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ABSTRACT 

The Fast Fourier Transform (FFT) is a computationally intensive digital signal 

processing function widely used in applications such as imaging, software defined 

radio, wireless communication, instrumentation and machine inspection. Historically, 

this has been a relatively difficult function to implement optimally in hardware, 

leading many software designers to use digital signal processors (DSPs) in soft 

implementations. Unfortunately, because of the function's computationally intensive 

nature, such an approach typically requires multiple DSPs within the system to 

support the processing requirements. This is costly from a device and board real-

estate perspective. 

Field-programmable gate array (FPGA) have become an extremely cost-

effective means of off-loading computationally intensive algorithms to improve 

overall system performance. The FFT processor implementation on FPGA that 

utilizes dedicated hardware multiplier resources can cost effectively achieve 

application-specific integrated circuit (ASIC)-like performance while reducing 

development time, cost and risks. 

In this thesis 16-point FFT processor has been designed and implemented. The 

design is based on a decimation-in-frequency radix-4 algorithm and employs in-place 

computation to optimize memory usage. In order to operate the processor, data must 

first be loaded into the internal RAM. The processor is then instructed to compute the 

FFT, overwriting the input data in the RAM with the results. Upon completion of the 

FFT, the results may be read out from the RAM via the output data port. The design 

specifications for the FFT processor are laid down using radix-4 algorithm. It is 

capable of computing one butterfly computation every 40ns thus it can compute 16-

complex point FFT in 1300ns including data input and output processes. The chip is 

operating with a clock frequency of 100MHz. The FFT processor is designed and tested 

according to the design specifications with the help of ISE (Integrated Software 

Environment) provided by Xilinx. The designed FFT processor has been implemented in 

Xilinx Spartan-II FPGA. 
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CHAPTER-1 
INTRODUCTION TO FFT PROCESSOR 

1.1 Overview 

The Discrete Fourier Transform (DFT) is one of the most fundamental 

operations in digital signal processing [1]. The Discrete Fourier transforms play an 

important role in many digital signal processing applications including acoustics, 

optics, telecommunications, speech, signal, image processing[17], linear filtering, 

quantum mechanics, noise reduction and image reconstruction . The Discrete Fourier 

Transform is a very popular technique used for converting signals in time domain to 

the frequency domain[9]. The DFT operation can be represented by the following 

expression. 
N—L 

for k=0, I ...N-1 	 (1.1) 
n=0 

Where X(k) = frequency transform of signal 

x(n) = data points in time domain 

N = number of data points 

WN = twiddle factor 

If the DFT operation is computed using the above expression then the complexity of 

the algorithm is O(N2) for N data points and it will take a long time to compute the 

DFT. The Fast Fourier Transform (FFT) algorithm reduces the complexity of 

computing the Discrete Fourier Transform[2]. 

In 1965, Cooley and Tukey introduced the fast fourier transform, which 

efficiently and significantly reduces the computational cost of calculating N-point 

DFT from 0(N2) to 0(Nlog2N). A large number of FFT algorithms have been 

developed by Cooley and Tukey [4]. Among these, the radix-2, radix-4, split-radix 

and FHT algorithms are the ones that have been mostly used for practical applications 

due to their simple structure, with a constant butterfly geometry, and the possibility of 

performing them "in place".Most of the research to date for the implementation and 

benchmarking of FFT algorithms have been performed using general purpose 

processors [3,4], Digital Signal Processors(DSPs) and dedicated FFT processor ICs 

[5,6]. However, as Field Programmable Gate Arrays (FPGAs) have grown in 
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capacity, improved in performance, and decreased in cost, they have become a viable 

solution for performing computationally intensive tasks (i.e. computation of FFT), 

with the ability to tackle applications for custom chips and programmable 'DSP 

devices [7,8]. In this thesis, since we mainly focus on the fast structures of the DFT, 

the terms DFT and FFT will be used interchangeably. The order of the multiplicative 

complexity is commonly used to measure and compare the efficiency of the 

algorithms since multiplications are intrinsically more complicated among all 

operations [5]. It is well-known in the field of VLSI that among the digital arithmetic 

operations (addition, multiplication, shifting and addressing, etc.), multiplication is 

the operation that consumes most of the time and power required for the entire 

computation and, therefore, causes the resulting devices to be large and expensive. 

Therefore, reducing the number of multiplications in digital chip design is usually a 

desirable task [14]. 

FPGAs have become an attractive option for implementing signal processing 

applications because of their high processing power and customizability. The 

inclusion of new features in the FPGA fabric, such as a large number of embedded 

multipliers, adds to this attractiveness. FPGAs can now be considered for 

computationally demanding applications such as those in signal processing. 

Traditionally, the performance metrics for signal processing and indeed, most 

processing in general, have been latency and throughput. 

Over last years, the interest in high speed multimedia communication systems 

has grown enormously [ 18]. These systems, including digital television, high speed 

wired data connections, and wireless local area networks, adopt multicarrier 

modulation scheme such as orthogonal frequency division multiplexing and discrete 

multi-tone to enhance data transmission rate [ 13]. In this scheme, sub carriers are 

generated by using fast Fourier transform (FFT). Therefore, it is very important to 

design the high speed FFT processor [ 11,15,19]. For the pipeline architecture, it is 

desirable to use the radix-4 algorithm because of the double processing rate compared 

to the radix-2 algorithm. However, the radix-4 algorithm requires more nontrivial 

multipliers than the radix-2 algorithm. Therefore, the radix-4 based algorithm, which 

reduces the number of nontrivial multipliers, is desired. The radix-2 algorithm, which 

can minimize the number of nontrivial multipliers required to implement the FFT 

Processor was presented previously. The same computational complexity as the split 

radix algorithm can be obtained but with a much spatially regular signal flow graph 
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(SFG) [10]. Only one full complex multiplication is required for every three columns, 

and the other two columns contain either pure trivial factor j or a combination of -j 
and the special twiddle factor W8, enabling an implementation with two additive 

operations and two constant scaling. However, based on the radix-2 butterfly .unit, it 

has -a lower processing rate than the radix-4 based algorithm. In this thesis, we 

propose an efficient FFT algorithm and present the results on its pipeline 

implementation. Pipelining the FFT process allows parallel processing and divides the 

complexity of computing the DFT into a number of stages. The result obtained from 

one stage is immediately available to the next stage without any delay. The proposed 

algorithm results in a reduced number of nontrivial multipliers like the radix-2 

algorithm, but the processing rate is twice as fast as the radix-2 algorithm because it is 

based on the radix-4 butterfly unit [6]. 

1.2 Scope of The Report 

The report is concentrated on 16-point FFT processors, and what 

architectures and algorithms are most suitable for dedicated FFT processors. The first 

part of the report gives a review on the theory behind the DFT and FFT algorithm. 

Some terminologies like radix butterflies, algorithms, architectures, etc.,' are 

introduced in this part. The second part of the report describes the main goal of this 

master's thesis project, i.e. to design and implement a FFT processor for transform 

length of 16-point. These transform lengths reduces the amount of algorithms, 

architectures, and so on, that could be taken into account when designing a processor 

according to these criteria. Some parts of the theory are therefore very briefly 

described compared to others, because of its limited usefulness in the considered area. 

What trade-offs have to be made? What architecture and algorithm should be used? 

What types of simulations should be done? How is testing performed? These are some 

of the questions that will be discussed in this report. 

1.3 Organization of Thesis 

Chapter-2: This chapter reviews the brief discussion on frequency analysis and the 

detail notes on DFT, FFT and FFT algorithms. 
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Chapter-3: This chapter focuses on Xilinx FPGA family on which FFT processor is 

implemented and also explains HDL languages. 

Chapter-4: This chapter presents the complete architecture and implementation of fft 

processor. 

Chapter-5: This chapter describes the process of implementation of FFT processor on 

FPGA. 

Chapter-6: This chapter discusses the simulation results and these results are 

compared with matlab results and it also provides the synthesis report. 

Chapter-7: This chapter concludes the total work and proposes the future scope of 

work. 

M 



CHAPTER-2 

FFT PROCESSOR ALGORITHMS 

2.1 Introduction 

It is well known that a prism can be used to break up white light into the 
colors of the rainbow. 

Glass prism 	f—i V 
I 

1• 

II 	Beam of 	 Y  
u sunlight 	 0  

R 

(a)  

F1 	Glass prism 	 White light 

(b)  

Fig 2.1(a) Analysis (b) Synthesis of the White Light Using Glass Prisms. 

When a white light is passed through a prism, it will separates white light into 

different colors. Next place another prism upside-down with respect to the first and 

observe that the colors blended back into white light [1]. 

Frequency analysis of a signal involves the resolution of the signal into its 

frequency (sinusoidal) components. Instead of light, our signal wave forms are 

basically functions of time. The role of the prism is played by the Fourier analysis i.e 

Fourier series and Fourier transform [1]. 

If we decompose a waveform into sinusoidal components, in much the same 

way that a prism separates white light into different colors, the sum of those 
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sinusoidal components results in the original waveform. on the other hand, If any of 

these components is missing, the result is a different signal[l]. 

Fourier Series 

The basic mathematical representation of periodic signals is the Fourier 

series, which is a linear weighted sum of harmonically related sinusoids or complex 

exponentials [1]. 

Linear combination of harmonically related complex exponentials of the form 

00 

x(t) = I Ck  ej 
2rIkFOt 

(2.1) 
k=—oo 

c 	I  fx(t)e-j2F1kFO1dt 	
2.2k -_  T ( ) 

p Tp 

Is a periodic signal with fundamental period Tp=1/F0. Hence we can think of the 

exponential signals 
j2 nkFOt e 	k=0,f l ,f2, ... . 

As the basic "building blocks", from which we can construct periodic signals 

of various type by proper choice of the fundamental frequency and the coefficients 

{ck}.Fo determines the fundamental period of x(t) and the coefficients {ck} specify 

the shape of the waveform[l]. 

