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ABSTRACT 

The aim of the thesis is to develop an efficient dynamic control such as point to 

point and continuous path control strategy for Robot manipulator using fuzzy logic 

controller (FLC) and Neuro-Fuzzy controller. Owing to the advantage of learning 

ability & unique characteristics, which enable them to control the Robot manipulators. 

Interfacing the neural and fuzzy logic with the Robot manipulator is one of the 

means of getting the rapid convergence of actual joint angle trajectory to the desired 

joint angle trajectory. 

In this work, we have taken the example of the PUMA560 robot 

(Programmable Universal Machine for Assembly) and modeled the Fuzzy controller 

and ANFIS Controller, we have studied also performances obtained from Fuzzy 

controller,ANFIS and conventional PID controller, with the help of SIMULINK, Fuzzy 

logic Toolbox of The MATLAB 7.01 Software. • Results are compared with the 

conventional PID controller. 
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INTRODUCTION 

1.1 INTRODUCTION TO ROBOT CONTROL 

Up till now, the majority of practical approaches to the industrial robot arm 

controller design use traditional techniques, such as PD or PID controllers, by treating 

each joint of the manipulator as a simple linear servomechanism. In designing these kinds 

of controllers, the non-linear, coupled and time-varying dynamics of the mechanical part 

of the robot manipulator system are completely ignored, or are dealt with as disturbances. 

These methods generally give satisfactory perfornance when the robot operates at a low 

speed. However, when the links are moving simultaneously and at a high speed, the non-

linear coupling effects and the interaction forces between the manipulator links, may 

degrade the performance of the overall system and increase the .tracking errors. The 

disturbances and uncertainties in a task cycle, may also reduce the tracking quality of 

robot manipulators. Thus, these methods are only suitable for relatively slow manipulator 

motion and for limited-precision tasks. 

The Computed Torque Control (CTC)[2] is commonly used in the research 

community. The CTC control law has the ability to make the error asymptotically stable 

if the dynamics of the robot are exactly known however, manipulators are subject to 

structured and/or unstructured uncertainty. Structured uncertainly is defined as the case of 

a correct dynamic model but with parameter uncertainty due to tolerance variances in the 

manipulator link properties, unknown loads, inaccuracies in the torque constants of the 

actuators, and others. Unstructured uncertainty describes the case of unmodeled dynamics 

which result from the presence of high-frequency modes in the manipulator, neglected 

time-delays and non-linear friction. It has been widely recognized that the tracking 

performance of the CTC method in high-speed operations is severely affected by the 

structured and unstructured uncertainties. To cope with the problem, some adaptive 

approaches have been proposed to maintain the tracking performance of the robotic 

manipulator in the presence of structured uncertainty. Some other researchers have also 
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tried to incorporate the intelligent controlling techniques into the controller design and 

good results were reported. 

The ability of a machine to emulate human behavior has always been the goal of 

artificial intelligence. Neural networks and fuzzy logic systems are two of the most 

important results of research in the area of artificial intelligence. They have been 

effectively applied to everything from voice and image recognition to toasters and 

automobile transmissions. Neural networks are best known for their learning capabilities. 

Fuzzy logic is a method of using human skills and thinking processes in a machine. 

While neural networks and fuzzy logic have added - a new dimension to many 

engineering fields of study, their weaknesses have not been overlooked. In many 

applications, the training of a neural network requires millions of iterative calculations. 

Sometimes the network can not adequately learn the desired function. Fuzzy logic 

systems, on the other hand, acquire their knowledge from an expert who encodes his 

knowledge in a series of IF/THEN rules. Fuzzy logic systems are easy to understand 

because they mimic human thinking. The problem arises when systems have many inputs 

and outputs. Obtaining a rule base for large systems is difficult, if not impossible. 

These weaknesses inherent in the two technologies and their complementary 

strengths, prompted the researchers to look at different ways of combining neural 

networks and fuzzy logic. Due to the relative infancy of this field of study, a consensus 

on the best way to utilize their strengths and compensate for their shortcomings has not 

yet been established. Consequently, research into neuro-fuzzy systems branches in many 

directions. The technique used in this work replaces the rule-base of a traditional fuzzy 

logic system with a back propagation neural network. 

In this thesis it has been demonstrated that independent joint control can be used 

for the projection and execution of the trajectory tracking. The PID, Fuzzy logic and 

ANFIS controllers are used for controlling the robot and a comparison of their 

performances is done. 
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1.2 LITERATURE REVIEW ON FUZZY CONTROL 

L.A.Zadeh, who first introduced the fuzzy logic theory in 1965,combined the 

multi valued logic, probability theory, artificial intelligence and neural networks to 

develop this digital control methodology that simulates human thinking by incorporating 

the impression inherent in all physical systems. [7] 

Mamdani and his coworkers applied the Fuzzy control concept to several systems 

such as steam engines, warm level systems etc, In all cases, the fuzzy controller is located 

at the error channel and is composed by fuzzy algorithm that relays significant observed 

variable to control actions. The fuzzy rules employed depend on the type system under 

control as well as on the heuristic functions used [8] 

M.maeda and S.Murakami, works on tuning of FLC.Most of the Practical 

processes under automatic control are non linear higher order systems and may have 

considerable dead time FLC always does not produce good approximation to the 

controller output required for optimum performances. Only statistic or fixed valued SF's 

and predefined MF's ma not be sufficient to eliminate this drawback. So either the input-

output SF's or the definitions of fuzzy sets are to match the current plant 

characteristics [9] 

S.Z.He, and his coworkers proposed a scheme for self tuning of a conventional 

PID controller using fuzzy rules The proportional sensitivity integral time and derivative 

time are initially calculated using Ziegler Nichols tuning formula these three parameters 

are then modified on line by a single parameter which is updated by rule base defined on 

error and derivative of error shows that there is considerable improvement in the overall 

performances of the controller over it s conventional type [ 10] 

M.Yoshida, and his coworkers gives gain tuning method He assumes all processes 

as first order systems with dead time. The input and output SF's are calculated by some 

empirical relations involving process parameters. Good control performances for higher 

order systems cannot be ensured by this technique. 

H.X.Li and H.B.Gutland are given more emphasis on the tuning of in put and 

output SF's than that of MF's or rule base. They basically suggested a trail and error 
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method for tuning of input and output SF's for a fuzzy PID controller developed from 

two FLC's in parallel one is a PI type and other is PD type. 

1.3 LITERATURE REVIEW ON NEURO-FUZZY CONTROL 

Berenji was the first to develop FLC that is capable of learning as well as tuning 

its parameters by using neural network reinforcement learning method[ 13] 

Jang designs a self-learning fuzzy controller based on temporal back propagation. 

The current state of the system is compared to the desired state and the error is back 

propagated through the system to adjust individual fuzzy parameters this system is also 

called as ANFIS. By testing on an inverted pendulum showed that significant adjustments 

were made on membership function definitions. The trained system exhibited robustness 

and fault tolerance. Since then great deal of work don neuro-fuzzy control[ 14] 

Mones Iskarous and Kazuhiko Kawamura explained about the modeling of the 

physical system with neuro-fuzzy system and explained the control procedure with the 

modeled system[15] 

Gurupreet S. Sandhu and Kuldio S.rahan explained about designing of neuro-

fuzzy controller with the learning procedure, the architecture of the neuro-controller with 

an example of simple transfer function they designed the P controller using neuro-fuzzy 

approach they showed the results that the neuro controller performance is better than the 

P controller[ 16] 

Wen Yu, Xiaoou Li explained about the neuro fuzz modeling using Stable 

Learning Algorithm and they showed the result that the this learning algorithm is far 

better than the conventional algorithms[ 17] 

Oscar Castillo, Patrica Melin are applied the neuro-fuzzy control technique to the 

robot systems they have taken the example of simple two link robot system and 

designed the neuro-fuzzy controller and the compared the results with the conventional 

fuzzy control and showed that response using neuro-fuzzy control is far better than the 

conventional Fuzzy control[18] . 
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DYNAMICS OF ROBOT MANIPULATOR 

2.1 INTRODUCTION 

The manipulator system is a classic control problem that is used industries 

around the world. It is a suitable process to test prototype controllers due to its high 

non-linearities and lack of stability. In this chapter, the dynamical equations of the 

system will be derived, the model will be developed in simulink and basic controllers 

will be developed. The aim of developing an Robot system in simulink is that the 

developed model will have the same characteristics as the actual process. It will be 

possible to test each of the prototype controllers in the simulink environment. Before 

the robot model can be developed in simulink, the system dynamical equations will be 

derived using `Lagrange Equations'. [2] The Lagrangian equations are one of many 

methods of determining the system equations. Using this method it is. possible to 

derive dynamical system equations for a complicated mechanical system such as the 

Robot manpulator. The Lagrange equations use the kinetic and potential energy in the 

system to determine the dynamical equations of the robot system. 

