
DESIGN OF ROBUST POWER SYSTEM 
CONTROLLERS 

A DISSERTATION 
Submitted in partial fulfillment of the 

requirements for the award of the degree 
of 

MASTER OF TECHNOLOGY 
in 

ELECTRICAL ENGINEERING 
(With Specialization in Power System Engineering) 

By 

BASAL+! VENKATA RAO 

DEPARTMENT OF ELECTRICAL ENGINEERING 
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE -

ROORKEE-247 667 (INDIA) 

JUNE, 2007 



i.D. No.-M.T......... .¢. 

CANDIDATE'S DECLARATION 

I hereby declare that the work, which is presented in this dissertation report, entitled 
"DESIGN OF ROBUST POWER SYSTEM CONTROLLERS", being submitted in 
partial fulfillment of the requirements for the award of the degree of MASTER OF 

TECHNOLOGY with specialization in POWER SYSTEM ENGINEERING, in the 
Department of Electrical Engineering, Indian Institute of Technology, Roorkee is an 
authentic record of my own work carried out from July 2006 to June 2007, under the 
valuable guidance and supervision of Dr. C. P. Gupta, Assistant Professor, Department of 

Electrical Engineering, Indian Institute of Technology, Roorkee. 
The results embodied in this dissertation have not been submitted for the award of any 

other Degree or Diploma. 

Date: '-.9-o6-~,00 	 BASAM VENKATA RAO 

Place: Roorkee 	 Roll. No: 054001 

CERTIFICATE 

This is to certify that the statement made by the candidate is correct to the best of my 
knowledge and belief. 

~i•^~~l~~bT 

Date: %9-o6--2'o& 	 Dr. C. P. GUPTA 
Place: Roorkee 	 Assistant Professor 

Department of Electrical Engineering 
Indian Institute of Technology Roorkee 
Roorkee - 247667, (INDIA) 



ACKNOWLEDGEMENTS 

First and foremost, I would like to express my sincere appreciation to my supervisor, 

Dr. C. P. Gupta, for the patience and guidance throughout the entire duration of my 

thesis. Without his supervision and encouragement, this thesis would never have been 

a success. 
I would like to express my deep sense of thankfulness to Prof. S. P. Gupta, Head of 
Department and Prof. J. D. Sharma, P.S.E Group Leader, for providing me better 

facilities to carry out this work. 

I would like to take this opportunity to express my deep sense of gratitude to my 

family for their support and encouragement they have provided me over the years. 

Last, but not the least, I would also like to thank my friends who have offered me 
their unrelenting assistance throughout the course. 

BASAM. VENKATA RAO 

ii 



ABSTRACT 

Power system is such a complex structure that it is not always easy to derive an exact 

model for it. These complexities in modeling leads to model errors which are also called 

as `model uncertainties'. If a controller is designed for a particular control problem in the 

power system, without considering these model uncertainties, that controller may fail in 

real application. So a design methodology which can take these model uncertainties into 

account is necessary specifically to the power system control problems. Structured 

singular value (µ) synthesis is the design method which is having the ability to deal with 

these model uncertainties. So a controller that is designed using this method will be 

robust enough to work on the real power system. 

In this dissertation work, a deregulated power system load frequency control problem is 

considered for explaining the development of the µ-synthesis from the H- synthesis. 

Three types of controllers are designed for the deregulated power system load frequency 

control problem, namely 

• Hco- controller 

• Weighted H.-controller 

0 g-controller 

`Bounded complex 'uncertainty' models are developed for the Damping coefficient 

'uncertainties in the deregulated power system model. Along with these two uncertainties, 

the neglected high frequency dynamics uncertainty due to the first order approximation of 

turbines and governors is also considered. A ti-controller  is designed after taking these 

model uncertainties into account. The robustness properties of this µ-controller are 

compared with the weighted H- controller with the help of time response simulations. 

Controller order reduction technique is applied on this ti-controller  to reduce it to a 3 d̀  

order controller from 25th  order. The robustness of this third order controller is also 

checked using time response simulations. For this work, the various algorithms available 

in the Robust Control Toolbox of MATLAB®  are used. g-controller is designed using the 

DKITGUI tool available in this Robust Control Toolbox of MATLAB®. 
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CHAPTER-1 	 INTRODUCTION 

Robust control design is different from the ordinary linear control design in the sense that 
this design process considers a family of plants instead of a single nominal plant. If a 

designer is asked to design a controller for a system, first he needs to derive the model for 
that system. But no nominal model should be considered complete without some 
assessment of its errors. These errors in the derived model for the plant may be having 
sources such as uncertainties in the parameters, neglected high frequency dynamics and 
simplifications to the actual model which are jointly called as `model uncertainties'. 
Because of these uncertainties in the model, the designer comes across the tough task of 
thinking in terms of a family of plants as shown in Fig. 1.1 instead of a single nominal 
plant while designing the controller. 

~►~rwrw►•~wr~ 

m 
Family of Unc ertain Plents 

fxaquency radlsec 	oa -- 

Fig. 1. l: Family of plants due to uncertainties in modeling [1] 

John Doyle [1] proposed first that these model uncertainties can be described effectively 
in terms of norm-bounded perturbations. In order to deal this bounded perturbation 
representation and the H-infinity performance objective at a single throw, he developed a 

powerful tool called structured singular value (p.). This `p.' can be used for testing 
"robust stability" and "robust performance". "Robust stability" means stability in the 
presence of model uncertainty and "robust performance" means performance in the 

presence of model uncertainty. Before the introduction of structured singular value, the 

era was of H-infinity optimal control in which performance objectives can be formulated 

in terms of minimization of the H-infinity norm. But it doesn't suit well to consider 
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model uncertainty. So the introduction of structured singular value concept brought a new 

era in control design called "robust control". 

An .important point to be noted here is, even though H-infinity optimal control is not 
directly useful for robust control design, it is `a part and has to be used repeatedly, in the 

D-K iterations of ti-synthesis robust control design algorithm. This point will become 
clear by the discussion on g-synthesis in chapter-5. Hence it is must to understand first 
about the H-infinity synthesis procedure before trying to understand the g-synthesis 

design procedure. 

1.1 Bounded Uncertainty [1] : It can be observed from Fig.1.1 that any uncertain system 

will have bounds for its uncertainty from the nominal plant at each frequency. This 
maximum bound can be represented by a frequency domain function Wa(s) (called as 

`maximum uncertainty bound' function), whose magnitude I  Wa(s)  I  will represent the 

maximum deviation from the nominal plant at each frequency. A new term `0(s)' called 
as bounded uncertainty is introduced here. If `0(s)' is a single scalar uncertainty, then it is 
a unit circle in the complex plane as shown in Fig.1.2. If `0(s)' is a matrix, then the 
matrix norm of this `0(s)' is unity at each frequency. In the robust control theory this 

matrix norm in general will be the He-norm. 

Im 	 im 

IDH 
-1 

0(s) 	 2+i(s) 

Fig.1.2: Meaning of scalar (not a matrix) complex uncertainty `is(s)' in the complex plane 

Any uncertain plant `Ge(s)' can be written_ as Ge(s) = G(s) +Wa(s) A(s) as an additive 

uncertainty. The maximum amount of deviation from the nominal plant G(s), is bounded 

by I Wa(S) f. The meaning of this bounded additive uncertainty representation is shown 
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below in Fig.1.3. This I Wa(s) I at any frequency can be said, as the radius of a circle in 

the Nyquist plot, enclosing all the possible points of the uncertain system at that 

frequency. 

Fig. 1.3: Representation of an uncertain system with `d(s)' 

Fig. 1.3 explains the `bounded additive uncertainty' representation of an uncertain system 

`G„(s)'. Where, w1, w2, w3 and coo are various frequency. points in the whole frequency 

range. The Fig. 1.4 given below shows this `bounded additive uncertainty' representation 

of 'Gu(s)' using transfer function blocks. 

Fig. 1.4: Bounded additive uncertainty representation 

The above additive uncertainty representation is modified slightly as below, to derive 

another form of representation called `bounded multiplicative uncertainty' representation. 

G(s) = Go(s)[1+ (Wa(s)/Go(s)) A(s)] 	 (1.1) 

Wm(s) = Wa(s)/Go(s) 	 (1.2) 
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Where, Wm(s) is called the `maximum multiplicative uncertainty' bound function. This 

form of uncertainty representation is shown in the Fig. 1.5 below, using transfer function 

blocks. 

A(s) I-1 Wm(S) 

G(s) 

Fig. 1.5: Bounded multiplicative uncertainty representation 

1.2 Linear Fractional Transformations: Linear Fractional Transformation (LFT) 

representation of systems is frequently used in robust control design methodology [2]. 

Before using many of the robust control algorithms, one must have Linear Fractional 

Transformation representation of the systems. Mainly for the application of g-analysis 

and g-synthesis algorithms, we need to separate the uncertainty block (A(s)), controller 

block (K(s)), and plant model (G(s)) in Linear Fractional Transformation form as shown 

in Fig.1.6. This is because, these algorithms internally assumes this representation. For 

example in case of ,u-analysis, we need to obtain: A(s) (called as uncertainty block 

structure data), K(s) (controller in SYSTEM variable form), and G(s) (plant model in 

SYSTEM variable form), before calling the g-analysis algorithm. Similar is the case of 

using g-synthesis. algorithm, but this time K(s) will be the output of the algorithm. So this 

Linear Fractional Transformation representation is important in robust control design. 

r isturbance
put vector]d 

e 	Regulated 
output vector 

Fig.1.6: Linear Fractional Transformation (LFT) representation [2] 
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1.3 IL-synthesis: The Hc-optimal control design involves the steps given in the flow 

chart below in its synthesis procedure. An in depth discussion of these steps is given in 

chapter-3 on H- synthesis. Briefly, the objective is to obtain an optimal controller that 

can minimize the cost function `y', where, `y' is the FL-norm of the closed loop system 

from disturbance inputs to regulated outputs ('d' to `e' in Fig.1.6 above). The flow chart 

given in Fig. 1.7 below hopefully may help in providing the first and simple insight into 

the H-infinity synthesis procedure. 

Start 

Deriving the. 
Nominal Model 

Standard H. problem formulation 
by adding suitable Weighing 

functions 

Application of HL-synthesis 
Algorithm 

Is 	N 
Y<1.0 

Y 

Stop 

Fig. 1.7: Flow chart of Ham-synthesis procedure 

A point that is of worth noting at this stage is that the above design steps results in a He,-
optimal controller for the nominal model of the system. This design does not take the 

model uncertainties into account. Hence this is not a robust control design. 
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1.4 p-synthesis: The structured singular value synthesis (µ- synthesis) is different from 

the HL-optimal controller synthesis in the sense that the former is having the ability to 

take model uncertainties into account in its synthesis process. 

Start 

Deriving the 
Nominal Model 

Addition of Bounded 
Uncertainties 

Standard H. problem formulation 
by adding suitable Weighing 

functions 

Application of Ho,-synthesis 
Algorithm 

.t-analysis and obtaining the 
D-scales data 

Is 
Is 	N 

µprey < Anevo   

N  
Rational fitting for D-scales 	 Stop 

data to obtain D(s) 

Appending D(s) and D"1(s) to the 
standard H. synthesis setup 

Fig. 1.8: Flow chart of µ-synthesis procedure 
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The g-synthesis algorithm in its synthesis steps calculates the worst case uncertainties in 

terms of D-scales (refer section-5.2) and modifies the design setup (by appending these 

D-scales) before calling the H- synthesis algorithm. It will do this repeatedly until a 

minimum value of `A' is achieved. Here 'g' is the structured singular value of the closed 

loop uncertain system from the disturbance inputs to the regulated outputs (from'd' to `e' 

in Fig. 1.6). The flow chart given in the Fig. 1.8 above will help in getting the first and 
simple insight into the µ-synthesis procedure. 