Fourier Transform 

The Fourier transform is one of several mathematical tools that is useful in the 

analysis and design of LTI systems. These signal representations basically involve the 

decomposition of the signals in terms of sinusoidal (or complex exponential) 

components [7]. With such decomposition, a signal is said to be represented in the 

frequency domain. Most signals of practical interest can be decomposed into a sum of 

sinusoidal signal components for the class of finite energy signals, the decomposition 

is called the Fourier Transform [1]. 

Fourier transform of continuous a periodic signal is defined as. 

Z 



Amplitudf 

II- 

-1W 	-37 	G 	 37 	 go 

time 
Fig 2.2 Rectangular Pulse 

Amplituc 

frequency 

Fig 2.3 Sin Function 

x(f) = fx(te2dt 	 (2.3) 

00 
x(t) = fx(f)e"' ft df 	 (2.4) 

Frequency analysis of discrete-time signals is usually and most conveniently 

performed on a digital signal processor, which may be a general-purpose digital 

computer or specially designed hardware. To perform a frequency analysis on a 

discrete-time signal {x(n)}, we convert the time-domain sequence to an equivalent 

frequency-domain representation. We know that such a representation is given by the 

Fourier Transform X(w) of the sequence {x(n)} . However, X(w) is a continuous 

function of frequency and therefore, it is not a computationally convenient 

representation of the sequence {x(n)}. 

In this section we consider the representation of a sequence {x(n)} by samples 

of its spectrum X(w). Such a frequency-domain representation leads to the Discrete 

Fourier Transform, which is a powerful computational tool for performing frequency 

analysis of discrete —time signals [6]. 
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2.2 Discrete Fourier Transform 

The discrete Fourier transform is the counterpart of the Fourier transform in the 

discrete time domain. The definition of the DFT is given by the expression: 

N-1 
X(k) _ Ex(n)W, 	for k=0, 1,......N-1 

	
(2.5) 

n=0 

and the inverse DFT( IDFT) is expressed as: 

1 N— ~ 	 kn x(n) = —EX(k)W, 	for n=  0,1,.....N-1 	 (2.6) 
N n _Q 

where WN = e-12nk" is a sequence of twiddle factors of the DFT and is equally spaced 

around the unit cycle. In these equations x(n) is the sample value in the time domain and 

X(k) is the sample value in the frequency domain. If the sampling rate of a signal is F, 

the sequence of time-domain sampling locations becomes 

0, 1/F, 2/F, 3/F.......... ,(N-1)/F 

Thus, corresponding to these time-domain samples, the sequence of frequency-domain 

sampling locations will be 

0, F/N, 2F/N, 3F/N,........,(N-I)F/N. 

These equations show that the complexity of a direct computation of DFTs and 

IDFTs is O(N2), hence the long transforms considered to be very costly in a straight 

forward computation. The FFT algorithm deals with these complexity problems by 

exploiting regularities in the DFT algorithm [2]. 

2.3 Fast Fourier Transform 

At the outset it should be pointed out that the FFT is not a different transform 

from the DFT, but rather it represents a means for computing the DFT with a 

considerable reduction in the number of computations. 

Fast Fourier Transform, as the name suggests, is a fast and efficient way of 

computing the DFT. This algorithm was independently presented by Cooley-Tukey in 

1965.A direct computation of the DFT or IDFT requires N2 complex multiplications 

and N(N-1) complex additions. FFT removes the redundant multiplication and 

addition/subtraction operations seen in the naive approach of direct computation of 

DFT. The DFT can be computed in O(Nlog2 N) multiplications by using the FFT[3]. 



2.4 FFT Algorithms: 

The following algorithms are used for computing the DFT efficiently. 

> Divide —and-Conquer Approach. 

> Radix -2 

➢ Radix -4 

Split-Radix 

And also exists radix-16, 32,2N...etc. In the following section, we presents 

(1) Radix-2 decimation-in-time algorithm (DIT). 

(2) Radix-2 decimation-in-frequency algorithm (DIF). 

(3) Radix-4 decimation-in-frequency algorithm (DIF). 

2.4.1 Radix-2 FFT Algorithm: DIT FFT 

The fast Fourier transform algorithm achieves its computational efficiency 

through a divide and conquer strategy. The essential idea is a grouping of the time and 

frequency samples such that the DFT summation over N values can be expressed as a 

combination of DFT summations over N/2 samples. When N is a power of two, this 

process of grouping can be repeatedly applied until the DFT summation has been 

reduced to a combination of DFT summation over only two samples [1]. For example, 

when N is a power of two, equation 2.5 can be decomposed as follows [1]: 
N/2-1 	 N/ 2--1 

X(k) = 1 x(2n)Wn + Z x(2n + I)WN2n+l)k 
n=0 	n=0 

N/2—I 	 N/2-1 

_ 	.x(2n)WN kn +WN ~x(2n + 1)WN2njk 	 (2.7) 
n=0 	n=0 

Define two (N/2)-point sequences (h (n)) and (g (n)) as the even and odd elements of 

(x(n)), respectively. Then, 

h(n) = x(2n) 	 (2.8) 

g(n)=x(2n+ 1) 	 (2.9) 

The discrete Fourier transform of the two (N/2)-point sequences can be defined as 

follows 
N/2-1 

H(k) _ 	h(n)W 2 	 (2.10) 
n=0 

u 



NI 2-  
G(k) _ ~,g(n)W 2 	 (2.11) 

n=o 

Thus, the discrete Fourier transform of x (n) can be expressed in terms of even and 

odd elements as[ 1 ] : 
N/2-1 	 NJ2-1 

X (k) _ 	h(n)WN'll2 +WN 	g(n)WNl2 	 (2.12) 

In terms of H (k) and G (k), we have: 

X(k)=H (k) +WN G (k) 

For the coefficient at (K + N/2), we obtain: 

X (k+N/2) =H (k)- W, G (k) 

x(0) 

x(4) 

x(2) 

x(6) 

x(1) 

x(5) 

x(3) 

x(7) 

(2.13) 

(2.14) 

X(0) 

X(1)  

X(2)  

X(3)  

X(4)  

X(5)  

X(6)  

X(7)  

Fig 2.4 8-Point FFT with 3-Stage Decimation-in-Time Radix-2 Structure 

Therefore, N-Point discrete Fourier transform can be represented by two (N/2)-

point discrete Fourier transform. Since N is a power of two, the above partitioning 

scheme can be iteratively applied to the sequences (h(n)) and (g(n)) by N/2 elements. 

These partitions can be carried out until the two-point DFT is reached. The process is 
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known as decimation-in-time, depicted in fig 2.4 for N = 8. Figure 2.5 shows the basic 
butterfly computation in the decimation-in-time FFT algorithm [1]. 

The structure shown in fig. 2.4 is called decimation-in-time (DIT). Its basic 

module is a radix-2 butterfly shown in fig.2.5 in which two points `a' and `b' are 
computed to give two output points `A' and `B' via the operations represented by 

equations, 2.13 and 2.14. In addition, the input is in bit-reverse order and output is in 

linear order [2]. 

a 

r 

A=a+ W,',b 

B=a- WNb 

W' N 

Fig 2.5 Basic Butterfly Computation in the Decimation-In-Time FFT 

Algorithm 

2.4.2 Radix-2 FFT Algorithm: DIF FFT 

We begin by splitting the DFT into two summations, one of which involves 

the sum over the first N/2 data points and the second sum involves the last N/2 data 

points, thus we obtain 
(N/2 -1 	 N-] 

X(k) 	x(n)WN n + ~x(n)Wf (n/2)-1 	k 	Nk/2 (n/2)-1 
	N 	kn / 

n=O 	 n=N/2 	 I x(n)W ' N WN 	X n+ ^ N (2.15) 

n=0  n=0  2 

Since WN 2 = (..1)k the above expression can be rewritten as 

(n/2)-1 

X(k) = Z x(n) + (-1)k X n + 2 wN n 	 (2.16) 
n=0 

Now, let us split (decimate) X (k) into the even- and odd-numbered samples. Thus we 

obtain final expression as 
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(N/2)-1 

X(2k) = 	 ,,2 	 for k=0, 1, 2,......., N —1 	(2.17) 
„=0 	 2 

(N/2)-1 
X(2k + 1) _ 	g(n)W 2  

n=o 

Where, 

N  for k=0, 1,2,...., -1  2  (2.18) 

(2.19) 

h(n) = x(n) + x n + 
N 	for n=0, 1,2 	—1 

g(n) = x(n) — in + 2  WN 

X(0) 

x(1)  

x(2)  

x(3)  

x(4)  

x(5)  

x(6)  

x(7)  

X(0) 

X(4) 

X(2) 

X(6) 

X(1) 

X(5) 

X(3) 

X(7) 

Fig 2.6 N=8-Point  Decimation-in-Frequency FFT Algorithm. 

This computation procedure can be repeated through decimation of the 

N/2-point DFTs, X(2k), X(2k+l).This process is known as decimation-in-

frequency(DIF). The computation of the N-point DFT via DIF FFT algorithm requires 

same number of complex multiplications and complex additions as in the decimation-

in-time algorithm.8-point (N=8) DIF algorithm is given in fig.2.6.we observe that the 

basic computation in this figure involves the butterfly operation illustrated in fig.2.7 

and the input data x(n) occurs in natural order, but the output DFT occurs in bit-
reversed order[3]. 
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We observed from the above discussion is each radix-2 butterfly requires 

one complex multiplication and two complex additions. Observing fig.2.6 and fig.2.7, 

it can be seen that there are Loge N radix-2 butterfly stages for N-point FFT and each 

stage has N/2 radix-2 butterflies. Therefore, there are totally (N/2) log2 N radix-2 

butterflies in an N-point FFT. Both structures employ the in-place algorithm. In-place 

means that the computed outputs can be placed on the same storage as the inputs. 