2.2 PUMA ROBOT 

The PUMA robot was initially built by the Unimation Inc. (now defunct), to 

specifications developed by General Motors. PUMA stands for Programmable 

Universal Machine for Assembly[4]. This robot system was the first commercially 

available industry robot. It had all electric drives, and a reasonably sophisticated 

controller. Its controller could be disconnected and replaced by another custom-built 

controller. For these reasons, PUMA became one of the most popular with robotic 

researchers around the world. Figure.2.1 shows the PUMA robot 
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Fig. 2.1 a. puma 560 robot 
	

b. Illustration of Puma 560 robot 

2.3 DYNAMICS OF PUMA560 ROBOT 

The general form of the robot arm dynamic equation is 

M(q)q+C(q,q)q+g(q) = z 	 (2.1) 

Where U. = P,.e + D. de 
dt 

q is angle matrix 

M(q) is mass matrix 

C(q, q) is coriolis/centrifugal matrix 

g(q) is gravity matrix 

Puma is six degree of freedom robot so all matrices for puma robot are the order of 

six by six. For the simplicity these equations are abbreviated as per listed below 

C1  = cos(q(1)), c2  = cos(q(2)), c3  = cos(q(3)), c4  = cos(q(4)), c5  = cos(q(5)), 

C6  = cos(q(6)) 

sl  = sin(q(1)), s2  = sin(q(2)), s3  = sin(q(3)), s4  = sin(q(4)), s5  = sin(q(5)), s6  = sin(q(6)) 

S23  = sin(q(2)+  ( 3 )) 

C23  = cos(q(2)+q (3)) 

MASS MATRIX 

m11  = 2.57 + (1.38*c2 *c2) + (0.3*s23 *523 ) + (0.744*c2*s23) 

m1Z  = (0.69*s2 ) + (-0.134*c23 ) + (0.0238*c2 ) 

m13  = (-0.134*c23 ) + (-0.00397*s23 ) 

R, 



m22  = 6.79 + (0.744*s3 ) 

m23  = 0.333 + (0.372*s3 ) + (-0.011*c3 ) 

m33  = 1.16 

m34  = -0.00125*s4*s5  

m35  = 0.00125*c4 *c5  

m44  = 0.2 

m55  =0.18 

m66  = 0.19 

The mass matrix is symmetric so other equations are 

m21 = m12 m62 = m26 

m31 = m13 m43 = 11134 

m41  = 
11114  1fl53 = 11135 

m51 = m15 	and m63 = m36 

m61 = m1b msa = mas 
m32 = m23 11164  = 11146  

m42 = M24 mss = mss 
11152 = M25 

All other elements in the mass matrix are zero 

(2.2) 
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CORIOLIS/CENTRIFUGAL TORQUES MATRIX 
con„ = (-1.38*c, *s,*q,) + 

0.5*42 *(0.6*s23 *c23  - 0.744*s2 *s23 + 0.744*c2*c23) + 

0.5*43*(0.6*s23*c23 - 0.744*s2  *s23  + 0.744*c2*c23) 

cor12  = 0.5*4,*(0.6*s23*c23 - 0.744*s2 *s23  + 0.744*c2 *c23 ) + 

0.5*42*(1.38*c2  + 0.268*s23  - 0.0476*s2 ) + 

0.5*43*(0.268*s23  - 0.00397*023 ) 

cor13  = 0.5*41 *(O.6*S23 *C23 + 0.744*c2 *c23 ) + 

0.5*q2 *(0.268*s23  - 0.00397*c23 ) + 

O.5*q3 *(0.268*S23  - 0.00794*C23 ) 

cor2 , = 0.5*4,*(-0.6*s23 *c23  + 0.744*s2*s23 -0.744*c2 *c23) + 

0.199*q3  *c23  

cor22  = 0.372*q3*c3 

cor23  = 0.00199*q,*c23  + 0.372*q2*c3  + 

0.5*q3*(0.744*c3  +0.022*s3 ) 

cor31  = 0.5*4,*(-0.6*s23 *c23 + 0.744*s2 *s23  -0.744*c2 *c23 ) + 

0.00199*43 *c23 

cor32  = 0.372*43*c3 

cor33  = 0.00199*a1 *C23  + 0.372*q2 *c3  + 

0.5*4j*(0.744*c3  + 0.022*s3 ) 

(2. 3) 

All other coriolis matrix elements are zero 

GRAVITY MATRIX 

g1  = 0,  g6 =0 

g2  =-37.196*c2  -8.445*s23  +1.023*s2  

g3  =-8.445*sin23 +1.023*cos23 +0.248*cos 23  *c0s45 +cos5  *sin 23  

g4  =0.028*sin23  *sin4  *sins  

g5 =-0.028 * (cos23  * sin 5  + sin Z3  * cos4  * Coss  ) 
	

(2.4) 

All these information and derivation of these equations for PUMA560 given in [4] 



2.4 ACTUATOR FOR THE ROBOT 

This section describes the method that is used to build the actuator model in a 

single joint of a robot arm, assuming that the robot is electrically actuated. An 

analytical description of a DC actuator has been well established in the literature [5]. 

The torque produced by a DC motor is proportional to the armature 

current when the motor is operated in its linear range 

z,n.=k   .iai 	 (2.5) 

Where k,,,i  is known as the motor-torque proportional constant in N-m/A. 

When the motor is rotating it acts like a generator and a voltage develops 

across the armature. This voltage is called back electromotive force (emf), which is 

proportional to a given armature, angular velocity as: 

ebi = lCbi emi 

ebi — kbiemirmi 	km.i  . 

Where kb, is proportionality constant in V- S/rad. 

For puma robot k,,,i  = kb;  

An armature-control led DC motor circuit can be described by a first-order 
differential equation given by 

D 	d ic,i 
vc,i = ebi + l ai Rai + Lai dt 

By solving we will get 

_1` 
lai = 	 f (vai — ebi — lni Rai )dt 

(2.6) 

(2.7) 

(2.8) 
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SPECIFICATION FOR THE ACTUATOR 

R, = 2.1 Ohm k,,,, = 0.189 N-m/A 

Rai =2.1 Ohm k,,,2 = 0.219 N-m/A 
Rai = 2.1 Ohm k,,,3 = 0.202 N-m/A 
R,,, = 6,7 Ohm kiii4 = 0.075 N-m/A 
R., = 6.7 Ohm k,,,5 = 0.066 N-in/A 
R,,, = 6.7 Ohm k,,,6 = 0.066 N-m/A 

Armature inductance for the PUMA 560 robot is very low 

L for all joints is approximately equals to 1 mH 

Maximum and minimum torque that should given to the robot is 

—97.6N—m <r1 <97.6N—m 
—186.4N —m ~ -r2 < 186.4N—m 
—89.4N—m5 r3 <89.4N—m 
—24.2N — m <— r4 <— 24.2N — m 
—20.1N—m —r5 S 20.1N—m 
—21.3N—m Sr <21.3N—m 

Maximum and minimum controlled voltage that should be given to the actuator is 

For all actuators 

v,,,ax = 40volts 
Vmin = —40volts 

Details are given in[4,5,6] 
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FUZZY CONTROL 

31 INTRODUCION 

Due to the continuously developing automation systems and more demanding 

control performance requirements, conventional control methods are not always 

adequate. On the other hand, practical control problems are usually imprecise. The 

input output relations of the system may be uncertain and they can be changed by 

unknown external disturbances. New schemes are needed to solve such problems. 

One such an approach is to utilize fuzzy control. 

Fuzzy control is based on fuzzy logic, which provides an efficient method to 

handle in exact information as a basis of reasoning. With fuzzy logic it is possible to 

convert knowledge, which is expressed in an uncertain form, to an exact algorithm. In 

fuzzy control, the controller can be represented with linguistic if-then rules. The 

interpretation of the controller is fuzzy but the controller is processing exact input-

data and is producing exact output-data in a deterministic way. 

3.2 HISTORICAL BACKGROUND 

Since the introduction of the theory of fuzzy sets by L. A. Zadeh in 1965[7], 

and the industrial application of the first fuzzy controller by E. H. Mamdani in 

1974[8], fuzzy systems have obtained a major role in engineering systems and 

consumer products in the 1980s and 1990s. New theoretical results and new 

applications are presented continuously. 

A reason for this significant role is that fuzzy computing provides a flexible 

and powerful alternative to construct controllers, supervisory blocks, computing units 

and compensation systems in different application areas. With fuzzy sets very 

nonlinear control actions can be formed easily. The transparency of fuzzy rules and 

the locality of parameters are helpful in the design and the maintenance of the 

systems. Therefore, preliminary results can be obtained within a short development 

period. 

However, fuzzy control does have some weaknesses. One is that fuzzy control 

is still lacking generally accepted theoretical design tools.. Although preliminary 

results are achieved easily, further improvements need a lot of. Especially when the 
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number of inputs increases, the maintenance of the multi-dimensional rule base is 

time-consuming. 

3.3 FUZZY CONTROL 

A block diagram of a fuzzy control system is shown in figure the fuzzy 
controller is composed of the following four elements: 

1. A rule-base (a set of If-Then rules), which contains a fuzzy logic quantification of 

the expert's linguistic description of how to achieve good control. 

2. An inference mechanism (also called an "inference engine" or "fuzzy inference" 

module), which emulates the expert's decision making in interpreting and applying 

knowledge about how best to control the plant. 

3. A fuzzification interface, which converts controller inputs into information that the 

inference mechanism can easily use to activate and apply rules. 

4. A defuzzification interface, which converts the conclusions of the inference 

mechanism into actual inputs for the process. 

Fuzzy controller 

Inference : 
0 mechanism 

1:1 
U LI. N 
N 

Rule- base(( c 

Reference input 
r(t) 

inputs 	 Outputs 
11(1) 	Process  

Fig.3.1 Fuzzy controller 

We introduce each of the components of the fuzzy controller for a simple 

problem of balancing an inverted pendulum on a cart, as shown in Figure 3.2. Here, y 

denotes the angle that the pendulum makes with the vertical (in radians), l is the half-

pendulum length (in meters), and u is the force input that moves the cart (in 

Newton's). We will use r to denote the desired angular position of the pendulum. The 

goal is to balance the pendulum in the upright position (i.e., r = 0) when it initially 
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starts with some nonzero angle off the vertical (i.e., y # 0). This is a very simple and 

academic nonlinear control problem, and many good techniques already exist for its 

solution. Indeed, for this standard configuration, a simple PD controller works well 

even in implementation. 

In the remainder of this section, we will use the inverted pendulum as a 

convenient problem to illustrate the design and basic mechanics of the operation of a 

fuzzy control system. 

Fig3.2 inverted pendulum 

3.4 CHOOSING FUZZY CONTROLLER INPUTS AND OUTPUTS 

d e(t) Consider a human-in-the-loop whose responsibility is to control the 

pendulum, as shown in Figure 3.3. The fuzzy controller is to be designed to automate 

how a human expert who is successful at this task would control the system. First, the 

expert tells us (the designers of the fuzzy controller) what information she or he will 

use as inputs to the decision-making process. Suppose that for the inverted pendulum, 

the expert says that she or he will use 

e(t) = r(t) — y(t) 
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d e(t) 
dt 

as the variables on which to base decisions. Certainly, there are many other choices 

(e.g., the integral of the error e could also be used) but this choice makes good 

intuitive sense. Next, we must identify the controlled variable. For the inverted 

pendulum, we are allowed to control only the force that moves the cart, so the choice 

here is simple. 

r 	ILt I 	y' 
Inverted 

>1 	 >1 pendulum 

Fig .3.3 Inverted pendulum on a cart 

Once the fuzzy controller inputs and outputs are chosen, you must determine 

what the reference inputs are. For the inverted pendulum, the choice of the reference 

input r = 0 is clear. In some situations, however, you may want to choose r as some 

nonzero constant to balance the pendulum in the off-vertical position. To do this, the 

controller must maintain the cart at a constant acceleration so that the pendulum will 

not fall. 

