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ABSTRACT 

Although speech recognition products are already available in the market at 

present, their development is mainly based on statistical techniques which work under 

very specific assumptions. This thesis examines how artificial neural networks can 

benefit a speaker dependent isolated speech recognition system. Currently, most speech 
recognition systems are based on hidden Markov models (HMMs), a statistical 

framework that supports both acoustic and temporal modeling. Despite their state.of-the-

art performance, HMMs make a number of suboptimal modeling assumptions that limit 

their potential effectiveness. Neural networks avoid many of these assumptions, while 

they can also learn complex functions, generalize effectively, tolerate noise, and support 

parallelism, while neural networks can readily be applied to acoustic modeling. 

Neural Network has several theoretical advantages over a pure HMM system, 

including better acoustic modeling accuracy, better context sensitivity,, more natural 

discrimination, and a more economical use of parameters. These advantages are 

confirmed experimentally by a NN that we developed, based on speaker dependent 

isolated Hindi words on the Resource Management database. 

Speech recognition involves recording the input speech signal, extracting the key 

features of the speech, converting the features into codes and finally classification of the 

codes. A speech recognizer system comprised of two distinct blocks, a Feature Extractor 

and a Recognizer. The Feature Extractor block uses a Mel-frequency cepstral analysis 

which translates the incoming speech into a feature vectors and recognizer block uses 

neural network. In the course of developing this system, we explored two different ways 

to use neural networks for audio modeling: prediction and classification. We found that 

predictive networks yield poor -results because of a lack of discrimination, but 

classification networks gave excellent results. Finally, this thesis reports how -we 

optimized the accuracy of our system with many natural techniques, such as expanding 

the input window size, normalizing the inputs, increasing the number of hidden units, 

converting the network's output activations to log likelihoods, optimizing the learning 

rate schedule by automatic search, backpropagating error from word level outputs, and 

using gender dependent networks. 
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Chapter -1 
INTRODUCTION 

1.1 Introduction 

Speech recognition is a process used to recognize speech uttered by a speaker and 

has been in the field of research for more than five decades since 1950s [7]. Voice 

communication is the most effective mode of communication used by humans. In this 

world of communication, humans interact with each other through speech and even the 

training of animals in the zoo is also done by using speech. As we can see, voice is the 

most natural mode of control as it is fast, hands free and eyes free. Voice of a person is 

very unique just like fingerprint of human beings. 

But the question . is why does the speech recognition problem attract researchers 

and funding? Speech recognition is an important and emerging technology with great 

potential. The beauty of speech recognition lies in its simplicity. This simplicity together 

with the ease of operating a device using speech has lots of advantages. It can be used in 

many applications like, security devices, household appliances, cellular phones, ATM 

machines and computers. 

If an efficient speech recognition machine is enhanced by natural language systems 

and speech producing techniques, it would be possible to produce computational 

applications that do not require a keyboard and a screen. This would allow incredible 

miniaturization of known systems facilitating the creation of small intelligent devices that 

can interact with a user through the use of speech [2]. 

Speech recognition involves recording the input speech signal, extracting the key 

features of the speech, converting the features into codes and finally classification of the 

codes. The most successful techniques used in the past include Dynamic Time Warping 

and Hidden Markov Model. These two methods are, however, very complex and take up 

lots of memory space. The complexity of the speech recognition process is due to the fact 

that a given utterance can be represented by an infinite number of time-frequency 

patterns. 
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1.2 Speech recognition problems 

The human vocal tract and articulators are biological organs with a nonlinear property, 

whose operation is not just under conscious control but also affected by factors ranging 

from gender to upbringing to emotional state. As a result, vocalizations can vary widely 

in terms of their accent, pronunciation, articulation, roughness, nasality, pitch, volume, 

and speed; moreover, during transmission, our irregular speech patterns can be further 

distorted by background noise and echoes, as well as electrical characteristics (if 

telephones or other electronic equipment are used). All these sources of variability make 

speech recognition, even more than speech generation, a very complex problem. 

Phonemes and written words follow cultural conventions. The speech 

recognizer does not create its own classifications and has to follow the cultural rules that 

define the target language. This implies that a speech recognizer must be taught to follow 

those cultural conventions. The speech recognizer cannot fully self organize. It has to be 

raised in a society! 

The complexity of the speech recognition problem is defined by the following 

aspects [3]: 

• Vocabulary size, i.e. the bigger the vocabulary the more difficult the task is. This 

is explained by the appearance of similar words that start to generate recognition 

conflicts, i.e. `WHOLE' and `HOLE'. 

• Grammar complexity. 

• Segmented or continuous speech, i.e. segmented streams of speech is easier to 

recognize than continuous ones. In the latter, words are affected by the 

coarticulation phenomenon. 

• Number of speakers, i.e. the greater the numbers of speakers whose voice needs to 

be recognized, the more difficult the problem is. 

• Environmental noise. 

A speech recognition system, sampling a stream of speech at 8 kHz with 8 bit 

precision, receives a stream of information at 8 Kbits per second as input. After 

processing this stream, written words come out at a rate of more or less 60 bits per 

second. This implies an enormous reduction in the amount of information while 
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preserving almost all of the relevant information. A speech recognizer has to be very 

efficient in order to achieve this compression rate (more than 1000:1). 

Speech recognizers are normally divided into two stages, as shown by the 

schematic diagram in Fig.1.1. The Feature Extractor (FE) block shown in this figure 

generates a sequence of feature vectors, a trajectory in some feature space that represents 

the input speech signal. The FE block is the one designed to use the human vocal tract 

knowledge to compress the information contained by the utterance. Since it is based on 

a priori knowledge that is always true, it does not change with time. The next stage, the 

Recognizer, performs the recognition and generates the correct output word. Since this 

stage uses information about the specific ways a user produce utterances, it must adapt to 

the user. 

Fig. 1.1 Basic building blocks of a speech recognizer. 

The FE block can be modeled after the stages evidenced in the human biology and 

development. This is a block that transforms the incoming sound into an internal 

representation such that it is possible to reconstruct the original signal from it. This stage 

can be modeled after the hearing-organs, which first transducers the incoming air pressure 

waves into a fluid pressure wave and then converts them into a specific neuronal firing 

pattern. After the first stage, comes the one that analyzes the incoming information and 

classifies it into the phonemes of the corresponding language. This Recognizer block is 

modeled after the functionality acquired by a. child during his first six months of 

existence, where he adapts his hearing organs to specially recognize the voice of his 

parents. 
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Once the FE block completes its work, its output is classified by the Recognizer 

module. It integrates the sequences of phonemes into words. This module sees the world 

as if it where only composed of words and classifies each of the incoming trajectories 

into one word of a specific vocabulary. 

The process of correlating utterances to their symbolic expressions, translating 

spoken language into written language, is called speech recognition. It is important to 

understand that it is not the same problem as speech understanding, a much broader and 

powerful concept that involves giving meaning to the received information. 

1.3 A Brief history of speech recognition research 

Researchers have worked in automatic speech recognition for almost four decades. 

The earliest attempts were made in the 50's. In 1952, at Bell Laboratories, Davis, 

Biddulph and Balashek built a system for isolated digit recognition for a single speaker 

[3]. In 1956, at RCA Laboratories, Olson and Belar developed a system designed to 

recognize 10 distinct syllables of a single speaker [3]. In 1959, at University College in 

England, Fried and Dener demostrated a system designed to recognize four vowels and 

nine consonants[3]. The same year, at MIT's Lincoln Laboratories, Forgie and Forgie 

built a system to recognize 10 vowels in a speaker independent manner. All of these 

systems used spectral information to extract voice features [3]. 

In the 60's, Japanese laboratories appeared in the arena. Suzuki and Nakata, from 

the Radio Research Laboratories in Tokyo, developed a hardware vowel recognizer in 

1961[3]. Sakai and Doshita, from Kyoto University, presented a phoneme recognizer in 

1962[3]. Nagata and coworkers, from NEC Laboratories, presented a digit recognizer in 

1963. Meanwhile, in the late 60's, at RCA Laboratories, Martin and his colleagues 

worked on the non-uniformity of time scales in speech events [3]. In the Soviet Union, 

Vintsyuk proposed dynamic programming methods for time aligning a pair of speech 

utterances. This work remained unknown in the West until the early 80's. A final 

achievement of the 60's was the pioneering research of Reddy in continuous speech 

recognition by dynamic tracking of phonemes [3]. This research spawned the speech 

recognition program at Carnegie Mellon University, which, to this day, remains a world 

leader in continuous speech recognition systems. 



In the 70's, researchers achieved a number of significant milestones, mainly 

focusing on isolated word recognition. This effort made isolated word recognition a 

viable and usable technology. Itakura's research in USA showed how to use linear 

predictive coding in speech recognition tasks [3]. Sakoe and Chiba in Japan showed how 

to apply dynamic programming [3]. Velichko and Zagoruyko in Russia helped in the use 

of pattern recognition techniques in speech understanding [3]. Important also were IBM 

contributions to the area of large vocabulary recognition [3]. Also, researchers at ATT 

Bell Labs began a series of experiments aimed at making speech recognition systems 

truly speaker independent [3]. 

In the 80's, the topic was connected word recognition. Speech recognition research 

was characterized by a shift in technology from template-based approaches to statistical 

modeling methods, especially Hidden Markov Models (HMM). Thanks to the widespread 

publication of the theory and methods of this technique in the mid 80's, the approach of 

employing HMMs has now become widely applied in virtually every speech recognition 

laboratory of the world [3]. Another idea that appeared in the arena was the use of neural 

nets in speech recognition problems. The impetus given by DARPA to solve the large 

vocabulary, continuous speech recognition problem for defense applications was decisive 

in terms of increasing the research in the area [3]. 

Today's research focuses on a broader definition of speech recognition. It is not only 

concerned with recognizing the word content but also prosody and personal signature. It 

also recognizes that other languages are used together with speech, taking a multimodal 

approach that also tries to extract information from gestures and facial expressions. 

Despite all of the advances in the speech recognition area, the problem is far from 

being completely solved. A number of excellent commercial products, which are getting 

closer and closer to the final goal, are currently sold in the commercial market. Products 

that recognize the voice of a person within the scope of a credit card phone system, 

command recognizers that permit voice control of different types of machines, 

"electronic typewriters" that can recognize continuous voice and manage several tens of 

thousands word vocabularies, and so on. However, although these applications may seem 

impressive, they are still computationally intensive, and in order to make their usage 
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widespread more efficient algorithms must be developed. Summing up, there is still room 

for a lot of improvement and of course, research [3]. 

1.4 Applications 

1. Railways, Air Bus, answering enquiries about the reservations, schedules. The 

PNR number is spoken by the user as continuous speech is recognized by the 

application software and is presented to the database system, which retrieves out 

the current status of reservation. 

2. Voice activated Windows command controls. This application is an example of 

isolated digit recognition. 

3. Home speech based telephone dialing. Activating appliances by voice. 

4. Factory, punching in and out timing by voice, vending machines. 

5. Departmental Stores, giving information about services, receiving orders. 

6. General applications, Voice controlled wheel chair, commands to computer, data 

entry etc. 

1.5 STATE OF THE ART 

An overview of some of the popular methods for speech recognition is presented in 

this section following the schematic diagram that outlines the constituent blocks as in Fig. 

1-1. The functionality of the individual blocks is also described in order to precisely state 

the contributions that stem from the work outlined in this thesis. 

1.5.1 Feature extractors 
The objective of the FE block is to transform an input in the signal space to an 

output in a feature space to achieve some desired criteria. The FE block is usually a static 

module that once designed will not appreciably change. The criteria to be used depend on 

the problem to be solved. For example, if a noisy signal is received, the objective is to 

produce a signal with less noise. 

The FE block used in speech recognition should aim towards reducing the 

complexity of the problem before later stages start to work with the data. Furthermore, 

existing relevant relationships between sequences of points in the input space have to be 

preserved in the sequence of points in the output space. The rate at which points in the 

signal space are processed by the FE block does not have to be the same rate at which 



points in the feature space are produced. This implies that time in the output feature space 

could occur at a different rate than time in the input signal space. 