Moreover, the addressing for the input and output data can be shared [1]. 

0 

0 

A=a + b 

B=(a - b) W~, 

WI N 
Fig 2.7 Basic Butterfly Computation in the DIF-FFT Algorithm 

Table 2.1 Relation between Linear and Bit -Reverse Order 
LINEAR BIT-REVERSE 

DECIMAL DIGIT DIGIT DECIMAL 

0 000 000 0 

1 001 100 4 

2 010 010 2 

3 Oil 110 6 

4 100 001 1 

5 101 101 5 

6 110 011 3 

7 111 111 7 
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2.4.3 Radix-4 FFT Algorithm: DIF FFT 

Whereas a radix-2 FFT divides an N-point sequence successively in half until 

only two-point DFTs remain, a radix-4 FFT divides an N-point sequence successively 

in quarters until only four-point DFTs remain. An N-point sequence is divided into 

four N/4-point sequences; each N/4-point sequence is broken into four N/16-point 

sequences, and so on, until only four-point DFTs are left. The four-point DFT is the 

core calculation (butterfly) of the radix-4 FFT, just as the two-point DFT is the 

butterfly for a radix-2 FFT [1]. 

A radix-4 FFT essentially combines two stages of a radix-2 FFT into one, so 

that half as many stages are required. Although addressing of data and twiddle factors 

is more complex, a radix-4 FFT requires fewer calculations than a radix-2 FFT. Like 

the radix-2 FFT, the radix-4 FFT requires data scrambling and/or unscrambling. 

However, radix-4 FFT sequences are scrambled and unscrambled through digit 

reversal, rather than bit reversal as in the radix-2 FFT. Digit reversal is described later 

in this section [1]. 

The radix-4 DIF FFT expresses the DFT equation as four summations, and 

then divides it into four equations, each of which computes every fourth output 

sample. The following equations illustrate radix-4 decimation in frequency. 
N-[ 

X(k) = x(n)WN k  
n=0 

(N14)-I 	 (N/2)-1 	 (3N/4)-1 	 (N)-1 
=  I  r(n)WN k  + 	x(n)WN k  + 	x(n)WN k  +  Y  x(n)WN k  n=0 	 n=Nl4 	 n=N/2 	 n=3N/4 

(N/4)-1 	 (N/4)-1 

_ Z x(n)W+ 	x(n + N / 4)WNn+Nl4)k 

n=0 	 n=0 

(N/4)-1 

+ 	x(n + N / 2)WNn+Nl2)k 

n=0 

(N / 4)-1 

+ E x(n + 3N / 4)WNn+3N/4)k 

n=0 

(N/4)-1 

_ [x(n)+WN (N/4)x(n+N14)+WN (N/2)x(n+N12 )+WN (3N/4)x(n+3N/4)]W N k  
n =0 

(2.20) 

The three twiddle factor coefficients can be expressed as follows: 

WN - j2n/N)k(N/ 4 ) _( e-- jn/2)k= (cos(1r/2) jsin(9L/2))k =(_j)k 	(2.21) 

Similarly 
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Wk(N12) _(1)k 
N 

WN (3Nl4) _ jk 

(2.22) 

(2.23) 

Equation 2.20 can thus be expressed as 
(N / 4)-1 

X(k)= j[x(n)+(—j)k x(n+N/4)+(-1)k x(n +N/2)+(j)k x(n +3N/4)]WN 4 
n=0 

(2.24) 

Four sub-sequences of the output (frequency) sequence are created by setting 

k=4r, k=4r+ 1, k=4r+2 and k=4r+3: 

(N / 4)—I 

X(4r) = 	[(x(n) + x(n + N/4)+  x(n + N/2)+  x(n + 3N l 4))WN ]WN I 4 	(2.25) 
n=0 

(N/4)—i 

X(4r+1) = 1 [(x(n) — jx(n + N / 4) — x(n + N / 2) + jx(n + 3N / 4))WN ]WN/4 (2.26) 
n=0 

(N/4)-1 

X(4r+2) = 1 [(x(n) — x(n + N l 4) + x(n + N / 2) — x(n + 3N l4))WN2" ]WZ 4 	(2.27) 
n=o 

(N/4)—1 

X(4r+3) = E [(x(n) + jx(n +N/4)  — x(n + N / 2) -- jx(n + 3N / 4))WN" ]WN 4 (2.28) 
n=0 

Forr=0to(N/4)-1. 

X (4r), X(4r+1), X(4r+2), and X(4r+3) are N/4-point DFTs. Each of their N/4 points 

is a sum of four input samples (x(n), x(n+N/4), x(n+N/2) and (n+3N/4)), each 

multiplied by either +1, —1, j, or —j. The sum is multiplied by a twiddle factor 

(WN°,W~, ,WN", or WN")[1]. 

The four one-point DFT equations make up the butterfly calculation of the 

radix-4 FFT. A radix-4 butterfly is shown graphically in fig 2.8. 

The output of each leg represents one of the four equations which are 

combined to make a four-point DFT. These four equations correspond to 

equations,(2.25) through (2,28), for one point rather than N/4 points. The radix-4 

butterfly expressed in matrix form as 
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X(4r) 

X(4r+1) 

X(4r+2) 

X(4r+3) 

z(n+Nl4) 

z(n+Nl2) 

x(n+3N/4) 

X(0) 	1 1 1 1 ir WNx(0) 
X(1) 1 j -1 j YTNx(1) 
X(2) 1 -1 1 -1 WNyx(2) 
X(3) 1 j -1 j WN 9x(3) 

Where q = 0,1,2,3. 

The 16-point radix-4 decimation-in-frequency FFT algorithm is shown in fig 

2.9 Its input in normal order and its output is in digit-reversed order. The 

computational complexity of radix-2 and radix-4 algorithm for N-point FFT is 

depicted in Table.2.2. 

Fig 2.8 Basic Butterfly Computation in a Radix-4 FFT Algorithm. 
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y X(0) 
X(4) 

~ (8) 
X(12)  

j X(1) 
W16 X(5) 

X(9) 
X(13)  

j>X(2) 
X(6) 

-X(10) 
(14) 

"j X(3) 
W X(7) 

X(11) 
X(15) 

Fig 2.9 16-point, Radix-4 DIT FFT Algorithm 

 

The radix-4 butterfly is consequently larger and more complicated than a 

radix-2 butterfly; however, fewer butterflies are needed. Specifically, N/4 butterflies 

are used in each of (log4N) stages, which is one quarter the number of butterflies in a 

radix-2 FFT{ 16]. 

Table 2.2 The comparison of radix-4 with radix-2 algorithms for N-point FFT 

Complex 

Multiplications 

Complex 

Additions 

Number of 

Stages 

No. of Butterflies 

(for each Stage) 

Radix-2 (N/2)iog2 N N loge N loge N N/2 

Radix-4 (3N/4) logo N 3N log4 N Logo N N/4 
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Digit Reversal 

Whereas bit reversal reverses the order of bits in binary (base 2) numbers, 

digit reversal reverses the order of digits in quarternary (base 4) numbers. Every two 

bits in the binary number system correspond to one digit in the quarternary number 

system. (For example, binary 1110 = quarternary 32.) The quarternary system is 

illustrated in below table for decimal numbers 0 through 15 [ 16]. 

Table 2.3 The quarternary system for decimal numbers 0 through 15. 

Decimal Binary Quarternary 

0 0000 00 

1 0001 01 

2 0010 02 

3 0011 03 

4 0100 10 

5 0101 11 

6 0110 12 

7 0111 13 

8 1000 20 

9 1001 21 

10 1010 22 

11 1011 23 

12 1100 30 

13 1101 31 

14 1110 32 

15 1111 33 

The radix-4 DIF FFT successively divides a sequence into four subsequences, 

resulting in an output sequence in digit-reversed order. A digit-reversed sequence is 

unscrambled by digit-reversing the data positions. For example, position 12 in 

quarternary (six in decimal) becomes position 21 in quarternary (nine in decimal) 

after digit reversal. Therefore, data in position six is moved to position nine when the 



digit reversed sequence is unscrambled. The digit-reversed positions for a 16-point 

sequence (samples X(0) through X(15)) are shown in Table 2.4. 

In an N-point radix-4 FFT, only the number of digits needed to represent N 

locations is reversed. Two digits are needed for a 16-point FFT, three digits for a 64-

point FFT, and five digits for a 1024-point FFT[16]. 