3.5 PUTTING CONTROL KNOWLEDGE INTO RULE-BASES 

Suppose that the human expert shown in Figure 3.3 provides a description of 

how best to control the plant in some natural language (e.g., English). We seek to take 

this "linguistic" description and load it into the fuzzy controller, as indicated by the 

arrow in Figure3. 4. 
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r 	+_- 	e 
U 	 V _ 	 Fuzzy 	 Inverted 

controller 	 pendulum 

Fig.3.4 Fuzzy controller for an inverted pendulum 

Linguistic Descriptions 

The linguistic description provided by the expert can generally be broken into 

several parts. There will be "linguistic variables" that describe each of the time 

varying fuzzy controller inputs and outputs. For the inverted pendulum, 

"error" describes e(t) 

"change-in-error" describes - e(t) 

"force" describes u(t) 

Just as e(t) takes on a value of, for example, 0.1 at t = 2 (e(2) = 0. 1), linguistic 

variables assume "linguistic values." That is, the values that linguistic variables take 

on over time change dynamically. Suppose for the pendulum example that "error," 

"change-in-error," and "force" take on the following values: 

"neglarge" 

"negsmall" 

"zero" 

"possmall" 

"poslarge" 

Note that we are using "negsmall" as an abbreviation for "negative small in size" and 

so on for the other variables. Such abbreviations help keep the linguistic descriptions 

short yet precise. For an even shorter description we could use integers: 

"-2" to represent "neglarge" 

"-1" to represent "negsmall" 
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"0" to represent"zero" 

"1" to represent "possmall" 

"2" to represent "poslarge" 

The linguistic variables and values provide a language for the expert to 

express her or his ideas about the control decision-making process in the context of 

the framework established by our choice of fuzzy controller inputs and outputs. Recall 

that for the inverted pendulum r = 0 and e = r — y so that 
e  _ _y  

and 

dt 
(e) 
	dt (y)  

since d (r) = 0. First, we will study how we can quantify certain dynamic behaviors 

with linguistics. In the next subsection we will study how to quantify knowledge 

about how to control the pendulum using linguistic descriptions. 

For the inverted pendulum each of the following statements quantifies a 

different configuration of the pendulum 

• The statement "error is poslarge" can represent the situation where the pendulum is 

at a significant angle to the left of the vertical. 

• The statement "error is negsmall" can represent the situation where the pendulum is 

just slightly to the right of the vertical, but not too close to the vertical to justify 

quantifying it as "zero" and not too far away to justify quantifying it as "neglarge." 

• The statement "error is zero" can represent the situation where the pendulum is very 

near the vertical position (a linguistic quantification is not precise, hence we are 

willing to accept any value of the error around e(t) = 0 as being quantified 

linguistically by "zero" since this can be considered a better quantification than 

"possmall" or "negsmall"). 

• The statement "error is poslarge and change-in-error is possmall" can represent the 

situation where the pendulum is to the left of the vertical and, since d (y) the 
dt 

pendulum is moving away from the upright position (note that in this case the 

pendulum is moving counterclockwise). 

• The statement "error is negsmall and change-in-error is possmall" can represent the 

situation where the pendulum is slightly to the right of the vertical and, since () < t   
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0, the pendulum is moving toward the upright position (note that in this case the 

pendulum is also moving counterclockwise). 

It is important to study each of the cases above to understand how the expert's 

linguistics quantify the dynamics of the pendulum (actually, each partially quantifies 

the pendulum's state). 
Rules 

Next, we will use the above linguistic quantification to specify a set of rules (a 

rule-base) that captures the expert's knowledge about how to control the plant. In 

particular, for the inverted pendulum in the three positions shown in Figure 2.5, we 

have the following rules (notice that we drop the quotes since the whole rule is 

linguistic): 

1. If error is neglarge and change-in-error is neglarge Then force is poslarge 

This rule quantifies the situation in Figure 3.5(a) where the pendulum has a 

large positive angle and is moving clockwise; hence it is clear that we should apply a 

strong positive force (to the right) so that we can try to start the pendulum moving in 

the proper direction. 

2. If error is zero and change-in-error is possmall Then force is negsmall 

This rule quantifies the situation in Figure 3.5(b) where the pendulum has 

nearly a zero angle with the vertical (a linguistic quantification of zero does not imply 

that e(t) = 0 exactly) and is moving counterclockwise; hence we should apply a small 

negative force (to the left) to counteract the movement so that it moves toward zero (a 

positive force could result in the pendulum overshooting the desired position). 

3. If error is poslarge and change-in-error is negsmall Then force is negsmall 

This rule quantifies the situation in Figure 3.5(c) where the pendulum is far to 

the left of the vertical and is moving clockwise; hence we should apply a small 

negative force (to the left) to assist the movement, but not a big one since the 

pendulum is already moving in the proper direction. 

The general form of the linguistic rules listed above is 

If premise Then consequent 

17 



 

(a) (b) 	 (c) 

Fig.3.5 Inverted pendulum in various positions. 

Rule-Bases 

Using the above approach, we could continue to write down rules for the 

pendulum problem for all possible cases. Note that since we only specify a finite 

number of linguistic variables and linguistic values, there is only a finite number of 

possible rules. For the pendulum problem, with two inputs and five linguistic values 

for each of these, there are at most 52 = 25 possible rules (all possible combinations 

of premise linguistic values for two inputs). 

A tabular representation of one possible set of rules for the inverted pendulum 

is shown in Table 2.1. Notice that the body of the table lists the linguistic-numeric 

consequents of the rules, and the left column and top row of the table contain the 

linguistic-numeric premise terms. Then, for instance, the (2,-1) position (where the 

"2" represents the row having "2" for a numeric-linguistic value and the "-1" 

represents the column having "-1" for a numeric-linguistic value) has a —1 

("negsmall") in the body of the table and represents the rule 

If error is poslarge and change-in-error is negsmall Then force is negsmall 

which is rule 3 above. Table 3.1 represents abstract knowledge that the expert has 

about how to control the pendulum given the error and its derivative as inputs. 
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TABLE 3.1 Rule Table for the Inverted Pendulum 
"force 

'ii, 
"change-in-error 	e 

—2 —1_ 0 1 2 

:̀ error" 
e 

—2 2 2 2 1 0 
—1 2 2 1 0 — ]. 
0 2 1. 0 —1 —2 
1 1 0 —1 —2 —2 
2 0 —1 —2 —2 —2 

3.6 FUZZY QUANTIFICATION OF KNOWLEDGE 

Up to this point we have only quantified,we will show how to use fuzzy logic 

to fully quantify the meaning of linguistic descriptions so that we may automate, in 

the fuzzy controller, the control rules specified by the expert. 

Membership Functions 

First, we quantify the meaning of the linguistic values using "membership 

functions." Consider, for example, Figure 3.6. This is a plot of a function p versus e(t) 

that takes on special meaning. The function ,u quantifies the certainty that e(t) can be 

classified linguistically as "possmall." To understand the way that a membership 

function works, it is best to perform a case analysis where we show how to interpret it 

for various values of e(t): 

• If e(t) = —ir/2 then p(-2r/2) = 0, indicating that we are certain that e(t) = —2r/2 is not 

"possmall." 

• If e(t) = it/8 then µ(7c/8) = 0.5, indicating that we are halfway certain that e(t) = is/8 is 

"possmall" (we are only halfway certain since it could also be "zero" with some 

degree of certainty—this value is in a "gray area" in terms of linguistic interpretation). 

• If e(t) = r/4 then p(x/4) = 1.0, indicating that we are absolutely certain that e(t) = 7r/4 

is what we mean by "possmall." 

• If e(t) = r then,u(ir) = 0, indicating that we are certain that e(t) = 7r is not "possmall" 

(actually, it is "poslarge") 
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4, 	GGpossmali" 
1.0-I- 

0.5 

4 	2 
	e(t), (rad.) 

Fig. 3.6 Membership functions for linguistic value "possmall." 

Figure 3.6 is only one possible definition of the meaning of "error is possmall"; you 

could use a bell-shaped function, a trapezoid, or many others. 

Now that we know how to specify the meaning of a linguistic value via a 

membership function (and hence a fuzzy set), we can easily specify the membership 

functions for all 15 linguistic values (five for each input and five for the output) of our 

inverted pendulum example. 

-2 	 -1 	0 	 1 	 2 
uglare 	"negsmall' •.Z.ero" 	..possmall" 	"poslarge" 

n 	n 	 n 
— 	— 4 	 d 	2 	e(r). (rad.) 

-2 	 -1 	0 
	

2 
large' 	"negsniall" 
	

"pos(arge" 

_n _n 
4 	8 

n M n d 
16 8 	7e(t). (rad/sec) 

-2 	-1 	0 	1 	2 
"neglki ge,,  "negsmall""zero" "possmall" °poslarge" 

-30 	-20 	-10 	I 	10 	20 	30 u(t), (N) 

Fig.3.7 Membership functions for an inverted pendulum 
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3.7 MATCHING: DETERMINING WHICH RULES TO USE 

The inference process generally involves two steps: 

1. The premises of all the rules are compared to the controller inputs to 

determine which rules apply to the current situation. This "matching" process 

involves determining the certainty that each rule applies, and typically we will 

more strongly take into account the recommendations of rules that we are 

more certain apply to the current situation. 

2. The conclusions (what control actions to take) are determined using the rules 

that have been determined to apply at the current time. The conclusions are 

characterized with a fuzzy set (or sets) that represent the certainty that the 

input to the plant should take on various values. 

We will cover step 1 in this subsection and step 2 in the next. 

