
DESIGN OF NEURO-FUZZY CONTROLLER FOR
ROBOT MANIPULATOR

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree

of
MASTER OF TECHNOLOGY

In
ELECTRICAL ENGINEERING

(With Specialization in System Engineering and Operations Research)

By

B.SRIKANTH REDDY

L f

4 coat►*~

\/ 	DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2005

CANDIDATE'S DECLARATION

I hereby declare that the work being presented in the dissertation entitled

"DESIGN OF NEURO-FUZZY CONTROLLER FOR ROBOT

MANIPULATOR" towards partial fulfillment of the requirements for the award of the

degree of Master of Technology in Electrical Engineering with specialization in

System Engineering and Operations research, submitted to Electrical Engineering

Department, Indian Institute of Technology Roorkee, Roorkee, is an authentic record of

my own work carried out from July 2004 to June 2005, under the guidance of

Dr. Surendra Kumar, Department of Electrical Engineering, IIT Roorkee.

The matter embodied in this dissertation has not been submitted for the award

of any other degree or diploma.

Date: Zc~ _c6_ 2ocs5

Place: Roorkee 	 (B.SRIKANTH REDDY)

CERTIFICATE
This is to certify that the above statement made by the candidate is correct to the

best of my knowledge.

(Dr. Surendra Kumar

Asst Professor

Electrical Engg. Department,

T.I.T. Roorkee

Roorkee- 247667

INDIA

1

ACKNOWLEDGEMENT

Though the deepest gratitude can only be felt inside my heart, but in words with

my deepest esteem I wish to express my deep sense of gratitude and sincere thanks to

my beloved guide Dr.Surendra Kumar Department of Electrical Engineering, IIT

Roorkee, for being helpful and a great source of inspiration. Their keen interest and

constant encouragement gave me the confidence to complete my thesis work

successfully. This work is simply the reflection of their thoughts, ideas, and concepts. I

am highly indebted to them for their kind and valuable suggestions and of course their

valuable time during the period of this work. The huge quantum of knowledge I had

gained during their inspiring guidance would be immensely beneficial for my future

endeavors.

I am very thankful to Prof. H.O.Gupta, head of the Electrical Engineering

Department, for supporting my effort.

I thank all the teaching and non teaching staff members of the department who

have contributed directly or indirectly in successful completion of my dissertation

work.

I also avail this opportunity to thank all my friends for their continuous support

and enthusiastic help and my parents for their blessings and encouragement.

(B.SRIKANTH REDDY)

11

ABSTRACT

The aim of the thesis is to develop an efficient dynamic control such as point to

point and continuous path control strategy for Robot manipulator using fuzzy logic

controller (FLC) and Neuro-Fuzzy controller. Owing to the advantage of learning

ability & unique characteristics, which enable them to control the Robot manipulators.

Interfacing the neural and fuzzy logic with the Robot manipulator is one of the

means of getting the rapid convergence of actual joint angle trajectory to the desired

joint angle trajectory.

In this work, we have taken the example of the PUMA560 robot

(Programmable Universal Machine for Assembly) and modeled the Fuzzy controller

and ANFIS Controller, we have studied also performances obtained from Fuzzy

controller,ANFIS and conventional PID controller, with the help of SIMULINK, Fuzzy

logic Toolbox of The MATLAB 7.01 Software. • Results are compared with the

conventional PID controller.

iii

CONTENTS

Page No

Candidates Declaration i

Acknowledgement ii

Abstract iii

Contents iv

List of Figures vi

Introduction 1

Introduction To Robot Control 1

Literature Review On Fuzzy Control 3

Literature Review On Neuro-Fuzzy Control 4

Dynamics Of Robot Manipulator 5

Introduction 5

Puma Robot 5

Dynamics Of Puma560 Robot 6

Actuator For The Robot 9

Fuzzy Control 11

Introduction 11

Historical Background 11

Fuzzy Control 12

Choosing Fuzzy Controller Inputs And Outputs 13

Putting Control Knowledge Into Rule-Bases 14

Fuzzy Quantification Of Knowledge 19

Matching: Determining Which Rules To Use 21

Inference Step: Determining Conclusions 23

Converting Decisions Into Actions 25

Graphical Depiction Of Fuzzy Decision Making 27

Neuro-Fuzzy Systems 28

Introduction 28

Adaptive Networks: Architectures And Learning 30

Algorithms

Chapter 1

1.1

1.2

1.3

Chapter 2

2.1

2.2

2.3

2.4

Chapter 3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Chapter 4

4.1

4.2

iv

4.3 ANFIS: Adaptive-Network-Based Fuzzy Inference 37

System

Chapter 5 Design And Simulation In Simulink/Matlab7.01 43

5.1 Introduction 43

5.2 Puma560 Robot Model 43

5.3 Actuator Model 47

5.4 Design Of PID Controller 48

5.5 Design Of Fuzzypd+l Controller 50

5.6 Design Of Neuro-Fuzzy Controller 55

Chapter 6 Results 58

6.1 Responses Of The Robot For Point To Point Control 58

6.2 Responses Of The Robot For Trajectory Control 62

Chapter 7 Conclusions 66

References 67

Appendix 69

v

LIST OF FIGURES

Pag No

Fig. 2.1 (a) puma 560 robot 	 6

Fig. 2.1 (b). Illustration of Puma 560 robot 	 6

Fig.3.1 Fuzzy controller 	 12

Fig3.2 inverted pendulum 	 13

Fig .2.3 Inverted pendulum on a cart 	 14

Fig.3.4 Fuzzy controller for an inverted pendulum 	 15

Fig.3.5 Inverted pendulum in various positions. 	 18

Fig. 3.6 Membership function for linguistic value "possmall." 	 20

Fig.3.7 Membership functions for an inverted pendulum 	 20

Fig.3.8 Membership functions of premise term 	 21

Fig.3.9 Input membership functions with input values 	 23

Fig.3.10 (a) Consequent membership function 	 24

Fig.3.10 (b) implied fuzzy set with membership function fc(, (u) for rule (1). 	24

Fig.3.11 (a) Consequent membership function 	 24

Fig.3.11 (b) implied fuzzy set with membership function ,u(2) (u) for rule (2). 	24

Fig.3.12 Implied fuzzy sets 	 25

Fig.3.13 Implied fuzzy sets 	 25

Fig.3.14 Output membership functions 	 26

Fig 3.15 Graphical representations of fuzzy controller operations 	 27

Fig.4.1 A fuzzy system whose membership functions

are adjusted by a neural network. 28

Fig.4.2 A fuzzy system defined by a neural network 29

Fig.4.3. A neural network of fuzzy neurons 29

Fig.4.4 A fuzzy system with neural network rule base 30

Fig.4.5: An adaptive network 31

Fig4.6 (a) fuzzy reasoning 38

Fig4.6 (b) equivalent ANFIS 38

Fig.4.7 (a) fuzzy reasoning 40

vi

Fig.4.7 (b) equivalent ANFIS 40

Fig.4.8 (a) 2-input ANFIS with 9 rules 41

Fig.4.8 (b) corresponding fuzzy subspaces 41

Fig .5.1 PUMA560 simulink model 43

Fig 5.2 	dynamics matrices 44

Fig 5.3 	gravity load 45

Fig5. 4 Matrix multiplication 46

Fig. 5.5 Actuator simulink model 47

Fig 5.6 Total system with PID controller 49

Fig.5.7 (a) Response of the robot (point to point control) 48

Fig.5.7.(b) Response of the robot (trajectory control) 59

Fig5. 8 Fuzzy controller with gains 51

Fig 5.9 System with fuzzy controller 52

Fig 5.10 Fuzzy controller 52

Figs. ii nonlinear output for the Fuzzy PD controller 53

Fig 5.12. (a) Robot response with the FuzzyPD+I controller (point to point) 53

Fig 5.12.(b) Robot response with the FuzzyPD+I controller (trajectory) 54

Fig.5.13 Total robot system with ANFIS controller 55

Fig.5.14 ANFIS controller 56

Fig 15 	membership functions after training 56

Fig.5.16 (a) system response with the ANFIS controller (point to point) 57

Fig.5.16 (b) System response with the ANFIS controller (trajectory) 57

Fig.6.1 Response atjointl of the Robot for point to point control 58

Fig.6.2 Response at joint2 of the Robot for point to point control 59

Fig.6.3 Response atjoint3 of the Robot for point to point control 59

Fig.6.4 Response at joint4 of the Robot for point to point control 60

Fig.6.5 Response at joints of the Robot for point to point control 60

Fig.6.6 Response at joint6 of the Robot for point to point control 61

Fig.6.7 Response at jointl of the Robot for trajectory control 62

Fig.6.8 Response atjoint2 of the Robot for trajectory control 63

Fig.6.9 Response at joint3 of the Robot for trajectory control 63

vii

Fig.6.10 Response at joint4 of the Robot for trajectory control 	 64

Fig.6.11 Response at joint5 of the Robot for trajectory control 	 64

Fig.6.12 Response at joint6 of the Robot for trajectory control 	 65

viii

INTRODUCTION

1.1 INTRODUCTION TO ROBOT CONTROL

Up till now, the majority of practical approaches to the industrial robot arm

controller design use traditional techniques, such as PD or PID controllers, by treating

each joint of the manipulator as a simple linear servomechanism. In designing these kinds

of controllers, the non-linear, coupled and time-varying dynamics of the mechanical part

of the robot manipulator system are completely ignored, or are dealt with as disturbances.

These methods generally give satisfactory perfornance when the robot operates at a low

speed. However, when the links are moving simultaneously and at a high speed, the non-

linear coupling effects and the interaction forces between the manipulator links, may

degrade the performance of the overall system and increase the .tracking errors. The

disturbances and uncertainties in a task cycle, may also reduce the tracking quality of

robot manipulators. Thus, these methods are only suitable for relatively slow manipulator

motion and for limited-precision tasks.

The Computed Torque Control (CTC)[2] is commonly used in the research

community. The CTC control law has the ability to make the error asymptotically stable

if the dynamics of the robot are exactly known however, manipulators are subject to

structured and/or unstructured uncertainty. Structured uncertainly is defined as the case of

a correct dynamic model but with parameter uncertainty due to tolerance variances in the

manipulator link properties, unknown loads, inaccuracies in the torque constants of the

actuators, and others. Unstructured uncertainty describes the case of unmodeled dynamics

which result from the presence of high-frequency modes in the manipulator, neglected

time-delays and non-linear friction. It has been widely recognized that the tracking

performance of the CTC method in high-speed operations is severely affected by the

structured and unstructured uncertainties. To cope with the problem, some adaptive

approaches have been proposed to maintain the tracking performance of the robotic

manipulator in the presence of structured uncertainty. Some other researchers have also

1

tried to incorporate the intelligent controlling techniques into the controller design and

good results were reported.

The ability of a machine to emulate human behavior has always been the goal of

artificial intelligence. Neural networks and fuzzy logic systems are two of the most

important results of research in the area of artificial intelligence. They have been

effectively applied to everything from voice and image recognition to toasters and

automobile transmissions. Neural networks are best known for their learning capabilities.

Fuzzy logic is a method of using human skills and thinking processes in a machine.

While neural networks and fuzzy logic have added - a new dimension to many

engineering fields of study, their weaknesses have not been overlooked. In many

applications, the training of a neural network requires millions of iterative calculations.

Sometimes the network can not adequately learn the desired function. Fuzzy logic

systems, on the other hand, acquire their knowledge from an expert who encodes his

knowledge in a series of IF/THEN rules. Fuzzy logic systems are easy to understand

because they mimic human thinking. The problem arises when systems have many inputs

and outputs. Obtaining a rule base for large systems is difficult, if not impossible.