A priori knowledge concerning which are the relevant features that should be used 

in a speech recognition problem comes from very different sources. Results from 

biological facts, such as the EIH model (which is based on the inner workings of the 

human hearing system [3]), descriptive methods (like banks of pass band filters [3]), data 

reduction techniques (such as PCA [4]), speech coding techniques (such as LPC 

Cepstrum [5]), and neural networks (such as SOM [6]), have been combined and utilized 

in the design of speech recognition feature extractors. An important result obtained by 

Jankowski et al [4], which summarizes all of the above mentioned a priori knowledge, 

suggests that under relatively low noise conditions all systems behave in similar ways 

when tested with the same classifier. This explains why the speech recognition 

community has adopted the LPC Cepstrum, which is very efficient in terms of 

computational requirements, as the method of choice. 

1.5.2 Recognizers 
Recognizers deal with speech variability and account for learning the relationship 

between specific utterances and the corresponding word or words. There are several types 

of classifiers but only two are mentioned: the Template approach and the approach that 

employs Hidden Markov Models. 

The first one, the Template Approach, is described by the following steps: 

1. First, templates for each class to be recognized are defined. There are several 

methods for forming the templates. One of these consists in randomly collecting a 

fixed amount of examples for each class in order to capture the acoustic variability of 

that specific class. The template of a class is defined as the set of collected examples 

for that class. 

2. Select a method to deal with utterance time warpings. A commonly used technique 

is a procedure called Dynamic Time Warping [7]. It consists of an adaptation of 

dynamic programming optimization procedures for time warped utterances. 

3. Select some distance measure for comparing an unknown example against the 

template of each class after time warping correction. This distance measure can be 
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based on geometrical measures, like Euclidean distance, or perceptual ones, like Mel 

or Bark scales [3]. 

4. Compare unknown patterns against the collected templates using the selected time 

warping correction and the chosen distance measurement. The unknown pattern is 

classified according to the values obtained from the distance measurements. 

One drawback of the template procedure is that nothing guarantees that the chosen 

examples would really capture the class variability. The main problem with this method 

is that several utterances must be collected in order to capture the word'. s variability. For 

small vocabularies this may not be a problem, but for large ones it is something 

unthinkable: no user would willingly utter thousands and thousands of examples. 

Another approach is based on HMM, and solves the temporal and acoustic 

problems at once using statistical considerations. It is described by the following steps 

[8]: 
1. Like the Template Approach, something that stores the knowledge about the possible 

variations of a class must be defined. The difference is that in this case it is an HMM 

instead of a template. Consider a system that may be described at any time by means 

of a set of M distinct states, such as a word which can be represented by a collection 

of phonemes. At regularly spaced, discrete times, the system undergoes a change of 

state according to a set of probabilities associated with each state. Let us assume that 

each time the system moves to another state, an output selected from a set of N 

distinct outputs is produced. The outputs are selected according to a probability mass 

function. The states are hidden from the outside world, which only observes the 

outputs. In other words, a HMM is an embedded stochastic process with an 

underlying stochastic process that is not directly observable but can be observed only 

through another set of stochastic processes that produces the sequence of 

observations. In order to obtain the HMM that represents a class, the number of 

hidden states, state transition probabilities, and output generation probabilities must 

be defined. Usually, the number of states is defined by trial and error. The 

probabilities are instead obtained through iterative methods that work with sets of 

training examples. An example of an HMM is shown in Fig.! .2, where the solid 

circles represent the possible states, and the arrows represent the transitions between 



states as an utterance progresses. In the most basic level, a HMM is used to model a 

word and each state represents a phoneme. The number of states used to model a 

word depends on the number of phonemes needed to describe that word. 

Fig. 1.2 Hidden markov model example. 

2. Once the HMMs have been determined, whenever an unknown utterance is presented 

to the system, each model evaluates the probability of producing the output sequence 

associated to that utterance. The word associated to the model with the highest 

probability is then assigned to the unknown utterance. 

The HMM method does not have some of the drawbacks exhibited by the Template 

Approach. Because it models the utterances as stochastic processes, it can capture the 

variability within a class of words. In terms of scalability, it offers much more flexibility. 

Instead of defining one HMM for each word, a hierarchy of HMMs is built, where the 

bottommost layer of HMMs models phonemes, a second layer which models short 

sequences of connected phonemes and uses the output of the first layer as input, and a 

final layer which models each word and uses the output of the second layer as input. This 

hierarchical approach constitutes the most successful approach ever devised for speech 

recognition. 

The limitations of the HMMs are that they rely on certain a priori assumptions 

that do not necessarily hold in a speech recognition problem [9] [10]: 

• The first order assumption, that all probabilities depend solely on the current state, 

is false for speech applications. This is the reason why HMMs have strong 

problems modeling coarticulations, where utterances are in fact strongly affected 

by recent state history. 

• The independence assumption, that there is no correlation between adjacent time 

frames, is also false. At a certain instant of time, both words can be described by 



the same state but the only thing that differentiates them is their behavior before 

that state, which is something completely ignored by the HMM model. 

A characteristic common to all speech recognizers is that they . are composed of 

layered hierarchies of sub-recognizers. Normally, the first layer is composed of a set of 

sub-recognizers whose output is integrated by the following layer of sub-recognizers, and 

so on, until the desired output is obtained. An example is the architecture used in a HMM 

based recognizer: the first layer is composed of a set of HMMs, each of them specialized 

in recognizing phonemes. The second layer, again composed of a set of HMMs, uses as 

input the output of the first layer and specializes in recognizing collections of phonemes. 

The third layer, based on HMMs too, uses the output of the second layer to recognize 

words. Finally, the fourth layer integrates the words into sentences ' using built-in 

knowledge about the grammar of the target language. 

1.6 Organization of the thesis 
The dissertation has been composed of eight chapters. The details of the contents of 

each chapter are given below. 

In chapter 1, introduction of speech- recognition and its brief history and 

applications. 

In chapter 2, basics of spoken and written languages have been presented. 

In chapter 3, basics of speech signal, how the speech is produced and perceived 

by humans being is discussed along with different representations of speech are 

discussed. 

In chapter 4, how the speech is transformed into feature vectors along with the 

steps that are required to achieve that are given. The need to find out the start and end 

point of speech, so that it can be effectively transformed into speech vectors, has been 

presented. 	 - 

In chapter 5, the stochastic approach i.e Neural Network to speech recognition is 

introduced and the technique to apply them on isolated word speech recognition is 

discussed. 

In chapter 6, the scheme for the proposed work has been given. The various steps 

that are involved and all GUI based menu driven programs have been listed. 
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In chapter 7, the feature vector set of the two words have been presented. Results 

have been obtained for the given vocabulary size and the reduced one. The results of both 

the cases (the original vocabulary and the reduced one) have been compared along with 

the different speakers and a discussion of the result presented. 

Lastly, In chapter 8, conclusion of present work and some suggestion for future 

work have been given. 
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Chapter-2 

LANGUAGES 

2.1 Introduction 

Language is what allows us to communicate, i.e. to convey information from one 

person to another. It is this ability that permits groups of individuals to transform into an 

information sharing community with formidable powers. Thanks to the existence of 

language, anyone can benefit from the knowledge of others, even if this knowledge was 

acquired in a different place or at different times. 

Language is a complex phenomenon, and it can appear in very different forms, such 

as body positions, facial expressions, spoken languages, etc. Not only that, these different 

types can be used separately or in combination, rendering really complex and powerful 

methods to communicate information. For example, dance is a method of communication 

that emphasizes the use of body position and facial expressions. Like dancing, a face to 

face conversation relies on body gestures and facial expressions, but it also relies on the 

use of sounds and spoken language. Summing up, when we are speaking about a 

language, we should not restrict ourselves to. think about it as a collection of sounds 

ordered by some grammar. Any language is far more than that. 

Modem language theories state that what we call languages are surface 

manifestations, or exterior representations, of a common inner core, not directly seen 

from the outside, where thought processes occur (Fig.2.1). In other words, they state that 

we do not think using what we would normally call a language, but internal mental 

representations that condense all sorts of cognitive processes [11]. Under this point of 

view, the different languages that a person uses are nothing more than a set of different 

interfaces between the processing results of that inner core and the community. 

Even though under normal conditions we normally use all types of languages at the 

same time, it can be said that spoken language is the one that conveys the most of the 

information, while the others normally enhance or back up the meanings conveyed by• 

spoken language. 
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Fig.2. 1. Relationship between languages and inner core thought processes. 

Language is a complex, specialized skill, which develops in the child 

spontaneously, without conscious effort or formal instruction, is deployed without 

awareness of. its underlying logic, is qualitatively the same in every individual, and is 

distinct from more general abilities to process information or behave intelligently." 

Current research in cognitive sciences states that language corresponds more to an 

instinct [11] than to a socially developed skill, implying that is something inherently 

human. More than this, it seems to be inherently biological: the capacity of speaking a 

language is a consequence of human biology, while its manifestation, i.e. the actual way 

we speak, a consequence of the culture where persons live. 

Even more, it seems that only ' humans possess this skill. All studies done in 

animals, even the more advanced primates, indicate orders of magnitude of difference 

between human languages and the animal ones. So big is this difference that if language 

is defined as something similar to human languages, it can be safely considered that 

animals do not have the ability to communicate using a language. 

2.2 Spoken language 
The basic building block of any language is a set of sounds named phonemes. As an 

example, a condensed list of Hindi phonemes, along with their IPA symbol and ASCII 

representation, is given in Table 2.1 [ 12]. 

Table 2.1: The Hindi alphabet. For a phoneme in a cell, the corresponding IPA symbol 

and the ASCII representation used in the database are shown in the second and third row 

of the cell respectively. 
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The Hindi alphabet is shown in Table 2.1. It has three sections: the first section 

lists the vowels, the second section lists phonemes whose production involves complete 

closure of oral tract (plosives, affricates and nasals); the third section lists the semivowels 

and fricatives. Each cell in the figure represents a phoneme and has 3 rows: the first row 

is the Devnagri script, the second corresponding to IPA symbol, and the third the roman 

script used to label the phoneme in a spoken Hindi sentence. 

The phonemes of Table 2.1 comprise all the building blocks needed to produce 

what is called Devnagri script (Hindi). Other versions of Hindi use slightly different sets 

of phonemes, but similar enough to allow understanding by any Hindi speaker. These 

differences explain the different accents existing in Indian Hindi. As it is in Hindi, all 

languages follow this structure: they are built upon a basic set of phonemes. It is 

interesting to note that the number of phonemes in a set of basic phonemes never exceeds 

seventy. This fact might indicate a limit on the number of sounds a human can produce or 

distinguish in order to communicate efficiently. 
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The second level of building blocks of a spoken language consists of the words. 

These building blocks arC built from sequentially concatenated phonemes extracted from 

the basic set of phonemes of the language. An utterance of the word `ZERO' is shown in 

Fig.2.2. It can be seen in the figure that there are roughly four distinct zones in the 

utterance, each of them directly related to one of the four phonemes that comprise the 

utterance of that word. 

Spe..th S"iar_-J c the Sassand`ZERO' 

0 	 0.-A 	0.4 	Ot.S 
time. [rrs] 

Fig.2.2. Speech signal for the word `ZERO'. 

All the words in a language constitute a set called vocabulary. It is generally agreed 

among experts that a normal person understands and uses an average of 60,000 words 

[11] of his native language. 

The enormous number of possible utterances within a given language is explained 

by all possible combinations of phonemes, words, phrases and sentences, degree of 

interaction with other people, possible manifestations of - the stresses, rhythms, and 

intonations, the continuous effort to optimize performed by the speech organs, and noise. 

It is important to note that there is a set of possible utterances for a given word. It is not 

necessarily valid to model all of them as deviations from a "correct" one. On the 

contrary, each of them is equally valid. Within the language context, utterance variability 

does not necessarily mean utterance deviation. Utterance variability cannot be explained 

as an ideal template distorted by some error. The concept of error is only useful to 

explain the always present noise. 
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2.3 Learning spoken language 
Spoken language acquisition is an unconscious process. During their first year of 

existence, children learn the basic set of phonemes. During the first two months children 

produce all kinds of sounds to express themselves. After that, they start playing with 

them and babbling in syllables like `BA-BA-BA'. When they are 10 months old, they 

tune their phoneme hearing capacity such that they start to react more frequently to the 

sounds spoken by their parents. This transition is done before they understand words, 

implying that they learn to identify phonemes before they start understanding words. 

At the end of the first year they start to understand syllable sequences that resemble 

speech. By listening to their babbling they receive a feedback that helps them to finish the 

development of their vocal tract and to learn how to control it. 