Premise Quantification via Fuzzy Logic 

"error is zero and 

quantified with 

0 
"zero 

l~zero 

change-in-error is possmall" 

quantified with 
I 
• possnialI" 

1  A 

1possinaI1 0.5 " I. 	\ 
 

- 4 	I 	1 e(t), (rad.) 31 	3t 	t 

lh 8 	q .e(t) (rad/sec) 

Fig.3.8 Membership functions of premise term 

To see how to quantify the "and" operation, begin by supposing that e(t) _ is/8 and d 

ir/32, so that using Figure 2.8we see that,upre,n ,.,~  

/ zc,r„ (e(t))=0.5,u( , )(u) = min{0.25, /JZeo(u)} 
and 

Itporsma!! ~ dt e(t) 1=0.25 

What, for these values of e(t) and--e(t), is the certainty of the statement 

"error is zero and change-in-error is possmall" 
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that is the premise from the above rule? We will denote this certainty by Pprem,;,.e . 

There are actually several ways to define it: 

• Minimum: Define Ppre,,,;,e = min {0.5, 0.25) = 0.25, that is, using the minimum of the 

two membership values. 

• Product: Define ,upren,~,e = (0.5)(0.25) = 0.125, that is, using the product of the two 

membership values. 

Determining Which Rules Are On 

Determining the applicability of each rule is called "matching." We say that a 

rule is "on at time t" if its premise membership function upremise 	
) dt 

e (t), d e (t) > 0. 

Consider, for the inverted pendulum example, how we compute the rules that 

are on. Suppose that 

e(t)=0; 
and 

dt e(t)=ir/8-72132 = 0.294 

Figure 3.12 shows the membership functions for the inputs and indicates with 

thick black vertical lines the values above for e(t) and d e(t) .Notice that 
dt 

m (e (t)) = 1 but that the other membership functions for the e(t) input are all "off' 

(i.e., their values are zero). For the -_e(t) input we see that / Zero _e(t)
J
= 0.25 and 

fcpo,,,,,Q„ [ _e(t)Jt 	= 0.75 and that all the other membership functions are off. This 
 

implies that rules that have the premise terms 

"error is zero" 

"change-in-error is zero" 

"change-in-error is possmall" 

are on (all other rules have µpre,,,;,_e e (t), t e (t)
J 

= 0. So, which rules are these? Using 

Table 3.1 we find that the rules that are on are the following: 
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I. If error is zero and change-in-error is zero Then force is zero 

2. If error is zero and change-in-error is possmall Then force is negsmall 

Note that since for the pendulum example we have at most two membership 

functions overlapping, we will never have more than four rules on at one time. 

Actually, for this system we will either have one, two, or four rules on at any one 

time. To get only one rule on choose, for example, e(t) = 0 and d e(t) = 2c 8 so that 
dt 

only rule 2 above is on. 

-2 

"neglarge" 
-1  0  1 

"negsmall" «zero' 	"possmall" 
2 

"poslarge" 

_: _7 ~ 
2  4  4 2 e(t), (tad) 

-2 

:`neglarge" 
-1  0  1 

"negsmall" 	4 "zero" "possmall" 
2 

"poslarge" 

_it 	7r 	1 3t n 

	

4 a g 	16 S 4 	e(t), (tad/see) 

Fig.3.9 Input membership functions with input values. 

3.8 INFERENCE STEP: DETERMINING CONCLUSIONS 

Next, we consider how to determine which conclusions should be reached 

when the rules that are on are applied to deciding what the force input to the cart 

carrying the inverted pendulum should be. To do this, we will first consider the 

recommendations of each rule independently. Then later we will combine all the 

recommendations from all the rules to determine the force input to the cart. 

Recommendation from One Rule 
Consider the conclusion reached by the rule 
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If error is zero and change-in-error is zero Then force is zero 

Which for convenience we will refer to as "rule (1)." Using the minimum to represent 

the premise, we have 

Ppremise(„ = min{O.25, 1 }= 0.25 

zero„  

0.25 

-10 	 10 	u(t), (N) 

	

(a) 	 (b) 

Fig.3.10 (a) Consequent membership function and (b) implied fuzzy set with 

membership function ,u(, ) (u) for rule (1) 

Recommendation from Another Rule 

Next, consider the conclusion reached by the other rule that is on, 

If error is zero and change-in-error is possmall Then force is negsmall 

which for convenience we will refer to as "rule (2)." Using the minimum to represent 

the premise, we have 

min{0.75, 1)= 0.75 

	

"negsmall" 	 "neg niall" 

0.75 

-20 	-10 	1 	u(I), (N) 	-20 	-10 	1 	u(t), (N) 

(a) 	 (b) 
Fig.3.11 (a) Consequent membership function and (b) implied fuzzy set with 

membership function ,u(2) (u) for rule (2). 

This completes the operations of the inference mechanism 
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3.9 CONVERTING DECISIONS INTO ACTIONS 

To understand defuzzification, it is best to first draw all the implied fuzzy sets 

on one axis as shown in Figure 3.12. We want to find the one output, which we denote 
by "u 1'' that best represents the conclusions of the fuzzy controller that are 

represented with the implied fuzzy sets. There are actually many approaches to 

defuzzification. We will consider two here 

-1  
A 

0 
"  ne~~small'. 

-30 	-2O 	-10 	10 	20 	30 u(t), (N) 

Fig. 3.12 Implied fuzzy sets. 

Combining Recommendations 

Due to its popularity, we will first consider the "center of gravity" (COG) 

defuzzification method for combining the recommendations represented by the 

implied fuzzy sets from all the rules. Let bi denote the center of the membership 

function (i.e., where it reaches its peak for our example) of the consequent of rule (i). 

For our example we have 

C,11=11111 

b2=-10 

as shown in Figure 3.12 Let 

J
Iu

(1) 
denote the area under the membership function fc(. l .The COG method computes 

ucrisp to be 

(3.1) 

Y, J/Ji 

Using Equation (3.1) with Figure 3.15 we have 

25 



uc„sp _ (0)(4.375)+ (-10)(9.375) = -6.81 
4.375 + 9.375 

as the input to the pendulum for the given e(t) and d e(t) 
dt 

1 

	

"neesmall" 	0 
`  "zero" 

-30 	-20 	-10 
	

10 
 

30 is(t), (N) 

ti rise = -6.81 

Fig.3.13 Implied fuzzy sets. 
It is interesting to note that for our example it will be the case that 

—20:5 UCSlsp c20 

To see this, consider Figure 3.14, where we have drawn the output 
membership functions. Notice that even though we have extended the membership 
functions at the outermost edges past —20 and +20 (see the shaded regions), the COG 
method will never compute a value outside this range 

-2  -1 

neglarge." "nlegsmall" 

VX 
-30 	-20 	-10 

0 	1 	 2 
"possmall" "poslarge" 

111zero".A 	~qs --- ---, 

10 

Fig.3.14 Output membership functions. 
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3.10 GRAPHICAL DEPICTION OF FUZZY DECISION MAKING 

Here, we use the minimum operator to represent the "and" in the premise and 

the implication and COG defuzzification. Product operator is used to represent the 

"and" in the premise and the implication, and choose values of e(t) and a e(t) that 

will result in four rules being on. Then, repeat the process when center-average 

defuzzification is used with either minimum or product used for the premise. Also, 

learn how to picture in your mind how the parameters of this graphical representation 

of the fuzzy controller operations change as the fuzzy controller inputs change.Refer 

[3] for more details on fuzzy control 

..L1.̀ I:, 	 ;• 7̀.1:3:0
.. 

	

— _ — — — _ — ........................... 	0.25 
_ n 	 n e(1) 	C 	 Z n d ( r 	 -10 	 10 	u(t), (N) 
4 	4 	8 	l61 S 7-O 

If error is zero and change-in-error is zero Then 	force is zero 

— — 
ne} mull, zero 	 lwssmall" 	 ~,\ 

— 	— — — 	— 	 0.75 

10), (N) 
4 	 4 	 16 8 	47t h) 

If error is zero and 	change-in-error is possmall Then force is nnegsmall 

Fig 3.15 Graphical representations of fuzzy controller operations. 
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NEURO-FUZZY SYSTEMS 

4.1 INTRODUCTION 

Neuro-fuzzy control is one of the intelligent control methods since knowledge 

engineering is used in neuro fuzzy control. Neuro fuzzy control is usually utilised for two 

purposes. One is for non-linear applications and the other is for adding human 

intelligence to controllers. A linear PD Controller structure is changed by fuzzy logic, 

such that the controller makes the system respond quickly if the error is large 

Recently, the combination of neural networks and fuzzy logic has received 

attention. The idea is to lose the disadvantages of the two and gain the advantages of 

both. Neural networks bring into this union the ability to learn. Fuzzy logic brings into 

this union a model of the system based on membership functions and a rule base. 

Determining the fuzzy membership functions from sample data using a neural 

network is the most obvious method of using the two together[ 13]. The definition of the 

membership function has a huge impact on the system response. Often, the programmer 

must use trial and error to find acceptable values. Assuming a certain shape and finding 

the beginning and endpoints for the fuzzy values in a fuzzy set is a neural network 

optimization problem. Figure 3-1 is a diagram of such a system. 

input 	 Fuzzy Rule Fuzzifier 	 Defuzzifier 
Base 

Neural Network 

Figure.4.1 A fuzzy system whose membership functions are adjusted by a neural 

network. 
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Figure 4.2 shows a more complex integration, the use of neural networks to determine 

both the fuzzy membership functions and the rule base[14]. Scientists have developed a 

system that converts input and output data into nonlinear membership functions and a 

rule base. The nonlinearity of the membership functions is unique to membership 

functions derived by neural networks. They help minimize the number of rules. 

Input 	 Neural Network 	 Outp 

Fuzzifier 	Fuzzy Rule 	Defuzzifier 
Base 

Fig .4.2 A fuzzy system defined by a neural network. 

Another approach is to incorporate fuzzy logic into the neurons of the neural networks.. It 

was quickly realized that neurons with output in the range of [0,1] produced much better 

results. The concept of a fuzzy neuron, however, has advanced beyond simply expanding 

the range of outputs on a crisp neuron. Some researchers have incorporated membership 

functions and rule bases into the individual neurons, as shown in figure 4.3. 

f(1 

Fuzzy f(i 
Inputs 

f(r 

To Next Lay 

Figure .4.3. A neural network of fuzzy neurons. 