1.5 Design Evaluation: Once the controller synthesis is completed, it is necessary to 

evaluate our design by checking the robustness properties of the controller in terms of 

stability and performance. This design evaluation can be done with the help of frequency 

domain methods or by running time response simulations. The frequency domain method 
of design evaluation is called as structured singular value (g) analysis. 

1.5.1 p-analysis: This is a frequency domain method for checking the robustness of a 

designed controller. This concept can be explained with the help of a simple example in 
our power systems. Consider a.single-machine infinite-bus (SMIB) system with a TCSC 

in the transmission line. If a designer is asked to design a controller for this TCSC, first 

he will obtain a linear model of this SMIB system at a particular power flow condition in 
the transmission line and will design a controller at this operating condition. Now the 

problem is to check-whether the designed controller is robust for different flow 
conditions in the line!! For this purpose the µ-analysis can be used. 

For different power flow conditions in the transmission line, certain parameters in the 

transfer function of the SMIB system linear model varies. These parameter variations can 
be modeled as bounded complex uncertainties by using the method discussed in chapter-4 

and the closed-loop uncertain (parameter uncertainties) system can be represented in LFT 

form as in Fig. 1.6. Now p.-analysis can be applied on this LFT form. If `g' is less than or 
equal to 1, the controller is robust in terms of stability and performance for the considered 

power flow variations in the transmission line. In this way the robustness of any designed 

controller can be checked by using the frequency domain it-analysis technique. An in-

depth discussion on t.-analysis is given in chapter-5. 
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1.5.2 Time Response Simulations [21: Even though the frequency domain g-analysis 
technique can be used for analyzing the robustness properties of any designed controller, 

simulations in the time domain helps in directly visualizing the superior qualities of one 
controller, when compared with another controller. For example, in this report, a H—

controller and a p-controller are designed for a Deregulated power system Load 

Frequency Control. (LFC) case. These two designs can be compared for robustness 
properties using p.-analysis technique. But, time response simulations help in directly 

visualizing the superior qualities of,u-controller in terms of robustness when compared 

with the H- controller. Three types of time response simulations can be run. They are 

response of: 

■ Open-loop nominal system 

■ Closed-loop nominal system 
■ Closed-loop perturbed system 

The basic structures of the above three types of systems on which time response 
simulations are to be run are shown in Fig. 1.9 below. 

Pert(s) 

—~ 	G(s) --► 	G(s) —► G(s) 

H__K(s) 
K(s) 

Open-loop nominal, Closed-loop nominal Closed-loop perturbed 

Fig.1.9: Basic structures for time response simulations 

Note that `Pert(s)' is different from `0(s)' of Fig.1.6. As explained in section-1.2, `0(s)' 

is a unity-norm bounded uncertainty where as `Pert(s)' is a worst case in this norm 

bounded `0(s)'. `A(s)' along with the nominal plant represents a family of plants of an 

uncertain system as in Fig.1.3. Where as `Pert(s)' along with the nominal plant represents 

the worst case in this family of plants which will bring the close-loop system to the verge 
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of instability. This difference can be stated simply as below: 

G(s) + A(s) 	> 	Family of plants 
G(s) + Pert(s) 	> 	Worst case in this family of plants 

A planned procedure must be followed so as to make an effective comparison between 

the robustness properties of the designed controllers. In this report, the robustness 
properties of the H.-controller and the g-controller (designed for Deregulated power 

system LFC problem) are compared using time response simulations by following a 
particular plan. This planning for the time response simulations is summarized in steps 

below. 

■ Choose a suitable input signal, for example a `Step signal'. 

■ Do time response simulations on: open-loop nominal system, Closed-loop nominal 

system with the H.-controller (Fig.6.4), and Closed-loop nominal system with the g-
controller (Fig.6.13). 

■ Apply µ-analysis algorithm on the closed-loop uncertain system (like Fig.1.6) with 
H00-controller. 

■ Obtain `Pert(s)' from this g-analysis (Table 6.3). This `Pert(s)' is the perturbation 

which will bring the closed-loop system with the H.-controller to the verge of 
instability. 

■ Replace `0(s)' (in Fig. 1.6) with this `Pert(s)' to form a closed-loop perturbed system 
(like Fig. 1.9), and run the time response simulations with the H0-controller (Fig.6.15) 
and with the µ-controller (Fig.6.16). It can be observed that the closed-loop system 
with the H.-controller will go to the verge of instability for this perturbation `Pert(s)', 

where as the closed-loop system with the p-controller will remain stable and meets 
the performance requirements. 

• Now apply R-analysis on the uncertain closed-loop system (like Fig.1.6) with the g-

controller. 

■ Obtain `Pert(s)' from this g-analysis (Table 6.4). This `Pert(s)' is the perturbation 
which will bring the closed-loop system with the p.-controller to the . verge of 

instability 
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■ Replace `is(s)' (in Fig. 1.6) with this 'Pert(s)' to form a closed-loop perturbed system 
(like Fig. 1.9), and run the time response simulations with the µ-controller (Fig.6.18) 

and with the HL-controller (Fig.6.19). It can be observed that the closed-loop system 
with the ft-controller will go to the verge of instability for this perturbation `Pert(s)', 
where as the closed-loop system with "the H-  controller will become unstable. 

1.6 Robust Control in Power Systems: - Even though the robust control theory was 
developed in mid 1980's, this technique was initially applied mostly to mechanical 
systems, structural systems etc. From the last decade, there was an increased research in 

applying this robust control theory to electrical power systems. This robust control 
technique is being applied in power systems for applications like: design of power system 

stabilizers, design of load frequency controllers, design of FACTS device's controllers 
etc. 

A power system in general is such a complex structure that it is not possible for a 
designer to simply derive a model for it. Even if a model is derived with difficulty after 

simplifications and neglected high frequency dynamics, the parameters in the transfer 
function blocks of that model vary due to changes in operating conditions. With this 

many types of errors in the model-if a controller is designed, it will fail when applied to 
the real system. So a design which doesn't take these errors in the model may become a 
waste when applied on real power systems. 

Before the invention of this robust control theory by John. Doyle, the era was of H--
optimal control design which does not take the model uncertainties (errors) into account. 

The robust control design (structured singular value synthesis) brought a new era in the 
control design. The robust control design takes these model uncertainties into account in 
its synthesis steps (see section-6.3). Since power system is the case where these modeling 
errors are common because of its complexity and continuously varying operating 

conditions, it is necessary to utilize this robust control theory for power system control 

design applications.. In this report, a HL-controller and a g-controller are designed for a 
Deregulated Power system Load Frequency Control case. The Robust Control Toolbox of 

MATLAB®  has been used for the design purpose in which various algorithms. necessary 
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for robust control design are available. A comparison is made between the Hco-controller 
and the .t-controller (robust controller) using: frequency domain p.-analysis technique 

(Figs.6.14 & 6.17) and time response simulations. Results show the superior quality of 

the g-controller in terms of robustness as compared to the Ham-controller. 
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CHAPTER-2 	 LITERATURE REVIEW 

Robust control is a development from the Hc-optimal control with the additional quality 
of being able to take modeling uncertainties into account in the design process. During 

the 1980's HL-control was famous. The introduction of the concepts of Bounded 

uncertainty and structured singular value has leaded to a new control design technique 

namely the Robust Control Design. 

John C. Doyle [1] has given the definitions of the various fundamental concepts in the 

present robust control theory like Singular values of a matrix, Maximum singular value, 

2-norm, H,6-norm etc. He also explained clearly the meaning of the concept `bounded 

uncertainty' and discussed the use of these bounded uncertainties for designing a 

controller for an uncertain model of a real plant. These definitions are necessary to 
understand the control design theory further. 

Doyle et al., [3] has discussed the mathematical concepts of HL-optimal feedback control 

design. The necessary conditions that a standard H. problem setup need to satisfy 

(pp.834-835) for the HL-synthesis algorithm to have a solution are discussed clearly. As 

discussed in section-3.4 of this report, if these necessary conditions are not satisfied, the 

Ham-synthesis algorithm of MATLAB®  returns an error. 

Sigurd Skogestad and Manfred Morrari [5] has nicely explained the definitions of the 

Structured singular value (it), and the procedure for analyzing the Robust stability (RS) 

and Robust performance (RP) using this Structured singular value concept. All the 

theoretical concepts discussed in chapter-5 are taken from this paper and [2]. 

[1], [3], [4] and [5] explains the basic mathematical concepts in the robust control theory. 

[9-12] has discussed the application of these robust control theory concepts on different 

example problems. These references are very useful for understanding the application of 
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the theoretical concepts on real problems. These are useful to bridge the gap between the 
theoretical understanding and the problem level understanding. 
S. Chen and O.P. Malik in [14] has discussed the application of the IL-optimal control 
design technique to a particular power system control design problem namely the design 
of a robust Power System Stabilizer for a single-machine infinite-bus (SMIB) system. In 
[23], they had discussed a development to the above design by considering the parameter 

uncertainties in the SMIB model. They discussed the design of a robust controller which. 
is robust to these parameter uncertainties using the g-synthesis design technique. 

Ali Feliachi [ 17] has discussed about a deregulated power system load frequency control 
problem. He discussed about the design of a H.-optimal controller for this deregulated 
power system load frequency control problem. In this paper he had not used the concept 
of weighing functions for tuning the performance requirements. This means the design in 
this paper is a simple Ham-optimal controller but not a weighted HL-optimal controller. 

Vidal et al., [18] has discussed very nicely about the method of deriving bounded 
complex uncertainty models from the uncertainties data of the plant model. The concepts 
in this paper are used for obtaining the bounded uncertainty models, for the uncertain 
transfer pfunctions present in the deregulated power system model for which we are 
designing a robust controller. It is necessary to obtain these bounded complex uncertainty 

models for the DKITGUI tool of robust control design to work. 

The concept of ji-analysis is a part of µ-synthesis (refer chapter-5) and at the same time 

this is a measure for evaluating the designed controllers for the robustness properties 
(refer section-1.5). [19-22] has discussed the application of this µ-analysis on various 
power system problems for testing the robust stability and robust performance. 

Hassan Bervani [25] has discussed the application of the µ-synthesis technique on a 

deregulated load frequency control problem. The system considered in this paper is same 
as that in [17]. In this paper Bervani has considered only the neglected high frequency 
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dynamics uncertainty. In dissertation work extensions are applied to both [17], [25] by 

considering, 

■ The application of weighing functions for performance tuning 

■ Adding more uncertainties possible in the power system model. 

Consideration of these additional uncertainties will lead to a controller design which 

will work better on real time systems. 

