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ABSTRACT

Power system is such a complex structure that it is not always easy to derive an exact
-model for it. These complexities in modeling leads to model errors which are also called
as ‘model uncertainties’. If a controller is designied for a particular control problem in the
“power system, without considering these model uncertaintiés, that controller may fail in
real application. So a design methodology which can take these model uncertainties into
account is necessary specifically to the power system control problems. Structured
singular value () synthesis is the design method whicﬁ is'having the ability to deal with
these model uncertainties. So a controller that is designed using this method will be

robust enough to work on the real power system.

In this dissertation wotk, a deregulated power system load frequency control problem is
considered for explaining the development of the p-synthesis from the He-synthesis.
Three types of controllers are designed for the detegulated powet system load frequency

control problem, namely

e Hy-controller
o Weighted H.-controller

s p-controller

‘Bounded complex ‘uricertainty’ models are developed for the Damping coefficiént
‘uncertainties in the deregulated power system mo‘del. Along wfth these two uncertaintiés,
the neglected high frequency dynamics uncertainty due to the first order approximation of
turbines and governors is also considered. A p-controller is designed after taking thése
model uncertainties into account. The robustness properties of this u—controllér are
compared with the weighted He-controller with the help of time response simulations.
Controller order reduction technique'is ap'plied on this p-controller to reduce it to a 3™
b‘rdér controller from 25" order. The robustness of this third order controller is also
checked using time resporse simulations. For this work, the various algorithms availablé
in the Robust Control Toolbox of MATLAR® are used. p-controller is designed using the
DKITGUI tool available in this Robust Contiol Toolbox of MATLAR®. |
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CHAPTER-1 INTRODUCTION

Robust control design is different from the ordinary linear control design in the sense that
this design process considers a family of plants instead of a single nominal plant. If a
designer is asked to design a controller for a system, first he needs to derive the model for
that system. But no nominal model should be considered complete without some
.assessment of its errors. These errors in the derived model for the plant may be having
sources such as uncertainties in the parameters, neglected high frequency dynamics and
simplifications to the actual model which are jointly called as ‘model uncertainties’.
Because of these uncertainties in the model, the designer comes across the tough task of
thinking in terms of a family of plants as shown in Fig.1.1 instead of a single nominél

plant while designing the controller.

T Nominel Plant

(6] £ L L il

Family of Uncertain Plants

magmtude

frequency radfsec W —

Fig.1.1: Family of plants due to uncertainties in modeling [1]

. John Doyle [1] proposed first that these mode] uncertainties can be described effectively
in terms of norm-bounded perturbations. In order to deal this bounded perturbation
representation and the H-infinity performance objective at a single throw, he developed a
powerful tool called structured singular value (). This ‘p’ can be used for testing
“robust stability” and “robust performaﬁce”. “Robust stability” vmeans stability in the
presence of model uncertainty and “robust perforrlnancé”~ means performance in the
presence of model uncertainty. Before the introduction of structured singular value, the
era was of H-infinity optimal control in which performance objectives can be formulated

" in terms of minimization of the H-infinity norm. But it doesn’t suit well to consider



model uncertainty. So the introduction of structured singular value concept brought a new

era in control design called “robust control”.

An .important pointvto be noted here is, even though H-infinity optimal control is not
directly useful for robust control design, it is ‘a part and has to be used repeatedly, in the
D-K iterations of p-synthesis robust control design algorithm. This point will become
clear by the discussion on n-synthesis in chapter-5. Hence it is mﬁst to understand first
 about the H-infinity synthesis procedure before trying to understand the p-synthesis

design procedure.

1.1 Boqnded Uncertainty [1]: It can be observed from Fig.1.1 that any uncertain system
will have bounds for its uncertainty from the nominal plant at each frequency. This
maximum bound can be represented by a frequency domain function Wy(s) (called as
‘maxiinum uncertainty bound’ function), whose magnitude | W,(s) | will represent the
maximum deviation from the nominal plant at each frequency. A new term ‘A(s)’ called
as bounded uncertainty is introduced here. If ‘A(s)’ is a single scalar uncertainty, then it is
a unit circle in the coml:ilex plane as shown in Fig.1.2. If ‘A(s)’ is a métrix, then the
matrix norm of this ‘A(s); is unity at each frequency. In the robust control theory this

matrix norm in general will be the Hy-norm.

-1

A(s) 2+A(S)

Fig.1.2: Meaning of scalar (not a matrix) complex uncertainty ‘A(s)’ in the complex plane

Any uncertain plant ‘Gy(s)’ can be written_ as Gy(s) = G(s) +Wa(s) A(s) as an additive
uncertainty. The maximum amount of deviation from the nominal plant G(s), is bounded

by | Wa(s) | . The meaning of this bounded additive uncertainty representation is shown



below in Fig.1.3. This | Wa(s) | at any frequency can be said, as the radius of a circle in .

the Nyquist plot, enclosing all the possible pbints of the uncertain system at that

frequency.
_ Unit circles ‘ [ W |
Im T m3
4
@2
P G(s)
@1 ! ’
Re >
G(s) +A(S) G(s) + WAL

Fig. 1.3: Representation of an uncertain system with *A(s)’

Fig.1.3 explains the ‘bounded additive uncertainty’ representation of an uncertain system
‘Gu(s)’. Where, 01, ®2, ®3 and w4 are various frequency points in the whole frequency
range. The Fig.1.4 given below shows this ‘bounded additive uncertainty’ representation

of ‘Gy(s)’ using transfer function blocks.

v

A(S) Wa(s)

G(s) T

Fig. 1.4: Bounded additive uncertainty representation

The above additive uncertainty representation is modified slightly as below, to derive

another form of representation called ‘bounded mulﬁplicative uncertainty” representation.
G(5) = Go(s)[ 1+ (Wa(s)/G(s)) AS)] a.n .

Win(s) = Wa(8)/Go(s) - 12



Where, Wn(s) is called the ‘maximum multiplicative uncertainty’ bound function. This
form of uncertainty representation is shown in the Fig.1.5 below, using transfer function

blocks.

A

As) Win(s)

+
+
" G [

Fig. 1.5: Bounded multiplicative uncertainty representation

1.2 Linear Fractional Transformations: Linear Fractional Transformation (LFT)
representation of systems is frequently used in robust control design methodology [2].
Before ulsing many of the robust control algorithms,‘ one must have Linear Fractional
Transformation representation of the systems. Mainly for the application of p-analysis
-and p-synthesis algorithms, we need to separate the uncertainty block (A(s)), controller
block (K(s)), and plant model (G(s)) in Linear Fractional Transformation form as shown -
in Fig.1.6. This is because, these algorithms internally assumes this representation. For
example in case of u-analysis, we need to obtain: A(s) (called as uncertainty block
structure data), K(s) (controller in SYSTEM variable form), and G(s) (plant model in
SYSTEM variable form), before calling the p-analysis algorithm. Similar is the case of
using p-synthesis algorithm, but this time K(s) will be the output of the algorithm. So this

Linear Fractional Transformation representation is important in robust control design.

4

A(s)

Disturbance Regulated
|:input VCCtOl] d ' GGs) >© Eutput vector

K(s) e

Fig.1.6: Linear Fractional Transformation (LFT) representation [2]



1.3 H.-synthesis: The H,-optimal control design involves the steps given in the flow
chart below in its synthesis procedure. An in depth discussion of these steps is given in
chapter-3 on He-synthesis. Briefly, the objective is to obtain an optimeil controller that
can minimize the cost function ‘y’, where, ‘y’ is the Hx-norm of the closed loop systerﬁ
from disturbance inputs to regulated outputs (‘d’ to ‘e’ in Fig.1.6 above). The flow chart
given in Fig.1.7 below hopefully may help in providing the first and simple insight into
the H-infinity synthesis procedure. ' ‘

Deriving the
Nominal Model

A
Standard H,, problem formulation
by adding suitable Weighing
functions

A

Application of H.-synthesis
Algorithm

Fig. 1.7: Flow chart of H,-synthesis procedure

* A point that is of worth noting at this stage is that the above design steps results in a Ho- -
optimal controller for the nominal model of the system. This design does not take the

model uncertainties into account. Hence this is not a robust control design.



1.4 p-synthesis: The structured singular value synthesis (p-synthesis) is different from
" the H.-optimal controller synthesis in the sense that the former is having the ability to

take model uncertainties into account in its synthesis process.

 start >
{ {

Deriving the -
Nominal Model

Addition of Bounded
Uncertainties

dl
<

A
Standard H, problem formulation
by adding suitable Weighing
functions

»

Y
Application of H.-synthesis
Algorithm -

y

p-analysis and obtaining the
D-scales data

Is:

Mprev < Pnew

Rational fitting for D-scales
data to obtain D(s)

y
Appending D(s) and D™'(s) to the
standatd Ho, synthesis setup

J .

Fig. 1.8: Flow chart of p-synthesis procedure



The p-synthesis élgorithm in its synthesis steps calculates the worst case uncertainties in
terms of D-scales (refer section-5.2) and modifies the design setup (by appending these
D-scales) before calling the He-synthesis algorithm. It will do this repeatedly until a
minimum value of ¢ u is achieved. Here ‘W’ is the structured singular value of the closed
loop uncertain system from the disturbance inputs to the regulated outputs (from‘d’ to ‘e’
in Fig.1.6). The flow chart given in the Fig.1.8 above will help in getting the first and
simple insight into the p-synthesis procedure.

1.5 Design Evaluation: Once the controller synthesis is completed, it is necessary to
evaluate our design by checking the robustness properties of the controller in terms of
stability and performance. This design evaluation can be done with the help of frequency
domain methods or by running time response simulations. The frequency domain method

of design evaluation is called as structured singular value (i) analysis.

1.5.1 p-analysis: This is a frequency domain method for checking the robustness of a
designed controller. This concept can be explained with the help of a simple example in
our power systems. Consider a single-machine infinite-bus (SMIB) system with a TCSC
in the transmission line. If a designer is asked to design a controller for this TCSC, first |
he will obtain a linear model of this SMIB system at a particular power flow condition in
the transmission line and will design a controller at this operating condition. Now the
problem is to check-whether the designed controller is robust for different flow

conditions in the line!! For this purpose the p-analysis can be used.

For different power flow coﬁditions in the transmission line, certain parameters in the
transfer function of the SMIB system linear model varies. These parameter variations can
be modeled as bounded complex uncertainties by using the method discussed in chapter-4
and the closed-loop uncertain (parameter uncertainties) system can be represented in LFT
form as in Fig.1.6. Now p-analysis can be applied on this LFT form. If ‘p’ is less than or
equél to 1, the controller is robust in terms of stability and performance for the considered
~ power flow variations in the transmission line. In this way the robustness of any designed
controller can be checked by using the frequency domain p-analysis technique. An in-

depth discussion on p-analysis is given in chapter-35.



1.5.2 Time Response Simulations [2]: Even though the frequency domain p-analysis
technique can be used for analyzing the robustness properties of any designed controller,
simulations in the time domain helps in directly visualizing the superior qualities -of one
controller, when compared with another controller. For example, in this report, a Hy-
controller and a u-controller are -designed for a Deregulated power system Load
Frequency Control (LFC) case. These two designs can be compared for robustness
properties using p-analysis technique. But, time response simulations help in directly
visualizing the superior qﬁalities of u-controller in terms of robustness when compared
with the Hy-controller. Three types of time response simulations can be run. They are

response of:

. Open-loop nominal system
= Closed-loop nominal system

» Closed-loop perturbed system

The basic structures of the above three types of systems on which time response

simulations are to be run are shown in Fig.1.9 below.