Finally, the idea of fuzzification of control variables into degrees of membership in fuzzy 

sets has been integrated into neural networks. See figure4. 4. If the inputs and outputs of 



a neural network are fuzzified and defuzzified, significant improvements in the training 

time, in the ability to generalize, and in the ability to find minimizing weights can be 

realized. Also, the membership function definition gives the designer more control over 

the neural network inputs and outputs. It is this technique that is implemented in this 

thesis for the control of a robotic arm 

Crisp 	 ' 	I Crisp 
Inputs 	Fuzzifier 	 Neural 	 Defuzzifier Outputs 

membership 	
Network 	membership 

/h\ 	values 	 values 
Rule Base  

Fig.4.4 A fuzzy system with neural network rule base 

4.2 ADAPTIVE NETWORKS: ARCHITECTURES AND LEARNING 

ALGORITHMS 

This section introduces the architecture and learning procedure of the adaptive 

network which is in fact a superset of all kinds of feedforward neural networks with 

supervised learning capability. An adaptive network, as its name implies, is a network 

structure consisting of nodes and directional links through which the nodes are 

connected. Moreover, part or all of the nodes are adaptive, which means each output of 

these nodes depends on the parameter(s) pertaining to this node, and the learning rule 

specifies how these parameters should be changed to minimize a prescribed error 

measure. 

The basic learning rule of adaptive networks is based on the gradient descent and the 

chain rule, which was proposed by by Werbos in the 1970's. However, due to the state of 

artificial neural network research at that time, Werbos' early work failed to receive the 

attention it deserved. 
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Since the basic learning rule is based the gradient method which is notorious for 

its slowness and tendency to become trapped in local minima, here we propose a hybrid 

learning rule which can speed up the learning process substantially Both the batch 

learning and the pattern learning of the proposed hybrid learning rule is discussed below, 

though our simulations are mostly based on the batch learning. 

A. Architecture and Basic Learning Rule 

An adaptive network (Figure 4.5) is a multi-layer feedforward network in which each 

node performs a particular function (node function) on incoming signals as well as a set 

of parameters pertaining to this node. The nature of the node functions may vary from 

node to node, and the choice of each node function depends on the overall input-output 

function which the adaptive network is required to carry out. Note that the links in an 

adaptive network only indicate the flow direction of signals between nodes; no weights 

are associated with the links. 

input 
vector 

x1 

x2 

0• 
'. 

:,. 	y 	/ output  

LJ 2  

 
vector  

0 

Figure 4.5: An adaptive network 

To reflect different adaptive capabilities, we use both circle and square nodes in an 

adaptive network. A square node (adaptive node) has parameters while a circle node 

(fixed node) has none. The parameter set of an adaptive network is the union of the 

parameter sets of each adaptive node In order to achieve a desired input-output mapping, 

these parameters are updated according to given training data and a gradient-based 

learning procedure described below 
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Suppose that a given adaptive network has L layers and the k-th layer has 
~ (k) nodes. We can denote the node in the i-th position of the k-th layer by (k, i), 
and its node function (or node output) by O. . Since a node output depends on its 
incoming signals and its kprameter set, we have 

0k =•
1...0#~k 1~ 1 a, b, c, ...) , 	 (4.1) 

where a, b, c, etc. are the parameters pertaining to this node. (Note that we use Os" 
as both the node output and node function.) 

Assuming the given training data set has P entries, we can define the error measure 
(or energy function ) for the p-th (1 <p < P) entry of training data entry as the 
sum of squared errors 

L 
~7+  L 

E = 	(~~n,P _o,
)2 

 
m=1 

(4.2) 

L 

Where Tm,p is the m-th component of p-th target output vector, and °m,p is the m-th 

component of actual output vector produced by the presentation of the p-th input vector. 

P 

Hence the overall error measure is E = I LP 
P=1 

In order to develop a learning procedure that implements gradient descent in E over the 

aE 
parameter space, first we have to calculate the error rate aO for p-th training data and 

for each node output O. The error rate for the output node at (L,i) can be calculated 

readily from equation (4.2) 

aE __ _ _2(T ,P - 
ao

;"P 

For the internal node at (k, i), the error rate can be derived by the chain rule: 

x(k+I) 	 k+l 

	

aEP 	aEP ao _ "" P 

	

aok  a k+l a k 

	

,P 	ni=1 aoni,P aO1'P 

(4.3) 

(4.4) 
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learning (or on-line learning). In the following we will derive a faster hybrid learning rule 

and both of its learning paradigms 

B. Hybrid Learning Rule: Batch Learning 

Though we can apply the gradient method to identify the, parameters in an 

adaptive network, the method is generally slow and likely to become trapped in local 

minima. Here we propose a hybrid learning rule which combines the gradient method and 

the least squares estimate (LSE) to identify parameters. 

For simplicity, assume that the adaptive network under consideration has only one output 
output = F(I,S), 	 (4.9) 

where I is the set of input variables and S is the set of parameters. If there exists a 

function H such that the composite function H o F is, linear in some of the elements of S, 

then these elements can be identified by the least squares method. More formally, if the 

parameter set 5 can be decomposed into two sets 

S = S~ 'S2  (4.10) 

(where O+ represents direct sum) such that HoF is linear in the elements of S2 , then 

upon applying H to equation (4.9), we have 

H(output) = HoF(I,S), 	 (4.11) 

Which is linear in the elements of S2 . Now given values of elements of S1 . we can 
plug P training data into equation (4.11) and obtain a matrix equation 

AX = B 	 (4.12) 

Where X is an unknown vector whose elements are parameters in S2 Let IS2 I = M, then 

the dimensions of A, X and B are P x M, M x 1 and P x 1, respectively. Since P .(number 

of training data pairs) is usually greater than M (number of linear parameters), this is an 

over determined problem and generally there is no exact solution to equation (4.12). 
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Instead, a least squares estimate (LSE) of X, X*, is sought to minimize the squared 

error IIAX — B02. This is a standard problem that forms the grounds for linear regression, 

adaptive filtering and signal processing. The most well-known formula for X* uses the 

pseudo-inverse of X: 

X*_(AT A) 1  A`B 
	

(4.13) 

Where AT  is the transpose of A, and (ATA)  1  A 7  is the pseudo-inverse of A if AT  
A is non-singular. While equation (4.13) is concise in notation, it is expensive in 
computation when dealing with the matrix inverse and, moreover, it becomes ill-
defined if ATA is singular. As a result, we employ sequential formulas to compute 
the LSE of X This sequential method of LSE is more efficient (especially when M 
is small) and can be easily modified to an on-line version (see below) for systems 
with changing characteristics. Specifically, let the ith row vector of matrix A defined 
in equation (4.12) be ai and the ith element of B be b[, then X can be calculated 

Xi+l =Xi +Si+lai+l ( b+l -a+1X ,) 

Siai+l  ai+l  J i 
T 	i=0,1.....p 1 	 (4.14) 

1 + 

where Si  is often called the covariance matrix and the least squares estimate X* is equal 

to X . The initial conditions to bootstrap equation (3.14) are Xo  = 0 and So  = yI , where 7 

is a positive large number and I is the identity matrix of dimension M x M. When 

dealing with multi-output adaptive networks (output in equation (4.9) is a column vector), 

equation (4.14) still applies except that bT  is the i-th rows of matrix B. 

Now we can combine the gradient method and the least squares estimate to update 

the parameters in an adaptive network. Each epoch of this hybrid learning procedure is 

composed of a forward pass and a backward pass. In the forward pass, we supply input 

data and functional signals go forward to calculate each node output until the matrices A 

and B in equation (4.12) are obtained, and the parameters in S2  are identified by the 

sequential least squares formulas in equation (4.14). After identifying parameters in S2  , 

the functional signals keep going forward till the error measure is calculated. In the 

backward pass, the error rates (the derivative of the error measure w.r.t. each node output, 
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see equation (4.3) and (4.4)) propagate from the output end toward the input end, and the 

parameters in S, are updated by the gradient method in equation (4.7). 

For given fixed values of parameters in S1 , the parameters in S2  thus found are 

guaranteed to be the global optimum point in the S2  parameter space due to the choice of 

the squared error measure. Not only can this hybrid learning rule decrease the dimension 

of the search space in the gradient method, but, in general, it will also cut down 

substantially the convergence time. 

Take for example an one-hidden-layer back-propagation neural network with 

sigmoid activation functions. If this neural network has p output units, then the output in 

equation (4.9) is a column vector. Let H (.) be the inverse sigmoid function 

H(x)=in  x  
1.—x 

(4.15) 

Then equation (4.11) becomes a linear (vector) function such that each element of 

H(output) is a linear combination of the parameters (weights and thresholds) pertaining to 

layer 2. In other words, 

SI = weights and thresholds of hidden layer, 

S2  = weights and thresholds of output layer 

Therefore we can apply the back-propagation learning rule to tune the parameters in the 

hidden layer, and the parameters in the output layer can be identified by the least squares 

method. However, it should be keep in mind that by using the least squares method on the 

data transformed by H(.) the obtained parameters are optimal in terms of the transformed 

squared error measure instead of the original one. Usually this will not cause practical 

problem as long as H(.) is monotonically increasing. 

C. Hybrid Learning Rule: Pattern Learning 

If the parameters are updated after each data presentation, we have the pattern 

learning or online learning paradigm. This learning paradigm is vital to the on-line 

parameter identification for systems with changing characteristics. To modify the batch 
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learning rule to its on-line version, it is obvious that the gradient descent should be based 

on E, (see equation (4.5)) instead of E. Strictly speaking, this is not a truly gradient 

search procedure to minimize E, yet it will approximate to one if the learning rate is 

small. 

For the sequential least squares formulas to account for the time-varying 

characteristics of the incoming data, we need to decay the effects of old data pairs as new 

data pairs become available. One simple method is to formulate the squared error 

measure as a weighted version that gives higher weighting factors to more recent data 

pairs. This amounts to the addition of a forgetting factor 2 A to the original sequential 

formula 

X i+l = X i +Si+ l Cat+l (b7+1 —Cli+l X i ) 

S _ 1 
 [S'

S1a1+l a+lSi  
i+l — A 	1 + ai

T  
+1Siai+l 

(4.16) 

4.3 ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM 

The architecture and learning rules of adaptive networks have been described in 

the previous section. Functionally, there are almost no constraints on the node functions 

of an adaptive network except piecewise differentiability. Structurally, the only limitation 

of network configuration is that it should be of feedforward type. Due to these minimal 

restrictions, the adaptive network's applications are.  immediate and immense in various 

areas. In this section, we propose a class of adaptive networks which are functionally 

equivalent to fuzzy inference systems. The proposed architecture is referred to as ANFIS, 

standing for Adaptive-Network-based Fuzzy Inference System. We describe how to 

decompose the parameter set in order to apply the hybrid learning rule. Besides, we 

demonstrate how to apply the Stone-Weierstrass theorem to ANFIS with simplified fuzzy 

if-then rules and how the radial basis function network relate to this kind of simplified 

ANFIS. 
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62 x y 

(b)  

Fig 4.6 (a)fuzzy reasoning (b) equivalent ANFIS. 