Around the first year they start understanding words and produce words. The one 

word stage can last from two months to a year. Around the world, scientists have proven 

that the content of this vocabulary is similar: half of them are used to designate objects 

(`JUICE', `EYE', `DIAPER', `CAR', `DOLL', `BOTTLE', `DOG', etc.), the rest are for 

basic actions ('EAT', `OPEN', `UP', etc.), modifiers (`MORE', `HOT', `DIRTY', etc.), 

and social interaction routines ('LOOK AT THAT', `WHAT IS THAT', `HI', 

`BYEBYE', etc.). 

Language starts to develop at an astonishing rate at eighteen months. They already 

understand sentences according to their grammar. They start to produce two and three 

word utterances and sentences that are correctly ordered despite some missing words. 

After late twos, the language employed by children develops so fast that in the words 

of Pinker. [11]:  "it overwhelms the researchers who study it, and no one has worked out 

the exact sequence." Sentence length and grammar complexity increases exponentially. 

Why does it take almost the very first three years of our lives to, master a language? 

Before birth, virtually all nerve cells are formed and are in their proper places, but it is 

after birth that head size, brain weight, thickness of the cerebral cortex, long distance 

connections, myelin insulators and synapses grow. It is during these first years that the 

qualitative aspects of our behavior are developed by adding and chipping away material 

from our brains. Later, the growth is more devoted to quantity rather than quality. 

co 



2.4 Written language 

Written language is what permits us to communicate through physical tokens in a 

completely time independent manner. While speech uses configurations of matter that 

change through space and time to convey information, written language only uses 

permanent configurations of matter that do not change over reasonable changes of space 

and time. It seems to be a small difference, but it turns out to be of transcendental 

importance. Thanks to this characteristic that it is possible to communicate no matter the 

distance in space and time. As an example, it is due to this that it is possible to read 

Homero's Odyssey, which was written in Greece thousands of years ago. 

Written language is a cultural phenomenon. Not every culture developed it. 

Moreover, impressive cultures have existed without needing a written language at all. 

Good examples are all the cultures that flourished in the Americas before the arrival of 

Christopher Columbus. 

2.5 Learning written language 

Written language acquisition is done from learning the correlation between utterances 

and their symbolic representations. The character and type of this correlation depends on 

the language. It usually involves learning how to write. This process, as everything 

related to written language, is a cultural process. While spoken language is normally 

learned in an unconscious way during the early infancy, written language is an excellent 

example of a conscious process. 
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Chapter-3 

HUMAN SPEECH PRODUCTION SYSTEM 

3.1 Introduction 

Undoubtedly, ability to speak is the most important way for humans to communicate 

between each other. Speech conveys various kind of information, which is essentially the 

meaning of information speaking person wants to impart, individual information 

representing speaker and also some emotional filling. Speech production begins with the 

initial formalization of the idea which speaker wants to impart to the listener. Then 

speaker converts this idea into the appropriate order of words and phrases according to 

the language. Finally, his brain produces motor nerve commands, which move the vocal 

organs in an appropriate way. Understanding of how human produce sounds forms the 

basis of speaker identification. 

3.2 Anatomy of human speech production system 

Nose C vita 

Mouth Cavity 

Tongue 

ea 

Fig.3.1 Cross sectional view of human vocal tract 

The sound is an acoustic pressure formed of compressions and rarefactions of air 

molecules that originate from movements of human anatomical structures. Most 

important components of the human speech production system are the lungs (source of 

air during speech), trachea (windpipe),, larynx or its -most important part vocal cords 



(organ of voice production), nasal cavity (nose), soft palate or velum (allows passage of 
air through the nasal cavity), hard palate (enables consonant articulation), tongue, teeth 

and lips. All these components, called articulators by speech scientists, move to different 
positions to produce various sounds. Based on their production, speech sounds can also 
be divided into consonants and voiced and unvoiced vowels. From the technical point of 
view, it is more useful to think about speech production system in terms of acoustic 
filtering operations that affect the air going from the lungs. There are three main cavities 
that comprise the main acoustic filter. They are nasal, oral and pharyngeal cavities. The 

articulators are responsible for changing the properties of the system and form its output. 
Combination of these cavities and articulators is called vocal tract. Its simplified acoustic 

model is represented in Fig.3.2. 

Nasal 
sound 
output 

Pharyngeal 	 Oral 	Oral 

Trachea 	 area 	 ca~Ity 	sound 
/' 1 	 Velum 	 output 

Fig: 3.2 Vocal tract model 
Speech production can be divided into three stages: first stage is the sound source 

production, second stage is the articulation by vocal tract, and the third stage is sound 
radiation or propagation from the lips and/or nostrils. A voiced sound is generated by 

vibratory motion of the vocal cords powered by the airflow generated by expiration. The 
frequency of oscillation of vocal cords is called the fundamental frequency. Another type 

of sounds - unvoiced sound is produced by turbulent airflow passing through a narrow 

constriction in the vocal tract. 
In a speech recognition task, the knowledge of the physical properties of human 

vocal tract is defined in general, it is assumed that vocal tract carries most of the speaker 
related information. However, all parts of human vocal tract described above can serve as 

Vocal 
cords 

Lungs 
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speaker dependent characteristics. Starting from the size and power of lungs, length and 

flexibility of trachea and ending by the size, shape and other physical characteristics of 

tongue, teeth and lips. Such characteristics are called physical distinguishing factors. 

Another aspect of speech production that could be useful in discriminating -between 

speakers are called learned factors, which include speaking rate, dialect, and prosodic 

effects. 

3.3 Vocal tract model 
In order to develop an automatic speech recognition system, it is desired to construct 

reasonable model of human speech production system. Having such a model, one can 

extract its properties from the signal and, using them, one can decide whether or not two 

signals belong to the same model and as a result to the same word. Modeling process is 

usually divided into two parts: the excitation (or source) modeling and the vocal tract 

modeling. This approach is based on the assumption of independence of the source and 

the vocal tract models. In the continuous-time vocal tract model also called as multitube 

lossless model, is based on the fact that production of speech is characterized by changing 

the vocal tract shape. Because the formalization of such a time-varying vocal-tract shape 

model is quite complex, in practice, it is simplified to the series of concatenated lossless 

acoustic tubes with varying cross-sectional areas , as shown in Fig.3.3. This model 

consists of a sequence of tubes with cross-sectional areas Ak and lengths Lk. In practice, 

the lengths of tubes assumed to be equal. If a large amount of short tubes is used, then 

one can approach to the continuously varying cross-sectional area, but at the cost of more 

complex model. Tract model serves as a transition to the more general discrete-time 

model, also known as source-filter model, which is shown in Fig.3.4. 

L, 

Glottis 	Vocal tract 	Lips 

Fig.3.3 Multi tube lossless model 
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In this model, the voice source is either a periodic pulse stream or uncorrelated white 

noise, or a combination of these. This assumption is based on the evidence from human 

anatomy that all types of sounds, which can be produced by humans, are divided into 

three general categories: voiced, unvoiced and combination of these two. Voiced signals 

can be modeled as a basic or fundamental frequency signal filtered by the vocal tract and 

unvoiced as a white noise also filtered by the vocal tract. Here E(z) represents the 

excitation function, H(z) represents the transfer function, and s(n) is the output of the 

whole speech production system. Finally, we can think about vocal tract can be thought 

of being a digital filter, which affects source signal and produced sound output as a filter 

output. Then based on the digital filter theory the parameters of the system from Its 

output can be extracted. 

E(z) rocai tract E 	 (n)  Unvoiced 

 

Fig.3.4 Source-filter model 

The issues described in this chapter serve as a basis for developing speech recognition 

techniques described in the next chapter. 
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Chapter-4 

FEATURE EXTRACTION 

4.1 Introduction 

In this chapter the possible ways of extracting speech discriminative characteristics 

from speech signal are discussed. A wide range of possibilities exist for parametrically 

representing a speech signal and its content. 

The acoustic speech signal contains different kind of information about speech. This 

includes "high-level" properties such as dialect, context, speaking style, emotional state 

of speaker and many others [13]. A great amount of work has been already done in trying 

to develop Feature extraction algorithms. But these efforts are mostly impractical because 

of their complexity and difficulty in measuring the speech discriminative properties used 

by humans [13]. More Useful approach is based on the "low-level" properties of the 

speech signal such as pitch (fundamental frequency of the vocal cord vibrations), 

intensity, formant frequencies and their bandwidths, spectral correlations, short-time 

spectrum and others [14]. 

From the continuous speech recognition task point of view, it is useful to think about 

speech signal as a sequence of features that characterize both the speaker as well as the 

speech. It is an important step in recognition process to extract sufficient information for 

good discrimination in a form and size which is amenable for effective modeling [15]. 

The amount of data, generated during the speech production, is quite large while the 

essential characteristics of the speech process change relatively slowly and therefore, they 

require less data. According to these matters feature extraction is a process of reducing 

data while retaining speaker discriminative information [15, 16]. 

4.2 Short-Term analysis 

Because of its nature, the speech signal is a slowly -varying signal or quasi-stationary. 

It means that when speech is examined over a sufficiently short period of time (20-30 

milliseconds) it has quite stable acoustic characteristics. It leads to the useful concept of 

describing human speech signal, called "short-term analysis", where only a portion of the 

signal is used to extract signal features at one time. It works in the following way: 

predefined length window (usually 20-30 milliseconds) is moved along the signal with an 
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overlapping (usually 30-50% of the window length) between the adjacent frames. 

Overlapping is needed to avoid losing of information. Parts of the signal formed in such a 

way are called frames. 

4.3 Windowing 

In order to prevent an abrupt change at the end points of the frame, it is usually multiplied 

by a window function. The operation of dividing signal into short intervals is called 

windowing and such segments are called windowed frames (or sometime just frames). 

There are several window functions used in speech recognition area, but the most popular 

is Hamming window function, which is described by the following equation: 

w(n) = 0.54 — 0.46 cos 2n;r 	.................................. (4.1) 
N-1 

where N is the size of the window or frame. A set of features extracted from one frame is 

called feature vector. Overall overview of the short-term analysis approach is represented 

in Fig.4.1. 
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Fig.4.1 Short-Term analysis 
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4.4 Cepstrum 
According to the issues described in the subsection 3.2, the speech signal s(n) can be 

represented as a "quickly varying" source signal e(n) convolved with the "slowly 
varying" impulse response h(n) of the vocal tract represented as a linear filter [16]. There 
is access only to the output (speech signal) and it is often desirable to eliminate one of the 
components. Separation of the source and the filter parameters from the mixed output is 
in general difficult problem when these components are combined using non linear 

operation, but there are various techniques appropriate for components combined 
linearly. The cepstrum is representation of the signal where these two components are 
resolved into two additive parts [16]. It is computed by taking the inverse DFT of the 
logarithm of the magnitude spectrum of the frame. This is represented in the following 
equation: 

Cepstrum (frame) =IDFT( log ( I 	................. (4.2) 

Some explanation of the algorithm is therefore needed. By moving to the 
frequency domain convolution is changed to multiplication. Then by taking logarithm 
moving from the multiplication to the addition. That is desired division into additive 
components. Then linear operator inverse DFT is applied, knowing that the transform 
will operate individually on these two parts and knowing what Fourier transform will do 
with quickly varying and slowly varying parts. Namely it will put them into different, 
hopefully separate parts in new, also called frequency axis [20]. One example of speech 
magnitude spectrum is shown in Fig 4.2 [20]. 
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Fig.4.2 Speech magnitude spectrum 
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From the Fig.4.2 it can be seen that the speech magnitude spectrum is combined 
from slow and quickly varying parts. But there is still one problem: multiplication is not a 
linear operation. This can be solve it by taking logarithm from the multiplication as 
described earlier. Finally, The result of the inverse DFT is shown in Fig.4.3 [16]. 

frequency 

High frequency — 

Fig.4.3 Cepstrum 
From this figure it can seen that two components are clearly distinctive now. The details 
of cepstrum can be seen in references [15, 16, 17]. 
4.5 Mel-frequency cepstrum analysis 
4.5.1 Introduction 

Mel-frequency cepstrum coefficients (MFCC) are well known features used to 
describe speech signal. Mel-scale grouping is a commonly employed dimensionality 
reduction technique in automatic speech recognition systems. The grouping follows a 
filtering operation that converts the time series representation of speech into a frequency 
representation. They are based on the known evidence that the information carried by 
low-frequency components of the speech signal is phonetically more important for 
humans than carried by high-frequency components [16]. Technique of computing 
MFCC is based on the short-term analysis, and thus from each frame a MFCC vector is 
computed. 
4.5.2 Background 

To understand how the warping was incrementally modified in this experiment, the 
reader must first understand in general how cepstral coefficients and mel-warped cepstral 
boefficients (MFCCs) are calculated for use in typical speech recognition systems. This
paper will specifically discuss how the mel-warped cepstrum is calculated. 
Given a frame of speech, the following steps compute the cepstral coefficients: 
1) Window the speech frame, using a Hamming (or other) window. 
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2) Do zero padding to achieve a frame length suitable for an FFT. 