Pert(s) [¢

M G® | T3 &® > | 6 [

B

4

K@) | K(s)

Open-loop nominal Closed-loop nominal ‘Closed-loop perturbed

Fig.1.9: Basic structures for time response simulations

Note that.‘Pert(s)’ is different from ‘A(s)’ of Fig.1.6. As explained in section-1.2, ‘A(s)’
is a unity-norm bounded uncertainty where as ‘Pert(s)’ is a worst case in this norm
- bounded “A(s)’. ‘A(s)’ along with the nominal plant represents a family of plants of an
uncertain system as in Fig.1.3. Where as ‘Pert(s)’ along with the nominal plant represents

the worst case in this family of plants which will bring the close-loop system to the verge



of instability. This difference can be stated simply as below:

GE)+AS) —> Family of plants
G(s) + Pert(s) — >  Worst case in this family of plants

A planned procedure must be followed so as to make an effective comparison between
the robustness properties of the designed controllers. In this report, the robustness
properties of the Hy-controller and the p-controller (designed for Deregulated power
system LFC problem) are compared using time response simulations by following a.
particular plan. This planning for the time response simulations is summarized in steps

below.

= Choose a suitable input signal, for example a ‘Step signal’.

* Do time response simulations on: open-loop nominal system, Closed-loop nominal
system with the H-controller (Fig.6.4), and Closed-loop nominal system with the p-
controller (Fig.6.13).

= Apply p-analysis algorithm on the closed-loop uncertain system (like Fig.1.6) with

¥

Hy-controller.

» Obtain ‘Pert(s)’ from this p-analysis (Table 6.3). This ‘Pert(s)’ is the perturbation
which will bring the closed-loop system with the H.-controller to the verge of
instability. |

= Replace ‘A(s)’ (in Fig.1.6) with this ‘Pert(s)’ to form a closed-loop perturbed system
(like Fig.1.9), and run the time response simulations with the Hx-controller (Fig.6.15)
and with the p-controller (Fig.6.16). It can be observed that the closed-loop system
with the Ho-controller will go to the verge of instability for this perturbation ‘Pert(s)’,
where as the closed-loop .s*ysterh with the u-controller will remain stable and meets
the performance requirements. ,

= Now apply p-analysis on the uncertain closed-loop system (like Fig.1.6) with the p-
controller.

» Obtain ‘Pert(s)’ from this- p-analysis (Table 6.4). This ‘Pert(s)’ is the perturbation
which will bring the closed-loop system with the p-;controller tob the . verge of ,
instability.



= Replace ‘A(s)’ (in Fig.1.6) with this ‘Pert(s)’ to form a closed-loop perturbed system
(like Fig.1.9), and run‘the time response simulations with the p~controller (Fig.6.18)
and with the H.-controller (Fig.6.19). It can be observed that the closed-loop system
with the p-controller will go to the verge of instability for this perturbation ‘Peri(s)’,

where as the closed-loop system with the H,-controller will become unstable.

1.6 Robust Control in Power Systems: Even though the robust' control theory was
developed in mid 1980’s, this technique was initially applied mostly to mechanical
systems, structural systems etc. From the last decade, there was an increased research in
applying this robust control theory to electrical power systems. This robust control
technique is being applied in power systems for applications like: design of power system
staBilizers, design of load frequency controllers, design of FACTS device;s controllers

~ etc.

A pdwer system in geueral is such a complex structure that it is not possible for a
designer to simply derive a model for it. Even if a model is derived with difficulty after
simplifications and neglected high frequency dynamics, the parameters in the transfer
function blocks of that model vary due to changes in operating conditions. With this
| many types of errors in the model-if a controller is designed, it will fail when applied to
the real systém; So a design which doesn’t take these errors in the model may become a

waste when applied on real power systems.

Before the invention of this robust control theory by Jokn Doyle, the era was of He-
optimal control design which does not take the model uncertainties (errors) into account.
-The robust control deéign (structured singular value synthesis) brought a new era in the
control design. The robust control design takes these model uncertainties into account in-
1ts synthesis steps (see section-6.3). Since power system is the case where these modeling
errors are common because of its complexity and continuously varying operating
conditions, it is necessary to utilize this robust control theory- for power system control
design applications..In this report, a Hy-controller and a p-controller are designed for a _
Deregulated Power system Load Frequency Control case. The Robust Control Toolbox of
MATLAB® has been used for the design purpose in which various algorithms necessary

10



for robust control design are available. A comparison is made between the Hy-controller
and the p-controller (robust controller) using: frequency domain p-analysis technique
(Figs.6.14 & 6.17) and time response simulations. Results show the superior quality of

the p-controller in terms of robustness as compared to the He-controller.

11



CHAPTER-2 . LITERATURE REVIEW

Robust control is a development from the Hy-optimal control with the additional quality
of being able to take modeling uncertainties into account in the design process. During
the 1980°s Hn-control was famous. The introduction of the concepts of Bounded
uncertainty and structured singular value has leaded to a new control design technique

namely the Robust Control Design.

John C. Doyle [1] has given the definitions of the various fundamental concepts in the
present robust control théory like Singular values of a matrix, Makimum singular value,
2-norm, He-norm etc. He also explained clearly the meaning of the concept ‘bounded
uncertainty’ and discussed the use of these bounded uncertainties for designing a
controller for an uncertain model of a real plant. These definitions are necessary to

understand the control design theory further.

Doyle et al., [3] has discussed the mathematical concepis of Hy-optimal feedback control
design. The necessary conditions that a standard H, problem setup need to satisfy
(pp.834-835) for the Hy-synthesis algorithm to have a solution are discussed clearly. As
discussed in section-3.4 of this report, if these necessary conditions are not satisfied, the

H.-synthesis algorithm of MATLAB® returns an error.

Sigurd Skogestad and Manfred Morrari [5] has nicely explained the definitions of the
Structured singular value (i), and the procedure for analyzing the Robust stability (RS)
and Robust performance (RP) using this Structured singular value concept. All the

theoretical concepts discussed in chapter-5 are taken from this paper and [2].
[1], [3], [4] and [5] explains the basic mathematical concepts in the robust control theory.

[9-12] has discussed the application of these robust control theory concepts on different

example problems. These references are very useful for understanding the application of

12



the theoretical cbﬁeepts on real problems. These are useful to bridge the gap between the
theoretical understanding and the problem level understanding.

S. Chen and O.P. Malik in [14] has discussed the application of the Hu.-optimal control
design technique to a particular power system control design problem namely the design
| of a robust Power System Stabilizer for a single-machine infinite-bus (SMIB) system. In
[23], they had discussed a development to the above design by con51dermg the parameter
uncertainties in the SMIB model. They discussed the design of a robust controller which .

is robust to these parameter uncertainties using the p-synthesis design technique.

Ali Feliachi [17] has discussed about a deregulated power system load frequency control
problem. He discussed about the design of a He-optimal controller for this deregulated
power system load frequency control probiem. In this paper he had not used the concept
of weighing functions for tuning the performance requirements. This means the design in

this paper is a simple Ho-optimal controller but not a weighted Hu-optimal controller.

Vidal et al., [18] has discussed very nicely aboﬁt the method of deriving bounded
complex uncertainty models from the uncertainties data of the plant model. The concepts
in this paper are used for obtaining the bounded uncertainty models, for the uncertain
transfer functions present in the deregulated power system model for which we are
designing a robust controller. It is necessary to obtain these bounded complex uncertainty

models for the DKITGUI tool of robust control design to work.

The concept of p-analysis is a part of p-synthesis (refer chapter-5) and at the same time
this is a measure for evaluating the designed controllers for the robustness properties
(refer section-1.5). [19-22] has discussed the application of this p-analysis on various

power system problems for testing the robust stability and robust performance.
Hassan Bervani [25] has discussed the application of the p-synthesis technique on a

deregulated load frequency control problem. The system considered in this paper is same

as that in [17]. In this paper Bervani has considered only the neglected high frequency
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dynamics uncertainty. In dissertation work extensions are applied to both [17], [25] by
considering,

» The application of weighing functions for performance tuning

™ Adding more uncertainties possible in the power system model.

Consideration of these additional uncertainties will lead to a controller design which

will work better on real time systems.

[28-31] discusses on the application of the p-synthesis on power electronic systems and

are highly descriptive for understanding the robust control design in MATLAB ®
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CHAPTER-3 " THEORY OF H.-SYNTHESIS

This chapter covers the basic concepts of Hy-optimal control design. Consider Fig.3.1
given below. “G(s)” is the plant to be controlled, “K(s)” is the controller to be designed,
“d” is the vector of external disturbances (set point changes, noise signals etc.), and “e” is

the vector of output signals to be regulated (tracking errors, controller outputs etc.).

d{——» G —»}e

K(s)

: |  Tu(s) Tufs) >
d e
{ —¥ Tz](S) Tzz(S) _’}

A

Fig.3.1: A simple closed-loop system

T(s)=[T”(S) le(s)]

T, (s) T,(8)

The modern approach in control design is to characterize the performance objectives

3.1)

using various matrix norms on the closed-loop system transfer function matrices such as
‘T(s)’ above. Obtaining a controller ‘K(s)’ which will mihimize this closed-loop norm is
the objective in the modern optimal control theory. The performance objective in simple
terms can be said as-minimize the regulated output variable values for different classes
disturbance inputs. In modern control theory, this performance objective is expressed in
terms of certain closed-loop transfer function matrix norm. So synthesizing a stabilizing
controller ‘K(s)’ using some algorithm to optimize (minimize) these closed-loop transfer
function norms is the concept of modern control theory. One of these norms being used .

frequently in modern control theoi'y is the Hy-norm. Synthesizing a controller ‘K(s)’ to
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minimize this Hx-norm of the closed-loop system “T(s)’ is called the Ho-optimal control

synthesis.

3.1 Ho-norm [1] [2] [4]): The 2-norm of a scalar signal, e(t) is defined as

lef,= [ | e(t)zdt} | (.2)

If e(t) is a vector of time domain signals, then the 2-norm of e(t) is defined as

+o

T2 ‘
lell, = { J‘ e(t)Te(t)dt} (3.3)

Now the Hy-norm of the closed-loop transfer function “T(s)’ from disturbance inputs to
regulated outputs is defined as follows:

71, = su (TG0)) 64

Where,
o: Frequency rad/sec.

sup : Maximum over the entire ‘@’ range.

& : Maximum singular value of the transfer function matrix T(jo) at each

frequency point over the entire ‘®’ range.

Consider the closed-loop transfer function matrix ‘T(s)’ as a function of frequency as

T,(o) T, (]0))}
T, (o) T,(w)

At each frequency in the range of ‘@’, T(jw) will be a complex valued matrix of size

T(jo) = { (3.5)
(n,xn,), where ‘n.’ is the number of regulated output variables and ‘ny’ is the number of
disturbance inputs. At some frequency ‘o,’: in the ‘@’ range, the singular values of the
matrix [T(jo,)], ,,, denoted as “c;’, are the non-negative square roots of the eigen values
of [T"T] ordered such that 6,20, 2..06, 20. Here p=min {n, ng}. If r’ is the rank of

the matrix[T(jo,)], ., , then

D XNy

6.,=0,==0,=0 ” (3.6)
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"The greatest of these singular valueso, , is denoted as & [ T(jo,) ] at frequency o, These

maximum singular values can be calculated at each frequency point in the ‘@’ range.
Now the supremum(maximum) of these maximum singular values over the entire ‘o’

| range denoted as supS[T(jw)] is called as the He-norm of ‘T(s)’ and is denoted by,

| T(s) ||, . For a closed-loop system as in Fig.3.1,
IE| T(s) |, <1 and |d], <1, then
o, <1 | e

This means, if the Hy-norm of the closed-loop system from the disturbance inputs to the

regulated outputs is less then ‘1°, then for any input vector of disturbances ‘d’ whose 2-

norm "d” is less than ‘1°, the 2-norm of the regulated output variables ”e” wﬂl also be

less than ‘1’.|T(s)|_, can also be interpreted in terms of the maximum RMS gain from

input to output for different classes of input signals as given below.

| T¢s) |, = max =2 lel, (.8)

la],

In the He-optimal control design that we are d1scussmg in this chapter, the objective is to
obtain é controller ‘K(s)’ which will minimize this He-norm of the closed-loop transfer
function T(s). There can be many classes of disturbance input signals whose 2-norm s
less than ¢1°. Similarly there can be many classes of regulated output signals whose 2-
norm is less than ‘1°. So it wili be a good idea to add some frequency weighing functions
to the problem setup G(s), in the disturbance input and regulated error output channels to

give importance to certain frequency components.