These weaknesses inherent in the two technologies and their complementary

strengths, prompted the researchers to look at different ways of combining neural

networks and fuzzy logic. Due to the relative infancy of this field of study, a consensus

on the best way to utilize their strengths and compensate for their shortcomings has not

yet been established. Consequently, research into neuro-fuzzy systems branches in many

directions. The technique used in this work replaces the rule-base of a traditional fuzzy

logic system with a back propagation neural network.

In this thesis it has been demonstrated that independent joint control can be used

for the projection and execution of the trajectory tracking. The PID, Fuzzy logic and

ANFIS controllers are used for controlling the robot and a comparison of their

performances is done.

K

1.2 LITERATURE REVIEW ON FUZZY CONTROL

L.A.Zadeh, who first introduced the fuzzy logic theory in 1965,combined the

multi valued logic, probability theory, artificial intelligence and neural networks to

develop this digital control methodology that simulates human thinking by incorporating

the impression inherent in all physical systems. [7]

Mamdani and his coworkers applied the Fuzzy control concept to several systems

such as steam engines, warm level systems etc, In all cases, the fuzzy controller is located

at the error channel and is composed by fuzzy algorithm that relays significant observed

variable to control actions. The fuzzy rules employed depend on the type system under

control as well as on the heuristic functions used [8]

M.maeda and S.Murakami, works on tuning of FLC.Most of the Practical

processes under automatic control are non linear higher order systems and may have

considerable dead time FLC always does not produce good approximation to the

controller output required for optimum performances. Only statistic or fixed valued SF's

and predefined MF's ma not be sufficient to eliminate this drawback. So either the input-

output SF's or the definitions of fuzzy sets are to match the current plant

characteristics [9]

S.Z.He, and his coworkers proposed a scheme for self tuning of a conventional

PID controller using fuzzy rules The proportional sensitivity integral time and derivative

time are initially calculated using Ziegler Nichols tuning formula these three parameters

are then modified on line by a single parameter which is updated by rule base defined on

error and derivative of error shows that there is considerable improvement in the overall

performances of the controller over it s conventional type [10]

M.Yoshida, and his coworkers gives gain tuning method He assumes all processes

as first order systems with dead time. The input and output SF's are calculated by some

empirical relations involving process parameters. Good control performances for higher

order systems cannot be ensured by this technique.

H.X.Li and H.B.Gutland are given more emphasis on the tuning of in put and

output SF's than that of MF's or rule base. They basically suggested a trail and error

3

method for tuning of input and output SF's for a fuzzy PID controller developed from

two FLC's in parallel one is a PI type and other is PD type.

1.3 LITERATURE REVIEW ON NEURO-FUZZY CONTROL

Berenji was the first to develop FLC that is capable of learning as well as tuning

its parameters by using neural network reinforcement learning method[13]

Jang designs a self-learning fuzzy controller based on temporal back propagation.

The current state of the system is compared to the desired state and the error is back

propagated through the system to adjust individual fuzzy parameters this system is also

called as ANFIS. By testing on an inverted pendulum showed that significant adjustments

were made on membership function definitions. The trained system exhibited robustness

and fault tolerance. Since then great deal of work don neuro-fuzzy control[14]

Mones Iskarous and Kazuhiko Kawamura explained about the modeling of the

physical system with neuro-fuzzy system and explained the control procedure with the

modeled system[15]

Gurupreet S. Sandhu and Kuldio S.rahan explained about designing of neuro-

fuzzy controller with the learning procedure, the architecture of the neuro-controller with

an example of simple transfer function they designed the P controller using neuro-fuzzy

approach they showed the results that the neuro controller performance is better than the

P controller[16]

Wen Yu, Xiaoou Li explained about the neuro fuzz modeling using Stable

Learning Algorithm and they showed the result that the this learning algorithm is far

better than the conventional algorithms[17]

Oscar Castillo, Patrica Melin are applied the neuro-fuzzy control technique to the

robot systems they have taken the example of simple two link robot system and

designed the neuro-fuzzy controller and the compared the results with the conventional

fuzzy control and showed that response using neuro-fuzzy control is far better than the

conventional Fuzzy control[18] .

11

DYNAMICS OF ROBOT MANIPULATOR

2.1 INTRODUCTION

The manipulator system is a classic control problem that is used industries

around the world. It is a suitable process to test prototype controllers due to its high

non-linearities and lack of stability. In this chapter, the dynamical equations of the

system will be derived, the model will be developed in simulink and basic controllers

will be developed. The aim of developing an Robot system in simulink is that the

developed model will have the same characteristics as the actual process. It will be

possible to test each of the prototype controllers in the simulink environment. Before

the robot model can be developed in simulink, the system dynamical equations will be

derived using `Lagrange Equations'. [2] The Lagrangian equations are one of many

methods of determining the system equations. Using this method it is. possible to

derive dynamical system equations for a complicated mechanical system such as the

Robot manpulator. The Lagrange equations use the kinetic and potential energy in the

system to determine the dynamical equations of the robot system.

2.2 PUMA ROBOT

The PUMA robot was initially built by the Unimation Inc. (now defunct), to

specifications developed by General Motors. PUMA stands for Programmable

Universal Machine for Assembly[4]. This robot system was the first commercially

available industry robot. It had all electric drives, and a reasonably sophisticated

controller. Its controller could be disconnected and replaced by another custom-built

controller. For these reasons, PUMA became one of the most popular with robotic

researchers around the world. Figure.2.1 shows the PUMA robot

5

l.,

MOIRE...i' ihr F: ni-.m.i::u r>cJa1' 300.

Fig. 2.1 a. puma 560 robot
	

b. Illustration of Puma 560 robot

2.3 DYNAMICS OF PUMA560 ROBOT

The general form of the robot arm dynamic equation is

M(q)q+C(q,q)q+g(q) = z 	 (2.1)

Where U. = P,.e + D. de
dt

q is angle matrix

M(q) is mass matrix

C(q, q) is coriolis/centrifugal matrix

g(q) is gravity matrix

Puma is six degree of freedom robot so all matrices for puma robot are the order of

six by six. For the simplicity these equations are abbreviated as per listed below

C1 = cos(q(1)), c2 = cos(q(2)), c3 = cos(q(3)), c4 = cos(q(4)), c5 = cos(q(5)),

C6 = cos(q(6))

sl = sin(q(1)), s2 = sin(q(2)), s3 = sin(q(3)), s4 = sin(q(4)), s5 = sin(q(5)), s6 = sin(q(6))

S23 = sin(q(2)+ (3))

C23 = cos(q(2)+q (3))

MASS MATRIX

m11 = 2.57 + (1.38*c2 *c2) + (0.3*s23 *523) + (0.744*c2*s23)

m1Z = (0.69*s2) + (-0.134*c23) + (0.0238*c2)

m13 = (-0.134*c23) + (-0.00397*s23)

R,

m22 = 6.79 + (0.744*s3)

m23 = 0.333 + (0.372*s3) + (-0.011*c3)

m33 = 1.16

m34 = -0.00125*s4*s5

m35 = 0.00125*c4 *c5

m44 = 0.2

m55 =0.18

m66 = 0.19

The mass matrix is symmetric so other equations are

m21 = m12 m62 = m26

m31 = m13 m43 = 11134

m41 =
11114 1fl53 = 11135

m51 = m15 	and m63 = m36

m61 = m1b msa = mas
m32 = m23 11164 = 11146

m42 = M24 mss = mss
11152 = M25

All other elements in the mass matrix are zero

(2.2)

7

CORIOLIS/CENTRIFUGAL TORQUES MATRIX
con„ = (-1.38*c, *s,*q,) +

0.5*42 *(0.6*s23 *c23 - 0.744*s2 *s23 + 0.744*c2*c23) +

0.5*43*(0.6*s23*c23 - 0.744*s2 *s23 + 0.744*c2*c23)

cor12 = 0.5*4,*(0.6*s23*c23 - 0.744*s2 *s23 + 0.744*c2 *c23) +

0.5*42*(1.38*c2 + 0.268*s23 - 0.0476*s2) +

0.5*43*(0.268*s23 - 0.00397*023)

cor13 = 0.5*41 *(O.6*S23 *C23 + 0.744*c2 *c23) +

0.5*q2 *(0.268*s23 - 0.00397*c23) +

O.5*q3 *(0.268*S23 - 0.00794*C23)

cor2 , = 0.5*4,*(-0.6*s23 *c23 + 0.744*s2*s23 -0.744*c2 *c23) +

0.199*q3 *c23

cor22 = 0.372*q3*c3

cor23 = 0.00199*q,*c23 + 0.372*q2*c3 +

0.5*q3*(0.744*c3 +0.022*s3)

cor31 = 0.5*4,*(-0.6*s23 *c23 + 0.744*s2 *s23 -0.744*c2 *c23) +

0.00199*43 *c23

cor32 = 0.372*43*c3

cor33 = 0.00199*a1 *C23 + 0.372*q2 *c3 +

0.5*4j*(0.744*c3 + 0.022*s3)

(2. 3)

All other coriolis matrix elements are zero

GRAVITY MATRIX

g1 = 0, g6 =0

g2 =-37.196*c2 -8.445*s23 +1.023*s2

g3 =-8.445*sin23 +1.023*cos23 +0.248*cos 23 *c0s45 +cos5 *sin 23

g4 =0.028*sin23 *sin4 *sins

g5 =-0.028 * (cos23 * sin 5 + sin Z3 * cos4 * Coss)
	

(2.4)

All these information and derivation of these equations for PUMA560 given in [4]

2.4 ACTUATOR FOR THE ROBOT

This section describes the method that is used to build the actuator model in a

single joint of a robot arm, assuming that the robot is electrically actuated. An

analytical description of a DC actuator has been well established in the literature [5].

The torque produced by a DC motor is proportional to the armature

current when the motor is operated in its linear range

z,n.=k .iai 	 (2.5)

Where k,,,i is known as the motor-torque proportional constant in N-m/A.

When the motor is rotating it acts like a generator and a voltage develops

across the armature. This voltage is called back electromotive force (emf), which is

proportional to a given armature, angular velocity as:

ebi = lCbi emi

ebi — kbiemirmi 	km.i .

Where kb, is proportionality constant in V- S/rad.

For puma robot k,,,i = kb;

An armature-control led DC motor circuit can be described by a first-order
differential equation given by

D 	d ic,i
vc,i = ebi + l ai Rai + Lai dt

By solving we will get

_1`
lai = 	 f (vai — ebi — lni Rai)dt

(2.6)

(2.7)

(2.8)

0

SPECIFICATION FOR THE ACTUATOR

R, = 2.1 Ohm k,,,, = 0.189 N-m/A

Rai =2.1 Ohm k,,,2 = 0.219 N-m/A
Rai = 2.1 Ohm k,,,3 = 0.202 N-m/A
R,,, = 6,7 Ohm kiii4 = 0.075 N-m/A
R., = 6.7 Ohm k,,,5 = 0.066 N-in/A
R,,, = 6.7 Ohm k,,,6 = 0.066 N-m/A

Armature inductance for the PUMA 560 robot is very low

L for all joints is approximately equals to 1 mH

Maximum and minimum torque that should given to the robot is

—97.6N—m <r1 <97.6N—m
—186.4N —m ~ -r2 < 186.4N—m
—89.4N—m5 r3 <89.4N—m
—24.2N — m <— r4 <— 24.2N — m
—20.1N—m —r5 S 20.1N—m
—21.3N—m Sr <21.3N—m

Maximum and minimum controlled voltage that should be given to the actuator is

For all actuators

v,,,ax = 40volts
Vmin = —40volts

Details are given in[4,5,6]

10

FUZZY CONTROL

31 INTRODUCION

Due to the continuously developing automation systems and more demanding

control performance requirements, conventional control methods are not always

adequate. On the other hand, practical control problems are usually imprecise. The

input output relations of the system may be uncertain and they can be changed by

unknown external disturbances. New schemes are needed to solve such problems.