[28-31] discusses on the application of the µ-synthesis on power electronic systems and 

are highly descriptive for understanding the robust control design in MATLAB®. 
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CHAPTER-3 	 THEORY OF Hoo-SYNTHESIS 

This chapter covers the basic concepts of H.-optimal control design. Consider Fig.3.1 
given below. "G(s)" is the plant to be controlled, "K(s)" is the controller to be designed, 

"d" is the vector of external disturbances (set point changes, noise signals etc.), and "e" is 
the vector of output signals to be regulated (tracking errors, controller outputs etc.). 

d{ ______ 
 G(s) 	 e 

K(s) 

T11(s) 	T12(s) 

	

d __~ T'-(s) T-(s) 	} 

Fig.3.1: A simple closed-loop system 

	

T(s)_I
TZI(S)
Ti i (s) T12 (s) 	 (3.1) 

 T22(s) 

The modern approach in control design is to characterize the performance objectives 
using various matrix norms on the closed-loop system transfer function matrices such as 
'T(s)' above. Obtaining a controller `K(s)' which will minimize this closed-loop norm is 
the objective in the modern optimal control theory. The performance objective in simple 

terms can be said as-minimize the regulated output variable values for different classes 
disturbance inputs. In modern control theory, this performance objective is expressed in 
terms of certain closed-loop transfer function matrix norm. So synthesizing a stabilizing 
controller `K(s)' using some algorithm to optimize (minimize) these closed-loop transfer 

function norms is the concept of modem control theory. One of these norms being used. 

frequently in modern control theory is the HL-norm. Synthesizing a controller `K(s)' to 
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minimize this H.-norm of the closed-loop system `T(s)' is called the H.-optimal control 
synthesis. 

3.1 HL-norm [1] [2] [4]: The 2-norm of a scalar signal, e(t) is defined as 

+.0 

 

1/2 

Ilell2 	f e(t)2dt 	 (3.2) 

If e(t) is a vector of time domain signals, then the 2-norm of e(t) is defined as 
+ao 	 1/2 

hell, = f e(t)Te(t)dt 	 (3.3) 

Now the H- norm of the closed-loop transfer function `T(s)' from disturbance inputs to 
regulated outputs is defined as follows: 

A  

IITIh= sup (Taco)) 	 (3.4) 
CO 

Where, 
w: Frequency rad/sec. 

sup: Maximum over the entire `co' range. 

6 : Maximum singular value of the transfer function matrix TOO)) at each 
frequency point over the entire `co' range. 

Consider the closed-loop transfer function matrix `T(s)' as a function of frequency as 

Too))_ 
IT210(o)

Tit(jco)  Ti2Uc) .  

 T22(co) 

At each frequency in the range of `ce', Taco) will be a complex valued matrix of size 

(ne  Xnd  ), where `ne' is the number of regulated output variables and `nd' is the number of 

disturbance inputs. At some frequency `col '- in the `of range, the singular values of the 

matrix [T(j col  )]ne  Xnd  ,denoted as 'at ',  are the non-negative square roots of the eigen values 

of [THT] ordered such that a, >_ a ? ...6p  >_ 0. Here p=min {ne, nd}. If `r' is the rank of 

the matrix[T(jco,)]n.-nd  , then 

(15) 

(3.6) 



The greatest of these singular values a1 , is denoted as 6 [ T(jc),) ] at frequency cu,. These 

maximum singular values can be calculated at each frequency point_ in the 'o' range. 

Now the supremum(maximum) of these maximum singular values over the entire 'a' 

range denoted as sup 6[T(jco)] is called as the H.-norm of `T(s)' and is denoted by, 

II T(s) II.. . For a closed-loop system as in Fig.3.1, 

If, II T(s) IIm < 1 and IIdDI2 <1, then 

IIeIIz ~ 1 
	

(3.7) 

This means, if the He-norm of the closed-loop system from the disturbance inputs to the 

regulated outputs is less then `1', then for any input vector of disturbances `d' whose 2-

norm Id 112is less than `1', the 2-norm of the regulated output variables IIeII2 will also be 

less than `1'.IIT(s)L, can also be interpreted in terms of the maximum RMS gain from 

input to output for different classes of input signals as given below. 

II T(s) III = max 
H2 
II IIa 

(3.8) 

In the H.-optimal control design that we are discussing in this chapter, the objective is to 

obtain a controller 'K(s)' which will minimize this Hw-norm of the closed-loop transfer 
function T(s). There can be many classes of disturbance input signals whose 2-norm is 

less than `1'. Similarly there can be many classes of regulated output signals whose 2-

norm is less than `1'. So it will be a good idea to add some frequency weighing functions 

to the problem setup G(s), in the disturbance input and regulated error output channels to 

give importance to certain frequency components. 

For example if the designer wants that the steady state value of a regulated output 

variable must become less than 0.01, then before applying the H,,-synthesis algorithm, 

the designer has to add a weight in that particular regulated variable output channel a 

weighing function whose magnitude at low frequencies and at zero frequency will be 

greater than or equal to 100. Similarly if the designer wants to put information about a 

disturbance input such as-any frequency component in that signal will have amplitude not 

more than 0.5, then a weight of 0.5 is needed to be kept in that particular disturbance 
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input channel. Hence it is to be noted that for characterizing the realistic MIMO system 

performance objectives in terms of a single H.-norm on the closed-loop transfer function, 

it is necessary to incorporate additional scalings (weighing functions) into the problem 

setup. 

3.2 Theory of Weighing Functions [2] [6]: The interpretation of H,-norm of closed-

loop transfer function as the.maximum of RMS gain from input disturbances to the output 

regulated variables may not be helpful for a designer in understanding the concept of 

addition of weighing functions to the problem setup. The following sinusoidal steady 

state interpretation helps the designer a lot in understanding the concept of weighing 

functions in HL-optimal control design. Let, 

a1sin(colt+cp1) 

d(t) _ 	 (3.9) 
andsrn(o)lt+(Pnd ) 

Where, 

(01: A point in w range E R 

ai: Amplitude 	E R„a 

cp.: Phase angle 	E Rnd 

Also assume, 

nd 	
]1/2 

llatI2 — 	a= 	<1 
i=1 

(3.10) 

Applying this vector of disturbance inputs to the closed-loop system with transfer 

function `T(s)' with II T(s) Ih 51, will result in an output regulated variable vector 

blsin(a 1t+y 1) 

(3.11) 

bn,S  ((Olt+NJne) 

Where, 

tot  : A point in co range e R 

bi: Amplitude 	E Rne  

yr;  : Phase angle 	e R1e  
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And, 

ne 	ihI2 

11 b 112= Zbit 	<_1 	 (3.12) 
i=1 

Note that this interpretation of H- norm is totally different from that given earlier. The 

earlier interpretation is not putting any stress on the individual frequency components of 

the input and output signals. Since the systems that we are dealing here are linear, and 

any signal can be represented as a summation of sinusoidal signals (using Fourier 

transformation), the interpretation given for one frequency component c1 above will hold 

for a general signal according to superposition theorem. This new interpretation of H. -

norm is specifically helpful in understanding the concept of weighing functions. This is 

further explained below. Let, 

wdl 	O W = d 
0 Wd2 

wel 	O 
We= 

0 	wet 

(3.13) 

(3.14) 

a{ 

Fig.3.2: Addition of weighing functions to the problem setup 

If, 

ftweTwdL ~ 1, 
	 (3.15) 

2 v2 

nd 	a, 
i=1 wdi(0)) 

(3.16) 
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Then, 
Z  1/2 

ne 

	

EIbiwei(w)I 	<_1 	 (3.17) 
i=1 

This is approximately same as, if 

	

11weTWd,J <_ 1, 	 (3.18) 

ai  S Iwdi  (jw)I , for all `ai' in vector`d' 	 (3.19) 

Then, 

b. _< 	1/, 	for all ̀ b;' in vector `e' 	 (3.20) 

	

1 	I wei V 0))I '  

The above expressions for one frequency component w, holds good for any other 

frequencies. This interpretation will help a designer in choosing appropriate weighing 

functions, so that he can concentrate more on certain frequency components. In Fig.3.3 

below, the above explanation is given diagrammatically with a simple example. 

a4  
------------- Wd =10 

■ Iii 
No w, wz (1)3 wa 	(A rad/sec 

■ Let We=0.5 

■ d 	We 	 T(S) 	Wd 	e 

■ Assume that IIW TWa  IL < 1 

	

bi'j' 	 - 
_ 	I/W = 2 

• (0o  0)1 0)2 ws  (04 	w radlsec 

Fig.3.3: An example showing the meaning of H,-norm with weighing functions 
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In the above example, Wd=lO means that each of the frequency components (o0-w4) in 
d(t) will have amplitude less than or equal to 10. If the weighted closed-loop IL,-norm is 

less than 1, then in the regulated output variable e(t) each of the frequency component 

will have a magnitude not more than 1/We 2. In the above example constant weights are 

chosen for all the frequency components. But in a real problem these weights will be 

chosen as a function of frequency so that the designer can concentrate more on certain 

frequency components of interest. For example if the designer wants that the steady state 

value of the regulated output variable must become less than 0.01, then the designer may 

choose the weighing function `We' to have a magnitude greater than or equal to 100 at. 

low frequencies. Similarly the weighing_ function 'Wd' has to be chosen such that it will 

give information about the maximum amplitudes of various frequency components in the 

input disturbance signals. 

3.3 Ham-optimal Controller Synthesis [2]: This Ham-optimal controller design problem 

can be solved using the H.-synthesis algorithm available in MATLAB. Given a linear 

system model `G(s)', before applying the H.-synthesis algorithm, the system `G(s)' has 

to be represented with in a single matlab SYSTEM variable. For this, the SYSIC (system 

inter-connections) routine of MATLAB®  has to be used. The following are the steps in 
converting `G(s)' into a single matlab SYSTEM variable. 

• Represent individual transfer blocks of `G(s)' with different variables. They are called 

as `subsystems'. 

• Specify the external inputs to `G(s)' in the order of exogenous disturbances and 

control inputs as shown in Fig.3.4. 

• Specify the inter-connections between different subsystems and the subsystems to 

which the external inputs are connected. 

• Specify the outputs of `G(s)' in terms of the outputs of different subsystems in the 

order of regulated output variables and outputs which will go as inputs to the 

controller as shown in Fig.3.4. 

• Specify a name for the SYSTEM variable with which the total system `G(s)' will be 

represented. 

• Run the SYSIC routine. This returns a SYSTEM variable which represents `G(s)'. 
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i d{ 	G(s) 	 e 

U y 

LJSYSIC 

(Matlab SYSTEM variable) 

Fig.3.4: From `G(s)' to `P' using SYSIC 

But as mentioned before, for characterizing the realistic MIMO system performance 

objectives in terms of a single H- norm on the closed-loop transfer function T(s), 

weighing functions must be incorporated into the above problem setup. The following are 

the additional steps required for this purpose. 

• Represent each of the weighing functions with different variables in a manner similar 

that for that for each of the individual transfer blocks in `G(s)'. 

• Add these variables to the set of sub-systems. 

■ Specify again the inter-connections between the sub-systems. 

• Specify the external inputs and outputs maintaining the same order as before. 

• Run the SYSIC routine again to represent the system `G(s)' along with the added 

frequency scalings (weighing functions) with a single matlab SYSTEM variable. 

W 	 wel 
d 	 e
j  H 	 G(s) 

wd2 	 Wet H I 
u 	 y 

(Matlab SYSTEM variable) 

Fig.3.5: From `G(s)' with weighing functions to `P' using SYSIC 
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The Hr-optimal control design problem is: find a stabilizing controller `K(s)' such that 
the closed-loop system T(s) is stable and the H- norm T(s) is less than `y', where `y' is 

called as HL-cost. The standard state-space technique to find the HL-optimal controller is 

called `y-iteration' in which a `y' value will be selected and `K(s)' is derived such that 

II T JI'.<y. Next, this `y' is modified using the modified hi-section algorithm and `K(s)' is 

derived again using the `y-iteration'. This iterative procedure continues until a tolerance 

condition is met with. This iterative procedure is explained in Fig.3.6 with the help of a 

flow chart. 