For example if the designer wants that the steady state value of a regulated output -
variable must become less than 0.01, then before applying the H,,,—syhthesis algorithm,
the designef has to add a weight in that particular regulated variable output channel a
weighing function whose ‘magnitude at low frequencies and at zero frequency will be
greater than or equal to 100. Similarly if the designer wants to pht information about a
~ disturbance input such as-any frequency com}ionent in that éignal will have amplitude not

more than 0.5, then a weight of 0.5 is needed to be kept in that particular disturbance

17



input channel. Hence it is to be noted that for characterizing the realistic MIMO system
performance obj ectiVes in terms of a single H-norm on the closed-loop transfer function,
it is necessary to incorporate additional scalings (weighing' functions) into the problem

setup.

3.2 Theory of Weighing Functions {2] [6]: The interpretation of H.-norm of closed-
loop transfer function as the. maximum of RMS gain from input disturbances to the output
regulated variables may not be helpful for a designer in undefsfanding the concept of
addition of weighing functions to the problem setup. The following sinusoidal steady
state interpretation helps the désigner a lot in understanding the concept of weighing
functions in Hy-optimal control design. Let, '
a,sin(w,t+o,) ) :
d@t)= : : 3.9
asin(o,t+o,,) ~

Where,

| ®,: A point in o range € R
a;: Amplitude € Ry
@, : Phase angle € Ryg

Also assume,

llallz{zaiz] <1 6w

Applying this vector of disturbance inputs to the closed-loop system with transfer

function “T(s)’ with|| T(s) |, <1, will result in an output regulated variable vector

bsin(w,t+y,)
e®) = : (3.11)
b, sin(o,t+y,.)
Where,
,: A point in ® range € R
bi: Amplitude € Rpe
vy, : Phase angle € Ry
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And,
ne 12
lof.= {Zb} <t (3.12)

Note that this interpretation of Ho-norm is totally different from that given earlier. The
earlier interpretatioh is not putting any stress on the individual frequency components of
the input and output signals. Since the systems that we are dealing here are linear, and
any signal can be represented as a summation of sinusoidal signals (using Fourier
transformation), the interpretation given for one frequency component ®, above will hold
for a general signal according to superposition theorem. This new interpretation of He-
norm is specifically helpful in understanding the concept of weighing functions. This is

further explained below. Let,

' [w 0
w=| * ] _ (3.13)
] 0 wy,
[w 0 :
w,= ol } . (3.19
i 0 w,
—1 Wa » | Wo >
d GGs) ¢
— We [ ; Wy >
K(s) ¢

Fig.3.2: Addition of weighing functions to the problem setup

If,
[w.Tw,|, <1, (3.15)
2 12
[Zd: il } <1 | ©(3.16)
i1jW4 (o) '
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‘Then,

e 2 172
I:Z]biweiﬁm)l } <1 (3.17)
i=1
This is approximatelf same as, if
[w.Tw,|, <1, : | (3.18)
a; <|w(jo)|, for all “a;” in vector‘d’ (3.19)
Then,
b, < —1,—, for all ‘b;” in vector ‘e’ (3.20)
wei(](o)l

The above expressions for one frequency component «, holds good for any other

frequencies. This interpretation will help a designer in choosing appropriate weighing
functions, so that he can concentrate more on certain frequency components. In Fig.3.3

below, the above explanation is given diagrammatically with a simple example.

|
e
S—;
o
L.
/4

7
W O O O3 O ® rad/sec

. Let W,=0.5

n d—» W. T(s) Wa Pe

n Assume that "\VCTWd lL <1

@ O O O3 O

Fig.3.3: An example showing the meaning of H,-norm with weighing functions
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In the above example, Ws=10 means that each of the frequency components (wy-04) in
d(t) will have amplitude less than or equal to 10. If the weighted closed-loop Hy-norm is
less than 1, then in the regulatéd output variable e(t) each of the frequency component‘
will have a magnitude not more than 1/W,=2. In the above example constant weights are
~ chosen for all the frequency components. But in a real problem these weights will be
chosen as a function of frequency so that the designer can concentrate more on certain
frequency components of interest. For example if the designer wants that the steady state
value of the regulated output variable must become less than 0.01, then the designer may
choose the weighing function ‘W, to have a magnitude greater than or equal to 100 ai.
low frequencies. Similarly the weighing function ‘W’ has to be chosen such that it will
give information about the maximum amplitudes of various frequency components in the

iﬁput disturbance signals.

3.3 H.-optimal Controller Synthesis [2]: This He-optimal controller design problem
caﬁ be solved using the Hy-synthesis algorithm available in MATLAB®. Given a linear
system model ‘G(s)’, before applying the Hy-synthesis algorithm, the system ‘G(s)’ has
to be represented with in a single matlab SYSTEM variable. For this, the SYSIC (system
inter-connections) routine of MATLAB® has to be used. The following are the steps in

converting ‘G(s)’ into a single matlab SYSTEM variable.

= Represent individual transfer blocks of ‘G(s)’ with different variables. They are called
as ‘subsystems’.

= Specify the external inputs to ‘G(s)’ in the order of exogenous disturbances and
control inputs as shown in Fig.3.4. |

» Specify the inter-connections between different subsystems and the subsystems to
which the external inputs are connected. |

* Specify the outputs of ‘G(s)’ in terms of the outputs of different subsystems in the
order of regulated output variables and outputs which will go as inputs to the
controller as shown in Fig.3.4. | | ‘

= Specify a name for the SYSTEM variable with which the total system ‘G(s)’ will be

represented.
» Run the SYSIC routine. This returns a SYSTEM variable which represents ‘G(s)’.
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u ———»|

G(s)

But as mentioned before, for characterizing the realistic MIMO system performance
objectives in terms of a single He-norm on the closed-loop transfer function T(s),

weighing functions must be incorporated into the above problem setup. The following are

P

the additional steps required for this purpose.

» Represent each of the weighing functions with different variables in a manner similar

—— } e
—> y

(Matlab SYSTEM variable)
Fig.3.4: From ‘G(s)’ to ‘P’ using SYSIC

that for that for each of the individual transfer blocks in ‘G(s)’.

= Add these variables to the set of sub-systems.

» Specify again the inter-connections between the sub-systems.

= Specify the external inputs and outputs maintaining the same order as before.
= Run the SYSIC routine again to represent the system ‘G(s)’ along with the added
frequency scalings (weighing functions) with a single matlab SYSTEM variable.

—» Wa W >
d G e
—> Wdz (S) Wez —>
u—> >y
P (Matlab SYSTEM variable)

Fig.3.5: From ‘G(s)’ with weighing functions to ‘P’ using SYSIC
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The Hy-optimal control design problem is: find a stabilizing controller ‘K(s)’ suéh that
the closed-loop system T(s) is stable and the H,-norm T(s) is less than ‘y’, whefé ‘y’ is
called as H-cost. The standard state-space technique to find the Hy-optimal controller is
called ‘y—iteration’l in which a ‘y’ value will be selected and ‘K(s)’ is derived such that
|| Tl <y. Next, this *y’ is modified using the modified bi-section alg(')rithm and ‘K(s)’ is
derived again using the ‘y-iteration’. This iterative procedure c;ontinues until a tolerance
condition is met with. This iterative procedure is explained in Fig.3.6 with the help of a
flow chart.

Start

y
P: ne, nMm, min,
Emax, tol _

y-iteraﬁon

oY

fe Bi-section algorithm
=y to choose ‘y’

(N

Fig.3.6: Flow chart of H,-synthesis algorithm in MATLAB®.

Where,
v = Hep-cost
nc = number of control signals
" nm = number of measurements which are inputs to the controller
Zmins Emax = Minimum and maximum values for “y’

vf = value of ‘y’ in the iteration in which y-iteration fails
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3.4 Necessary Conditions for Hw-syhthesis [31]6]): There are certain necessary conditions
to be satisfied by the system inter-connection structure ‘P’ for the He-synthesis algorithm
to provide a solution. These conditions are listed below. If these conditions are not
satisfied before the application of the Hu-synthesis algorithm, the algorithm will return an
error. So it is necessary for a designer to check these conditions and, adjust the feedback
connections, if any of these conditions were not satisfied. The system inter-connection

structure ‘P’ can be represented in packed state space form as below.

D11 DI12 R (3.21)
D21 D22 |

This can be written in terms of state-space equations as below

X=AX+Bld+B2u
e=Cl X+DI11d+DI12u (322
y=C2X+D21d+D22u
Where,

X= state variable vector

e = vector of regulated output variables (efror signals to be minimized)

y = vector of outputs which will be fed to the controller

d = vector of disturbance input signals

u = vector of control signals which are outputs from the controller

- The necessary conditions to be satisfied before applying the H.-synthesis algorithm are

listed below.

= (A,B,) is stabilizable. . |
This can be checked by obtaining the controllability matrix ‘CO’ and testing whether
: it is of full row rank or not. Where, o
CO=[B AB...A™'B] (3.23)
n =size of A ‘
» (C2,A) is detectable. _
This is checked by obtaining the observability matrix ‘OB’ and testing whether it is of

full column rank or not.
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C
CA |
. (3.24)

OB :
cA™
The above two conditions are neceésaly in order to obtain a stabilizing controller.
= D12 must have full column rank.
This condition checks whether all the control inputs in the vector ‘u’ have influence
on the regulated output signals ‘e’. "
= D21 must have full row rank.
This condition checks whether the input disturbances can be observed -in all the out

put signals in the vector ’y’.

The last two conditions are required to be satisfied for avoiding the singular control
problems. Once the above conditions are satisfied, the designer can apply the H.-
| synthesis algorithm of MATLAB® on the inter-connection structure P’. The algorithm
works as shown in the flow chart above in Fig.3.6 and returns the Hy-optimal controller
‘K(s)’. If the final value of the H.-cost, y not less than ‘1°, then modify ihe weighing
functions which in turn means modifying the performance characterization and apply the
Hy-synthesis algorithm again. This procedure has to be continued until y less than
“1°condition is achieved. Note that, the condition on 7, \to be less than ‘1’is kept for the
reason that the initial characterization of the. performance specifications in terms of
weighing functions, is done keeping in mind that || T(s)||» will be less than or equal
to’1’.
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| CHAPTER-4 MODELLING OF UNCERTAINTY

In the previous chapter on Ho;,-synthesis, the discussion was on the design of an optimal
controller ‘K(s)’, for the nominal model ‘G(s)’ of an actual plant. For most of the real
systems, this design work is not. sufficient. Because, any linear model like ‘G(s)’, derived
for an actual plant, can not be considered as precise. In fact it is not possible to derive an |
exact model for most of the real systems. This statement is true at least in the case of
power systems because, it involves many components with high degree of complexity for
modeling. Hence, the controller designed for ‘G(s)’ with the synthesis method of the
previous chapter may fail when applied to real systems for the simple reason that our
model ‘G(s)’ of the actual plant is not 100% correct. This means that our design may not

be robust in terms of stability and performance.

Assume that a designer is asked to design a controller for a plant. As a first step, he will
try to derive a transfer function model for plant. But, after some striving, he may realize
that the transfer function is becoming very complex or he may feel that it is difficult to
get the transfer function for the plant at high frequencies. This will force the designer to
simplify the model, and neglect the high frequency dynamics by concentrating over a
specific frequency range of interest. The model obtained with these simplifications is
called the nominal model ‘G(s)’.But in robust control design, the designer has to consider

these errors with a family of plants as shown in Fig.4.1.