One such an approach is to utilize fuzzy control.

Fuzzy control is based on fuzzy logic, which provides an efficient method to

handle in exact information as a basis of reasoning. With fuzzy logic it is possible to

convert knowledge, which is expressed in an uncertain form, to an exact algorithm. In

fuzzy control, the controller can be represented with linguistic if-then rules. The

interpretation of the controller is fuzzy but the controller is processing exact input-

data and is producing exact output-data in a deterministic way.

3.2 HISTORICAL BACKGROUND

Since the introduction of the theory of fuzzy sets by L. A. Zadeh in 1965[7],

and the industrial application of the first fuzzy controller by E. H. Mamdani in

1974[8], fuzzy systems have obtained a major role in engineering systems and

consumer products in the 1980s and 1990s. New theoretical results and new

applications are presented continuously.

A reason for this significant role is that fuzzy computing provides a flexible

and powerful alternative to construct controllers, supervisory blocks, computing units

and compensation systems in different application areas. With fuzzy sets very

nonlinear control actions can be formed easily. The transparency of fuzzy rules and

the locality of parameters are helpful in the design and the maintenance of the

systems. Therefore, preliminary results can be obtained within a short development

period.

However, fuzzy control does have some weaknesses. One is that fuzzy control

is still lacking generally accepted theoretical design tools.. Although preliminary

results are achieved easily, further improvements need a lot of. Especially when the

11

number of inputs increases, the maintenance of the multi-dimensional rule base is

time-consuming.

3.3 FUZZY CONTROL

A block diagram of a fuzzy control system is shown in figure the fuzzy
controller is composed of the following four elements:

1. A rule-base (a set of If-Then rules), which contains a fuzzy logic quantification of

the expert's linguistic description of how to achieve good control.

2. An inference mechanism (also called an "inference engine" or "fuzzy inference"

module), which emulates the expert's decision making in interpreting and applying

knowledge about how best to control the plant.

3. A fuzzification interface, which converts controller inputs into information that the

inference mechanism can easily use to activate and apply rules.

4. A defuzzification interface, which converts the conclusions of the inference

mechanism into actual inputs for the process.

Fuzzy controller

Inference :
0 mechanism

1:1
U LI. N
N

Rule- base((c

Reference input
r(t)

inputs 	 Outputs
11(1) 	Process

Fig.3.1 Fuzzy controller

We introduce each of the components of the fuzzy controller for a simple

problem of balancing an inverted pendulum on a cart, as shown in Figure 3.2. Here, y

denotes the angle that the pendulum makes with the vertical (in radians), l is the half-

pendulum length (in meters), and u is the force input that moves the cart (in

Newton's). We will use r to denote the desired angular position of the pendulum. The

goal is to balance the pendulum in the upright position (i.e., r = 0) when it initially

12

starts with some nonzero angle off the vertical (i.e., y # 0). This is a very simple and

academic nonlinear control problem, and many good techniques already exist for its

solution. Indeed, for this standard configuration, a simple PD controller works well

even in implementation.

In the remainder of this section, we will use the inverted pendulum as a

convenient problem to illustrate the design and basic mechanics of the operation of a

fuzzy control system.

Fig3.2 inverted pendulum

3.4 CHOOSING FUZZY CONTROLLER INPUTS AND OUTPUTS

d e(t) Consider a human-in-the-loop whose responsibility is to control the

pendulum, as shown in Figure 3.3. The fuzzy controller is to be designed to automate

how a human expert who is successful at this task would control the system. First, the

expert tells us (the designers of the fuzzy controller) what information she or he will

use as inputs to the decision-making process. Suppose that for the inverted pendulum,

the expert says that she or he will use

e(t) = r(t) — y(t)

13

d e(t)
dt

as the variables on which to base decisions. Certainly, there are many other choices

(e.g., the integral of the error e could also be used) but this choice makes good

intuitive sense. Next, we must identify the controlled variable. For the inverted

pendulum, we are allowed to control only the force that moves the cart, so the choice

here is simple.

r 	ILt I 	y'
Inverted

>1 	 >1 pendulum

Fig .3.3 Inverted pendulum on a cart

Once the fuzzy controller inputs and outputs are chosen, you must determine

what the reference inputs are. For the inverted pendulum, the choice of the reference

input r = 0 is clear. In some situations, however, you may want to choose r as some

nonzero constant to balance the pendulum in the off-vertical position. To do this, the

controller must maintain the cart at a constant acceleration so that the pendulum will

not fall.

3.5 PUTTING CONTROL KNOWLEDGE INTO RULE-BASES

Suppose that the human expert shown in Figure 3.3 provides a description of

how best to control the plant in some natural language (e.g., English). We seek to take

this "linguistic" description and load it into the fuzzy controller, as indicated by the

arrow in Figure3. 4.

14

r 	+_- 	e
U 	 V _ 	 Fuzzy 	 Inverted

controller 	 pendulum

Fig.3.4 Fuzzy controller for an inverted pendulum

Linguistic Descriptions

The linguistic description provided by the expert can generally be broken into

several parts. There will be "linguistic variables" that describe each of the time

varying fuzzy controller inputs and outputs. For the inverted pendulum,

"error" describes e(t)

"change-in-error" describes - e(t)

"force" describes u(t)

Just as e(t) takes on a value of, for example, 0.1 at t = 2 (e(2) = 0. 1), linguistic

variables assume "linguistic values." That is, the values that linguistic variables take

on over time change dynamically. Suppose for the pendulum example that "error,"

"change-in-error," and "force" take on the following values:

"neglarge"

"negsmall"

"zero"

"possmall"

"poslarge"

Note that we are using "negsmall" as an abbreviation for "negative small in size" and

so on for the other variables. Such abbreviations help keep the linguistic descriptions

short yet precise. For an even shorter description we could use integers:

"-2" to represent "neglarge"

"-1" to represent "negsmall"

15

"0" to represent"zero"

"1" to represent "possmall"

"2" to represent "poslarge"

The linguistic variables and values provide a language for the expert to

express her or his ideas about the control decision-making process in the context of

the framework established by our choice of fuzzy controller inputs and outputs. Recall

that for the inverted pendulum r = 0 and e = r — y so that
e _ _y

and

dt
(e)
	dt (y)

since d (r) = 0. First, we will study how we can quantify certain dynamic behaviors

with linguistics. In the next subsection we will study how to quantify knowledge

about how to control the pendulum using linguistic descriptions.

For the inverted pendulum each of the following statements quantifies a

different configuration of the pendulum

• The statement "error is poslarge" can represent the situation where the pendulum is

at a significant angle to the left of the vertical.

• The statement "error is negsmall" can represent the situation where the pendulum is

just slightly to the right of the vertical, but not too close to the vertical to justify

quantifying it as "zero" and not too far away to justify quantifying it as "neglarge."

• The statement "error is zero" can represent the situation where the pendulum is very

near the vertical position (a linguistic quantification is not precise, hence we are

willing to accept any value of the error around e(t) = 0 as being quantified

linguistically by "zero" since this can be considered a better quantification than

"possmall" or "negsmall").

• The statement "error is poslarge and change-in-error is possmall" can represent the

situation where the pendulum is to the left of the vertical and, since d (y) the
dt

pendulum is moving away from the upright position (note that in this case the

pendulum is moving counterclockwise).

• The statement "error is negsmall and change-in-error is possmall" can represent the

situation where the pendulum is slightly to the right of the vertical and, since () < t

16

0, the pendulum is moving toward the upright position (note that in this case the

pendulum is also moving counterclockwise).

It is important to study each of the cases above to understand how the expert's

linguistics quantify the dynamics of the pendulum (actually, each partially quantifies

the pendulum's state).
Rules

Next, we will use the above linguistic quantification to specify a set of rules (a

rule-base) that captures the expert's knowledge about how to control the plant. In

particular, for the inverted pendulum in the three positions shown in Figure 2.5, we

have the following rules (notice that we drop the quotes since the whole rule is

linguistic):

1. If error is neglarge and change-in-error is neglarge Then force is poslarge

This rule quantifies the situation in Figure 3.5(a) where the pendulum has a

large positive angle and is moving clockwise; hence it is clear that we should apply a

strong positive force (to the right) so that we can try to start the pendulum moving in

the proper direction.

2. If error is zero and change-in-error is possmall Then force is negsmall

This rule quantifies the situation in Figure 3.5(b) where the pendulum has

nearly a zero angle with the vertical (a linguistic quantification of zero does not imply

that e(t) = 0 exactly) and is moving counterclockwise; hence we should apply a small

negative force (to the left) to counteract the movement so that it moves toward zero (a

positive force could result in the pendulum overshooting the desired position).

3. If error is poslarge and change-in-error is negsmall Then force is negsmall

This rule quantifies the situation in Figure 3.5(c) where the pendulum is far to

the left of the vertical and is moving clockwise; hence we should apply a small

negative force (to the left) to assist the movement, but not a big one since the

pendulum is already moving in the proper direction.

The general form of the linguistic rules listed above is

If premise Then consequent

17

(a) (b) 	 (c)

Fig.3.5 Inverted pendulum in various positions.

Rule-Bases

Using the above approach, we could continue to write down rules for the

pendulum problem for all possible cases. Note that since we only specify a finite

number of linguistic variables and linguistic values, there is only a finite number of

possible rules. For the pendulum problem, with two inputs and five linguistic values

for each of these, there are at most 52 = 25 possible rules (all possible combinations

of premise linguistic values for two inputs).

A tabular representation of one possible set of rules for the inverted pendulum

is shown in Table 2.1. Notice that the body of the table lists the linguistic-numeric

consequents of the rules, and the left column and top row of the table contain the

linguistic-numeric premise terms. Then, for instance, the (2,-1) position (where the

"2" represents the row having "2" for a numeric-linguistic value and the "-1"

represents the column having "-1" for a numeric-linguistic value) has a —1

("negsmall") in the body of the table and represents the rule

If error is poslarge and change-in-error is negsmall Then force is negsmall

which is rule 3 above. Table 3.1 represents abstract knowledge that the expert has

about how to control the pendulum given the error and its derivative as inputs.

18

TABLE 3.1 Rule Table for the Inverted Pendulum
"force

'ii,
"change-in-error 	e

—2 —1_ 0 1 2

:̀ error"
e

—2 2 2 2 1 0
—1 2 2 1 0 —].
0 2 1. 0 —1 —2
1 1 0 —1 —2 —2
2 0 —1 —2 —2 —2

3.6 FUZZY QUANTIFICATION OF KNOWLEDGE

Up to this point we have only quantified,we will show how to use fuzzy logic

to fully quantify the meaning of linguistic descriptions so that we may automate, in

the fuzzy controller, the control rules specified by the expert.

Membership Functions

First, we quantify the meaning of the linguistic values using "membership

functions." Consider, for example, Figure 3.6. This is a plot of a function p versus e(t)

that takes on special meaning. The function ,u quantifies the certainty that e(t) can be

classified linguistically as "possmall." To understand the way that a membership

function works, it is best to perform a case analysis where we show how to interpret it

for various values of e(t):

• If e(t) = —ir/2 then p(-2r/2) = 0, indicating that we are certain that e(t) = —2r/2 is not

"possmall."

• If e(t) = it/8 then µ(7c/8) = 0.5, indicating that we are halfway certain that e(t) = is/8 is

"possmall" (we are only halfway certain since it could also be "zero" with some

degree of certainty—this value is in a "gray area" in terms of linguistic interpretation).

