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Abstract 

Since the late 1980s, the study of heart rate variability as a measure of autonomic 

modulation of the cardiovascular system has grown with pace. For this reason, the 

analysis of their variability has gained growing importance both for the clinical 

evaluation and physiological studies. This noninvasive measure provides important 

information about the cardiovascular function in healthy and diseased subjects. Different 

time domain and frequency domain measures are used for the quantification of aifonomic 

involvement in the cardiovascular system. 

In this thesis, Once the RR intervals were extracted from ECG signal, missing beats and 

ectopic beats were taken care of using Cheung's algorithm and visual inspection. The. 

beat-to-beat variability, normally called heart rate variability (HRV) analysis was made 

using Autoregressive (AR) modeling. In AR modeling, the input time series should be 

equi-spaced. Since the time interval between two R peaks is not uniform, interpolation 

and resampling algorithm was implemented to convert it to equi spaced RR' time series. 

In AR modeling, the current sample was estimated as the weighted linear sum of previous 

-values plus white noise. The order of the model (the number of previous values to be 

added) was selected by using standard order selection criteria called Akaik's information 

criteria (AIC) and final prediction error (FPE), where we observed no noticeable 

difference between the two in our study. The validity of the selected model was tested by 

using Anderson's test. 

Feed-forward network with backpropagation algorithm were developed for disease 

classification. During this study, one hundred forty eight cases comprising four diseases 

were used for training and testing of different networks developed for diagnosis of four 

diseases, namely, congestive heart failure (CHF), diabetic mellitus (DM), controlled 

epilepsy (EP) and Ulcerative colitis (UC). The inputs to each network developed were 

three time- and five frequency- domain measures of HRV obtained from the AR model 

we developed. These eight features were selected after rejection of redundant features 

using correlation test. The two main focuses covered in developing the networks were to 

check the presence/ absence of a particular disease and to check whether the sibject is 
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normal or abnormal due to the presence of one/or more of the four diseases considered. 

The networks developed give good results as their performance was measured on 

sensitivity, specificity, accuracy and positive predictive value. 
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CHAPTER # 1 

INTRODUCTION 

1.1 Why HRV and ANN? 
Since the late 1980s, the study of heart rate variability as a measure of autonomic 

modulation of the cardiovascular system has grown with pace. Heart rate is simply the R- 
R  interval of two consecutive cardiac cycles. The variation in the duration of R R interval 
is called heart rate variability (HRV). In normal rhythmic action, the heart rate is 
controlled by the frequency at which the sinoatrial node generates (fires) impulses. 
However, this rhythm is under continuous disturbance from the brain through the 

autonomic fibers, to fulfill the demand of the body. Different activities are involved in 

heart rate variability. Some of these are: position of the body, exercise, smoking, alcohol, 

drugs. It is also found out to be affected by age (one paper to be published), sex, 

race... etc. Emotional states also contribute to its variation (like anger, hostility, 
appreciation... etc.). 

Putting all factors aside, our main interest here is the awareness that different diseases 

(both cardiac and non-cardiac) leave their signature on HRV. So far, different diseases 

have been found out with vivid evidence on HRV. Some of them are: diabetes, epilepsy, 

hypertension, congestive heart failure, arrhythmia, myocardial infraction, and ventricular 

fibrillation. And the list is growing by day following introduction of new computing 

techniques and analysis strategies. 

However, the main limitation for HRV not to be fully implemented in clinical 
applications is its complexity. It is influenced by many factors affecting the mental and 
physical condition of the subject during ECG recording. Apart from this, the lack of gold 

standard in quantitative HRV measures has also its own part to play. But, it is evident that 
subjects of a particular disease have some pattern on HRV measures. This pattern is too 

complicated for mathematical formulation and even not fully understood. 
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This is the point where artificial neural networks come to help to approximate the 

unknown complicated relationship between a particular disease and the hidden pattern in 

it [discussed in later sections]. The remaining sections of this chapter would deal with the 
basic concepts, terms and their brief definitions for a better understanding of the chapters 

to follow. 

1.2 Cardiovascular Signals 
The quantification of the variability in cardiovascular signals provides 

information about the autonomic neural regulation of the heart and circulatory system. 

The heart rate may be increased or decreased from its mean value by slow acting 

sympathetic activity or fast-acting parasympathetic activities respectively. At any instant 

both activities exist, though with different proportion called sympatho-vagal balance 

depending on the physical and mental condition of the subject. Sympathetic activity 

dominates while exercising and parasympathetic dominates during, rest. Periodic 

fluctuation around the mean heart rate mainly originates from regulation of respiration 

and thermoregulation systems. 

1.2.1 Heart Beat 
The overall contraction of the myocardium starts due to the depolarization of 

Sinoatrial (SA) node, which is a group of excitable cells found on the top of the right 

atrium near the entrance of superior vena cava. This is followed by depolarization of the 

cardiac muscle in its surroundings. The stimulation from the SA node is regular and 

spontaneous and is the source of primary pacemaker with in the heart. The potential 

generated by the SA node propagates from the node in all directions along the surface of 

both atria towards the junction of atria and ventricles called atrioventricular(AV) node. If 

the AV node fails to receive it takes over as the cardiac pacemaker but with different 

resonance frequency. The SA node inhibits this pace making whenever its impulses reach 

the AV node. At AV node, the propagation of impulse is delayed by special nerve fibers 
so as to provide proper timing between the pumping action of the atria and the ventricles. 

From AV node, the impulse traverses through the bundle of His, which in turn spreads 

out to right bundle branch and left bundle branches. Both bundle branches further fan out 

into widely distributed rich network specialized conducting fibers, called Purkinji fibers 

in their corresponding ventricular endocardium. 
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Different parts of the heart are involved mainly in two primary and well 

synchronized physiological events, namely, the heart's mechanical activity (pumping of 

the blood) and the heart's electrical activity (the transmission of electrochemical impulses 

for the coordination of the heart's effort). These two activities give rise to heart beat. 

1.2.2 ECG 
The ECG signal is a recording of the time varying electrical activity of the heart. 

Thus, it is primarily a tool for evaluating the electrical events within the heart. The action 

potential of the cardiac muscle cells can be viewed as batteries that cause charge to move 

throughout the body fluids. These moving charges-ions represent the sum of the action 

potentials occurring simultaneously in many individual cells and can be detected and 

converted to electron currents by the recording electrodes at the surface of the skin. There 

are different ECG recording arrangements depending on the number of electrodes 

employed and their position on the body. The typical clinical ECG is recorded using a 12-
Lead arrangement -  where six of them are placed across the chest and the rest are on. the 

extremes of the body. This is mainly used to obtain as much information as possible 

concerning different areas of the heart. The other one is a three-lead arrangement, which 

is commonly used for HRV analysis. In this arrangement, the two leads can either be on 

left arm and left leg (lead I) or left arm and right arm (lead III) or right arm and left leg 

(LEAD II). The third lead is connected to the right leg as a ground point. Out of these 

three configurations, Lead II is commonly used because maximum deflection is obtained 
as per Eithoven's triangle. 

Each beat of the heart can be viewed as a series of deflections away from the 

baseline on the ECG. These deflections reflect the time evolution of electrical activity in 

the heart, which initiates muscle contraction. A single normal cycle of the ECG 

corresponding to one heartbeat is traditionally labeled with , the letters P, Q, R, S, T on 

each of its turning points (figurel.1). The ECG is divided in to the following segments 
and intervals: 
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R 

T 
P 

Q 	S 

Figure 1.1 Electrocardiogram 
P-wave: This is the first deflection, which corresponds to current flows during atrial 

depolarization i.e., a small low-voltage deflection away from the baseline caused by the 

depolarization of the atria prior to atrial contraction as the depolarization wavefront 
propagates from the SA node through the atria. 

PQ-interval: This is the time between the start of atrial depolarization and the beginning 
of ventricular depolarization 

QRS complex: This is the second deflection, which occur approximately 0.15 secs later 
and the largest amplitude(R=1.60mV) portion of the ECG, caused by currents generated 

when the ventricles depolarize prior to their contraction. It is a complex deflection 

because the paths taken by the wave of depolarization through the thick ventricular walls 

differ from instant to instant, and currents generated in the body fluids change direction 

accordingly. Regardless of its form, for example, the Q and/or S portions may be absent; 

the deflection is still called QRS complex. Although atrial repolarization occurs before 

ventricular depolarization, the latter waveform (i.e. the QRS complex) is of much greater 

amplitude and atrial repolarization is therefore not seen on the ECG. 

QT interval: This is the time between the onset of ventricular depolarization and the end 

of ventricular repolarization. Clinical studies have demonstrated that the QT interval 

increases linearly as the RR interval increases. Prolonged QT interval may be associated 

with delayed ventricular repolarization, which may cause ventricular tachyarrythmias 

leading to sudden cardiac death 
ST interval: This is the time between the end of S-wave and the beginning of T-wave. 

Significantly elevated or depressed amplitude away from the baseline are often associated 

with cardiac illness. 
T-wave: This is the final deflection, which is the result of ventricular repolarization, 

whereby the cardiac muscle is prepared for the next cycle of the ECG. 
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1.3 Cardiovascular Regulation 
The role of the ANS is to regulate and coordinate activities to ensure homeostasis 

so that we can cope with ever-changing demands in our daily lives. Though the 

relationship between heart rate, cardiac output and blood ' pressure is not yet clearly 

known, it is still possible to study how the cardiovascular system responds to 

physiological and pathological changes. 

1.3.1 Autonomous Control 
The aim of cardiovascular system is to provide sufficient blood for tissues and 

especially the vital.  organs under all conditions. To carry out this demanding task, a 
variety of different interacting control systems are needed. The heart causes the blood to 

flow. Although the inherent rhythmicity of the heart is due to a natural pacemaker (SA 
node), the rhythm is continuously -modulated by the input from sympathetic and 
parasympathetic nerve impulses from the brain to the sinus node. Whit the sympathetic 

nerves terminate at the SA node, conduction system, atria, ventricles and coronary 

vessels, the parasympathetic fibers of the vagus nerve terminate at the SA and AV nodes, 

atrial and ventricular musculature and coronary vessels. The balance between 

parasympathetic and sympathetic impulses governs the overall pace of the heart. 

1.3.2 Reflexes Controlling Heart Rate 
The stimulus response sequences like the thermoregulatory systems; homeostatic control 

systems etc... are known as reflexes. Although,in some reflexes we know the stimulus 

and/or the response, many reflexes regulating the internal environment occur with out 
any conscious awareness. Many reflexes in the cardiovascular and central nervous 

systems simultaneously stimulate the vagal and sympathetic centers. The overall 
autonomic function is controlled by a central command from the brain. The autonomic 

nervous system operates as a feedback system, and many reflexes regulate heart rate, 

which may increase and/or decrease the sympathetic or parsympathetic activity. 

1.4 Abnormalities in the ECG Rhythms 
HRV analysis is based on the study of the SA node activity as the source of repetitive 

impulses that generate normal heartbeats. The normal activity of the SA node is assumed 

to be regulated, amongst others, by the autonomic nervous systems. In addition to the SA 
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node, other latent pacemakers exist through the heart. Normally, regular conduction of 

the electrical impulse from the SA node and the refractory period of the cells reject any 

other. electrical source except from the SA node. However, some of the additional 

pacemakers may, in certain cases, interpose additional electrical impulses that generate 

ectopic beats, which are usually manifested as a premature beat followed by a longer than 

normal RR interval up to the next normal beat due to a compensatory delay. Therefore, a 

sharp transient appears in the HRV signal. Ectopic beats can appear in ECGs recorded 

from normal subjects as well as from the subjects with cardiac diseases. 

1.5 Pattern Classification using Neural Network (NN) 
Neural networks are used to solve problems in which the complete formulation is 

unknown. That is, no causal model or mathematical representation exists, usually 

because the problem itself is not completely understood. The neural network uses data 

to derive patterns that are relevant in differentiating the groups. Neural network models 

fall in to the category of soft computing, in that solutions are found to approximate 

problems rather than approximating solutions of exact formulafons. 

The main objective of neural network for pattern classification is to classify datasets in 

to their respective classes. This is done by finding the optimum class separator. There 

are different learning algorithms to estimate the class separator. They are mainly 

divided in to two main streams: those that are used for linearly separable sets and those 

that are used for classification of nonlinearly separable sets. Selection of an appropriate 

algorithm depends on the nature of the problem and the type of the data involved. 

Though many learning algorithms may produce results, there is no one answer in 

defining classification functions. Some factors to • consider while selecting a learning. 

algorithm are: Convergence properties, Stability, Accuracy in classifying new cases and 

ability to interpret results. The classification problem involves the following basic 

procedures: 

i) Feature Extraction 

The first objective of pattern classification system is to determine which 

parameters enabled the expertise in the problem domain to distinguish between classes. 

These parameters are often called features. Identification of possible features requires 

domain knowledge relevant to the problem. 
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ii) Learning 

The second objective of a pattern classification system is to find a separator that 

will divide different classes by placing as many samples in to the correct category as 

possible. This process of searching for the optimum separator is called learning. In 

other words, learning is finding out the proper weights between each neuron in the 

network. The choice of separator depends on the complexity of the function 

(relationship between classes). The simplest separator is a straight line, which is used 

only when the functions are linearly separable while complex non-linear functions are 

separated by hyper surfaces in the ideal hypothesis space. 

iii) Generalization 

Once the separator is defined using a set of training datasets, the final objective of 

pattern classification is to use the separator to classify new cases. This is called 

generalization. A well-trained network would give good generalization accuracy. In 

this way, the pattern classification system is used as a decision aid for real world 

applications. Normally, the performance of the network is tested at this stage with 

different measures like accuracy, sensitivity, specificity and positive predictive value. 