A. ANFIS architecture 

For simplicity, we assume the fuzzy inference system under consideration has two inputs 

x and y and one output z. suppose that the rule base contains two fuzzy if-then rules of 

Takagi and Sugeno's type 

Rule 1: If x is A, and y is B,, then f, = p, x + ql y +i,  Rule 
2: If a; is A2 and y is B2 , then j2 =p2x + q2y + r2 

Then the fuzzy reasoning is illustrated in Figure 4.4(a), and the corresponding 
equivalent ANFIS architecture is shown in Figure 4.4(b). The node functions in the 
same layer are of the same function family as described below: 

Layer 1 Every node i in this layer is a square node with a node function 

0"" = IU A (x), 	 (4.17) 
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Where x is the input to node i, and .t, is the linguistic label (small, large, etc.) 
associated with this node function. In other words, O, is the membership function of 
A; and it specifies the degree to which the given x satisfies the quantifier A,. Usually we 
choose PR. (x) t° be bell-shaped with maximum equal to 1 and minimum equal to 0, such 
as 

PA, (x) = 	2 	, 	 (4.18) 
x — c. i+ 	

b! 

Or 

2]b; 

PA, (x) = 
ex{_[[ix—c 	

(4.19)  
ai 

Where {a; , b,, c; { is the parameter set? As the values of these parameters change, the bell- 

shaped functions vary accordingly, thus exhibiting various forms of membership 

functions on linguistic label Ai. In fact, any continuous and piecewise differentiable 

functions, such as commonly used trapezoidal or triangular-shaped membership 

functions, are also qualified candidates for node functions in this layer. Parameters in this 

layer are referred to as premise parameters. 

Layer 2 	Every node in this layer is a circle node labeled II which multiplies the 

incoming signals and sends the product out. For instance 

W I =,uA, (x)x,uB; (y), i=1,2 	 (4.20) 

Each node output represents the firing strength of a rule. (In fact, other T-norm operators 

that perform generalized AND can be used as the node function in this layer.) 

Layer 3 Every node in this layer is a circle node labeled N. The i-th node calculates the 

ratio of the i-th rule's firing strength to the sum of all rules' firing strengths 

= Ẁ  , 	 (4.21) 
W~ + WZ 
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For convenience, outputs of this layer will be called called normalized firing strengths. 

Layer 4 Every node i in this layer is a square node with a node function 
a  ~' O, = W1 f = wi pi x + qi.y + r, , (4.22) 

where ii is the output of layer 3, and {p,,g,.,r,.} is the parameter set. Parameters in this 

layer will be referred to as consequent parameters. 

Layer 5 The single node in this layer is a circle node labeled 	that computes the 

overall output as the summation of all incoming signals, i.e., 

Y,wif 
O, =overall output= vv; f,- = ' 

	
(4.23) 

i 

f — w" f1+ W2 f2 w, w2 
= w, f,+ W2 f2 

(a) 

x 

Y 

f 

(b) 

Figure4. 7: (a) fuzzy reasoning; 

(b) equivalent ANFIS. 

Thus we have constructed an adaptive network which is functionally equivalent 
to a fuzzy inference system shown in fig.3.8. For fuzzy inference systems shown in 
fig4.7, the extension is quite straightforward and the ANFIS is shown in Figure 



4.8 where the output of each rule is induced jointly by the output membership 
funcion and the firing strength. For fuzzy inference systems shown in fig.4.7, if 
we replace the centroid defuzzification operator with a discrete version which 
calculates the approximate centroid of area, then ANFIS can still be constructed 
accordingly. However, it will be more complicated than its versions and thus not 
worth the efforts to do so. 

Figure 4.8 shows a 2-input, ANFIS with 9 rules. Three membership functions are 

associated with each input, so the input space is partitioned into 9 fuzzy subspaces, each 

of which is governed by a fuzzy if-then rule. The premise part of a rule delineates a fuzzy 

subspace, while the consequent part specifies the output within this fuzzy subspace. 

B. Hybrid Learning Algorithm 

From the proposed ANFIS architecture (Figure4.8), it is observed that given the 
values of premise parameters, the overall output can be expressed as linear 
combinations of the consequent parameters. More precisely, the output f in Figure 
8 can be rewritten as 

X~ 

consequentpara .meters  
X 

Vil  

f 

~ 	 7: 	, 

(a) 

promise parameters 

Figure 4.8: (a) 2-input ANFIS with 9 rules; (b) corresponding fuzzy subspaces 
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W1 f' + w, 
f w,  + w2 	w, + w2 f2 

= w, f + w2f2 	 (4.24) 

=(W,x)p, +(W,y)q, +(w,)r +(w2x)p2 + ( i  2y)g2 +(w2)r2 

Which is linear in the consequent parameters (p,, q,, r, ,-p2 , q2  and r2  )As a result, we have 

S = set of total parameters, 

S, = set of premise parameters, 

S2  = set of consequent parameters 

in equation (4.10); H(•) and F(•, •) are the identity function and the function of the 

fuzzy inference system, respectively. Therefore the hybrid learning algorithm 

developed in the previous chapter can be applied directly. More specifically, in the 

forward pass of the hybrid learning algorithm, functional signals go forward till layer 

4 and the consequent parameters are identified by the least squares estimate. In the 

backward pass, the error rates propagate backward and the premise parameters are 

updated by the gradient descent. more details are in[ 14] 
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DESIGN AND SIMULATION IN SIMULINK/MATLAB7.01 

5.1. INTRODUCTION 

The aim of simulation is to develop complete model of the physical system and to 

analyze the system in different ways before going to implement it practically. In my 

dissertation control of puma 560 robot is analyzed with different controllers such as PD, 

Fuzzy and Neuro-Fuzzy. In this chapter design and development of simulink model for 

robot manipulator, Actuator, PD controller, Fuzzy controller and Neuro-Fuzzy controller 

is explained. 

5.2 PUMA560 ROBOT MODEL 

M(q)9' + C(q, q)q + g(q) = 

R = M(q)-' [z — C(q, ')q — g(q)] 
	

(5.1) 

By equation (5.1) we can develop;the simulink model 

Fig .5.1 PUMA560 simulink model 
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Fig 5.1 shows the simulink model of the PUMA 560 robot it contains the following 

blocks 

1. dynamics matrices 

2. gravity term 

3. matrix multiplication 

1. DYNAMICS MATRICES 

U U(E) 	 (- 

Mass Inverse Matrix 
Selector 

Q 
dynamictunc 

nction 	 L—U U(E) 

Coriolis/Centrifugal Matrix 
Selectorl 

Fig 5.2 dynamics matrices 

This block have the two input matrices angles at respective joints and derivatives of 

the angles of the order 6 byl and the two out puts mass inverse matrix and 

coriolis/centrifugal matrix of the order 36 byl (actually these matrices are the order 

of 6 by 6 but they are arranged column wise for the simplicity) 

For this particular block a S-Function is written in C-Language which have two 

inputs of the order 6 by I and one out put of the order 72 by 1. S-Function is used 

because design of two in puts of the order 6 by 1 two out puts of the order 6 by 6 is 

extremely difficult in simulink for this purpose S-Function is used. Code for S-

Function is given in the appendix1. After written the code in C we have to compile 

the Dot C file by the command `MEX' then `.mdl' file will be created in the current 

directory, this `.mdl' file will be useful for the simulink to run the simulation 



2 GRAVITY TERM 

for gload 0 

VITY LOAD 

Fig 5.3 gravity load 

Figure 5.3 shows the gravity load for the manipulator. Expressions for the gravity 

load are explained and given in chapter 4 in this block functional blocks are used we 

can write function in that block since gravity load is function of the angles so we can 

write any function in the functional block 

MATRIX MULTIPLICATION 

This matrix multiplication block shown in fig 5.4 is having two inputs of the order 

36 by 1 and 6 by 1 one output of the order 6 by 1 since one input of the order 36 by 1 

six selectors selects 6 elements column wise one after other and these are 
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concatenated horizontally by matrix concatenation block after this process elements 

become matrix of the order 6 by 6 then product block is used to multiply this matrix 

with second input 2 

U(E) 

6x6 

U 	U(E) 
Horiz Cat 

U 	U(E) 

Selector3 

U U(E) 

Selector4 

U ~(E) 	1* 

Matrix 
Multiply 

Product 	
6x1 product 

OCICLWIU 	 Matrix 

U U(E) 	
Concatenation 

Selector6 

6x1 

Fig5. 4 Matrix multiplication 

By this discussion on design of PUMA560 model is complete 



5.3 ACTUATOR MODEL 

Fig 5.5 shows the simulink model for the actuator. It is designed as per the 

equations and specifications given in the chapter4 

Actuator co nAa ntsl 

Fig. 5.5 Actuator simulink model 
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5.4DESIGN OF PID CONTROLLER 

Equation for the PD controller is 

U, = Pe + D,. dt  + I;  Je  (i=1,2...6)  (5.2) 

Where e is the error 

P is the proportional gain 

D;  is the differential gain 

I;  is the integral gain 

U. is the controller output 

The objective of designing PID controller is to find the P , 	for the optimum 

response of the system 

Hand tuning procedure for the tuning of the PID controller 

a) remove all integral and differential action 

b) tune the proportional gain or increase the proportional P to give the 

desired response ignoring any offset or peak over shoots 

c) then tune the differential gain D;  (increase) until the oscillations are under 

the allowable range 

d) tune the integral gain I, (increase) until the until offset is in the 

allowable range 

e) repeat this until P as large as possible 

By doing this gains are found to be 

I={4020  13.333 1086.6777] 

D;  =[10 63.52.52.32.1]  

I;  =[1063.52.52.32.1] 

