
IMPLEMENTATION OF THE FFT PROCESSOR
USING FPGA

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

ELECTRICAL ENGINEERING
(With Specialization in System Engineering and Operations Research)

By

M.NAVEEN KUMAR REDDY

~~t at TECHp
t0

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2005

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation entitled

"IMPLEMENTATION OF THE FFT PROCESSOR USING FPGA" submitted

in partial fulfillment of the requirements for the award of degree of Master of

Technology in Electrical Engineering with specialization in System Engineering

and Operations Research, in the Department of Electrical Engineering, Indian

Institute of Technology Roorkee, Roorkee, is an authentic record of my own work

carried out from July 2004 to June 2005 under the guidance of Prof.M.K.Vasantha,

Professor and Dr. Indra Gupta, Asstt Professor, Department of Electrical

Engineering, Indian Institute of Technology Roorkee, Roorkee.

I have not submitted the matter embodied in this report for the award of any

other degree or diploma.

Date: -°%. -jtAyNe)-cO 	 M , c&u24 C-
Place: Roorkee 	 (M.Naveen Kumar Reddy)

CERTIFICATE

This is to certify that the above statement made by the candidate is true to the
best of my knowledge and belief.

6 a

Pro . M.K.Vasan ha
Pro essor

Department of Electrical Engineering

Indian Institute of Technology Roorkee

rQ~ 6~ 0C
Dr. I dra Gupta
Asstt Professor

Department of Electrical Engineering

Indian Institute of Technology Roorkee

Roorkee. 	 Roorkee.

1

ACKNOWLEDGEMENTS

I express my heartfelt gratitude to Prof.M.K.Vasantha, Professor and

Dr.Indra Gupta, Asstt Professor, Department of Electrical Engineering, Indian

Institute of Technology Roorkee, Roorkee for their valuable guidance, support

encouragement and immense help.

I consider myself extremely fortunate for having got the opportunity to learn

and work under their able supervision. I have deep sense of admiration for their innate

goodness and inexhaustible enthusiasm. The valuable hours of discussions and

suggestions that I had with them have undoubtedly helped in supplementing my

thoughts in the right direction for attaining the desired objective. Working under their

guidance will always remain a cherished experience in my memory and I will adore it

throughout my life.

My heartfelt gratitude and indebtedness goes to all the teachers of SEOR

group who, with their encouraging and caring words, constructive criticism and

suggestions, have contributed directly or indirectly in a significant way towards

completion of this report.

I am highly grateful to Mr.Rahul Dubey, Research scholar, Department of

Electrical Engineering, Indian Institute of Technology Roorkee, and Roorkee for his

keen interest and generous encouragement during this venture.

I am especially thankful to Major Seby Thomas for his feedback in the class.

His ideas and discussions not only helped in technical areas but also in personality

development.

A word of thanks also goes to Mr.Vijender singh and Mr.Vishal Saxena,

research scholar, Electrical Engineering department for always being there to help at

the hour of need.

I would also like to extend our sincere appreciation to Mr. Kalyan Singh and

Mr.Joshi, Laboratory staff of Micro Processor & Computer Lab for providing the

required facilities and co-operation during this work.

Special, sincere and heartfelt gratitude goes to my parents and my friends

whose sincere prayers, best wishes, support and encouragement have been a constant

source of assurance, guidance, strength and inspiration to me. M •
	bA--

(M.Naveen Kumar Reddy)

11

ABSTRACT

The Fast Fourier Transform (FFT) is a computationally intensive digital signal

processing function widely used in applications such as imaging, software defined

radio, wireless communication, instrumentation and machine inspection. Historically,

this has been a relatively difficult function to implement optimally in hardware,

leading many software designers to use digital signal processors (DSPs) in soft

implementations. Unfortunately, because of the function's computationally intensive

nature, such an approach typically requires multiple DSPs within the system to

support the processing requirements. This is costly from a device and board real-

estate perspective.

Field-programmable gate array (FPGA) have become an extremely cost-

effective means of off-loading computationally intensive algorithms to improve

overall system performance. The FFT processor implementation on FPGA that

utilizes dedicated hardware multiplier resources can cost effectively achieve

application-specific integrated circuit (ASIC)-like performance while reducing

development time, cost and risks.

In this thesis 16-point FFT processor has been designed and implemented. The

design is based on a decimation-in-frequency radix-4 algorithm and employs in-place

computation to optimize memory usage. In order to operate the processor, data must

first be loaded into the internal RAM. The processor is then instructed to compute the

FFT, overwriting the input data in the RAM with the results. Upon completion of the

FFT, the results may be read out from the RAM via the output data port. The design

specifications for the FFT processor are laid down using radix-4 algorithm. It is

capable of computing one butterfly computation every 40ns thus it can compute 16-

complex point FFT in 1300ns including data input and output processes. The chip is

operating with a clock frequency of 100MHz. The FFT processor is designed and tested

according to the design specifications with the help of ISE (Integrated Software

Environment) provided by Xilinx. The designed FFT processor has been implemented in

Xilinx Spartan-II FPGA.

111

CONTENTS

CH 	 Topic 	 Page 	No.
No.

CANDIDATES'S DECLARATION 	 i
ACKNOWLEDGEMENTS 	 ii
ABSTRACT 	 iii
CONTENTS 	 iv
LIST OF FIGURES 	 vii
LIST OF TABLES 	 viii
ABBREVIATIONS AND ACRONYMS 	 ix

1. INTRODUCTION TO FFT PROCESSOR

1.1 overview
3

1.2 Scope of The Report
3

1.3 Thesis of Organization

2. 	FFT PROCESSOR ALGORITHMS
5

2.1 Introduction
8

2.2 Discrete Fourier Transform
8

2.3 Fast Fourier Transform
9

2.4 FFT Algorithms
9

2.4.1 Radix-2 FFT Algorithm: DIT FFT
11

2.4.2 Radix-2 FFT Algorithm: DIF FFT
14

2.4.3 Radix-4 FFT Algorithm: DIF FFT
20

2.5 Inverse Fast Fourier Transform

3. 	ARCHITECTURE OF SPARTAN-1I FPGA AND VHDL
21

3.1 Field Programmable Gate Arrays
22

3.2 Brief Description of Xilinx FPGAs
23

3.2.1 Features
24

3.2.2 General Overview
25

3.2.3 Architectural Description Spartan-II Array
26

3.2.4 Input/Output Block
29

3.2.5 I/O Banking
30

3.2.6 Configurable Logic Block
33

3.2.7 Block RAM

Iv

3.3 Hardware Description Languages. 33
3.3.1 Verilog HDL 34
3.3.2 VHDL 35

4. 	DESIGN AND IMPLEMENTATION OF FFT
PROCESSOR
4.1 Introduction 38

4.2 Algorithm Choice 38

4.3 FFT Processor 39
4.3.1 Data Input 39

4.3.2 FFT Computation 39

4.3.3 Data Output Process 40
4.4 Architecture 40

4.4.1 Coefficient ROM 40
4.4.2 Block RAM 40
4.4.3 Radix-4 Butterfly Implementation Details 40
4.4.4 Address generation unit 44

4.5 FFT Processor architecture 46

5. 	DESIGN FLOW AND FINAL IMPLEMENTATION ON
FPGA
5.1 Introduction 49
5.2 Specification 50
5.3 Design Entry 50
5.4 Simulation 50
5.5 User Constrain File 50
5.6 Synthesis 50
5.7 Implementation 51
5.8 Place and Route 51
5.9 FPGA Configuration 53

6. 	RESULTS AND DISCUSSIONS
6.1 Simulation Results 	 54

6.2 MATLB Results 	 . 54

6.3 Synthesis Results 	 61

N

7. CONCLUSIONS AND FUTURE SCOPE OF WORK
7.1 Conclusions
	 62

7.2 Future Scope of Work
	 62

REFERENCES
	 63

APPENDIX
Software Code (CD Attached)

vi

LIST OF FIGURES

Fig No Title 	 Page No

2.1 (a) Analysis (b) Synthesis of the White Light Using Glass Prisms 5

2.2 Rectangular Pulse 7

2.3 Sin Function 7

2.4 8-Point FFT with 3-Stage DIT Radix-2 Structure 10

2.5 Basic Butterfly Computation in the DIT FFT Algorithm 11

2.6 N=8-Point Decimation-in-Frequency FFT Algorithm. 12

2.7 Basic Butterfly Computation in the DIF-FFT Algorithm 13

2.8 Basic Butterfly Computation in a Radix-4 FFT Algorithm. 16

2.9 16-point,Radix-4 DIT FFT Algorithm 17

3.1 Basic Spartan-II Family FPGA Block Diagram 27

3.2 Spartan-II Input/Output Block (IOB) 28

3.3 Spartan-II I/O Banks 29

3.4 Spartan-II CLB Slice (two identical slices in each CLB) 32

4.1 Three sub-processes of the FFT Algorithm 39

4.2 Block Diagram Representation of the FFT processor 41

4.3 Block Diagram of Radix-4 Component 42

4.4 Asynchronous, Complex Multiplier 42

4.5 Complex Multiplier block diagram 43

4.6 Butterfly Processing Element Architecture for 1 	stage 45

4.7 Butterfly Processing Element Architecture for 2' d stage 45

4.8 Flow chart for address generation unit 47

4.9 16-point FFT architecture 48

5.1 The High-Level Design Flow 49

5.2 Place and Route Data Flow 52

6.1 The input is stored in RAM 55

6.2 The inputs which are applied to 16-point FFT processor . 56

6.3 Final output of the 16-point FFT processor 57

6.4 The matlab results of 16-point FFT 58

6.5 RTL View of 16-Point FFT Processor 61

vii

LIST OF TABLES

Table Title 	 Page No
No
2.1 Relation between Linear and Bit -Reverse Order 13

2.2 The comparison of radix-4 with radix-2 algorithms for N-point FFT 17

2.3 The quarternary system for decimal numbers 0 through 15. 18

2.4 The digit-reversed positions for a 16-point sequence . 19
3.1 Spartan-II FPGA Family Members 24

3.2 Spartan-II Block RAM Amounts 33
6.1 Hardware utilization for 1st stage of radix-4 FFT algorithm. 59
6.2 Hardware utilization for 2"d stage of radix-4 FFT algorithm. 59
6.3 Hardware utilization for 16-point FFT processor 60

viii

ABBREVIATION AND ACRONYMS

AGU Address Generation Unit

ASIC Application Specific Integrated Circuits

CLB Configurable Logic Block

DFT Discrete Fourier Transform

DIF Decimation-In-Frequency

DIT Decimation-In-Time

DLL Delay-Locked Loop

DSP Digital Signal Processing

EDIF Electronic Design Interchange Format

FFT Fast Fourier Transform

FPGA Field Programmable Gate Arrays

HDL Hardware Description Language

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

IOB Input/Output Block

ISE Integrated Software Environment

LC Logic Cell

LUT Look-Up Tables

RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Level

SDF Standard Delay Format

UCF User Constrain File

VLSI Very Large Scale Integrated Circuit

VHDL Very High Speed Integrated Circuits HDL

Floor Planning Process of choosing the best grouping and

Connectivity of logic in a design

Net list Text description of circuit connectivity

ix

CHAPTER-1
INTRODUCTION TO FFT PROCESSOR

1.1 Overview

The Discrete Fourier Transform (DFT) is one of the most fundamental

operations in digital signal processing [1]. The Discrete Fourier transforms play an

important role in many digital signal processing applications including acoustics,

optics, telecommunications, speech, signal, image processing[17], linear filtering,

quantum mechanics, noise reduction and image reconstruction . The Discrete Fourier

Transform is a very popular technique used for converting signals in time domain to

the frequency domain[9]. The DFT operation can be represented by the following

expression.
N—L

for k=0, I ...N-1 	 (1.1)
n=0

Where X(k) = frequency transform of signal

x(n) = data points in time domain

N = number of data points

WN = twiddle factor

If the DFT operation is computed using the above expression then the complexity of

the algorithm is O(N2) for N data points and it will take a long time to compute the

DFT. The Fast Fourier Transform (FFT) algorithm reduces the complexity of

computing the Discrete Fourier Transform[2].