3) Do the FFT. 

4) Find the Power Spectrum. 

5) Take the Log of the Power Spectrum. (This is the cepstrum.) 

6) Inverse FFT. (The results are the cepstral coefficients.) 

The "Mel" is a unit of measure of perceived pitch or frequency of a tone. The Mel scale 

was developed by Stevens and Volkman (1940) as a result of a study of human auditory 

perception (the field-of psychoacoustics) using the following procedure: 

1) Choose the reference frequency as 1000 Hz and designate it "1000 Mels". 

2) Listeners were then presented a signal and asked to change it's frequency until the pitch 

they perceived was twice the reference, then 10 times the reference, etc. and then half the 

reference, 1/10 the reference, etc. 

3) From this data, the mel scale was constructed. 

The mel scale is approximately linear below 1 kHz and logarithmic above. This is 

approximated using the following formula, and shown in Fig.4.4: 

Mel(f.)=1127 log 1+ 07 O 
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Fig.4.4 The mel scale 

The process of extracting MFCC from continuous speech is illustrated in Figure 4.5 
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Fig.4.5 Computational figures for mel-cepstrum 

As described above, to place more emphasize on the low frequencies one special 

step before inverse DFT in calculation of cepstrum is inserted, namely mel-scaling. A 

"mel" is a unit of special measure or scale of perceived pitch of a tone [16]. It does not 

correspond linearly to the normal frequency, indeed it is approximately linear below 1 

kHz and logarithmic above [16]. This approach is based on the psychophysical studies of 

human perception of the frequency content of sounds [16, 17]. One useful way to create 

mel-spectrum is to use a filter bank, one filter for each desired mel-frequency component. 

Every filter in this bank has triangular bandpass frequency response. Such filters compute 

the average spectrum around each center frequency with increasing bandwidths, as 

displayed in Fig.4.6. 

1 

freq 

m 	 Energy in ml 	 .......... 	in Each Band 

Fig.4.6 Mel-scale filter bank 

This filter bank is applied in frequency domain and therefore, it simply amounts to 

taking these triangular filters on the spectrum. In practice the last step of taking inverse 

DFT is replaced by taking discrete cosine transform (DCT) for computational efficiency. 



The number of resulting mel-frequency cepstrum coefficients is practically 

chosen relatively low, in the order of 12 to 26 coefficients. The zeroth coefficient is 

usually dropped out because it represents the average log energy of the frame and carries 

only a little speaker specific information. However, MFCC are not equally important in 

speech recognition [11] and thus some coefficients weighting might by applied to acquire 

more precise result. A different approach for computation of MFCC other than described 

in this work cab be found in [ 18] that is simplified by omitting filter bank analysis. More 

details about MFCC can be found in [4, 15, 16, 17, 19, 24]. 



Chapter-5 

FEATURE MATCHING 

5.1 Introduction 

In this chapter we are going to discuss all possible ways for matching the test signal 

with the reference signal which is stored in database by using the Artificial Neural 

Network. A wide range of possibilities exists for recognition of speech signal. 

Speech is a most natural and efficient way to exchange information for human 

beings. To make a real "intelligent computer," it is important that the machine can 

"hear," "understand," and "act upon" spoken information, and also "speak" to complete 

the information exchange. Therefore, speech recognition is essential for a computer to 

reach the goal of natural human-computer communication [16]. 

Many algorithms are currently used for searching a best matching path between two 

signals. Some of the more successful techniques include dynamic programming; hidden 

Markov models and neural networks applied at both the phoneme and at the word level. 

However, neural networks remain the most widely used algorithm for real-time 

recognition systems. It is considered sufficiently mature to solve sequential decision 

problems. 

5.2 NEURAL NETWORKS 

5.2.1 Biological Inspiration 

The brain consists of a large number (approximately 10.11.) of highly connected 

elements (approximately 104. connections per element) called neurons. For our purposes 

these neurons have three components: the dendrites, the cell body and the axon. The 

dendrites are tree-like receptive networks of nerve fibers that carry electrical signal into 

the cell body. The cell body effectively sums and thresholds these incoming signals. The 

axon is a single long fiber that carries the signal from the cell body out to other neurons. 

The point of contact between an axon of one cell and a dendrite of another cell is called a 

synapse. It is the arrangements of neurons and the strengths of the individual synapses, 

determined by a complex chemical process, that establishes the function of the neural 

network. Fig.5.1 is a simplified schematic diagram of two biological neurons [20]. 
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Fig.5.1 Schematic diagram of biological neurons 1211 

Some of the neural structure is defined at birth: Other parts are developed through 

learning, as new connections are made and others waste away. This development is most 

noticeable in the early stages of life. For example, it has been shown that if a young cat is 

denied use of one eye during a critical window of time, it will never develop normal 

vision in that eye. 

Neural structures continue to change throughout life. These later changes tend to 

consist mainly of strengthening or weakening of synaptic junctions. For instance, it is 

believed that new memories are formed by modification of these synaptic strengths. 

Thus, the process of learning a new friend's face consists of altering various synapses. 

Artificial neural networks do not approach the complexity of the brain. There are, 

however, two, key similarities between biological and artificial neural networks. First, the 

building blocks of both networks are simple computational devices (although artificial 

neurons are much simpler than biological neurons) that are highly interconnected. 

Second, the connections between neurons determine the function of the network. 

It is worth noting that even though biological neurons are very slow when compared 

to electrical circuits (10: 3. s compared to 10.-9. s), the brain is able to perform many tasks 

much faster than any conventional computer. This is in part because of the massively 

parallel structure of biological neural networks share this parallel structure. Even though 

most artificial neural networks are currently implemented on conventional digital 

computers, their parallel structure makes them ideally suited to implementation using 

VLSI, optical devices and parallel processors. 
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5.2.2 Artificial neurons 

An artificial neuron is an information processing unit that is fundamental to the 

operation of a neural network. Fig.5.2 shows the schematic representation of an artificial 

neuron. Neural networks are composed of simple elements operating in parallel. These 

elements are inspired by biological nervous systems. As in nature, the network function is 

determined largely by the connections between elements. A neural network can be 

trained to perform a particular function by adjusting the values of the connections 

(weights) between elements. 

Commonly neural networks are adjusted, or trained, so that a particular input leads 

to a specific target output. Such a .situation is shown below. There, the network is 

adjusted, based on a comparison of the output and the target, until the network output 

matches the target. Typically many such input/target pairs are used, in this supervised 

learning, to train a network. 

Bias 
Ux 

Y 	 I 

x1 

yr 

~• n 

Fig.5.2 An artificial neuron 

5.2.3 Neuron modeling 

A neuron with a single scalar input with no bias appears on the left below. 

Summer output n = WP +b 

Neuron output a = f (wp+b) 
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Input Neuron without bias 
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Fig.5.3 Single input neuron [211 

The scalar input p is transmitted through a connection that multiplies its strength by 

the scalar weight w, to form the product wp, again a scalar. Here the weighted input wp is 

the only argument of the transfer function f; which produces the scalar output a. The 

neuron on the right has a scalar bias, b. The bias may be viewed as simply being added to 

the product wp as shown by the summing junction or as shifting the function f to the left 

by an amount b. It has the effect of raising or lowering the net input of the activation 

function, depending on whether it is positive or negative, respectively. The bias is much 

like a weight, except that it has a constant input of 1. 

The transfer function net input n, again a scalar, is the sum of the weighted input wp 

and the bias b. This sum is the argument of the transfer function f. Here f is a transfer 

function, typically a step function or a sigmoid function, which takes the argument n and 

produces the output a. It is to be noted that w and b are both adjustable scalar parameters 

of the neuron. The central idea of neural networks is that such parameters can be adjusted 

so that the network exhibits some desired or interesting behavior. Thus, the network can 

be trained to do a particular job by adjusting the weight or bias parameters, or perhaps the 

network itself will adjust these parameters to achieve some desired end. 

5.3 TRANSFER FUNCTIONS 

Referring to Fig.5.2, the processing elements consist of two parts. The first part 

e 

	

	consists of an adder for summing up the input signals, weighted by the respective 

synapses of the neuron, and the second part consists of an activation function for limiting 

the amplitude of the out put of the neuron. The activation function is also referred to as a 

squashing function, in that it squashes the permissible amplitude range of the output 
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signal to some finite value. The normalized amplitude of the output of a neuron lies 

within the closed unit interval [0, 1] or [-1, 1]. 

The activation function, denoted by iJi(I), defines the output of the neuron in terms 

of the individual local field I. The threshold function passes information (usually a +1 

signal) only when the output of the first part of the artificial neuron exceeds the threshold 

value T. A single neuron with a threshold activation function is known as a single-layer 

perceptron, whereas the same neuron with a signum activation function is known as an 

adaline. 

1 if I>=l 

~(I), 

0 if I<=0 
	

(assume 0 (I) = a) 

5.3.1 Hard-Limit Transfer Function 

The hard-limit transfer function shown above limits the output of the neuron to either 0, if 

the net input argument n is less than 0; or 1, if n is greater than or equal to 0. 

5.3.2 Linear transfer function 

a _ jntreitrar) 

5.3.3 Sigmoid transfer function 

The si.gmoid function, whose graph is s-shaped, is the common form of activation 

function used in the construction of ANNs. It is defined as a strictly increasing function 

that exhibits a graceful balance between linear and non-linear behaviour. The sigmoid 

function passes negative information when the output is less than the threshold value T 

and positive information when the output is greater than the threshold value T. It is a 
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continuous function that varies that gradually between two asymptotic values, typically 0 

and 1, or -1 and +1. The sigmoid transfer function shown below takes the input, which 

may have any value between plus and minus infinity, and squashes the output into the 

range 0 to 1. 

a 

0 

a - iogg(n)  

Log-Sigmoid Transfer Function 

1 

~(J) _ 1 +e 

Where a is a slope parameter of the sigmoid function which adjusts the abruptness 

of this function as it changes between the two asymptotic values. By varying the 

parameter a, one-can obtain sigmoid function of different slopes. 

This transfer function is commonly used in backpropagation networks, in part 

because it is differentiable. The symbol in the square to the right of each transfer 

function graph shown above represents the associated transfer function. These icons will 

replace the general f in the boxes of network diagrams to show the particular transfer 

function being used. 

5.4 ARTIFICIAL NEURAL NETWORK 

The interconnection of artificial neurons results in an ANN, and its objective is to 

emulate the function of a human brain to solve scientific, engineering and many other 

real life problems. As mentioned before, the interconnection of biological neurons is not 

well understood, but scientists have come up with neural network models and many more 

are yet to come. These network can generally be classified as feedforward and feedback 

(or recurrent) types. In a feedforward network, signals from neuron to neuron flow only 

in the forward direction, whereas in the recurrent network, the signals can flow in a 

forward as well as backward or lateral direction. A few, network models can be listed as 

follows: 
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Feedforward: 

• Perceptron 

• Adaline and Madaline 

■ Backpropagation Network 

• Radial Basis Function Network (RBFN) 

• General Regression Network 

• Modular Neural Network (MNN) 

• Learning Vector Quantization(LVQ) Network 

• Probabilistic Neural Network (PNN) 

• Fuzzy Neural Network (FNN) 

Recurrent: 

• Hopfield Network 

• Boltzmann Machine 

■ Kohonen's Self-Organizing Feature Map (SOFM) 

• Recirculation Network 

• Brain-State-in-a-Box (BSB) 

• Adaptive Resonance Theory (ART) Network 

• Bi-directional Associative Memory (BAM) 

A Network can be defined as static or dynamic, depending on weather it is a simulating 

static or dynamic system. It has been claimed [21] that any problem that can be solved by 

a recurrent network can also be solved by a feedforward network with the proper external 

connections. 