Table 2.4 The digit-reversed positions for a 16-point sequence 

Sample, 

Sequential 

Sequential Location Digit-Reversed Location Sample, 

Digit-Reversed Decimal Quarternary Decimal Quarternary 
Order Order 
X(0) 0 00 0 00 X(0) 
X(1) 1 01 4 10 X(4) 

X(2) 2 02 8 20 X(8) 

X(3) 3 03 12 30 X(12) 

X(4) 4 10 1 01 X(1) 

X(5) 5 11 5 11 X(5)  

X(6)  6 12 9 21 X(9) 
X(7) 7 13 13 31 X(13) 

X(8) 8 20 2 02 X(2) 

X(9) 9 21 6 12 X(6) 

X(10) 10 22 10 22 X(10) 

X(11) 11 23 14 32 X(14) 

X(12) 12 30 3 03 X(3) 

X(13) 13 31 7 13 X(7) 

X(14) 14 32 11 23 X(11) 

X(15) 15 33 15 33 X(15) 
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2.5. Inverse Fast Fourier Transform 

The inverse FFT (IFFT) defined by eqs., (2.29) can be changed to the 

following form: 
1 N-1 

x(n) =— JX "(k)W 	for n=0, 1, ........ N-1 	 (2.29) 
N Lk=O 

where the notation of the superscript * denotes the conjugated data. If the input 

frequency samples are conjugated, the bracketed term in eqs., (2.29) is exactly an FFT 

operation. Thus, the computation of the IFFT is the same as the FFT except the input 

data sequence of the first stage and output data sequence of the last stage are 

conjugated. The results computed by the FFT instructions are reference values and not 

exact values shown by eqs., (2.29). If users like to get exact values, the results have to 

be multiplied by a factor. This factor can be derived from the length of data N and the 

total number of scaling for the block data [1]. 
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CHAPTER-3 

ARCHITECTURE OF SPARTAN-II FPGA AND VHDL 

3.1 Field Programmable Gate Arrays 

A field programmable gate array (FPGA) is an inexpensive hardware 

component, which allows the user to program its functionality quickly and 

inexpensively. This allows for cheaper prototyping and shorter time to-market of 

hardware designs. FPGAs have a lower gate density than full custom (customized 

VLSI chips) and semi custom (mask programmed gate arrays) design methodologies 

FPGAs were first introduced in the mid- 1980s to replace multi-chip glue logic 

circuits with a single reconfigurable solution [ 12]. FPGAs have far outgrown their 

sole use as a replacement for simple glue logic circuits [13]. Presently, FPGA 

applications include signal and image processing, graphic accelerators, military 

target correlation/recognition, cryptography, reconfigurable computing, and on-chip 

coprocessors. FPGAs are utilized in four major design areas: rapid prototyping, 

emulation, pre-production, and full-production [14].  FPGAs are the direct result of 

the convergence of two distinct technologies: Programmable Logic Devices (PLDs) 

and Application Specific Integrated Circuits (ASICs) [ 15]. A simple PLD consists of 

arrays of AND and OR gates that can be used to create basic circuit designs. ASICs 

are custom-made chips generally used in high volume applications because non-

recurring engineering costs (NREs) are much higher than in an FPGA design 

cycle.FPGAs are sized from thousands of gates to tens-of-million gates and are 

available in a variety of sizes with different packaging, internal logic blocks, and 

process technologies [25]. 

Internal FPGA architectures are commonly constructed using a symmetric tile 

structure containing a network of switchboxes, logic blocks, wire channels, and input- 

output blocks .A switchbox (SB) is a location in the FPGA fabric that provides a 

method to connect internal wires together. The switchbox allows horizontal wire 

segments to switch to vertical wire segments and vice versa. The switchbox also 

allows horizontal wire segments to connect to other horizontal wire segments as well 

as connecting vertical wires to other vertical wires. The size and contents within a 

logic block vary greatly depending on the manufacture and target market. For 
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example, FPGAs targeted towards cost-effective solutions typically contain simpler 

logic blocks than an FPGA targeted for high-performance applications. Although the 

contents within logic blocks can vary for different architectures, there are two basic 

building blocks found in a logic block: memory elements and function generators. 

Memory elements provide designers with the ability to temporarily store information 

until desired conditions are met. Function generators can be configured to produce 

any function up to the number of inputs into the function generator. Depending on the 

architecture, some function generators can operate in different modes such as random 

access memory (RAM), read only memory (ROM), or more complex modes like shift 

registers. FPGAs are configured through a bitstream that is loaded into the device. A 

bitstream is a file created by the FPGA manufacturer that configures the switchboxes, 

logic blocks, and other internal FPGA logic[25]. 

FPGAs have redefined the boundaries of digital electronics allowing designers 

to build systems piecewise. Multiple designers can rapidly test and verify the 

functionality of each individual piece of a system to ensure proper functionality prior 

to merging the entire system together. With increasing interest in reconfigurable 

computing, FPGAs are recognized as the most viable, cost effective solution. Whether 

a design is statically or dynamically reconfigurable, FPGAs provide rapid 

programmability, and a short time to market design cycle. Many companies have 

marketed FPGAs, the major companies being Xilinx, Actel and Altera. 

Reprogrammable FPGAs use EPROM, EEPROM or static RAM technology. Xilinx 

FPGAs, which use static RAM technology, are the FPGAs used in this thesis[25]. 

3.2 Brief Description of Xilinx FPGAs 

The Spartan-II 2.5V Field-Programmable Gate Array family gives users high 

performance, abundant logic resources, and a rich feature set, all at an exceptionally 

low price. The six-member family offers densities ranging from 15,000 to 200,000 

system gates, as shown in Table 1. System performance is supported up to 200 MHz. 

Spartan-II devices deliver more gates, I/Os, and features per dollar than other FPGAs 

by combining advanced process technology with a streamlined Virtex-based 

architecture. Features include block RAM (to 56K bits), distributed RAM (to 75,264 

bits), 16 selectable I/O standards, and four Delay-Locked Loops (DLLs). Fast, 
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predictable interconnect means that successive design iterations continue to meet 

timing requirements. The Spartan-II family is a superior alternative to 

maskprogrammed ASICs. The FPGA avoids the initial cost, lengthy development 

cycles, and inherent risk of conventional ASICs. Also, FPGA programmability 

permits design upgrades in the field with no hardware replacement necessary 

(impossible with ASICs)[25]. 

3.2.1 Features: 
(1) Second generation ASIC replacement technology 

❖ Densities as high as 5,292 logic cells with up to 200,000 system gates 

❖ Streamlined features based on Virtex architecture 

❖ Unlimited reprogrammability 

•'• Very low cost 

❖ Advanced 0.18 micron process 

(2) System level features 

❖ Select RAM hierarchical memory: 

•:• 16 bits/LUT distributed RAM 

❖ Configurable 4K bit block RAM 

❖ Fast interfaces to external RAM 

❖ Fully PCI compliant 

•:• Low-power segmented routing architecture 

❖ Full read back ability for verification/observability 

❖ Dedicated carry logic for high-speed arithmetic 

❖ Efficient multiplier support 

•:• Cascade chain for wide-input functions 

❖ Abundant registers/latches with enable, set, reset 

❖ Four dedicated DLLs for advanced clock control 

❖ Four primary low-skew global clock distribution nets 

❖ IEEE 1149.1 compatible boundary scan logic 

(3) Versatile I/O and packaging 

❖ Pb-free package options 

❖ Low-cost packages available in all densities 
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❖ Family footprint compatibility in common packages 

❖ 16 high-performance interface standards 

❖ Hot swap Compact PCI friendly 

❖ Zero hold time simplifies system timing 

(4) Fully supported by powerful Xilinx development system 

❖ Foundation ISE Series: Fully integrated software 

❖ Alliance Series: For use with third-party tools 

❖ Fully automatic mapping, placement, and routing 

3.2.2 General Overview 

The Spartan-II family of FPGAs have a regular, flexible, programmable 

architecture of Configurable Logic Blocks (CLBs), surrounded by a perimeter of 

programmable Input/Output Blocks (IOBs). There are four Delay-Locked Loops 

(DLLs), one at each corner of the die. Two columns of block RAM lie on opposite 

sides of the die, between the CLBs and the IOB columns. These functional elements 

are interconnected by a powerful hierarchy of versatile routing channels This is 

shown in Fig.3.1 [25] 

Table 3.1 Spartan-II FPGA Family Members 

Spartan-II 
Device 

Logic 
Cells 

System Gates 
(Logic and 

RAM) 

CLB 
Array 

(R x C) 

Total 
CLBs 

Maximum 
Available 
User I/O 

Total 
Distributed 

RAM 
Bits 

Total 
Block 
RAM 
Bits 

XC2S15 432 15,000 8 x 12 96 86 6,144 16K 

XC2S30 972 30,000 12 x 18 216 92 13,824 24K 

XC2S50 1,728 50,000 16 x 24 384 176 24,576 32K 

XC2S100 2,700 100,000 20 x 30 600 176 38,400 40K 

XC2S150 3,880 150,000 24 x 36 864 260 55,296 48K 

XC2S200 5,292 200,000 28 x 42 1,176 284 75,264 56K 
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Spartan-II FPGAs are customized by loading configuration data into internal static 

memory cells. Unlimited reprogramming cycles are possible with this approach. 

Stored values in these cells determine logic functions and interconnections 

implemented in the FPGA. Configuration data can be read from an external serial 

PROM (master serial mode), or written into the FPGA in slave serial, slave parallel, 

or Boundary Scan modes [25]. 

Spartan-II FPGAs are typically used in high-volume applications where the 

versatility of a fast programmable solution adds benefits. Spartan-II FPGAs are ideal 

for shortening product development cycles while offering a cost-effective solution 

for high volume production [25]. 

Spartan-II FPGAs achieve high-performance, low-cost operation through 

advanced architecture and semiconductor technology. Spartan-II devices provide 

system clock rates up to 200 MHz. Spartan-II FPGAs offer the most cost-effective 

solution while maintaining leading edge performance. In addition to the conventional 

benefits of high-volume programmable logic solutions, Spartan-II FPGAs also offer 

on-chip synchronous single-port and dual-port RAM (block and distributed form), 

DLL clock drivers, programmable set and reset on all flip-flops, fast carry logic, and 

many other features [25]. 

3.2.3 Architectural Description Spartan-II Array 

The Spartan-II user-programmable gate array, shown in Figure 1, is 

composed of five major configurable elements. 

❖ IOBs provide the interface between the package pins and the internal logic 

❖ CLBs provide the functional elements for constructing most logic 

❖ Dedicated block RAM memories of 4096 bits each 

❖ Clock DLLs for clock-distribution delay compensation and clock domain 

control 

❖ Versatile multi-level interconnect structure 

As can be seen in fig.3.1, the CLBs form the central logic structure with easy 

access to all support and routing structures. The IOBs are located around all the logic 

and memory elements for easy and quick routing of signals on and off the chip. 

Values stored in static memory cells control all the configurable logic elements and 
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interconnect resources. These values load into the memory cells on power-up, and 

can reload if necessary to change the function of the device. Each of these elements 

will be discussed in detail in the following sections [25]. 