Start 

P. nc, nm, groin, 
gmax, tOl 

y-iteration 

Is 	Y 	
Is Y Stop 

T 11 <—r 	('rf~)< to! 

N 	 N 

Bi-section algorithm 
7f =  7 	 to choose `7' 

Fig.3.6: Flow chart of H,,-synthesis algorithm in MATLAB ' 

Where, 
y = H-  cost 
nc = number of control signals 

nm = number of measurements which are inputs to the controller 

gmin gmax = minimum and maximum values for `y' 

yf = value of "y' in the iteration in which y-iteration fails 
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3.4 Necessary Conditions for IL-synthesis[ 3][6]:There are certain necessary conditions 
to be satisfied by the system inter-connection structure `P' for the H.-synthesis algorithm 
to provide a solution. These conditions are listed below. If these conditions are not 
satisfied before the application of the 1L-synthesis algorithm, the algorithm will return an 
error. So it is necessary for a designer to check these conditions and, adjust the feedback 
connections, if any of these conditions were not satisfied. The system inter-connection 
structure `P' can be represented in packed state space form as below. 

A. B1 B2 
---J-----_-_---_ 

P= C1; D11 D12 	 (3.21) 
C2 : D21 D22 

This can be written in terms of state-space equations as below 

X=AX+B1d+B2u 
e=C1 X+D11d+D12u 	 (3.22) 
y=C2X+D21d+D22u 

Where, 
X= state variable vector 
e = vector of regulated output variables (error signals to be minimized) 
y = vector of outputs which will be fed to the controller 
d = vector of disturbance input signals 
u = vector of control signals which are outputs from the controller 

The necessary conditions to be satisfied before applying the Hco-synthesis algorithm are 

listed below. 

■ (A,B2) is stabilizable. 
This can be checked by obtaining the controllability matrix `CO' and testing whether 
it is of full row rank or not. Where, 

CO = [B AB...A"-1B] 	 (3.23) 
n = size of A 

■ (C2,A) is detectable. 
This is checked by obtaining the observability matrix 'OB' and testing whether it is of 
full column rank or not. 
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C 

CA 
OB = 	 (3.24) 

CAR' 

The above two conditions are necessary in order to obtain a stabilizing controller. 

• D12 must have full column rank.' 

This condition checks whether all the control inputs in the vector `u' have influence 

on the regulated output signals V. 

• D21 must have full row rank. 

This condition checks whether the input disturbances can be observed in all the out 

put signals in the vector 'y'.. 

The last two conditions are required to be satisfied for avoiding the singular control 

problems. Once the above conditions are satisfied, the designer can apply the Hc,,-

synthesis algorithm of MATLAB® on the inter-connection structure `P'. The algorithm 
works as shown in the flow chart above in Fig.3.6 and returns the H.-optimal controller 

'K(s)'. If the final value of the H~-cost, y not less than `1', then modify the weighing 

functions which in turn means modifying the performance characterization and apply the 

Ham-synthesis algorithm again. This procedure has to be continued until y less than 
'1 'condition is achieved. Note that, the condition on y, to be less than '1 'is kept for the 

reason that the initial characterization of the performance specifications in terms of 
weighing functions, is done keeping in mind that 11 T(s) fi will be less than or equal 

to' 1'. 
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CHAPTER-4 	 MODELLING OF UNCERTAINTY 

In the previous chapter on HL-synthesis, the discussion was on the design of an optimal 

controller 'K(s)', for the nominal model `G(s)' of an actual plant. For most of the real 
systems, this design work is not sufficient. Because, any linear model like `G(s)', derived 

for an actual plant, can not be considered as precise. In fact it is not possible to derive an 

exact model for most of the real systems. This statement is true at least in the case of 

power systems because, it involves many components with high degree of complexity for 

modeling. Hence, the controller designed, for `G(s)' with the synthesis method of the 

previous chapter may fail when applied to real systems for the simple reason that our 

model `G(s)' of the actual plant is not 100% correct. This means that our design may not 

be robust in terms of stability and performance. 

Assume that a designer is asked to design a controller for a plant. As a first step, he will 

try to derive a transfer function model for plant. But, after some striving, he may realize 

that the transfer function is becoming very complex or he may feel that it is difficult to 

get the transfer function for the plant at high frequencies. This will force the designer to 
simplify the model, and neglect the high frequency dynamics by concentrating over a 

specific frequency range of interest. The model obtained with these simplifications is 

called the nominal model 'G(s)'.But in robust control design, the designer has to consider 

these errors with a family of plants as shown in Fig.4. l . 

W1 	 frequencyrad/sec 	CO —~ 

Fig.4.1: Uncertain model of the designer for a plant 
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Along with the above two types of modeling errors, namely, simplifications to the actual 
model and neglected high frequency dynamics, there is also another type of modeling 
error. This error is uncertainties in the parameters. As shown in Fig.4.1, the model of the 

actual plant -is assumed to be 100% correct in the frequency grid of (0-wl). But in fact 
even in this frequency range, the parameters of the transfer function model will be 

uncertain for the reason that these parameters may vary with time. For example, in the 

frequency range of (0-W 1), let the transfer function model of the plant is 

G(s)r=  K  
sT+D 

(4.1) 

After further assessment of errors, the designer may realize that even in this frequency 

range, the parameter `D' is not constant and varies with time i.e. `D' is uncertain. From 

the above discussion the sources for modeling errors can be divided primarily into 3 
types. They are 

■ Simplifications to the actual model 

e 
• Neglected high frequency dynamics 

• Parametric uncertainties 

All these errors are called as `model uncertainties'. Because of these model uncertainties, 
the designer comes across the tough task of thinking in terms of a family of plants instead, 
of a single nominal plant while designing the controller. Now the problem is, How to deal 
with these model uncertainties in mathematical terms? John Doyle proposed first that 
these model uncertainties can be described mathematically in terms of bounded 
uncertainties. 

4.1 Bounded Complex Uncertainties [18]: This concept is very important in the 
understanding of robust control theory. With out understanding this, it will not be 

possible to step further in robust control design. The meaning of bounded uncertainty is 

as follows. For a real plant, if we have an exact transfer function model, then the Nyquist 

plot of this plant model will have one point at each frequency. But, due to the errors or 

uncertainties in the model for the plant, at each frequency in the Nyquist plot, we will 

have more than one point as shown in Fig.4.2. 
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Fig.4.2: Nyquist plots for plant without uncertainty and with uncertainty 

These uncertainties may be due to any or all of the three reasons mentioned above: In 

Fig.4.2, only 5 points of the entire frequency grid are shown. But in fact, this uncertainty 

will be there in the entire frequency grid. Note that the uncertainty at each frequency 

point has a bound shown by a circle. This means at each frequency point, the uncertainty 

has a maximum bound. If we can find the center and radius of each of the circle at all the 
frequencies, then we can represent this model uncertainty mathematically. The following 
example illustrates the steps in obtaining the bounded complex uncertainty model for any 

of the above three types of uncertainties in the model for a plant. Assume that we are 
given a transfer function, 

G(s) = K 	 (4.1) 
sT+D 

Where, K=2, T=0.05 and D = (0.5<_ 1 <_ 1.5) i.e. 50% uncertainty. 

If we draw the Nyquist plot for this uncertain transfer function using Manto_Carlo 

samplings for `D', we obtain a family of Nyquist plots as shown in Fig.4.3. In this 

example the parametric uncertainty is considered for the purpose of illustration. Even for 

the other types of uncertainties like neglected dynamics, if the uncertainty bounds in 

Nyquist plot are provided, the following procedure will give the bounded complex 

uncertainty model mathematically. An important point to be noted here is that, the 
present DKITGUI of MATLAB® which is the algorithm for. the robust controller 

synthesis can deal only the bounded complex uncertainties. Hence the real parametric 

uncertainties can not be considered in that algorithm and it is necessary to convert these 

real parametric uncertainties in the transfer functions into bounded complex uncertainties. 



• Nyquist Diagram 
1.5- 

1 

- 0.5 

------- 	----------- 	- 	__ 	_- 	- c 0 

0.5 p  frequency -1 	0 	1 	2 	.3 
Resi Axis 

Fig.4.3: Uncertain transfer function for 10 randomly chosen samples of `D' 

Now the problem is, How to represent mathematically this uncertain transfer function? At 

each frequency, we can get 10 points in the Nyquist plot for 10 random samples of `D'. 

As mentioned earlier, if we can find the center and radius of each of the bounding circle 

of these 10 points in the Nyquist plot at all the frequencies, we can represent this model 
uncertainty mathematically. The steps to be followed for this are: 

At each frequency, obtain the real and imaginary parts of each of the 10 points in the 
Nyquist plot. 

■ At each frequency, fmd the averages of the real and imaginary parts of all the 10 
points individually. This gives the centers of the bounding circles. 

• At each frequency, find the maximum distance from the circle center to the any of the 
10 points. This gives the radii of the bounding circles. 

• Do curve fitting for the circle centers to obtain the nominal plant. 
• Do curve fitting for the circle radii to obtain the `uncertainty maximum bound' 

function as a function of frequency. 

This curve fitting can be done using the 'FITMAG' function available in MATLAB®. 
The following Table 4.1 lists the centers and radii of the bounding circles at some of the 

frequency points, for the uncertain transfer function that we are discussing. This data can 
be used for obtaining the nominal plant model and the maximum uncertainty bound• 
function. 



Table 4.1: Values of centers and radii of circles in the 
Nyquist plot for the uncertain transfer function 

w 
rad/sec 

Center of the 
Bounding circle 

Radius of the 
Bounding circle 

0.001 2.1847+0.0604i 1.7390 
0.1 2.1846+0.0473i 1.7398 

1 2.1754-0.0713i 1.7377 
2 2.1483-0.1993i 1.7167 

10 1.5882-0.84491• 1.1895 

98 0.0808-0.3705i 0.0511 
99 0.0792-0.3672i 0.0501 
100 0.0777-0.3638i 0.0492 

Now curve fitting can be done, on the data of centers of circles given in Table 4.1 above, 

to obtain a nominal plant model Wa,,(s). The order of the curve fit can be chosen 

appropriately to get as close fit as possible. Fig.4.4 shows the curve fitting process with a 
chosen order of fit of `1'. 

CURVE FITTING, ORDER OF FIT = 1 

mag data 
—curvefit 

0 	20 	40 	5o 	80 	100 
frequency 	 —* 

Fig.4.4: Curve fitting for the nominal plant model `Waz,(s)' 

Similarly, curve fitting can be done, on the data of radii of circles in Table 4.1 above, to 

obtain the `maximum uncertainty bound' function 'Wa(s)' as a function of frequency. 

Because of the improper fit with order' 1', the second order curve fit is chosen for this as 

shown in the Fig.4.5. 
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frequency 	 —P 

Fig.4.5: Curve fitting for the `maximum uncertainty bound' function 'Wa(s)' 

The `nominal plant model' (first order) and the `maximum uncertainty bound' function 

(second order) are given below in the transfer function form. 

_ 0.3s+33.2 	 __ 0.058s2+6.42s+534.7 

W.(s)  s+15.6 	 Wa(s) s2+39.9s+309.6 

Once the above two transfer functions Wan(s) and Wa(s) are obtained, the uncertain 

transfer function can be represented as shown in the Fig. below as an additive 

uncertainty. 