1.6 Methodology 
The methodologies implemented in this thesis are i) AR (Autoregressive) 

modeling of HRV for estimating the power spectral density of the R R time series and 

extracting its different spectral and temporal measures (features) and ii) feedforward 

neural network with backpropagation learning algorithm for classification of diseases 

based on the features extracted from i). 

1.7 Conclusion 
In this chapter: sources of HRV, configurations of ECG recording for HRV 

analysis, factors affecting HRV, and limitation of HRV for clinical application, 

have been discussed. Also, fundamentals of NN and their importance to robust the 

clinical importance of HRV were highlighted. Finally, the methodologies to be 

followed through out this paper have been pointed. 
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CHAPTER # 2 

HEART RATE VARIABILITY 

2.1 Introduction 
The.  awareness that the physiologic cardiac rhythm is not entirely regular has been 

widely appreciated for many years. However, until two decades ago, heart rhythm 

variations were virtually ignored in practical cardiology and it was generally believed that 

any irregularity of cardiac function is a pathological phenomenon. This was mainly the 

result of clinical experience with atrial fibrillation and ventricular premature beats both of 

which indicate impaired intracardiac conduction and/or regulatory mechanisms and are 

negative prognostic factors in many cardiac diseases. Therefore, the observations that an 

absolutely regular sinus rhythm is also a negative prognostic factor came as a surprise to 

clinical cardiologists. However, in the last two decades, the interest and the research in 

heart rate variability as a measure of autonomic tone has grown exponentially and along 

with it the need for standards of heart rate variability measures, their clinical 

interpretation arises. This problem was addressed in 1996' by the joint operation of 

European Society of Cardiology and the North American Society for Pacing and 

Electrophysiology. These days, the effects of different activities like smoking, 

alcoholism, exercise and pathological conditions like diabetes, epilepsy, hypertension, on 

heart rate variability draws a huge clinical and research interest[6] 

2.2 Origin of Heart Rate 
Unlike most other muscle innervations, excitation of the heart doesn't proceed 

directly from the central nervous system but is initiated in the sinoatrial(SA) node, or 

pacemaker, a special group of excitable cells. The SA node, situated at the top of the right 

atria, creates an impulse of electrical excitation that spreads across the left and right atria 

; the right atrium receives the earlier excitation because of its proximity to the SA node. 

This excitation causes the atria to contract, and a short time later, stimulates the 

atrioventricular(AV) node. The activated AV node, after a brief delay, initiates an 



impulse into the ventricles, through the bundle of His, and in to the bundle branches that 

connect to the Purkinje fibers in the myocardium. The contraction resulting in . the 

myocardium supplies the force to pump the blood into the circulatory systems. This 

process repeats for life long. The process from the firing of impulses to the contraction of 

the ventricles is called one complete cardiac cycle. The time its takes for one cardiac 

cycle is called Heart Rate. However, in practice, the heart rate is calculated as the time 

interval between consecutive ventricular depolarizations (or RR intervals in ECG). 

2.3 Ectopic Beats 
The conclusion of RR interval analysis methods (both time domain and frequency 

domain) would be misleading, if ectopic beats, which are reflected on RR series as a very 

small interval followed by exceptionally big interval, are not taken care of. 

2.3.1 Sources of ectopic beats 
The sinoatrial (SA) node is the source of repetitive electrical impulses, - which 

generate the electrocardiogram (ECG) waveforms. In addition to the primary pacemaker 

in the sinus node, latent pace makers exist throughout the heart, particularly in the 

atrioventricular (AV) node and the His-Purkinje system. These latent pacemakers may 

interpose additional electrical impulses, which appear as ectopic beats. Therefore, 

disturbances due to either abnormal impulse formation or impaired conductiongives rise 

to extra electrical wavelets or non-sinus beats, disrupting normal sinus-conducted RR 

interval variability. Since modulatory signals from the brain to the heart are embedded as 

variations to beat-to-beat intervals of sinus rhythm, a locally generated aberrant beat will 

appear to temporarily disrupt neurocardiac modulation. The ectopic beat, often 

premature, produces a short beat-to-beat interval followed by a compensatory delay and. 

hence, a longer than normal interval. Therefore a sharp transiert appears in the heart rate 

variability (HRV) signal. Ectopic beats can appear in ECGs recorded from both normal 

subjects and heart disease patients and, therefore, represent a major source of error when 

analyzing HRV data in both the time and frequency cbmain. 

The issue of ectopic beats is dealt usually after QRS detection has been performed 

on the analog ECG signal and before the RR interval time series undergoes HRV'  

computation. Computation of either short —or long-term HRV indices is adversely 

affected by the presence of even a small number of ectopic beats. 
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2.3.2 Effect of Ectopic Beats on HRV Analysis 
Whether dealing with time -domain or frequency-domain analysis, ectopic or 

missing beats introduce significant errors into the HRV statistics. For a patient with a 

0.2% incidence of ectopy (about 7 ectopic beats/hour) with a 50% overlap of HRV data, 

only 30% of the data is useful. During time-domain, analysis of HRV, data is passed 

through various filters, which incorporate only normal sinus beats. Additional logical 

conditions are imposed on the data to eliminate beats, which appear before and after an 

ectopic beat. 

Figure 2.1 shows the effect of ectopic beats on the spectrum analysis of HRV: 

HR HR 

Time 
	 Time 

C 

Peak due to ectopic 

Hz 	 0.8 
	 Hz 0.2 	0.8 

Figure 2.1 A single premature beat causes an abrupt increase followed by a decrease in heart 
rate. A: frequency content of the impulse-like `artifact' is broad; C: is eliminated ; D: by 
removing the spike in time series B: 

For power spectral analysis, HRV signal may be corrected by using either of the two 

methods: 

1. If the HRV time series contains occasional ectopic or anomalous beats, one can 

interpolate around the extra beat(s) and then perform the subsequent power spectral 

analysis 

2. If there are frequent ectopics, it is better to eliminate the segments of the HRV 

signal that contain the ectopics. 
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The first procedure assumes that the beat-to-beat control exerted by the autonomic 

nervous system didn't play a significant role in the generation of ectopics and hence 

ignores such effects. The second procedure simply reduces the number of useful data 

segments for estimation of HRV indices. 

2.3.3 	Ectopic Beat Correction Algorithm 
Though there are different algorithms, which correct HRV signals for ectopics beats 

generated by errors in detection, we-used spline interpolation technique, as it gives better 

estimate for HRV signal because it introduces less high-frequency noise in to the 

computation process[6]. 

Linear spline interpolation is used to compute the value of the heart rate at any instant 

where an ectopic beat appears. If x(n) is the HRV signal for which an ectopic beat exists 

at instant ,n, then estimate: 

x(n) =x(nO) + (x(nl) x(nO)) * (n-n0)/(n1-n0) 

Where x(nO) is the value of the signal at instant immediately prior to n and x(nl) is the 

value of HR at an instant subsequent to n. The algorithm implemented is shown below 

1. Read in the RR interval data from a file [x] 
2. -Initialize i=2,where i is the counter of the RR interval series 

3. Compare x (i) with x (i-1) 

4. While x (i) <1.32*x (i-1) and x(i)>0.245*x(i-1) go to step 5 else go to 

step 6 

5. Increment i and go to step 3 

6. Apply linear interpolation and estimate x (i) using x (i-1) and x (i+1) 

7. Substitute original x (i) by the estimated x (i) 

8. Increment i and go to step 3 

9. Repeat step 3 to step 8 until the last data point is reached 

Figure2.2 Ectopic beat correction algorithm 
After implementing this algorithm, we made a visual inspection and manually adjusted 

the still remaining ectopic beats by substituting the ectopic beat using three consecutive 

beats before the ectopic beat as: 

x(n) = (x(n-1) +x(n-2) +x(n-3))/3 
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The detection of ectopic beat is done by using Cheung's recommendation that the 

maximum expected increase over a single RR interval and the maximum expected 

decrease over a single RR interval are less than 32.5% and 24% respectively of the 

previous interval [6]. 

2.4 Vagal Effects 
The vagal nerves innervate the sinoatrial node, the AV conducting pathways, and 

the atrial muscle. However, whether the vagi provide an efferent control of ventricular 

muscle or not, is not yet resolved. In some animals, like toad and duck, a full efferent 

vagal innervation of ventricles is observed. 

Stimulation of either vagus nerve slows the heart, although the right nerve is said 

to have a greater effect than the left. In addition to its effect on the sinoatrial node, vagal 

activity also slows the AV conduction. This effect seems to be greater in response to the 

left rather than right vagal stimulation and high frequencies of left vagal activity are 

likely to result in complete AV conduction block. 

The most obvious effect of vagal stimulation is to slow, or even to stop the heart. 

The latency of the response of the sinus node is very short, and the effect of a single 

vagal impulse depends on the phase of the cardiac cycle at which it is applied. After a 

single stimulus, the maximum response has been reported to occur within only 

400milliseconds. Thus, vagal stimulation results in a peak response either in the first or 

second beat after its onset. After cessation of vagal stimulation, HR rapidly returns to its 

previous level. The speed of recovery is a little slower than that of the onset, but HR is 

usually restored in less than 5seconds. 

Although the high levels of vagal activity slow the heart, there may be 

circumstances in which small, increases in frequency may actually accelerate it. This is 

because at vagal frequencies close to that of the heart, the cardiac pacemaker cell tends to 

become entrained by the vagal impulses and small increase in vagal frequency may cause 

the heart rate to increase. 

The slowing of HR to vagal stimulation increases with the frequency of 

stimulation. Most of the change in HR is obtained at frequencies of up to 5Hz, and the 

relationship between the change in HR and stimulus frequency can be fitted to hyperbola. 

The gross non-linearity of this relationship suggests that HR may not be the appropriate 
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variable to measure when quantifying the autonomic effects. If pulse-interval, which is a 

function of the reciprocal of HR, is plotted against stimulus frequency, the relationship 

then does become linear. 

	

2.5 	Sympathetic Effects 
Sympathetic postganglionic fibers innervate the entire heart, including the SA 

node, the AV conducting pathways, atrial and ventricular myocardium. Increased activity 

in the sympathetic nerves results in increases in both HR and the force of contraction. In 

addition, the rate of conduction through the heart of cardiac impulse is increased and the 

duration contraction shortened. 

An increase in sympathetic activity forms the principal method of increasing HR 

above the intrinsic level generated by the sinuatrial node to the maximum levels 

achieved. Following the onset of sympathetic stimulation, there is a latent period of iD to 

5 seconds followed by a progressive increase in HR, which reaches a steady level in 20 to 

30 seconds. Note the contrast with the vagal responses, which are almost instantaneous. 

The relationship between frequency of sympathetic efferent activity and HR, like that for 

response to vagal activity, is nonlinear. It can be approximately linearized by use of 

pulse-interval instead of HR, or by plotting stimulus frequency on a semi-logarithmic 

scale. Studies have shown that there is a greater effect on HR from stimulation of the 

right sympathetic nerves than the left, particularly at low frequencies of stimulation. 

	

2.6 	Sympatho-Vagal interaction 
In most circumstances, there is tonic activity in both divisions of the autonomic 

nervous system, and the net effect on HR represents the balance between the two 

antagonistic effects. Clearly, at rest the vagal influence is dominant, but with increasing 

levels of exercise, the vagal activity declines and that of the sympathetic increases. 

However, although the resulting HR is influenced by the activity in both autonomic 

divisions, it cannot be computed by simple addition or subtraction of the separate effects.- 

Studies by Levy and Zieske shows that the effects of simultaneous sympathetic and vagal 

activity are probably equal to the algebraic sum of their independent effects, but only as 

long as these effects are expressed as pulse interval, which -is the variable actually to be 

controlled by the autonomic nerves, rather than the heart rate. 
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2.7 	Reflexes Influencing Heart Rate 
Heart rate, at any instant in time, represents the resultant of many influences on 

the vagal and sympathetic centers (see Table 2.1 below). Some reflexes may increase HR 

through a decrease in vagal tone, an increase in sympathetic activity, or both. Others 

exert the opposite effects. In the intact person or animal, several reflexes are likely to 

operate simultaneously and, for at least some of these, the interaction may be complex. 

Table 2.1. Reflexes influencing Heart Rate 

Reflexes Influencing Heart Rate 
Reflexes causing Bradycardia Reflexes causing Tachycardia 

Baroreceptors Atrial receptors 

Carotid chemoreceptors Aortic chemoreceptors 

Coronary chemoreflex Muscle receptors 

Lung hyperinflation Lung inflation 

In addition to the above-listed reflexes, almost all parts of the body, when 

subjected to intense or noxious stimuli, may result in cardiovascular reflexes. However, 

several regions have been shown to be able to induce reflex cardiovascular effects in 

response to physiological stimuli. The lungs, including airways, pulmonary circulation 

and pulmonary artery, are richly innervated. Lung inflation, with moderate pressures, 

stimulates airways stretch receptors, which are attached to myelinated nerves. This results 

in a reflex increase in HR. The abdominal viscera are richly supplied with afferent nerves 

and the activity in these increases in response to venous congestion. The resulting reflex 

is to increase sympathetic activity to the circulation, leading to hypertension and 

tachycardia. 

Apart from the reflexes, different physiological mechanisms, like breathing 

influences the heart rate regularly, which is commonly termed as rhythmic sinus 

arrhythmia (RSA). It is reflected as an increase in vagal tone. 