3.2.4 Input/Output Block 

The Spartan-II IOB, as seen in fig.4.2, features inputs and outputs that 

support a wide variety of I/O signaling standards. These high-speed inputs and 

outputs are capable of supporting various state of the art memory and bus interfaces. 

The three IOB registers function either as edge-triggered D-type flip-flops or as 

level-sensitive latches. Each IOB has a clock signal (CLK) shared by the three 

registers and independent Clock Enable (CE) signals for each register [25]. 

In addition to the CLK and CE control signals, the three registers share a 

Set/Reset (SR). For each register, this signal can be independently configured as a 

synchronous Set, a synchronous Reset, an asynchronous Preset, or an asynchronous 

Clear A feature not shown in the block diagram, but controlled by the software, is 

polarity control. The input and output buffers and all of the IOB control signals have 

independent polarity controls [25]. 

Optional pull-up and pull-down resistors and an optional weak-keeper circuit 

are attached to each pad. Prior to configuration all outputs not involved in 

configuration are forced into their high-impedance state. The pull-down resistors and 

the weak-keeper circuits are inactive, but inputs may optionally be pulled up. The 

activation of pull-up resistors prior to configuration is controlled on a global basis by 

the configuration mode pins. If the pull-up resistors are not activated, all the pins will 

float. Consequently, external pull-up or pull-down resistors must be provided on pins 

required to be at a well-defined logic level prior to configuration [25]. 

All pads are protected against damage from electrostatic discharge (ESD) and 

from over-voltage transients. Two forms of over-voltage protection are provided, one 

that permits 5V compliance, and one that does not. For 5V compliance, a zener-like 

structure connected to ground turns on when the output rises to approximately 6.5V. 

When 5V compliance is not required, a conventional clamp diode may be connected 

to the output supply voltage, VCCO. The type of over-voltage protection can be 

selected independently for each pad [25]. 
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Fig 3.1 Basic Spartan-II Family FPGA Block Diagram 

Input Path 

A buffer In the Spartan-II IOB input path routes the input signal either 

directly to internal logic or through an optional input flip-flop. An optional delay 

element at the D-input of this flip-flop eliminates pad-to-pad hold time. The delay is 

matched to the internal clock-distribution delay of the FPGA, and when used, assures 

that the pad-to-pad hold time is zero. Each input buffer can be configured to conform 

to any of the low-voltage signaling standards supported. In some of these standards 

the input buffer utilizes a user-supplied threshold voltage, VREF. The need to supply 

VREF imposes constraints on which standards can used in close proximity to each 

other. There are optional pull-up and pull-down resistors at each input for use after 

configuration. 
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Fig 3.2 Spartan-II Input/Output Block (IOB) 

Output Path 

The output path includes a 3-state output buffer that drives the output signal 

onto the pad. The output signal can be routed to the buffer directly from the internal 

logic or through an optional IOB output flip-flop. The 3-state control of the output 

can also be routed directly from the internal logic or through a flip-flip that provides 

synchronous enable and disable. Each output driver can be individually programmed 

for a wide range of low-voltage signaling standards. Each output buffer can source 

up to 24 mA and sink up to 48 mA. Drive strength and slew rate controls minimize 

bus transients [25]. 

In most signaling standards, the output high voltage depends on an externally 

supplied VCCO voltage. The need to supply VCCO imposes constraints on which 

standards can be used in close proximity to each other. An optional weak-keeper 

circuit is connected to each output. When selected, the circuit monitors the voltage 

on the pad and weakly drives the pin High or Low to match the input signal. If the 



pin is connected to a multiple-source signal, the weak keeper holds the signal in its 

last state if all drivers are disabled. Maintaining a valid logic level in this way helps 

eliminate bus chatter. Because the weak-keeper circuit uses the IOB input buffer to 

monitor the input level, an appropriate VREF voltage must be provided if the 

signaling standard requires one. The provision of this voltage must comply with the 

I/O banking rules [25]. 

3.2.5 I/O Banking 

Some of the I/O standards described above require VCCO and/or VREF 

voltages. These voltages are externally connected to device pins that serve groups of 

IOBs, called banks. Consequently, restrictions exist about which I/O standards can 

be combined within a given bank. Eight I/O banks result from separating each edge 

of the FPGA into two banks as shown in Figure 3). Each bank has multiple VCCO 

pins which must be connected to the same voltage. Voltage is determined by the 

output standards in use [25]. 

Bank 0
7] L7_Bank 

I  
sv 

GCLK3 GCLK2 

• 

m 	 m 

Spartan-II 
Device 

0 	GCLKI GC .KO 

L4.Bark 5 	 Bank 4 

Fig 3.3 Spartan-II I/O Banks 

Some input standards require a user-supplied threshold voltage, VREF.  In this 

case, certain user-I/O pins are automatically configured as inputs for the VREF 

voltage. About one in six of the I/O pins in the bank assume this role.VREF  pins 

within a bank are interconnected internally and consequently only one VREF  voltage 

can be used within each bank. All VR EF pins in the bank, however, must be 
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connected to the external voltage source for correct operation. In a bank, inputs 

requiring VREF can be mixed with those that do not but only one VREF voltage may 

be used within a bank. Input buffers that use VREF are not 5V tolerant. The Vcco  and 

VREF pins for each bank appear in the device pinout tables. Within a given package, 

the number of VREF  and  Vcco  pins can vary depending on the size of device. In 

larger devices, more I/O pins convert to VREF  pins. Since these are always a superset 

of the VREF  pins used for smaller devices, it is possible to design a PCB that permits 

migration to a larger device. All VREF  pins for the largest device anticipated must be 

connected to the VREF  voltage, and not used for I/O [25]. 

3.2.6 Configurable Logic Block 

The basic building block of the Spartan-II CLB is the logic cell (LC). An LC 

includes a 4-input function generator, carry logic, and storage element. Output from 

the function generator in each LC drives the CLB output and the D input of the flip-

flop. Each Spartan-II CLB contains four LCs, organized in two similar slices ; a 

single slice is shown in Figure 4. In addition to the four basic LCs, the Spartan-II 

CLB contains logic that combines function generators to provide functions of five or 

six inputs[25]. 

Look-Up Tables 

Spartan-II function generators are implemented as 4-input look-up tables 

(LUTs). In addition to operating as a function generator, each LUT can provide a 

16x1-bit synchronous RAM. Furthermore, the two LUTs within a slice can be 

combined to create a 16x2-bit or 32x1-bit synchronous RAM, or a 16x1-bit dual-port 

synchronous RAM. 

The Spartan-II LUT can also provide a 16-bit shift register that is ideal for capturing 

high-speed or burst-mode data. This mode can also be used to store data in 

applications such as Digital Signal Processing [25]. 

Storage Elements 

Storage elements in the Spartan-II slice can be configured either as edge-

triggered D-type flip-flops or as level-sensitive latches. The D inputs can be driven 

either by function generators within the slice or directly from slice inputs, bypassing 
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the function generators. In addition to Clock and Clock Enable signals, each slice has 

synchronous set and reset signals (SR and BY). SR forces a storage element into the 

initialization state specified for it in the configuration. BY forces it into the opposite 

state. Alternatively, these signals may be configured to operate asynchronously. All 

control signals are independently invertible, and are shared by the two flip-flops 

within the slice [25]. 

Additional Logic 

The F5 multiplexer in each slice combines the function generator outputs. 

This combination provides either a function generator that can implement any 5-

input function, a 4:1 multiplexer, or selected functions of up to nine inputs. Similarly, 

the F6 multiplexer combines the outputs of all four function generators in the CLB 

by selecting one of the F5-multiplexer outputs. This permits the implementation of 

any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. 

Each CLB has four direct feed through paths; one per LC. These paths provide extra 

data input lines or additional local routing that does not consume logic resources[25]. 

Arithmetic Logic 

Dedicated carry logic provides fast arithmetic carry capability for high-speed 

arithmetic functions. The Spartan-II CLB supports two separate carry chains, one per 

slice. The height of the carry chains is two bits per CLB. The arithmetic logic 

includes an XOR gate that allows a 1-bit full adder to be implemented within an LC. 

In addition, a dedicated AND gate improves the efficiency of multiplier 

implementation. The dedicated carry path can also be used to cascade function 

generators for implementing wide logic functions [25]. 

BUFTs 

Each Spartan-II CLB contains two 3-state drivers (BUFTs) that can drive on-

chip busses. Each Spartan-II BUFT has an independent 3-state control pin and an 

independent input pin. 
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3.2.7 Block RAM 

Spartan-II FPGAs incorporate several large block RAM memories. These 

complement the distributed RAM Look-Up Tables (LUTs) that provide shallow 

memory structures implemented in CLBs. 

Block RAM memory blocks are organized in columns. All Spartan-Il devices 

contain two such columns, one along each vertical edge. These columns extend the 

full height of the chip. Each memory block is four CLBs high, and consequently, a 

Spartan-II device eight CLBs high will contain two memory blocks per column, and 

a total of four blocks. Each block RAM cell is a fully synchronous dual-ported 4096- 

bit RAM with independent control signals for each port. The data widths of the two 

ports can be configured independently, providing built-in bus-width conversion. The 

Spartan-II block RAM also includes dedicated routing to provide an efficient 

interface with both CLBs and other block RAMs[25J. 

Table.3.2 Spartan-II Block RAM Amounts 

Spartan-II 
Device NO. of Blocks 

Total Block RAM 

Bits 

XC2S15 4  16K 

XC2S30 6 24K 

XC2S50 8 32K 

XC2S100 10 40K 

XC2S15O 12 48K 

XC2S200 14 56K 

3.3 Hardware Description Languages. 

In electronics, a hardware description language or HDL is a standard text-

based format for describing either the behavior or the structure, or both, of an 

electronic circuit. 