5.4.1 Backpropagation training algorithms 

Backpropagation is a systematic method for training multiple-layer(three or more) 

artificial neural networks, it was created by generalizing the Widrow-Hoff learning rule 

to multiple-layer networks and nonlinear differentiable transfer functions. The standard 

backpropagation algorithm is summarised as. 

1) Build a network with the chosen number of input, hidden and output units. 

2) Initialize all the weights to low random values. 

3) Choose a single training pair at random. 

4) Copy the input pattern to the input layer. 
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5) Cycle the network so that the activations from the inputs generate the activations 

in the hidden and output layers. 

6) Calculate the error derivative between the output activation and target output. 

7) Backpropagate the summed products of the weights and errors in the output layer 

in order to calculate the error in the hidden units. 

8) Update the weights attached to each unit according to the error in that unit, the 

output from the unit below it, and the learning parameters, until the error is 

sufficiently low or the network settles. 

The propagation algorithm has been critical to advances in neural networks, 

because of the limitations of the one-and two-layer networks. Today it is estimated that 

80% of all applications utilize the backpropagation algorithm in one form or another. 

Prior to the development of backpropagation, attempts to use perceptrons with more than 

one layer of weights were frustrated by what was called the `weight assignment problem'. 

Let us consider a typical neuron as shown in fig.5.2 with inputs x;., weights Wi., a 

summation function in the left half of the neuron, and a non-linear activation function n 

the right half. The summation of the weighted inputs designated I is given as follows: 

I = x,W, +x2W2  .............+x„Wn  =1 x;W,. 	.................. (5.1) 

We have used a typical sigmoid function as the non-linear activation function, give by 

1  af  = 	i 
(l+e-  ) 

This sigmoid function is a logistic function, which monotonically increases from a 

lower limit (0 or -1) to an upper limit (+1) as I increase; the values vary between 0 and 1, 

with a value of 0.5 when I is zero. An examination of Fig.5.5 shows that the derivative 

(slope) of the curve asymptotically approaches zero as the input I approaches ± oo , and it 

reaches a maximum value of a/4 when 1=0, as shown in Fig.5.6. Since this derivative 

function will be utilized in backpropagation, let us reduce it to its most simple form. If we 

take the derivative of eqn.5.2, we get 

a(D(I)  _ (-1)(1 + e-af )-2 a-' (—a) 
al 

=ae-a`(1+e-ar )-2  = ae-"'q)?(I) 	................ (5.3) 
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Get input-output example data 
patterns from experimental or 

simulation results 

Select ANN topology with no. of 
layers,nodes,and activation 

function 

Initialize with random 
weights 

I Select an input-output 
Change number of 	 pattern 

neurons in hidden 
layer;or no. of layers 

Calculate output and 
compute error 

Is error 	 Change weights by 
acceptable? 	 training algorithm 

Y 
Train network with other 

patterns 

Is error 
acceptable? 

Test network 
performance 

Network is ready 
for use 

Fig. 5.4 Flowchart for backpropagation training of feedforward neural network 
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Fig. 5.5 The logistic activation function 

If we solve eqn.5.2 for e-"` , substitute it in eqn.5.3, and simplify, we get 

&I(I) _ 1— (D(I) z 	J 
al — a 	(I)  = {a[1—  cD(I)]c(I  )} = a(1 — t)c 	............. (5.4) 

where 'T'(I) has been simplified to ' by dropping (I). 

Fig. 5.6 First derivative of the logistic activation function 

Multilayer networks have greater representational power than single-layer 

networks only if non-linearities are introduced. The logistic function provides the 



necessary non-linearity. While applying the backpropagation algorithm, any non-linear 

function can be used if it is differentiable everywhere and monotonically increasing with 

I. Sigmoidal functions, including logistic, hyperbolic tangent, and arctangent functions, 

meet these requirements. The arctangent function, denoted as tan 1., has the form 

ci)(I) _ —tan-' (al) 	..................... (5.5) 
7r 

where the factor 2/II reduces the amplitude of the arctangent function so that it is 

restricted to the range -1 to +1. The constant a determines the rate at which the function 

changes between the limits -1 and +1; the slope of the function at the origin is 2a /I1. The 

a- value influences the shape the arctangent function in the same way that a influences 

the logistic function in Fig.5.5. The arctangent function has a sigmodial shape as shown 

in Fig.5.7. The derivative is 

___ 	a 
=—  ?I 	z I  z 	...................... (5.6) 

)c 1+a 

which would be used in place of eqn.5.4 if the arctangent function replaced the logistic 

activation function. 
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Fig.5.7 Arctangent activation function 
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The hyperbolic tangent function has the form 

~al= e 	e 
(I = tanh( 	) 	eal +e 	............:.. (5.7) 

and its shape is shown in Fig.5.8. Its derivative is 

&D(I) =asech2 (aI) 

The slope of I (I) at the origin is 4a; it determines the rate at which the function changes 

between the limits -1 and +1 in the same general way that a influences the shape of the 

logistic function in Fig.5.5. 

The use of a sigmoidal function provides a form of `automatic gain control'; that is, 

for small values of I near zero, the slope of the input-output curve is steep producing a 

high gain, since all sigmoid activation functions have derivatives with bell shapes of the 

type shown in Fig.5.6. As the magnitude of I become greater in a positive or negative 

direction, the gain decreases. Hence, large signals can be accommodated without 

saturation, as given in Fig.5.7. 

Fig.5.8 Hyperbolic tangent activation function 
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5.5. BACK PROPAGATION TRAINING FOR A MULTILAYER NEURAL. 

NETWORK 

Before discussing the details of the back propagation process, let us consider the 

benefits of the middle layer(s) in an artificial neural network. A network with only two 

layers (input ad output) can only represent the input with whatever representation already 

exists in the input data. Hence, if the data are discontinuous or non-linearly separable, the 

innate representation is inconsistent and the mapping cannot be learned. 

The network is composed of a hierarchy of processing units, organized in a series of 

two or more mutually exclusive sets of neurons or layers. This mainly consists of the 

input layer, the output layer, and a hidden layer between these two layers. Weights 

connect each unit in one layer only to those in the next higher layer. The output of the 

unit is scaled by the value of the connecting weight and is fed forward to provide a 

portion of the activation for the units in the next higher layer. 

V r  

i th layer j th layer k th layer 
index h index p index q 
1—m 1—n 1-r 

m nodes n nodes r nodes 
Fig.5.9 A Multilayer neural network showing the symbols and indices used in 

deriving the backpropagation training algorithm 

Let us consider the three-layer network shown in Fig.5.9, where all activation functions 

are logistic functions. It is important to note that backpropagation can be applied to an 
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artificial neural network with any number of hidden layers. The training objective is to 

adjust the weights so that the application of a set of inputs produces the desired outputs. 

To accomplish this, the network is usually trained with a large number of input-output 

pairs. 

The training procedure is the following. 

1. Generate small random values (both positive and negative) for the weights 

to ensure that.the network is not saturated by large values of weights. (If all 

weights start at equal values, and the desired performance requires unequal 

weights, the network will not train at all). 

2. Choose a training pair from the training set. 

3. Apply the input vector to the network input. 

4. Calculate the network output. 

5. Calculate the error, i.e., the difference between the network output and the 

desired output. 

6. Adjust the weights of the network in a way that minimizes this error. 

7. Repeat steps (2)-(6) for each input-output pair in the training set until the error 

for the entire system is acceptably low. 

The training of an artificial neural network involves, two passes. In the forward 

pass, the input signals move forward from the network input to the output. In the 

backward pass, the calculated error signals propagate backward through the network, 

where they are used to adjust the weights. The calculation of the output is carried out, 

layer by layer, in the forward direction. The output of one layer is the input to the next 

layer as in feedback. In the reverse pass, the weights of the output neuron layer are 

adjusted first, since the target value of each output neuron is available to guide the 

adjustment of the associated weights, using the delta rule. Next, the weights of the middle 

layers are adjusted. The fact that the middle-layer neurons have no target values makes 

this process complex. Hence, the training is more complicated, because the error must be 

propagated back through the network, including the non-linear functions, layer by layer. 

The number of hidden units depends on the number of input units. Kolomogorov's 

theorem states that any function of n variables may be.represented by a superposition of a 

set of 2n+1 univariate functions to derive the upper bound for the required number of 



hidden units as one greater than twice the number of hidden units as one has inputs. 

When choosing the number of hidden units h, the following points must be kept in mind. 

■ The value of h should never be more than twice the number of input units. 
■ p patterns of I elements can be loaded into log2P. hidden units. Therefore, if 

good generalization is required, considerably fewer patterns should be used. 
■ It should be ensured that there are at least lie times as many training examples 

as there are weights in the network. 

■ Feature extraction requires fewer hidden units than inputs. 

■ Learning many examples of disjointed inputs requires more hidden units than 

inputs. 

■ The number of hidden units required for a classification task increases with 

the number of classes in the task. Large networks require longer training 

times. 

5.5.1 Calculation of weights for output-layer neurons 

Let us consider the details of the backpropagation learning process for the weights 

of the output layer. When neuron j is located in the output layer of the network, it is 

supplied with a desired response of its own. Fig. 5.10 suggests training of neurons leading 

to the output layer designated by the subscript k with neurons p and q, outputs (D.p j .(I) and 

I .(I), input weights Whp.j and Wpq,k,, and a target value T. Henceforth, the notation (I) 

in Dq.kj.(I) will be dropped for convenience. 
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Fig.5.10 Representation of neurons for the calculation of the output-layer neuron's 

weight 

The output of the neuron in layer k is subtracted from its target value, shown in 

Fig.5.1 1, and squared to produce the square error signal, which fora layer-k neuron is 

E=E g 	g '-- 	q.k 	 .:........... (5.9) 
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Since only one output error is involved, hence 

£ 2 
2 =5q = [Tq _ ~ q k ] 2 	 .................. (5.10) 

T 

x 

X, 

A 

X„ 

Fig. 5.11 A neuron with the target and error 

According to the delta rule, the change in a weight is proportional to the rate of change of 

the squared error with respect to that weight. That is, 

asg z 

AWpq.k = —'7p.q 	
(5.11) 

W 	
.................... 

v  pq.k 

Where rl.p.q. is a constant of proportionality called the learning rate. To evaluate this partial 

derivative, we use the chain rule of differentiation: 

&q 2 C~(Dq.k al q.k 
a 	aa .................. 

C~Wpq.k 	v~q.k Ul
T 
q.k 'Wpq.k 	

(5.12) 
 

Each of these terms is evaluated in turn. The partial derivative of egn.5.10 with respect to 

II.q.k.(I) gives 
2 

as 
9 	—2[T — q.k I ...................... (5.13) 

We know that 

q.k =j
q.k Ll — 1t1q.k I alq.k 

....................... (5.14) 

Observe that Iq.k. is the sum of the weighted inputs from the middle layer. That is, 



Iq.k — 	WPq•k cI P•J 
	 ...................... (5.15) 

p=1 

Taking the partial derivative with respect to W.pq.k. gives 

arq.k _ —p~ 	........................(5.16) aW pq.k 
Since we are dealing with one weight, only one term of the summation of eqn.5.15 

survives. Substituting egns.(5.13)-(5.16) in eqn. 5.12 gives 
z 

o q 
= -2c4T - (D q.k ]~q.k [1-  q.k Nq.k aW pq.k 

— —8Pq.k (D p.j 	 ............. (5.17) 

Where 5pq k is defined as 

6 pgk = 2a[T -(Dq.kJIq.kLl-Dq.k 

13~ k 	 (5.18) 

	

9 	

q. = 2s 	 ...................  (~Iq.k 

Substituting eqn.5.17 in egn.5.11 gives 

as- 2 

	

AWpq•k 	'7p.q (~W 	77p•g8Pq•k(DP•1 — 	.......................(5.19) 
pq.k 

Wpq.k (N+1 ) =Wpq.k (N)+17PgSP4k(Dp j 	....................... (5.20) 

where N is the iteration number. An identical process is performed for each 

weight of the output layer to give the adjusted values of the weights. The error term B.pq,k. 

is used to adjust the weights of the output-layer neurons using egns.5.19 and 5.20. In eqn 

5.19, we have calculated the error that has to be propagated back through the network. 

This error exists because of the wrong outputs generated by the output-layer neurons. 