‘I Family of Plants

—i— frequency range of more interest

B

w] Frequency rad/sec o —

Fig.4.1: Uncertain model of the designer for a plant
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Along with the above two types of modeling errors, namely, simplifications to the actual
model and néglected high frequency dynamiés, there is also another type of modeling
error. This error is uncertainties in the parameters. As shown in Fig.4.1, the model of the
actual plant is assumed to be 100% correct in the frequency grid of (0-w;). But in fact
even in this frequency range, the parameters of the transfer function model will be
uncertain for the reason that these parameters may vary with time. For example, in the
| frequency range of (0-m,), let the transfer function model of the plant is

K

4.1
sT+D @.1)

G(s) ="

After further assessment of errors, the designer may realize that even in this frequency
range, the parameter ‘D’ is not constant and varies with time i.e. ‘D’ is uncertain. From
the above discussion the sources for modeling etrors can be divided primarily into 3

types. They are

» Simplifications to the actual model
* Neglected high frequency dynamics

= Parametric uncertainties

All these errors are called as ‘model uncertainties’. Because of these model uncertainties,
the designer comes across the tough task of thinking in terms of a family of plants instead .
of a single nominal plant while designihg the controller. Now the problem is, How to deal
with these model uncertainties in mathematical terms? John Doyle proposed first that
these model uncertainties can be described mathematically in terms of bounded

uncertainties.

4.1 Bounded Complex Uncertainties [18]: Tﬁis concept is very important in the
understanding of robust control theory. With out understanding this, it will not be
~ possible to step further in robust céntrol design. The meaning of bounded uncertainty is
as fdllows. For a real plant, if we have an exact transfer function model, then the Nyquist
plot of this plant model will have one point at each frequency. But, due to the errors or
uncertainties in the model for the plant, at each frequency in bthe Ny;luist plot, we will

have more than one point as shown in Fig.4.2.
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Fig.4.2: Nyquist plots for plant without uncertainty and with uncertainty

These uncertainties may be due to any or all of the three reasons mentioned above. In

Fig.4.2, only 5 points of the entire frequency grid are shown. But in fact, this uncertainty

will be there in the entire frequency grid. Note that the uncertainty at each frequency

point has a bound shown by a circle. This means at each frequency point, the uncertainty

' has a maximum bound. If we can find the center and radius of each of the circle at all the

frequencies, then we can represent this model uncertainty mathematically. The following

example illustrates the steps in obtaining the bounded complex uncertainty model for any

| of the above three types of uncertainties in the model for a plant. Assume that we are
given a transfer function,

Where, K=2, T=0.05 and D = (0.5<1 < 1.5) i.e. 50% uncertainty.

If we draw the Nyquist plot for this uncertain transfer function using Manto Carlo
samplings fo;‘ ‘D’, we obtain a family of Nyquist plots as shown in Fig.4.3. In this
example the parametric uncertainty is considered for the purpose of illustration. Even for
the other types of uncertainties like neglected dynamics, if the uncertainty bounds in
Nyquist plot are provided, the following procedure will give the bounded complex
_ uncertainty model mathematically An important point to be noted here is that, the
present DKITGUI of MATLAB® which is the algorithm for. the robust controller
synthesis can deal only the bounded complex uncertainties. Hence the real parametric
uncertainties can not be considered in that algorithm and it is necessary to convert these

real parametric uncertainties in the transfer functions into bounded complex uncertainties.
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Fig.4.3: Uncertain transfer function for 10 randomly chosen samples of ‘D’

Now the problem is, How to represent mathematically this uncertain transfer function? At
each frequency, we can get 10 points in the Nyquist plot for 10 random samples of ‘D’.
As mentioned earlier, if we can find the center and radius of each of the bounding ¢ircle
of these 10 points in the Nyquist plot at all the frequencies, we can represent this model

uncertainty mathematically. The steps to be followed for this are:

= At each frequency, obtain the real and imaginary parts of each of the 10 points in the
Nyquist plot. | |

= At each frequency, find the averages of the real and imaginary parts of all the 10
points individually. This givés the centers of the bounding circles.

= At each frequency, find the maximum distance from the circle center to the any of the
10 points. This gives the radii of the bounding circles.

* Do curve fitting for the circle centers to obtain the nomiral plant.

* Do curve fitting for the circle radii to obtain the ‘uncertainty maximum bound

function as a function of frequency.

This curve fitting can be done using the ‘FITMAG’ function available in MATLAB®.
The following Table 4.1 lists the centers and radii of the bounding circles at some of the
frequency points, for the uncertain transfer function that we are discussing. This data can -
be used for obtaining the nominal plant model and the maximum uncértainly bound

function.
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Table 4.1: Values of centers and radii of circles in the
Nyquist plot for the uncertain transfer function

® Center of the | Radius of the
rad/sec | Bounding circle | Bounding circle

0.001 | 2.1847+0.0604i 1.7390
0.1 2.1846+0.0473i 1.7398
1 2.1754-0.0713i 1.7377
g 2.1483-9.1993i 1.7.1 67
10 | 1.5882-0.8449; 1.1895
98 | 0.0808-0.3705i 0.0511
99 | 0.0792-0.3672i 0.0501
100 | 0.0777-0.3638i 0.0492

Now curve fitting can be done, on the data of centers of circles given in Table 4.1 above,
to obtain a nominal plant model Wa(s). The order of the curve fit can be chosen
appropriately to get as close fit as possible. Fig.4.4 shows the curve fitting process with a

chosen order of fit of ‘1°.

CURVE FITTING, ORDER OF FIT =1

A —
— mag data }
- — curve fit
s 3 :
2 10 1 . ]
cC
o . 4
v} o
E . l
0 20 40 B0 80 100
frequency —_—

Fig.4.4: Curve fitting for the nominal plant model “W,,(s)’

Similarly, curve fitting can be done, on the data of radii of circles in Table 4.1above, to
obtain the ‘maximum uncertainty bound’ function ‘Wy(s)’ as a function of frequency.
- Because of the improper fit with order’1’, the second order curve fit is chosen for this as

shown in the Fig.4.5.
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CURVE FITTING, ORDER OF FiT=2

10 - 3
* map data
0 — — curve fit
210 o
=
S
g 10 E
i
1[]'2 1 1 1 1 .
0 20 40 B0 80 100
frequency —r

Fig.4.5: Curve fitting for the ‘maximum uncertainty bound’ function ‘W,(s)’

The ‘nominal plant model’ (first order) and the ‘maximum uncertainty bound’ function

(second order) are given below in the transfer function form.

_0.3s+33.2 10.0585%+6.425+534.7

W W (s)=
=56 s 7139.951309.6

Once the above two transfer functions Way(s) and W,(s) are obtained, the uncertain
transfer function can be represented as shown in the Fig. below as an additive

uhcertainty.

0.058s2+6.42s+534.7 A(s) |
s2+39.95+309.6

0.3s+33.2
s+15.6 +

Fig.4.6: Additive uncertainty represenfation

A(s) is the unity norm bounded complex uncertainty (see section-1.1) i.e. the He-norm of
A(s) is less than or equal to 1°. All the uncertainties in the model for an actual plant can
be réplaced with representations of the type shown above. This completes the first step in
~robust controller synthesis. Before concluding this chapter, it is necessary to check
whether the above procedure is correct or not. This is done by drawing the bode plots for

the actual uncertain transfer function and for its bounded complex uncertainty model.
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Fig.4.7: Bode plots of uncertain transfer function and its ‘bounded complex uncertainty’ model

The Bounded complex uncertainty model (bode plot-2) covers all the uncertainties, but it
is adding little conservativeness. This means that it is covering more uncertainty than that

in bode plot-1. But it is not missing any of the plant in bode plot-1 of Fig.4.7.
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CHAPTER-5 H-ANALYSIS AND SYNTHESIS

Assume that a controller ‘K(s)’ has been designed for a éyétem. A general curiosity after
this is: how robust this control ‘K(s)’ is? So the immediate step after the controller design

must be checking its robustness. There are two types of robustness checks.

= Stability robustness

= Performance robustness

As already discussed in chapter-1, robust stability means stability in the presence of
model uncertainties. Similarly robust performance means performance in the presence of
model uncertainties. There must be some method for checking the robustness of any
designed controller ‘K(s)’ from the view point of stability and performance. The concept
of structured singular value (1) introduced by John Doyle [1] can be used as a measure
for checking the robust stability and robust performance properties of any uncertain
closed-loop system controlled with a controller ‘K(s)’. An important point to be noted at
this stage is that the structured singular value basically tests the robust stability of an
uncertain closed-loop system. In order to use the same concept for robust performance
test, the closed-loop H.-norm condition for performance is reformulated as a robust
stébility problem. This reformulation of fhe H. performance condition into a robust
stability problem is discussed in the following sections. This structured singular value

concept is very powerful and is the base for the whole ‘Robust control design’ concept.

5.1 Structured Singular Value (n) Analysis [2] [5]: It will be good to explain this
concept with reference to a diagram of an uncertain closed-loop system as shown in
Fig.5.1. As already been discussed in the chapter-4, any model of a real System will have
uncertainties. These uncertainties may exist in different transfer function blocks (A(s),
Az(s)) or as un-modeled dynamic uncertainties (A3(s)) on the whole model as shown in
. Fig.5.1. Before applying the p-analysis, it is necessary to transform the basic uncertain .
closed-loop system model to a standard (M(s)-A(s)) structure as shown in the Fig. below. .
This transformation is done by separating the unity-norm bounded uncertainty blocks
. (ANs).
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Fig.5.1: An uncertain closed-loop system

Fig.5.2: Separation of A(s) and K(s)
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Fig.5.3: A-G-K structure to M(s)-A(s) structure

A

A(S)

> M;(s) M;,(s)

d—P Mu® My [ e

Fig.5.4: Final M(s)-A(s) structure .

But, for analyzing the robust stability of an uncertain closed-loop system by p-analysis, it
is necessary to separate a part of ‘M(s)’ which will interact with ‘A(s)’. From the Fig.5.4,
it can be ‘seen that M;(s) is the one which is interacting with ‘A(s)’. So the final structure
on which p-analysis has to be applied for robust stability analysis becomes as shown in
the Fig.5.5. -

A(s)

L

Mi1(s)

Fig.5.5: Structure for robust stability analysis

Note: In the Following discussions a variable with out the Laplacian variable‘s’ represents that variable, at
a particular frequency. For ex: M, A are matrices with complex values as elements at a particular frequency.
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5.1.1 Robust Stability Analysis: The structured singular value pa(.) of any complex
 matrix M e C™*" with respect to a norm bounded uncertain block structure ‘A’ is defined

as,
1

min, { G(A): det(I_-AM) =0} G-H

nyM)=

and p, (M) =0 if there is no A solves det(I,-AM) = 0. 5(A) means the maximum singular

value of Ae C**.

In the case of the uncertain closed-loop systexﬁ above, at each freqﬁency M;i(s) will be a
complex matrix of size C*®. To find the structured singular value, we need to find a A,
which is a complex matrix of size C*** at that frequency and solves det(I-AM,,) to zero.
The inverse of the maximum singular value of this complex A matrix is called the

structured singular value of M1 (C*?) at that particular frequéncy. Like this the p has to

be found at each frequency over the entire @ (frequency) range.