HDLs have two purposes. First, they are used to write a model for the 

expected behavior of a circuit before that circuit is designed and built. The model is 
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fed into a computer program, called a simulator that allows the designer to verify that 

his solution behaves correctly. Second, they are used to write a detailed description of 

a circuit that is fed into another computer program called a logic compiler. The output 

of the compiler is used to configure a programmable logic device that has the desired 

function. Often, the HDL code that has been simulated in the first step is re-used and 

compiled in the second step. 

An HDL is analogous to a software programming language, but with subtle 

differences. Both types of language are processed by a compiler. An HDL compiler 

often works in several stages, first producing a logic description file in a proprietary 

format, then converting that to a logic description file in the industry-standard EDIF 

format, then converting that to a JEDEC (Joint Electron Device Engineering Council)-

oformat file[21J. 

HDLs used by logic compilers include: 

❖ Verilog HDL 

❖ VHDL 

❖ AHDL (a proprietary language used by Altera) 

❖ CUPL (a proprietary language used by Logical Devices, Inc.) 

The current trend is to move away from proprietary HDLs and towards the two 

leading standards, VHDL and Verilog HDL [22]. 

.3.3.1 VERJLOG HDL 

Verilog HDL is a hardware description language used to design and document 

electronic systems. Verilog HDL allows designers to design at various levels of 

abstraction. Verilog was started initially as a proprietary hardware modeling language 

by Gateway Design Automation Inc. around 1984.. At that time, Verilog was not 

standardized and the language modified itself in almost all the revisions that came out 

within 1984 to 1990. In 1990, Cadence recognized that if Verilog remained a closed 

language, the pressures of standardization would eventually cause the industry to shift 

to VHDL. Consequently, Cadence organized Open Verilog International (OVI), and 

in 1991 gave it the documentation for the Verilog Hardware Description Language. 

This was the event which "opened" the language. 
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In 1994, the IEEE 1364 working group was formed to turn the OVI LRM into 

an IEEE standard. This effort was concluded with a successful ballot in 1995, and 

Verilog became an IEEE standard in December, 1995 [20]. 

Features of Verilog HDL 

In Verilog HDL, a component is represented by a design module. The module 

declaration provides the "external" view of the component; it describes what can be 

seen from the outside, including the component ports. The module body provides an 

"internal" view; it describes the behavior or the structure of the component. 

The connections between components are specified within component 

instantiation statements. These statements specify an instance of a component 

occurring within another component or the circuit. Each component instantiation 

statement is labeled with an identifier. The Verilog language provides a large set of 

built-in logic gates which can be instantiated to build larger logic circuits. The set of 

logical functions described by the built-in gates include AND, OR, XOR, NAND, 

NOR and NOT. 

3.3.2 VHDL 

VHDL is an acronym which stands for VHSIC (Very High Speed Integrated 

Circuits) Hardware Description Language. The language has been known to be 

somewhat complicated. The acronym does have a purpose, though; it is supposed to 

capture the entire theme of the language that is to describe hardware much the same 

way we use schematics [21]. 

VHDL is being used for documentation, verification, and synthesis of large 

digital designs. This is actually one of the key features of VHDL, since the same 

VHDL code can theoretically achieve all three of these goals, thus saving a lot of 

effort. In addition to being used for each of these purposes, VHDL can be used to take 

three different approaches to describing hardware. These three different approaches 

are the structural, data flow, and behavioral methods of hardware description. Most of 

the time a mixture of the three methods is employed. The following sections introduce 

you to the language by examining its use for each of these three methodologies. There 

are also certain guidelines that form an approach to using VHDL for synthesis, which 

is not addressed by this tutorial [22]. 
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VHDL was established as the IEEE 1076 standard in 1987. In 1993, the IEEE 

1076 standard was updated and an additional standard, IEEE 1164 was adopted. In 

1996, IEEE 1076.3 became the VHDL synthesis standard [23]. 

Features of VHDL 

VHDL is a worldwide standard for the description and modeling of digital 

hardware. VHDL gives the designer many different ways to describe hardware The 

language offers: familiar programming tools for complex and simple problems, 

sequential and concurrent modes of execution to meet a large variety of design needs, 

packages and libraries to support design management and component reuse [20]. 

VHDL has ample features appropriate for describing the behavior of electronic 

components ranging from simple logic gates to complete Microprocessors, high 

performance Digital Signal Processors and custom chips. Features of VHDL allow 

timing aspects of circuit behavior (such as rise and fall times of signals, delays 

through gates, and functional operation) to be precisely described [21]. 

Packages 
Packages are intended to hold commonly-used declarations such as 

constants, type declarations and global subprograms. Packages can be included 

within the same source file as other design units (such as entities and architectures) 

or may be placed in a separate source file and compiled into a named library. This 

latter method is useful in using the contents of a package throughout a large design 

or in multiple projects. The IEEE 1164 standard provides a standard package named 

std logic 1164 that includes declarations for the type's std logic, std ulogic, 

std logic vector and td ulogic vector, as well as many useful functions related to 

those data types [22]. 

Design Libraries 

A design library is an implementation-dependent storage facility for 

previously analyzed design units. This resulted in many different implementations in 

synthesis and simulation tools. In general, however, design libraries are used to 

collect commonly-used design units (typically packages and package bodies) into 

uniquely-named areas that can be referenced from multiple source files in your 

design [23]. 
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Components 

Components are used to connect multiple VHDL design units 

(entity/architecture pairs) together to form a larger, hierarchical design. Using 

hierarchy can dramatically simplify the design description and can make it much 

easier to re-use portions of the design in other projects. Components are also useful 

while making the use of third-party design units, such as simulation models for 

standard parts, or synthesizable core models obtained from a company specializing 

in such models [21]. 

Configurations 
Configurations are features of VHDL that allow large, complex design 

descriptions to be managed during simulation. (Configurations are not generally 

supported in synthesis.) One example of how to use configurations is to construct 

two versions of a system-level design, one of which makes use of high-level 

behavioral descriptions of the system components, while a second version substitutes 

in a post-synthesis timing model of one or more components. 

For large projects involving many engineers and many design revisions, 

configurations can be used to manage versions and specify how a design is to be 
configured for system simulation, detailed timing simulation, and synthesis. Because 

simulation tools allow configurations to be modified and recompiled without the 

need to recompile other design units, it is easy to construct alternate configurations 

of a design very quickly without recompiling the entire design [22]. 
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CHAPTER-4 

DESIGN AND IMPLEMENTATION OF FFT PROCESSOR 

4.1 Introduction 

The summary of different approaches to the FFT problems is discussed in 

chapter-2.The selection of an adequate algorithm for implementing the architecture of 

the FFT processor to be used for a specific application, is discussed in present chapter. 

Once the algorithm is selected for the desired application, the next step is its 

implementation. 

In the present work the algorithm is selected taking into consideration the two 

parameters namely speed and complexity. The selected algorithm is suited for higher 

speed with lesser complexity. The algorithm is implemented using VHDL. 

4.2 Algorithm Choice 

While selecting the algorithm the basic point of consideration is that its 

architecture and corresponding design should be simple and easily understandable. In 

order to reduce the complexity of algorithm it is proposed to restrict it to 16-point. 

Therefore it is required to observe the existing algorithms, which are applicable for 

I6-point. 

The radix-2 FFT algorithm has many good features. For example, it has low 

quantization noise level, and it is also easily parameterizable to the different FFT 

lengths. Radix-r does not seem to be as good a choice as the radix-2 one, because it 

has higher quantization noise, and that it is not as easily parameterizable to the 

different FFT lengths. To be able to parameterize this algorithm to the general power-

of-2 FFT lengths, different radix-r stages have to be used in the pipeline, resulting in a 

mixed radix implementation. 

Since minimizing the number of multipliers is important, a good choice of 

algorithm would be the split radix one. It has a lower number of multipliers than all 

the above ones, but this algorithm results in a complex design, which will be harder to 

parameterize. The control of this type of processor would also be more complex. 



The radix-4 algorithm is the most attractive algorithm. It has low number of 

multipliers, simple control structure and architecture. 

Prime factor algorithms can not be used, because the right FFT lengths can 

not be calculated using this algorithm. These are the reasons that the radix-4 FFT 

algorithm is used in the FFT implementation in present work. 

4.3 FFT Processor 

In this master thesis, it is to implement proposed a 16-point FFT processor. In 

the proposed architecture the complete operation of the FFT processor is divided into 

three sub processes. Namely: Data Input, FFT Computation and Data Output 

Processes. This is depicted in Figure 4.1[18]. 

Input Data 	Data Input 	 FF'r Computation 	 Data Output 	Output Data 
Process 	 Process 	 Process 

Fig 4.1 Three sub-processes of the FFT Algorithm 

4.3.1 Data Input 

The process cycle starts with The Data Input process. The input data 

assumed to be complex. So each input has real part and imaginary part. In this 

process, 16 complex inputs are taken at a time and stored in the blockRAM in FPGA 

(section 3.6.9). The real and imaginary part of the input data is stored separately in 
block RAM. 

4.3.2 FFT Computation 
The FFT computation process is main block of the processor. It computes the 

FFT operation, which converts the time domain samples into frequency domain. It 

takes the input data which is stored in the blockRAM, applies the radix-4 algorithm 

on that data and the result is again stored into the same memory. The detailed 

description is given in following sections. 
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4.3.3 Data Output Process 

The data output process is the last stage of the FFT processor. This process 

provides the results of the FFT Computation process to the outside world. 

4.4 Architecture 

The schematic diagram of the FFT processor architecture is shown in fig 4.2.It 

consists of a processing element, a blockRAM, a coefficient ROM and an address 

generation unit. In the designed FFT processor the processing element is a radix-4 

butterfly (which is referred as the butterfly processing element). 

In the designed FFT processor data pathways are in the form of 12-bit signed 

fractions. Coefficients are stored as 12-bit signed fixed-point words. Different 

elements of designed FFT processor are discussed in following sections. 