This is due to their own incorrect weights and the fact that the middle-layer neurons 

generate the wrong output. To overcome this situation, we back propagate the errors for 

each output-layer neuron, using the same interconnections and weights the middle layer 

used to transmit its outputs to the output layer. When a weight between a middle-layer 

neuron and an output-layer neuron is large and the output-layer neuron has a very large 
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error, the weight of the middle-layer neuron may be assigned a very large error, even if 

that neuron has a very small output and, thus, could not have contributed much to the 

output error. By applying the derivative of the squashing function, this error is 

moderated, and only small-to-moderate changes are made to. the middle-layer weights 

because of the bell-shaped curve of the derivative function. 

5.5.2 Calculation of weights of hidden-layer neurons 

When neuron j is located in the hidden layer of the network, there is no specified 

desired response for that neuron. The error signal for a hidden neuron has to be 

determined recursively in terms of the error signals of all the neurons to which the hidden 

neuron is directly connected. Since the hidden layers have no target vectors, the problem 

of adjusting the weights of the hidden layers has troubled researchers in this field for 

years until backpropagation was Out forth. Back propagation trains hidden layers by 

propagating the adjusted error back through the network, layer by layer, adjusting the 

weight of each layer as it goes. The equations for the hidden layer are the same as for the 

output-  layer, except that the error term S.hp  j. must be generated without a target vector. We 

must compute B.hp  j. for each middle-layer neuron that includes contributions from the 

errors in each neuron in the output layer to which it is connected. 

q=1 

X h - 

T 

Tq  

Tr  

-r 

i th layer 	 j th layer 	 k th layer 
index h 	index p 	 index q 
m nodes 	n nodes 	 r nodes 

Fig.5.12 Representation of a train of neurons for calculating the change of weight 
for a middle-(hidden) layer neuron in backpropagation 



Let us consider. a single neuron in the hidden layer just before the output layer, 

designated the subscript p. In the forward pass, this neuron propagates its output values to 

the q neurons in the . output layer through the interconnecting weights W.pq,k.. During 

training, these weights operate in reverse order, passing the value of S.pq,k. from the output 

layer back to the hidden layer. Each of these weights is multiplied by the value of the 

neuron which is connected to the output layer. Summing all such products the value of 
S.hp,j. needed for the hidden-layer neuron. 

The arrangement in Fig.5.12 shows the errors that are backpropagated to produce 

the change in W.hpj.. Since all error terms of the output layer are involved, the partial 

derivative involves a summation over all the r outputs. The procedure for calculating S.hp j. 

is substantially the same as that for calculating S.pq,k.. Let us start with the derivative of the 

squared error with respect to the weight for the middle layer that is to be adjusted. Then, 

in a manner analogous to egn.5.11, delta rule training gives 

a82 	r a~q 
OWhp.j = l h.p C~W 

	77b.p Ij aW 	 (5.21) 

hp•j 	9=1  hp.j 

where the total mean squared error s. is now defined as 
r 

e 2 — ~j 
E

q 

—>
j 
I
Ty
- 

~ q.k ] 2 
	:................. (5.22) 

9=1 

since several output errors may be involved. The learning rate rl.h,p is usually, but not 
necessarily, equal to rlp.p.. 

Again, we can evaluate the last term of eqn.5.21 using the chain rule of differentiation, 

which gives 

where 

7sz  
2 

(/sq 	9.k C~Iq.k 8t p, j 8In j 

3Whp.j — 	L9~9.k O q.k a(D p j. OI p.j aWhp.j 
....... (5.23) 

a£ 2 q =-2(T—  0q.k) =-2eq 
Oa(D q.k 

.............. (5.24) 

al9.k 
= ac q.k (1 - (D9.k ) 
	 ............... (5.25) 

and 

47 



n 

Iq.k = EWPq. 	p.) 	 ................ (5.26) 
P=1 

Taking the partial derivative of eqn.5.26 with respect to cb.p... gives 

(~Iq.k = Wpq.k 

a~ q.k 
................ (5.27) 

The summation over p disappears because only one connection is involved. Changing the 

subscripts in eqn.5.14 to correspond to the middle layer gives. 

ac pj 
Cp 	

= ate 	(1— ~ 	) 	 ................. (5.28) P•J 	P•J 1p; 

Changing the subscripts in egn.5.26. and substituting the ith. —layer input xh. for the j`h•

layer input (D.p.~ .gives 
m 

I p.; = I Whp.; xh 	 ................... (5.29) 

Taking the partial derivative of eqn.5.29 gives 

al-, 
ciW

hP•j 

= X h ................ (5.30) 

Again, the summation over h in eqn.5.29 disappears because only one connection is 

involved. Substituting eqns.(5.24)-(5.30) in eqn.5.23 gives 
0E2  r 

_ 	(-2)a(Tq — (D q.k )L~q.k (1 — (Dq.k )I WPq•k a[ctl p.1(1 — 	 )]X h 
a hP•j q=l 

_  Z8 a~PJX 
Pq•kYTS pq.k 	 h 

q=I 	 al p.j 

B.hp.j. can be defined as 

am p•; 
S11P j = SPq•kWPq•k al 

P•J 

eqn.5.32 becomes 

.................... (5.31) 

...................... (5.32) 

a&2  r 

—1 Shp. j X h 
aWhP•j 	q=1 

..................... (5.33) 



Since the change in weight given in eqn.5.21 is proportional to the negative of the rate of 

change of the squared error with respect to that weight, the substitution of eqns.5.32 and 

5.33 in eqn.5.21 gives 
a62  r 

AWhp.J — l h.p C~W = 1 h.P E 3pq•kW pq•k  
hp.j 	q=1 	 P•J 

r 

7h.P X h 	ShP•J ..................... (5.34) 
q=1 

and hence 
r 

WhP J (N + 1) = Whp.; (N) + )lh.P X h L, Bhp j 	................... (5.35) 
q=l 

If there is more than one middle layer of neurons, this process moves through the 

network,. layer by layer, to the input layer, adjusting the weights as it goes. When 

finished, a new training input is applied and the whole process starts again. It continues 

until an acceptable error is obtained. At that point the network is said to be trained. 

5.6. TRAINING ALGORITHMS 

There are two different ways in which this gradient descent algorithm can be 

implemented: incremental training and batch training. 

5.6.1 Incremental training. 

In the incremental mode, the gradient is computed and the weights are updated after 

each input is applied to the network. Incremental training is sometimes referred to as 

online or adaptive training. 

5.6.2 Batch training. 

In batch mode the weights and biases of the network are updated only after the 

entire training set has been applied to the network. The gradients calculated at each 

training example are added together to determine the change in the weights and biases. 

Neural network have been trained to perform complex functions in various fields of 

application including pattern recognition, identification, classification, speech, vision and 

control systems. 



Chapter —6 
SOFTWARE IMPLEMENTATION 

6.1 Introduction 
This chapter explains the design and operation of the speech recognition program. 

The program is divided into three main processes, namely the extraction, coding and the 

classification process. The scheme which is used for the speaker dependent isolated 

spoken Hindi word recognition is given below in Fig.6. 1. 

signal 

Preprocessing 

Feature Extraction 

Training 	 Testing 

Reference 

Template 
Pattern Matching 

Recognition results 
Fig.6.1 Block diagram of the scheme 

These speech samples are stored as *.mat files using the Matlab wavrecord 

function. In order to extract the features of voices, first the voice is isolated using word 

isolation algorithm this is necessary because the extraction of features is wholly 

dependent on the samples we are working on. Once the speech is isolated the weighted 

Mel-frequency cepstrum analysis is done for extracting features. These features act as 

training set for network. During the training phase network was trained finally, the 

trained network has been saved in database.. For each word in the vocabulary sixteen 

samples are taken from one single speaker. Thus, corresponding to 64 words there are 

1024 samples are recorded. Once the features are extracted th, ey can be used for matching 
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with the features of the other words, which are to be recognized. In the recognition phase 

word has been recorded and features are extracted and given as input to the network, the 

network output is the word to be recognized. How the above scheme is implemented in 

this dissertation is shown in the following paragraphs. 

The software for speaker dependent isolated word speech recognition was 

developed in Matlab 6.5. The software is menu driven. As the program runs the menu 

which appears is shown in Fig.6.2. 

Fig.6.2 Menu of the title page 

It consists of two buttons: start button, Testing quit button, if we click start button 

the next menu will appear It consists of two main modes: Training mode, Testing mode. 

Fig.6.3 Menu of the main program 
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6.2 Training mode: The data consists of those words which are in the vocabulary and 

these words are spoken 16 times to take into account the dynamic aspects of speech. It 

consists of three functions; one is for recording the speech signal and second one is for 

extracting the features from signal, third one is for training he network shown in Fig.6.4. 

Fig.6.4 Menu of training mode 

When the recording words button is pressed it invokes another menu as shown in Fig.6.5. 

A record button is used to record the word. The word should be spoken when a beep 

sound is heard from the microphone. Thus the numbers of words that are in the 

vocabulary are recorded by this means. 

Fig.6.5 Menu for recording the words 
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When the feature extraction button is pressed it goes into feature extraction process, when 

training network button is pressed, the network is trained as shown in Fig.6.6 and 

produces a message of wait for the user to wait till the training is over. 

Fig.6.6 Wait message while training- is going on 

6.3 Testing mode: Testing data is the data i.e. the words which are to be recognized for 

testing. Once the training is over the testing button can be invoked for recognizing words. 

Fig.6.7 Menu of Testing mode 

Fig.6.7 shows the Testing function menu. It has two buttons: first, record a new word for 

recognizing, the word should be present in the vocabulary, and if it is present in the 

vocabulary then it will display that word in the command window of the Matlab. Second, 

pick an already existing word from the vocabulary, so that it will display it. 
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Chapter —7 

RESULTS AND DISCUSSIONS 

7.1 Obtaining speech waveform 

The work that has been done is carried out on a Pentium IV PC 2.0 GHz with a 8-bit 

sound card. The software for speaker dependent isolated Hindi word recognition is 

developed using Matlab 6.5. All the digital signal processing [20] and implementation 

were carried using Matlab signal processing toolbox. A microphone and a sound card 

including. a PC are used for collecting these samples. These speech samples are 

approximately of 2 sec and stored as *.mat files using the Matlab wavrecord function. 

The wavrecord function is given as 

Y = wavrecord (n*fs, fs, `double'). 

where, n is the number of seconds 

fs is the sampling frequency 

and `double' is the number of bits per sample 

waveform of recorded speech are shown as below. 

The training set was obtained by recording utterances of a set of Hindi words. The 

recordings were done for a single male speaker. The recognition vocabulary consists of. 

64 Hindi words taken randomly from a Hindi dictionary. These 16 different words were 

spoken 16 times each. Thus, in total there are 1024 samples. The waveform of the word is 

shown below in Fig.7.1. 
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Fig.7.1 Wave form of word "Raja" 
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7.2 Pre-extraction process 

The speech wave filed is . loaded into the Matlab program by using a "wavrecord" 

function which limits the amplitude of the speech signal to a magnitude of 1. The signal 

is then saved as an M x I vector where M refers to the total number of samples in the 

speech signal. Each element in the M vector contains the amplitude of the speech signal 

at a particular sampling instant. 

7.2.1 Quality Process 

Before the actual extraction process takes place, the wave file is subjected to a 

series of processes to ensure the compatibility and quality of the signal. When the speech 

signal is being loaded into the Matlab program, the signal is not centered at the y = 0 axis. 

In order to bring the whole signal to centre on the zero-line, special program code was 

written. This code is used to find the mean of the signal and then subtract this mean from 

each of the sample values of the signal. This is shown in Fig.7.2 (a) and 7.2(b) below. 
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Fig.7.2 (a) Speech waveform before entering process 
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7.2(b) Speech waveform after entering process 

The next process is to suppress the noise present in the speech waveform. Although 

the sound recorder program has performed the initial filtering, some noise is still present 

in the speech waveform. Another section of the Matlab program code is used to set a 

threshold value on the speech signal. Any value of the speech signal that falls below this 

threshold value will be set to zero. This will greatly suppress the unwanted noise and in 

the meantime preserve the content of the main speech signal. This is illustrated in Fig. 

7.2(c) and Fig.7.2 (d) below. After some testing, it was found that a threshold value of 

0.02 is most suitable. 
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7.2(c) Speech waveform before filtering 
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Fig.7.2 (d) Speech waveform after filtering 

The final compatibility and quality process is to determine the area of interest of the 

speech signal. This is done by detecting the first rise point and the final drop point of the 

speech waveform. This can be done easily since the speech signal is cleared of unwanted 

noise. Hence area of interest of the speech lies between the first rise and final drop point 

of the speech waveform. This area of interest is later used for the extraction_ and coding 

processes. 