In 1965, Cooley and Tukey introduced the fast fourier transform, which

efficiently and significantly reduces the computational cost of calculating N-point

DFT from 0(N2) to 0(Nlog2N). A large number of FFT algorithms have been

developed by Cooley and Tukey [4]. Among these, the radix-2, radix-4, split-radix

and FHT algorithms are the ones that have been mostly used for practical applications

due to their simple structure, with a constant butterfly geometry, and the possibility of

performing them "in place".Most of the research to date for the implementation and

benchmarking of FFT algorithms have been performed using general purpose

processors [3,4], Digital Signal Processors(DSPs) and dedicated FFT processor ICs

[5,6]. However, as Field Programmable Gate Arrays (FPGAs) have grown in

1

capacity, improved in performance, and decreased in cost, they have become a viable

solution for performing computationally intensive tasks (i.e. computation of FFT),

with the ability to tackle applications for custom chips and programmable 'DSP

devices [7,8]. In this thesis, since we mainly focus on the fast structures of the DFT,

the terms DFT and FFT will be used interchangeably. The order of the multiplicative

complexity is commonly used to measure and compare the efficiency of the

algorithms since multiplications are intrinsically more complicated among all

operations [5]. It is well-known in the field of VLSI that among the digital arithmetic

operations (addition, multiplication, shifting and addressing, etc.), multiplication is

the operation that consumes most of the time and power required for the entire

computation and, therefore, causes the resulting devices to be large and expensive.

Therefore, reducing the number of multiplications in digital chip design is usually a

desirable task [14].

FPGAs have become an attractive option for implementing signal processing

applications because of their high processing power and customizability. The

inclusion of new features in the FPGA fabric, such as a large number of embedded

multipliers, adds to this attractiveness. FPGAs can now be considered for

computationally demanding applications such as those in signal processing.

Traditionally, the performance metrics for signal processing and indeed, most

processing in general, have been latency and throughput.

Over last years, the interest in high speed multimedia communication systems

has grown enormously [18]. These systems, including digital television, high speed

wired data connections, and wireless local area networks, adopt multicarrier

modulation scheme such as orthogonal frequency division multiplexing and discrete

multi-tone to enhance data transmission rate [13]. In this scheme, sub carriers are

generated by using fast Fourier transform (FFT). Therefore, it is very important to

design the high speed FFT processor [11,15,19]. For the pipeline architecture, it is

desirable to use the radix-4 algorithm because of the double processing rate compared

to the radix-2 algorithm. However, the radix-4 algorithm requires more nontrivial

multipliers than the radix-2 algorithm. Therefore, the radix-4 based algorithm, which

reduces the number of nontrivial multipliers, is desired. The radix-2 algorithm, which

can minimize the number of nontrivial multipliers required to implement the FFT

Processor was presented previously. The same computational complexity as the split

radix algorithm can be obtained but with a much spatially regular signal flow graph

2

(SFG) [10]. Only one full complex multiplication is required for every three columns,

and the other two columns contain either pure trivial factor j or a combination of -j
and the special twiddle factor W8, enabling an implementation with two additive

operations and two constant scaling. However, based on the radix-2 butterfly .unit, it

has -a lower processing rate than the radix-4 based algorithm. In this thesis, we

propose an efficient FFT algorithm and present the results on its pipeline

implementation. Pipelining the FFT process allows parallel processing and divides the

complexity of computing the DFT into a number of stages. The result obtained from

one stage is immediately available to the next stage without any delay. The proposed

algorithm results in a reduced number of nontrivial multipliers like the radix-2

algorithm, but the processing rate is twice as fast as the radix-2 algorithm because it is

based on the radix-4 butterfly unit [6].

1.2 Scope of The Report

The report is concentrated on 16-point FFT processors, and what

architectures and algorithms are most suitable for dedicated FFT processors. The first

part of the report gives a review on the theory behind the DFT and FFT algorithm.

Some terminologies like radix butterflies, algorithms, architectures, etc.,' are

introduced in this part. The second part of the report describes the main goal of this

master's thesis project, i.e. to design and implement a FFT processor for transform

length of 16-point. These transform lengths reduces the amount of algorithms,

architectures, and so on, that could be taken into account when designing a processor

according to these criteria. Some parts of the theory are therefore very briefly

described compared to others, because of its limited usefulness in the considered area.

What trade-offs have to be made? What architecture and algorithm should be used?

What types of simulations should be done? How is testing performed? These are some

of the questions that will be discussed in this report.

1.3 Organization of Thesis

Chapter-2: This chapter reviews the brief discussion on frequency analysis and the

detail notes on DFT, FFT and FFT algorithms.

3

Chapter-3: This chapter focuses on Xilinx FPGA family on which FFT processor is

implemented and also explains HDL languages.

Chapter-4: This chapter presents the complete architecture and implementation of fft

processor.

Chapter-5: This chapter describes the process of implementation of FFT processor on

FPGA.

Chapter-6: This chapter discusses the simulation results and these results are

compared with matlab results and it also provides the synthesis report.

Chapter-7: This chapter concludes the total work and proposes the future scope of

work.

M

CHAPTER-2

FFT PROCESSOR ALGORITHMS

2.1 Introduction

It is well known that a prism can be used to break up white light into the
colors of the rainbow.

Glass prism 	f—i V
I

1•

II 	Beam of 	 Y
u sunlight 	 0

R

(a)

F1 	Glass prism 	 White light

(b)

Fig 2.1(a) Analysis (b) Synthesis of the White Light Using Glass Prisms.

When a white light is passed through a prism, it will separates white light into

different colors. Next place another prism upside-down with respect to the first and

observe that the colors blended back into white light [1].

Frequency analysis of a signal involves the resolution of the signal into its

frequency (sinusoidal) components. Instead of light, our signal wave forms are

basically functions of time. The role of the prism is played by the Fourier analysis i.e

Fourier series and Fourier transform [1].

If we decompose a waveform into sinusoidal components, in much the same

way that a prism separates white light into different colors, the sum of those

G,

sinusoidal components results in the original waveform. on the other hand, If any of

these components is missing, the result is a different signal[l].

Fourier Series

The basic mathematical representation of periodic signals is the Fourier

series, which is a linear weighted sum of harmonically related sinusoids or complex

exponentials [1].

Linear combination of harmonically related complex exponentials of the form

00

x(t) = I Ck ej
2rIkFOt

(2.1)
k=—oo

c 	I fx(t)e-j2F1kFO1dt 	
2.2k -_ T ()

p Tp

Is a periodic signal with fundamental period Tp=1/F0. Hence we can think of the

exponential signals
j2 nkFOt e 	k=0,f l ,f2,

As the basic "building blocks", from which we can construct periodic signals

of various type by proper choice of the fundamental frequency and the coefficients

{ck}.Fo determines the fundamental period of x(t) and the coefficients {ck} specify

the shape of the waveform[l].

Fourier Transform

The Fourier transform is one of several mathematical tools that is useful in the

analysis and design of LTI systems. These signal representations basically involve the

decomposition of the signals in terms of sinusoidal (or complex exponential)

components [7]. With such decomposition, a signal is said to be represented in the

frequency domain. Most signals of practical interest can be decomposed into a sum of

sinusoidal signal components for the class of finite energy signals, the decomposition

is called the Fourier Transform [1].

Fourier transform of continuous a periodic signal is defined as.

Z

Amplitudf

II-

-1W 	-37 	G 	 37 	 go

time
Fig 2.2 Rectangular Pulse

Amplituc

frequency

Fig 2.3 Sin Function

x(f) = fx(te2dt 	 (2.3)

00
x(t) = fx(f)e"' ft df 	 (2.4)

Frequency analysis of discrete-time signals is usually and most conveniently

performed on a digital signal processor, which may be a general-purpose digital

computer or specially designed hardware. To perform a frequency analysis on a

discrete-time signal {x(n)}, we convert the time-domain sequence to an equivalent

frequency-domain representation. We know that such a representation is given by the

Fourier Transform X(w) of the sequence {x(n)} . However, X(w) is a continuous

function of frequency and therefore, it is not a computationally convenient

representation of the sequence {x(n)}.

In this section we consider the representation of a sequence {x(n)} by samples

of its spectrum X(w). Such a frequency-domain representation leads to the Discrete

Fourier Transform, which is a powerful computational tool for performing frequency

analysis of discrete —time signals [6].

7

2.2 Discrete Fourier Transform

The discrete Fourier transform is the counterpart of the Fourier transform in the

discrete time domain. The definition of the DFT is given by the expression:

N-1
X(k) _ Ex(n)W, 	for k=0, 1,......N-1

	
(2.5)

n=0

and the inverse DFT(IDFT) is expressed as:

1 N— ~ 	 kn x(n) = —EX(k)W, 	for n= 0,1,.....N-1 	 (2.6)
N n _Q

where WN = e-12nk" is a sequence of twiddle factors of the DFT and is equally spaced

around the unit cycle. In these equations x(n) is the sample value in the time domain and

X(k) is the sample value in the frequency domain. If the sampling rate of a signal is F,

the sequence of time-domain sampling locations becomes

0, 1/F, 2/F, 3/F.......... ,(N-1)/F

Thus, corresponding to these time-domain samples, the sequence of frequency-domain

sampling locations will be

0, F/N, 2F/N, 3F/N,........,(N-I)F/N.

These equations show that the complexity of a direct computation of DFTs and

IDFTs is O(N2), hence the long transforms considered to be very costly in a straight

forward computation. The FFT algorithm deals with these complexity problems by

exploiting regularities in the DFT algorithm [2].

2.3 Fast Fourier Transform

At the outset it should be pointed out that the FFT is not a different transform

from the DFT, but rather it represents a means for computing the DFT with a

considerable reduction in the number of computations.

Fast Fourier Transform, as the name suggests, is a fast and efficient way of

computing the DFT. This algorithm was independently presented by Cooley-Tukey in

1965.A direct computation of the DFT or IDFT requires N2 complex multiplications

and N(N-1) complex additions. FFT removes the redundant multiplication and

addition/subtraction operations seen in the naive approach of direct computation of

DFT. The DFT can be computed in O(Nlog2 N) multiplications by using the FFT[3].

2.4 FFT Algorithms:

The following algorithms are used for computing the DFT efficiently.

> Divide —and-Conquer Approach.

> Radix -2

➢ Radix -4

Split-Radix

And also exists radix-16, 32,2N...etc. In the following section, we presents

(1) Radix-2 decimation-in-time algorithm (DIT).

(2) Radix-2 decimation-in-frequency algorithm (DIF).

(3) Radix-4 decimation-in-frequency algorithm (DIF).