4.4.1 Coefficient ROM 
From equation 2.1, WN  called twiddle factor coefficient which is a complex 

number. Twiddle factor coefficients for 16-point FFT are generated using 

MATLAB.These coefficients are very small, hence these are scaled by a factor of 

1024 and stored in ROM.The real and imaginary parts are separately stored in ROM. 

The result is then derived by finally scaling the stored output value with the 1/1024. 

4.4.2 Block RAM 

Block RAM is on-chip memory of FPGA.The size of memory depends on 

version of FPGA.Block RAM is used to store the input data, which is a complex data; 

hence the real and imaginary parts are stored separately in the memory. The same 

block RAM is used to store the intermediate results (i.e the output coming from the 

radix-4 butterfly) by replacing existing data because of the initial data is never used 

for further computation. The final output is again stored in same Block RAM. 

4.4.3 Radix-4 Butterfly Implementation Details 

The butterfly is the basic operator of the FFT It takes four data words and 

computes 4-point DFT. The basic butterfly unit is shown in figure 2.8. The boxes in 

Figure 2.8 represent multiplications and the circles represent sums. The Twn values 

(TwO, Twl, Tw2, and Tw3) are commonly referred to as twiddle factors. These 



values are determined by the number of samples in the input. J. G. Proakis and D. G. 

Manolakis have discussed the FFT algorithms and twiddle factors in detail[44]. Figure 

4.3 shows the Radix 4 Butterfly in a simplified component form. 

Since higher order FFTs use many butterfly stages, each having a different set 

of twiddle factors, the twiddle factors are not fixed, but are received as inputs. The 

inputs and outputs are assumed to be complex so each input and output has a real port 

and an imaginary port. In this implementation, the data is in signed (2s complement) 

form. 

Coefficient ROM 

Address 
Generation _ 

Unit 
Processing 

Element 
(AG U) 

Block 
RAM 	 ► 

Input Data Output Data 

Fig 4.2 Block Diagram Representation of the FFT processor 

Complex Multiplier 

Each multiplication in the radix-4 butterfly is a complex multiplication. An 

asynchronous complex multiplier component is designed to perform the complex 

multiplication. It is shown in Figure 4.4. The schematic diagram of complex 

multiplier is shown in figure 4.4. 

The complex multiplier uses four N bit real multipliers (signed). The 

multiplier has four inputs consisting of the real part and imaginary part of two 

complex numbers. The input width, N, is variable. The output is a complex number 

with 2 *N bits for the real part and 2 *N bits for the imaginary part. 

!I1 
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Fig 4.3 Block Diagram of Radix-4 Component 

X REAL 	 OUT, HIGH 

X_IMAG 	 OUTR_LOW 

complex Multipliers 

Y REAL-- 	 OUTi_HlGH 

Y_IMAG 	 OUTLOW 

Fig 4.4 Asynchronous, Complex Multiplier 

Given two complex numbers x and y where x = XR + jxl and y = YR + jyl, 

Then 	x *y = ((XR * YR) - (xr * Yi)) +j((xR *Yr) + (xi  * YPd) 	 (4.1) 

and 

	

OUtR  = ((XR * YR) - (xI * Yi)) 	 (4.2) 

	

Out1 = ((xn *Y) + (xi *YR)). 	 (4.3) 

Figure 4.5 further elaborates the complex multiplier. 
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Fig 4.5 Complex Multiplier block diagram 

Radix-4 Butterfly Component 
For the Design of N-point FFT processor, the number of stages required and 

Number of butterflies for each stage are derived using following equations. 

Number of stages = log4 N 
	 (4.4) 

Number of butterflies for each stage = N/4 	 (4.5) 

Therefore 2 stages are required for computing 16-pt FFT. In each stage radix-4 

algorithm is required to be invoked four times. A 16-point radix-4 decimation-in-

frequencies FFT algorithm is shown in figure 2.9. 

By observing figure 2.9 It contain four different set of twiddle factors in the 

first stage. Hence It has 16 input ports and eight output ports. Eight inputs are for the 

real and imaginary parts of four data samples. Another eight inputs are for the real and 

imaginary parts of the four twiddle factors. The eight outputs are for the real and 

imaginary parts of the four results. The input width is variable. To avoid errors, all 

data and twiddle inputs must be the same width. The output width is twice the input 

width. 

The radix-4 butterfly requires four complex multiplications for a total of 16 

real multipliers. If the inputs are 12 bits each, then one real multiplier requires 544 

CLBs. A full implementation of a radix-4 butterfly would require 8,704 CLBs. For 

this reason a single complex multiplier is used and it is time multiplexed over four 
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clock cycles to achieve the four complex multiplications. Thus a single butterfly 

operation takes four clock cycles. We can get one output for every clock cycle. 

It is possible for an overflow to occur when the results of the four 

multiplications are added together. To keep this implementation simple, no overflow 

checks are performed. The detailed architecture for butterfly processing element is 

depicted in Figure 4.6. 

To simplify the architecture the number of multipliers are to be reduced. For 

this purpose, two different radix-4 butterfly architecture for the two stages are 

developed. 

In 2"d  stage, four butterflies are required with same set of twiddle factors. The 

set of twiddle factor are (W160, W16°  ,W16°  ,W 16°).the real part of W16°  is one and 

imaginary part is zero. Hence, the architecture of butterfly element in the 2"d  stage can 

be developed without using complex multipliers. This architecture is very simple than 

that of ls` stage. It will improve the speed and reduce the complexity of the circuit. 

The detailed architecture of the 2nd  stage butterfly processing element after 

simplification is depicted in Figure 4.7. 

4.4.4 Address Generation Unit (AGU) 
The AGU plays main role in the design of the processor. It will synchronize the all 

input data which is required for processing. The address generation procedure is 

different for two stages of radix-4 FFT algorithm. It will generates address of four 

input at a time and also generates corresponding twiddle factors required for that input 

set. The 16-point of input data is stored in address from 0 to 15 in RAM. The points 

required to generate in the order of (0,4,8,12),(1,5,9,13),(2,6,10,14) and (3,6,11,15) . it 

will be observed from the fig 2.9. The above input order can obtain by using digit 

reverse technique, which is explained in above section. I developed a simple 

architecture for digit reverse, which will swapped the bits 1, 2 with 3, 4 after 

generating from counter. Doing this four bit patterns are transformed as below. 

(0, 1, 2, 3) 	4 (0, 4, 8, 12) 

(4, 5, 6, 7) 	- (1, 5, 9, 13) 

(8, 9, 10, 11) 	4 (2, 6, 10, 14) and 

(12, 13, 14, 15) 	4 (3, 7, 11, 15). 
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Fig 4.6 Butterfly Processing Element Architecture (BPEA) for Vt stage 
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Fig 4.7 Butterfly Processing Element Architecture (BPEA) for 2nd stage 
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For 2"d  stage of FFT the points required for radix-4 algorithm is in sequential 

order like (0,1,2,3),(4,5,6,7),(8,9,1O,1 1) and (12,13,14,15). Hence simple counter logic 

will generates the points in sequential order. The flow chart of above discussion is 

shown in fig4.8 

4.5 FFT Processor Architecture 

The FFT architecture using radix-4 butterfly unit designed in previous section 

is developed as shown in fig 4.9. It is observed from above discussion is there are two 

stages are required for 16-point FFT. In each stage radix-4 algorithm is required to be 

invoked four times. 

The addressing scheme is requircd for generating addresses which derived 

from Finite State Machine. The Twiddle factors required for performing the operation 

are stored in the Read Only Memory. The Real part and Imaginary parts are 

separately stored in two different ROMs. Coefficients are to be first scaled with the 

1024 and stored in the ROM to avoid overflow. The result is then derived by finally 

scaling the stored value with the 1/1024. 

Initially, 16 points are stored in the RAM. The data is a complex data, hence 

the real and corresponding imaginary part of data has to be taken at a time. For each 

radix-4 butterfly operation, address of four input points and corresponding twiddle 

factors are generated by using FSM. Initially, the radix-4 algorithm is applied for the 

four points of 0,4 8,12 and the result is stored in RAM . The operation is repeated for 

three different points (1,5,9,13), (2,6,10,14) and (3,7,11,15). With this operation, 

first stage has been completed. In the second stage it requires four points 0,1,2,3 and 

proceeds to consider the points in order (4,5,6,7), (8,9,10,11) and (12,13,14,15). 

Here again the appropriate addresses are generated by the finite state machine 

(AGU). The final values resulting from the second stage of operation are stored in the 

RAM, as in the first stage, the real and imaginary values are stored separately. 

This architecture is developed by using VHDL. The complete source code 

and relevant documentation are provided in CD (attached at the end of report). 

The architecture explained in this chapter is implemented using FPGA. The 

processor for implementation is described in next chapter. 
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CHAPTER-5 

DESIGN FLOW AND FINAL IMPLEMENTATION ON FPGA 

5.1 Introduction 
This chapter describes the design flow used to create complex FPGA and 

ASIC devices. The designer starts with a design specification, creates an RTL 

description, verifies that description, synthesizes the description to gates, uses place 

and route tools to implement the design in the chip, and then verifies that the final 

result is correct in terms of function and timing. The design flow is shown in figure 

5.1. 

VHDL Constraints 

(Pin, Area, Timing) 

Synthesize 

Net-I ist(s) 

Translate 

Map 

Maps the design to the board logic 

Place and 
Route 

Floor planned, placed and routed design 

Configure 

The design to downloaded to board 

Fig 5.1 The High-Level Design Flow 



5.2 Specification 

All designs should start with a detailed specification of the exact tasks the 

application should do and include details on how fast the tasks must be completed. 

5.3 Design Entry 

In general design entry would done through any hardware description 

language (HDL) such as VHDL or Verilog . In this thesis, VHDL is used for design 

entry. One of the best uses of VHDL today is to synthesis ASIC and FPGA devices. 