In the Mj1(s)-A(s) structure shown in the Fig. above, ifdet(I,-A,,,M, ,) # 0, then the only

solution for “u’ and ‘v’ are, u = v = 0. On the other hand if this determinant is zero, then

‘@’ and ‘v’ can have infinite number of solutions. This later condition can be said ‘as

instability.

det(I,-A;,,M, ;) # 0 (Stable condition) (5.2)
det(I,-A,..M, ;) = 0 (Unstable condition) | 5.3)

'Since the structured singular value finds the miﬁ{ 6(A,,;) } which makéé the system to
reach the above unstable condition, this can be used as a measure of robust stability. If
the G(A,,,) which makes det(l,-A,,,M, ,)=0, is greater than ‘1’ over the entire frequency
range, then the ‘p’ value will be le,és than ‘1’ over the entire frequency —range. Now the

robust stability condition is stated as follows:

A system will be robustly stable if its structured singular value (1) is less than ‘1’ over

the entire frequency range.
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‘The statement ‘ u<1 implies G(A,;)=1. But, in the bounded cor}lplex uncertainty
lrepresentation' that was discussed in chapfer-4, A(s) is an uncertainty whose max{E(A)}‘ is
less than or equals to ‘1’ over the entire frequency range. This implies that if p <1 for an
uncertain closed loop system over the entire frequency range, then that system is robustly

stable. The ‘MU’ function of MATLAB® can be used for doing this robust stability

analysis. The steps for robust stability analysis can be summarized as follows.

= Recast the uncertain closed-loop system into the standard M(s)-A(s) structure.

» Separate the Mj;(s) from this M(s)-A(s) structure.

= Apply the ‘MU’ function of MATLAB® on this M;:(s)-A(s) structure.

» Plot the structured singular value bounds as a fuhction of frequency and find the peak
value. .

= The closed -loop uncertain system will be stable if the peak value of p is less than ‘1°.

A point to be noted is that the ‘MU’ function can not compute the p exactly. It computes
upper and lower bounds for ‘p’. For testing the robust stability the peak value of the

upper bound has to be considered.

5.1.2 Robust Performance Analysis: As already discussed in the chapter-3, the
performance of a MIMO closed-loop system is sharacterized using the Ho-norm from the
disturbance inputs to the regulated output. This was expressed mathemé.tically as
| T(s) |o<1. Similarly, an uncertain closed-loop system can be said to achieve

performance robustness, if the He-norm of ¢ 'u(s)’ shown in the Fig.5.6 is less than or

equal to ‘1°.
Als) [€
Mu(s)  Mix(s) > d e
_d__.» __i> Tu(s) '
Ma(s)  Mz(s)

Fig.5.6: Uncertain closed-loop system
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But, the problem now is, how the structured singular value concept can be used for the
evaluation of the performance robustness of ‘Tu(s)’. For this the problem of II T(s) I[wsl
has to be re-casted into a robust stability problem. According to the small gain theorem,

[ T(s) | »<1, iff the feedback loop shown in Fig.5.7 is stable.

Ap(s) [

Mu(s) M,2(s)

P My(s)  My(s)

> M(s)

Fig.5.7: Setup for robust performance évaluation

This means that, by appending a Ag(s) block of size (n xn, ), the robust performance
problem can be re-casted into a robust stability problem. This implies that for an
- uncertain closed-loop system, robust stability can be checked by applying p-analysis on
the M 1(s)-A(s) structure, and robust performance can be checked by applying p-analysis
on the M(s)-Ap(s) structure. Thg steps in ‘the robust performance analysis can be

summarized as follows.

= Recast the uncertain closed-loop system into the standard M(s)-A(s) structure.

= Append Ag(s) of size (n xn,) to A(s) to obtain M(s)-Ap(s) structure.

» Apply the ‘MU’ function of MATLAB® on this M(s)-Ap(s) structure.

= Plot the structured singular value bounds as a function of frequency and find the peak

value.

» The closed-loop uncertain system is robust with respect to performance if the peak

value of ‘p’ is less than “1°. -

Since the ‘MU’ function of MATLAB® computes the upper and lower bounds for ‘p’, in
this case also, the peak value of the upper bound has to be taken as a measure. Fig.5.8

shows the steps in the structured singular value analysis diagrammatically.
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Uncertain closed-
loop system
. | M(s)-A(s) structure
A
Separation of M;;(s)-A(s) Append Ag(s) to A(s)
y
p-analysis algorithm p-analysis algorithm
N Is
“’peak s 1
o™
Not robustly Y System is not having System is having
stability Robustly stable performance - performance
robustness robustness

Fig.5.8: Steps in the structured singular value analysis of a closed-loop uncertain system

52 Structured Singular Value Synthesis [2] [S] [8]: The Hu-synthesis that we
discussed in chapter-3 was not a robust control design, because, it is not takihg the model
uncertainties into account. But, as we discussed in chapter-4, any real system model will
have errors which are collectively called as ‘model uncertainties’. So it is necessary to go
for a design process which takes these model uncertainties into account and synthesizes a
controller which will work properly on a real system. The p-synthesis algorithm which
will be discussed in this section is a robust control design process. Note that the p-
synthesis process is not totally different from the H.-synthesis. In fact, the p-synthesis
algorithm repeatedly uses the Hx-synthesis algorithm in its design process. Hence the He-
synthesis must always be the concept to be understood first before stepping to the more
- powerful p-synthesis. The ‘DKITGUI tool available in the Robust Control Toolbox of
MATLAB® can be used for doing this p-synthesis. Here ‘DKIT” means D-K iterations.
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5.2.1 The p-upper Bound: This fopic is very important for ﬁnderstanding the meaning
of D-K iterations and hence the p-synthesis algorithm. Refer to the M;(s)-A(s) structure
in Fig.5.5. All the variables below are matrices at a particular frequency in the frequency
grid ‘w’. o
pa M) <oM) (54
Ae{yo(A)<1} 5.5)

Let ‘D’ belongs to a set of real positive diagonal invertible matrices with same structure
as ‘A’. For example, for the uncertain system case shown in Fig.5.1, the structure of
‘A(s)’ and ‘D’ are: |
A 0 0
A(s)=| 0 A,(s5) O (5.6)
' 0 0 A :

ApCHY5 A C ACH 6.7
a, 0 O o

D=[0 a, 0 _- (5.8)
0 0 a, .

 Where,

aj, a2 and a; are real positive numbers.

With this property of ‘D, DAD™ € {x;5(A) <1} , (5.9
' This implies W(OMD™) = u(M) (5.10)

From equation (5.4), uM) = wW(DMD™) < 5(DMD™) (5.11)

So this becomes an optimization problem to find a ‘D* which belongs to a set of real

positive diagonal invertible matrices with the structure same as (5.8), and minimizes

theG(DMD™) . This can be written mathematically as -

uaA(M) = minG(DMD") | (.12)
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The above optinﬁzation problem of finding, a ‘D’ which will minimize the E(DMD'_I) as

in (5.12), gives the upper bound for ‘p’ at each frequency.

The ‘D’ matrix has one real diagonal element corresponding to each scalar complex
unity-norm bounded uncertainty -as in Fig. 5.1 or as in (5.6) at each frequency in the
frequency grid ‘@’. Since there are ‘3’ complex unity-norm bounded uncertainty blocks
in Fig. 5.1, for that example‘case, the ‘D’ matrix will have ‘3’ real diagonal elements. For
finding the ‘p’ upper bound, this ‘D’ matrix is found at each frequency by solving the
minimization problem of (5.11). The values of each of these D’ matrix diagonal
elements as a function of frequency are called as ‘D-scales’. In the D-K iteration process
of p-synthesis algorithm, ‘D’ stands for these ‘D-scales’. The ‘MU’ function of
MATLAB® which calculates the p-bounds also returns the above D-scales. In fact, the
‘MU’ function of MATLAB® follows the above procedure in calculating the p-upper

bound.

The above discussion on ‘p’ upper bound is for the robust stability analysis (M;(s)-A(s)
* structure) case. For the case of robust performance analysis (M(s)-Ap(s) structure), the ‘p’
upper calculation problem will be modified due to the extra Ar(s) block that is appended
to the A(s). In this case the sfructure of ‘Ap(s)’ and ‘D’ are:

AGsy 0 0 0
0 A) 0 0

AE)= | 5.13
O A (5.13)
0 0 0 Ap(s)

AgCPY A,iCH; A C; ACrooe | (5.14)
a 0 0 0

p=|) %@ 0 0 5.15

100 a2, 0 . (-19)
0 0 0 a,
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—1— 0 0 0

a;

0 =~ 0o o

D= %2 5.16)
= ! (5.16)
0 0 — 0
a,
0 0 0 —I
| a, °|

Now also, a same minimization problem as (5.12) has-to be solved to obtain the ‘D’ and
‘D', This gives the ‘p’ upper bound which can be used for checking the robust:

performance.

5.2.2 D-K iterations: Once we input the standard problem setup which can be derived by
following the procedures of chapter-3 and chapter-4, to the ‘DKITGUI’ tool, the
following iterations will occur. Refer to Fig.5.9 below in which the D(s) and D’\(s)

blocks are added to the uncertain closed-loop system in Fig.5.3.

Ap(S)

2
- |
[}E G(s)- = D(s) =
I——‘ K(s) <—I

Fig.5.9: Uncertain closed-loop system during D-K iterations

S
I
A5

= K-iteration: In this first iteration, separate Ap(s) and K(s) as shown in Fig.5.9. Now
D(s) and D"'(s) are taken as unity matrices. These unity matrices are added to G(s) as
shown above and the H,-synthesis algorithfn is applied. This gives a controller K;(s).
= D-iteration: During this iteration, the D(s) and D'I(s) blocks are to be taken out.
After this the Ap(s) and K;(s) blocks are connected to G(s) and p-analysis is applied-
for testing the robust performance. The ‘MU’ function used for this returns the D(w)
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and D"'(®) matrices for the entire frequency range. Curve fitting is applied on these
Di(®) and D;!(w) to obtain Dy(s) and Dl'l(s). The or__der of the fit can be chosen by
the designer. ‘ '

» K-iteration: Now, Ap(s) and Ki(s) are to be separated from G(s) and the new D-
scales D;(s) and Dl'l(s) are added to G(s) as in Fig.5.9. Now, the He-synthesis
algorithm will be applied on this modified G(s), to obtain Kx(s).

This iterative procedure is continued until a minimum value of ‘p’ is reached. Note that
in some cases ‘i’ may not converge globally. In that case the iterations are to be
continued up to the point where the present ‘w’ is greater than the ‘w’ of previous

iteration.

5.2.3 p-synthesis [2]: From Fig.5.2, remove the A’s and ‘K(s)’ and add appropriate
weighing functions at the disturbance inputs and regulated output variables similar to that
in the case of He-synthesis. Represent this transfer function model in terms of a Matlab
" SYSTEM variable, say ‘P’ using ‘SYSIC’. ‘P’ will have the interconnection structure aé
shown in Fig.5.10. This ‘P’ is different from vthat in Fig. 3.5 for the reason that this

includes the ‘uncertainty maximum bound’ functions also.

A(s)

vy
H_/
(¢}

K(s) -

Fig.5.10: The sequence of inputs and outputs of ‘P’ during p-analysis
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Where,
w: outputs from fA(s)’ block
v: Inputs to ‘A(s)’ block
d: vector of disturbance input signals
e: vector of regulated output signals -
w control input

y: input to the controller ‘K(s)’
After this, the synthesis procedure proceeds as follows.

» Call the DKITGUI

» Inputs to the ‘DKITGUI’ are- P, dimensions of A(s) (called as uncertainty block
structure), no. of input disturbance signals (d), no. of output regulated variables (e),

- no. of control inputs (u), and no. of inputs to the controller (y).

» The D-K iterations as explained in section-5.2.2 will follow. During each iteration
choose an appropriate order for D(s) so that it fits better for the D(w).

. = In each of the D-k iterations, check whether ‘> has reached the minimum.

» If the final ‘W’ achieved is less than ‘1°, choose the final controller as the output of the
design process.

= If the final ‘p’ is not less than ‘1°, then modify the weighing functions and do the p-

synthesis again.