2.4.1 Radix-2 FFT Algorithm: DIT FFT

The fast Fourier transform algorithm achieves its computational efficiency

through a divide and conquer strategy. The essential idea is a grouping of the time and

frequency samples such that the DFT summation over N values can be expressed as a

combination of DFT summations over N/2 samples. When N is a power of two, this

process of grouping can be repeatedly applied until the DFT summation has been

reduced to a combination of DFT summation over only two samples [1]. For example,

when N is a power of two, equation 2.5 can be decomposed as follows [1]:
N/2-1 	 N/ 2--1

X(k) = 1 x(2n)Wn + Z x(2n + I)WN2n+l)k
n=0 	n=0

N/2—I 	 N/2-1

_ 	.x(2n)WN kn +WN ~x(2n + 1)WN2njk 	 (2.7)
n=0 	n=0

Define two (N/2)-point sequences (h (n)) and (g (n)) as the even and odd elements of

(x(n)), respectively. Then,

h(n) = x(2n) 	 (2.8)

g(n)=x(2n+ 1) 	 (2.9)

The discrete Fourier transform of the two (N/2)-point sequences can be defined as

follows
N/2-1

H(k) _ 	h(n)W 2 	 (2.10)
n=0

u

NI 2-
G(k) _ ~,g(n)W 2 	 (2.11)

n=o

Thus, the discrete Fourier transform of x (n) can be expressed in terms of even and

odd elements as[1] :
N/2-1 	 NJ2-1

X (k) _ 	h(n)WN'll2 +WN 	g(n)WNl2 	 (2.12)

In terms of H (k) and G (k), we have:

X(k)=H (k) +WN G (k)

For the coefficient at (K + N/2), we obtain:

X (k+N/2) =H (k)- W, G (k)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

(2.13)

(2.14)

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Fig 2.4 8-Point FFT with 3-Stage Decimation-in-Time Radix-2 Structure

Therefore, N-Point discrete Fourier transform can be represented by two (N/2)-

point discrete Fourier transform. Since N is a power of two, the above partitioning

scheme can be iteratively applied to the sequences (h(n)) and (g(n)) by N/2 elements.

These partitions can be carried out until the two-point DFT is reached. The process is

10

known as decimation-in-time, depicted in fig 2.4 for N = 8. Figure 2.5 shows the basic
butterfly computation in the decimation-in-time FFT algorithm [1].

The structure shown in fig. 2.4 is called decimation-in-time (DIT). Its basic

module is a radix-2 butterfly shown in fig.2.5 in which two points `a' and `b' are
computed to give two output points `A' and `B' via the operations represented by

equations, 2.13 and 2.14. In addition, the input is in bit-reverse order and output is in

linear order [2].

a

r

A=a+ W,',b

B=a- WNb

W' N

Fig 2.5 Basic Butterfly Computation in the Decimation-In-Time FFT

Algorithm

2.4.2 Radix-2 FFT Algorithm: DIF FFT

We begin by splitting the DFT into two summations, one of which involves

the sum over the first N/2 data points and the second sum involves the last N/2 data

points, thus we obtain
(N/2 -1 	 N-]

X(k) 	x(n)WN n + ~x(n)Wf (n/2)-1 	k 	Nk/2 (n/2)-1
	N 	kn /

n=O 	 n=N/2 	 I x(n)W ' N WN 	X n+ ^ N (2.15)

n=0 n=0 2

Since WN 2 = (..1)k the above expression can be rewritten as

(n/2)-1

X(k) = Z x(n) + (-1)k X n + 2 wN n 	 (2.16)
n=0

Now, let us split (decimate) X (k) into the even- and odd-numbered samples. Thus we

obtain final expression as

11

(N/2)-1

X(2k) = 	 ,,2 	 for k=0, 1, 2,......., N —1 	(2.17)
„=0 	 2

(N/2)-1
X(2k + 1) _ 	g(n)W 2

n=o

Where,

N for k=0, 1,2,...., -1 2 (2.18)

(2.19)

h(n) = x(n) + x n +
N 	for n=0, 1,2 	—1

g(n) = x(n) — in + 2 WN

X(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)

Fig 2.6 N=8-Point Decimation-in-Frequency FFT Algorithm.

This computation procedure can be repeated through decimation of the

N/2-point DFTs, X(2k), X(2k+l).This process is known as decimation-in-

frequency(DIF). The computation of the N-point DFT via DIF FFT algorithm requires

same number of complex multiplications and complex additions as in the decimation-

in-time algorithm.8-point (N=8) DIF algorithm is given in fig.2.6.we observe that the

basic computation in this figure involves the butterfly operation illustrated in fig.2.7

and the input data x(n) occurs in natural order, but the output DFT occurs in bit-
reversed order[3].

12

We observed from the above discussion is each radix-2 butterfly requires

one complex multiplication and two complex additions. Observing fig.2.6 and fig.2.7,

it can be seen that there are Loge N radix-2 butterfly stages for N-point FFT and each

stage has N/2 radix-2 butterflies. Therefore, there are totally (N/2) log2 N radix-2

butterflies in an N-point FFT. Both structures employ the in-place algorithm. In-place

means that the computed outputs can be placed on the same storage as the inputs.

Moreover, the addressing for the input and output data can be shared [1].

0

0

A=a + b

B=(a - b) W~,

WI N
Fig 2.7 Basic Butterfly Computation in the DIF-FFT Algorithm

Table 2.1 Relation between Linear and Bit -Reverse Order
LINEAR BIT-REVERSE

DECIMAL DIGIT DIGIT DECIMAL

0 000 000 0

1 001 100 4

2 010 010 2

3 Oil 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

13

2.4.3 Radix-4 FFT Algorithm: DIF FFT

Whereas a radix-2 FFT divides an N-point sequence successively in half until

only two-point DFTs remain, a radix-4 FFT divides an N-point sequence successively

in quarters until only four-point DFTs remain. An N-point sequence is divided into

four N/4-point sequences; each N/4-point sequence is broken into four N/16-point

sequences, and so on, until only four-point DFTs are left. The four-point DFT is the

core calculation (butterfly) of the radix-4 FFT, just as the two-point DFT is the

butterfly for a radix-2 FFT [1].

A radix-4 FFT essentially combines two stages of a radix-2 FFT into one, so

that half as many stages are required. Although addressing of data and twiddle factors

is more complex, a radix-4 FFT requires fewer calculations than a radix-2 FFT. Like

the radix-2 FFT, the radix-4 FFT requires data scrambling and/or unscrambling.

However, radix-4 FFT sequences are scrambled and unscrambled through digit

reversal, rather than bit reversal as in the radix-2 FFT. Digit reversal is described later

in this section [1].

The radix-4 DIF FFT expresses the DFT equation as four summations, and

then divides it into four equations, each of which computes every fourth output

sample. The following equations illustrate radix-4 decimation in frequency.
N-[

X(k) = x(n)WN k
n=0

(N14)-I 	 (N/2)-1 	 (3N/4)-1 	 (N)-1
= I r(n)WN k + 	x(n)WN k + 	x(n)WN k + Y x(n)WN k n=0 	 n=Nl4 	 n=N/2 	 n=3N/4

(N/4)-1 	 (N/4)-1

_ Z x(n)W+ 	x(n + N / 4)WNn+Nl4)k

n=0 	 n=0

(N/4)-1

+ 	x(n + N / 2)WNn+Nl2)k

n=0

(N / 4)-1

+ E x(n + 3N / 4)WNn+3N/4)k

n=0

(N/4)-1

_ [x(n)+WN (N/4)x(n+N14)+WN (N/2)x(n+N12)+WN (3N/4)x(n+3N/4)]W N k
n =0

(2.20)

The three twiddle factor coefficients can be expressed as follows:

WN - j2n/N)k(N/ 4) _(e-- jn/2)k= (cos(1r/2) jsin(9L/2))k =(_j)k 	(2.21)

Similarly

14

Wk(N12) _(1)k
N

WN (3Nl4) _ jk

(2.22)

(2.23)

Equation 2.20 can thus be expressed as
(N / 4)-1

X(k)= j[x(n)+(—j)k x(n+N/4)+(-1)k x(n +N/2)+(j)k x(n +3N/4)]WN 4
n=0

(2.24)

Four sub-sequences of the output (frequency) sequence are created by setting

k=4r, k=4r+ 1, k=4r+2 and k=4r+3:

(N / 4)—I

X(4r) = 	[(x(n) + x(n + N/4)+ x(n + N/2)+ x(n + 3N l 4))WN]WN I 4 	(2.25)
n=0

(N/4)—i

X(4r+1) = 1 [(x(n) — jx(n + N / 4) — x(n + N / 2) + jx(n + 3N / 4))WN]WN/4 (2.26)
n=0

(N/4)-1

X(4r+2) = 1 [(x(n) — x(n + N l 4) + x(n + N / 2) — x(n + 3N l4))WN2"]WZ 4 	(2.27)
n=o

(N/4)—1

X(4r+3) = E [(x(n) + jx(n +N/4) — x(n + N / 2) -- jx(n + 3N / 4))WN"]WN 4 (2.28)
n=0

Forr=0to(N/4)-1.

X (4r), X(4r+1), X(4r+2), and X(4r+3) are N/4-point DFTs. Each of their N/4 points

is a sum of four input samples (x(n), x(n+N/4), x(n+N/2) and (n+3N/4)), each

multiplied by either +1, —1, j, or —j. The sum is multiplied by a twiddle factor

(WN°,W~, ,WN", or WN")[1].

The four one-point DFT equations make up the butterfly calculation of the

radix-4 FFT. A radix-4 butterfly is shown graphically in fig 2.8.

The output of each leg represents one of the four equations which are

combined to make a four-point DFT. These four equations correspond to

equations,(2.25) through (2,28), for one point rather than N/4 points. The radix-4

butterfly expressed in matrix form as

15

X(4r)

X(4r+1)

X(4r+2)

X(4r+3)

z(n+Nl4)

z(n+Nl2)

x(n+3N/4)

X(0) 	1 1 1 1 ir WNx(0)
X(1) 1 j -1 j YTNx(1)
X(2) 1 -1 1 -1 WNyx(2)
X(3) 1 j -1 j WN 9x(3)

Where q = 0,1,2,3.

The 16-point radix-4 decimation-in-frequency FFT algorithm is shown in fig

2.9 Its input in normal order and its output is in digit-reversed order. The

computational complexity of radix-2 and radix-4 algorithm for N-point FFT is

depicted in Table.2.2.

Fig 2.8 Basic Butterfly Computation in a Radix-4 FFT Algorithm.

16

y X(0)
X(4)

~ (8)
X(12)

j X(1)
W16 X(5)

X(9)
X(13)

j>X(2)
X(6)

-X(10)
(14)

"j X(3)
W X(7)

X(11)
X(15)

Fig 2.9 16-point, Radix-4 DIT FFT Algorithm

The radix-4 butterfly is consequently larger and more complicated than a

radix-2 butterfly; however, fewer butterflies are needed. Specifically, N/4 butterflies

are used in each of (log4N) stages, which is one quarter the number of butterflies in a

radix-2 FFT{ 16].

Table 2.2 The comparison of radix-4 with radix-2 algorithms for N-point FFT

Complex

Multiplications

Complex

Additions

Number of

Stages

No. of Butterflies

(for each Stage)

Radix-2 (N/2)iog2 N N loge N loge N N/2

Radix-4 (3N/4) logo N 3N log4 N Logo N N/4

17

Digit Reversal

Whereas bit reversal reverses the order of bits in binary (base 2) numbers,

digit reversal reverses the order of digits in quarternary (base 4) numbers. Every two

bits in the binary number system correspond to one digit in the quarternary number

system. (For example, binary 1110 = quarternary 32.) The quarternary system is

illustrated in below table for decimal numbers 0 through 15 [16].

Table 2.3 The quarternary system for decimal numbers 0 through 15.