0.058s2+6.42s+534.7 
	

A(s) 
s2  +39.9s+309.6 

0.3s+33.2 

s+15.6 	 + 

Fig.4.6: Additive uncertainty representation 

A(s) is the, unity norm bounded complex uncertainty (see section-1.1) i.e. the H,-norm of 

A(s) is less than or equal to `1'. All the uncertainties in the model for an actual plant can 

be replaced with representations of the type shown above. This completes the first step in 
robust controller synthesis. Before concluding this chapter, it is necessary to check 

whether the above procedure is correct or not. This is done by drawing the bode plots for 

the actual uncertain transfer function and for its bounded complex uncertainty model. 
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Fig.4.7: Bode plots of uncertain transfer function and its `bounded complex uncertainty' model 

The Bounded complex uncertainty model (bode plot-2) covers all the uncertainties, but it 

is adding little conservativeness. This means that it is covering more uncertainty than that 

in bode plot-1. But it is not missing any of the plant in bode plot-1 of Fig.4.7. 
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CHAPTER-5 	 p-ANALYSIS AND SYNTHESIS 

Assume that a controller `K(s)' has been designed for a system. A general curiosity after 
this is: how robust this control `K(s)' is? So the immediate step after the controller design 
must be checking its robustness. There are two types of robustness checks. 

■ Stability robustness 

■ Performance robustness 

As already discussed in chapter-1, robust stability means stability in the presence of 

model uncertainties. Similarly robust performance means performance in the presence of 
model uncertainties. There must be some method for checking the robustness of any 

designed controller `K(s)' from the view point of stability and performance. The concept 
of structured singular value (p) introduced by John Doyle [i] can be used as a measure 
for checking the robust stability and robust performance properties of any uncertain 
closed-loop system controlled with a controller `K(s)'. An important point to be noted at 

this stage is that the structured singular value basically tests the robust stability of an 

uncertain closed-loop system. In order to use the same concept for robust performance 
test, the closed-loop Hr-norm condition for performance is reformulated as a robust 
stability problem. This reformulation of the H. performance condition into a robust 

stability problem is discussed in the following sections. This structured singular value 

concept is very powerful and is the base for the whole `Robust control design' concept. 

5.1 Structured Singular Value (p) Analysis [2] [5]: It will be good to explain this 
concept with reference to a diagram of an uncertain closed-loop system as shown in 

Fig.5.1. As already been discussed in the chapter-4, any model of a real system will have 

uncertainties. These uncertainties may exist in different transfer function blocks (Ai(s), 
02(s)) or as un-modeled dynamic uncertainties (03(s)) on the whole model as shown in 

Fig.5.1. Before applying the g-analysis, it is necessary to transform the basic uncertain 

closed-loop system model to a standard (M(s)-0(s)) structure as shown in the Fig. below.. 

This transformation is done by separating the unity-norm bounded uncertainty blocks 
(o's). 
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} 

Fig.5.1: An uncertain closed-loop system 

Lii 

ii 

Fig.5.2: Separation of 0(s) and K(s) 

34 



in e 

Fig.5.3: O-G-K structure to M(s)-i(s) structure 

A(s) 

M11(s) 	M12(s) 

d 	M21(s) M22(s)  

Fig.5.4: Final M(s)-A(s) structure. 

But, for analyzing the robust stability of an uncertain closed-loop system by µ-analysis, it 

is necessary to separate a part of 'M(s)' which will interact with `A(s)'. From the Fig.5.4, 

it can be seen that M11(s) is the one which is interacting with `A(s)'. So the final structure 

on which .t-analysis has to be applied for robust stability analysis becomes as shown in 

the Fig.5.5. 

A(s) 

—►~ M11(s) ~— 

Fig.5.5: Structure for robust stability analysis 

Note: In the Following discussions a variable with out the Laplacian variable's' represents that variable, at 
a particular frequency. For ex: M, 4 are matrices with complex values as elements at a particular frequency. 
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5.1.1 Robust Stability Analysis: The structured singular value µo(.) of any complex 

matrix M E C'"° with respect to a norm bounded uncertain block structure `A' is defined 

as, 	 - 

_ 	 1  (5.1) 
µv ) mind{ 6(A): det(In -AM) = 0 } 

 

and g. (M) = 0 if there is no A solves det(l. -AM) = 0. 6(A) means the maximum singular 

value of A E C. . 

In the case of the uncertain closed-loop system above, at each frequency Ml I(s) will be a 

complex matrix of size C3>'3. To find the structured singular value, we need to fmd a A, 

which is a complex matrix of size C3"3 at that frequency and solves det(I-AM11) to zero. 

The inverse of the maximum singular value of this complex A matrix is called the 

structured singular value of M11 (C3X3) at that particular frequency. Like this the .t has to 
be found at each frequency over the entire w (frequency) range. 

In the Ml I (s)-A(s) structure shown in the Fig. above, if det(I3 -A3x3M3x3) *0,  then the only 

solution for `u' and `v.' are, u = v = 0. On the other hand if this determinant is zero, then 
`u' and `v' can have infinite number of solutions. This later condition can be said as 
instability. 

det(13 -A3x3M3x3) ~ 0 (Stable condition) 	(5.2) 

det(I3-A3X3M3x3) = 0 (Unstable condition) 	(5.3) 

Since the structured singular value finds the min{ &(A3>'3 )} which makes the system to 

reach the above unstable condition, this can be used as a measure of robust stability. If 

the 6(A3>'3) which makes det(I3-A3x3M3x3)=0, is greater than `1' over the entire frequency 

range, then the 'p? value will be less than '1' over the entire frequency range. Now the 

robust stability condition is stated as follows: 
A system will be robustly stable if its structured singular value (;u) is less than '1' over 

the entire frequency range. 
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The statement g <_ 1 implies 6(03x3) ~ 1. But, in the bounded complex uncertainty 

representation that was discussed in chapter-4, 0(s) is an uncertainty whose max{6(0)} is 

less than or equals to '1' over the entire frequency range. This implies that if µ 51 for an 

uncertain closed loop system over the entire frequency range, then that system is robustly 

stable. The `MU' function of MATLAB® can be used for doing this robust stability 

analysis. The steps for robust stability analysis can be summarized as follows. 

■ Recast the uncertain closed-loop system into the standard M(s)-A(s) structure. 

• Separate the M1 i (s) from this M(s)-A(s) structure. 

• Apply the `MU' function of MATLAB® on this Ml l (s)-0(s) structure. 

■ Plot the structured singular value bounds as a function of frequency and find the peak 

value. 

■ The closed -loop uncertain system will be stable if the peak value of µ is less than `1'. 

A point to be noted is that the `MU' function can not compute the µ exactly. It computes 

upper and lower bounds for `ii'. For' testing the robust stability the peak value of the 

upper bound has to be considered. 

5.1.2 Robust Performance Analysis: As already discussed in the chapter-3, the 

performance of a MIMO closed-loop system is characterized using the H- norm from the 

disturbance inputs to the regulated output. This was expressed mathematically as 

JI T(s) II . <_ 1. Similarly, an uncertain closed-loop system can be said to achieve 

performance robustness, if the H.-norm of `T„(s)' shown in the Fig.5.6 is less than or 

equal to `1'. 

0(s) 

M11(s) M12(s) 	 d 	 e 
d 	 e 	 Ta(s) 

Mu(S) M22(s) 

Fig.5.6: Uncertain closed-loop system 
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But, the problem now is, how the structured singular value concept can be used for the 

evaluation of the performance robustness of `T„(s)'. For this the problem of II T(s) II <_ 1 

has to be re-casted into a robust stability problem. According to the small gain theorem, 

II T(s) II <_ 1, iff the feedback loop shown in Fig.5.7 is stable. 

Fig.5.7: Setup for robust performance evaluation 

This means that, by appending a AF(s) block of size (nd  xne  ), the robust performance 

problem can be re-casted into a robust stability problem. This implies that for an 

uncertain closed-loop system, robust stability can be checked by applying p.-analysis on 

the Mn(s)-A(s) structure, and robust performance can be checked by applying g-analysis 

on the M(s)-Ap(s) structure. The steps in the robust performance analysis can be 

summarized as follows. 

• Recast the uncertain closed-loop system into the standard M(s)-A(s) structure. 

• Append AF(s) of size (nd xne ) to 0(s) to obtain M(s)-Ap(s) structure. 

• Apply the `MU' function of MATLAB®  on this M(s)-Ap(s) structure. 

• Plot the structured singular value bounds as a function of frequency and find the peak 

value. 

■ The closed-loop uncertain system is robust with respect to performance if the peak 

value of 'p.' is less than '1'.  

Since the `MU' function of MATLAB®  computes the upper and lower bounds for 'p.', in 

this case also, the peak value of the upper bound has to be taken as a measure. Fig.5.8 

shows the steps in the structured singular value analysis diagrammatically. 
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Uncertain closed-
loop system 

M(s)-A(s) structure 

Separation of Ml I  (s)-A(s) 	Append AF(s) to A(s) 

g-analysis algorithm 	p.-analysis algorithm 

Is N 	Is N 	µpm  51 

	

µPQ<1 	 V 
Y 

Not robustly 	 System is not having I System is having 
stability 	Robustly stable I 	performance 	performance 

robustness 	 robustness 

Fig.5.8: Steps in the structured singular value analysis of a closed-loop uncertain system 

5.2 Structured Singular Value Synthesis [2] [5] [8]: The IL-synthesis that we 
discussed in chapter-3 was not a robust control design, because, it is not taking the model 

uncertainties into account. But, as we discussed in chapter-4, any real system model will 

have errors which are collectively called as `model uncertainties'. So it is necessary to go 
for a design process which takes these model uncertainties into account and synthesizes a 

controller which will work properly on a real system. The it-synthesis algorithm which 

will be discussed in this section is a robust control design process. Note that the p.-

synthesis process is not totally different from the HL-synthesis. In fact, the µ-synthesis 
algorithm repeatedly uses the HL-synthesis algorithm in its design process. Hence the H.- 

synthesis must always be the concept to be understood first before stepping to the more 

powerful g-synthesis. The `DKITGUI' tool available in the Robust Control Toolbox of 

MATLAB®  can be used for doing this p.-synthesis. Here `DKIT' means D-K iterations. 
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5.2.1 The p1-upper Bound: This topic is very important for understanding the meaning 
of D-K iterations and hence the p.-synthesis algorithm. Refer to the M11(s)-A(s) structure 
in Fig.5.5. All the variables below are matrices at a particular frequency in the frequency 

grid `co'. 
•µe (M) 6(M) 	 (5.4) 

A E {x:a(A) ~ 1 } 	 (5.5) 

Let `D' belongs to a set of real positive diagonal invertible matrices with same structure 

as `A'. For example, for the uncertain system case shown in Fig.5.1, the structure of 
`0(s)' and `D' are: 

0, (s) 	0 	0 

0(s) =I 0 	A2 (s) 	0 	 (5.6) 

0 	0 	A3 (s) 

Al:CIX'; A2:C'Xl; A3:C'Xl 	 (5.7) 

a, 0 0 

D= 0 a2 0  (5.8) 

0 0 a3 

Where, 
al, a2 and a3 are real positive numbers. 

With this property of `D', 	DOD"' e {x:6(A) <_ 1 } 	 (5.9) 

This implies 	 µ(DMD-') = µ(M) 	 (5.10) 

From equation (5.4), 	g(M) = µ(DMD-') < a(DMD-1) 	 (5.11) 

So this becomes an -optimization problem to find a `D' which belongs to a set of real 

positive diagonal invertible matrices with the structure same as (5.8), and minimizes 

the 6(DMD"') . This can be written mathematically as 

µo (M) = min 6(DMD-') 	 (5.12) 



The above optimization problem of finding, a `D' which will minimize the 6(DMD 1) as 

in (5.12), gives the upper bound for `it' at each frequency. 