The p-synthesis procedure is given as a flow chart in chapter-1. The value of ‘p’ less than
‘1’ means, the designed controller can make the system robust in terms of stability and
performance. The robustness of the designed Hw-controller and p- controller can be

checked by using p-analysis or with the help of time domain simulations.
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CHAPTER-6 LOAD FREQUENCY CONTROL PROBLEM IN
DEREGULATED ENVIRONMENT

Currently, electric power industry is in a transition from large, Vertica‘lly integrated
utilities providing power at regulated rates to an industry that will incorporate competitive
companies‘sellin'g unbundled power ét lower rates. Ultimately consumers will- benefit
from lower rates as a result of serious competitive bulk power markets. With this new
structure, that will include separate-generation (GENCOs), distribution (DISCOs) and
transmission companiés (TRANSCOs) with an open access policy, comes a need for the

novel control design methods.

DISCO To other Companies
|r
P, i
<— TRANSCO I ----1 »
; l GENCO -1
P,

GENCO -2

Fig.6.1: A simple deregulated power system structure [17] [25]

The power system structure shown in Fig.6.1 is having one DISCO, two GENCOs and a
TRANSCO. Distribution Company buys power from GENCOs and distributes it to its
customers, directly or through TRANSCOs. DISCO is the one which will be tracking the
loads of its customers (P1) continuously and hence is responsible for performing the Load
Frequency Control (LFC) task by securing as much power as needed from the GENCOs.
DISCO buys firm-power (P,) from GENCO-2 and enough power (P;) from GENCO-1 to
supply its customers load. TRANSCO transmits power from GENCO -1. GENCO-1 is
aléo conneéted to other companies, whigh are treated as disturbahces. GENCO-1 and

GENCO-2 are assumed to have one generator each for simplicity of the problem.
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In this work, design of the load frequency controller is considered for the deregﬁlated
power system structure described above, using the ‘Hu-synthesis’ and the ‘p-synthesis’

approaches of control design. The basic control requirements are as follows:

= The frequency deviations of both GENCO-1 and GENCO-2 must come to zero after a
load or other disturbances. _ ‘ |

» The firm-power contract with GENCO-2 must be maintained by bringing the power
supply deviation (AP,) in the line from GENCO-2, to zero after a load or other
disturbance.

= There are also some standard performance requirements like: stea&y-state frequency
deviations of both GENCO-1 and GENCO-2 should not be more than 2 Hz, governor
control input rate should not be too high (rate limit), power swings in the lines must be
as minimum as possible etc. Along with these basic control requirements, robustness is
also another important requirement in control design. The control design method must

be able to take into account the model uncertainties.

Table 5.1 gives the data of various components present in the deregulated power system

shown in Fig.6.1 for which the load frequency controller has to be designed.

Table 6.1: Data of the dcregulafed power system [17] [25]

Name Quantity Genco-1(1000MW) | Genco-2(750MW)
T Synchronizihg power coefficient 0.2 0.1
of transmission line

H | Constant of inertia 5 5

D | Damping constant . A 0.02 0.015 '
fo | Nominal frequency 50 50
Tm Turbine time constant 0.5 0.5
Th | Governor time constant 0.2 0.1
Km | Gain of turbine 1 1

Ky | Gain of governor 1 1

R | Droop characteristic 4 ‘ 5

Tp | Generator time constant ©0.167 0.167
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The linear model of this deregulated power system structure is shown in Fig. 6.2 below.

N
T, T,T,
T1+T2 TI+T2
L l
Ry
Af;
AP refl - Khl Apvl Kml 1 :
+ sTmt1 STmit1 sTp1+Dy
(A8,-Ad,)
GOV 1 TUR 1 PS1
S
Kn AP Kmo ' 1
) sTip+1 sTiz+1 sTptD; A,
GOV 2 TUR 2 PS2
1
R»
T,T>
T+T, Ti+T,
T AP, t

Fig. 6.2: Linear-model of the deregulated power system structure

Table 6.2 given below gives the descriptions for some of the variables and transfer

function block names used in the above linear model of the deregulated power system.

Table 6.2; Description of the terms in the linear model

A Deviation from the nominal value || Governor of Genco-1
) Rotor angle: J' Af.dt Turbine of Genco-1
f Frequency of Gencos Generator of Genco-1
) Turbine mechanical power output Governor of Genco-2
di | Disturbance (power quantity) Turi)ine of Gen60-2
Py Steam valve power Generator of Genco-2
Pees = u | Set point reference (control input Load on Disco
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6.1 H.-controller: For synthesizing a controller, the above linear model of the power
| system is changed into a standard H.-problem setup which satisfies the necessary
conditions given in section-3.4. The standard problem setup for this deregulated power

system problem involves the following input and output signals shown in Fig.6.3.

' :: Regulated
Dlsitr:gll;fsnce . | ‘ > ou{gluts
[d] G(s) |
Control inputs{ | | Outputs
[u] ' [yl
Fig.6.3: Inputs and outputs of the H,,-problem setup
[4] = [aP, 4] 6.1
[e] = [Af, A3,-A8, A3, u]' ' (6.2)
[u] =[AP] : 6.3
[y] = [B,Af,+B,Af, +(AS,-AS,)+AS +AP,+AP, | 6.4)

Where, .
B,=D,+1/R,=0.27 and B,=D,+1/R,=027

Equation (6.4) is called as Distribution Company Error (DCE) similar to the traditional
Area Control Error (ACE) [ ]. The above problem setup is converted into a single matlab
SYSTEM variable ‘P’ using the -‘SYSIC’ routine 6f MATLAB®. The necessary
conditions for the He-synthesis are checked. Then the H.-synthesis algorithm of
MATLAB?® is applied on this ‘P’. This has resulted the following H.-optimal controller
“Ku(s)’. ' '

-0.023s”-0.459s°-3.110s°-10.533s*-25.9205>42.0215>-43.348s -21.761

0.09s°+1.515°+14.79s*+69.335°+96.85s+154.39s +58.96
The He-cost “y’ achieved for the closed loop system is 10.9510. The time response plots

Ky (s) = 65)

in Fig.6.4 are the response of the closed-loop nominal power systerﬂ to a step load
disturbance (APp) of 0.15 Pu.
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Fig. 6.4: Response of the deregulated power system to a step load disturbance of 0.15 Pu

with and without the H.-optimal controller Ky(s)
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6.2 Welghted H.-controller: As already discussed in sectio * —the—ad

appropriate weighing functions to the problem setup (Fig.6.3), which will resemble the
performance requirements on the regulated outputs and data of the possible disturbance

inputs, modifies the problem to designer’s requirement. It can be observed from Fig.6.4:

® The frequency response (Af;) of GENCO-1 is taking almost ‘5 sec.’ to settle down.
To reduce this settling time, a weighing function ‘Wg (s)’ which stresses on the
reduction of the amplitudes of low frequency components is selécted for modifying
the design problem. . A

" Tt can also be observed from Fig.6.4 that, the control input (u = AP.s) at GENCO-1
is having very steep rate of change in the very starting. The rate limit in the governor
action will not allow this. For reducing this high rate of change of the control input, a
weighing function ‘W,(s)’ which stresses the reduction of the amplitudes of the high
frequency components is selected to modify the design problem accordingly: )

® For bringing the H.-cost (y) to a value less than ‘1°, the data of the disturbance inputs
is also modified with the help of weights. In this problem, the maximum amplitude of
any frequency component of the disturbance inputs is assumed to be not more than

0.5. Hence, the weights on the disturbance inputs W;, (s), W, (s) are chosen as 0.5.

Fig.6.5 shows the inverse magnitude plots of the weighing functions chosen for
modifying the performance requirements of GENCO-1 frequency (Af)) and the control
input (u= AP,;) at GENCO-1. '

Bacdle Diegram Bade Diagram

o o
& g
o 18]
B b=
=5 =1
= €
& )
[+] L]
= =
'20 1 1 1 _sn 1 1
- 2 a ]
- 10 - qp*® 10 10° 10°
Freguency (radfsec) Freuuencv (radfsec)

Inverse of frequency weighing function Wi, (s) Inverse of control input weighing function W, (s)

Fig. 6.5: Inverse magnitude plots of performance weighing functions {25]
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It was alréady discussed section-3.2 that the performance weights are to be selected based
on their inverse of magnitude plots. Hence in Fig.6.5, the inverse magnitude plots are
shown for the performance weighiﬁg' functions. The transfer functions of these weighing

functions are:
s+0.2 °

Wy(s)= —— = 6.6)
)= 206+ 0.000) 66)
' 2x107%s
W ()= ——— 6.7
R T 67

" The weights for the load disturbance (APL) and disturbance (d;) are chosen as 0.5 with
the assumption that no frequency component amplitude in these signals crosses 0.5.

W, =05 (6.8)

L

W,,(s)=0.5 6.9)

‘These weights resemble the frequency domain data of the disturbance inputs. Equations
(6.7) and (6.8) say that any of the frequency components in these disturbance inputs will
have amplitude not more than 0.5. With the addition of the above weights the standard
. He-problem setup will get modified as shown in Fig.6.6.

Ap— W O—— Wa(s) |, Afy
> AS1-AS,
G(S) - |_>
| W > ' Ay
dl — @ (S) Wul(s) —» u

— >
u y

Fig.6.6: H,-problem setup after the addition of weighing functions

The above problem setup is converted into a single matlab SYSTEM variable ‘P’ using
the ‘SYSIC’ routine of MATLAB®. Application: of He-synthesis algorithm on this ‘P’
' has given the following controller with the achieved H,-cost (y) of ¢0.8275".

-0.04s%-0.76s’ -5.4856_ 22.25°-66.6s* -113.85%-115.252-60.25-0.06
0.1s°+1.395°-11.9s*-198.4s%-113.68*-161.5s-0.16

Kuw(®) = (6.10)
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Fig.6.7: Response of the deregulated power system to a step load disturbance of 0.15 Pu
A with and without the weighted H.,-optimal controller Kyw(s)
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6.3 p-controller: As already discussed-earlier, the greatness of the p-synthesis is in its
ability to deal with modeling uncertainties. In the above He-optimal ¢ontroller designs
(sections-6.1&6.2), no modeling uncertainties are taken into account. For the deregulated

power system in Fig.6.1, three types of modeling uncertainties are considered. They are:

» Un-modeled high frequency dynamics uncertainty [25].
~ The magnitude plot of the ‘maximum uncertainty bound’ function ‘Wyu(s)’, for this
uncertainty is given in Fig.6.8. It shows that at low frequencies the unceftainty is

negligible but at high frequencies, there is a considerable amount of uncertainty.

Bade Diagram
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Fig. 6.8: Magnitude plot of the “multiplicative uncertainty
maximum bound’ function W, (s) [25]
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 Uncertainty in the damping coefficient ‘D;’ of GENCO-1 (Refer Fig.6.2).
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Fig.6.9: Effect of uncertainty on the transfer function ‘PS1° of GENCO-1
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The damping co-efficient is a relation between the change in the load and the
frequency deviation. This damping tells-by how much the load on GENCO-I
decreases for a small decrement in the frequency of GENCO-1. A 50% uncertainty is
assumed in this damping co-efficient D;, h.ere." This uncertainty in D; causes
uncertainty in the transfer function block ‘PS1° of GENCO-1 as shown in Fig.6.9. By
“using the method discussed in chapter-4, this uncertainty in the transfer function
‘PS1’ can be represented as a bounded complex uncertainty. The corresponding
nominal model ‘Wpyg;(s)” and the ‘maximum additive uncertainty bound’ ﬁmétion '
‘ ‘Waup1(s)’ are given below.

‘ 0.0473s+5.5067 _0.0016s2+0.2556s5+0.4302
Wi, (8) = 5 Waupi (8) = 2
s+0.1045 . §°+0.2184s+0.0098

Uncertainty in the damping co-efficient ‘D,’ of GENCO-2 (Refer Fig.6.2).

