdisplay_0_dac_data <3> LOC="AD29";
Net iitdisplay_0_dac_data <4> LOC="AD30";
Net iitdisplay_0_dac_data <5> LOC="AD2 7";
Net iitdisplay_0_dac_data <6> LOC="AB32";
Net iitdisplay_0_dac_data <7> LOC="AB31 ";

70

Net iitdisplay 0_dac_data <8> LOC="AC32";
Net iitdisplay_0_dac_data <9> LOC="AC31 ";
Net iitdisplay_0_sync_t'LOC= "AD31"; ,

Net iitdisplay_0_mode_2 LOC="AC29";
Net iitdisplay_0_mode_ 1 LOC="AD26";
Net iitdisplay_0 blank_dac LOC="AA32";
Net iitdisplay_0_sync_dac LOC="AA3 1 ";
Net iitdisplay_0_dac_clk LOC="AD32";

Implementation Details:
Here I am giving the implementation details of the design.Here I. am only incorporating

only some, of the details about the device utilization.
The section below gives the details of the wrappers used for different components in the

design.
#----------------- -----------------------------#
Starting program ngdbuild
ngdbuild -p xc2vp3Offl 152-5 -nt timestamp -bm system.bmm
E:/inyiitr/implementation/system.ngc -uc system.ucf system.ngd

--------------------------------#
Release 6.3i - ngdbuild G.35
Copyright (c) 1995-2004 Xilinx, Inc. All rights reserved.
PM_SPEC -- Xilinx path component is <F:/EDK> .

Command Line: ngdbuild -p xc2vp3Offl 152-5 -nt timestamp -bm system.bmm -uc
system.ucf E:/myiitr/implementation/system.ngc system.ngd

Reading NGO file "E:/myiitr/implementation/system.ngc" ...
Reading component libraries for design expansion...
Loading design module "E:/myiitr/implementation/plb_wrapper.ngc"...
Loading design module "E:/myiitr/implementation/opb_wrapper.ngc"...
Loading design module "E:/myiitr/implementation/iitdisplay_0 wrapper.ngc"...
Loading design module "E:/myiitr/implementation/dcm_0_wrapper.ngc"...
Loading design module "E:/myiitr/implementation/leds_wrapper.ngc"...
Loading design module "E:/myiitr/implementation/dip_switches_wrapper.ngc"...
Loading design module "E:/myiitr/implementation/reset_block_wrapper.ngc"...
Loading design module "E:/myiitr/implementation/ppc405_0 wrapper.nge"...
Loading design module
"E:/myiitr/implementation/plb_bram_ifcntlr_l_bram_wrapper.ngc"...
Loading design module
"E:/myiitr/implementation/plb bram_ifcntlr_1_wrapper.ngc"...
Loading design module "E:/myiitr/implementation/plb2opb_wrapper.ngc"...

This section gives the details of the logic utilized in the FPGA's.

71

#--#
# Starting program map 	r
map -o system_map.ncd -pr b system.ngd system.pcf
#--#
Release 6.3i - Map G.35
Copyright (c) 1995-2004 Xilinx, Inc. All rights reserved.
PM_SPEC -- Xilinx path component is <F:/EDK>
Using target part "2vp3Offl 152-5".
Removing unused or disabled logic...
Running cover...
Writing file system_map.ngm...
Running directed packing...
Running delay-based LUT packing...
Running related' packing...
Writing design file "system_map.ncd"...