2.8 	Standards of HRV measurement 
Heart rate variability represents one of the most promising markers of Autonomic 

activity. The easy derivation of this measure has popularized its use. However, the 

significance and meaning of the many different measures of HRV are imre complex than 
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generally appreciated and there is a potential for incorrect conclusions. Recognition of 

this problem led the European Society of Cardiology and the North American Society of 

Pacing and Electrophysiology to constitute a Task Force charged with the responsibility 

of developing appropriate standards (measures) of HRV. 

2.8.1 Time Domain Measures 
Variations in heart rate may be evaluated by a number of methods. Perhaps the 

simplest to perform are the time domain measures. With these methods either tln heart 

rate at any point in time or the intervals between successive normal complexes are 

determined. In a continuous electrocardiographic (ECG) record, each QRS complex is 

detected, and the so-called normal-to-normal (NN) intervals (that is all intervals between 

adjacent QRS complexes resulting from sinus node depolarizations), or the instantaneous 

heart rate is determined. Simple time-domain variables that can be calculated include the 

mean NN interval, the mean heart rate, the difference between the longest and shortest 

NN interval, the difference between night and day heart rate... etc. Some of the most 

important time domain measures are briefly discussed: 

SDNN (standard deviation of the NN interval): SDNN is the square root of variance. 

Since variance is mathematically equal to total power of spectral analysis, SDNN reflects 

all the cyclic components responsible for the variability in the period of recording. 

Mathematically, 

N 	 N 
(NN1 -Mean)' 	 NN E  

SDNN = 	 , where Mean =  N  and N is. the number of NN 
N 

intervals in the record. 

RMSSD: The square root of the mean of the sum of the squares of differences between 

adjacent NN intervals. 

N-1 

RMSSD =  
N-1 

pNN50count: the number of interval differences of successive NN intervals greater than 
50 ms, 
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pNN50count = NN5Ocoun4 Where NN50count is the number of pairs of adjacent NN 

intervals differing by more than 50ms in the entire recording 

SDSD: Standard deviation of differences between adjacent NN intervals. 
N-1 	 N 1 

(ND;  — MeanND)2 	 ND!  
SDSD = 	 Wh ere ND, = NNi+1 — NN. and MeanND = N  —1   	N —1 

Some of the measures are used for both long- term (12-24Hr) and short-term (2-

5minutes) ECGs, while others are specifically defined for a longterm recording. For 

example SDANN (Standard deviation of the average of NN intervals in all 5minute 
segments of the entire recording), SDNN index (the mean of the standard deviations of 

all NN intervals for all 5minute segments of the entire recording) are some of the indices 
to address the issue of non-stationarity of the long term recording. It should be noted that 

in all the above time domain measures, they could be classified into two main groups: 

measures derived from direct measurement of NN intervals or instantaneous heart rate, 

and those from the difference between NN intervals. Because some of the time domain 

measures like SDNN are dependent on the length of the recording, it is inappropriate to 
compare time domain measures obtained from recordings of different duration. 

2.8.2 Frequency Domain Measures 
Various spectral methods for the analysis of the tachogram have been applied 

since the late 1960s. Power spectral density (PSD) analysis provides the basic 

information of how power (i.e. variance) distributes as a function of frequency. 

Independent of the method employed, proper mathematical algorithms can obtain only an 
estimate of the true PSD of the signals. Just like time domain measures the number of 

useful spectral measures is dependent on the duration of the recording. Three main 

spectral components are distinguished in a spectrum calculated from short —term 

recordings (2-5minutes): very low frequency (VLF), low frequency (LF), and high 

frequency (HF) components. The distribution of the power and the central frequency of 
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LF and HF are not fixed but may vary in relation to changes in autonomic modulations of 

the heart period. The physiological explanation of the VLF component is much less 

defined and the existence of a specific physiological process attribuTable to these heart 

period changes might even be questioned. The non-harmonic component which does not 

have coherent properties and which is affected by algorithms of baseline or trend removal 

is commonly accepted as a major constituent of VLF. Thus VLF assessed from short 

term recordings (e.g. ;5 min) is a dubious measure and is avoided when interpreting the 

PSD of short-term ECGs. Measurement of VLF, LF and HF power components is usually 

made in absolute values of power (ms2), but LF and HF may also be measured in 

normalized units (n.u.) which represent the relative value of each power component in 

proportion to the total power minus the VLF component. The representation of LF and 

HF in n.u. emphasizes the controlled and balanced 'behavior of the two branches of the 

autonomic nervous system. Moreover, normalization tends to minimize the effect on the 

values of LF and HF components of the changes in total power. Nevertheless, n.u. should 

always be quoted with absolute values of LF and HF power in order to describe in total 

the distribution of power in spectral components In the long-term analysis, in addition to 

VLF, LF and HF, ULF (ultra low frequency) component is included. The problem of 

`stationarity' is frequently discussed with long-term recordings. If mechanisms 

responsible for heart period modulations of a certain frequency remain unchanged during 

the whole period of recording, the corresponding frequency component of HRV may be 

used as a measure of these modulations. If the modulations are not stable, interpretation 

of the results of frequency analysis is not well defined. In particular, physiological 

mechanisms.  of heart period modulations responsible for LF and HF power components 

cannot be considered stationary during the 24-h period. Thus, spectral analysis performed 

in the entire 24-h period as well as spectral results obtained from shorter segments (e.g. 5 

min) averaged over the entire 24-h period (the LF and HF results of these two 

computations are not different) provide averages of the modulations attributable to the LF 

and HF components. Such averages obscure detailed information about autonomic 

modulation of RR intervals available in shorter recordings. It should be remembered that 

the components of HRV provide measurements of the degree of autonomic modulations 
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rather than of the level of autonomic tone and averages of modulations do not represent 

an averaged level of tone. 
Selected frequency domain measures are shown in Table 2.2 below [1]. 
Table2.2 Selected frequency domain measures of HRV 

Variable Units Description 

Analysis of short -term recording (5min) 

Frequency 

Range 

5min total power ms2  Variance of NN interval over temporal segment <=0.5Hz 

VLF ms Power in very low frequency range <=0.04Hz 

LF ms Power in low frequency range 0.04-0.15Hz 

LF norm n.0 LFpower in n.u.=LF/(Total power-VLF)*100 
HF ms Power in high frequency range 0.15-0.5Hz 

HF norm n.0 HF power inn.u.=HF/(Total power-VLF)*100 

LF/HF Sympatho-vagal ratio 

Analysis of long-term recording (24Hr) 

Total Power ms2  Variance of all NN intervals <=0.5Hz 

ULF ms Power in ultra low frequency range <=0.003Hz 

VLF ms2  Power in very low frequency range 0.003-0.04Hz 

LF ms Power in low frequency range 0.04-0.15Hz 

HF ms Power in high frequency range 0.15-0.5Hz 

2.9 Approximate correspondence between time-and frequency-domain 

measurements 
When analyzing stationary short-term recordings, more experience and theoretical 

knowledge exists on the physiological interpretation of the frequency-domain measures 

compared to the time—domain measures derived from the same recordings. However, 
many time- and frequency-domain variables measured over the entire 24-h period are 

strongly correlated with each other [1] (see Table 2.3). These strong correlations exist 
because of both mathematical and physiological relationships. In addition, the 

physiological interpretation of the spectral components calculated over 24 h is difficult, 
for the reasons mentioned (section entitled Longterm recordings). Thus, unless special 

investigations are performed which use the 24-h HRV signal to extract information other 



than the usual frequency components the results of frequency-domain analysis are 

equivalent to those of time-domain analysis, which is easier to perform. 
Table 2.3 Correlation between time-and frequency-domain measures of 24 Hr ECGs 

Time domain variables Approximate frequency domain 

correlates 
SDNN Total Power 

RMSSD HF 

SDSD HF 
NN50count HF 

PNN50count HF 
SDANN ULF 

SDNN index Mean of 5 minute total power 

2.10 Pathological Signs on HRV Indices 

Different cardiac and non-cardiac diseases causes the dysfunction of autonomic 

nervous system, either vagal or sympathetic. These dysfunctions are reflected on the 

spectral and temporal measures of HRV [10]. There. are lots of conflicting ideas on the 
clinical interpretation of HRV, mainly due to large inter subject variation and many 

factors like smoking, age, sex, race, alcohols, emotion which further complicate the 

system are involved on the intact heart rate and heart rate variability. However, still 

subjects of a particular disease reflect some uniform pattern. For example, diabetic 

patients generally show a reduced HRV than normal subjects. In hypertension patients, 

LF power is higher than normal subjects. And epilepsy patients are associated with higher 

HF power than normal subjects. Though, the relationship between HRV measures and a 

particular disease is not quantitatively defined, by incorporating artificial intelligence 

(neural network, or neuro-fuzzy systems), it can be estimated and HRV can be a useful 

tool for diagnosis of different diseases. Some of the diseases (conditions), along with 
their effect on HRV are listed in Table 2.4 below [10]. 
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Table 2.4 Sample lists of diseases (conditions) and their effect on HRV 

Disease PLF PHF PVLF/PHF Ptotal 

CHF Low - - - 
Hypertension High - - - 
Epilepsy - High - - 
Asthma Low High - - 
Sleep apnea High Low - - 
Diabetes - - Low 

COPD(chronic 

obstructive 

pulmonary disease) 

Low - Low 

Acute 	Myocardial 

infraction 

- - - Low 

Note: Low and High terms are used in comparison with Normal subjects. 

2.11 Results and Conclusions 
We implemented Cheung's algorithm, and for some data, it detected all the ectopic beats, 

and for others, it didn't detect all ectopics, so we made visual inspection and 

implemented manual corrections. In the following discussions, we take only those cases 

for which the algorithm detects all ectopic beats. Figure 2.3 shows the plot of the RR 

interval from automatic QRS detection algorithm: 

Before ectople beats correction 
0.68 

0.66 

0.64 

0.62 

0.6 

0.56 

0.56 

0.54 

0.52 

0.5 

0.48 0 
	 100 	 200 	 300 	 400 	 500 	 60 

R•P eak Instant of time 

Figure2.3 RR Tachogram before ectopic beat correction algorithm is implemented 
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0.61 

0.6 

0.59 

~ 0.69 

0.57 

0.56 

0.55 

As can be seen clearly, there are three ectopic beats, and after the ectopic beat correction 

algorithm is implemented, the same tachogram looks as shown in Figure 2.4 below: 

After ectopic beats correction 

0 	 100 200 300 400 500 	60 
R-P oak Instant of time 

Figure2.4 RR Tachogram after ectopic beat correction algorithm is implemented 

After removal of ectopic beats we implemented different time domain measures 

of HRV, discussed in the previous sections, for the whole one hundred and forty.eight 

cases under study. The four diseases, CHF, DM, UC, EP and normal cases all are found 

out to have different ranges of those features. This is an early indication of HRV as a 

diagnosis tool. Table 2.5 summarizes the results obtained. 

Table 2.5 Ranges of temporal features for respective diseases (Mean ± SD) 

Parameter Normal CHF DM EP UC 

SDNN 54.3700 ± 23.130 32.99 -* 23.7900 15.3700 ± 20.03 42.8800 ± 17.200 28.2700 ± 14.19 

RMSSD 15.2200 ± 6.6670 15.72 ± 15.3500 3.9100 ± 1.9600 19.7200 ± 10.6900 9.9100 ± 7.1300 

pNN50count .0.0110 ± 0.0119 0.0012 ± 0.0016 0.0001 ± 0.0004 0.0227 ± 0.0221 0.0055 ± 0.0114 

SDSD 15.2190 ± 6.6670 15.721 ± 15.360 3.9100 ± 1.9600 19.7208 ± 10.6900 9.9100± 7.1280 

The results show that SDNN for Normal subjects (54.3700 ± 23.130) is the highest 

where as .DM patients have the lowest SDNN (15.3700 ± 20.03). RMSSD for the EP 

patients (19.7200 ± 10.6900 was found out to be the highest and once again, DM patients 

were reflected as having the lowest RMSSD (3.9100 ± 1.9600). DM and EP subjects were 

also reflected on having the highest and the lowest SDSD and pNN50count measures 

respectively. 
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Table 2.5 indicates that different diseases leave their signature on different HRV time 
domain measures. 

In this chapter, origin of HRV, its temporal and spectral measures, correlation between 

them and finally, some of the diseases, which were found out to be prominent on HRV 

measures, were discussed. 

Two algorithms were implemented: one for detection and correction of u topic beats 

and the other for computing the time domain features. The results showed that 

Cheung's algorithm along with visual inspection removes all ectopic beats detection 

and the simple temporal measures computed for the four diseases and normal cases 

studied gave good basis for further classification. 
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CHAPTER #3 

AUTOREGRESSIVE (AR) MODELING 

3.1 Spectral Analysis Techniques 

There are two approaches in frequency domain to deal with HRV analysis: 

parametric and non-parametric. 	Non-parametric approach utilizes FFT and 

periodiograms directly to the signal. However, this approach has a limitation of low 

frequency resolution in the case of short records and the requirement for windowing to 

reduce the spectral leakage. Parametric approach however, models the data (time series) 

and from the, frequency response of the model, the spectral density is calculated. This 

approach gives a better spectral resolution, no spectral leakage and hence no need for 

windowing. 

The widely known parametric methods are based on.modeling the data sequence 

x(n) as the output of linear system characterized by a rational system function of the 

form 
9 

H z = B(Z)  = 	 bkz-k 	 --------------------------------------------------- 3.1 
A(z) 1+ 	 -k 

k 

The corresponding difference equation is: 
P 	 9 

x(n) = — ak x(n — k) + 	bkw(n — k) -----------------------------------------------(3.2) 

where w(n) is the input sequence to the system and the observed data, x(n) , represents 

the output sequence. 