In order to extract the features of voices, first the voice is isolated using word 

isolation algorithm this is necessary because the extraction of features is wholly 

dependent on the samples we are working on. 

7.2.2 Endpoint detection 
An important problem in speech processing is to detect the presence of speech in a 

background of noise. This problem is often referred to as the endpoint location problem 

[11]. The accurate detection of a word's start and end points means that subsequent 

processing of the data can be kept to a minimum. In many cases the accuracy of 

alignment depends on the accuracy of the endpoint detections. In order to perform well, 

the algorithm must take a number of special situations into account such as: 

• Words which begin or end with low-energy phonemes (weak fricatives). 

• Words which end with an unvoiced plosive. 

• Words which end with a nasal. 

57 



• Speakers ending words with a trailing off in intensity or a short breath 
(noise). 
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Fig.7.2 (e) Wave form after end point detection 

7.3 Blocking and windowing 
To extract the short-time features of a speech signal, the speech signal should be 

blocked into short segments called frame. The duration of each frame varies from 10 to 

30 ms. Hence, the speech data was processed in 23.2 msec (corresponding to 256 points 

for a sampling frequency of 8000) frames. The speech belonging to each frame is 

assumed to be stationary. To reduce the edge effect of each segment, a smoothing 

window (e.g. Hamming window) is applied to each frame. A Hamming window is used 

because the side lobes of this window are much lower than the rectangular window (i.e. 

the leakage effect is decreased) although resolution is appreciably reduced. To obtain a 

more smooth feature set over time the successive frames are overlapped over each other 

by 11.6msec (i.e. 156 points). The waveform of a single frame is shown in Fig.7.4. 
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Fig.7.2 (f) The waveform of a single frame 

Fig.7.2 Waveforms of word "Raja" 

7.4 Feature extraction process 
After blocking and windowing the speech features are extracted from them. The 

approach used here is Mel-frequency cepstral analysis. 

The following steps compute the Mel-frequency cepstral coefficients: 

1) Window the speech frame, using a Hamming (or other) window. 

2) Do zero padding to achieve a frame length suitable for an FFT. 

3) Do the FFT. 

4) Find the Power Spectrum. 

5) From this data, the mel scale was constructed. 

The mel scale is approximately linear below 1 kHz and logarithmic above. This is 

approximated using the following formula. 

Mel(f) =1127 log 1 +  f  
700 

5) Take the Log of the Power Spectrum. (This is the cepstrum.) 

6) Inverse FFT. (The results are the cepstral coefficients.) 

In practice the last step of taking inverse DFT is replaced by taking discrete cosine 

transform (DCT) for computational efficiency. Finally, the mel-weighted - cepstral 
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coefficients are calculated from the log filter bank amplitudes, denoted m j, using the 

Discrete Cosine Transform 

Z N  	 - 
Cl  = -I 	 N  	Z =1.• number of cepstral 1V ;-1  

coefficients 

where N is the number of filter bank channels 

After finding out the starting and end point of the words there corresponding waveform is 

shown in Fig.7.2 (e). These isolated words are then used for generating feature. vectors. 

The normalized feature vectors of this waveform are shown in the Table7. 1. 

Table 7.1: Feature vector of word "Raja" 

Columns I through 8 

-0.7561 -0.2932 -0.2456 0.0626 0.114 0.2014 0.2922 0.3416 
0.1645 0.0922 0.0739 -0.0386 -0.1167 -0.1292 -0.2204 -0.2627 
0.0241 -0.0568 -0.1004 -0.1842 -0.2873 -0.276 -0.266 -0.2898 

-0.0052 -0.0131 -0.0706 -0.0042 0.06 0.1348 0.1445 0.089 
0.0387. 0.0178. 0.0004 0.0047 -0.029 -0.0181 -0.0056 -0.0364 
0.0891 0.0559 0.0405 0.0395 0.0261 -0.0012 -0.0328 -0.0566 
0.0198 0.0055 0.0491 -0.0207 -0.0747 -0.074 -0.0727 -0.0667 

-0.0882 -0.1259 -0.1427 -0.1039 -0.0572 -0.0164 -0.0125 0.0144 
0.0222 0.0439 0.0578 0.0674 0.0542 0.0679 0.0554 0.0591 

-0.0304 0.0049 -0.0042 0.0397 0.0328 -0.0092 -0.0385 -0.0691 
0.0059 0.0245 -0.0145 -0.0355 -0.057 -0.05 -0.0088 0.0214 
0.0324 0.0241 0.0085 -0.0009 0.0139 0.0385 0.0482 0.0355 
0.0167 -0.0272 -0.019 -0.025 -0.0044 -0.045 -0.0408 -0.0308 
0.0619 0.0629 0.0355 0.0357 0.0447 0.0115 -0.0085 0.0138 
0.0244 0.0136 0.0359 -0.0161 0.0338 0.0436 0.0619 0.0563 
0.0215 0.0105 0.0291 0.009 0.0466 0.0046 -0.0021 0.0163 
-0.015 -0.0055 0.041 0.0622 0.1056 0.0726 0.0915 0.1068 
0.0174 0.0412 0.0745 0.058 '0.0842 0.0577 0.0758 0.0872 
0.0123 0.0354 0.0558 0.0594 0.119 0.0983 0.0716 0.0672 
0.0105 0.0339 0.0615 0.0532 0.0946 0.0684 0.0879 0.1111 

-0.0325 0.0163 0.0479 0.0544 0.0622 0.0281 0.0155 0.0333 
-0.0079 0.025 0.0462 -0.0046 -0.0028 -0.0178 -0.0186 -0.017 
0.0104 0.0208 0.0307 0.003 0.0082 -0.0338 -0.036 -0.0239 
0.0002 -0.0015 0.0072 ' 	0.0143 0.0068 0 0.01 0.0025 
0.0052 0.0049 .-0.0197 0.0018 0.0039 0.0175 0.0401 0.0272 
0.0112 0.014 -0.0362 -0.0371 -0.0083 -0.0035 0.0174 0.0306 

Columns 9 through 16 



-0.0376 -0.0139 -0.0993 -0.2626 -0.729 -0.9208 -1 -0.8842 
-0.156 -0.1417 -0.1107 0.0299 0.1022 0.1283 0.1615 0.0667 

-0.2431 -0.2151 -0.1816 -0.1217 -0.0743 -0.0714 -0.0432 0.0138 
0.064 0.0227 -0.0248 -0.1206 -0.0277 0.0596 0.0683 -0.0004 

0.0659 0.0799 0.0903 -0.0015 0.0147 0.0691 0.0873 0.0245 
-0.0516 0.0049 0.11 0.1413 0.0809 0.0505 0.0308 0.0725 
-0.0119 0.0094 -0.0388 -0.0291 0.013 0.0038 -0.0076 0.0363 
-0.0187 -0.0588 -0.0802 -0.021 0.0065 -0.0053 0.0118 0.0635 

0.128 0.1315 0.0957 0.0525 0.0828 0.1085 0.1087 0.0829 
-0:0135 ' 0.0038 -0.0065 -0.019 -0.0002 0.0107 0.0454 0.021 
-0.0302 -0.0084 -0.0007 0.034 0.0271 0.0474 0.0614 0.0366 
0.0499 0.0129 0.0276 0.0299 0.0643 .0.0614 0.0133 0.0161 

-0.0028 .-0.0023 0.0098 0.004 0.0477 0.0116 0.0244 0.0151 
0.0212 0.0243 0.0401 0.04 0.0104 -0.0241 0.0182 0.0138 
0.0273 -0.0244 -0.0037 0.0253 -0.0036 -0.014 -0.0097 0.0262 
0.0329 0.0485 0.0658 0.057 0072 0.0781 0.0353 0.0411 
0.0494 0.0736 0.0665 0.0711 0.068 0.0864 0.0608 0.0706 
0.0854 0.0406 0.0369 0.0569 0.0357 0.0515 0.0408 0.0489 

0.071 0.0445 0.0684 0.0387 0.0321 0.0617 0.0654 0.0732 
*0.0738 0.0501 0.0596 0.0456 0.0692 0.0623 0.0313 0.0555 
0.0373 0.0219 0.0135 0.0262 0.0525 0.0282 0.036 0.0334 
0.0158 -0.0161 -0.0137 0.0186 0.0151 0.0126 -0.0029 -0.0216 

0.008 -0.0099 -0.0133 0.0052 0.011 -0.0073 -0.0211 -0.0353 
-0.009 0.0125 0.0188 -0.0179 -0.0214 -0.0394 0.0.154 0.0105 

-0.0082 -0.0187 0.0008 -0.0068 0.0066 0.0066 -0.0059 -0.0034 
-0.01.19 -0.0289 0.0168 0.0345 . -0.0024 0.0124 -0.0135 -0.0008 

Columns 9 through 16 

-0.5996 -0.2437 -0.0329 0.0211 0.0763 0.008 -0.0261 -0.0496 
0.1028 0.0574 -0.022 -0.0581 -0.1206 -0.1804 -0.2003 -0.1843 
0.0387 -0.0346 -0.0759 -0.1341 -0.2168 -0.2385 -02637 -0.2634 

-0.1278 -0.1607 -0.1402 -0.0932 -0.0613 0.008 0.0427 0.0603 
-0.0381 -0.0211 -0.0019 .0.0127 0.03 0.1032 -0.1051 0.11 
0.0641 0.0869 0.1335 0.1226 0.0532 0.0458 0.0025 -0.0172 
0.0304 0.0384 0.0191 -0.0344 -0.0531 -0.0563 -0.0339 -0.016 
0.0897 0.071 -0.0161 -0.0186 -0.0525 -0.0564 -0.0367 -0.0765 
0.0324 -0.01 -0.0334 0.0201 0.0938 0.1303 0.1407 0.143 

-0.0234 -0.0293 -0.03 0.0005 -0.0196 -0.0429.  -0.0419 -0.0257 
0.0451 0.0467 0.0561 0.0678 0.0234 -0.0118 -0.0599 -0.0751 
0.0023 0.006 -0.0072 0.0024 0.0053 0.0217 - 0.0029 0.0289 
0.0648 0.0649 0.0258 0.0215 0.0168 0.0185 0.0254 0.0377 
0.0162• -0.0185 -0.0216 0.0514 0.0852 0.1176 0.1349 0.1054 
0.0133 0.0362 0.0468 0.0286 0.0433 0.0964 0.1254 0.1376 
0.0211 0.0641 0.0701 0.0452 0.0646 0.0926 0.1176 0.129 
0.0976 0.097 0.0642 0.0552 0.0448 0.07 0.0854 0.0715 
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0.0677 0.0415 0.0069 0.0399 0.061 0.0364 0.0292 0.0312 
0.051 -0.0238 -0.0801 0.0009 0.0308 0.0067 -0.0068 -0-.0091 

0.0008 -0.0122 -0.055 -0.032 -0.019 -0.0711 -0.0674 -0.0382 
0.0021 -0.0201 -0.0578 -0.0372 -0.0164 -0.0487 -0.0705 -0.0715 

-0.0238 , -0.0135 -0.0106 0.0046 0.0119 0.0074 -0.0086 0.008 
0:007 0.0143 0.0212 0.036 0.0395 0.0523 0.0818 0.0854 

0.0119 0.0247 00264 0.0306 0.0459 0.0947 0.1085 0.0809 
0.0107 0.005 -0.0066 -0.01 -0.0001 -0.0021 0.0026 0.0229 
0.0106 -0.0059 -0.0047 -0.0313 -0.0589 -0.051 -0.034 -0.0351 

Columns 25 through 30 

-0.0602 -0.1436 -0.2631 -0.4563 -0.6827 -0.7754 
-0.17 -0.1255 -0.075 -0.0238 0.0629 0.1716 

-0.3005 -0.2801 -0.2599 -0.2141 -0.1197 -0.079 
0.0975 0.1298 0.1249 0.0959 0.0888 0.0749 
0.096 0.07 0.0569 0.0447 0.0421 0.069 

-0.0672 -0.0848 -0.0831 -0.0565 -0.0169 -0.0209 
0.0588 0.0865 0.1011 0.0841 0.059 0.0445 

-0.0691 -0.0643 -0.0663 -0.0567 -0.0368 -0.0143 
0.1113 0.0687 0.0627 0.0376 0.0465 0.0475 

-0.0051 -0.005 0.011 0.0369 0.0224 -0.0159 
-0.0283 0.0021 0.025 0.0139 -0.0059 -0.0243 
0.0349 0.021 0.0199 0.0237 0.0537 0.0324 
0.051 0.052 0.0465 0.0522 0.0588 0.0282 

0.0946 0.094 0.0812 0.081 0.053 0.0418 
0.1114 0.1043 0.1088 0.1341 0.1108 0.047 
0.0837 0.0876 0.1026 0.1252 0.1374 0.063 
0.0591 0.0533 0.0553 0.0788 0.0748 0.0362 
0.0223 0.0421 0.049 0.0494 0.0139 0.037 

-0.0334 -0.0373 -0.0548 -0.0551 -0.0445 0.0546 
-0.0323 -0.0417 -0.0565 -0.0636 -0.0524 0.0302 
-0.0761 -0.032 -0.0171 -0.0165 -0.0224 0.0282 
-0.0095 -0.0056 -0.0028 0.0111 0.0089 0.007 
0.0573 0.0486 0.0405 0.059 0.0598 0.028 
0.0434 0.0533 0.0593 0.0677 0.053 0.0122 
0.0136 0.0082 -0.0074 -0.0083. -0.0179 -0.0145 

-0.0447 -0.041 -0.0346 -0.0319 -0.0256 -0.0079 

7.5 Classification using MFCC and neural network 

After extracting the features, these features act as templates. During the training 

phase templates of the words are given to the neural network as -input to train the 

network. The templates generated are through the scheme depicted above in Fig.6. 1. For 

each word in the vocabulary sixteen samples are taken and the number of frames in each 
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word depends upon the length of word. Thus, corresponding to single word there are 

seven hundred and eighty samples are extracted. 