The `D' matrix has one real diagonal element corresponding to each scalar complex 
unity-norm bounded uncertainty as in Fig. 5.1 or as in (5.6) at each frequency • in the 
frequency grid `co'. Since there are `3' complex unity-norm bounded uncertainty blocks 

in Fig. 5.1, for that example case, the `D' matrix will have `3' real diagonal elements. For 

finding the 'A' upper bound; this `D' matrix is found at each frequency by solving the 

minimization problem of (5.11). The values of each of these `D' matrix diagonal 
elements as a function of frequency are called as `D-scales'. In the D-K iteration process 

of µ-synthesis algorithm, `D' stands for these `D-scales'. The `MU' function of 

MATLAB®  which calculates the p.-bounds also - returns the above D-scales. In fact, the 
`MU' function of MATLAB®  follows the above procedure in calculating the g-upper 
bound. 

The above discussion on `µ' upper bound is for the robust stability analysis (Mi  1(s)-0(s) 
structure) case. For the case of robust performance analysis (M(s)-i p(s) structure), the `ii' 
upper calculation problem will be modified due to the extra AF(s) block that is appended 
to the A(s). In this case the structure of `Ap(s)' and `D' are: 

[Ai(s) 0 0 0 

OP (s) = 

	

I. 0 Q 	A2  (s) 
	0 
	0 	 (5.13) 

0 	3(s) 	0  

	

0 	0 	0 	AF  (s) 

Al:C1 X1; OZ:C'xl; A3:C'X'; AF:C°°"°e 	 (5.14) 

a, 0 0 0 
0 a2  0 0 

D=  0 0 a3  .0 	 (5.15) 

0 0 0 a41pe 
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1  0 	0 	0 
al  

1  0 	0 	0 
D"1  = aZ  1  (5.16) 

• 0 0— 	0 
a3  

1  0 	0 	0 	I„d  
a4  

Now also, a same minimization problem as (5.12) has to be solved to obtain the `D' and 

`D-1'. This gives the `g' upper bound which can be used for checking the robust 

performance. 

5.2.2 D-K iterations: Once we input the standard problem setup which can be derived by 

following the procedures of chapter-3 and chapter-4, to the `DKITGUI' tool, the 

following iterations will occur. Refer to Fig.5.9 below in which the D(s) and D(s) 

blocks are added to the uncertain closed-loop system in Fig.5.3. 

Ap(s) 

D-1(s) 	G(s) 	D(s) 

K(sl 4  
Fig.5.9: Uncertain closed-loop system during D-K iterations 

• K-iteration: In this first iteration, separate Ap(s) and K(s) as shown in Fig.5.9. Now 

D(s) and D-1(s) are taken as unity matrices. These unity matrices are added to G(s) as 

shown above and the H- synthesis algorithm is applied. This gives a controller Ki(s). 

• D-iteration: During this iteration, the D(s) and D(s) blocks are to be taken out. 

After this the Ap(s) and K1(s) blocks are connected to G(s) and t-analysis is applied 

for testing the robust performance. The `MU' function used for this returns the D(0) 
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and D(o)) matrices for the entire frequency range. Curve fitting is applied on these 

D1(w) and.D1"I(cw) to obtain D1(s) and D1-1(s). The order of the fit can be chosen by 

the designer. 

■ K-iteration: Now, Ap(s) and Ki (s) are to be separated from G(s) and the new D-

scales D1(s) and D1-1(s) are added to G(s) as in Fig.5.9. Now, the FL-synthesis 

algorithm will be applied on this modified G(s), to obtain K2(s). 

This iterative procedure is continued until a minimum value of 'j' is reached. Note that 

in some cases `µ' may not converge globally. In that case the iterations are to be 

continued up to the point where the present `p.' is greater than the `pt' of previous 

iteration. 

5.2.3 p-synthesis [21: From Fig.5.2, remove the A's and 'K(s)' and add appropriate 

weighing functions at the disturbance inputs and regulated output variables similar to that 

in the case of HL-synthesis. Represent this transfer function model in terms of a Matlab 

SYSTEM variable, say `P' using `SYSIC'. `P' will have the interconnection structure as 

shown in Fig.5.10. This `P' is different from that in Fig. 3.5 for the reason that this 

includes the `uncertainty maximum bound' functions also. 

Fig.5.10: The sequence of inputs and outputs of `P' during g-analysis 
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Where, 
w: outputs from `A(s)' block 
v: Inputs to `0(s)' block 

d: vector of disturbance input signals 

e: vector of regulated output signals 

u: control input 

y: input to the controller 'K(s)' 

After this, the synthesis procedure proceeds as follows. 

• Call the DKITGUI 

• Inputs to the `DKITGUI' are- P. dimensions of A(s) (called as uncertainty block 

structure), no. of input disturbance signals (d), no. of output regulated variables (e), 

no. of control inputs (u), and no. of inputs to the controller (y). 

■ The D-K iterations as explained in section-5.2.2 will follow. During each iteration 
choose an appropriate order for D(s) so that it fits better for the D(o)). 

• In each of the D-k iterations, check whether `µ' has reached the minimum. 

• If the final `µ' achieved is less than '1', choose the final controller as the output of the. 

design process. 
• If the final `µ' is not less than '1', then modify the weighing functions and do the .t-

synthesis again. 

The p.-synthesis procedure is given as a flow chart in chapter-1. The value of 'ii' less than 

`1' means, the designed controller can make the system robust in terms of stability and 

performance. The robustness of the designed H.-controller and g- controller can be 

checked by using g-analysis or with the help of time domain simulations. 
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CHAPTER-6 LOAD FREQUENCY CONTROL PROBLEM IN 
DEREGULATED ENVIRONMENT 

Currently, electric power industry is in a transition from large, vertically integrated 

utilities providing power at regulated rates to an industry that will incorporate competitive 

companies selling unbundled power at lower rates. Ultimately consumers will benefit 

from lower rates as a result of serious competitive bulk power markets. With this new 

structure, that will include separate-generation (GENCOs), distribution (DISCOS) and 

transmission companies (TRANSCOs) with an open access policy, comes a need for the 

novel control design methods. 

DISCO 	 To other Companies 

P i 

GENCO -1 
P~ 

LOAD 

 
~P2 

GENCO -2 

Fig.6.1: A simple deregulated power system structure [17] [25] 

The power system structure shown in Fig.6.1 is having one DISCO, two GENCOs and a 

TRANSCO. Distribution Company buys power from GENCOs and distributes it to its 

customers, directly or through TRANSCOs. DISCO is the one which will be tracking the 

loads of its customers (PL) continuously and hence is responsible for performing the Load 

Frequency Control (LFC) task by securing as much power as needed from the GENCOs. 

DISCO buys firm-power (P2) from GENCO-2 and enough power (P1) from GENCO-1 to 

supply its customers load. TRANSCO transmits power from GENCO -1. GENCO-1 is 

also connected to other companies, which are treated as disturbances. GENCO-1 and 

GENCO-2 are assumed to have one generator each for simplicity of the problem. 
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In this work, design of the load frequency controller is considered for the deregulated 

power system structure described above, using the `Hm-synthesis' and the `g-synthesis' 

approaches of control design. The basic control requirements are as follows: 

■ The frequency deviations of both GENCO-1 and GENCO-2 must come to zero after a 

load or other disturbances. 

■ The firm-power contract with GENCO-2 must be maintained by bringing the power 

supply deviation (L\P2) in the line from GENCO-2, to zero after a load or other 

disturbance. 

■ There are also some standard performance requirements like: steady-state frequency 

deviations of both GENCO-1 and GENCO-2 should not be more than 2 Hz, governor 

control input rate should not be too high (rate limit), power swings in the lines must be 

as minimum as possible etc. Along with these basic control requirements, robustness is 

also another important requirement in control design. The control design method must 

be able to take into account the model uncertainties. 

Table 5.1 gives the data of various components present in the deregulated power system 

shown in Fig.6.1 for which the load frequency controller has to be designed. 

Table 6.1: Data of the deregulated power system [17] [25] 

Name Quantity Genco-1(1000MW) Genco-2(750MW) 

T Synchronizing power coefficient 
of transmission line 

0.2 0.1 

H Constant of inertia 5 5 

D Damping constant 0.02 0.015 

fo  Nominal frequency 50 50 

Tm  Turbine time constant 0.5 0.5 

Th Governor time constant 0.2 0.1 

Km  Gain of turbine 1 1. 

Kh Gain of governor .1 1 

R Droop characteristic 4 5 

TP Generator time constant 0.167 0.167 



The linear model of this deregulated power system structure is shown in Fig. 6.2 below. 

APL  

T, T,T, 
T1+T2 T1+T2 

1 
R, 

APrefi 	- 	Khl APvj 	Kml OPm1 	- 1 	Oft 

+ 	sTh1+1 sTmI+l + sTp1+D1 

GOV 1 TUR 1 dl  PS 1 	+ 	(AS' ASZ)  
2it 

Op 
M2 

_ 	s 
K  aP 	Kmz 

1  

sT+1 sTr„z+1 _ 	+ sTP2+D2 	Of2  
GOV 2 TUR2 P  PS 2 

1 
R2 

T 	I I 	T,T, 
T1+T2 J 	T1+T2 

APL 

Fig. 6.2: Linear-model of the deregulated power system structure 

Table 6.2 given below gives the descriptions for some of the variables and transfer 

function block names used in the above linear model of the deregulated power system. 

Table 6.2: Description of the terms in the linear model 

A Deviation from the nominal value "" , GOV 1 Governor of Genco- 1 

Rotor angle: f Ofdt TUR1 Turbine of Genco-1 

f Frequency of Gencos PS 1 Generator of Genco- 1 

Pm  Turbine mechanical power output GOV2 Governor of Genco-2 

dl Disturbance (power quantity) TUR2 Turbine of Genco-2 

P„ Steam valve power PS2 

PL 

Generator of Genco-2 

Pref = u Set point reference (control input Load on Disco 
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6.1 H, controller: For synthesizing a controller, the above linear model of the power 

system is changed into a standard Ham-problem setup which satisfies the necessary 

conditions given in section-3.4. The standard problem setup for this deregulated power 

system problem involves the following input and output signals shown in Fig.6.3. 

Disturbance 
inputs 

[d] 

Control inputs 
[u] 

Regulated 
outputs 

[e] 

-t Outputs 
[y] 

 

Fig.6.3: Inputs and outputs of the H,-problem setup 

 

[d] = [APL dl ]T  

[e] _ [Ofi  A61-M2  M1  u]T  

[u] = [AP.fl ] 

[y] = [N1Af1+R20f2+(OS1-OS2)+OS1+OP1+OP2] 
	

(6.4) 

Where, 

(3,=D1+1/R,=0.27 and (32 =D2 +1/R2 =0.27 

Equation (6.4) is called as Distribution Company Error (DCE) similar to the traditional 

Area Control Error (ACE) [1.  The above problem setup is converted into a single matlab 

SYSTEM variable `P' using the •`SYSIC' routine of MATLAB®. The necessary 
conditions for the Hr-synthesis are checked. Then the Hco- synthesis algorithm of 
MATLAB®  is applied on this `P'. This has resulted the following H.-optimal controller 

`KH(s). 