Design Summary:
Number of errors: 0
Number of warnings: 107
Logic Utilization:
Number of Slice Flip Flops: 	1,231 out of 27,392 4%
Number of 4 input LUTs: 	1,137 out of 27,392 4%

Logic Distribution:
Number of occupied Slices: 	1,284 out of 13,696 9%
Number of Slices containing only related logic: 1,284 out of 1,284 100%
Number of Slices containing unrelated logic: 	0 out of 1,284 0%

*See NOTES below for an explanation of the effects of unrelated logic
Total Number 4 input LUTs: 	1,474 out of 27,392 5%
Number used as logic: 	1,137
Number used as a route-thru: 	94
Number used for Dual Port RAMs: 210
(Two LUTs used per Dual Port RAM)

Number used as Shift registers: 	33

Number of bonded IOBs: 82 out of 644 12%
IOB Flip Flops: 67

Number of PPC405s: 1 out of 2 50%
Number of Block RAMs: 8 out of 136 	5%
Number of GCLKs: 2 out of 16 	12%
Number of DCMs: 1 out of 8 	12%
Number of GTs: 0 out of 	8 0%
Number of GT1Os: 0 out of 0 0%

Total°equivalent gate count for design: 578,947
Additional JTAG gate count for IOBs: 3,936
Peak Memory Usage: 149 MB

72

NOTES:.

Related logic is defined as being logic that shares connectivity -
e.g. two LUTs are "related" if they share common inputs.
When assembling slices, Map gives priority to combine logic that
is related. Doing so results in the best timing performance.

Unrelated logic shares no connectivity. Map will only begin
packing unrelated logic into a slice once 99% of the slices are
occupied through related logic packing.

Note that once logic distribution reaches the 99% level through
related logic packing, this does not mean the device is completely
utilized. Unrelated logic packing will then begin, continuing until
all usable LUTs and FFs are occupied. Depending on your timing
budget, increased levels of unrelated logic packing may adversely
affect the overall timing performance of your design.

Mapping completed.

This section gives the details of how much of the available devices are utilized.

Device utilization summary:

Number of External IOBs 	82 out of 644 12%
Number of LOCed External IOBs 18 out of 82 21%

Number of PPC405s 	1 out of 2 50%
Number of RAMB 1 6s 	8 out of 136 5%

• Number of SLICEs 	1284 out of 13696 9%

Number of BUFGMUXs 	. 2 out of 16 12%
Number of DCMs 	1 out of 8 12%

All signals are completely routed.

Generating Clock Report **************************

+-------------------------+---------------------+--------+-------+----------------+----------------+
Clock Net 	

I
Resource 	ILocked(FanoutINet Skew(ns)IMax Delay(ns)j

+-------------------------+---------------------+--------+-------+----------------+----------------+
Jplb_bram_if_cntlr 	I 	 I 	 1 	 •1 	 J

J_ljort_BRAM_Clk I BUFGMUX2S J No J 912 (0.732 	J 1.954

73

+=------------------------I------------------------+--------+------+----------------+--_-------------+
Ritdisplay_0 dac.....
~ 	Clk OBU F I Local 	I 	1 36 1 0.716 	I 	3.046
+------------------------+------= ---------------+--------+------+----------------+----------------+

Timing Score: 0

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

Constraint 	 Requested I Actual I Logic

Levels

NET "bufgp_64/IBUFG" PERIOD = 31.250 nS 	I N/A 	I N/A 	I N/A
HIGH 50.000000 %

PERIOD analysis for net "dcm_0/dcm_0/CLKO 	J 31.250ns 1 15.182ns 1 5
BUF" derived from NET "bufgp_64/IBUFG"

PERIOD = 31.250 nS HIGH 50.000000 %
--

PATH "FROM CPUS THRU RST GRP TO FFS" TIG

I N/A f 4.715ns

.10

PATH "FROM FFS THRU RST GRP TO FFS" TIG I N/A J 4.656ns 10

PATH "FROM FFS THRU RST GRP TO CPUS" TIG
--

I N/A 12.844ns 10

All constraints were met.
INFO: Timing: 2761 - N/A.entries in the Constraints list may indicate that the

constraint does not cover any paths or that it has no requested value.
Total REAL time to PAR completion: 1 mins 48 secs
Total CPU time to PAR completion: 1 mins 31 secs

Peak Memory Usage: 205 MB

Placement: Completed - No errors found.
Routing: Completed - No errors found.
Timing: Completed - No errors found.
Writing design to file system.ncd.
PAR done.

74

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	References
	 Appendix