In power spectrum estimation, the input sequence is not observable. However, if 

the observed data are characterized as a stationary random process, then . the input 

sequence is also assumed to be a stationary random process. In such a case the power 

density spectrum of the data is 
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p(f) = H(f )12 r.(f) -------------------------------------------------------------(3.3) 

where F(f) is the power density spectrum of the input sequence and H(f) is the 

frequency response of the model. 

Since the objective is to estimate the power density spectrum p(f ), it is convenient to 

assume that the input sequence w(n) is a zero-mean white noise sequence with 

autocorrelation 

Y, (m) = cr (m) 

where QW is the variance. Then the power spectrum of the observed data is simply 

P. (f) = Qw JH(f )l2 = a'w B(.f )~ Z ------- - 	 ----------{3.4) 
JA(f )J 

Note that the random process x(n) generated by the pole-zero model in equation 

3.1 and 3.2 is called an autoregressive —moving average (ARMA) process of order 

(p,q). If q=0 and b=1, the resulting system model has a system function H(z) =1/A(z) 

and it's output x(n) is ' called an autoregressive (AR) process of order p. The third 

possible model is obtained by using A(z) =1, so that H(z) = B(z) . Its output x(n) is 

called a moving average (MA) process of order q. 

Since the estimation of the AR parameters results in linear equations (would be 

seen later), AR models are employed for the analysis of HRV in place of ARMA or MA. 

It is also known from Wold decomposition theorem that any stationary ARMA or MA 

process of finite variance can be represented as a unique AR model of appropriate order. 

Hence from now onwards the analysis of AR modeling will be discussed in detail. 

3.2 Autoregressive Spectrum Estimation 

In this method the digitized signal is modeled as an autoregressive (AR) time series 

plus a white noise error term. The spectrum is then obtained from the AR model 

parameters and the variance of the error term. The model parametersare found by solving 

a set of linear equations obtained by minimizing the mean squared error term (the white 

noise power) over all the data. An important consideration is the choice of the number of 

terms in the AR model. That is its order. If the order is too low the power density 
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estimate will be excessively smoothed, so some peaks may be obscured. If the order is 

too high, spurious peaks may be introduced. Hence it is important to determine the 

appropriate model order for each set of data. The design of AR model generally involves 

the following procedures: 

1. Autoregressive model definition 
2. Power spectrum density of AR series 

3. Computation of model parameters-Yule-Walker equations 
4. Model order selection 

3.2.1 Autoregressive Model Definition 
In an AR model of a time series the current value of the series, x(n) , is 

expressed as a linear function of previous values plus an error term, e(n),thus: 

x(n) =—a(1)x(n-1)—a(2)x(n-2)—...—a(k)x(n—k)—...—a(p)x(n —p)+e(n)---(3.5) 

This equation incorporates p previous terms and represents a model of order p. It is 

more compactly written as 
P 	 P 

x(n) _ — a(k)x(n -- k) + e(n) _ — a(k)z k x(n) + e(n)--------------------(3.6) 

where z-k  is the back-shift operator which denotes a delay of k sampling intervals. 
Rewriting equation 3.6: 

P 
x(n)/e(n) =1/(1+ 	a(k)z k ) =-----------------------------------------------{3.7) 

Here, H(z) is interpretable as the z-transform of all- pole IIR digital filter with 

coefficients ,a(k). This filter is called an autoregressive (AR) filter. 

From equation 3.7 x(n) may be regarded as the outputs of this filter caused by the 

random inputs e(n). e(n) represents the error between the value predicted by the 

model s'(n) , and the true datum value ,x(n). e(n) is usually assumed to have the 

properties of white noise, i.e. , it is assumed to have a uniform power density 

spectrum. Thus x(n) may be regarded as having been generated by the AR filter from 

a white noise source. The frequency response of the filter H(f) ,is obtained by 

z=e'`"T  
substituting 	in eqn.7 , where w is the angular frequency and T is the 

sampling period. Hence, 
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H(f)= 	1 	..--_ 
1+ a(k)e T 

3.2.2 Power Spectrum Density of AR Series 
The power spectrum density, N(f), of the AR series x(n), which is our ultimate 

objective of the analysis ,is related to the spectrum density of the white noise error signal 

, 

 

Pe(t) , which is its variance Se2(n), by 

P 

Px(f) = I H(f )l2 Pe(f) = be (n)/(1+ a(k)e T)2 -------------------------{3.9) 

Note that the variance of the noise is the mean square value, which will be denoted by E 

in -the next sections. Once the model parameters are derived, E can be derived from those 

parameters and hence the power spectrum density can be found. 

3.2.3. Computation of Optimum Model Parameters 
The optimum model parameters will be those which minimize the errors, e(n) , for each 

sampled point, x(n). i.e. 
P 

e(n) = x(n) + a(k)x(n — k) 	 (3.10) 

We need to measure the total error over all samples, N(1<=n<=N). The mean square error 

is used to avoid cancellation of positive and negative errors, which may lead to wrong 
conclusion. 

The mean square error is given by: 

E = N ~ e2 = N N (x(n) + P a(k)x(n — k))2 
	

(3.11) 

The requirement is to minimize error defined in equation 3.11. This is achieved by setting 

the partial derivative of E to the each parameter to zero. 

=0 ----------(3.12) 

for 1<=k<=p 
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a 	P aa(k) N a(k)x(n — k) = x(n — k) 

Therefore, equation 3.12 is reduced to 

aE / aa(k) = ~ (x(n) + } a(k)x(n — k))x(n — k) =0 --------------------------{3.13) 

giving for the kth parameter: 
P 	 - 

(~ a(k)x(n — k)x(n — k)) = 	~ x(k) x(n — k) -------------------------{3.14) 

The left-hand side of equation 3.14 can be expanded for each value of k and it will give, 
for example, for k=1, 

R.(0)a(1) +RR(1)a(2)+ .... +R(k)a(k) +...RR(p —1)a(p) = —RR(1) --------(3.15) 

where R(i) is the sum of i-lag autocorrelation of the series x(n). 

For each value of k, 1<=k<=p, a similar equation can be written. These equations may be 

written in matrix form as 

RXX(0) 	RXX(1) 	... 	R,(p-1) a(1)  RXX(1) 

RXX(1) 	RXX(0) 	... 	R,t,t(p-2) a(2)  _ 	- RXX(2) 
RX,(p-1) 	RXX(p-2) 	... 	R(0) a(p) RXX(p) 

----------------------------------------------------------------------------{3.16) 
This is a P*P matrix with P equations and p unknown optimal parameters( a(k)s). Hence 
it is solvable. Hence, by combining equation. 3.11 and equation 3.12 the power spectral 

density as defined in equation 3.13 can be found. 

Once the autocorrelations are evaluated in the process of determining optimum 
parameters, it will be computationally efficient to take advantage of them than solving 

equation.3.15 as it is for mean square error calculation as follows: 

Expanding equation 3.15, 
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E =1 } x(n) + a(k)x(n — k) (x(n) + N a(k)x(n — k)) 

----- - ---------------------------------------------------------------------------------(3.17) 

But for all k values it is seen in equation 3.17 that 

 (x(n) + a(k)x(n — k))x(n — k) =0 

Hence equation 3.17 is reduced to: 

E = 	{x(n)+ a(k)x(n — k) (n) 

x2(n) N no 'f 	 N `~ 

= R~ (0) + 1 a(k)x(n — k) 
N„e 

And finally, 

P 

E = R (0) + 	a(k)R (k) -----------------------------------------------------(3.18) 

Equations 3.14 and the model parameters from equation 3.16 may now be solved 

(efficiently) to obtain the autoregressive power density spectrum. 

Note that the mean square error, E in eqn.11, is computed using the available sampled 

values, x(n), for n=1 to n=N. Previous or succeeding values of x(n) are effectively set to 

zero. This is equivalent to windowing the data, and in the case of non-parametric method 

of spectrum estimation this leads, to spectral smearing by side lobes and reduced 
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resolution. But this is not the case with for the AR method.(Kay 1988). Hence AR 
methods give improved spectral resolution. But, still there is a room for improvement in 
terms of frequency resolution. This can be achieved by basing the method only upon the 
available data (unlike the one shown in equation 11 where 0<n<=N, taking only 
p<=n<=N). There are different methods all based on this concept. Some of them are the 
covariance method, modified covariance method, burg method... etc. 

3.2.4 Model Order Selection 
So far in the preceding sections it has been assumed that the order of the AR model 
which best fits the data is p. If the selection of p is arbitrary, either of the two cases 
would happen: i) if the model order is selected too high, it results in spurious peaks and 
spectral instability. ii) if the order is too low, the spectral peaks would be excessively 
smoothed and the frequency resolution decreases. To avoid these effects standard order 
selection criteria is used. The most common types of order selection criteria are 
developed by Akaike. These are final prediction error, FPE (p) given by 

FPE(P) = N+p  E(P) ---------------------------------------------------------------(3.19) N—p 
And the Akaike information criterion, AIC (p) which is 

AIC(p) = N lnE(p) + 2p 	 -----------------------(3.20) 

And AIC (p) is particularly recommended for short data records, while FPE (p) is for 
longer data records. In this study, emphasis is given for a five-minute recording of ECG 
and hence the derived QRS is of shorter length. Hence AIC is used to compute the order. 

FPE was also implemented and it was observed that there was no difference in their order 
estimation. 

3.2.5 AR Algorithm 
The algorithm implemented in this thesis is depicted in figure 3.1 below. The detail of the 
algorithm as implemented in the program is further shown in the block diagram in figure 
3.2. 
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1. Read in the data file, the sampling frequency and maximum order 

2. Set the order to 1 and go to step 3 

3. Calculate the AR coefficients 

4. Estimate the model using AR coefficients, compute the error, and store it. 

5. While order is less than the maximum order, increment the. order and go tc 

step 3 else go to step 6. 

6. Apply AIC order selection criteria on error array, and select the best order 

7. Calculate the power spectrum for the order selected 

8. Check out the validity of the model. using Anderson's test. 

9. Calculate the power spectrum in LB and HF region by integration method 

Figure 3.1 AR Modeling algorithm 

Here, the algorithm is tested using sinusoidal signal of sampling frequency 50Hz and, it is 

seen that the algorithm effectively estimates the spectrum of the signal. The results of the 

above algorithm are presented in the later sections. The block diagam of the algorithm 

implemented is shown in Figure 3.2 
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Figure 3.2 Flow chart for AR modeling 

3.3 Preprocessors for AR Modeling of HRV 
For the afore-mentioned algorithm to be applied to our application, the original 

recorded ECG should pass through different preprocessing stages, from recording 

settings to equi-spaced RR intervals generation. 
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3.3.1 ECG Recording 
Short—term ECG of 5minute duration was recorded using BIOPAC machine with 

ECG100C module at a sampling frequency of 200Hz. Both base-line wander and noise 

due to power line interference were filtered out using built-in filter circuits. The R-wave 

is detected using the R-wave detector in the module. The R wave detector circuitry 

mainly consist of a 17Hz band pass filter with Q=5, full wave rectifier, and a 10Hz,three 

pole low pass filter with Q=0.707. Once the ECG is recorded and the corresponding R-.  
peaks are detected, the RR intervals are calculated as: 

RRi ° ti-ti-1 	 ----(3.21) 

3.3.2 Correction of Ectopic Beats 
The first preprocessor applied to the RR interval detected from the automatic QRS 

detection algorithm is the ectopic beat detection and correction algorithm. The algorithm 

was implemented and results were discussed in the previous chapters. Once the clean RR 

interval is obtained, the next stage is interpolation and resampling to further prepare our 

data for AR modeling. 

3.3.3 Interpolation and Resampling of Irregularly Sampled R-R 
Intervals 

After ectopic beat correction we have a clean RR time series. However, the RR 

interval, calculated as Iii = t j+j  -- t1 , where t;  is the time instant of normal R peak 

detection, is not yet ready for AR modeling as it needs equi-spaced time series. Consider 

Figure 3.3 hAnw 
Rn- 

R3 

RI 

t' 	t2 	t3 	t4 	--- 	to 	Time(secssl 

Figure33 Irregularly sampled RR interval before interpolation 

As can be seen from the Figure above, the R peak is sampled randomly at instant of time 

t1, t2... t;. This randomness causes the variation in the beat-to-beat interval (equation 

3.21.). This is actually what is called heart rate variability. But, as mentioned in the 



previous sections, to apply AR spectral analysis technique, the time series should be equi-

spaced. This conversion from the irregularly sampled RR series to equi spaced series is 

achieved through interpolation and resampling algorithm discussed below: 

The interpolation technique employed here is linear interpolation based on the 

assumption that there could be no drastic change between two R peaks due to autonomic 

nervous regulation, and if there is, we just simply ignore it because our ultimate purpose 

is to study the modulation of heart rate only by ANS The interpolation is shown in 

Figure 

Rn-1 

R3 
R2 
R1 

ti 	t2 	t3 	t4 	--- 	to 	Time(secs) 
Figure3.4 Interpolation of the irregularly-sampled RR intervals 

3.3.3.1 Interpolation Algorithm 

A different linear template is used for each RR interval marked by 1 and ti+1. That is 

different slope and different intercepts. And each template can be sampled at At interval 

where the selection of At effectively sets the resampling frequency. If we set At = ti*1 — ti  , 

then there is no resampling. 