• If e(t) = r/4 then p(x/4) = 1.0, indicating that we are absolutely certain that e(t) = 7r/4

is what we mean by "possmall."

• If e(t) = r then,u(ir) = 0, indicating that we are certain that e(t) = 7r is not "possmall"

(actually, it is "poslarge")

19

4, 	GGpossmali"
1.0-I-

0.5

4 	2
	e(t), (rad.)

Fig. 3.6 Membership functions for linguistic value "possmall."

Figure 3.6 is only one possible definition of the meaning of "error is possmall"; you

could use a bell-shaped function, a trapezoid, or many others.

Now that we know how to specify the meaning of a linguistic value via a

membership function (and hence a fuzzy set), we can easily specify the membership

functions for all 15 linguistic values (five for each input and five for the output) of our

inverted pendulum example.

-2 	 -1 	0 	 1 	 2
uglare 	"negsmall' •.Z.ero" 	..possmall" 	"poslarge"

n 	n 	 n
— 	— 4 	 d 	2 	e(r). (rad.)

-2 	 -1 	0
	

2
large' 	"negsniall"
	

"pos(arge"

_n _n
4 	8

n M n d
16 8 	7e(t). (rad/sec)

-2 	-1 	0 	1 	2
"neglki ge,, "negsmall""zero" "possmall" °poslarge"

-30 	-20 	-10 	I 	10 	20 	30 u(t), (N)

Fig.3.7 Membership functions for an inverted pendulum

20

3.7 MATCHING: DETERMINING WHICH RULES TO USE

The inference process generally involves two steps:

1. The premises of all the rules are compared to the controller inputs to

determine which rules apply to the current situation. This "matching" process

involves determining the certainty that each rule applies, and typically we will

more strongly take into account the recommendations of rules that we are

more certain apply to the current situation.

2. The conclusions (what control actions to take) are determined using the rules

that have been determined to apply at the current time. The conclusions are

characterized with a fuzzy set (or sets) that represent the certainty that the

input to the plant should take on various values.

We will cover step 1 in this subsection and step 2 in the next.

Premise Quantification via Fuzzy Logic

"error is zero and

quantified with

0
"zero

l~zero

change-in-error is possmall"

quantified with
I
• possnialI"

1 A

1possinaI1 0.5 " I. 	\

- 4 	I 	1 e(t), (rad.) 31 	3t 	t

lh 8 	q .e(t) (rad/sec)

Fig.3.8 Membership functions of premise term

To see how to quantify the "and" operation, begin by supposing that e(t) _ is/8 and d

ir/32, so that using Figure 2.8we see that,upre,n ,.,~

/ zc,r„ (e(t))=0.5,u(,)(u) = min{0.25, /JZeo(u)}
and

Itporsma!! ~ dt e(t) 1=0.25

What, for these values of e(t) and--e(t), is the certainty of the statement

"error is zero and change-in-error is possmall"

21

that is the premise from the above rule? We will denote this certainty by Pprem,;,.e .

There are actually several ways to define it:

• Minimum: Define Ppre,,,;,e = min {0.5, 0.25) = 0.25, that is, using the minimum of the

two membership values.

• Product: Define ,upren,~,e = (0.5)(0.25) = 0.125, that is, using the product of the two

membership values.

Determining Which Rules Are On

Determining the applicability of each rule is called "matching." We say that a

rule is "on at time t" if its premise membership function upremise 	
) dt

e (t), d e (t) > 0.

Consider, for the inverted pendulum example, how we compute the rules that

are on. Suppose that

e(t)=0;
and

dt e(t)=ir/8-72132 = 0.294

Figure 3.12 shows the membership functions for the inputs and indicates with

thick black vertical lines the values above for e(t) and d e(t) .Notice that
dt

m (e (t)) = 1 but that the other membership functions for the e(t) input are all "off'

(i.e., their values are zero). For the -_e(t) input we see that / Zero _e(t)
J
= 0.25 and

fcpo,,,,,Q„ [_e(t)Jt 	= 0.75 and that all the other membership functions are off. This

implies that rules that have the premise terms

"error is zero"

"change-in-error is zero"

"change-in-error is possmall"

are on (all other rules have µpre,,,;,_e e (t), t e (t)
J

= 0. So, which rules are these? Using

Table 3.1 we find that the rules that are on are the following:

22

I. If error is zero and change-in-error is zero Then force is zero

2. If error is zero and change-in-error is possmall Then force is negsmall

Note that since for the pendulum example we have at most two membership

functions overlapping, we will never have more than four rules on at one time.

Actually, for this system we will either have one, two, or four rules on at any one

time. To get only one rule on choose, for example, e(t) = 0 and d e(t) = 2c 8 so that
dt

only rule 2 above is on.

-2

"neglarge"
-1 0 1

"negsmall" «zero' 	"possmall"
2

"poslarge"

_: _7 ~
2 4 4 2 e(t), (tad)

-2

:`neglarge"
-1 0 1

"negsmall" 	4 "zero" "possmall"
2

"poslarge"

_it 	7r 	1 3t n

	

4 a g 	16 S 4 	e(t), (tad/see)

Fig.3.9 Input membership functions with input values.

3.8 INFERENCE STEP: DETERMINING CONCLUSIONS

Next, we consider how to determine which conclusions should be reached

when the rules that are on are applied to deciding what the force input to the cart

carrying the inverted pendulum should be. To do this, we will first consider the

recommendations of each rule independently. Then later we will combine all the

recommendations from all the rules to determine the force input to the cart.

Recommendation from One Rule
Consider the conclusion reached by the rule

23

If error is zero and change-in-error is zero Then force is zero

Which for convenience we will refer to as "rule (1)." Using the minimum to represent

the premise, we have

Ppremise(„ = min{O.25, 1 }= 0.25

zero„

0.25

-10 	 10 	u(t), (N)

	

(a) 	 (b)

Fig.3.10 (a) Consequent membership function and (b) implied fuzzy set with

membership function ,u(,) (u) for rule (1)

Recommendation from Another Rule

Next, consider the conclusion reached by the other rule that is on,

If error is zero and change-in-error is possmall Then force is negsmall

which for convenience we will refer to as "rule (2)." Using the minimum to represent

the premise, we have

min{0.75, 1)= 0.75

	

"negsmall" 	 "neg niall"

0.75

-20 	-10 	1 	u(I), (N) 	-20 	-10 	1 	u(t), (N)

(a) 	 (b)
Fig.3.11 (a) Consequent membership function and (b) implied fuzzy set with

membership function ,u(2) (u) for rule (2).

This completes the operations of the inference mechanism

24

3.9 CONVERTING DECISIONS INTO ACTIONS

To understand defuzzification, it is best to first draw all the implied fuzzy sets

on one axis as shown in Figure 3.12. We want to find the one output, which we denote
by "u 1'' that best represents the conclusions of the fuzzy controller that are

represented with the implied fuzzy sets. There are actually many approaches to

defuzzification. We will consider two here

-1
A

0
" ne~~small'.

-30 	-2O 	-10 	10 	20 	30 u(t), (N)

Fig. 3.12 Implied fuzzy sets.

Combining Recommendations

Due to its popularity, we will first consider the "center of gravity" (COG)

defuzzification method for combining the recommendations represented by the

implied fuzzy sets from all the rules. Let bi denote the center of the membership

function (i.e., where it reaches its peak for our example) of the consequent of rule (i).

For our example we have

C,11=11111

b2=-10

as shown in Figure 3.12 Let

J
Iu

(1)
denote the area under the membership function fc(. l .The COG method computes

ucrisp to be

(3.1)

Y, J/Ji

Using Equation (3.1) with Figure 3.15 we have

25

uc„sp _ (0)(4.375)+ (-10)(9.375) = -6.81
4.375 + 9.375

as the input to the pendulum for the given e(t) and d e(t)
dt

1

	

"neesmall" 	0
` "zero"

-30 	-20 	-10
	

10

30 is(t), (N)

ti rise = -6.81

Fig.3.13 Implied fuzzy sets.
It is interesting to note that for our example it will be the case that

—20:5 UCSlsp c20

To see this, consider Figure 3.14, where we have drawn the output
membership functions. Notice that even though we have extended the membership
functions at the outermost edges past —20 and +20 (see the shaded regions), the COG
method will never compute a value outside this range

-2 -1

neglarge." "nlegsmall"

VX
-30 	-20 	-10

0 	1 	 2
"possmall" "poslarge"

111zero".A 	~qs --- ---,

10

Fig.3.14 Output membership functions.

26

3.10 GRAPHICAL DEPICTION OF FUZZY DECISION MAKING

Here, we use the minimum operator to represent the "and" in the premise and

the implication and COG defuzzification. Product operator is used to represent the

"and" in the premise and the implication, and choose values of e(t) and a e(t) that

will result in four rules being on. Then, repeat the process when center-average

defuzzification is used with either minimum or product used for the premise. Also,

learn how to picture in your mind how the parameters of this graphical representation

of the fuzzy controller operations change as the fuzzy controller inputs change.Refer

[3] for more details on fuzzy control

..L1.̀ I:, 	 ;• 7̀.1:3:0
..

	

— _ — — — _ — 	0.25
_ n 	 n e(1) 	C 	 Z n d (r 	 -10 	 10 	u(t), (N)
4 	4 	8 	l61 S 7-O

If error is zero and change-in-error is zero Then 	force is zero

— —
ne} mull, zero 	 lwssmall" 	 ~,\

— 	— — — 	— 	 0.75

10), (N)
4 	 4 	 16 8 	47t h)

If error is zero and 	change-in-error is possmall Then force is nnegsmall

Fig 3.15 Graphical representations of fuzzy controller operations.

27

NEURO-FUZZY SYSTEMS

4.1 INTRODUCTION

Neuro-fuzzy control is one of the intelligent control methods since knowledge

engineering is used in neuro fuzzy control. Neuro fuzzy control is usually utilised for two

purposes. One is for non-linear applications and the other is for adding human

intelligence to controllers. A linear PD Controller structure is changed by fuzzy logic,

such that the controller makes the system respond quickly if the error is large

Recently, the combination of neural networks and fuzzy logic has received

attention. The idea is to lose the disadvantages of the two and gain the advantages of

both. Neural networks bring into this union the ability to learn. Fuzzy logic brings into

this union a model of the system based on membership functions and a rule base.

Determining the fuzzy membership functions from sample data using a neural

network is the most obvious method of using the two together[13]. The definition of the

membership function has a huge impact on the system response. Often, the programmer

must use trial and error to find acceptable values. Assuming a certain shape and finding

the beginning and endpoints for the fuzzy values in a fuzzy set is a neural network

optimization problem. Figure 3-1 is a diagram of such a system.

input 	 Fuzzy Rule Fuzzifier 	 Defuzzifier
Base

Neural Network

Figure.4.1 A fuzzy system whose membership functions are adjusted by a neural

network.

28

Figure 4.2 shows a more complex integration, the use of neural networks to determine

both the fuzzy membership functions and the rule base[14]. Scientists have developed a

system that converts input and output data into nonlinear membership functions and a

rule base. The nonlinearity of the membership functions is unique to membership

functions derived by neural networks. They help minimize the number of rules.

Input 	 Neural Network 	 Outp

Fuzzifier 	Fuzzy Rule 	Defuzzifier
Base

Fig .4.2 A fuzzy system defined by a neural network.

Another approach is to incorporate fuzzy logic into the neurons of the neural networks.. It

was quickly realized that neurons with output in the range of [0,1] produced much better

results. The concept of a fuzzy neuron, however, has advanced beyond simply expanding

the range of outputs on a crisp neuron. Some researchers have incorporated membership

functions and rule bases into the individual neurons, as shown in figure 4.3.

f(1

Fuzzy f(i
Inputs

f(r

To Next Lay

Figure .4.3. A neural network of fuzzy neurons.