(6.12)

.t
*u

magnitude .

100

D oo 0 frequency
Fig. 6.10: Effect of uncertainty on the transfer function ‘PS2’ of GENCO-2

Similar to that in GENCO-1 an uncertainty is assumed in the damping coefficient
‘D> of GENCO-2. This uncertainfy of in the damping vco-eﬁicient ‘Dy’ causes
uncertainty in the transfer function block ‘PS2’ of GENCO-2 as shown in Fig.6.10.
This uncertainty in the transfer function ‘PS2’ can be represented as a bounded
complex uncertainty. The corresponding nominal model ‘Wps,(s)’ and the ‘maximum
"additive uncertainty bound’ functipn ‘Waup2(s)’ are given below.

_0.0465s + 5.5652 _0.0016s+ 0.2532s + 0.3080
W ()= 5 Wopa (8) = = 2
s+0.0807 s*+ 0.1566s + 0.0053

6.13)
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Once the model uncertainties are represented as bounded complex uncertainties as in
(6.11),(6.12) and (6.13), the p-synthesis problem setup can be formulated .as shown in
Fig.6.11. ’

Al(S) 0 0
0 Ax(s) O
0 0 Ass)
> P Wiu(s)
> ‘WauDl(S)
G(s)
> Waun2(s)
' —
d { _— L » }e
—_— —
oL — — 3

Fig.6.11: Standard p-synthesis problem setup

Where, Ai(s), Ax(s) and As(s) are the unit-norm bounded complex scalar (non matrix)
uncertainty as discussed in section-1.1. This problem setup (without A(s)) is converted
into a single matlab SYSTEM variable ‘P’ using the ‘SYSIC’ routine of MATLAB®.

Then, the D-K iteration algorithm is applied on to this problem setup with the help of the |
‘DKITGUYI tool of MATLAB®. The D-K iteration algorithm has taken ‘4’ iterations and
has achieved a final p value of 0.907 peak. During each of the D-K iteration, appropriate
rational fittings are chosen for the three D-scales magnitude data conesponding to the

three uncertainties A;(s), Ax(s) and As(s) as discussed in section-5.2.

Before the starting of the first D-K iteration, the D-scales matrix D(s) (and hence D'(s))
is chosen as an identity matrix. At the end of each of the D-K iteration, u-émalysis on the
closed-loop system of that iteration gives the D-scales magnitude data for which a

rational fit is chosen as shown in Figs.6.12, 6.13 and 6.14 to obtain D(s) and D'(s).
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Tteration-1: p-value achieved is 1.8188. The D-scales magnitude data and their rational

fittings are shown by solid and dashed curves respectively.
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Fig.6.12: D-scale fittings of iteration-1
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Iteration-2: p-value achieved is 1.0252. The D-scales magnitude data and their rational

fittings are shown by solid and dashed curves respectively.
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Fig.6.13: D-scale fittings of iteration-2
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Tteration-3: p-value achieved is 0.92. The D-scales magnitude data and their rational

fittings are shown by solid and dashed curves respectively.
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Fig.6.14: D-scale fittings of iteration-3
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These D-scale matrices D(s) and D’(s) calculated at the end of E_each of the iteration are
appended to the problem setup in Fig.6.11 and a modified contré)ller is designed. At the
end of the 4™ iteration, a peak ‘p’ value of 0.907 is achieved as shown in Fig.6.15. A try
for the next iteration has resulted in a peak ‘w’ value of 0.94. Hence the controller

resulted from the 4™ iteration is taken as the final controller.

Mu () Sigma_max (--)

1 —

0.9 - _—
08k
07}

06}

Mu and Max Singular Value

05 IR AN S IR TS 1 SN S N U WY T 1 B B A R T | 21 sl o p el L) 1 11133
10" 10' 10° 10
Freguency, radisec

Fig.6.15: p-plot after the 4™ iteration with peak value ‘0.907°

The controller obtained in the 4™ iteration is of order 25. The total order of the controller
depends on the order chosen for the D-scales fittings. This is a general result in ;1;-
synthesis. For making the designed controller realizabie, controller order reduction
techniqu_e is to be applied necessary. The order reduction of this 25" order controller is

done in section-6.5. This higher order p-controller is given in (6.14) below.

__ -0.0015™- 0.0065™ - 0.0275%- 0.097s% - 0.315'- 0.83s™- 1.955"
0.0001s%+ 0.00065% + 0.004s2 + 0.019552 + 0.076s*' + 0.255° + 0.68s"

-3.99s"®- 7.135'"7- 11.035"- 14.68s" - 16.59s" - 15.65s"- 11.98s*- 7.16s"
1.608s"*+ 3.225"7 + 5.50s'°+ 7.985"+ 9.735'*+ 9.78s"+ 7.9140s'> +4.94s"!

-3.148s'°- 0.9395°- 0.175s%- 0.020s- 0.001s°
2.245"+ 0.67s”+ 0.125s%+ 0.014s” + 0.0009s°

K,(s)

(6.14)

Time response simulations can be run on the closed-loop system with this 25" order p-
controller, by applying a step load disturbance of size 0.15 Pu. The responses of the
deregulated power system for this step load disturbance are shown in >Fig.6. 16.
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Fig.6.16: Response of the deregulated power system to a step load disturbance of 0.15 pu
with and with out the y-controller K,(s)
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6.4 Comparison of Robustness between Weighted H.-controller and p—éontroller: It
was discussed in section-1.5, that a planned procedure must be followed for doing this '
robustness comparison. According to that procedure, pi-analysis of the uncertain closed-
-loop system with the weighted H..-controller yielded a p.—plot' and a perturbation matrix as
below in Fig.6.14 and table 6.3. This perturbation is the one which will cause the system
with the weighted Ho-controller to go to the verge of instability.

8 — e S ——
BI- 1

g 4} §
2+ i

0 Lol TR AT 11 R B S AT T 31 B N T T B
10° 107 10" 0 10’ By

frequency (rad/sec)

Fig.6.17: p-plot of closed-loop uncertain system with the weighted Hx-optimal controller

Table 6.3: Perturbation matrix returned from p-analysis on the system with Kyy(s)

164.15 + 9.1122¢-015i

Pertl(®)/A, Pert2(@)/A, Pert3(w)/A; ®(rad/sec)
~1.2698+ 0.0002641. 1.2698 - 6.6085¢-018i 12698 + 4.40560-0181 0.001
-1.2698 + 0.000297i 1.2698 - 4.4056¢-018i 12698 0.0011233
-1.2698+ 0.00033i 1.2608 - 4.4056¢-018i 12698 0.0012619
-1.2698 + 0.000375i 1.2698 - 8.8113¢-018i 12698 0.0014175
-1.2698 + 0.000421i 12698 - 4.4056¢-018i 12698 0.0015923
-0.17955 + 0.06142i 0.18977 0.18977 6.8926
-0.16647 - 0.023586i 0.16813 0.16813 - 9.333¢-018i 7.7426
-0.14835 - 0.098354i 0.17799 + 1.4821e-017 0.17799 + 1.4821-017i 8.6975
-0.12305 - 0.16543i 0.20671 - 3.44246-017; 020671 - 1.1475¢-017} 9.7701

20092366 - 0.22563i 0.24381 + 1.3534¢-017i 0.24381 +5.4136¢-017i 10975
-0.052904 - 0.27836i 0.28335 + 1.5729¢-017i 0.28335 - 1.5729¢-017i 12.328
-0.005183 - 0.3215i 0.32159 0.32159 13.849 |
-9.4288 +5.07751 10.709 + 1.1889¢-015i 0 55.908
-17.402 +7.1954i 18831 0 62.803
-31.186 + 10.025i 32,757 + 1.8184¢-015i 0 70.548
-54756 + 13.941i - 56503 0 79.248

-94.662 + 19.73i 96.696 - 1.0735¢-014i 0 89.022

-161.56 +29.059i 0 100
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This perturbation is applied to the deregulated power system with the weighted He-
controller and p-controller respectively and the responses to a step load of 0.15 Pu are as

shown in Figs.6.18 and 6.19. This is the first step in the robustness comparison plan.

control input at Genco-1

pawer flow deviation from Gencg-2 power flow deviation fom Genco-1

frequency deviation of Genco-Z  frequency deviation of Genco-1
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| I 1

5 10 15
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Fig.6.18: Responses of the perturbed and un-perturbed deregulated power system to a
step load disturbance of 0.15 pu with weighted H,,-weighted optimal controller Kpw(s)
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Fig.6.19: Response of the perturbed and un-perturbed deregulated power systems to a
step load disturbance of 0.15 pu with the p-controller K,(s)
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It can be observed from Figs.6.18 and 6.19 that, the perturbation which_has caused the
closed-loop perturbed system with the weighted Hw-optimal controller to go to the -verge
of instability has no effect on the closed-loop perturbed system with p-controller.
Following again the robustness comparison plan of section-1.5, p-analysis of the
uncertain closed-loop system with the p-controller yielded a p-plot and a perturbation
matrix as below in Fig.6.20 and Table 6.4 respectively. Note that this is the perturbation
which will cause the system with the p-controller to go to the verge of instability. This

perturbation is applied to the deregulated power system to compare the controllers.

-~
E05fF ]
D MR ISR | Ao a2 1l At vt agnl A 1.1 313333l a2 llll\"llJ
10° 107 10 10" 10’ 10°

freﬁuem:v {radfsec)
'Fig.6.20: p-plot of closed-loop uncertain system with the p-controller

Table 6.4: Perturbation matrix returned from p-analysis on the system with K.(s)

Pertl(w)/A, Pert2(w)/A, Pert3(w)/A; w(rad/sec)
112698 - 6.66320-051 | 1.2698 - 4.4036e-018i 12608 0.001
-1.2608 - 7.4849¢-051 | 1.2698 - 6.6085¢-018i 1.2698 0.0011233
-1.2698 - 8.4079¢-05i 12698 12698 0.0012619
-1.2698 - 9.4448¢-051 | 1.2698 - 8.8113¢-018i | 1.2608+8.8113¢-018i | 0.0014175
-1.2698-0.0001061i | 1.2698 - 4.4056-018 | 1.2698 +4.4056¢-018i | 0.0015923

-1.088-0429691 | 1.17+64947¢017i | 1.17+6.4947¢-017i 6.8926
-1.060-0.49146i | 1.1689 - 6.4886¢-017i 11689 77426
| -1.027-055823i | 1.1689-6.4886e-017i | 11689 +6.4886e-017i |  8.6975
-0.98574-0.6301i | 1.1699+ 6.4944e-017i 1.1699 . 97701
-0.93464-0.706% | 1.1719-13011e-016i | 1.1719-6.5053¢-017i |  10.975
-0.87089-0.7882i | 1.1746-9.7806¢-017i 1.1746 12.328
-0.79098 - 0.8727i | 1.1779:8.1731e-017i |- 1.1779- 130770161 |  13.849
5.6668+ 449511 | 7.2332- 8.0304¢-016 0 62.803
7.1529+7.8762i | 10.639 - 5.9061¢-016i 0 70.548
89102+ 12,9781 | 15.742 + 2.6217¢-015i 0 79.248
11.009+20618i | 23.373 - 1.2975¢-015 0 89.022
13.576+31969 | 34733 +3.8561e-015i 0’ 100
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Fig.6.21: Response of the perturbed and un-perturbed deregulated power systems to a
step load disturbance of 0.15 pu with p-controller K(s)
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Fig.6.22: Response of the perturbed and un-perturbed deregulated power systems to a’
step load of 0.15 pu with weighted H.-optimal controller Kyw(s)

Figs.6.21 -and 6.22 shows that, the perturbation which has brought the system with p- - :
controller to the verge of instability has caused the system with the Hx-controller to go to

instability.
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Table 6.3 which has send the power system with the weighted Hw-controller to the verge

of instability is applied to the system with reduced order p-controller.
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Fig.6.25: Response of the perturbed and un-perturbed deregulated power systems toa
step load of 0.15 pu with the reduced 3% order p-controller ‘Ky,(s)’
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The time response simulations in Fig.6.25 confirms that the 3™ order p~controller is
robust enough just similar to'thé 25™ order p-controller. This implies that our coriﬁoller ‘
order reduction process is successful. This reduced order robust controller is realizable
because of its lesser order and robust enough for perfofming satisfactorily on real power

systems.
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CONCLUSION

Conceptual framework re&luired for tﬁe ‘Design of Robust Power System Controllers’ is -
developed and is validated by designing a robust load frequency controller for a
deregulated power system problem. First a He-optimal éontroller is designed and is
improved to a weighted He-optimal controller by using the concept of weighing functions
in order to concentrate on particular frequency components in the output responses. The
weighing functions are chosen to resemble the performance requirements and the data of
input disturbance frequency components. This modified He-controller is meeting the
targeted performance requirements. Then, bounded uncertainty models are obtained for
some of the uncertainties in the deregulated power system model. These uncertainties are
added to the power system nominal model to resemble the real power system as closely
as possible. p-synthesis is applied on this uncertain pbwer system model and a robust
- load frequendy controller is designed which is called as p-controller. This p-controller is
an extension to the weighted Hu-controller which takes the model uncertainties also into

account.