The general linear function is: 

R=mt+b 

where R is the RR interval and t is the time instant of R-peak detection. The general 

algorithm is shown in Figure 3.5. 
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Figure 3.5 Interpolation and resampling algorithm 

1. Read in the RR interval data from file to variable R 

2. Generate the time instants of each R peak from R 

3. Set the counter i to the first data point. 

4. Calculate the slope m between two consecutive intervals using 

mi = (R1., — R1)1(t1 1 — t1) 

5. Calculate the intercept b between consecutive intervals using 

6. For each interval between two R peak time instants (1+1 and t,) approximate 

RR interval at time t. Where t ranges from t1 to ti+i incrementing in At interval. 

dt=IIf,, where f3  is the resampling frequency 	` 

Rt  =mlt+bl  

7. Increment i until it reaches to the point one less than the last data point and go to 

step 3 

8. Save the resampled data and end 

Now, after implementing this algorithm, we will have a regularly sampled RR time series 

with a sampling frequency of f3  =114t as shown in Figure 3.6 below. 

Rn-1 

R3 
R2 
R1 

ti 	t2 	t3 	t4 	to 	Time(secsl 
Figure.3.6 Regularly sampled RR interval 

Though there are lots of suggestions on the choice of resampling frequency (2Hz, 

4Hz, 6Hz, 8Hz ... ), we set ours to 4Hz. Interpolation means low pass filtering and, the 
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maximum useful frequency in HRV spectral analysis is 0.5Hz. Using Nyquist's theory, 
4Hz would guarantee no signal loss. 

3.4 Standard Guidelines 
Due to the presence of different approaches in dealing with spectral analysis and the 

variations in their clinical interpretation, a common standard is provided by the 

European Society of cardiology (ESC) and the North American Society of Pacing and 

Electophysiology(NASPE) task force jointly. As per the taskforce recommendations, 

any parametric algorithm used for HRV analysis should include the following: 
1. Spectral features listed in Table 2.2 

2. Type of the model used 

3. The central frequency of each spectral component (IF and HF) 
4. The value of the model order 

5. Statistical figures confirming the reliability of the model (Anderson's test) 
6. The range of the order should be approximately in the range 8.20 and complying 

with the reliability test. 

3.5 AR Modeling of HRV: Results 
The model was first tested using one 50Hz sinusoidal, and one containing sum of 40Hz 

and 60Hz sinusoidals with a sampling frequency of 120Hz and duration of 1second. As 

can be seen in the Figure 3.7 below, the algorithm works out as expected giving peak at 

50Hz for the first test signal and two peaks at 40 and 60Hz for the second test signal as 

shown in figure 3.8. 
Spectrum et lion using AR modeling 
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00000000 

Figure3.7AR spectrum estimation of 50Hz sinusoidal test signal 
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Figure3.8 AR spectrum estimation of the sum of 40Hz and 60Hz sinusoidal signal 

And the validity of the model is tested using Anderson's test (Prediction error 
whiteness Test or autocorrelation test). If the randomness of the input signal assumed is 

still intact, then autocorrelations of the data computed for any and all time- lag should be 

near zero. If it is not random, then one or more of the autocorrelations will be 
significantly non-zero. Mathematically: 

Autocorrelation coefficient is calculated as:. 

RI, = Ch  / Ca 	---------------------------------------------- (3.22) 

where C,, is the autocovariance function 

N—h 
C,, = (1/N) 	( t — YMean )li t+l, YMean J ---------------- (3.23) 

And Co  is the variance function- 
N Co  _ 	—YMean)2 
`° 	 -------------------------------------- (3.24) 

N 
where: h is the time lag, Y is the RR time series, N is the length of the RR time 

series , 	is the h time-lagged RR series and YMean  is the mean of the RR series. 
As can be seen from the Figure3.10 below, there is no strong correlation between 

the signals with its delayed equivalent, as expected. Once the test is made on the known 
signals, the model was applied to the equi-spaced RR interval for subjects, whose ECGs 
are recorded in our laboratory using BIOPAC `s ECG100C module with a sampling 
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frequency of 200Hz. Some of the results are shown below. The model was also tested for 

patients with diabetes, Congestive heart failure, Ulcerative colitis and controlled epilepsy 

obtained from AIIMS (All Indian Institute of Medical Science) and physionet.org. Based 

on the estimation of features, it was found out that the model was in agreement with the 

theoretical expectations. For example, in diabetes patients, HRV total power is lower than 

the normal subjects, and this is confirmed by the model estimation. 

I 
Figure 3.9 Anderson's test for sinusoidal test signal 
Here are some of the sample estimates for normal young subjects (2130Yrs of age). 
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Figure3.1OAR spectral estimations ofNORMAL subjects 
And Anderson's test confirms that the randomness is still intact as shown in figure 3.11 
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Fig 3.11 Anderson Test for NORMAL HRV signal for figure3.10 a 

Different diseases have different signatures on the autonomic nervous system. 

Some increase either vagal or sympathetic activity or both while others impair both 

sympathetic and vagal activities. For instance, diabetes generally causes autonomic 

dysfunction as is reflected on the exceptionally low total HRV power. The algorithm was 

tested on the data obtained from AUMS of diabetes patients with , the instance of which 
is shown below in Figure 3.12. The HRV power is very low for DM patients. 
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a). 	 b) 
Figure 3.22 AR estimate of DIABETES patients from ARMS 
The spectral and temporal measures obtained from the model for. the two cases (i.e. 

Normal and Diabetic patients) reflect an instance of pathological signatures on HRV. The 

simulation obtained from 25 Normal and 30 diabetic patients, obtained from AIIMS (All 

Indian Institute of Medical Science) is listed in form of Table 3.1 and Table 3.2. 



Table3.1: Computed HRV measures for NORMAL subjects 

Parameters Units Mean Std 
Phf Sec2  0.0002 0.0003 
Pit Sec2  0.0005 0.0003 
Pvlf Sec2  0.0006 0.0006 
Ptot Sec2  0.0013 0.0009 
Plf/ hf - 3.09 1.558 
Fcentlf Hz 0.0542 0.0153 
Fcenthf Hz 0.1587 0.0300 
Plfnorm n.0 71.74 11.3461 
Phfnorm n.0 28.26 11.3447 
SDNN msec 52.0725 21.1371 
SDSD msec 16.5042 7.4271 
PNN50count - 0.0133 0.0134 

Table 3.2 Computed HRV measures for DIABTES patients 

Parameters Units Mean STD 
Phf Sec2  0.0000 0.0000 
Pif Sec 0.0000 0.0000 
Pvlf Sec2  0.0000 0.0001 
Ptot Sec2  0.0001 0.0001 
Plf/phf - 2.1750 1.2468 
Fcentlf Hz 0.00523 0.0128 
Fcenthf Hz 0.2603 0.1107 
Plfnorm n.0 63.32 15.3968 
Phfnorm n.0 36.69 15.3968 
SDNN msec 15.3733 20.0255. 
SDSD msec 3.9057 1.9555 
PNN50count - 0.0001 0.0004 

It can be clearly seen that the overall HRV power is highly reduced (0.0001) for 
Diabetic patients as compared to Normal subjects (0.0013). And all the time domain 
parasympathetic measures of HRV (SDNN, SDSD, PNN50count), and Phf in frequency 
domain, are highly reduced for diabetic patients. 

The same analysis is made for UC patients, and some of the results are plotted on 

Figure 3J3. 
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Figure 3.13 AR spectrum estimation of Ulcerative colitis subjects from ARMS (a, and c) and 
their corresponding validity check using Anderson's test 
The same process were implemented for twenty three UC patients and their HRV measures were 

summarized in table 3.3 



Table 3.3 Computed HRV measures for UC patients 

Parameters Units Mean Std 
Phi Sec 0.0001 0.0001 

Pif Sec 0.0001 0.0001 

Ptot Sec 0.0004 0.0004 

Plf/phf - 2.6800 2.1100 

Fcenthf Hz 0.2200 0.0720 

Plfnorm n.0 66.300 13.750 

Phfnorm n.0 33.7000 13.75 

SDNN msec 28.2700 14.19 

RMSSD msec 9.9100 7.1300 

PNN50count - 0.0055 0.0114 

It can be seen from table 3.3 that HRV generally decreases compared to the 

normal subjects. However; the central frequency for high frequency (parasympathetic 

component) is seen to shift to higher frequency (0.2200± 0.0720) compared to normal 

cases (0.1560± 0.02500). 

The same model was used to test twenty EP patients. The power spectrum density for the 

two cases is shown in Figure 3.14 along with the Anderson's validity test. 

0040000boomde44coo  I p 

a) 	 b) 

Figure 3.14 AR spectrum estimation of EP subjects from AIIMS (a) and its corresponding 

validity check using Anderson's test(b) 
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Though the pictorial representation is not telling whether the subject is normal, or patient 

with EP diseases, different measures derived from the model can give a clue as shown in 
Table 3.4. Figure 3.14 a indicates that there is no strong correlation of any lag, which assures that 

the assumption of random white noise as an input is still intact. 
Table 3.4 Computed HRV measures for EP patients 

Parameters Units Mean Std 
Phi Sec 0.0004 0.0003 

Plf Sec 0.0003 0.0003 

Ptot Sec 0.0009 0.0007 

Plf/phf - 1.2100 0.9800 

Fcenthf Hz 0.2400 0.0700 

Plfnorm n.0 47.8700, 17.9600 

Phfnorm n.0 52.1200 17.9500 

SDNN cosec 42.8800 17.200 

RMSSD msec 19.7200 10.6900 

PNN50count - 0.0227 0.0221 

While phf slightly increases for EP patients, all the other spectral parameters 

decreases. However, in time domain, EP patients have shown an elevated pNN50count 

and RMSSD. But once again, the total HRV power decreases. HRV being the reflection 

of complicated feedback system in our body, its decrement can be taken as an early sign 

of some kind of pathology. 

The last disease under our study was CHF. We used twenty-nine cases obtained 

from physionet.org, and one instance of its spectral estimation is shown in Figure 3.14. 

Table 3.5 shows the average computed HRV measures of the twenty nine CHF patients. 
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Figure 3.15 Validity check using Anderson's test(a) and AR spectrum estimation of CHF 

subject(b) from physionet.org 

Still, the validity-is intact, as the maximum correlation being less than 0.2 
Table 3.5 Computed HRV measures for CHF patients 

Parameters Units Mean Std 
Phi Sec 0.0000 0.0000 

Plf Sec 0.0000 0.0001 

Ptot Sec 0.0002 0.0003 

Pif/phf - 0.715 0.88500 

Fcenthf Hz 0.727 0.86800 

Plfnorzn n.0 49.059 19.003 

Phfnorm n.0 50.94 19.0031 

SDNN cosec 32.99 23.7900 

RMSSD msec 15.72 15.3500 

PNN50count - 0.0012 0.0016 

The HRV generally decreases for CHF patients as can clearly be seen in table 3.5. 

Generally, for diseased subjects HRV decreases. However, this decrement is highly 
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emphasized with CHF and DM patients. This may imply that these two diseases cause a 

dysfunction of both sympathetic and vagal autonomic activities. 

3.6 Conclusions 
In this chapter, the mathematical background of autoregressive (AR) modeling, 

preparation of HRV signal for AR modeling were discussed and implemented. Finally, 

the application of AR modeling for HRV analysis and its credibility using standard 

algorithmic guidelines have been discussed. Testing of the model using HRV signals 

(both pathological and normal subjects) was made. It is found out that the model works 

effectively as a measure of autonomic tone in cardiovascular system with a clean spectral 

estimation plot. The four pathological cases were studied and we found out that these 

diseases have different effects on different features of HRV. For example while diabetes 

causes all HRV features to reduce, one interesting point noted here was that all diseases 

causes the central frequency of high frequency power to shift to theright [increases]. 



CATER #4 

NEURAL NETWORK FOR DISEASE CLASSIFICATION 

4.1 Introduction 
An artificial neural network is an information- processing system that has certain 

performance characteristics in common with biological neural networks. Artificial neural 
networks have been developed as generalizations of mathematical models of human 

cognition or neural biology, based on the assumption that i) Information processing 
occurs at many simple elements called neurons ii) Signals are passed between neurons 

over connection links iii) Each connection link has an associated weight, which in a 

typical neural net, multiplies the signals transmitted iv) Each neuron applies an 

activation function (usually nonlinear) to its net input, which is sum of weighted input 

signals , to determine its output signal. 

A neural network is characterized by 1) its pattern of connections between the 

neurons (called its architecture), 2) its method of determining the weights on the 

connections (called its training, or learning, algorithm), and 3) its ctivation function. 

4.2 Classification Models 
The most common application of neural networks in biomedical engineering is in 

classification problems. Classification models may be based on neural networks that use 

supervised learning in which data of known classification are used as a training set to 

develop a decision surface that can be used later to classify new data items. There are 

numerous supervised learning approaches that differ both in theory and application. Some 
of them are perceptron, supervised backpropagation, ADALINE, potential functions, and 

min-max networks. Another type of classification model that uses unsupervised learning 

techniques relies on data for which the classification of each case is unknown. These 
methods search for patterns in the data by which each case can be classified and are often 

referred to as clustering. The data are clustered in to groups that contain similar cases, in 
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which similarity is determined by one of a variety of measures. Unsupervised learning 

approaches include Kohnen networks, competitive learning, adaptive resonance theory 

(ART), and Hebian learning. 

Classification networks offer strong techniques for developing decision-making 

models. From now onwards the focus of this thesis will be particularly on the details on 

the design of classification networks. 

4.3 Design Issues in Classification Models 
Unlike other algorithmic solutions, the development of neural networks for a 

particular problem involves a number of intuitive approaches and experiments. It 

demands both the knowledge of the problem in hand and the working of the neural 

networks. Therefore, the following procedure should be followed for using neural 

network for classification efficiently. 