Finally, the idea of fuzzification of control variables into degrees of membership in fuzzy

sets has been integrated into neural networks. See figure4. 4. If the inputs and outputs of

a neural network are fuzzified and defuzzified, significant improvements in the training

time, in the ability to generalize, and in the ability to find minimizing weights can be

realized. Also, the membership function definition gives the designer more control over

the neural network inputs and outputs. It is this technique that is implemented in this

thesis for the control of a robotic arm

Crisp 	 ' 	I Crisp
Inputs 	Fuzzifier 	 Neural 	 Defuzzifier Outputs

membership 	
Network 	membership

/h\ 	values 	 values
Rule Base

Fig.4.4 A fuzzy system with neural network rule base

4.2 ADAPTIVE NETWORKS: ARCHITECTURES AND LEARNING

ALGORITHMS

This section introduces the architecture and learning procedure of the adaptive

network which is in fact a superset of all kinds of feedforward neural networks with

supervised learning capability. An adaptive network, as its name implies, is a network

structure consisting of nodes and directional links through which the nodes are

connected. Moreover, part or all of the nodes are adaptive, which means each output of

these nodes depends on the parameter(s) pertaining to this node, and the learning rule

specifies how these parameters should be changed to minimize a prescribed error

measure.

The basic learning rule of adaptive networks is based on the gradient descent and the

chain rule, which was proposed by by Werbos in the 1970's. However, due to the state of

artificial neural network research at that time, Werbos' early work failed to receive the

attention it deserved.

30

Since the basic learning rule is based the gradient method which is notorious for

its slowness and tendency to become trapped in local minima, here we propose a hybrid

learning rule which can speed up the learning process substantially Both the batch

learning and the pattern learning of the proposed hybrid learning rule is discussed below,

though our simulations are mostly based on the batch learning.

A. Architecture and Basic Learning Rule

An adaptive network (Figure 4.5) is a multi-layer feedforward network in which each

node performs a particular function (node function) on incoming signals as well as a set

of parameters pertaining to this node. The nature of the node functions may vary from

node to node, and the choice of each node function depends on the overall input-output

function which the adaptive network is required to carry out. Note that the links in an

adaptive network only indicate the flow direction of signals between nodes; no weights

are associated with the links.

input
vector

x1

x2

0•
'.

:,. 	y 	/ output

LJ 2

vector

0

Figure 4.5: An adaptive network

To reflect different adaptive capabilities, we use both circle and square nodes in an

adaptive network. A square node (adaptive node) has parameters while a circle node

(fixed node) has none. The parameter set of an adaptive network is the union of the

parameter sets of each adaptive node In order to achieve a desired input-output mapping,

these parameters are updated according to given training data and a gradient-based

learning procedure described below

31

Suppose that a given adaptive network has L layers and the k-th layer has
~ (k) nodes. We can denote the node in the i-th position of the k-th layer by (k, i),
and its node function (or node output) by O. . Since a node output depends on its
incoming signals and its kprameter set, we have

0k =•
1...0#~k 1~ 1 a, b, c, ...) , 	 (4.1)

where a, b, c, etc. are the parameters pertaining to this node. (Note that we use Os"
as both the node output and node function.)

Assuming the given training data set has P entries, we can define the error measure
(or energy function) for the p-th (1 <p < P) entry of training data entry as the
sum of squared errors

L
~7+ L

E = 	(~~n,P _o,
)2

m=1

(4.2)

L

Where Tm,p is the m-th component of p-th target output vector, and °m,p is the m-th

component of actual output vector produced by the presentation of the p-th input vector.

P

Hence the overall error measure is E = I LP
P=1

In order to develop a learning procedure that implements gradient descent in E over the

aE
parameter space, first we have to calculate the error rate aO for p-th training data and

for each node output O. The error rate for the output node at (L,i) can be calculated

readily from equation (4.2)

aE __ _ _2(T ,P -
ao

;"P

For the internal node at (k, i), the error rate can be derived by the chain rule:

x(k+I) 	 k+l

	

aEP 	aEP ao _ "" P

	

aok a k+l a k

	

,P 	ni=1 aoni,P aO1'P

(4.3)

(4.4)

32

learning (or on-line learning). In the following we will derive a faster hybrid learning rule

and both of its learning paradigms

B. Hybrid Learning Rule: Batch Learning

Though we can apply the gradient method to identify the, parameters in an

adaptive network, the method is generally slow and likely to become trapped in local

minima. Here we propose a hybrid learning rule which combines the gradient method and

the least squares estimate (LSE) to identify parameters.

For simplicity, assume that the adaptive network under consideration has only one output
output = F(I,S), 	 (4.9)

where I is the set of input variables and S is the set of parameters. If there exists a

function H such that the composite function H o F is, linear in some of the elements of S,

then these elements can be identified by the least squares method. More formally, if the

parameter set 5 can be decomposed into two sets

S = S~ 'S2 (4.10)

(where O+ represents direct sum) such that HoF is linear in the elements of S2 , then

upon applying H to equation (4.9), we have

H(output) = HoF(I,S), 	 (4.11)

Which is linear in the elements of S2 . Now given values of elements of S1 . we can
plug P training data into equation (4.11) and obtain a matrix equation

AX = B 	 (4.12)

Where X is an unknown vector whose elements are parameters in S2 Let IS2 I = M, then

the dimensions of A, X and B are P x M, M x 1 and P x 1, respectively. Since P .(number

of training data pairs) is usually greater than M (number of linear parameters), this is an

over determined problem and generally there is no exact solution to equation (4.12).

34

Instead, a least squares estimate (LSE) of X, X*, is sought to minimize the squared

error IIAX — B02. This is a standard problem that forms the grounds for linear regression,

adaptive filtering and signal processing. The most well-known formula for X* uses the

pseudo-inverse of X:

X*_(AT A) 1 A`B
	

(4.13)

Where AT is the transpose of A, and (ATA) 1 A 7 is the pseudo-inverse of A if AT
A is non-singular. While equation (4.13) is concise in notation, it is expensive in
computation when dealing with the matrix inverse and, moreover, it becomes ill-
defined if ATA is singular. As a result, we employ sequential formulas to compute
the LSE of X This sequential method of LSE is more efficient (especially when M
is small) and can be easily modified to an on-line version (see below) for systems
with changing characteristics. Specifically, let the ith row vector of matrix A defined
in equation (4.12) be ai and the ith element of B be b[, then X can be calculated

Xi+l =Xi +Si+lai+l (b+l -a+1X ,)

Siai+l ai+l J i
T 	i=0,1.....p 1 	 (4.14)

1 +

where Si is often called the covariance matrix and the least squares estimate X* is equal

to X . The initial conditions to bootstrap equation (3.14) are Xo = 0 and So = yI , where 7

is a positive large number and I is the identity matrix of dimension M x M. When

dealing with multi-output adaptive networks (output in equation (4.9) is a column vector),

equation (4.14) still applies except that bT is the i-th rows of matrix B.

Now we can combine the gradient method and the least squares estimate to update

the parameters in an adaptive network. Each epoch of this hybrid learning procedure is

composed of a forward pass and a backward pass. In the forward pass, we supply input

data and functional signals go forward to calculate each node output until the matrices A

and B in equation (4.12) are obtained, and the parameters in S2 are identified by the

sequential least squares formulas in equation (4.14). After identifying parameters in S2 ,

the functional signals keep going forward till the error measure is calculated. In the

backward pass, the error rates (the derivative of the error measure w.r.t. each node output,

35

see equation (4.3) and (4.4)) propagate from the output end toward the input end, and the

parameters in S, are updated by the gradient method in equation (4.7).

For given fixed values of parameters in S1 , the parameters in S2 thus found are

guaranteed to be the global optimum point in the S2 parameter space due to the choice of

the squared error measure. Not only can this hybrid learning rule decrease the dimension

of the search space in the gradient method, but, in general, it will also cut down

substantially the convergence time.

Take for example an one-hidden-layer back-propagation neural network with

sigmoid activation functions. If this neural network has p output units, then the output in

equation (4.9) is a column vector. Let H (.) be the inverse sigmoid function

H(x)=in x
1.—x

(4.15)

Then equation (4.11) becomes a linear (vector) function such that each element of

H(output) is a linear combination of the parameters (weights and thresholds) pertaining to

layer 2. In other words,

SI = weights and thresholds of hidden layer,

S2 = weights and thresholds of output layer

Therefore we can apply the back-propagation learning rule to tune the parameters in the

hidden layer, and the parameters in the output layer can be identified by the least squares

method. However, it should be keep in mind that by using the least squares method on the

data transformed by H(.) the obtained parameters are optimal in terms of the transformed

squared error measure instead of the original one. Usually this will not cause practical

problem as long as H(.) is monotonically increasing.

C. Hybrid Learning Rule: Pattern Learning

If the parameters are updated after each data presentation, we have the pattern

learning or online learning paradigm. This learning paradigm is vital to the on-line

parameter identification for systems with changing characteristics. To modify the batch

w

learning rule to its on-line version, it is obvious that the gradient descent should be based

on E, (see equation (4.5)) instead of E. Strictly speaking, this is not a truly gradient

search procedure to minimize E, yet it will approximate to one if the learning rate is

small.

For the sequential least squares formulas to account for the time-varying

characteristics of the incoming data, we need to decay the effects of old data pairs as new

data pairs become available. One simple method is to formulate the squared error

measure as a weighted version that gives higher weighting factors to more recent data

pairs. This amounts to the addition of a forgetting factor 2 A to the original sequential

formula

X i+l = X i +Si+ l Cat+l (b7+1 —Cli+l X i)

S _ 1
 [S'

S1a1+l a+lSi
i+l — A 	1 + ai

T
+1Siai+l

(4.16)

4.3 ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM

The architecture and learning rules of adaptive networks have been described in

the previous section. Functionally, there are almost no constraints on the node functions

of an adaptive network except piecewise differentiability. Structurally, the only limitation

of network configuration is that it should be of feedforward type. Due to these minimal

restrictions, the adaptive network's applications are. immediate and immense in various

areas. In this section, we propose a class of adaptive networks which are functionally

equivalent to fuzzy inference systems. The proposed architecture is referred to as ANFIS,

standing for Adaptive-Network-based Fuzzy Inference System. We describe how to

decompose the parameter set in order to apply the hybrid learning rule. Besides, we

demonstrate how to apply the Stone-Weierstrass theorem to ANFIS with simplified fuzzy

if-then rules and how the radial basis function network relate to this kind of simplified

ANFIS.

37

W1 f = pax +qty +r1

W1 f1 + W2 f2 — aye W2

W2 f 2 = p2x +qty +r2 	= W1 f1 + W2 f 2

(a)

layer 1

1

layer 4

layer 2 	layer 3

Z/ A
l

,

1
x y 	layer 5

\\ ~,

y `\ , B, 	T(W2 	N Wz~ j wz f 2

62 x y

(b)

Fig 4.6 (a)fuzzy reasoning (b) equivalent ANFIS.

A. ANFIS architecture

For simplicity, we assume the fuzzy inference system under consideration has two inputs

x and y and one output z. suppose that the rule base contains two fuzzy if-then rules of

Takagi and Sugeno's type

Rule 1: If x is A, and y is B,, then f, = p, x + ql y +i, Rule
2: If a; is A2 and y is B2 , then j2 =p2x + q2y + r2

Then the fuzzy reasoning is illustrated in Figure 4.4(a), and the corresponding
equivalent ANFIS architecture is shown in Figure 4.4(b). The node functions in the
same layer are of the same function family as described below:

Layer 1 Every node i in this layer is a square node with a node function

0"" = IU A (x), 	 (4.17)

f

Where x is the input to node i, and .t, is the linguistic label (small, large, etc.)
associated with this node function. In other words, O, is the membership function of
A; and it specifies the degree to which the given x satisfies the quantifier A,. Usually we
choose PR. (x) t° be bell-shaped with maximum equal to 1 and minimum equal to 0, such
as

PA, (x) = 	2 	, 	 (4.18)
x — c. i+ 	

b!