In designing considered that controller output should not more than 40 volts 



Fig 5.6 Total system with PID controller 
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Figure 5.7 (a) Response of the robot (point to point control) 

`Di `corresponds to desired trajectory where `i' correspond to joint no 

`Ri `corresponds to response where `i' correspond to joint no 
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Figure 5.7.(b) Response of the robot (trajectory control) 

`Di `corresponds to desired trajectory where `i' correspond to joint no 

`Ri `corresponds to response where `i correspond to joint no 

5.5 DESIGN OF FUZZYPD+I CONTROLLER 
Designing the Fuzzy controller in simulink consists of two steps 

1. Designing the rule base 

2. gain scheduling 

TABLE 5.1 Fuzzy rules 

Ae / e NB NM NS ZE PS PM PB 
NB NB NB NB NM NS NS ZE 

NM NB NM NM NM NS ZE PS 

NS NB NM NS NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PS PM PB 

PM NS ZE PS PM PM PM P11 
PB ZE PS PS PM PB PB PB 

(Ac.. 1.23\ \ 

\ 1"nL) 1 
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Design of rule base 

Table 1 shows the rule base for the Fuzzy PD controller the rule base is to design 

as explained in the second chapter, but complex systems such as robot understanding the 

system behavior is very difficult so set of PD rules were proposed in the[3] these rules 

generally used for the Fuzzy PD controller 

Gain scheduling 

e 

Fuzzy controller 

Fig5. 8 Fuzzy controller with gains 

Gain scheduling means designing ofgo , g, and h for the optimum response of the 

system 

Gain scheduling procedure for the Fuzzy controller 

1. Initially put go  =0 and increase g, until the controller gives the output 

normally, when the signal after the gain g, crosses the universe of discourse 

the there will not be any rule to processes then controller then the output will 

be zero before this happens previously designed gain will be the optimum gain 

for the g, 

2. increase h until the controller will gives the maximum output that will be the 

maximum controller output 

3. then increase go  until overshoots under the allowable range 
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Go to 

Gain 	I 	u  y..,  , . 	L 	ice,„ 
fuzzy controller actuator(Wrotor) 	Subsystem 

I. 

Fig 5.9 System with fuzzy controller 

Fig 5.10 Fuzzy controller 
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Fig5.11 nonlinear output for the Fuzzy PD controller 
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Fig 5.12. (a) Robot response with the FuzzyPD+I controller (point to point) 

`Di `corresponds to desired trajectory where `i' correspond to joint no 

`Ri `corresponds to response where `i' correspond to joint no 
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Fig 5.12.(b) Robot response with the FuzzyPD+I controller (trajectory) 

`Di `corresponds to desired trajectory where `i' correspond to joint no 

`Ri `corresponds to response where `i' correspond to joint no 
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5.6 DESIGN OF NEURO-FUZZY CONTROLLER 

This Neuro-Fuzzy controller can be designed in simulink using the fuzzy logic 

toolbox. About ANFIS already explained in chapter4 .In matlab design of ANFIS 

consists of Training 

Model Learning and Inference through ANFIS 
The basic idea behind these neuro-adaptive learning techniques is very simple. 

These techniques provide a method for the fuzzy modeling procedure to learn 

information about a data set, in order to compute the membership function parameters 

that best allow the associated fuzzy inference system to track the given input/output data. 

This learning method works similarly to that of neural networks. The Fuzzy Logic 

Toolbox function that accomplishes this membership function parameter adjustment is 

called ANFIS. ANFIS can be accessed either from the command line, or through the 

ANFIS Editor GUI. This is explained in[19]. 

Oi0 
Clock To Woftp- 

Fig.5.13 Total robot system with Anifs controller 
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Fig-5.14 ANFIS controller 

input vrihIe iriput1 

Fig 15 membership functions after training 
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Fig.5.16 (a) system response with the Anfis controller (point to point) 

`Di `corresponds to desired trajectory where `i' correspond to joint no 

`Ri `corresponds to response where `i' correspond to joint no 
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Fig.5.16 (b) System response with the Anfis controller (trajectory) 

`Di `corresponds to desired trajectory where `i' correspond to joint no 

`Ri `corresponds to response where `i' correspond to joint no 
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RESULTS 

6.1 RESPONSES OF THE ROBOT FOR POINT TO POINT CONTROL 

There are six joints to be controlled in the ROBOT. 1, 2, 3,4,5,6 radians 

are taken as the desired point at each join respectively, the responses at each joint are 

shown in the figures 6.1-6.6 below. 

1.4 

Fig.6.1 Response at jointl of the Robot for point to point control 
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Fig.6.2 Response at joint2 of the Robot for point to point control 
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Fig.6.3 Response at joint3 of the Robot for point to point control 

f 
C 

2 

59 



4.5 

4 

3.5 

3 

y 2.5 
0 
0 a 
m 2 

1.5 

1 

0.5 

0 
0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2 

time 

Fig.6.4 Response at joint4 of the Robot for point to point control 
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Fig.6.5 Response at joint5 of the Robot for point to point control 
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Fig.6.6 Response at joint6 of the Robot for point to point control 

All the responses of the robot (all joints) for the point to point control with all the 

controllers are shown comparatively in the above figures, from these figures we can 

clearly see that the response using PD controller is normal, with Fuzzy controller 

response is better than the PD because of nonlinear controller output with expert 

knowledge base it gives the better response, and with the ANFIS controller response is 

better than both Fuzzy and the PD controllers,. 
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6.2 RESPONSES OF THE ROBOT FOR TRAJECTORY CONTROL 

There are six joints to be controlled in the ROBOT. Sine waves are chosen as 

desired trajectories with frequency of 2Hz, maximum values of the desired trajectories 

are 1,2,3,4,5,6 radians respectively, the responses at each joint are shown in the figures 

from 6.7-6.12. 
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0.5 
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time 

Fig.6.7 Response atjointl of the Robot for trajectory control 
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All the responses of the robot (all joints) for the trajectory control with all the 

controllers are shown comparatively in the above figures, from these figures we can 

clearly see that the response using PD controller is normal, with Fuzzy controller 

response is better than the PD because of nonlinear controller output with expert 

knowledge base it gives the better response, and with the ANFIS controller response. is 

better than both Fuzzy and the PD controllers 
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CONCLUSIONS 

The study compares the conventional PID control scheme, Fuzzy control scheme 

and Neuro-Fuzzy control scheme. From the results of the first part of the work it has been 

found that conventional control scheme using PID controller is simplest to be 

implemented but it cannot cope with uncertainties in the robot dynamics. 

From the second part of the work incase of Fuzzy based controller has good 

tracking performance only difficulties are designing with the rulebase.Generalized 

rulebase is taken for the fuzzy controller 

Third part of the work in which ANFIS (adaptive neuro fuzzy inference system) is 

designed it has been found good tracking performances. This new method for control 

combines the advantage of neural networks (learning adaptability) with the advantage of 

fuzzy logic (use of expert knowledge) to achieve the goal of robust adaptive control of 

robot dynamics. 

FUTURE SCOPE OF WORK 

The Proposed ANFIS structure uses Temporal back propagation hybrid algorithm. 

The convergence time depends on the number of input membership functions, if the 

number of input membership functions increases then the learning process becomes slow 

and if the no of member ship functions decreases then the Performance of the ANFIS 

controller will become poorer. There is a contradiction between convergence time and the 

performance. This is the main disadvantage of the Temporal back propagation hybrid 

algorithm which used for ANFIS 

The convergence time can be improved by the Genetic based Neuro-Fuzzy 

approach All the parameters of the neuro fuzzy structure can be tuned simultaneously 

using Genetic Algorithm [21] The convergence time using Genetic Algorithm is far 

better the Temporal Back Propagation Algorithm or any other conventional algorithms 

All these well explained in [21]. 
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APPENDIX 

1.Main file for S-Function 
* File : dynamicfunc 
* Abstract: 
* 	All this thing does is calculate the Coriolis/centrifugal torque matrix 
* 	and the kinetic energy (mass) matrix based on q and qdot inputs 

#define S_FUNCTION_NAME dynamicfiinc 
#define S_ FUNCTION_ LEVEL 2 

#include "simstruc.h" 
#include "dynamicfunc.h" 

/* Function: mdllnitializeSizes 

* Abstract: 
* Setup sizes of the various vectors. 
*/ 
static void mdllnitializeSizes(SimStruct *S) 

ssSetNumSFcnParams(S, 0); 
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) 

return; /* Parameter mismatch will be reported by Simulink */ 
} 

if (!ssSetNumInputPorts(S, 2)) return; 
ssSetInputPortWidth(S, 0, 6); 

ssSetlnputPortWidth(S, 1, 6); 

ssSetInputPortDirectFeedThrough(S, 0, 1); 
ssSetInputPortDirectFeedThrough(S, 1, 1); 

if (!ssSetNumOutputPorts(S, 1)) return; 
ssSetOutputPortWidth(S, 0, 72); 

ssSetNumSampleTimes(S, 1); 

/* Take care when specifying exception free code - see sfuntmpl.doc */ 
ssSetOptions(S, SS_ OPTION_ EXCEPTION_FREE__CODE); 



/* Function: mdlInitializeSampleTimes 

* Abstract: 
* Specifiy that we inherit our sample time from the driving block. */ 

static void mdllnitializeSalnpleTimes(SimStruct *S) 
{ 

ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME); 
ssSetOffsetTime(S, 0, 0.0); 

/* Function: mdlOutputs 

*/ 
static void mdlOutputs(SimStruct *S, int T tid) 
{ 

InputRealPtrsType uPtrsO = ssGetInputPortRealSignalPtrs(S,O); 
InputRealPtrsType uPtrs1 = ssGetInputPortRealSignalPtrs(S,1); 

real_T 	*yO = ssGetOutputPortRealSignal(S,0); 
int_T 	 i; 
real_T 	 q[6]; 
real_T 	 gdot[6 ]; 
realT 	 massi.nv[6] [6]; 
real T 	 coricen[6] [6]; 

for(i.=0;i<6;i++) 
{ 

q[i] _ *uPtrsO[i]; 
qdot[i] _ *uPtrs 1 [i]; 

calculate_mass(q); 
calculate massinv(massinv); 
calculate_coricen(gdot, coricen); 

for(i=0; i<6; i++) 
{ 

yO[i] = massinv[0][1]; 
yO[i+6] = massinv[ 1 ] [i]; 