4.3.1 Objective of the Model 
If the model is a . diagnostic model, the purpose is to find a model that will 

correctly classify new cases, or to determine which parameters can aid in differentiating 

among classes, or both? The type of the network affects our ability to obtain the required 

information 

4.3.2 Information Sources 
Before settling for a data-driven approach (like neural networks), it is useful to 

closely examine an application to locate the bulk of the information useful for decision 

making, other methodologies (like knowledge base) available, and determine the amount 

of the effort that will be required for the full development of the information source. 

Figure 4.10 below shows the areas that should be addressed before choosing a 

methodology. If the database exists or can be created with an acceptable. amount of 

additional effort, then the neural network approach is appropriate. If most decision 

making information is in the form of expert opinion, then the knowledge-base approach is 

more appropriate. If a combination of data-derived and expert-derived information is 

available, a hybrid method should be considered. 

The bold arrow shown in Figure 4.10 represents the path followed in this study. 
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Figure 4.1 methodology selection diagram 

4.3.3 Input Data Types 
Some neural networks accept only binary input, where as others accept continuous 

variables as input, or a combination of the two. Decision-making in a number of 

biomedical applications may utilize the following types of input: 
• Binary (yin, absent/present, 0/1) 

■ Continuous (blood pressure, heart rate, etc) 

• Categorical (stable, improved, diminished ... etc.) 
■ Fuzzy (ranges of test values, partial presence of symptom ... etc). 

Ideally, the best choice in our case is, fuzzy approach. Because, there are ranges of 

spectral and temporal features which cannot be defined as a crisp value in any sense. 
However, selection of a fuzzy membership function, and assigning membership value for 

ranges of parameters demands expertise in the problem domain, which we don't have[see 

the methodology path we followed on figure.1]. In addition to that, the variability of our 

input features due to different factors like age, sex, race, smoking, etc. makes it difficult 

to have a standard quantitative description. Moreover, for the reason we are going to 

Y 	 N 
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mention later, and the continuous nature of our data we chose to have a continuous data 

type. 

4.3.4 Interpretation of Outputs 
What type of output do we expect from a classification neural network? The 

primary output is the assignment of the input vector to the correct classification. 

However, it may be possible to learn more than this from the process. The weights 

associated with the input nodes indicate the strength of the contribution of the variable 

toward the classification decision. There are a number of possibilities, which are often 

different for supervised and unsupervised learning. We focus here on supervised learning. 

The three phases of the supervised learning process are training, evaluation, and 

classification. 

i) 	Training 

The objectives of training are: 

1. To find a model that correctly classifies all or most of the cases in the training 

set. 

2. To determine which parameters are important in the model 

3 	To determine the relative importance of each parameter 

The first objective is present in virtually all supervised learning approaches. In 

some cases this may be the only objective. If so,. the user is interested only in the result, 

not in the process that .led_ to the result. If this is the case, the only consideration in 

selecting an algorithm is its effectiveness in obtaining a reliable separation of the data. 

If part of the objective of the training process is to identify the relative 

contributions of input nodes to the output decision, then more attention is given to the 

choice algorithm. For fully connected networks, one obtains a matrix of weights that is 

extremely difficult to interpret. Partially connected networks (like hypernet) provide 

more direct interpretation of results. 

ii) . Evaluation 
Once training has been completed, the accuracy of the model must be tested on 

different data set, the test set. Although this is part of the classification phase, the 

objective is not to classify data, for the proper classification is already known, but to 

compare the classification obtained by the model to the known classification. The 



objective of this phase is to determine the effectiveness of the model, which may be 

measured in terms of sensitivity, specificity, accuracy, and predictive power 

iii) 	Classification 

Use of the model for true classification is seen in the classification of the new data 

for which the prior classification is unknown. At this point, the user is relying on the 

accuracy and ability to generalize the network to perform effectively on new cases. Its 

success in accomplishing accurate classification depends not only on the algorithm but 

also on the data on which it was trained and tested. In multicategory problems, the 

objective may be to establish a differential diagnosis list. A case may be classified as 

belonging to more than one category, which can be accomplisled by the following: 

1. If the network has multiple output nodes, more than one may fire for a particular 

case. 

2. If the problem is formulated as c problems where each problem is to determine 

membership (e.g. absence or presence of disease), membership may be found to hold in 

more than one sub case. 

All multiple results 'would then be considered as possible outcomes. Fuzzy methods may 

carry on from this point providing additional information for differential diagnosis. 

4.4 Network Architecture 
Architecture of a network is defined by the number of input nodes, number of 

hidden nodes, number of hidden layers, number of output nodes and the connection 

between layers. Appropriate choice of architecture decides on the learning capability and 

the speed of learning (convergence). 

The choice of network architecture varies depending on the application, and the 

best architecture is usually achieved by experiment or trial and error. However, as a 

starting point, the following guidelines are useful to avoid unnecessary time wastage in -

training: 

The choice of the number of input nodes and output nodes is completely problem-

dictated and known beforehand. At the beginning, all variables, which seem to affect the 

output of the classification, may be included. After training, depending on the learned 

weight coefficients, some of the input variables may be rejected. One straightforward 

approach to reject unnecessary (redundant) variable is by computing the correlation 



coefficient between the components of the input vector. If there is a strong correlation, 

reject one of the correlated components. Still, the third approach is using expertise 

opinion; some of the components may be regarded as irrelevant by the expertise. The 

number of output nodes may be equal to number of classes, or can be binary coded such 

that more than one output node fire to represent a class [for instance, three nodes may be 

used to represent eight classes from 000 to 1111 

Number of hidden nodes and hidden layers is particularly dependent on the 

complexity of the relation between classes. One way to decide on the number of hidden 

nodes is to take the average of input and output nodes. The other approach is, if the 

number of input nodes is N, 2*N+1 number of hidden nodes should be used for a single 

layer network 

Ideally, a single hidden layer with sufficient number of nodes is a universal 

approximator. But, in some applications, using more than one hidden layer speeds up the 

convergence. 

The connectivity of the layers could be 'feedforward, where each node in alayer 

computes its output and feed forward to the. nodes in the next layer nodes only, or 

recurrent, where each node in a layer is connected both to the previous and to the next 

layer. Also, Each node may be connected to every node in the next layer(full 

connectivity) or to some of the nodes in the next layer(partial connectivity). 

The activation functions. to be used in a network is dependent on the learning 

algorithm to be implemented and would be discussed in the next section. 

Depending on the manner in which they adjust the weights during training, there 

are different learning algorithms. So far, the in depth studied, practically excellent 

working, and simple learning algorithm is backpropagation. This algorithm is 

implemented on the feedforward, fully connected architecture. Backpropagation 

algorithm from the implementation point of view is discussed in detail in the next section. 

4.5 Backpropagation Learning 
The revival of neural networks in 1980's is due to the development of 

backpropagation algorithm, which solved the linearly non-separable XOR problem, 

which was impossible using perceptron learning. Calculat 	t 	r in the hidden 

layer was a problem because the inputs and the outputs to lei en no e 	own to 



the user. In backpropagation, the errors are first calculated from the output la er 
the target values are known), and propagated backward to the hidden 

	 t 	
y (where 

Then, weights are updated using the error term calculated for each connec
tivity 
the input layers. 

4.5.1 Backpropagation algorithm 	
. 

111 Stage 0 initialization 
Step 0 	

Initialize weights (set to small random values) 
Step1. 	

While stopping condition is false, do step 2-9 
Step2. 	For each training pair, do step 3-8 
////stagel feedforward 

Step 3 	
Each input unit receives input signal x, and broadcasts this signal to 

 in the hidden layer above (the hidden units)
°all 

Ste p4  

	

P 	Each hidden unit (zj , j=1... p) sums its weighted input signals, 
 

z4; = vo; + xi v j Where Vii is the weight connecting input unit i to 

Hidden unit j 

Applies its activation function to compute its output signal, 
z1 = ✓  (Zin. ) 

and sends this signal to all units in the layer above (output units) 

	

Step 5. 	Each output unit 
(Yk, k=1,m) sums its weighted input signals, 

P 

Yak = Wok + z1 yt,~k 
1~ 

And applies its activation function to compute its output signal, 

Yk = f(Yk) 

///Stage 2 [backpropagation of error] 

Step 6 	
Each output unit receives a target pattern corresponding to the input 
training pattern, computes its error term: 
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ak = (tk — Yk) f r (Yink ) 

Calculates the weight correction term: 

LXwJk = atk z j 

Calculates its bias correction term 

AWok = a(Sk 

And sends bk to units in the layer below 

Step? 	Each hidden unit sums up its delta inputs 
rn 

= J ak W jk 

Calculates its error term 

ó1 

Calculates its weight correction term 

= ab xi 

Calculates its bias correction term 

AvQj = a6 J 

l!JStage3 [update weights and biases] 

Step 8 	Each output unit updates its bias and weights 

W jk (new) =W yk (Old) - OWjk 

(k=1,2,...m and j=0,1,...p) 
Each hidden unit updates its bias and weights 

AWi~ (n) = rjS j x jj + ,udwif (n —1) 

(j=l,..p and i=O,...,n) 

Step 9 	Test stopping condition 
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4.5.2 Activation function 
An activation function for a backpropagation network should have several 

important characteristics: It should be continuous, differentiable, and monotonically non-. 

decreasing. Furthermore, for computational efficiency, it is desirable that its derivative be 

easy to compute. For the most commonly used functions, the value of the derivative can 

be expressed in terms of the value of the function. 

Two of the most typical activation functions are binary sigmoid and bipolar sigmoid 

functions [see Figure 4.8 and Figure 4.9] 

4.5.3 Choice of Initial Weights and Biases 
The choice of initial weights will influence whether the net reaches a global (or 

only a local) minimum of the error and, if so, how quickly it converges. The update of the 

weight between two units depends on both the derivative of the upper unit's activation 

function and the activation of the lower unit. For this reason, it is important to avoid 

choices of initial weights that would make it likely that either activations or derivatives of 

activations are zero. Normally, random values between —0.5 and 0.5 are used. 

Inappropriate choice of initialization may cause saturation or extrelmly slow learning. 

4.5.4 How long to Train the Network 
The purpose for applying a backpropagation network being to achieve a balance 

between correct responses to training patterns and good responses to new input patterns 

(i.e. a balance between memorization and generalization), it is not necessarily 

advantageous to continue training until the total squared error actually reaches a 

minimum. For this purpose, the entire dataset is divided into three patterns: training 

patterns, validation patterns and test patterns. According to Hecht-Nielsen, training set 

and validation pattern are used during training.. The weight adjustments are based on the 

training patterns; however, at intervals during training, the error is computed using the 

validation patterns. As long as the error for the validation patterns decreases, training 

continues. When the error begins to increase, the net is starting to memorize the training 

patterns to specifically (and starting to lose its ability to generalize). At this point, 

training is terminated. 

However, when the available dataset is not big enough, the entire dataset is 

divided into two patterns only: the training pattern and the testing pattern usually in 80-20 



ratios respectively. In this case, how long the network should be trained is obtained by 

experiment. 

4.5.5 How many Training Patterns should be used 
There area number of approaches to decide on the number of training patterns 

needed to have a reliable learning. The idea that there should be at least between five to 

ten training patterns for each unit in the network is one empirical approach [11]. i.e. 

Number of training pattern=(5 to 10) x(No. of input units +No. of hidden units+ No. of 

output units) 

For example, if the network consists of an input vector of eidit components, two hidden 

units and three output units, then the estimated training pattern needed is between 65 and 

130. 

4.6 Modifications to Backpropagation Algorithm 
Several modifications can be made to the backpropagation algorithm discussed 

above in such away that its performance is improved. Modifications mainly involve 

changes to the weight update. procedure and alternatives to the sigmoid activation 

functions, as discussed below: 

4.6.1 Alternate Weight Updating Procedures 
i) 	Momentum 

The most common variation of the backpropagation algorithm is to alter the 

weight-update rule t~wtj = r7S1x1 by making the weight update on the nth iteration depend 

partially on the update that occurred during the (n.1)th iteration: 

Aw,j(n) =ri6 jx j +,udw,,(n-1) 

where C is called the momentum It is in the range between 0 and 1. The effect of ,u is 

to add momentum that tends to keep the 'ball rolling' in the same direction from one 

iteration to the next. In turn, this can have the effect of keeping the ball rolling through 

small local minima or along flat regions where the ball would stop if there were no 

momentum. It also has the effect of gradually increasing the step size of the search in 

regions where the gradient is unchanging, thereby improving convergence. 
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Limitation to the effectiveness of the momentum include the fact that the learning rate 

places the upper limit on the amount by which a weight can be changed and momentum 

can cause the weight to be changed in a direction that would increase the error. 

ii) 	Batch updating of weights 

The weight updating procedure discussed in the algorithm is called online 

updating, where the weights are updated after each training pattern is presented to the 

network. In some cases; however, it is advantageous to accumulate the weight correction 

term for an entire epoch if there are not too many patterns and make a single weight 

adjustment, which is the average of the weight correction terms. This procedure has a 

smoothing effect on the correction terms. 

4.7 Performance Measure of Neural Network 
Once the network is trained, the accuracy of the model should be tested using test 

set patterns. Four measures are often used in medical applications: 

Let Pc=number of positive cases correctly classified 

Pl=number of positive cases incorrectly classified 

PT=Total number of positive cases 

Nc=number of negative cases correctly classified 

Nl=number of negative cases incorrectly classified 

NT=total number of negative cases. Then, 

Sensitivity=PJPT 

Specificity=NJNT 

Positive predictive value=PT/(P,+NI) 

Accuracy=(PP+N,)/(PT+NT) 

In the following sections positive cases refer to diseases and negative cases rder 

to normal 

4.8 Results of Neural Network for Disease Classification 

One hundred forty eight cases were considered in training and testing for the 

diagnosis of four diseases. The distribution of the database is shown in Table 4.1. Fully 

connected and feedforward networks with backpropagation learning were implemented 

for the study of the presence or absence of a particular disease. Training was made solely 

on selected HRV features. The complexity of the classification for a particular disease 
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was shown in the topology of the network implemented and the testing of performance of 

the network was made using standard measures. 