Or

2]b;

PA, (x) =
ex{_[[ix—c 	

(4.19)
ai

Where {a; , b,, c; { is the parameter set? As the values of these parameters change, the bell-

shaped functions vary accordingly, thus exhibiting various forms of membership

functions on linguistic label Ai. In fact, any continuous and piecewise differentiable

functions, such as commonly used trapezoidal or triangular-shaped membership

functions, are also qualified candidates for node functions in this layer. Parameters in this

layer are referred to as premise parameters.

Layer 2 	Every node in this layer is a circle node labeled II which multiplies the

incoming signals and sends the product out. For instance

W I =,uA, (x)x,uB; (y), i=1,2 	 (4.20)

Each node output represents the firing strength of a rule. (In fact, other T-norm operators

that perform generalized AND can be used as the node function in this layer.)

Layer 3 Every node in this layer is a circle node labeled N. The i-th node calculates the

ratio of the i-th rule's firing strength to the sum of all rules' firing strengths

= Ẁ , 	 (4.21)
W~ + WZ

39

For convenience, outputs of this layer will be called called normalized firing strengths.

Layer 4 Every node i in this layer is a square node with a node function
a ~' O, = W1 f = wi pi x + qi.y + r, , (4.22)

where ii is the output of layer 3, and {p,,g,.,r,.} is the parameter set. Parameters in this

layer will be referred to as consequent parameters.

Layer 5 The single node in this layer is a circle node labeled 	that computes the

overall output as the summation of all incoming signals, i.e.,

Y,wif
O, =overall output= vv; f,- = '

	
(4.23)

i

f — w" f1+ W2 f2 w, w2
= w, f,+ W2 f2

(a)

x

Y

f

(b)

Figure4. 7: (a) fuzzy reasoning;

(b) equivalent ANFIS.

Thus we have constructed an adaptive network which is functionally equivalent
to a fuzzy inference system shown in fig.3.8. For fuzzy inference systems shown in
fig4.7, the extension is quite straightforward and the ANFIS is shown in Figure

4.8 where the output of each rule is induced jointly by the output membership
funcion and the firing strength. For fuzzy inference systems shown in fig.4.7, if
we replace the centroid defuzzification operator with a discrete version which
calculates the approximate centroid of area, then ANFIS can still be constructed
accordingly. However, it will be more complicated than its versions and thus not
worth the efforts to do so.

Figure 4.8 shows a 2-input, ANFIS with 9 rules. Three membership functions are

associated with each input, so the input space is partitioned into 9 fuzzy subspaces, each

of which is governed by a fuzzy if-then rule. The premise part of a rule delineates a fuzzy

subspace, while the consequent part specifies the output within this fuzzy subspace.

B. Hybrid Learning Algorithm

From the proposed ANFIS architecture (Figure4.8), it is observed that given the
values of premise parameters, the overall output can be expressed as linear
combinations of the consequent parameters. More precisely, the output f in Figure
8 can be rewritten as

X~

consequentpara .meters
X

Vil

f

~ 	 7: 	,

(a)

promise parameters

Figure 4.8: (a) 2-input ANFIS with 9 rules; (b) corresponding fuzzy subspaces

41

W1 f' + w,
f w, + w2 	w, + w2 f2

= w, f + w2f2 	 (4.24)

=(W,x)p, +(W,y)q, +(w,)r +(w2x)p2 + (i 2y)g2 +(w2)r2

Which is linear in the consequent parameters (p,, q,, r, ,-p2 , q2 and r2)As a result, we have

S = set of total parameters,

S, = set of premise parameters,

S2 = set of consequent parameters

in equation (4.10); H(•) and F(•, •) are the identity function and the function of the

fuzzy inference system, respectively. Therefore the hybrid learning algorithm

developed in the previous chapter can be applied directly. More specifically, in the

forward pass of the hybrid learning algorithm, functional signals go forward till layer

4 and the consequent parameters are identified by the least squares estimate. In the

backward pass, the error rates propagate backward and the premise parameters are

updated by the gradient descent. more details are in[14]

42

DESIGN AND SIMULATION IN SIMULINK/MATLAB7.01

5.1. INTRODUCTION

The aim of simulation is to develop complete model of the physical system and to

analyze the system in different ways before going to implement it practically. In my

dissertation control of puma 560 robot is analyzed with different controllers such as PD,

Fuzzy and Neuro-Fuzzy. In this chapter design and development of simulink model for

robot manipulator, Actuator, PD controller, Fuzzy controller and Neuro-Fuzzy controller

is explained.

5.2 PUMA560 ROBOT MODEL

M(q)9' + C(q, q)q + g(q) =

R = M(q)-' [z — C(q, ')q — g(q)]
	

(5.1)

By equation (5.1) we can develop;the simulink model

Fig .5.1 PUMA560 simulink model

43

Fig 5.1 shows the simulink model of the PUMA 560 robot it contains the following

blocks

1. dynamics matrices

2. gravity term

3. matrix multiplication

1. DYNAMICS MATRICES

U U(E) 	 (-

Mass Inverse Matrix
Selector

Q
dynamictunc

nction 	 L—U U(E)

Coriolis/Centrifugal Matrix
Selectorl

Fig 5.2 dynamics matrices

This block have the two input matrices angles at respective joints and derivatives of

the angles of the order 6 byl and the two out puts mass inverse matrix and

coriolis/centrifugal matrix of the order 36 byl (actually these matrices are the order

of 6 by 6 but they are arranged column wise for the simplicity)

For this particular block a S-Function is written in C-Language which have two

inputs of the order 6 by I and one out put of the order 72 by 1. S-Function is used

because design of two in puts of the order 6 by 1 two out puts of the order 6 by 6 is

extremely difficult in simulink for this purpose S-Function is used. Code for S-

Function is given in the appendix1. After written the code in C we have to compile

the Dot C file by the command `MEX' then `.mdl' file will be created in the current

directory, this `.mdl' file will be useful for the simulink to run the simulation

2 GRAVITY TERM

for gload 0

VITY LOAD

Fig 5.3 gravity load

Figure 5.3 shows the gravity load for the manipulator. Expressions for the gravity

load are explained and given in chapter 4 in this block functional blocks are used we

can write function in that block since gravity load is function of the angles so we can

write any function in the functional block

MATRIX MULTIPLICATION

This matrix multiplication block shown in fig 5.4 is having two inputs of the order

36 by 1 and 6 by 1 one output of the order 6 by 1 since one input of the order 36 by 1

six selectors selects 6 elements column wise one after other and these are

45

concatenated horizontally by matrix concatenation block after this process elements

become matrix of the order 6 by 6 then product block is used to multiply this matrix

with second input 2

U(E)

6x6

U 	U(E)
Horiz Cat

U 	U(E)

Selector3

U U(E)

Selector4

U ~(E) 	1*

Matrix
Multiply

Product 	
6x1 product

OCICLWIU 	 Matrix

U U(E) 	
Concatenation

Selector6

6x1

Fig5. 4 Matrix multiplication

By this discussion on design of PUMA560 model is complete

5.3 ACTUATOR MODEL

Fig 5.5 shows the simulink model for the actuator. It is designed as per the

equations and specifications given in the chapter4

Actuator co nAa ntsl

Fig. 5.5 Actuator simulink model

47

5.4DESIGN OF PID CONTROLLER

Equation for the PD controller is

U, = Pe + D,. dt + I; Je (i=1,2...6) (5.2)

Where e is the error

P is the proportional gain

D; is the differential gain

I; is the integral gain

U. is the controller output

The objective of designing PID controller is to find the P , 	for the optimum

response of the system

Hand tuning procedure for the tuning of the PID controller

a) remove all integral and differential action

b) tune the proportional gain or increase the proportional P to give the

desired response ignoring any offset or peak over shoots

c) then tune the differential gain D; (increase) until the oscillations are under

the allowable range

d) tune the integral gain I, (increase) until the until offset is in the

allowable range

e) repeat this until P as large as possible

By doing this gains are found to be

I={4020 13.333 1086.6777]

D; =[10 63.52.52.32.1]

I; =[1063.52.52.32.1]

In designing considered that controller output should not more than 40 volts

Fig 5.6 Total system with PID controller

D6 /

D5

D4/~< R4

///
//

11

R3 03/

/ /~r- 	r\
lil 	 R2 	D2

~R1 	 D1

Q
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TIME

Figure 5.7 (a) Response of the robot (point to point control)

`Di `corresponds to desired trajectory where `i' correspond to joint no

`Ri `corresponds to response where `i' correspond to joint no

7

6

5

4

3

2

1

8

6
	 R4

,D4

4

R5
2
	

D5

0 °

-2

	D1 R1
D2 R2

-6

-8
0
	

0.5 	1 	1.5 	2 	2.5 	3 	3.5
TIME

Figure 5.7.(b) Response of the robot (trajectory control)

`Di `corresponds to desired trajectory where `i' correspond to joint no

`Ri `corresponds to response where `i correspond to joint no

5.5 DESIGN OF FUZZYPD+I CONTROLLER
Designing the Fuzzy controller in simulink consists of two steps

1. Designing the rule base

2. gain scheduling

TABLE 5.1 Fuzzy rules

Ae / e NB NM NS ZE PS PM PB
NB NB NB NB NM NS NS ZE

NM NB NM NM NM NS ZE PS

NS NB NM NS NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PS PM PB

PM NS ZE PS PM PM PM P11
PB ZE PS PS PM PB PB PB

(Ac.. 1.23\ \

\ 1"nL) 1

50

Design of rule base

Table 1 shows the rule base for the Fuzzy PD controller the rule base is to design

as explained in the second chapter, but complex systems such as robot understanding the

system behavior is very difficult so set of PD rules were proposed in the[3] these rules

generally used for the Fuzzy PD controller

Gain scheduling

e

Fuzzy controller

Fig5. 8 Fuzzy controller with gains

Gain scheduling means designing ofgo , g, and h for the optimum response of the

system

Gain scheduling procedure for the Fuzzy controller

1. Initially put go =0 and increase g, until the controller gives the output

normally, when the signal after the gain g, crosses the universe of discourse

the there will not be any rule to processes then controller then the output will

be zero before this happens previously designed gain will be the optimum gain

for the g,

2. increase h until the controller will gives the maximum output that will be the

maximum controller output

3. then increase go until overshoots under the allowable range

51

Go to

Gain 	I 	u y.., , . 	L 	ice,„
fuzzy controller actuator(Wrotor) 	Subsystem

I.

Fig 5.9 System with fuzzy controller

Fig 5.10 Fuzzy controller

52

Fig5.11 nonlinear output for the Fuzzy PD controller

D6- /<-R6

/ D5- /~~~~R5

D4/ 	R4

D3 	/R3

1'<~R2 	/

	

% , 	 D2

R1 	D1

-1 	
I 	 I 	 I 	 I 	 I 	 I

0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2

TIME

Fig 5.12. (a) Robot response with the FuzzyPD+I controller (point to point)

`Di `corresponds to desired trajectory where `i' correspond to joint no

`Ri `corresponds to response where `i' correspond to joint no

7

6

5

4

3

2

1

0

53

8

6

4

2

0

-2

-4

-6

-8

~~ D3

	

R3 	
R

D5
R5

D1
D2 R1 R2

\L1T
R6

0 0.5 1 1.5 2 2.5 3 3.5
TIME

Fig 5.12.(b) Robot response with the FuzzyPD+I controller (trajectory)

`Di `corresponds to desired trajectory where `i' correspond to joint no

`Ri `corresponds to response where `i' correspond to joint no

54

5.6 DESIGN OF NEURO-FUZZY CONTROLLER

This Neuro-Fuzzy controller can be designed in simulink using the fuzzy logic

toolbox. About ANFIS already explained in chapter4 .In matlab design of ANFIS

consists of Training

Model Learning and Inference through ANFIS
The basic idea behind these neuro-adaptive learning techniques is very simple.