70 



yO[i+12] = massinv[2][i]; 
y0[i+18] = massinv[3][i]; 
yO[i+24] = massinv[4][i]; 
y0[i+30] = massinv[5][i]; 
yO[i+36] = coricen[O][i]; 
yO[i+42] = coricen[1][i]; 
yO[i+48] = coricen[2][i]; 
yO[i+54] = coricen[3][i]; 
yO[i+60] = coricen[4][i]; 
yO[i+66] = coricen[5][i]; 

/* Function: mdlTermin.ate 

* Abstract: 
* No termination needed, but we are required to have this routine. 
*/ 

static void mdlTerminate(Sim.Struct *S) 
{ 
} 

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */ 
#include "simulink.c" 	/* MEX-file interface mechanism */ 
#else 
#include "cg_sfun.h" 	/* Code generation registration function */ 
#endif 

2. Header file for the main file 
//Header for dynamicfunc.c 

#include <math.h> 

real_T cl,c2,c3,c4,c5,c6,c23,sl,s2,s3,s4,s5,s6,s23; 

real_T ml 1,m12,ml3,m14,ml5,m16,m21,m22,m23,m24,m25,m26, 
m31,m32,m33,m34,m35,m36,m41,m42,m43,m44,m45,m46,m51, 
m52,m53 ,m54,m55,m56,m6 1 ,m62,m63,m64,m65,m66; 

void sincos(real_T q[6]) 
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c 1 = cos(q[0]); 
c2 = cos(q[ 1 ]); 
c3 = cos(q[2]); 
c4 = cos(q[3]); 
c5 = cos(q[4]); 
c6 = cos(q[5]); 
sl = sin(q[0]); 
s2 = sin(q[ l ]); 
s3 = sin(q[2]); 
s4 = sin(q[3]); 
s5 = sin(q[4]); 
s6 = sin(q[5]); 
s23 = sin(q[1]+q[2]); 
c23 = cos(q[ 1 ]+q[2]); 

//Function to compute the kinetic energy (mass) matrix 
void calculate_mass(real_T q[6]) 
{ 

sincos(q); 

ml! = 2.57 + (1.38*c2*c2) + (0.3*s23*s23) + (0.744*c2*s23); 
m12 = (0.69*s2) + (-0.134*c23) + (0.0238*c2); 
m13 = (-0.134*c23) + (-0.00397*s23); 
m14=0; 
m15=0; 
rnio = 0; 
m22 = 6.79 + (0.744*s3); 
m23 = 0.333 + (0.372*s3) + (-0.011 *c3); 
m24=0; 
m25=0; 
m26 = 0; 
m33 = 1.16; 
m34 = -0.00125*s4*s5; 
m35 = 0.00125*c4*c5; 
m36=0; 
m44 = 0.2; 
m45 = 0; 
m46 = 0; 
m55 = 0.18; 
m56=0; 
m66 = 0.19; 
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//The mass matrix is symmetric, so now we take care of elements below 
//the diagonal 

m21 = m12; 
m31 = m13; 
m41 = m14; 
m51 =m15; 
m61 = m16; 
m32 = m23; 
m42 = m24; 
m52 = m25; 
m62 = m26; 
m43 = m34; 
m53 = m35; 
m63 ==m36;  
m54 = m45; 
m64 = m46; 
m65 = m56; 

//Function to compute the kinetic energy (mass) matrix inverse 
calculate _massinv(real_T mi[6][6]) 

real T factorl; 

factorl = m21*m12*m34*m55*m43 - m21*m12*m33*m44*m55 + 
m21*m12*m53*m44*m35 + 

m21 *m32*m 13 *m44*m55 + m31 *m23 *m44*m55 *m12 - 
m34*m22*mll*m55*m43 - 

1n53*m44*m22*mll*m35 +m33*m44*m22*ml l*m55 - 
m22*m31*m13*m44*m55 - 

ml 1 *m32*m23 *m44*m55; 

mi[0][0] = (-m44*m22*m35*m53 + m44*m22*m33*m55 - m44*m23*m55*m32 
- m22*m34*m55*m43)/factorl; 

mi[O][1] = (m12*m34*m55*m43- 
m12*m33*m44*m55+ml2*m53*m44*m35+m32*m13*m44*m55)/factorl; 

mi[O][2] = -(m55*m44*(ml3*m22-m12*m23)/factorl); 
mi[O][3] = m34*m55*(ml3*m22-ml2*m23)/factorl; 
mi[O][4] = m35*m44*(ml3*m22-ml2*m23)/factorl; 
mi[O][5] = 0; 
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mi[ 1 ] [0] = -(-m21 *m34*m55 *m43+m21 *m33 *m44*m55-m21 *m53 *m44*m35- 
m31 *m23*m44*m55)/factorl; 

mi[1][1] _ -(m44*ml l *m35*m53- 
m44*ml l *m33*m55+m44*m13*m55*m31+m11 *m34*m55*m43)/factorl; 

mi [ 1 ] [2 ] = m55 *m44 * (m21 *ml 3 ml 1 * m23)/factor 1; 
mi[l][3] = -m34*m55*(m21*ml3-nil l*m23)/factorl; 
mi[1][4] = -m35*m44*(m21*m13-mll*m23)/factorl; 
mi[1][5] = 0; 

mi[2][0] = m55*m44*(m32*m21-in31 *m22)/factorl; 
mi[2] [ 1 ] = m5 5 *m44 * (-m l 1 * m32+m31 *ml  2)/factor l ; 
mi[2][2] = -m55*m44*(-ml 1*m22+m21*m12)/factorl; 
mi[2][3] = m34*m55*(-ml l *m22+m21 *m12)/factorl; 
mi[2][4] = m35*m44*(-ml 1*m22+m21*ml2)/factorl; 
mi[2][5] = 0; 

mi[3][0] m43*m55 *(m32*m2 1 -m3 1 *m22)/factorl; 
mi[3][1] = -m43*m55*(-ml 1*m32+m31*m12)/factorl; 
mi[3][2] = m43*m55*(-ml l*m22+n~21 *ml 2)/factorl; 
mi[3][3] = (m21*ml2*m35*m53- 

m21*m12*m33*m55+m21*m32*m13*m55+m31*m23*m55*m12 - 
m53 *m35 *m22*ml 1+m33 *m55 *m22*ml l-m22*m31 *m 13 *m55- 

ml l *m32*m23*m55)/factorl; 
mi[3][4] = -m43*m35*(-ml 1*m22+m21*m12)/factorl; 
mi[3][5] = 0; 

mi[4][0] = -m53*m44*(m32*m21-m31*m22)/factorl; 
mi[4][1] = -m53*m44*(-ml l *m32+m31 *ml2)/factorl; 
mi[4][2] = m53*m44*(-ml l*m22+m21*ml2)/factorl; 
mi[4][3] = -rn34*m53*(-ml 1*m22+m21*m12)/factor1; 
mi[4][4] = (m21*m44*m32*m13-m21*m12*m33*m44+m21*m12*m43*m34- 

m31 *m22*m44*m13 - 
ml l *m23*m44*m32+m44*m31 *m23*m12+1n44*m33*m22*ml l- 

m34*m43 *m22*ml 1)/factorl ; 
mi[4][5] = 0; 

mi[5][0] = 0; 
mi[5][1] = 0; 
mi[5][2] = 0; 
mi[5][3] = 0; 
mi[5][4] = 0; 
mi[5][5] = 1/m66; 
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//Function to compute the coriolis/centrifugal torques matrix 
calculate coricen(real_T qdot[6], real_T cor[6][6]) 

cor[O][0] _ (-1.38*c 1 *s 1 *gdot[0]) + 
0.5*gdot[1]*(0.6*s23*c23 - 0.744*s2*s23 + 0.744*c2*c23) + 
0.5*gdot[2]*(0.6*s23*c23 - 0.744*s2*s23 + 0.744*c2*c23); 

cor[O][1] = 0.5*gdot[0]*(0.6*s23*c23 - 0.744*s2*s23 + 0.744*c2*c23) + 
0.5*gdot[l]*(1.38*c2 + 0.268*s23 - 0.0476*s2) + 
0.5*gdot[2]*(0.268*s23 - 0.00397*c23); 

cor[O][2] = 0.5*gdot[0]*(0.6*s23*c23 + 0.744*c2*c23) + 
0.5*gdot[1]*(0.268*s23 - 0.00397*c23) + 
0.5*gdot[2]*(0.268*s23 - 0.00794*c23); 

cor[1][0] = 0.5*gdot[0]*(-0.6*s23*c23 + 0.744*s2*s23 -0.744*c2*c23) + 
0.199*gdot[2]*c23; 

cor[1][1] = 0.372*qdot[2]*c3;  

cor[1][2] = 0.00199*gdot[0]*c23 + 0.372*gdot[1]*c3 + 
0.5*gdot[2]*(0.744*c3 + 0.022*s3); 

cor[2][0] = 0.5*gdot[0]*(-0.6*s23*c23 + 0.744*s2*s23 -0.744*c2*c23) + 
0.00199*qdot[2]*c23;  

cor[2][1] = 0.372*qdot[2]*c3;  

cor[2][2] = 0.00199*gdot[0]*c23 + 0.372*gdot[1]*c3 + 
0.5*gdot[2]*(0.744*c3 + 0.022*s3); 

cor[0][3] = 0; 
cor[0] [4] = 0; 
cor[O][5] = 0; 
cor[1][3] = 0; 
cor[1][4] = 0; 
cor[l][5] = 0; 
cor[2][3] = 0; 
cor[2] [4] = 0; 
cor[2][5] = 0; 
cor[3][0] = 0; 
cor[3][1] = 0; 
cor[3][2] = 0; 
cor[3][3] = 0; 
cor[3][4] = 0; 
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cor[3][5] = 0; 
cor[4][0] = 0; 
cor[4][1] = 0; 
cor[4]{2} = 0; 
cor[4][3] = 0; 
cor[4][4} = 0; 
cor[4][5} = 0; 
cor[5}[0] = 0; 
cor[5]{1} = 0; 
cor[5][2] = 0; 
cor[5][3] = 0; 
cor[5][4] = 0; 
cor[5}[5} = 0; 
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