Decimal Binary Quarternary

0 0000 00

1 0001 01

2 0010 02

3 0011 03

4 0100 10

5 0101 11

6 0110 12

7 0111 13

8 1000 20

9 1001 21

10 1010 22

11 1011 23

12 1100 30

13 1101 31

14 1110 32

15 1111 33

The radix-4 DIF FFT successively divides a sequence into four subsequences,

resulting in an output sequence in digit-reversed order. A digit-reversed sequence is

unscrambled by digit-reversing the data positions. For example, position 12 in

quarternary (six in decimal) becomes position 21 in quarternary (nine in decimal)

after digit reversal. Therefore, data in position six is moved to position nine when the

digit reversed sequence is unscrambled. The digit-reversed positions for a 16-point

sequence (samples X(0) through X(15)) are shown in Table 2.4.

In an N-point radix-4 FFT, only the number of digits needed to represent N

locations is reversed. Two digits are needed for a 16-point FFT, three digits for a 64-

point FFT, and five digits for a 1024-point FFT[16].

Table 2.4 The digit-reversed positions for a 16-point sequence

Sample,

Sequential

Sequential Location Digit-Reversed Location Sample,

Digit-Reversed Decimal Quarternary Decimal Quarternary
Order Order
X(0) 0 00 0 00 X(0)
X(1) 1 01 4 10 X(4)

X(2) 2 02 8 20 X(8)

X(3) 3 03 12 30 X(12)

X(4) 4 10 1 01 X(1)

X(5) 5 11 5 11 X(5)

X(6) 6 12 9 21 X(9)
X(7) 7 13 13 31 X(13)

X(8) 8 20 2 02 X(2)

X(9) 9 21 6 12 X(6)

X(10) 10 22 10 22 X(10)

X(11) 11 23 14 32 X(14)

X(12) 12 30 3 03 X(3)

X(13) 13 31 7 13 X(7)

X(14) 14 32 11 23 X(11)

X(15) 15 33 15 33 X(15)

19

2.5. Inverse Fast Fourier Transform

The inverse FFT (IFFT) defined by eqs., (2.29) can be changed to the

following form:
1 N-1

x(n) =— JX "(k)W 	for n=0, 1, N-1 	 (2.29)
N Lk=O

where the notation of the superscript * denotes the conjugated data. If the input

frequency samples are conjugated, the bracketed term in eqs., (2.29) is exactly an FFT

operation. Thus, the computation of the IFFT is the same as the FFT except the input

data sequence of the first stage and output data sequence of the last stage are

conjugated. The results computed by the FFT instructions are reference values and not

exact values shown by eqs., (2.29). If users like to get exact values, the results have to

be multiplied by a factor. This factor can be derived from the length of data N and the

total number of scaling for the block data [1].

20

CHAPTER-3

ARCHITECTURE OF SPARTAN-II FPGA AND VHDL

3.1 Field Programmable Gate Arrays

A field programmable gate array (FPGA) is an inexpensive hardware

component, which allows the user to program its functionality quickly and

inexpensively. This allows for cheaper prototyping and shorter time to-market of

hardware designs. FPGAs have a lower gate density than full custom (customized

VLSI chips) and semi custom (mask programmed gate arrays) design methodologies

FPGAs were first introduced in the mid- 1980s to replace multi-chip glue logic

circuits with a single reconfigurable solution [12]. FPGAs have far outgrown their

sole use as a replacement for simple glue logic circuits [13]. Presently, FPGA

applications include signal and image processing, graphic accelerators, military

target correlation/recognition, cryptography, reconfigurable computing, and on-chip

coprocessors. FPGAs are utilized in four major design areas: rapid prototyping,

emulation, pre-production, and full-production [14]. FPGAs are the direct result of

the convergence of two distinct technologies: Programmable Logic Devices (PLDs)

and Application Specific Integrated Circuits (ASICs) [15]. A simple PLD consists of

arrays of AND and OR gates that can be used to create basic circuit designs. ASICs

are custom-made chips generally used in high volume applications because non-

recurring engineering costs (NREs) are much higher than in an FPGA design

cycle.FPGAs are sized from thousands of gates to tens-of-million gates and are

available in a variety of sizes with different packaging, internal logic blocks, and

process technologies [25].

Internal FPGA architectures are commonly constructed using a symmetric tile

structure containing a network of switchboxes, logic blocks, wire channels, and input-

output blocks .A switchbox (SB) is a location in the FPGA fabric that provides a

method to connect internal wires together. The switchbox allows horizontal wire

segments to switch to vertical wire segments and vice versa. The switchbox also

allows horizontal wire segments to connect to other horizontal wire segments as well

as connecting vertical wires to other vertical wires. The size and contents within a

logic block vary greatly depending on the manufacture and target market. For

21

r

example, FPGAs targeted towards cost-effective solutions typically contain simpler

logic blocks than an FPGA targeted for high-performance applications. Although the

contents within logic blocks can vary for different architectures, there are two basic

building blocks found in a logic block: memory elements and function generators.

Memory elements provide designers with the ability to temporarily store information

until desired conditions are met. Function generators can be configured to produce

any function up to the number of inputs into the function generator. Depending on the

architecture, some function generators can operate in different modes such as random

access memory (RAM), read only memory (ROM), or more complex modes like shift

registers. FPGAs are configured through a bitstream that is loaded into the device. A

bitstream is a file created by the FPGA manufacturer that configures the switchboxes,

logic blocks, and other internal FPGA logic[25].

FPGAs have redefined the boundaries of digital electronics allowing designers

to build systems piecewise. Multiple designers can rapidly test and verify the

functionality of each individual piece of a system to ensure proper functionality prior

to merging the entire system together. With increasing interest in reconfigurable

computing, FPGAs are recognized as the most viable, cost effective solution. Whether

a design is statically or dynamically reconfigurable, FPGAs provide rapid

programmability, and a short time to market design cycle. Many companies have

marketed FPGAs, the major companies being Xilinx, Actel and Altera.

Reprogrammable FPGAs use EPROM, EEPROM or static RAM technology. Xilinx

FPGAs, which use static RAM technology, are the FPGAs used in this thesis[25].

3.2 Brief Description of Xilinx FPGAs

The Spartan-II 2.5V Field-Programmable Gate Array family gives users high

performance, abundant logic resources, and a rich feature set, all at an exceptionally

low price. The six-member family offers densities ranging from 15,000 to 200,000

system gates, as shown in Table 1. System performance is supported up to 200 MHz.

Spartan-II devices deliver more gates, I/Os, and features per dollar than other FPGAs

by combining advanced process technology with a streamlined Virtex-based

architecture. Features include block RAM (to 56K bits), distributed RAM (to 75,264

bits), 16 selectable I/O standards, and four Delay-Locked Loops (DLLs). Fast,

22

predictable interconnect means that successive design iterations continue to meet

timing requirements. The Spartan-II family is a superior alternative to

maskprogrammed ASICs. The FPGA avoids the initial cost, lengthy development

cycles, and inherent risk of conventional ASICs. Also, FPGA programmability

permits design upgrades in the field with no hardware replacement necessary

(impossible with ASICs)[25].

3.2.1 Features:
(1) Second generation ASIC replacement technology

❖ Densities as high as 5,292 logic cells with up to 200,000 system gates

❖ Streamlined features based on Virtex architecture

❖ Unlimited reprogrammability

•'• Very low cost

❖ Advanced 0.18 micron process

(2) System level features

❖ Select RAM hierarchical memory:

•:• 16 bits/LUT distributed RAM

❖ Configurable 4K bit block RAM

❖ Fast interfaces to external RAM

❖ Fully PCI compliant

•:• Low-power segmented routing architecture

❖ Full read back ability for verification/observability

❖ Dedicated carry logic for high-speed arithmetic

❖ Efficient multiplier support

•:• Cascade chain for wide-input functions

❖ Abundant registers/latches with enable, set, reset

❖ Four dedicated DLLs for advanced clock control

❖ Four primary low-skew global clock distribution nets

❖ IEEE 1149.1 compatible boundary scan logic

(3) Versatile I/O and packaging

❖ Pb-free package options

❖ Low-cost packages available in all densities

23

❖ Family footprint compatibility in common packages

❖ 16 high-performance interface standards

❖ Hot swap Compact PCI friendly

❖ Zero hold time simplifies system timing

(4) Fully supported by powerful Xilinx development system

❖ Foundation ISE Series: Fully integrated software

❖ Alliance Series: For use with third-party tools

❖ Fully automatic mapping, placement, and routing

3.2.2 General Overview

The Spartan-II family of FPGAs have a regular, flexible, programmable

architecture of Configurable Logic Blocks (CLBs), surrounded by a perimeter of

programmable Input/Output Blocks (IOBs). There are four Delay-Locked Loops

(DLLs), one at each corner of the die. Two columns of block RAM lie on opposite

sides of the die, between the CLBs and the IOB columns. These functional elements

are interconnected by a powerful hierarchy of versatile routing channels This is

shown in Fig.3.1 [25]

Table 3.1 Spartan-II FPGA Family Members

Spartan-II
Device

Logic
Cells

System Gates
(Logic and

RAM)

CLB
Array

(R x C)

Total
CLBs

Maximum
Available
User I/O

Total
Distributed

RAM
Bits

Total
Block
RAM
Bits

XC2S15 432 15,000 8 x 12 96 86 6,144 16K

XC2S30 972 30,000 12 x 18 216 92 13,824 24K

XC2S50 1,728 50,000 16 x 24 384 176 24,576 32K

XC2S100 2,700 100,000 20 x 30 600 176 38,400 40K

XC2S150 3,880 150,000 24 x 36 864 260 55,296 48K

XC2S200 5,292 200,000 28 x 42 1,176 284 75,264 56K

24

Spartan-II FPGAs are customized by loading configuration data into internal static

memory cells. Unlimited reprogramming cycles are possible with this approach.

Stored values in these cells determine logic functions and interconnections

implemented in the FPGA. Configuration data can be read from an external serial

PROM (master serial mode), or written into the FPGA in slave serial, slave parallel,

or Boundary Scan modes [25].

Spartan-II FPGAs are typically used in high-volume applications where the

versatility of a fast programmable solution adds benefits. Spartan-II FPGAs are ideal

for shortening product development cycles while offering a cost-effective solution

for high volume production [25].

Spartan-II FPGAs achieve high-performance, low-cost operation through

advanced architecture and semiconductor technology. Spartan-II devices provide

system clock rates up to 200 MHz. Spartan-II FPGAs offer the most cost-effective

solution while maintaining leading edge performance. In addition to the conventional

benefits of high-volume programmable logic solutions, Spartan-II FPGAs also offer

on-chip synchronous single-port and dual-port RAM (block and distributed form),

DLL clock drivers, programmable set and reset on all flip-flops, fast carry logic, and

many other features [25].

3.2.3 Architectural Description Spartan-II Array

The Spartan-II user-programmable gate array, shown in Figure 1, is

composed of five major configurable elements.

❖ IOBs provide the interface between the package pins and the internal logic

❖ CLBs provide the functional elements for constructing most logic

❖ Dedicated block RAM memories of 4096 bits each

❖ Clock DLLs for clock-distribution delay compensation and clock domain

control

❖ Versatile multi-level interconnect structure

As can be seen in fig.3.1, the CLBs form the central logic structure with easy

access to all support and routing structures. The IOBs are located around all the logic

and memory elements for easy and quick routing of signals on and off the chip.

Values stored in static memory cells control all the configurable logic elements and

25

interconnect resources. These values load into the memory cells on power-up, and

can reload if necessary to change the function of the device. Each of these elements

will be discussed in detail in the following sections [25].