These techniques provide a method for the fuzzy modeling procedure to learn

information about a data set, in order to compute the membership function parameters

that best allow the associated fuzzy inference system to track the given input/output data.

This learning method works similarly to that of neural networks. The Fuzzy Logic

Toolbox function that accomplishes this membership function parameter adjustment is

called ANFIS. ANFIS can be accessed either from the command line, or through the

ANFIS Editor GUI. This is explained in[19].

Oi0
Clock To Woftp-

Fig.5.13 Total robot system with Anifs controller

55

Fig-5.14 ANFIS controller

input vrihIe iriput1

Fig 15 membership functions after training

56

	

D6 	<~R6

	

D5/ 	 R5

D4

	

I 	R4

D3//<_R3

1
2/

ff ~
R1 	

D1

-1
0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2

TIME

Fig.5.16 (a) system response with the Anfis controller (point to point)

`Di `corresponds to desired trajectory where `i' correspond to joint no

`Ri `corresponds to response where `i' correspond to joint no

8

6

4

2

0

-2

-4

-6

-8

- R3

D4, R4

D3

D5,

D6, R6

0 	0.5 	1 	1.5 	2 	2.5 	3 	3.5
TIME

Fig.5.16 (b) System response with the Anfis controller (trajectory)

`Di `corresponds to desired trajectory where `i' correspond to joint no

`Ri `corresponds to response where `i' correspond to joint no

7

6

5

4

3

2

1

0

57

1.2

0.8
C
0 a

0.6 I

0.4

0.2

0=
0 0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2

time

RESULTS

6.1 RESPONSES OF THE ROBOT FOR POINT TO POINT CONTROL

There are six joints to be controlled in the ROBOT. 1, 2, 3,4,5,6 radians

are taken as the desired point at each join respectively, the responses at each joint are

shown in the figures 6.1-6.6 below.

1.4

Fig.6.1 Response at jointl of the Robot for point to point control

58

1.5

1

0.5

1s1

using ANFIS controller

\using Fuzzy controller

using PD controller

0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2
time

Fig.6.2 Response at joint2 of the Robot for point to point control

3.5

3

2.5

2
a)
U)

Q 1.5

1

0.5

0

	

-0.5 L 	 1 	 I 	 1 	 _ 	L.. 	I ..

	

0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2
time

Fig.6.3 Response at joint3 of the Robot for point to point control

f
C

2

59

4.5

4

3.5

3

y 2.5
0
0 a
m 2

1.5

1

0.5

0
0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2

time

Fig.6.4 Response at joint4 of the Robot for point to point control

6

5

4

c CO 3
as

2

1

0
0

ng Fuzzy controller

using PD controller

using ANFIS controller

0.2 	0.4 	0.6 	0,8 	1 	1.2 	1.4 	1.6 	1.8 	2
time

Fig.6.5 Response at joint5 of the Robot for point to point control

•1

7r
6

5

a) 4
0 a

2

1

0
0

using ANFIS controller

/: \

	

using Fuzzy controller

li 	using PD controller

r;.

0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2
time

Fig.6.6 Response at joint6 of the Robot for point to point control

All the responses of the robot (all joints) for the point to point control with all the

controllers are shown comparatively in the above figures, from these figures we can

clearly see that the response using PD controller is normal, with Fuzzy controller

response is better than the PD because of nonlinear controller output with expert

knowledge base it gives the better response, and with the ANFIS controller response is

better than both Fuzzy and the PD controllers,.

61

6.2 RESPONSES OF THE ROBOT FOR TRAJECTORY CONTROL

There are six joints to be controlled in the ROBOT. Sine waves are chosen as

desired trajectories with frequency of 2Hz, maximum values of the desired trajectories

are 1,2,3,4,5,6 radians respectively, the responses at each joint are shown in the figures

from 6.7-6.12.

1.5

1

0.5

cv

o 0
0)

-0.5 -

-1

-1.5
0

- using PD controller

~--using Fuzzy controller

using ANFIS controller
almost super imppsed

". with the desired response

desired trajectory 	/
~ 4 	 f:

1 2 3 4 5 6 7

time

Fig.6.7 Response atjointl of the Robot for trajectory control

62

L.b

2

1.5

1

0.5
a)
U)

0 o 0
Q
U)

-0.5

-1

-1.5

-2

-2
0 	1 	2 	3 	4 	5 	6 	7

time

Fig. 6.8 Response at j oint2 of the Robot for trajectory control

4

3

2

1

U)
0 0
0
0.
N
L

-1

-2

-3

-4
0 	1 	2 	3 	4 	5 	6

	
7

time

Fig.6.9 Response at joint3 of the Robot for trajectory control

63

5

4

3

2

1 	 response almost superimposEd 	 E
with the desired response

O O\
i 	 .ryc q̂

desired trajectory

-3

-5
0 	1 	2 	3 	4 	5 	6 	7

time

Fig.6.10 Response at joint4 of the Robot for trajectory control

1

4

2

-4

-6
0 	1 	2 	3 	4 	5 	6 	7

time

Fig.6.11 Response at joints of the Robot for trajectory control

using PD controller

using Fuzzy controller ~

t . 	1ti 	 k 	 r

using ANFISr''controller
response almost "superimposed

with desired response

desired trajectory

x 	r.'

tti 	fi~ 	 4a 	
f,

-4

-8
0 1 2 3 4 5 6 7

time

Fig.6.12 Response at joint6 of the Robot for trajectory control

All the responses of the robot (all joints) for the trajectory control with all the

controllers are shown comparatively in the above figures, from these figures we can

clearly see that the response using PD controller is normal, with Fuzzy controller

response is better than the PD because of nonlinear controller output with expert

knowledge base it gives the better response, and with the ANFIS controller response. is

better than both Fuzzy and the PD controllers

4

2

I)
CO
0 0 0
a
CO m

-2

CONCLUSIONS

The study compares the conventional PID control scheme, Fuzzy control scheme

and Neuro-Fuzzy control scheme. From the results of the first part of the work it has been

found that conventional control scheme using PID controller is simplest to be

implemented but it cannot cope with uncertainties in the robot dynamics.

From the second part of the work incase of Fuzzy based controller has good

tracking performance only difficulties are designing with the rulebase.Generalized

rulebase is taken for the fuzzy controller

Third part of the work in which ANFIS (adaptive neuro fuzzy inference system) is

designed it has been found good tracking performances. This new method for control

combines the advantage of neural networks (learning adaptability) with the advantage of

fuzzy logic (use of expert knowledge) to achieve the goal of robust adaptive control of

robot dynamics.

FUTURE SCOPE OF WORK

The Proposed ANFIS structure uses Temporal back propagation hybrid algorithm.

The convergence time depends on the number of input membership functions, if the

number of input membership functions increases then the learning process becomes slow

and if the no of member ship functions decreases then the Performance of the ANFIS

controller will become poorer. There is a contradiction between convergence time and the

performance. This is the main disadvantage of the Temporal back propagation hybrid

algorithm which used for ANFIS

The convergence time can be improved by the Genetic based Neuro-Fuzzy

approach All the parameters of the neuro fuzzy structure can be tuned simultaneously

using Genetic Algorithm [21] The convergence time using Genetic Algorithm is far

better the Temporal Back Propagation Algorithm or any other conventional algorithms

All these well explained in [21].

REFERENCES

I.'Introduction to robotics Mechanics and Control' by John J.Craig, second edition

Addison Wesley publications.

2.'Robot Dynamics and Control' by Mark W.Spong, M.Vidyasagar, John Wiley &

Sons publications. 	'(Y -

3 .'Fuzzy Control 'Kevin M. Passino, Stephen Yurkovich, Addison Wesley Longman

publications.

4. The Explicit Dynamic Model and Inertial Parameters of the PUMA 560, Arm'

Brian Armstrong, Oussama Khatib, Joel Burdick, Stanford Artificial Intelligence

Laboratory Stanford University, IEEE Transactions and Systems 1986. 	V~

5.'The Unimation Puna servo system' Peter Lcorke CSIRO Division of

Manufacturing Technology, AUSTRALIA July 1994.

6. `A Search for Consensus Among Model Parameters Reported for the PUMA 560

Robot' Peter I. Corke ,CSIRO Division of Manufacturing Technology, AUSTRALIA.

Brain Armstrong-Helouvey University of Wisconsin Milwaukee ,USA. July 1994

7.L.A.Zadeh,'Fuzzy sets' informa contr Vol.-8,pp.338-353,1965.

8.S.Assilian,E.H.Mamdani,'An Experiment With Linguistic Synthesis With Fuzzy

Logic Controller' Int Journal on Man Machine studies,Vol.7,pp.1-13,1975.

9. M.maeda ,S.Murakami,'A self Tuning Fuzzy Controller' Fuzzy Sets and

Sytems,Vol.-56,pp.53-65, l979.

I 0.S.Z.He,S.Tan,' Fuzzy Self Learning of PID Controllers',Fuzzy Sets Systems, Vol.-

56,pp.37-46,1993

I 1.M.Yoshida,Y.Ishida,'Gain Tuning Method for Designing of Fuzzy Control

System',IEEE Trans.Fuzzy Systems,Vol.52,pp.405-408,1990.

12. H.X.Li , H.B.Gutland,'Conventional Fuzzy Control and its enhancement', IEEE

Trans,Syst.Man,Cyber.,Vol.-26,pp791-797,1996

13.H.R.Berenji,'Learning and Tuning Fuzzy Logic Controllers Through

Reinforcements', IEEE Transactions on Neural Networks,Vol3,1992,pp724-740

14.J.R.Jang `Self-Learning Fuzzy Controllers Based on the Temporal Back

Propagation' IEEE transactions on Neural Networks,Vol.3, !992,pp714-721

15.Moens Iskarous and Kazuhiko Kawamura `Intelligent Control Using a Neuro-

Fuzzy Network' IEEE transactions on Neural Networks ,Vol.4,1995,pp350-355

67

16. Gurupreet S. Sandhu and Kuldio S.rahan,'Design of Neuro Fuzzy Controller'

IEEE transactions on Neural Networks, Vol.1,1997,pp3i70-3175

I7.Wen Yu,Xiaoou Li,'Fuzzy Neuro Modeling Using Stable Learning Algorithm'

IEEE transactions on Neural Networks,Vo1.2,2003,pp4542-4548

18. Oscar Castillo, Patrica Melin'lnteligent adaptive model-based of robotic dynamic

systems with a hybrid fuzzy-neural approach'ELSEVIER transactions on Applied

Soft Computing,Vol.3,2003,pp367-378

19. ̀ Fuzzy Logic Toolbox User's Guide' ,Version 2, www.mathworks.com

20.' Writing S-Functions User's Guide', Version 5, www.mathworks.com

21.Ashok Kumar God, Suresh Chandra Saxena, Surekha Bhanot, 'A Genetic Based

Neuro-Fuzzy Controller for Tharmal Processes' .JCS&T,Vol. 5,No. 1 2005,37-43

APPENDIX

1.Main file for S-Function
* File : dynamicfunc
* Abstract:
* 	All this thing does is calculate the Coriolis/centrifugal torque matrix
* 	and the kinetic energy (mass) matrix based on q and qdot inputs