Table 4.1. Database available 

Diagnosis Amount in No. Source 

Normal 50 Physionet and lab 

CHF 29 Physionet 

Controlled Epilepsy (EP) 16 AIIMS 

Diabetes mellitus (DM) 30 AIIMS 

Ulcerative colitis (UC) 23 AIIMS 

After all the preprocessing techniques mentioned in the previous sections were 

applied, clean RR intervals were fed to the AR model developed. Different spectral and 

temporal features were computed and the statistical representation of the data is 

illustrated in Table 4.2 below. 

Table 4.2 Ranges of spectral and temporal features for respective diseases (Mean ± SD) 
Parameter Normal CHF DM EP UC 

Phf 0.0002 ± 0.0002 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0004 ± 0.0003 0.0001 ± 0.0001 

Pif 0.0005 ± 0.0004 0.0000 ± 0.0001 0.0000 ± 0.0000 0.0003 ± 0.0003 0.0001 ± 0.0001 

Ptot 0.0013 ± 0.0010 0.0002 ± 0.0003 0.0001 ± 0.0001 0.0009 ± 0.0007 0.0004 ± 0.0004 

Sympatho- 

vagal ratio 

3.3200 ± 1.5200 0.715 ± 0.88500 2.1800 ± 1.2500 1.2100 ± 0.9800 2.6800 ± 2.1100 

Hfcent 0.1560 ± 0.02500 0.1727 ± 0.0868 0.2600 ± 0.1100 0.2400 ± 0.0700 0.2200 ± 0.0720 

Plfnorm 73.600 ± 10.3700 49.059 ± 19.003 63.3200 ± 15.40 47.8700 ± 17.9600 66.300 ± 13.750 

Phfnorm 26.3300 ± 10.380 50.94 ± 19.0031 36.6800 ± 15.40 52.1200 ± 17.9500 33.7000 ± 13.75 

SDNN 54.3700 ± 23.130 32.99 ± 23.7900 15.3700 ± 20.03 42.8800 ± 17.200 28.2700 ± 14.19 

RMSSD 15.2200 ± 6.6670 .15.72 ± 15.3500 3.9100 ± 1.9600 19.7200 ± 10.6900 9.9100 ± 7.1300 

pNN50count 0.0110 ± 0.0119 0.0012 ± 0.0016 0.0001 ± 0.0004 0.0227 ± 0.0221 0.0055 ± 0.0114 
SDSD 15.2190 ± 6.6670 15.721± 15.360 3.9100 ± 1.9600 19.7208 ± 10.6900 9.9100 ± 7.1280 

Table 4.2 shows all features of HRV for short-term recording as per the standard 

guideline [1]. As can be seen clearly from table 4.2, diseases have different effects on 

different HRV features. For instance apart from Hfcent, reduced HRV features were 

observed on diabetes patients. However, all diseases cause the central frequency of high 
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frequency power to increase. All the diseases had also the effect of reducing the 

sympatho-vagal ratio, which may be associated with the dysfunction of sympathetic 

activities. Generally, UC patients had shown an increase in Phi. These variations were 

used as the indicatives for the possibility of diagnosis using HRV. 

The correlation technique was employed to find out some redundancy in the 

feature vector, the result of which is shown in Table 4.3 below: The assumption was 

made that two features are correlated if the correlation coefficient between the two sets is 

found out to be greater than 0.75. 

Table 4.3 Avoiding redundancy using correlation method 

Parameters Corr.coefficient Rejected 

parameter 

Plfnorm &Phfnorm -0.99 Plfnorm 

Ptot & plf 0.80 Ptot 

SDSD & RMSSD 0.99 SDSD 

Plfnorm, Ptot, and SDSD were rejected based on the correlation test shown in 

table 4.3. This results in the input vector having eight components; five spectral features 

and three temporal features. Rejection of redundant features is useful in reducing the 

number of cases needed for reliable training. 

4.8.1 Scaling of Input Vector 
The values of one feature may be orders of magnitude larger than that of another. This 

may cause biasing of the network learning towards a particular feature or even worse, 

may cause the hidden layer nodes to saturation. To reduce this risk, we implemented a 

statistical approach-shown below: 

1 k-n 
n ~xk 
k-n 

lxk - A)2 	 xk- !"'" ~, 
then xi E- 

' 

	` 

n —1 	 a1, 

where xk is the ke' component of the input vector x 
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4.8.2 Multiple Category classification 
The problem defined here is a multiple category classification problem where there 

are five classes, four of which are pathological and one for Normal. In this case, there are 

two choices of implementations 

1) Break the multicategory problem into a series of twoacategory problems 

2) Construct a more complex mathematical structure for the decision function 

The first approach was opted to be used here due to i) The main focus is to classify a case 

as either normal or pathological of a particular disease ii) the limitation of the database 

available. 

4.8.3 Classification between Normal and Abnormal 
We created two classes one for Normal and another for abnormal. In the 

abnormal category we took samples of data from each of the four diseases: diabetes 

mellitus(DM),Ulcerative colitis(UC), controlled Epilepsy(EI) and Congestive Heart 

Failure(CHF) . And we trained the network beginning from the simple architecture with 

one hidden layer and keep on increasing hidden nodes by experimenting with different 

learning rate, momentum, and epoch for each architecture. The final result is shown in 

Table 4.4 
Table4.4 Results for Normal versus Abnormal (CHF, EP, UC and DM) 

Diagnosis Correctly classified Incorrectly classified Total 

Normal 6 4 10 

Abnormal 22 0 22 

Total 28 4 32 

Performance measures: 

Sensitivity=22/22=1 

Specificity=6/10=0.6 

Accuracy=28/32=0.875 

Positive Predictive Value=22/(22+4)=0.846 

Topology: 8-16-16-2 

Network parameters: Threshold, learning rate and momentum are set to 0.04, 0.1 and 0.8 

respectively. 



The input nodes being fixed to eight and the output to two nodes, the complexity 

of the relationship between classes is manifested as the number of hidden layers and 

number of hidden nodes used. We implemented the idea that the number of hidden nodes 

should be at least twice the number of input nodes [12]. And it works with a reasonable 

accuracy. 

4.8.4 Classification between Normal and Diabetic patients 
Table4.5 Results for Normal versus Diabetes 

Diagnosis Correctly classified Incorrectly classified Total 

Normal 6 1 7 

Diabetes 4 0 4 

Total 10 1 11 

Performance measures: 

Sensitivity=4/4= 1 

Specificity=6/7=0.857 

Accuracy=10/11=0.909 

Positive Predictive Value=4/(4+1)=0.80 

Topology: 8-5-2 

Network parameters: Threshold, learning rate and momentum are set to 0.4, 0.04 and 0.5 

respectively. 

It is seen from the topology that HRV can easily differentiate normal and diabetic 

patients. It is only five hidden nodes with a single hidden layer that gives about 91 % of 

accuracy along with good sensitivity and specificity. This is in agreement with a wide 

variation in the ranges of HRV [as seen in table 4.2] between normal and DM patients. 

4.8.5 Classification between Normal and UC patients 
Table4.6 Results for Normal versus UC 

Diagnosis Correctly classified Incorrectly classified Total 

Normal 14 2 16 

UC 6 0 6 

Total 20 2 22 

Performance measures: 

Sensitivity=6/6=1 
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Specificity= 14/16=0.875 

Accuracy=20/22=0.91 

Positive Predictive Value=6/6+2=0.75 

Topology: 8-5-5-2 

Network parameters: Threshold, learning rate and momentum are set to 0.4, 0.05 and 0.5 

respectively. 

Here also, two hidden layers with five hidden nodes each, was sufficient to obtain 91 % 

accuracy. In this case, by increasing the number of hidden layer to two, we reduced the 

number of epochs needed to reach to the same performance level with the network having 

only single layer. This is also a promising result due to the fact that with a larger training 

dataset, the performance may easily be improved 

4.8.6 Classification between Normal and CHF patients 
Table4. 7 Results for Normal versus CHF 

Diagnosis Correctly classified Incorrectly classified Total 

Normal 4 1 5 

CHF 6 2 8 

Total 10 3 13 

Performance measures: 

Sensitivity=6/8=0.75 

Specificity=4/5=0.8 

Accuracy= 10/13=0.77 

Positive Predictive Value=8/(6+1)=1.14 

Topology: 8-12-12-2 

Network parameters: Threshold, learning rate and momentum are set to 0.3, 0.1 and 0.5 

respectively. 

The complexity between normal and CHF patients is seen from the topology with 

two hidden nodes having twelve hidden nodes each. And the accuracy is also only 77%. 

Because Our database was limited we couldn't keep on increasing the hidden nodes and 

layers as it would result in over fitting. A larger dataset may give better restits. 



4.8.7 Classification between Normal and EP patients 
Table4.8 Results for Normal versus EP 

Diagnosis Correctly classified Incorrectly classified Total 

Normal 2 3 5 

EP 7 0 7 

Total 9 3 12 

Performance measures: 

Sensitivity=7/7=1 

Specificity=2/5=0.4 

Accuracy=9/12=0.75 

Positive Predictive Value=7/(7+3)=0.70 

Topology: 8-10-2 

Network parameters: Threshold, learning rate and momentum are set to 0.4, 0.land 0.6 

respectively. 

In this study, the best configuration was a single hidden layer with ten nodes, in which we 

obtained the accuracy of 75%. This is the minimum accuracy we obtained in the overall 

classification problems. Different configurations were tried and result in poorer 

accuracies. 

4.8.8 Classification between UC and Diabetic patients 
Table4.9 Results for UC versus Diabetes 

Diagnosis Correctly classified Incorrectly classified Total 

Diabetes 4 0 4 

UC 9 3 12 

Total 13 3 16 

The performance between the two diseases can be measured only using accuracy, as both 

diseases are positive in clinical sense. And the accuracy is 13/16=0.813 

Classification between UC and diabetes patients was tried and gave a promising result 

with the accuracy of 81.3%. The network topology implemented was &7-7-2. This was 

done simply to highlight the fact that using HRV features of 'sufficiently much larger 

database than the one we used here, further classification was also possible. 
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4.9 Conclusion 
In this chapter after brief introduction to the design issues in NN for classification, 

different configurations were developed for diagnosis of the four diseases under study, 

and we obtained good results, taking in to consideration the relatively small database we 

had. The complexity of the model, expressed in terms of the number of hidden nodes and 

number of hidden layers, depends on the type of disease under study. While diabetes 

diagnosis was made with simple model (1 hidden layer with 5 nodes), diagnosis of CHF 

needed a complicated model (2 hidden layers with 12 hidden nodes each). Complicated 

models means that the training database should be larger to obtain better results. 

62 



CHAPTER #5 

CONCLUSIONS AND FUTURE SCOPE 

5.1 Conclusion 

In the first section of this study, quantification of HRV using AR modeling was 

made for R-R time series obtained from short-term (five minute) ECG recording. We 

tested our model first using,  known sinusoidal signal. A number of test signals were used 

repeatedly and the model gives very good spectrum estimation. It is only after this that 

we applied it to HRV modeling. For different diseases, we obtained different ranges for 

each features-an indicative of the possibility for classification of diseases using ANN. 

In the second section of this study, ANN was developed based on HRV features• 

for disease classification. Four diseases were considered: Diabetes mellitus, Ulcerative 

colitis, controlled Epilepsy and Congestive heart failure. The two main focuses of this 

study were i) to classify between normal and a particular disease and ii) to confirm 

whether the subject is normal or abnormal due to one of the four diseases. The network 

developed, to classify between normal and abnormal classes where the abnormal class is 

made from the samples of the four diseases, performs well with sensitivity=l, 

specificity=0.6, accuracy=0.875, and positive predictive value=0.846. The network 

developed for diabetes diagnosis performs with sensitivity=l, specificity=0.857, 

accuracy=0.909, and positive predictive value=0.80. The third network developed for 

Ulcerative colitis diagnosis performs with sensitivity=l,specificity=0.93, accuracy=0.94, 

and positive predictive value=0.75. The fourth network - developed for CHF diagnosis 

performed with specificity=0.8,accuracy=0.77,positive predictive value=1.14. And 

finally, the classification between normal and EP patients is done with 

sensitivity=l,specificity=0.4,accuracy=0.75,positive predictive value=7/(7+3)=0.70. 

This thesis demonstrates the potential of short- term HRV, when integrated with neural 

networks, as a diagnosis tool for clinical applications. The model may substitute a 

number of tests that are currently in use for diagnosis. Its noninvasiveness and comfort 
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for patients may be the factors to see its breakthrough in clinical applications in short 

coming years. 

5.2 Future scope 
The work implemented in this thesis can be extended in the following areas: 

1. By implementing another algorithm for automatic detection and correction of 

entopic beats, the whole system (from ECG recording to diagnosis) can be 

converted to a real time system. 

2. The network performance can be enhanced further by: 

a) Modifying the network by increasing the input neurons using a combination 

of different basic features implemented in this study. 

b) By using different decision function for classification 

c) Training the network with a larger database 

d) Modifying the network parameters (like learning rate, number of epochs for 

training) in adaptive manner. 



APPENDIX A 

NEURAL NETWORK FUNDAMENTALS REVIEW 

A.1 Artificial Neuron and Neural Network 
To better understand how artificial neural network works, and to know when to 

use it, understanding of the defining characteristics of neural networks is needed. 