3.2.4 Input/Output Block

The Spartan-II IOB, as seen in fig.4.2, features inputs and outputs that

support a wide variety of I/O signaling standards. These high-speed inputs and

outputs are capable of supporting various state of the art memory and bus interfaces.

The three IOB registers function either as edge-triggered D-type flip-flops or as

level-sensitive latches. Each IOB has a clock signal (CLK) shared by the three

registers and independent Clock Enable (CE) signals for each register [25].

In addition to the CLK and CE control signals, the three registers share a

Set/Reset (SR). For each register, this signal can be independently configured as a

synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous

Clear A feature not shown in the block diagram, but controlled by the software, is

polarity control. The input and output buffers and all of the IOB control signals have

independent polarity controls [25].

Optional pull-up and pull-down resistors and an optional weak-keeper circuit

are attached to each pad. Prior to configuration all outputs not involved in

configuration are forced into their high-impedance state. The pull-down resistors and

the weak-keeper circuits are inactive, but inputs may optionally be pulled up. The

activation of pull-up resistors prior to configuration is controlled on a global basis by

the configuration mode pins. If the pull-up resistors are not activated, all the pins will

float. Consequently, external pull-up or pull-down resistors must be provided on pins

required to be at a well-defined logic level prior to configuration [25].

All pads are protected against damage from electrostatic discharge (ESD) and

from over-voltage transients. Two forms of over-voltage protection are provided, one

that permits 5V compliance, and one that does not. For 5V compliance, a zener-like

structure connected to ground turns on when the output rises to approximately 6.5V.

When 5V compliance is not required, a conventional clamp diode may be connected

to the output supply voltage, VCCO. The type of over-voltage protection can be

selected independently for each pad [25].

26

I/O LOGIC -` 	 #1 ,3i5

s

v•uiouu
sue:■■■ummamuU

Fig 3.1 Basic Spartan-II Family FPGA Block Diagram

Input Path

A buffer In the Spartan-II IOB input path routes the input signal either

directly to internal logic or through an optional input flip-flop. An optional delay

element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is

matched to the internal clock-distribution delay of the FPGA, and when used, assures

that the pad-to-pad hold time is zero. Each input buffer can be configured to conform

to any of the low-voltage signaling standards supported. In some of these standards

the input buffer utilizes a user-supplied threshold voltage, VREF. The need to supply

VREF imposes constraints on which standards can used in close proximity to each

other. There are optional pull-up and pull-down resistors at each input for use after

configuration.

27

T
SR Vcco

T~~ 	 Pin
GLK 	CK

TCE 	EC 	 V ~ 	 I1`O
Programmable

SR 	 Bias & 	 Package Pin
ESD Network

SR

,FE 	 Programmable
D 	 Outpia Buffer

[

Interr~a!

Reference
OCE 	EC

Programmable HC~el y 	
U©. VAEF I _ID

SR
D 	 Prograr n able 	 Package Pin

IEE 	 Input Buffer

ICE -c 	F 	 To Next GCS
Tfl Other

External VREr Inputs
of Bank

Fig 3.2 Spartan-II Input/Output Block (IOB)

Output Path

The output path includes a 3-state output buffer that drives the output signal

onto the pad. The output signal can be routed to the buffer directly from the internal

logic or through an optional IOB output flip-flop. The 3-state control of the output

can also be routed directly from the internal logic or through a flip-flip that provides

synchronous enable and disable. Each output driver can be individually programmed

for a wide range of low-voltage signaling standards. Each output buffer can source

up to 24 mA and sink up to 48 mA. Drive strength and slew rate controls minimize

bus transients [25].

In most signaling standards, the output high voltage depends on an externally

supplied VCCO voltage. The need to supply VCCO imposes constraints on which

standards can be used in close proximity to each other. An optional weak-keeper

circuit is connected to each output. When selected, the circuit monitors the voltage

on the pad and weakly drives the pin High or Low to match the input signal. If the

pin is connected to a multiple-source signal, the weak keeper holds the signal in its

last state if all drivers are disabled. Maintaining a valid logic level in this way helps

eliminate bus chatter. Because the weak-keeper circuit uses the IOB input buffer to

monitor the input level, an appropriate VREF voltage must be provided if the

signaling standard requires one. The provision of this voltage must comply with the

I/O banking rules [25].

3.2.5 I/O Banking

Some of the I/O standards described above require VCCO and/or VREF

voltages. These voltages are externally connected to device pins that serve groups of

IOBs, called banks. Consequently, restrictions exist about which I/O standards can

be combined within a given bank. Eight I/O banks result from separating each edge

of the FPGA into two banks as shown in Figure 3). Each bank has multiple VCCO

pins which must be connected to the same voltage. Voltage is determined by the

output standards in use [25].

Bank 0
7] L7_Bank

I
sv

GCLK3 GCLK2

•

m 	 m

Spartan-II
Device

0 	GCLKI GC .KO

L4.Bark 5 	 Bank 4

Fig 3.3 Spartan-II I/O Banks

Some input standards require a user-supplied threshold voltage, VREF. In this

case, certain user-I/O pins are automatically configured as inputs for the VREF

voltage. About one in six of the I/O pins in the bank assume this role.VREF pins

within a bank are interconnected internally and consequently only one VREF voltage

can be used within each bank. All VR EF pins in the bank, however, must be

29

connected to the external voltage source for correct operation. In a bank, inputs

requiring VREF can be mixed with those that do not but only one VREF voltage may

be used within a bank. Input buffers that use VREF are not 5V tolerant. The Vcco and

VREF pins for each bank appear in the device pinout tables. Within a given package,

the number of VREF and Vcco pins can vary depending on the size of device. In

larger devices, more I/O pins convert to VREF pins. Since these are always a superset

of the VREF pins used for smaller devices, it is possible to design a PCB that permits

migration to a larger device. All VREF pins for the largest device anticipated must be

connected to the VREF voltage, and not used for I/O [25].

3.2.6 Configurable Logic Block

The basic building block of the Spartan-II CLB is the logic cell (LC). An LC

includes a 4-input function generator, carry logic, and storage element. Output from

the function generator in each LC drives the CLB output and the D input of the flip-

flop. Each Spartan-II CLB contains four LCs, organized in two similar slices ; a

single slice is shown in Figure 4. In addition to the four basic LCs, the Spartan-II

CLB contains logic that combines function generators to provide functions of five or

six inputs[25].

Look-Up Tables

Spartan-II function generators are implemented as 4-input look-up tables

(LUTs). In addition to operating as a function generator, each LUT can provide a

16x1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be

combined to create a 16x2-bit or 32x1-bit synchronous RAM, or a 16x1-bit dual-port

synchronous RAM.

The Spartan-II LUT can also provide a 16-bit shift register that is ideal for capturing

high-speed or burst-mode data. This mode can also be used to store data in

applications such as Digital Signal Processing [25].

Storage Elements

Storage elements in the Spartan-II slice can be configured either as edge-

triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven

either by function generators within the slice or directly from slice inputs, bypassing

30

the function generators. In addition to Clock and Clock Enable signals, each slice has

synchronous set and reset signals (SR and BY). SR forces a storage element into the

initialization state specified for it in the configuration. BY forces it into the opposite

state. Alternatively, these signals may be configured to operate asynchronously. All

control signals are independently invertible, and are shared by the two flip-flops

within the slice [25].

Additional Logic

The F5 multiplexer in each slice combines the function generator outputs.

This combination provides either a function generator that can implement any 5-

input function, a 4:1 multiplexer, or selected functions of up to nine inputs. Similarly,

the F6 multiplexer combines the outputs of all four function generators in the CLB

by selecting one of the F5-multiplexer outputs. This permits the implementation of

any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs.

Each CLB has four direct feed through paths; one per LC. These paths provide extra

data input lines or additional local routing that does not consume logic resources[25].

Arithmetic Logic

Dedicated carry logic provides fast arithmetic carry capability for high-speed

arithmetic functions. The Spartan-II CLB supports two separate carry chains, one per

slice. The height of the carry chains is two bits per CLB. The arithmetic logic

includes an XOR gate that allows a 1-bit full adder to be implemented within an LC.

In addition, a dedicated AND gate improves the efficiency of multiplier

implementation. The dedicated carry path can also be used to cascade function

generators for implementing wide logic functions [25].

BUFTs

Each Spartan-II CLB contains two 3-state drivers (BUFTs) that can drive on-

chip busses. Each Spartan-II BUFT has an independent 3-state control pin and an

independent input pin.

31

BY

SR

G4

G3

62

61

F4

F3

F2

Fl

8X

CIN

CLK

CE

COUT

YB

Y

Yo

m
F:1

M

Fig 3.4 Spartan-II CLB Slice (two identical slices in each CLB)

3.2.7 Block RAM

Spartan-II FPGAs incorporate several large block RAM memories. These

complement the distributed RAM Look-Up Tables (LUTs) that provide shallow

memory structures implemented in CLBs.

Block RAM memory blocks are organized in columns. All Spartan-Il devices

contain two such columns, one along each vertical edge. These columns extend the

full height of the chip. Each memory block is four CLBs high, and consequently, a

Spartan-II device eight CLBs high will contain two memory blocks per column, and

a total of four blocks. Each block RAM cell is a fully synchronous dual-ported 4096-

bit RAM with independent control signals for each port. The data widths of the two

ports can be configured independently, providing built-in bus-width conversion. The

Spartan-II block RAM also includes dedicated routing to provide an efficient

interface with both CLBs and other block RAMs[25J.

Table.3.2 Spartan-II Block RAM Amounts

Spartan-II
Device NO. of Blocks

Total Block RAM

Bits

XC2S15 4 16K

XC2S30 6 24K

XC2S50 8 32K

XC2S100 10 40K

XC2S15O 12 48K

XC2S200 14 56K

3.3 Hardware Description Languages.

In electronics, a hardware description language or HDL is a standard text-

based format for describing either the behavior or the structure, or both, of an

electronic circuit.

HDLs have two purposes. First, they are used to write a model for the

expected behavior of a circuit before that circuit is designed and built. The model is

33

fed into a computer program, called a simulator that allows the designer to verify that

his solution behaves correctly. Second, they are used to write a detailed description of

a circuit that is fed into another computer program called a logic compiler. The output

of the compiler is used to configure a programmable logic device that has the desired

function. Often, the HDL code that has been simulated in the first step is re-used and

compiled in the second step.

An HDL is analogous to a software programming language, but with subtle

differences. Both types of language are processed by a compiler. An HDL compiler

often works in several stages, first producing a logic description file in a proprietary

format, then converting that to a logic description file in the industry-standard EDIF

format, then converting that to a JEDEC (Joint Electron Device Engineering Council)-

oformat file[21J.

HDLs used by logic compilers include:

❖ Verilog HDL

❖ VHDL

❖ AHDL (a proprietary language used by Altera)

❖ CUPL (a proprietary language used by Logical Devices, Inc.)

The current trend is to move away from proprietary HDLs and towards the two

leading standards, VHDL and Verilog HDL [22].

.3.3.1 VERJLOG HDL

Verilog HDL is a hardware description language used to design and document

electronic systems. Verilog HDL allows designers to design at various levels of

abstraction. Verilog was started initially as a proprietary hardware modeling language

by Gateway Design Automation Inc. around 1984.. At that time, Verilog was not

standardized and the language modified itself in almost all the revisions that came out

within 1984 to 1990. In 1990, Cadence recognized that if Verilog remained a closed

language, the pressures of standardization would eventually cause the industry to shift

to VHDL. Consequently, Cadence organized Open Verilog International (OVI), and

in 1991 gave it the documentation for the Verilog Hardware Description Language.