-0.023s7 -0.459s6 -3.110s5 -10.533s4-25.920s3-42.02ls2 -43.348s -21.761 	) 
KH  (s)_ 
	

(6.5 
0.09s6 +1.51s5 +14.79s4 +69.33s3 +96.85s2 +154.39s +58.96  

The HH-cost `y' achieved for the closed loop system is 10.9510. The time response plots 

in Fig.6.4 are the response of the closed-loop nominal power system to a step load 

disturbance (APL) of 0.15 Pu. 
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ig. 6.4: Response of the deregulated power system to a step load disturbance of 0.15 Pu 
with and without the H.-optimal controller KH(s) 
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6.2 Weighted IL-controller: As already discussed. in sectioh ~, 	g!! lion of 
appropriate weighing functions to the problem setup (Fig.6.3), which will resemble the 
performance requirements on the regulated outputs and data of the possible disturbance 
inputs, modifies the problem to designer's requirement. It can be observed from Fig.6.4: 

• The frequency response (Of l) of GENCO-1 is taking almost `5 sec.' to settle down. 
To reduce this settling time, a weighing function `Wfl(s)' which stresses on the 
reduction of the amplitudes of low frequency components is selected for modifying 
the design problem. 

• It can also be observed from Fig.6.4 that, the control input (u = APien) at GENCO-1 
is having very steep rate of change in the very starting. The rate limit in the governor 
action will not allow this. For reducing this high rate of change of the control input, a 
weighing function `W,(s)' which stresses the reduction of the amplitudes of the high 
frequency components is selected to modify the design problem accordingly. 

• For bringing the H.-cost (y) to a value less than `1', the data of the disturbance inputs 
is also modified with the help of weights. In this problem, the maximum amplitude of 
any frequency component of the disturbance inputs is assumed to be not more than 

0.5. Hence, the weights on the disturbance inputs WPL (s) , Wd, (s) are chosen as 0.5. 

Fig.6.5 shows the inverse magnitude plots of the weighing functions chosen for 
modifying the performance requirements of GENCO-1 frequency (Af l) and the control 
input (u = APre ) at GENCO-1. 

Bode Diagram 
40 

a 20  

Bade Diagram 
150 

m 100 v 

.201 	
10 i 	10 	100 

	_50,  

100 	 10$ 
Frequency (radrsec) 
 Frequency (radfsec) 

Inverse of frequency weighing function Wfl(s) 
	

Inverse of control input weighing function 
	

(S) 

Fig. 6.5: Inverse magnitude plots of performance weighing functions [25] 
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It was already discussed section-3.2 that the performance weights are to be selected based 
on their inverse of magnitude plots. Hence in Fig.6.5, the inverse magnitude plots are 
shown for the performance weighing functions. The transfer functions of these weighing 
functions are: 

s+0.2  W(s)= 
 40(s + 0.001) 

2x1  0-5s 

(6.6) 

W1(s) 
= 2x10"7s +1 	

(6.7) 

The weights for the load disturbance (APL) and disturbance (dl) are chosen as 0.5 with 
the assumption that no frequency component amplitude in these signals crosses 0.5. 

WPL  = 0.5 	 (6.8) 

Wdi(s) = 0.5 	 (6.9) 

These weights resemble the frequency domain data of the disturbance inputs. Equations 
(6.7) and (6.8) say that any of the frequency components in these disturbance inputs will 

have amplitude not more than 05. With the addition of the above weights the standard 
Ham-problem setup will get modified as shown in Fig.6.6. 

dl  

Afl 
AS1-AS2 

.. 
u 

Fig.6.6: H,(,-problem setup after the addition of weighing functions 

The above problem setup is converted into a single matlab SYSTEM variable `P' using 
the 'SYSIC' routine of MATLAB®. Application of H.-synthesis algorithm on this `P' 
has given the following controller with the achieved H 0-cost (y) of `0.8275'. 

-0.04s8  -0.76s7  -5.48s6  -22.2s5  -66.6s4  -113.8s3  -115.2s2  -60.2s-0.06 K(s) = 	
0.1s6+1.39s5-11.9s4-198.4s3-113.6s2-161.5s-0.16 	

(6.10)  
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Fig.6.7: Response of the deregulated power system to a step load disturbance of 0.15 Pu 
with and without the weighted Imo-optimal controller Kmv(s) 
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6.3. µ-controller: As already discussed earlier, the greatness of the g-synthesis is in its 
ability to deal with modeling uncertainties. In the above H,6-optimal controller designs 

(sections-6.1&6.2), no modeling uncertainties are taken into account. For the deregulated 

power system in Fig.6. 1, three types of modeling uncertainties are considered. They are: 

■ Un-modeled high frequency dynamics uncertainty [25]. 

The magnitude plot of the `maximum uncertainty bound' function `Wmu(s)', for this 
uncertainty is given in Fig.6.8. It shows that at low frequencies the uncertainty is 

negligible but at high frequencies, there is a considerable amount of uncertainty. 

Bade Diagram 

m 

~ 2 

Ch 0 
0 

-2 

-4 
10' 	1fl`  103 	10  105 

Frequency (rad/sec) 

Fig. 6.8: Magnitude plot of the `multiplicative uncertainty 
maximum bound' function Wm„(s) [25] 

W~u (s) = 2.5(s+315) 

s+1000 

■ Uncertainty in the damping coefficient `D1 ' of GENCO-1 (Refer Fig.6.2). 

(6.11) 

60,.• 
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60 

0 	0.01 0 	frequency 
Fig.6.9: Effect of uncertainty on the transfer function `PSI' of GENCO-1 
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The damping co-efficient is a relation between the change in the load and the 

frequency deviation. This damping tells-by how much the load on GENCO-1 

decreases for a small decrement in the frequency of GENCO-1. A 50% uncertainty is 
assumed in this damping co-efficient D1, here. This uncertainty in D1 causes 

uncertainty in the transfer function block 'PS 1' of GENCO-1 as shown in Fig.6.9. By 
using the method discussed in chapter-4, this uncertainty in the transfer function 

`PS1' can be represented as a bounded complex uncertainty. The corresponding 
nominal model 'Wpsi(s)' and the `maximum additive uncertainty bound' function 

ẀauDl(S)' are given below. 

W 	 0.0473s+5.5067  W 	0.0016s2  +0.2556s+0.4302 (6.12)  
Ps' (s)  = 	s+0.1045 	' W 1  (s) __ 	

s2  +0.2184s+0.0098   

■ Uncertainty in the damping co-efficient `D2' of GENCO-2 (Refer Fig.6.2). 

Fig. 6.10: Effect of uncertainty on the transfer function `PS2' of GENCO-2 

Similar to that in GENCO-1 an uncertainty is assumed in the damping coefficient 

`D2' of GENCO-2. This uncertainty of in the damping co-efficient `1)2' causes 
uncertainty in the transfer function block ̀ PS2' of GENCO-2 as shown in Fig.6.10. 
This uncertainty in the transfer function 'PS2' can be ,represented as a bounded 
complex uncertainty. The corresponding nominal model `WPS2(s)' and the `maximum 
additive uncertainty bound' function `WauD2(S)'  are given below. 

= 
0.0465s + 5.5652 	__ 0.0016s2 + 0.2532s + 0.3080 

W 2  (s) 	s + 0.0807 	' WaiD2  (s) 	s2 + 0.1566s + 0.0053 	
(6.13) 
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Once the model uncertainties are represented as bounded complex uncertainties as in 

(6.11),(6.12) and (6.13), the g-synthesis problem setup can be formulated as shown in 

Fig.6.1 1. 

Fig.6.11: Standard µ-synthesis problem setup 

Where, A1(s), A2(s) and A3(s) are the unit-norm bounded complex scalar (non matrix) 

uncertainty as discussed in section-1.1. This problem setup (without A(s)) is converted 

into a single matlab SYSTEM variable `P' using the `SYSIC' routine of MATLAB®. 

Then, the D-K iteration algorithm is applied on to this problem setup with the help of the 

`DKITGUI' tool of MATLAB®. The D-K iteration algorithm has taken `4' iterations and 

has achieved a final l value of 0.907 peak. During each of the D-K iteration, appropriate 

rational fittings are chosen for the three D-scales magnitude data corresponding to the 

three uncertainties Ai(s), A2(s) and A3(s) as discussed in section-5'.2. 

Before the starting of the first D-K iteration, the D-scales matrix D(s) (and hence D-1(s)) 

is chosen as an identity matrix. At the end of each of the D-K iteration, µ-analysis on the 

closed-loop system of that iteration gives the D-scales. magnitude data for which a 

rational fit is chosen as shown in Figs.6.12, 6.13 and 6.14 to obtain D(s) and D"1(s). 
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Iteration-i: g-value achieved is .1.8188. The D-scales magnitude data and their rational 

fittings are shown by solid and dashed curves respectively. 
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Fig.6.12: D-scale fittings of iteration-1 
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Iteration-2: µ-value achieved is 1.0252. The D-scales magnitude data and their rational 

fittings are shown by solid and dashed curves respectively. 
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Fig.6.13: D-scale fittings of iteration-2 
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Iteration-3: g-value achieved is 0.92. The D-scales magnitude data and their rational 

fittings are shown by solid and dashed curves respectively. 
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Fig.6.14: D-scale fittings of iteration-3 
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These D-scale matrices D(s) and D-1(s) calculated at the end of each of the iteration are 
appended to the problem setup in Fig.6.11 and a modified controller is designed. At the 

end of the 4th  iteration, a peak `ii' value of 0.907 is achieved as shown in Fig.6.15. A try 
for the next iteration has resulted in a peak `µ' value of 0.94. Hence the controller 

resulted from the 4th  iteration is taken as the final controller. 

Mu Ca; Sigma_max (--) 

2  05 
10-a 	10-2 	10 1 	10° 	101 	102 	1103  

Frequency, rad$sec 

Fig.6.15: µ-plot after the 4th  iteration with peak value `0.907' 

The controller obtained in the 4"' -iteration is of order 25. The total order of the controller 
depends on the order chosen for the D-scales fittings. This is a general result in µ-

synthesis. For making the designed controller realizable, controller order reduction 
technique is to be applied necessary. The order reduction of this 25th  order controller is 
done in section-6.5. This higher order g-controller is given in (6.14) below. 

-0.001s25  - 0.006s24 - 0.027s23 - 0.097s22 - 0.31 s21- 0.83s20 -  i.95 s19  
Ku

(s) = 0.0001s25 + 0.0006s24 + 0.004s23 + 0.0195s22 + 0.076s21+ 0.25s20+ 0.68s'9  

-3.99s'8- 7.13s'- 11.03s16 - 14.68s15 - 16.59s'4 - 15.65s13 - 11.98s12 -7.1 6s1'  
1.608s18 + 3.22s17 + 5.50s16 + 7.98s15 + 9.73s14 + 9.78s13 + 7.9140s12 +4.94s" 

-3.148s1°- 0.939s9 - 0.175s8 - 0.020s7- 0.001s6  
2.24s1° + 0.67s9 + 0.125s8 + 0.014s7+ 0.0009s6  

(6.14) . 

Time response simulations can be run on the closed-loop system with this 25th  order µ-
controller, by applying a step load disturbance of size 0.15 Pu. The responses of the 

deregulated power system for this step load disturbance are shown in Fig.6.16. 	- 

59 



- open-loop nominal; (-) closed loop nominal 
0 	0.5 
CD 

0 
C 
0 

a 
cis

._- '---- _  ---- ---  .__.- -° --  ._--- ----  
_"_.--,_. 

e 

Q -0.5 
,z 	0 1 	2 3 4 6 6 7 B 	9 10 

time (sea) 
N 
°7 
	

0.5 
a 
C7 

0 c 
0 

v  ~ 
i; 

_ 
" Y-  --` ---  -- ---------- ----  -----"- 

-Q.6 
,t 	Q 1 	2 3 4 5 6 7 B 	9 1Q 

time (see.) 