#define S_FUNCTION_NAME dynamicfiinc
#define S_ FUNCTION_ LEVEL 2

#include "simstruc.h"
#include "dynamicfunc.h"

/* Function: mdllnitializeSizes

* Abstract:
* Setup sizes of the various vectors.
*/
static void mdllnitializeSizes(SimStruct *S)

ssSetNumSFcnParams(S, 0);
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S))

return; /* Parameter mismatch will be reported by Simulink */
}

if (!ssSetNumInputPorts(S, 2)) return;
ssSetInputPortWidth(S, 0, 6);

ssSetlnputPortWidth(S, 1, 6);

ssSetInputPortDirectFeedThrough(S, 0, 1);
ssSetInputPortDirectFeedThrough(S, 1, 1);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 72);

ssSetNumSampleTimes(S, 1);

/* Take care when specifying exception free code - see sfuntmpl.doc */
ssSetOptions(S, SS_ OPTION_ EXCEPTION_FREE__CODE);

/* Function: mdlInitializeSampleTimes

* Abstract:
* Specifiy that we inherit our sample time from the driving block. */

static void mdllnitializeSalnpleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

/* Function: mdlOutputs

*/
static void mdlOutputs(SimStruct *S, int T tid)
{

InputRealPtrsType uPtrsO = ssGetInputPortRealSignalPtrs(S,O);
InputRealPtrsType uPtrs1 = ssGetInputPortRealSignalPtrs(S,1);

real_T 	*yO = ssGetOutputPortRealSignal(S,0);
int_T 	 i;
real_T 	 q[6];
real_T 	 gdot[6];
realT 	 massi.nv[6] [6];
real T 	 coricen[6] [6];

for(i.=0;i<6;i++)
{

q[i] _ *uPtrsO[i];
qdot[i] _ *uPtrs 1 [i];

calculate_mass(q);
calculate massinv(massinv);
calculate_coricen(gdot, coricen);

for(i=0; i<6; i++)
{

yO[i] = massinv[0][1];
yO[i+6] = massinv[1] [i];

70

yO[i+12] = massinv[2][i];
y0[i+18] = massinv[3][i];
yO[i+24] = massinv[4][i];
y0[i+30] = massinv[5][i];
yO[i+36] = coricen[O][i];
yO[i+42] = coricen[1][i];
yO[i+48] = coricen[2][i];
yO[i+54] = coricen[3][i];
yO[i+60] = coricen[4][i];
yO[i+66] = coricen[5][i];

/* Function: mdlTermin.ate

* Abstract:
* No termination needed, but we are required to have this routine.
*/

static void mdlTerminate(Sim.Struct *S)
{
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" 	/* MEX-file interface mechanism */
#else
#include "cg_sfun.h" 	/* Code generation registration function */
#endif

2. Header file for the main file
//Header for dynamicfunc.c

#include <math.h>

real_T cl,c2,c3,c4,c5,c6,c23,sl,s2,s3,s4,s5,s6,s23;

real_T ml 1,m12,ml3,m14,ml5,m16,m21,m22,m23,m24,m25,m26,
m31,m32,m33,m34,m35,m36,m41,m42,m43,m44,m45,m46,m51,
m52,m53 ,m54,m55,m56,m6 1 ,m62,m63,m64,m65,m66;

void sincos(real_T q[6])

71

c 1 = cos(q[0]);
c2 = cos(q[1]);
c3 = cos(q[2]);
c4 = cos(q[3]);
c5 = cos(q[4]);
c6 = cos(q[5]);
sl = sin(q[0]);
s2 = sin(q[l]);
s3 = sin(q[2]);
s4 = sin(q[3]);
s5 = sin(q[4]);
s6 = sin(q[5]);
s23 = sin(q[1]+q[2]);
c23 = cos(q[1]+q[2]);

//Function to compute the kinetic energy (mass) matrix
void calculate_mass(real_T q[6])
{

sincos(q);

ml! = 2.57 + (1.38*c2*c2) + (0.3*s23*s23) + (0.744*c2*s23);
m12 = (0.69*s2) + (-0.134*c23) + (0.0238*c2);
m13 = (-0.134*c23) + (-0.00397*s23);
m14=0;
m15=0;
rnio = 0;
m22 = 6.79 + (0.744*s3);
m23 = 0.333 + (0.372*s3) + (-0.011 *c3);
m24=0;
m25=0;
m26 = 0;
m33 = 1.16;
m34 = -0.00125*s4*s5;
m35 = 0.00125*c4*c5;
m36=0;
m44 = 0.2;
m45 = 0;
m46 = 0;
m55 = 0.18;
m56=0;
m66 = 0.19;

72

//The mass matrix is symmetric, so now we take care of elements below
//the diagonal

m21 = m12;
m31 = m13;
m41 = m14;
m51 =m15;
m61 = m16;
m32 = m23;
m42 = m24;
m52 = m25;
m62 = m26;
m43 = m34;
m53 = m35;
m63 ==m36;
m54 = m45;
m64 = m46;
m65 = m56;

//Function to compute the kinetic energy (mass) matrix inverse
calculate _massinv(real_T mi[6][6])

real T factorl;

factorl = m21*m12*m34*m55*m43 - m21*m12*m33*m44*m55 +
m21*m12*m53*m44*m35 +

m21 *m32*m 13 *m44*m55 + m31 *m23 *m44*m55 *m12 -
m34*m22*mll*m55*m43 -

1n53*m44*m22*mll*m35 +m33*m44*m22*ml l*m55 -
m22*m31*m13*m44*m55 -

ml 1 *m32*m23 *m44*m55;

mi[0][0] = (-m44*m22*m35*m53 + m44*m22*m33*m55 - m44*m23*m55*m32
- m22*m34*m55*m43)/factorl;

mi[O][1] = (m12*m34*m55*m43-
m12*m33*m44*m55+ml2*m53*m44*m35+m32*m13*m44*m55)/factorl;

mi[O][2] = -(m55*m44*(ml3*m22-m12*m23)/factorl);
mi[O][3] = m34*m55*(ml3*m22-ml2*m23)/factorl;
mi[O][4] = m35*m44*(ml3*m22-ml2*m23)/factorl;
mi[O][5] = 0;

73

mi[1] [0] = -(-m21 *m34*m55 *m43+m21 *m33 *m44*m55-m21 *m53 *m44*m35-
m31 *m23*m44*m55)/factorl;

mi[1][1] _ -(m44*ml l *m35*m53-
m44*ml l *m33*m55+m44*m13*m55*m31+m11 *m34*m55*m43)/factorl;

mi [1] [2] = m55 *m44 * (m21 *ml 3 ml 1 * m23)/factor 1;
mi[l][3] = -m34*m55*(m21*ml3-nil l*m23)/factorl;
mi[1][4] = -m35*m44*(m21*m13-mll*m23)/factorl;
mi[1][5] = 0;

mi[2][0] = m55*m44*(m32*m21-in31 *m22)/factorl;
mi[2] [1] = m5 5 *m44 * (-m l 1 * m32+m31 *ml 2)/factor l ;
mi[2][2] = -m55*m44*(-ml 1*m22+m21*m12)/factorl;
mi[2][3] = m34*m55*(-ml l *m22+m21 *m12)/factorl;
mi[2][4] = m35*m44*(-ml 1*m22+m21*ml2)/factorl;
mi[2][5] = 0;

mi[3][0] m43*m55 *(m32*m2 1 -m3 1 *m22)/factorl;
mi[3][1] = -m43*m55*(-ml 1*m32+m31*m12)/factorl;
mi[3][2] = m43*m55*(-ml l*m22+n~21 *ml 2)/factorl;
mi[3][3] = (m21*ml2*m35*m53-

m21*m12*m33*m55+m21*m32*m13*m55+m31*m23*m55*m12 -
m53 *m35 *m22*ml 1+m33 *m55 *m22*ml l-m22*m31 *m 13 *m55-

ml l *m32*m23*m55)/factorl;
mi[3][4] = -m43*m35*(-ml 1*m22+m21*m12)/factorl;
mi[3][5] = 0;

mi[4][0] = -m53*m44*(m32*m21-m31*m22)/factorl;
mi[4][1] = -m53*m44*(-ml l *m32+m31 *ml2)/factorl;
mi[4][2] = m53*m44*(-ml l*m22+m21*ml2)/factorl;
mi[4][3] = -rn34*m53*(-ml 1*m22+m21*m12)/factor1;
mi[4][4] = (m21*m44*m32*m13-m21*m12*m33*m44+m21*m12*m43*m34-

m31 *m22*m44*m13 -
ml l *m23*m44*m32+m44*m31 *m23*m12+1n44*m33*m22*ml l-

m34*m43 *m22*ml 1)/factorl ;
mi[4][5] = 0;

mi[5][0] = 0;
mi[5][1] = 0;
mi[5][2] = 0;
mi[5][3] = 0;
mi[5][4] = 0;
mi[5][5] = 1/m66;

74

//Function to compute the coriolis/centrifugal torques matrix
calculate coricen(real_T qdot[6], real_T cor[6][6])

cor[O][0] _ (-1.38*c 1 *s 1 *gdot[0]) +
0.5*gdot[1]*(0.6*s23*c23 - 0.744*s2*s23 + 0.744*c2*c23) +
0.5*gdot[2]*(0.6*s23*c23 - 0.744*s2*s23 + 0.744*c2*c23);

cor[O][1] = 0.5*gdot[0]*(0.6*s23*c23 - 0.744*s2*s23 + 0.744*c2*c23) +
0.5*gdot[l]*(1.38*c2 + 0.268*s23 - 0.0476*s2) +
0.5*gdot[2]*(0.268*s23 - 0.00397*c23);

cor[O][2] = 0.5*gdot[0]*(0.6*s23*c23 + 0.744*c2*c23) +
0.5*gdot[1]*(0.268*s23 - 0.00397*c23) +
0.5*gdot[2]*(0.268*s23 - 0.00794*c23);

cor[1][0] = 0.5*gdot[0]*(-0.6*s23*c23 + 0.744*s2*s23 -0.744*c2*c23) +
0.199*gdot[2]*c23;

cor[1][1] = 0.372*qdot[2]*c3;

cor[1][2] = 0.00199*gdot[0]*c23 + 0.372*gdot[1]*c3 +
0.5*gdot[2]*(0.744*c3 + 0.022*s3);

cor[2][0] = 0.5*gdot[0]*(-0.6*s23*c23 + 0.744*s2*s23 -0.744*c2*c23) +
0.00199*qdot[2]*c23;

cor[2][1] = 0.372*qdot[2]*c3;

cor[2][2] = 0.00199*gdot[0]*c23 + 0.372*gdot[1]*c3 +
0.5*gdot[2]*(0.744*c3 + 0.022*s3);

cor[0][3] = 0;
cor[0] [4] = 0;
cor[O][5] = 0;
cor[1][3] = 0;
cor[1][4] = 0;
cor[l][5] = 0;
cor[2][3] = 0;
cor[2] [4] = 0;
cor[2][5] = 0;
cor[3][0] = 0;
cor[3][1] = 0;
cor[3][2] = 0;
cor[3][3] = 0;
cor[3][4] = 0;

75

cor[3][5] = 0;
cor[4][0] = 0;
cor[4][1] = 0;
cor[4]{2} = 0;
cor[4][3] = 0;
cor[4][4} = 0;
cor[4][5} = 0;
cor[5}[0] = 0;
cor[5]{1} = 0;
cor[5][2] = 0;
cor[5][3] = 0;
cor[5][4] = 0;
cor[5}[5} = 0;

76

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