5.4 Simulation 

Simulation is the representation of the structure and behavior of a digital logic 

system through the use of computer. A simulator interpret the HDL description and 

produces readable output, such as timing diagram, that predicts how the hardware will 

behave before it is actually fabricated. Simulation allows the detection of functional 

errors in a design without having to physically create the circuit. The stimulus that 

tests the functionality of the design is called a test bench. Thus, to simulate a digital 

system, the design is first described in HDL and then verified by simulating the 

design and checking it with a test bench, which is also written in HDL. 

5.5 User Constrain File 

The UCF file maps signals in VHDL code to pins on the FPGA board. The 

signal name in your .vhd file must match the net name in the UCF file. If the names 

do not match, change the name in your .vhd file, not the net name in the .UCF file. 

This UCF file and .vhd files are the input to the Synthesis process. 

5.6 Synthesis 

After the hardware has been written, simulated and debugged, it needs to be 

synthesized. In some cases, rewriting the hardware description will be necessary to 

50 1 Ma.  
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make the hardware partitions synthesizable. If any code is rewritten, the hardware 

must be simulated again to make sure it still meets the requirements of the 

specifications 

Synthesis is an automatic method of converting a higher level of abstraction to 

a lower level of abstraction. There are several synthesis tools available currently.In 

this thesis, ISE tool which is provided by Xilinx was used for synthesis. 

The current synthesis tool converts the Register Transfer Level (RTL) 

descriptions to gate level netlists. These gate level netlists consists of interconnected 

gate level macro cells. Models for the .gate level cells are contained in technology 

libraries for each type of technology supported. The netlists, which are generated from 

synthesis tool are device independent, so its contents do not depend on the particulars 

of the FPGA.It is usually stored in a standard format called the Electronic Design 

Interchange Format(EDIF)[24]. 

5.7 Implementation 

In the Design Implementation stage, the netlist produced by the design entry 

program is converted into the bitstream file which configures the FPGA. The first step 

Maps the design onto the FPGA resources; the second step Places or assigns logic 

blocks created in the mapping process in specific locations in the FPGA. The third 

step Routes the interconnect paths between the logic blocks. The output is a Logic 

Cell Array File (LCA) for the particular FPGA; this process is explained in detail in 

section 5.7. This LCA file is then converted into a bitstream file for configuring the 

FPGA[24]. 

5.8 Place and Route 

Place and route tools are used to take the design netlist and implement the 

design in the target technology device. The place and route tools place each primitive 

from the netlist into an appropriate location on the target device and then route signals 

between the primitives to connect the device according to the netlist. Place and route 

tools are typically very architecture and device dependent. These tools are tuned to 

take advantage of each architectural and routing advantage the device contains. FPGA 

vendors provide these tools because the differences in architectures are large enough 
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that writing a common tool for all architectures would be very difficult. fig 5.2 shows 

a dataflow diagram of the place and route tools[24]. 

Fig 5.2 Place and Route Data Flow 

Input to the place and route tools are the netlist in EDIF or another netlist 

format, and possibly timing constraints. The format of the netlist input file varies from 

manufacture to manufacturer. Some tools use EDIF[24]. 

Another input to some place and route tools is the timing constraints, which 

give the place and route tools an indication about which signals have critical timing 

associated with them and to route these nets in the most timing efficient manner. 

These nets are typically identified during the static timing analysis process during 

synthesis. These constraints tell the place and route toll to place the primitives in close 

proximity to one another and to use the fastest routing. The closer the cells are, the 

shorter the routed signals will be and the shorter the time delay[24]. 

Some place and route tools allow the designer to specify the placement of 

large parts of the design. This process is also known as floorplanning. Floorplanning 

allow the user to pick locations on the chip for large blocks of the design so that 

routing wires are as short as possible. The designer lays out blocks on the chip as 

general areas. The floorplanner feeds this information to the place and route tools so 

that these blocks are placed properly. After the cells are placed, the router makes the 

appropriate connections[24]. 
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After all the cells are placed and routed, the output of the place and route tools 

consists of data files that can be used to implement the chip. In the case of 

FPGAs,these files describe all of the connections needed to make the FPGA macro 

cells implement the functionality required.Antifuse FPGAs use this information to 

burn the appropriate fuses, while reprogrammable devices download this information 

to the device to turn on the appropriate transistor connections. 

The other output from the place and route software is a file used to generate 

the timing file. This file describes the actual timing of the programmed FPGA device 

or the final ASIC device. This timing file, as much as possible, descriges the timing 

extracted from the device when it is plugged into the system for testing. The most 

common format of this file for most simulators is SDF(Standard Delay 

Format). sometimes, proprietary formats are generated and later translated to 

SDF.SDF is used to back-annotate the post route timing information from place and 

route tools into the post layout timing simulation[24]. 

5.9 FPGA Configuration 

Configuration is a process in which the circuit design (bitstream file) is 

downloaded into the FPGA. The method of configuring the FPGA determines the 

type of bitstream file. FPGAs can be configured by a PROM. The serial PROM is the 

most common. The FPGA can either actively read its configuration data out of 

external serial or byte parallel PROM (master mode), or the configuration data can be 

written into the FPGA (slave and peripheral mode). 
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CHAPTER-6 
RESULTS AND DISCUSSIONS 

6.1 Simulation Results 

To make FPGA to work to the needs of the user, design needs to be simulated 

and different signals timing of execution needs to be checked. In the present design, 

16-point FFT processor is simulated and results had been shown below. 

6.2 Matlab Results 

Matlab is used to verify the results which are obtain from the simulation. 

Matlab tool will gives the perfect solution for any application. The matlab results are 

shown in fig6.4. 

Discussion: 

The input to the FFT processor is complex. Hence the real and imaginary parts 

are indicated separately. The signals XO_real_s and XO_imag_s are the real and 

imaginary parts of complex data XO.it is shown in fig 6.1. 

Each radix-4 butterfly will take four complex data and the radix-4 butterfly is 

invoked four times in each stage of FFT. Input to the first stage of radix-4 butterflies 

shown in fig6.2. 

The signals address_s_1 and address_s_2 shows the address of input data 

which is generated by address generation unit. The signal address_s_1 indicates 

address of the input for 1$f  stage of radix-4 butterflies and address_s_2 denotes the 

address of the input for 2 stage of radix-4 butterflies. 

The final output of simulation is represented in fig 6.3 and these results are 

compared with the matlab results shown in fig 6.4. 
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6.3 Synthesis Results 

Synthesis results give the mapping report and how the proposed architecture 

had been placed on the FPGA, and how the CLBs are connected in FPGA and what 

are the pins of FPGA are connected as user TOs It also gives the RTL schematic view. 

Mapping Report for radix-4 butterfly 

This report is simply the outcome of how exactly designed code is represented 

and how much of the resources it utilized. Following tables 6.1 and 6.3 gives the 

device utilization for 1st  stage of radix-4 FFT and 2nd  stage of radix-4 FFT algorithm. 

Selected Device: 2s200pg208-5 

Table 6.1: Hardware utilization for 1st  stage of radix-4 FFT algorithm. 

Utilized 
Number 

Total Number %Of Utilization 

SLICES 466 2352 19 
FLIP FLOPS 9 4704 0 
4-input LUTs 856 4704 18 

Bonded IOBs 118 144 81 
GCLKs 1 4 25 

Table 6.2 Hardware utilization for 2"d  stage of radix-4 FFT algorithm. 

Utilized 
Number 

Total Number %Of Utilization 

SLICES 75 2352 3 

FLIP FLOPS 9 4704 0 

4-input LUTs 136 4704 2 

Bonded IOBs 116 144 80 

GCLKs 1 4 25 
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Discussion 

From the above results it is observed that, the device utilization for 2"d  stage of 

radix-4 FFT is less than that of 1 st  stage of radix-4 FFT because of no multipliers are 

utilized in 2"d  stage. 

Mapping Report for the 16-point FFT processor 

The table 6.3 gives the amount of device utilized for the implementation of 16-point 

FFT processor 

Table 6.3 Hardware utilization for 16-point FFT processor 

Utilized 
Number 

Total Number %Of Utilization 

SLICES 1271 2352 54 

FLIP FLOPS 487 4704 10 

4-input LUTs 2006 4704 42 

Bonded IOBs 30 144 20 

BRAMs 4 14 28 

GCLKs 1 4 25 



Top level schematic drawing is shown in figure 6.5 
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CHAPTER-7 

CONCLUSION AND FUTURE SCOPE OF WORK 

7.1 Conclusions 

FFT processor architecture optimized for speed and area has been designed. 

The algorithm used was a modified version of the DIF-FFT radix-4 with the inputs in 

natural order and the outputs in bit reversed order. The architecture consisted of a 

radix-4 butterfly, B1ockRAM, coefficient ROM, and address generation unit. Separate 

memories are used for storing the data and the coefficients. Although the processor 

designed is quite small and fast there are some improvements that can be mode. Most 

of the cells used to build the FFT processor have been optimized for speed rather than 

area and power consumption. These blocks can be redesigned for reduced area and 

power consumption. The FFT processor is capable of computing 16 point complex 

FFT in 1300ns including data input and output processes. The chip is operating with a 

clock frequency of 100MHz. 

7.2 Future Scope of Work 

> The present work is designed for 16-points of input data. The same 

architecture can be applied for 32, 256, 1024 etc., points of input data. 

➢ The main objective of work is concentrated on performance of the processor 

so while designing the processor the power consumption is not considered as a 

constraint. The same circuit can be better implemented keeping in view of 

power consumption using CMOS technique. 

➢ The process is designed for computing the stored input data. The architecture 

can be extended to facilitate real time data by using pipeline architecture. 

➢ The control circuit which takes care of overflow of data is being excluded in 

the designed architecture to reduce the complexity as the performance of the 

processor is main objective. The control circuit can be included in architecture 

to control overflow of data. . 
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