200 

M 
E 

0 a 

0 1 	2 3 4 6 6 7 8 	9 10 
time (see) 

0 
0.2 a 

E 

Q.1 
 - --  - - 

QQ 3 1 3 4 6 6 7 8 	9 1Q 
time (sec) III a 	0.1 _  

-- '_------- - F- .---r r ~---- --- 

Q 
A .5 

3 -Q10 1 	2 3 4 6 6 7 8 	9 10 
C. time (sea) 

Fig.6.16: Response of the deregulated power system to a step load disturbance of 0.15 pu 
with and with out the µ-controller Kµ(s) 



6.4 Comparison of Robustness between Weighted-IL-controller and µ-controller: It 
•was discussed in section-1.5, that a planned procedure must be followed for doing this 

robustness comparison. According to that procedure, t-analysis of the uncertain closed-
loop system with the weighted He-controller yielded a g-plot and a perturbation matrix as 

below in Fig.6.14 and table 6.3. This perturbation is the one which will cause the system 

with the weighted Ham-controller to go to the verge of instability. 
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E4 

2 

0
•  10 3  102 	101 	100 	10' 	10 

frequency (rad/sec) 

Fig.6.17: µ-plot of closed-loop uncertain system with the weighted H -optimal controller 

Table 6.3: Perturbation matrix returned from g-analysis on the system with K(s) 

Pertl(w)/Al  Pert2(co)/A2  Pert3(w)/03  co(rad/sec) 
-1.2698 + 0.000264i 1.2698 - 6.6085e-018i 1.2698 + 4.4056e-0181 0.001 
-1.2698 + 0.000297i 1.2698 - 4.4056e-018i 1.2698 0.0011233 

-1.2698 + 0.00033i 1.2698 - 4.4056e-018i 1.2698 0.0012619 

-1.2698 + 0.000375i 1.2698 - 8.8113e-018i 1.2698 0.0014175 

-1.2698 + 0.000421i 1.2698 - 4.4056e-018i 1.2698 0.0015923 

-0.17955 + 0.061421 0.18977 0.18977 6.8926 

-0.16647 - 0.023586i 0.16813 0.16813 - 9.333e-018i 7.7426 

-0.14835 - 0.098354i 0.17799 + 1.4821e-0171 0.17799 + 1.4821e-017i 8.6975 

-0.12395 - 0.165431 0.20671 - 3.4424e-017i 0.20671- 1.1475e-017i 9.7701 

-0.092366 - 0.22563i 0.24381 + 1.3534e-017i 0.24381 +5.4136e-0171 10.975 
-0.052904 - 0.27836i 0.28335 + 1.5729e-017i 0.28335 - 1.5729e-017i 12.328 

-0.005183 - 0.32151 0.32159 0.32159 13.849 

-9.4288 + 5.0775i 10.709 + 1.1889e-0151 0 55.908 
-17.402+7.19541 18.831 0 62.803 

-31.186 + 10.0251 32.757 + 1.8184e-015i 0 70.548 

-54.756 + 13.941i 56.503 0 79.248 

-94.662 + 19.73i 96.696 - 1.0735e-014i 0 89.022 

-161.56 + 29.059i 164.15 + 9.1122e-0151 0 100 
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This perturbation is applied to the deregulated power system with the weighted H.-
controller and p-controller respectively and the responses to a step load of 0.15 Pu are as 

shown in Figs.6.18 and 6.19. This is the first step in the robustness comparison plan. 

Q (--) Closed-loop rnominal; () Closed-loop perturbed 
0.5 

to 	` 
-0.5 

° 
0 5 10 15 

time (sec) 
C 0.2 
O 

-0.2 
V 	0 E 5 10 15 

time (sec) 

100 
0 

c13 

t 	0 
a 
S 

V 	S 

100 
0 5 10 15 

time (sec) 
d 
° 0.2 d t7 
E _ 	_ 

0.1 
m 

0 

00 3  ° 5 10 15 
f1  
N 

time (see) 

° 	0.1 
E 

0 	0 

-0.1 
0 5 10 15 

8. time (eec) 

Fig.6.18: Responses of the perturbed and un-perturbed deregulated power system to a 
step load disturbance of 0.15 Pu with weighted Imo-weighted optimal controller KH,(s) 
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Fig.6.19: Response of the perturbed and un-perturbed deregulated power systems to a 
step load disturbance of 0.15 pu with the µ-controller Kµ(s) 

63 



It can be observed from Figs.6.18 and 6.19 that, the perturbation which has caused the 
closed-loop perturbed system with the weighted H- optimal controller to go to the verge 
of instability has no effect on the closed-loop perturbed system with µ-controller. 

Following again the robustness comparison plan of section-1.5, p-analysis of the 
uncertain closed-loop system with the g-controller yielded a p-plot and a perturbation 

matrix as below in Fig.6.20 and Table 6.4 respectively. Note that this is the perturbation 

which will cause the system with the µ-controller to go to the verge of instability. This 
perturbation is applied to the deregulated power system to compare the controllers. 
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Fig.6.20: µ-plot of closed-loop uncertain system with the .µ-controller 

Table 6.4: Perturbation matrix returned from µ-analysis on the system with K1 (s) 

Pert1(ca)I01  Pert2(co)/A2  Pert3(co)1A3  co(rad/sec) 
-1.2698 - 6.6632e-05i 1.2698 - 4.4056e-018i 1.2698 0.001 

-1.2698 - 7.4849e-05i 1.2698 - 6.6085e-018i 1.2698 0.0011233 

-1.2698 - 8.4079e-05i 1.2698 1.2698 0.0012619 

-1.2698 - 9.4448e-051 1.2698 - 8.8113e-0181 1.2698 + 8.8113e-018i 0.0014175 

-1.2698 - 0.0001061i 1,2698 - 4.4056e-018i 1.2698 +4.4056e-0181 0.0015923 

-1.088 - 0.42969i 1.17 + 6.4947e-017i 1.17 + 6.4947e-017i 6.8926 

-1.060 - 0.491461 1.1689 - 6.4886e-017i 1.1689 _ 	7.7426 

-1.027 - 0.558231 1.1689 - 6.4886e-017i 1.1689 + 6.4886e-017i 8.6975 

-0.98574 - 0.63011 1.1699 + 6.4944e-0 171 1.1699 9.7701 

-0.93464 - 0.7069i 1.1719 - 1.301 le-016i 1.1719 - 6.5053e-0171 10.975 

-0.87089 - 0.7882i 1.1746 - 9.7806e-017i 1.1746 12.328 

-0.79098 - 0.87271 1.1779- 8.1731e-017i 1.1779- 1.3077e-016i 13.849 

5.6668 + 4.4951 i 7.2332 - 8.0304e-016i 0 62.803 

7.1529 + 7.87621 10.639 - 5.9061e-016i 0 70.548 

8.9102 + 12.9781 15.742+2.6217e-015i 0 79.248 

11.009+20.618i 23.373 - 1.2975e-015i 0 89.022 

13.576+31.969i 34.733 + 3.8561e-015i 0 100 
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Fig.6.21: Response of the perturbed and un-perturbed deregulated power systems to a 
step load disturbance of 0.15 pu with g-controller Ks(s) 
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Fig.6.22: Response of the perturbed and un-perturbed deregulated power systems to a 
step load of 0.15 pu with weighted EL-optimal controller K(  s) 

Figs.6.21 and 6.22 shows that, the perturbation which has brought the system with t-

controller to the verge of instability has caused the system with the H.-controller to go to 

instability. 
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Table 6.3 which has send the power system with the weighted H.-controller to the verge 

of instability is applied to the system with reduced order p.-controller. 
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Fig.6.25: Response of the perturbed and un-perturbed deregulated power systems to a 
step load of 0.15 pu with the reduced 3 d̀  order µ-controller `Krµ(s)' 
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The time response simulations in Fig.6.25 confirms that the 3rd  order µ-controller is 
robust enough just similar to the 25th  order µ-controller. This implies that our controller 

order reduction process is successful. This reduced order robust controller is realizable 

because of its lesser order and robust enough for performing satisfactorily on real power 

systems. 
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CONCLUSION 

Conceptual framework required for the `Design of Robust Power System Controllers' is-

developed and is validated by designing a robust load frequency controller for a 
deregulated power system problem. First a Ham-optimal controller is designed and is 
improved to a weighted H0-optimal controller by using the concept of weighing functions 
in order to concentrate on particular frequency components in the output responses. The 

weighing functions are chosen to resemble the performance requirements and the data of 
input disturbance frequency components. This modified H0-controller is meeting the 
targeted performance requirements. Then, bounded uncertainty models are obtained for 
some of the uncertainties in the deregulated power system model. These uncertainties are 
added to the power system nominal model to resemble the real power system as closely 
as possible. µ-synthesis is applied on this uncertain power system model and a robust 
load frequency controller is designed which is called as µ-controller. This g-controller is 
an extension to the weighted HH-controller which takes the model uncertainties also into 
account. 

The weighted HL-controller and the µ-controller are compared for robustness properties 
using the frequency domain p.-analysis technique. A planned procedure is developed for 
comparing the robustness properties of the two controllers in terms of time response 

simulations. Two perturbation matrices are obtained with the help of p-analysis and these 
perturbations are applied to the power system with the weighted H.-controller and the 
power system with }A-controller. Time response simulations for a step load disturbance 
are showing the superior qualities of the µ-controller in terms of robustness. 

The g-controller obtained is of 25th  order. This order is reduced to 3rd  order for making 
the it-controller is realizable for actual applications. The order reduction process is 
checked by testing the robustness properties of this 3rd  controller. g-analysis and time 
response simulations are showing that the order reduction has not changed the robustness 
qualities of the µ-controller. Results say that the g-controller is robust enough to model 

uncertainties which mean that this controller works better when kept in the actual power 
system. 
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M 

APPENDIX 

Deregulated Power -  System State-space matrices: The state-space equations of the 

deregulated power system in Fig. 6.1 are given below. 

X =AX +Bu+Dw (A-1)  

Where, 	XT= [Ofi APMl OPVl (OS,- M2) OPM2  M 1 ] (A-2)  

u = AP (A-3)  

WT= [APL  d1 ] (A-4)  

-Dl 	1 	0 --f- 0 0 0 0 
TP1 	TP1 TP1 

0 	- 1  KM' 0 0 0 0 0 
TM, 	TMI 

KHI 
	0 	- 1  0 0 0 0 0 

R1TH1 	 Ttrl 

A  — 27r 	0 	0 0 -2;r 0 0 0 
(A-5)  

0 	0  
TP 2 TP2 TP2 

0 	0 	0 0 0 - 	1  K'" 2  0 
TM2 .f2 

0 	0 	0 0 - KH2 0  - 1 0  

R2TH2 7H2 
2n 	0 	0 0 0 0 0 0 

BT  = 0 	0 	KHl 	0 	0 	0 0 	0 (A-6)  
TH1 

— 	0 0 0—  Tz 	0 0 0 
DT  — 

 
(?+7;)7 	 (7+1) 

(A-7)  1   
-- 	0 0 0 	0 	0 0 0 

TPI 

thl 



Where, 

oc =  T1T2  
(T1  +T2) 

(A-8) 

These state-space equations can be divided into transfer blocks as in Fig.6.2 and can be 
written as subsystems before calling the SYSIC routine. 
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