A neural net consists of a large number of simple processing elements called 

neurons, units, cells, or nodes. Each neuron is connected to other neurons by means of 

directed communication links, each with an associated weight. The weights represent 

information being used by the net to solve a problem. Neural networks can be applied to 

a wide variety of problems, such as storing and recalling of data or patterns, classifying 

patterns, performing general mappings from input patterns to output patterns, grouping 

similar patterns, or finding solutions to constrained optimization problems. 

Each neuron has an internal state, called its activation or activity level, which is a 

function of the inputs it has received. Typically, a neuron sends its activation as a signal 

to several other neurons. It is important to note that a neuron can send only one signal at a 

time, although that signal is broadcast to several other neurons. 

For example, consider a neuron. Y, shown in Figure A.1, that receives inputs from 

neurons XI, X2 and X3. The activations (output signals) of these neurons are x1, x2, and 

x3 respectively. The weights on the -connections from X1, X2, and X3 to neuron Y are 

w1, w2, and w3, respectively. The net input Yln, to neuron Y is the sum of the weighted 

signals from neurons X1, X2 and X3, i.e., 

=i
; 

3 	X1 	wl 

~x'wt, 
~= 	 w2 

X2  

X3 	w3 

Figure A .1 A simple artificial neuron 

65 



The activation -yy of neuron Y is given by some function of its net input, Y=f(ytn). 

Different functions of neurons are discussed in the next sections. For a logistic sigmoid 

function: 

1  
f(x)-1+exp(—x) 

-(A.1) 

Now, suppose further that neuron Y is connected to neurons Z1 and Z2, with weights v1 

and v2, respectively, as shown in Figure A.2. Neuron Y sends its signal y to each of these 

units. However, in general, the values received by neurons Z1 and Z2 will be different, 

because each signal is scaled by the appropriate weights v1 and v2. In atypical net, the 

activations z1 and z2 of neurons Z1 and Z2 would depend on inputs from several or even 

many neurons, not just one, as shown in Figure A.2. Although the neural network in 

Figure 4.2 is very simple, the presence of a hidden unit, to ether with a nonlinear 

activation function X1 awl 	v1 	Z1 

w2 
X2 

X2 	 v2 

Input Units 	 Hidden Units 	Output Units 
Figure A.2 Simple Neural Network 

gives it the ability to solve many more problems than can be solved by a net with only 

input and output units. On the other hand, it is more difficult to train (i.e. to find optimal 

values for the weights) a net with hidden units.. 

A.2 Biological Neural Networks 
The extent to which a. neural network models a particular biological neural system 

varies. Though this is a concern for some, for others, the ability of the net to perform 

useful tasks (such as approximate or represent a function) is more important than the 

biological plausibility of the net. As our current definition of intelligence, or ability to 

learn, is based on the working of biological neurons, understanding the close analogy 

between the structure of the biological neuron and the processing element( or artificial 

neuron) is important as the basis for the definition of artificial intelligence. 

A biological neuron has three types of components that are of a particular interest 

in understanding an artificial neuron: its dendrite, soma, and axon. The many dendrites 



receive signals from other neurons. The signals are electric impulses that are transmitted 

across a synaptic gap by means of a chemical process. The action of a chemical 

transmitter modifies the incoming signal (typically, by scaling the frequency of the 

signals that are received) in a manner similar to the action of the weights in an artificial 

neural network. 

The soma, or cell body, sums the incoming signals. When a sufficient input is 

received, the cell fires; that is, it transmits a signal over its axon to other cells. It is often 

supposed that a cell either fires or doesn't at any instant of time, so that transmitted 

signals can be transmitted as binary. However, the frequency of firing varies and can be 

viewed as a signal of either greater or lesser magnitude. This corresponds to looking at 

discrete time steps and summing all activity (signals received or signals sent) at a 

particular point in time. 

Figure A.3 Biological Neuron 
The transmission of the signal from a particular neuron is accomplished by an action 

potential resulting from differential concentrations of ions on either side of the neuron's 

axon sheath (the brain's `white matter'). 

A.3 Typical Architectures 
It is often convenient to visualize neurons as arranged in layers. Typically, 

neurons in the same layer behave in the same manner. Key factors in determining the 

behavior of a neuron are its activation function and the pattern of weighted connections 

over which it sends and receives signals. Within each layer, neurons usually have the 

same activation function,  and the same pattern of connections to other neurons. To be 

more specific, in many neural networks, the neurons within a layer are either fully 

connected or not interconnected at all. 
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The arrangement of neurons into layers and the connection patterns within and 

between layers is called the net architecture. Many neural nets have an input layer in 

which the activation of each unit is equal to an external input signal. 

Neural networks are often classified as single layer or multilayer. In determining the 

number of layers, the input units are not counted as a layer, because they perform no 

computation. Equivalently, the number of layers in the net can be defined to be to be the 

number of layers of weighted interconnect links between the slabs of neurons. 

A.3.1 Single-Layer Net 
A single layer net has one layer of connection weights. Often, the units can be 

distinguished as input units, which receive signals from the outside world, and output 

units, from which the response of the network is read. In the typical single layer net, as 

shown in Figure A.4, the input units are fully connected to output units but are not 

connected to other input units, and the output units are not connected to other output 

units. 

For pattern classification, each output unit corresponds to a particular category to 

which an input vector may or may not belong. In a single layer net, the weights for one 

output unit do not influence the weights for other output units. For pattern association, the 

same architecture can be used, but now the overall pattern of the output signals give the 

response patterns associated with the input signal that caused it to be produced. One point 

may be noted here: it is possible that the, same type of net can be used for different 

problems, depending on the interpretation of the response of the net. However, the 

limitation of single layer network is, they can't solve norrlinearly separable problems. 
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Figure A.4 Single layer network 



A.3.2 Multilayer Network 
A multiplayer net is a net with one or more layers (or levels) of nodes (called 

hidden units) between the input and output units (see Figure A.5). Typically, there is a 

layer of weights between two adjacent levels of units. Multilayer nets can solve more 

complicated problems than can single-layer nets, but training may be more difficult. 

However, in some cases, training may be more successful, because it is possible to solve 

a problem that a single-layer net cannot be trained to perform correctly at all. 
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Figure A.5 Typical Multilayer network 

A.3 Common Activation Functions 
The basic operation of an artificial neuron involves summing its weighted input signal 

and applying an output, or activation function. For the input units, this function is used 

for all neurons in any particular layer of a neural net, although this is not required. In 

most cases, a nonlinear activation function is used. In order to achieve the advantages of 

multilayer nets, nonlinear functions are required (since the results of feeding a signal 

through two or more layers of linear processing elements are no different from what can 

be obtained using a single layer. 

A.3.1 Identity Functions 
f(x)=x forallx 

Identity functions are used in the input layer units where the network is interfaced to the 

external world. The nodes with this functions act as a relay, and their activation is equal 

to the external signal applied on them. 



Figure A..6Identity function 
A.3.2 Binary Step Functions (with threshold 0) 

Single-layer nets often use a step function to convert the net input, which is a 

continuously valued variable, to output unit that is a binary (1 or 0) or bipolar (1 or — 

1)signal. The binary step function is also known as the threshold function or heavy side 

function. 
f(x) 

f(X)=1  if x>=O 	1 	. 	► 
0 if x<0 

x 
B 

Figure A.7 Binary step function 

A.3.3 Sigmoid Functions 
Sigmoid functions (s-shaped curves) are useful activation functions. The logistic 

function and the hyperbolic tangent functions are the most common. They are especially 

advantageous for use in neural nets trained by backpropagation , because the simple 

relationship between the value of the function at a point and the value of the derivative at 

that point reduces the computational burden during training. 

Depending on its range, sigmoid function may be classified as binary sigmoid (or logistic 

sigmoid) and bipolar sigmoid. 

i) 	Binary sigmoid: 

f (x) = 	
1 

1+ exp(—x) 

f (x) = 6  f (x) [1—  f (x)] 
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Note that, depending on the problem, the logistic sigmoid function can be scabd to have 

S=1 

X 

Figure A.8 Binary sigmoid. Steepness parameters b=1 and S=3 

any range of values. This is a sigmoid function with range from 0 to 1. It is sometimes 

called logistic sigmoid. This function is often used as the activation function for neural 

nets in which the desired output value either are binary or are in the interval between 0 

and 1. 

ii) 	Bipolar sigmoid: 

The bipolar sigmoid is closely related to the hyperbolic tangent function, which is also 

often used as the activation function when the desired range of output values is between 

—1 and 1. For a binary data, it is usually preferable to convert to bipolar form and use the 

bipolar sigmoid or hyperbolic tangents. 

g(x)=2f(x)-1= 	2 	—1 
1 + exp(—o x) 

_  1— exp(-8x) 
1+ exp(-8x) 

g '(x) = 2 [1  + g(x)J [1—  g(x)] 
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FigureA.9 Bipolar sigmoid 

A.4 Neural Network Classification based on their Function 
Neural networks can be classified in a number of ways depending on structure (as 

discussed in the previous section), function or objective. Based on their functions, neural 

networks may be divided in to four categories: 

i) Classification models: 

Classification models assign input data items to two or more categories. These may be 

supervised learning in which the categories are known or unsupervised learning in which 

the categories may not be known. 

ii) Association Models: 

The two types of association models are auto-association, which focuses on the retrieval 

of an object based on part of the object itself; and hetro-association, which focuses on the 

retrieval of an object in one set using an object in a different set. 

iii) Optimization: 

The objective of these systems is to find the best solution by minimizing a cost function 

or other measure. 

iv) Self —organization: 

This approach organizes information using adaptive learning facilities. It is similar to 

clustering algorithms, based on unsupervised learning. 
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APPENDIX B 

GUI FOR AR MODELINGAND DISEASE CLASSIFICATION 

B.1 AR Modeling GUI 
AR modeling of HRV is done by integrating Matlab and Labview softwares. For its 

better appearance and flexibility, Labview is used. The versions used are labview 6.1 and 

Matlab 6.1. In both softwares the upward compatibility is held, such that this program 

can be run efficiently in higher versions. 

B.1.1 Inputs expected from the user 
a) Maximum order: This is the maximum complexity of the model within which 

the best order is to be searched. Default is 30. 

b) Input file path: This is the full path of the clean equi-spaced RR time series 

(after interpolation and ectopic beat correction) 

C) Sampling frequency: The resampling frequency of RR time series 

B.1.2 Outputs to the User 
a) Plot of the power spectral density of the HRV signal on the front panel and matlab 

figure, and Matlab figure showing the validity of the Model if any of the autocorrelation 

values in the plot are significant (>0.5), it is not valid and try again using larger order but 

less than 30. 

b) The best order of the model for the particular case 

c) Model coefficients, which optimizes the estimation of the time series signal (i.e. HRV) 

d) The temporal HRV measures: SDNN(standard deviation between two normal R peaks) 

RMSSD( root mean square -value of successive differences between adjacent intervals) 

and pNN50count( the fraction of the number of successive R R intervals whose 

difference is greater than 50ms). 

e) Spectral HRV measures: PHF (The power spectral density (psd) of HRV in higher 

frequency region [0.15-0.5Hz]), PLF (The psd of HRV in higher frequency region [0.15- 
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0.5Hz]), Sympatho-vagal ratio (PLF/PHF), HF normalized (normalized HF power) and 

Central frequency of PHF. 

Important Notes 

1. The RR interval output from the QRS detection algorithm should be first run using 

ectopic correction algorithm (ectopiccorrection.m attached here or any other algorithm), 

and if there is any ectopic beats uncorrected using the algorithm, correct it manually). 

2. The clean RR interval should be interpolated and,resampled at low frequency (2.8Hz) 

using the attached program (interpolation.m) 

3. Every time the program is run for a particular subject, it stores the features in a file 

'features.txt' located in C:\MATLAB6\work directory. Therefore, rename 'features.txt' 

before .running the program again. Otherwise, the fib would be overwritten when the 

program is run again. 
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GUI for ANN-Based diagnosis using HRV 
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B.2 ANN-Based Diagnosis GUI 
The components included in this GUI are: 

a) One list box containing: 

i)  Diabetic mellitus: 

ii)  Controlled Epilepsy: 

iii)  Ulcerative colitis 

iv)  Congestive heart failure 

v)  General abnormality 

Selection of one of the lists by clicking on them sets the diagnosis algorithm for checking 

the presence or absence of that particular disease. 

Important note 

1. General abnormality option is selected when the doctor/physician needs a fast check 

on the presence of at least one of the diseases listed or if it is normal. This can be 

used as the first step before further diagnosis is made on a particular disease. 

2. It is a general assumption here that the physician/ Doctor has a suspicious subject for 

a particular disease and the main objective is not to classify between different 

diseases but on the. assurance of the presence of the suspected disease. 

a) One panel labeled 'data' to locate the patient record containing two buttons: 

i) From file 

ii) Patterns.. at hand 

b) One Edit box labeled 'Result of diagnosis': This is where the dignosis result is 

displayed 

c) A push button labeled `Run': This is the only button, which triggers the diagnosis 

algorithm(by clicking on it) 

If 'from file' is selected, dialogue box pops up giving the user the option to choose 

a file for diagnosis. Select file name and click OK, the diagnosis result would be 

displayed in the edit box .If patterns at hand'. is selected, an input dialogue box pops 

waiting for the user to feed the features manually, enter the features one by one and click 

OK, the diagnosis result would be displayed in the edit box 



Important Notes: 
1. Since the ANN is trained by using the features obtained from the AR model we 

developed, evaluate the features for the new cases only using the same program, and 
not others. 

2. The program can be run as many times as possible by clicking on the Run' button for 

different cases. 
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