This was the event which "opened" the language.

34

In 1994, the IEEE 1364 working group was formed to turn the OVI LRM into

an IEEE standard. This effort was concluded with a successful ballot in 1995, and

Verilog became an IEEE standard in December, 1995 [20].

Features of Verilog HDL

In Verilog HDL, a component is represented by a design module. The module

declaration provides the "external" view of the component; it describes what can be

seen from the outside, including the component ports. The module body provides an

"internal" view; it describes the behavior or the structure of the component.

The connections between components are specified within component

instantiation statements. These statements specify an instance of a component

occurring within another component or the circuit. Each component instantiation

statement is labeled with an identifier. The Verilog language provides a large set of

built-in logic gates which can be instantiated to build larger logic circuits. The set of

logical functions described by the built-in gates include AND, OR, XOR, NAND,

NOR and NOT.

3.3.2 VHDL

VHDL is an acronym which stands for VHSIC (Very High Speed Integrated

Circuits) Hardware Description Language. The language has been known to be

somewhat complicated. The acronym does have a purpose, though; it is supposed to

capture the entire theme of the language that is to describe hardware much the same

way we use schematics [21].

VHDL is being used for documentation, verification, and synthesis of large

digital designs. This is actually one of the key features of VHDL, since the same

VHDL code can theoretically achieve all three of these goals, thus saving a lot of

effort. In addition to being used for each of these purposes, VHDL can be used to take

three different approaches to describing hardware. These three different approaches

are the structural, data flow, and behavioral methods of hardware description. Most of

the time a mixture of the three methods is employed. The following sections introduce

you to the language by examining its use for each of these three methodologies. There

are also certain guidelines that form an approach to using VHDL for synthesis, which

is not addressed by this tutorial [22].

35

VHDL was established as the IEEE 1076 standard in 1987. In 1993, the IEEE

1076 standard was updated and an additional standard, IEEE 1164 was adopted. In

1996, IEEE 1076.3 became the VHDL synthesis standard [23].

Features of VHDL

VHDL is a worldwide standard for the description and modeling of digital

hardware. VHDL gives the designer many different ways to describe hardware The

language offers: familiar programming tools for complex and simple problems,

sequential and concurrent modes of execution to meet a large variety of design needs,

packages and libraries to support design management and component reuse [20].

VHDL has ample features appropriate for describing the behavior of electronic

components ranging from simple logic gates to complete Microprocessors, high

performance Digital Signal Processors and custom chips. Features of VHDL allow

timing aspects of circuit behavior (such as rise and fall times of signals, delays

through gates, and functional operation) to be precisely described [21].

Packages
Packages are intended to hold commonly-used declarations such as

constants, type declarations and global subprograms. Packages can be included

within the same source file as other design units (such as entities and architectures)

or may be placed in a separate source file and compiled into a named library. This

latter method is useful in using the contents of a package throughout a large design

or in multiple projects. The IEEE 1164 standard provides a standard package named

std logic 1164 that includes declarations for the type's std logic, std ulogic,

std logic vector and td ulogic vector, as well as many useful functions related to

those data types [22].

Design Libraries

A design library is an implementation-dependent storage facility for

previously analyzed design units. This resulted in many different implementations in

synthesis and simulation tools. In general, however, design libraries are used to

collect commonly-used design units (typically packages and package bodies) into

uniquely-named areas that can be referenced from multiple source files in your

design [23].

36

Components

Components are used to connect multiple VHDL design units

(entity/architecture pairs) together to form a larger, hierarchical design. Using

hierarchy can dramatically simplify the design description and can make it much

easier to re-use portions of the design in other projects. Components are also useful

while making the use of third-party design units, such as simulation models for

standard parts, or synthesizable core models obtained from a company specializing

in such models [21].

Configurations
Configurations are features of VHDL that allow large, complex design

descriptions to be managed during simulation. (Configurations are not generally

supported in synthesis.) One example of how to use configurations is to construct

two versions of a system-level design, one of which makes use of high-level

behavioral descriptions of the system components, while a second version substitutes

in a post-synthesis timing model of one or more components.

For large projects involving many engineers and many design revisions,

configurations can be used to manage versions and specify how a design is to be
configured for system simulation, detailed timing simulation, and synthesis. Because

simulation tools allow configurations to be modified and recompiled without the

need to recompile other design units, it is easy to construct alternate configurations

of a design very quickly without recompiling the entire design [22].

37

CHAPTER-4

DESIGN AND IMPLEMENTATION OF FFT PROCESSOR

4.1 Introduction

The summary of different approaches to the FFT problems is discussed in

chapter-2.The selection of an adequate algorithm for implementing the architecture of

the FFT processor to be used for a specific application, is discussed in present chapter.

Once the algorithm is selected for the desired application, the next step is its

implementation.

In the present work the algorithm is selected taking into consideration the two

parameters namely speed and complexity. The selected algorithm is suited for higher

speed with lesser complexity. The algorithm is implemented using VHDL.

4.2 Algorithm Choice

While selecting the algorithm the basic point of consideration is that its

architecture and corresponding design should be simple and easily understandable. In

order to reduce the complexity of algorithm it is proposed to restrict it to 16-point.

Therefore it is required to observe the existing algorithms, which are applicable for

I6-point.

The radix-2 FFT algorithm has many good features. For example, it has low

quantization noise level, and it is also easily parameterizable to the different FFT

lengths. Radix-r does not seem to be as good a choice as the radix-2 one, because it

has higher quantization noise, and that it is not as easily parameterizable to the

different FFT lengths. To be able to parameterize this algorithm to the general power-

of-2 FFT lengths, different radix-r stages have to be used in the pipeline, resulting in a

mixed radix implementation.

Since minimizing the number of multipliers is important, a good choice of

algorithm would be the split radix one. It has a lower number of multipliers than all

the above ones, but this algorithm results in a complex design, which will be harder to

parameterize. The control of this type of processor would also be more complex.

The radix-4 algorithm is the most attractive algorithm. It has low number of

multipliers, simple control structure and architecture.

Prime factor algorithms can not be used, because the right FFT lengths can

not be calculated using this algorithm. These are the reasons that the radix-4 FFT

algorithm is used in the FFT implementation in present work.

4.3 FFT Processor

In this master thesis, it is to implement proposed a 16-point FFT processor. In

the proposed architecture the complete operation of the FFT processor is divided into

three sub processes. Namely: Data Input, FFT Computation and Data Output

Processes. This is depicted in Figure 4.1[18].

Input Data 	Data Input 	 FF'r Computation 	 Data Output 	Output Data
Process 	 Process 	 Process

Fig 4.1 Three sub-processes of the FFT Algorithm

4.3.1 Data Input

The process cycle starts with The Data Input process. The input data

assumed to be complex. So each input has real part and imaginary part. In this

process, 16 complex inputs are taken at a time and stored in the blockRAM in FPGA

(section 3.6.9). The real and imaginary part of the input data is stored separately in
block RAM.

4.3.2 FFT Computation
The FFT computation process is main block of the processor. It computes the

FFT operation, which converts the time domain samples into frequency domain. It

takes the input data which is stored in the blockRAM, applies the radix-4 algorithm

on that data and the result is again stored into the same memory. The detailed

description is given in following sections.

39

4.3.3 Data Output Process

The data output process is the last stage of the FFT processor. This process

provides the results of the FFT Computation process to the outside world.

4.4 Architecture

The schematic diagram of the FFT processor architecture is shown in fig 4.2.It

consists of a processing element, a blockRAM, a coefficient ROM and an address

generation unit. In the designed FFT processor the processing element is a radix-4

butterfly (which is referred as the butterfly processing element).

In the designed FFT processor data pathways are in the form of 12-bit signed

fractions. Coefficients are stored as 12-bit signed fixed-point words. Different

elements of designed FFT processor are discussed in following sections.

4.4.1 Coefficient ROM
From equation 2.1, WN called twiddle factor coefficient which is a complex

number. Twiddle factor coefficients for 16-point FFT are generated using

MATLAB.These coefficients are very small, hence these are scaled by a factor of

1024 and stored in ROM.The real and imaginary parts are separately stored in ROM.

The result is then derived by finally scaling the stored output value with the 1/1024.

4.4.2 Block RAM

Block RAM is on-chip memory of FPGA.The size of memory depends on

version of FPGA.Block RAM is used to store the input data, which is a complex data;

hence the real and imaginary parts are stored separately in the memory. The same

block RAM is used to store the intermediate results (i.e the output coming from the

radix-4 butterfly) by replacing existing data because of the initial data is never used

for further computation. The final output is again stored in same Block RAM.

4.4.3 Radix-4 Butterfly Implementation Details

The butterfly is the basic operator of the FFT It takes four data words and

computes 4-point DFT. The basic butterfly unit is shown in figure 2.8. The boxes in

Figure 2.8 represent multiplications and the circles represent sums. The Twn values

(TwO, Twl, Tw2, and Tw3) are commonly referred to as twiddle factors. These

values are determined by the number of samples in the input. J. G. Proakis and D. G.

Manolakis have discussed the FFT algorithms and twiddle factors in detail[44]. Figure

4.3 shows the Radix 4 Butterfly in a simplified component form.

Since higher order FFTs use many butterfly stages, each having a different set

of twiddle factors, the twiddle factors are not fixed, but are received as inputs. The

inputs and outputs are assumed to be complex so each input and output has a real port

and an imaginary port. In this implementation, the data is in signed (2s complement)

form.

Coefficient ROM

Address
Generation _

Unit
Processing

Element
(AG U)

Block
RAM 	 ►

Input Data Output Data

Fig 4.2 Block Diagram Representation of the FFT processor

Complex Multiplier

Each multiplication in the radix-4 butterfly is a complex multiplication. An

asynchronous complex multiplier component is designed to perform the complex

multiplication. It is shown in Figure 4.4. The schematic diagram of complex

multiplier is shown in figure 4.4.

The complex multiplier uses four N bit real multipliers (signed). The

multiplier has four inputs consisting of the real part and imaginary part of two

complex numbers. The input width, N, is variable. The output is a complex number

with 2 *N bits for the real part and 2 *N bits for the imaginary part.

!I1

XO

x1

x2

x3

TWO
TWI

TW2

TW3

XO

X1

X2

X3

Fig 4.3 Block Diagram of Radix-4 Component

X REAL 	 OUT, HIGH

X_IMAG 	 OUTR_LOW

complex Multipliers

Y REAL-- 	 OUTi_HlGH

Y_IMAG 	 OUTLOW

Fig 4.4 Asynchronous, Complex Multiplier

Given two complex numbers x and y where x = XR + jxl and y = YR + jyl,

Then 	x *y = ((XR * YR) - (xr * Yi)) +j((xR *Yr) + (xi * YPd) 	 (4.1)

and

	

OUtR = ((XR * YR) - (xI * Yi)) 	 (4.2)

	

Out1 = ((xn *Y) + (xi *YR)). 	 (4.3)

Figure 4.5 further elaborates the complex multiplier.

XR

YR

XI

Y1

XR

Y1

X1

YR

OUTR

OUTi

Fig 4.5 Complex Multiplier block diagram

Radix-4 Butterfly Component
For the Design of N-point FFT processor, the number of stages required and

Number of butterflies for each stage are derived using following equations.