The weighted Hx-controller and the p-controller are compared for robustness properties
using the frequency domain p-analysis technique. A planned procedure is developed for
comparing the robustness properties of the two controllers in terms of time response
simulations. Two peftur_bation matrices are obtained with the help of p-analysis and these
perturbations are applied to the power system with the weighted H-controller and the
power system with p-controller. Time response simulations for a step load disturbance

are showing the superior qualities of the p-controller in terms of robustness. |

The p-controller obtained is of 25™ order. This order is reduced to 3" order for making
the p-controller is realizable for actual applications; The order reduction process is
checked by testing the robustness properties of this 3™ controller. p-analysis and time
response simulations are showing that the order reduction has not changed the robustness
Qualities of the p-controller. Results say that the p-controller is robust enough to model
uncertainties which meén that this controller works better when kept in the actual power

. system.

71



REFERENCES

Mathematical Concepts and Theoretical Basics:

" [1] John C. Doyle and Gunter Stein, “Multivariable Feedback Design: Concepts for a
Classical / Modemn Synthesis”, IEEE Transactions on Automatic Control, Vol. AC-
26, No. 1, pp.4-16, February 1981.

[2] G.J. Balas, J.C. Doyle, K. Glover, A. Packard & R. Smith, “n-Analysis and Synthesis
Toolbox User’s Guide, Version-3, MATLAB®, The Math Works Inc.

[3] John C. Doyle, Keith Glower, Promad P. Khargonekar and Bruce A. Francis, “State-
Space Solutions to Standard H, And H,, Control Problems”, IEEE Transactions on
Autornatic Control, Vol. 34, No. 8, pp.831-847, August 1989.

[4] P. M. Makila, “On Three Puzzles in Robust Contfol”, IEEE Transactions on
Automatic Control, Vol. 45, No. 3, pp-552-556, March 2000.

[5] Sigurd Skogestad and Manfred Morrari, “Technical Notes and Correspondence”,
IEEE Transactions on Automatic Control, Vol. 33, No. 12, pp.1151-1154, December
1998.

~ [6] John C. Doyle, Kemim Zhou, Keith Glover and Bobby: Dodenhaimer, “Mixed H; and
H., Objectives 1I: Optimal Control”, IEEE Transactions on Automatic Control, Vol.
39, No. 8, pp.1575-1587, August 1994.

[7]1 Herve Chapéllat, Mohammed Dahleh and Shankar P. Bhattacharyya, “Robust
Stability Under Structured and Unstructured Perturbations”, IEEE Transactions on
Automatic Control, Vol. 35, No: 10, pp.1100-1108, October 1990. .

[8] Micheal K. H. Fan, Ander L. Tits and John C. Doyle, “Robustness In The Presence Of
Mixed Parametric Uncertainty and Unmodeled Dynamics”, IEEE Transactions on
Automatic Control, Vol. 36, No. 1, pp.25-38, January 1991.

[9] Wolfgang Reinlet, “Robust Control of a Two — Mass — Spring System subject To Its
Input Constraints”, Proceedings Of The American Control Conference, Chicago,
Illionois, pp.1817-1821, June 2000.

[10] Sigurd Skogestad, Manfred Morari and John C. Doyle, “Robust Control Of Iil-
Conditioned Plants: High — Purity Distillation”, IEEE Transactions on Automatic
Control, Vol. 33, No. 12, pp.1092-1105, December 1998.

[11] M. Kammash L. Zou, J. A. Almquist and C. Van Der Linden, “Robust Aircraft
Pitch - Axis Control Under Weight and Center of Gravity Uncertainty” Proceedings

72



of 38" Conference On Decision And Control, i’hoenix, Arizona, USA, pp.1970-1975,
December 1999.

[12] A. N. Moser, “Designing Controllers for Flexible-Structures with H-Infinity/M-
Synthesis”, IEEE Control Systems Magazine, Vol. 13, pp. 79-89, April 1993.

[13] Robust Control Toolbox User’s Guide, MATLAB®, The Math Works Inc.

H., -‘optimal ' control:

[14] S. Chenand O.P. Malik, “H., Optimization-Based Power System Stabilizer Design”,
IEEE Proceedings On Generation, Transmission And Distribution, Vol.142, No. 2,
pp. 179-184, March 1995 |

[15] Ryo Kuninaka, Tomonobli Senjyu, Tatsuto Kinjo, Naomitsu Urasaki, Toshihisa
Funabashi and Hideki Fujita, “ A Method To Control Static Var Compensator by
using H,, Controller”, International Conference on Power System Technology-
POWERCON 2004, Singapore, pp.21-24, November 2004,

[16] T C Yang, “Applying H., Optimization Method to Power System Stabilizer Design -
Part 2: Multi-Machine Power Systems”, Electrical Power and Energy Systems, ‘
Vol.19, No.1, pp.37-43, 1997. ' .

[17] Ali Feliachi, “On Load Frequency Control in a Deregulated Environment”,
Proceedings of the 1996 IEEE International Conference on Control Applications,
Dearborn, _ﬁp.15-1 8, September 1996.

Modeling of Uncertainty:
[18] E.Vidal, J. Stoustrup, P. Andersen, T.S.Pedersen and H.F.Mikkelsen, “Deterministic
| Method for obtaining Nominal and Uncertainty Models of CD Drives”, Proceedings
of the 2002 IEEE International Conference on Control Applications, Glasgow;"
Scotland, UK, pp.18-20, September 2002.

Structured Singular Value Analysis:

[19] Miodrag B. Djukanovic, Mustafa H. Khammash and Vijay Vittal, “Sensitivity Based
Structured Singular Value Approach to Stability Robustness of Power Systems”,
IEEE Transactions on Power Systeﬁs, Vol.15, No.2, pp.825-830, May 2000.

73



[20] M.H. Khammash, V. Vittal and C.D. Pawloski, “Analysis of Control ‘performance
for Stability Robustness of Power Systems”, IEEE Transactions on Power Systems,
Vol.9, No.4, pp.1861-1867, November 1994.

[21] Miodrag Djukanovic, Mustafa Khammash and Vijay Vittal, “Application of the
Structured Singular Value Theory for Robust Stability and Control Analysis in Multi-
Machine Power Systems Part-I: Frame Work Developmenf”, IEEE Transactions on
Power Systems, Vol.13, No.4, pp.1311-1316, November 1998. '

[22] Miodrag Djukanovic, Mustafa Khammash and Vijay Vittal, “Application of the
Structured Singulaf Value Theory for Robust Stability and Control Analysis in Multi-
Machine Power Systems Part-II: Numerical Simulations and Results”,- IEEE |
Transactions on Power Systems, Vol.13, No. 4, pp.1317-1322, November 1998.

Structured Singular value Synthesis:

[23] S. Chen and O.P. Malik, “Power System Stabilizer Design using p-Synthesis”, IEEE
Transactions on Energy Conversion, Vol.10, No.1, Pp.175-181, March 1995.

[24] M. Bouhamida, A. Mokhtari and M.A. Denai, “Power System Stabilizer Design
Based on Robust Control Techniques”, ACSE Journal, Vol.5, Issue 3, pp.33-41,

_ November 2005. ’

[25] Hassan Bervani, “Robust Load Frequency Control in a Deregulated Environment: A
u-Synthesis Approach”, Proceedings of the 1999 IEEE International Conference on
Control Applications, Kohala Coast, Island Of Hawaii, U.S.A, pp.616-621, August
2227 ,1999. | |

[26] J.H. Chow, L.P. Harris, M.A. Kale, H.A. Ohtman, J.J. Sanchez-Gasca and G.E.
Terwilliger, “Robust Control Design of Power System Stabilizers using Multivariable
Frequency Domain Techniques”, Proceedings of the 29" Conference on Decision and
Control, Honolulu, Hawaii, pp.2067-2073, December 1990.

[27] A. Swarcewicz and K. Wroblewska-Swarcewicz, “Robust Power System Stabilizer”,
IEEE Porto Power Tech Conference, Porto, Portugal, September 10“’-13”‘, 2001.

[28] Juanyu Bu, Mario Sznaier, ZI-Qin Wang and Issa Batarseh, “Robust Controller

‘ Design for a Parallel Resonant Converter using p-Synthesis”, IEEE Transactions on

Power Electronics, Vol.12, No.5, pp.837-853, September 1990,

74



[29] Jong-Lick Lin and Jiun-Shang Lew, “Robust C.ontroll'er‘ Design for a Series
Resonant Converter via Dufy-Cycle Control”, IEEE Transactions on Power
Electronics, V01.14, No.5, pp.793-802, September 1999. |

[30] T.S. Lee, K.S. Tzeng and M.S. Chong, “Robust Controller Design for a Single-Phase
UPS Inverter using p-Synthesis”, IEE Proc., Electr. Power Appl., Vol.151, No.3,
pp.334-340, May 2004.

[31] Gustavo Willmann, Daniel F. Coutinho, Luis F.A. ?eréira and Fausto B. Libano,
“Robust Control Design for Uninterruptible Power Systems”, The 30% Annual
Conference Of The IEEE Industrial Electronics Society, Busan, Korea, pp.'1814186,
November 2-6, 2004. | |

" [32] Olle L. Elgerd, “Electrical Energy Systems Theory an Introduction”, TMH, Second

Edition, 2004, pp.299-362. ‘

75



APPENDIX

Deregulated Power System State-space matrices: The state-space equations of the

deregulated power system in Fig. 6.1 are given below.

X = AX +Bu+Dw (A-1)
Where, X'=[Af, AP, AP,, (AS,- AS,) AP,, AS,] (A-2)
u=AP,, | (A-3)
W™= [AP, d,] (A4
DL, = 0o 0 0
Tpl Y}-’l T;’l
0 L Ko 0 0 0 0
TMI TMl
__Isfﬂ_ 0 _L 0 0 0 0 0
Rle Tm
Aol| 27 0 0 0 -2D;z (1) 0 0 (A5)
0 0 0 — 2= _— 0 0
TP2 TP2 ];’2
0 0 0 0 0 L Ku
TM2 TM2
0 0 o o Be o L
RTy, Ty,
| 27 0 0 0 0 0 0 0
r K, | ,
B'=|0 0 =L 0 0 0 0 0 (A-6)
. T,
I N Y
- pro| GHL) (1, +1y) A7)
_ L 000 0 0 00
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Where,
1T,

(L+T,)

(A-8)

q::

These state-space equations can be divided into transfer blocks as in F ig.6.2 and can be

written as subsystems before calling the SYSIC routine.
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