Number of stages = log4 N
	 (4.4)

Number of butterflies for each stage = N/4 	 (4.5)

Therefore 2 stages are required for computing 16-pt FFT. In each stage radix-4

algorithm is required to be invoked four times. A 16-point radix-4 decimation-in-

frequencies FFT algorithm is shown in figure 2.9.

By observing figure 2.9 It contain four different set of twiddle factors in the

first stage. Hence It has 16 input ports and eight output ports. Eight inputs are for the

real and imaginary parts of four data samples. Another eight inputs are for the real and

imaginary parts of the four twiddle factors. The eight outputs are for the real and

imaginary parts of the four results. The input width is variable. To avoid errors, all

data and twiddle inputs must be the same width. The output width is twice the input

width.

The radix-4 butterfly requires four complex multiplications for a total of 16

real multipliers. If the inputs are 12 bits each, then one real multiplier requires 544

CLBs. A full implementation of a radix-4 butterfly would require 8,704 CLBs. For

this reason a single complex multiplier is used and it is time multiplexed over four

43

clock cycles to achieve the four complex multiplications. Thus a single butterfly

operation takes four clock cycles. We can get one output for every clock cycle.

It is possible for an overflow to occur when the results of the four

multiplications are added together. To keep this implementation simple, no overflow

checks are performed. The detailed architecture for butterfly processing element is

depicted in Figure 4.6.

To simplify the architecture the number of multipliers are to be reduced. For

this purpose, two different radix-4 butterfly architecture for the two stages are

developed.

In 2"d stage, four butterflies are required with same set of twiddle factors. The

set of twiddle factor are (W160, W16° ,W16° ,W 16°).the real part of W16° is one and

imaginary part is zero. Hence, the architecture of butterfly element in the 2"d stage can

be developed without using complex multipliers. This architecture is very simple than

that of ls` stage. It will improve the speed and reduce the complexity of the circuit.

The detailed architecture of the 2nd stage butterfly processing element after

simplification is depicted in Figure 4.7.

4.4.4 Address Generation Unit (AGU)
The AGU plays main role in the design of the processor. It will synchronize the all

input data which is required for processing. The address generation procedure is

different for two stages of radix-4 FFT algorithm. It will generates address of four

input at a time and also generates corresponding twiddle factors required for that input

set. The 16-point of input data is stored in address from 0 to 15 in RAM. The points

required to generate in the order of (0,4,8,12),(1,5,9,13),(2,6,10,14) and (3,6,11,15) . it

will be observed from the fig 2.9. The above input order can obtain by using digit

reverse technique, which is explained in above section. I developed a simple

architecture for digit reverse, which will swapped the bits 1, 2 with 3, 4 after

generating from counter. Doing this four bit patterns are transformed as below.

(0, 1, 2, 3) 	4 (0, 4, 8, 12)

(4, 5, 6, 7) 	- (1, 5, 9, 13)

(8, 9, 10, 11) 	4 (2, 6, 10, 14) and

(12, 13, 14, 15) 	4 (3, 7, 11, 15).

XO REAL

X2REAL ADDISUB

XO IMAG

X2 IMAG 	ADDISUB

X1 REAL

X3 REAL 	ADDISUB
~
FF k

XI IMAG

X3IMAG 	ADDISUB 	X

REAL

ADDISUB
X REAL

W REAL

W IMAG

Complex

Multiplier
WR

ADD!SUB 	IMAG
	 IMAG

W IMAG

Fig 4.6 Butterfly Processing Element Architecture (BPEA) for Vt stage

XO REAL

X2REAL 	ADDISUB

REAL

XO IMAG
	 ADDISUB 	 ► X REAL

X2 IMAG 	ADDISUB

X1 REAL

X3 REAL 	1 ADDISUB 	I X
IMAG

ADDISUB 	► X IMAG

X1 IMAG _ 	 'I

X3IMAG 	ADDISUB

Fig 4.7 Butterfly Processing Element Architecture (BPEA) for 2nd stage

45

For 2"d stage of FFT the points required for radix-4 algorithm is in sequential

order like (0,1,2,3),(4,5,6,7),(8,9,1O,1 1) and (12,13,14,15). Hence simple counter logic

will generates the points in sequential order. The flow chart of above discussion is

shown in fig4.8

4.5 FFT Processor Architecture

The FFT architecture using radix-4 butterfly unit designed in previous section

is developed as shown in fig 4.9. It is observed from above discussion is there are two

stages are required for 16-point FFT. In each stage radix-4 algorithm is required to be

invoked four times.

The addressing scheme is requircd for generating addresses which derived

from Finite State Machine. The Twiddle factors required for performing the operation

are stored in the Read Only Memory. The Real part and Imaginary parts are

separately stored in two different ROMs. Coefficients are to be first scaled with the

1024 and stored in the ROM to avoid overflow. The result is then derived by finally

scaling the stored value with the 1/1024.

Initially, 16 points are stored in the RAM. The data is a complex data, hence

the real and corresponding imaginary part of data has to be taken at a time. For each

radix-4 butterfly operation, address of four input points and corresponding twiddle

factors are generated by using FSM. Initially, the radix-4 algorithm is applied for the

four points of 0,4 8,12 and the result is stored in RAM . The operation is repeated for

three different points (1,5,9,13), (2,6,10,14) and (3,7,11,15). With this operation,

first stage has been completed. In the second stage it requires four points 0,1,2,3 and

proceeds to consider the points in order (4,5,6,7), (8,9,10,11) and (12,13,14,15).

Here again the appropriate addresses are generated by the finite state machine

(AGU). The final values resulting from the second stage of operation are stored in the

RAM, as in the first stage, the real and imaginary values are stored separately.

This architecture is developed by using VHDL. The complete source code

and relevant documentation are provided in CD (attached at the end of report).

The architecture explained in this chapter is implemented using FPGA. The

processor for implementation is described in next chapter.

Genarate
four points

in digit
reversal

order

Genarate
four points

in
sequential

order

START

1
STAGE

9

No

Genarate 4
twiddle
factors

Increment
i=i+1

Increment
i=i-4-1

- IS
i=4

`/

No

Yes
IS

r =4 	 STOP

Yes

Increment
the stage

i.e stage is 2

STOP

Fig 4.8 Flow chart for address generation unit

Fig 4.9 16-point FFT architecture

CHAPTER-5

DESIGN FLOW AND FINAL IMPLEMENTATION ON FPGA

5.1 Introduction
This chapter describes the design flow used to create complex FPGA and

ASIC devices. The designer starts with a design specification, creates an RTL

description, verifies that description, synthesizes the description to gates, uses place

and route tools to implement the design in the chip, and then verifies that the final

result is correct in terms of function and timing. The design flow is shown in figure

5.1.

VHDL Constraints

(Pin, Area, Timing)

Synthesize

Net-I ist(s)

Translate

Map

Maps the design to the board logic

Place and
Route

Floor planned, placed and routed design

Configure

The design to downloaded to board

Fig 5.1 The High-Level Design Flow

5.2 Specification

All designs should start with a detailed specification of the exact tasks the

application should do and include details on how fast the tasks must be completed.

5.3 Design Entry

In general design entry would done through any hardware description

language (HDL) such as VHDL or Verilog . In this thesis, VHDL is used for design

entry. One of the best uses of VHDL today is to synthesis ASIC and FPGA devices.

5.4 Simulation

Simulation is the representation of the structure and behavior of a digital logic

system through the use of computer. A simulator interpret the HDL description and

produces readable output, such as timing diagram, that predicts how the hardware will

behave before it is actually fabricated. Simulation allows the detection of functional

errors in a design without having to physically create the circuit. The stimulus that

tests the functionality of the design is called a test bench. Thus, to simulate a digital

system, the design is first described in HDL and then verified by simulating the

design and checking it with a test bench, which is also written in HDL.

5.5 User Constrain File

The UCF file maps signals in VHDL code to pins on the FPGA board. The

signal name in your .vhd file must match the net name in the UCF file. If the names

do not match, change the name in your .vhd file, not the net name in the .UCF file.

This UCF file and .vhd files are the input to the Synthesis process.

5.6 Synthesis

After the hardware has been written, simulated and debugged, it needs to be

synthesized. In some cases, rewriting the hardware description will be necessary to

50 1 Ma.

ti

make the hardware partitions synthesizable. If any code is rewritten, the hardware

must be simulated again to make sure it still meets the requirements of the

specifications

Synthesis is an automatic method of converting a higher level of abstraction to

a lower level of abstraction. There are several synthesis tools available currently.In

this thesis, ISE tool which is provided by Xilinx was used for synthesis.

The current synthesis tool converts the Register Transfer Level (RTL)

descriptions to gate level netlists. These gate level netlists consists of interconnected

gate level macro cells. Models for the .gate level cells are contained in technology

libraries for each type of technology supported. The netlists, which are generated from

synthesis tool are device independent, so its contents do not depend on the particulars

of the FPGA.It is usually stored in a standard format called the Electronic Design

Interchange Format(EDIF)[24].

5.7 Implementation

In the Design Implementation stage, the netlist produced by the design entry

program is converted into the bitstream file which configures the FPGA. The first step

Maps the design onto the FPGA resources; the second step Places or assigns logic

blocks created in the mapping process in specific locations in the FPGA. The third

step Routes the interconnect paths between the logic blocks. The output is a Logic

Cell Array File (LCA) for the particular FPGA; this process is explained in detail in

section 5.7. This LCA file is then converted into a bitstream file for configuring the

FPGA[24].

5.8 Place and Route

Place and route tools are used to take the design netlist and implement the

design in the target technology device. The place and route tools place each primitive

from the netlist into an appropriate location on the target device and then route signals

between the primitives to connect the device according to the netlist. Place and route

tools are typically very architecture and device dependent. These tools are tuned to

take advantage of each architectural and routing advantage the device contains. FPGA

vendors provide these tools because the differences in architectures are large enough

51

that writing a common tool for all architectures would be very difficult. fig 5.2 shows

a dataflow diagram of the place and route tools[24].

Fig 5.2 Place and Route Data Flow

Input to the place and route tools are the netlist in EDIF or another netlist

format, and possibly timing constraints. The format of the netlist input file varies from

manufacture to manufacturer. Some tools use EDIF[24].

Another input to some place and route tools is the timing constraints, which

give the place and route tools an indication about which signals have critical timing

associated with them and to route these nets in the most timing efficient manner.

These nets are typically identified during the static timing analysis process during

synthesis. These constraints tell the place and route toll to place the primitives in close

proximity to one another and to use the fastest routing. The closer the cells are, the

shorter the routed signals will be and the shorter the time delay[24].

Some place and route tools allow the designer to specify the placement of

large parts of the design. This process is also known as floorplanning. Floorplanning

allow the user to pick locations on the chip for large blocks of the design so that

routing wires are as short as possible. The designer lays out blocks on the chip as

general areas. The floorplanner feeds this information to the place and route tools so

that these blocks are placed properly. After the cells are placed, the router makes the

appropriate connections[24].

52

After all the cells are placed and routed, the output of the place and route tools

consists of data files that can be used to implement the chip. In the case of

FPGAs,these files describe all of the connections needed to make the FPGA macro

cells implement the functionality required.Antifuse FPGAs use this information to

burn the appropriate fuses, while reprogrammable devices download this information

to the device to turn on the appropriate transistor connections.

The other output from the place and route software is a file used to generate

the timing file. This file describes the actual timing of the programmed FPGA device

or the final ASIC device. This timing file, as much as possible, descriges the timing

extracted from the device when it is plugged into the system for testing. The most

common format of this file for most simulators is SDF(Standard Delay

Format). sometimes, proprietary formats are generated and later translated to

SDF.SDF is used to back-annotate the post route timing information from place and

route tools into the post layout timing simulation[24].

5.9 FPGA Configuration

Configuration is a process in which the circuit design (bitstream file) is

downloaded into the FPGA. The method of configuring the FPGA determines the

type of bitstream file. FPGAs can be configured by a PROM. The serial PROM is the

most common. The FPGA can either actively read its configuration data out of

external serial or byte parallel PROM (master mode), or the configuration data can be

written into the FPGA (slave and peripheral mode).

53

CHAPTER-6
RESULTS AND DISCUSSIONS

6.1 Simulation Results

To make FPGA to work to the needs of the user, design needs to be simulated

and different signals timing of execution needs to be checked. In the present design,

16-point FFT processor is simulated and results had been shown below.

6.2 Matlab Results

Matlab is used to verify the results which are obtain from the simulation.

Matlab tool will gives the perfect solution for any application. The matlab results are

shown in fig6.4.

Discussion:

The input to the FFT processor is complex. Hence the real and imaginary parts

are indicated separately. The signals XO_real_s and XO_imag_s are the real and

imaginary parts of complex data XO.it is shown in fig 6.1.

Each radix-4 butterfly will take four complex data and the radix-4 butterfly is

invoked four times in each stage of FFT. Input to the first stage of radix-4 butterflies

shown in fig6.2.

The signals address_s_1 and address_s_2 shows the address of input data

which is generated by address generation unit. The signal address_s_1 indicates

address of the input for 1$f stage of radix-4 butterflies and address_s_2 denotes the

address of the input for 2 stage of radix-4 butterflies.

The final output of simulation is represented in fig 6.3 and these results are

compared with the matlab results shown in fig 6.4.

54

t

Q . 	3

G j 	IE

;j
d ! 	 C; 	Ryi 	rtAj~ N

Oi 	i 0 W~} : 06~ 	'O' j- ('i t~(y I 	~] 	 1~

LE 	3 T 	T 	E 	T 	T

,1i E ~.w~.

V 3 C)

3 	i 	3 by 	V) i 4 i $.

W~ Oaf Q11 _ _ 	 E _ 	3 E
i E i i c~

i '- 	i 1U
r^ i t'YI 3 Cr! i fl 1 +i xxxxxxx

0
(1)

0

0

0

ci cYc r- 	r citó ó 	Ló 	 i.i u.
 i 	th to

CO

	

i;I 	.
01

('4

c 	c

+
Ln 0
2

Jill
1t

Jill
L-,
I'll
tt

A

f V

Av

Al

Ar

;

Al

f:a

Q r

n ! ! I I

I
I I I I f
I I I i

I t I *

I I

I I I I

I I
f I I

I
£
I 	I I I I

I I
I 	I t I I i

I I
I I I 4 I

i I 1 I
I I I

I I I I I I I I
I : I

tc I t t

I CD
t I I I

993
j I I I I

I I
I I

I I I I I

I

I I I

I I
21

I J 	I I I I I

N tn

o 	• up 	 ;
0 0 0 	.- 0 0 DI 	0 	Ic

	

i 	I 	
: !

) 	 . 	. ; 	iI' en

	

i•:4 	. 6 c p 	9 I
_rnz 	tE

0

rA
00

H

H

w

6.3 Synthesis Results

Synthesis results give the mapping report and how the proposed architecture

had been placed on the FPGA, and how the CLBs are connected in FPGA and what

are the pins of FPGA are connected as user TOs It also gives the RTL schematic view.

Mapping Report for radix-4 butterfly

This report is simply the outcome of how exactly designed code is represented

and how much of the resources it utilized. Following tables 6.1 and 6.3 gives the

device utilization for 1st stage of radix-4 FFT and 2nd stage of radix-4 FFT algorithm.

Selected Device: 2s200pg208-5

Table 6.1: Hardware utilization for 1st stage of radix-4 FFT algorithm.

Utilized
Number

Total Number %Of Utilization

SLICES 466 2352 19
FLIP FLOPS 9 4704 0
4-input LUTs 856 4704 18

Bonded IOBs 118 144 81
GCLKs 1 4 25

Table 6.2 Hardware utilization for 2"d stage of radix-4 FFT algorithm.

Utilized
Number

Total Number %Of Utilization

SLICES 75 2352 3

FLIP FLOPS 9 4704 0

4-input LUTs 136 4704 2

Bonded IOBs 116 144 80

GCLKs 1 4 25

59

Discussion

From the above results it is observed that, the device utilization for 2"d stage of

radix-4 FFT is less than that of 1 st stage of radix-4 FFT because of no multipliers are

utilized in 2"d stage.

Mapping Report for the 16-point FFT processor

The table 6.3 gives the amount of device utilized for the implementation of 16-point

FFT processor

Table 6.3 Hardware utilization for 16-point FFT processor

Utilized
Number

Total Number %Of Utilization

SLICES 1271 2352 54

FLIP FLOPS 487 4704 10

4-input LUTs 2006 4704 42

Bonded IOBs 30 144 20

BRAMs 4 14 28

GCLKs 1 4 25

Top level schematic drawing is shown in figure 6.5

91 Ee K4 yew Ptokct source E'rocess Sffdaero 	mdow &fIp 	 » 	a X _

19s3 M A LI l 3 li I .I I

1

3

M Den Sum... 13 main 16.ngr

Fig .6.5 RTL view of 16-point FFT processor.
Floor Plan: How exactly gates were places on the floor of the chip?

1 Xitinx Flaorpianner - (muin,_9 6 Ptacernent,fni xc ul►3t1 61152]

~xezYa 	..

G~

e T a o'7 a 	 ,

r e 	 oocI1

t:ip
ci

'cs- 	- 	 '1'
~~., 	 —~ r_

iii £u '~ 	Q~-- 	 LYi 	 b

o
- •.a. . ..ç -•o; 4 i

cvo o ORfl o "1'fp
 4 Row r 	x ii

Xilinx SPARTAN-II FPGA

CHAPTER-7

CONCLUSION AND FUTURE SCOPE OF WORK

7.1 Conclusions

FFT processor architecture optimized for speed and area has been designed.

The algorithm used was a modified version of the DIF-FFT radix-4 with the inputs in

natural order and the outputs in bit reversed order. The architecture consisted of a

radix-4 butterfly, B1ockRAM, coefficient ROM, and address generation unit. Separate

memories are used for storing the data and the coefficients. Although the processor

designed is quite small and fast there are some improvements that can be mode. Most

of the cells used to build the FFT processor have been optimized for speed rather than

area and power consumption. These blocks can be redesigned for reduced area and

power consumption. The FFT processor is capable of computing 16 point complex

FFT in 1300ns including data input and output processes. The chip is operating with a

clock frequency of 100MHz.

7.2 Future Scope of Work

> The present work is designed for 16-points of input data. The same

architecture can be applied for 32, 256, 1024 etc., points of input data.

➢ The main objective of work is concentrated on performance of the processor

so while designing the processor the power consumption is not considered as a

constraint. The same circuit can be better implemented keeping in view of

power consumption using CMOS technique.

➢ The process is designed for computing the stored input data. The architecture

can be extended to facilitate real time data by using pipeline architecture.

➢ The control circuit which takes care of overflow of data is being excluded in

the designed architecture to reduce the complexity as the performance of the

processor is main objective. The control circuit can be included in architecture

to control overflow of data. .

62

REFERENCES

1. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles,

Algorithms and Applications", 31̀ I ed. Englewood Cliffs, NJ:Prentice-Hall, 2002.

2. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing".

Englewood Cliffs, NJ: Prentice-Hall, 1989.

3. J. S. Walker, "Fast Fourier Transforms", 2nd ed. Boca Raton, FL: CRC,1996.:

4. J.W. Cooley and J. W. Tukey, "An Algorithm for the Machine Computation of the

Complex Fourier Series," Math.of Computation, Vol. 19, April 1965, pp. 297-301.

5. J. A. C. Bingham, "Multi-carrier modulation for data transmission: an idea whose

time has come," IEEE Communications Magazines, Vol. 28, No. 5, pp. 5-14,

May. 1990.

6. E. 0. Brigham, "The Fast Fourier Transform", Prentice-Hall, 1974.

7. S. Winograd, "On computing the discrete Fourier transform," Proc. Nat.Acad.

Sci., U S., Vol. 73, pp. 1005-1006, Apr. 1976.

8. L. R. Rabiner and B. Gold, "Theory and Application of Digital Signal

Processing", Prentice-Hall, 1975.

9. H. Lim and E. E. Swartzlander, "Multidimensional systolic arrays for the

implementation of discrete Fourier transforms," IEEE Trans. On Signal

Processing, Vol. 47, pp. 1359-1370, May 1999.

10. P. Duhamel and H. Hallmann, "Split radix FFT algorithm," IEEElectronics

Letters, Vol. 20, No. 1, pp. 14-16, Jan. 1984.

11. S. Bertazzoni, G. C. Cardarilli, M. Iannuceelli, M. Salmeri, A. Salsano, and 0.

Simonelli, "16-point high speed (i) FFT for OFDM modulation," ISCAS'98, Vol.

5, pp. 210-212, 1998

12. Shousheng He and Mats Torkelson, "A new approach to pipeline FFT processor,"

Parallel Processing Symposium, pp. 766-770, 1996.

13. Shousheng He and Mats Torkelson, "Designing pipeline FFT processor for

OFDM (de)modulation," ISSSE'98, Vol. 2, pp. 945-950, 1998.

14. M. T. Heideman and C. S. Burrus, "On the number of multiplications necessary

to compute a length 2 DFT," IEEE Trans. Acoust., Speech, Signal Processing, vol.

ASSP-34, pp. 91-95, Feb. 1986.

3t3

15. N. Weste, M. Bickerstaff, T. Arivoli, P. J. Ryan, J. W. Dalton, D. J.Skellern, and

T. M. Percival, "A 50MHz 16-point FFT processor for WLAN applications,"

IEEE Custom Integrated Circuits Conference,pp. 457-460, 1997.

16. J. Melander, L. Wanhammar, T. Widhe, "Design of efficient radix-4 butterfly PEs

for VLSI ", in Proc. IEEE International Symposium on Circuits and Systems,

ISCAS, June 1997.

17. R.C. Gonzales and R. E. Woods. "Digital Image Processing", Addison-Wesley,

2002.

18. Ediz Qetin, Richard C. S. Morling and Izzet Kale,"An Integrated 256-point

complex FFT Processor for Real-time Spectrum Analysis and measurement",

IEEE Proceedings of Instrumentation and Measurement Technology Conference,

vol. 1, pp. 96-101,Ottawa, Canada, May 19-21, 1997.

19. ZAHEER M. ALI, "A High-speed FFT Processor", IEEE TRANSACTIONS ON

COMMUNICATIONS, VOL. COM-26, NO. 5, MAY 1978.

20. J.Bhaskar, "VHDL Primer", 3rd Edition, Pearson education Asia, 2001.

21. Douglas L.Perry, "VHDL Programming by Example", 4th Edition, Tata McGraw

Hill, 2002.

22. Ben Cohen, Kluwer, "VHDL Coding Styles and Methodologies",2nd Edition,

Academic Publishers. 2000.

23. Stephen M.Triberger.," Field Programmable Gate Array Technology", Kluwer

Academic Publishers.

24. Xilinx Application Note, Spartan-II Series and Xilinx ISE 7.1i Design

Environment, hn).;/vv _t; ; a ..,, _ i in.'. 	, 2001.

25. Spartan-II Platform FPGA Handbook October 24,2002.

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