The MFCC matrices are ideally matched to the processing requirements of Neural 

Networks for which the use of fixed sized training and interrogation vectors is typically 

essential [22]. In order to bring the matrix to fixed size, special program code was 

written. This code is used to set a threshold value on the no of samples of the speech 

signal. If the speech samples that falls below this threshold value will be set to add some-

samples to reach threshold this is known as up-sampling, or if the no of samples falls 

above this threshold will be set to subtract some samples, this is known as down-

sampling. Fig.7.4 shows an overview of the classification process using a MFCC S-

Matrix in a Neural Network. 
Input 

S-Ma 
Cell 

Cell  

Cell 

Fig.7.4 Multi-Layer perceptron 

7.5.1 Training phase 

During training phase, the words are recorded as wave files then loaded in to the 

Matlab program and goes through feature extraction process and then, features are 

converted to an S-Matrix (Reference Matrix) and stored in to the database. For each word 
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there are 16 speech samples are taken. Similarly the same process has been done for 64 

words. This process is necessary to increases the accuracy of recognition. 

After the S-matrix of each individual word is obtained, the elements in the matrix 

are then passed through the Neural Network to construct the weight and bias for each 

individual word. Finally the network was stored in database. The network is shown in 

Fig.7.4 and-the values weights are in table 7.2 and 7.3. 

Table:7.2 The weights of input hidden layer Whp=Columns 1 through 9 

1.4226 -10.18 9.4651 -3.6589 -8.406 3.8622 2.0387 16.671 -5.4754 
8.4432 9.6794 -2.2093 -5.1366 9.0023 -11.19 -1.6677 8.0495 -4.4972 

-9.1212 4.4324 -4.0314 -0.4966 13.86 12.817 8.6948 -7.913 -3.4661 
-1.5266 15.314 14.752 1.9454 1.6964 9.4697 -0.4735 -10.234 0.32061 
1.6925 -9.0035 -1.208 -0.978 -4.1805 3.802 -1.7772 4.1812 -2.0892 

-0.7778 1.7696 1.7073 -0.1198 3.5273 9.1109 4.3016 -3.7905 4.3379 
5.4275 5.0852 -3.5432 -3.9175 -7.8564 18.601 3.3316 9.5018 7.999 
6.3099 -22.268 -3.3512 -3.3069 -10.44 2.077 -2.7553 7.1467 7.8277 
5.3741 13.003 -2.7395 6.1174 9.8785 0.85807 -6.6719 -3.3742 8.3092 
5.7291 14.11 5.623 -18.954 13.67 7.3448 8.3289 -10.255 11.829 
2.0324 -8.3889 -2.548 4.6662 5.8542 -4.3796 7.6256 1.2391 -3.0104 
1.0015 7.5478 -1.8563 3.5202 5.1106 -6.1463 3.747 11.204 -6.0284 
3.1971 5.5402 0.9486 14.389 -6.308 -2.1413 -4.3302 16.791 -6.2528 
3.319 -7.5299 -4.3662 -4.0664 -11.039 -5.2492 1.9644 -3.954 6.2281 

2.0297 3.852 9.2181 -3.7768 -9.1067 -10.489 6.9685 -3.9018 3.0286 
-1.5156 4.85 -10.176 7.5239 5.0796 -0.4886 3.7938 -0.5992 -1.9832 
1.6492 -16.14 1.1182 5.5684 3.308 6.3621 14.965 4.9084 5.9783 
4.4993 -1.3762 -10.85 15.552 7.0078 1.7011 7.3741 7.8168 -6.9735 
2.1171 -1.9403 4.2247 -0.749 5.036 4.4284 3.0279 5.6917 2.4581 

-5.0666 2.9286 16.821 2.6557 11.623 6.7462 6.2418 -6.6886 8.7417 
1.7626 8.8148 -7.3073 -1.7654 -3.7 -2.4266 -4.0933 -9.0851 7.2346 
3.116 -3.4548 -5.6722 4.9301 7.0054 8.7751 -12.033 1.9183 5.0654 

3.4745 -11.129 -5.983 -2.2427 8.4575 -4.4192 -15.304 -7.4047' -3.0491 
3.3567 2.5705 -6.5813 -10.364 4.2512 -4.4442 -3.6009 7.2661 -2.1989 

-4.4338 5.2714 -10.5 7.4119 -3.4804 1.5058 -7.5342 -8.6945 3.04 
-5.6149 1.5765 6.9352 -5.1277 -15.852 11.776 -11.339 -9.5267 6.148 
-4.9991 1.1892 16.343 13.94 -8.6383 7.2817 -0.5103 3.3783 8.3684 
-4.8868 -7.3517 14.586 7.4963 -1.7585 5.2447 6.2771 2.5789 -1.8123 
-2.988 9.2875 4.7054 -1.2346 1.1473 1.6076 -3.3296 8.1075 -3.5438 

-4.3079 5.2685 -14.185 -8.6209 9.0562 3.4429 2.3202 5.3093 2.2586 



Columns 10 through 19 

4.2843 2.898 3.3862 -5.425 -1.4282 2.7785 -2.7484 -3.388 -4.8284 
14.509 4.1695 0.18437 0.56129 1.056 5.9237 1.8281 -2.1086 0.55084 

8.449 2.8216 -3.03 -3.1294 1.7482 -1.1849 0.98948 2.0605 -0.3961 
4.2625 - -0.1962 067436 -0.0238 5.0684 -0.7945 0.10835 -3.6549 8.6287 
4.4523 -3.0934 -3.566 -0.3357 8.2734 1.7766 1.5149 -10.498 5.3066 

-16.556 -3.797 -4.5579 -1.0088 -2.9007 6.6919 4.2366 -8.07 13.006 
-13.54 -0.2003 -3.968 -8.6766 -10.231 5.5577 6.0805 1.576 10.467 

-1.9076 -4.2271 -6.2033 -13.222 -13.292 3.2541 7.8152 -5.1712 7.0578 
7.2864 2.4375 -7.2919 -1.9805 -2.4561 -3.8235 1.9452 -12.62 3.2299 
11.195 -4.264 -4.7404 -3.167 -3.6191 0.86269 2.9042 -16.325 4.2961 
-4.345 1.2562 -7.1958 0.16974 1.7029 -1.492 1.5283 -6.5331 3.3345 
3.9356 9.3716 -6.7978 -1.698 7.623 -2.4949 2.2951 -5.3172 -5.7764 
5.9097 3.1093 -3.3932 -2.3631 -2.4159 -8.9882 3.4082 -10.551 -1.1789 

10.78 7.6115 -7.384 0.58734 -7.8081 -8.5315 1.1517 -8.0359 1.6416 
-0.639 -1.4485 -6.7499 -3.488 6.9749 -6.6533 2.3406 -2.3361 8.6737 

-5.5942 6.4403 -4.6084 -4.9012 3.1312 -5.2757 0.67955 9.8431 6.1156 
-10.053 7.2812 -4.136 -1.0664 -9.1545 -5.0305 0.65191 4.0867 3.9759 
-4.7351 2.7049 -3.9395 0.5658 -2.5297 -3.9538 5.3171 -2.3236 1.8495 
-1.6502 . -0.7518 -2.9642 -3.3848 1.6832 -5.9036 3.7541 0.40041 1.2256 
2.8685 -4.697 -0.4224 -2.5723 -0.2206 -1.6183 1.1668 8.7748 9.3765 
3.5003 -7.7509 2.0177 0.68895 0.2057 -1.0204 1.3217 8.1578 12.657 

-4.6961 -10.491 -1.7416 -0.2389 7.4505 -3.157 1.3403 9.4271 4.1858 
1.2058 -3.916 -1.2636 -0.2399 7.6521 -5.3506 1.5133 7.7551 14.525 

-6.4382 -8.6754 -0.9236. -3.7929 15.042 -3.5077 -3.0452 1.7676 2.8771 
-4.9181 -6.9876 0.19402 1.7984 8.7768 -3.7392 -3.4357 1.7324 -2.3692 
-3.9715 -7.9785 -3.1878 -0.5543 3.795 -4.4571 -2.4703 4.2852 -8.0093 
-3.8115 -11.304 -2.5078 2.4578 5.8057 -5.4683 -3.3518 1.8309 -12.024 
6.7457 -7.8578 -1.7076 5.5628 9.481 -0.9326 -3.2076 -1.0953 -7.7491 
3.0949 2.2654 -4.1952 5.1846 8.7066 -0.861 -3.3452 4.6737 3.8519 

-11.544 -2.2973. -0.9309 -0.4837 8.0785 0.46757 -4.0432 1.7158 6.5965 

Columns 20 through 19 

1.6365 -1.131 0.95218 -1.4901 -0.5844 0.85618 7.4173 
1.7636 1.2923 -2.6191 -3.228 4.3926 1.0593 8.9483 
1.8369 0.085185 -5.2711 -3.0347 6.0177 0.65688 3.763 

-2.0977 0.14586 -3.059 -1.2238 4.1612 0.37762 0.62584 
-0.5124 0.9595 2.7653 1.5435 -0.6253 0.23636 3.2775 
4.8504 4.71 -0.1317 -0.4092 1.261 1.3094 0.2803 
3.7319 6.4031 0.81543 0.53357 3.802 2.8623 1.8251 

0.22635 2.687 3.8721 2.157 5.713 2.573 -5.7396 
-1.4897 2.9339 7.5895 5.8807 5.2834 1.8677 -0.0407 
-2.7028 0.687 7.0072 3.9533 -0.52 2.4701 0.10096 
-4.4736 0.42817 - 	9.8717 2.4321 -1.3253 0.46035 1.915 
-1.8861 -3.5134 2.5109 -0.0674 -0.3114 1.3534 9.3563 
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0.34578 0.22365 6.2212 0.14612 -6.979 1.6068 5.8097 
-0.1404 -0.46953 3.6474 3.5714 -4.8454 2.45 8.2733 

-1.08 0.3652 1.7047 2.8233 -2.9715 1.9939 7.4173 
-0.2956 0.84346 -0.0446 2.0068 -1.7268 2.8866 4.5941 
-2.1298 1.0659 1.2568 -0.6611 -3.7913 1.4253 1.8139 
-1.9467 -1.1128 1.3531 -0.4339 -3.9757 -0.8175 3.2005 
-1.1043 -0.89402 1.5812 3.7911 -0.2027 0.5193 3.0453 
-1.3221 3.4257 -3.5949 4.4182 0.59613 -0.278 0.52548 
-1.8657 2.1811 0.70214 4.3112 -1.3426 -0.6878 1.045 
-0.6389 1.9278 -0.7993 7.7367 -0.9877 1.7034 -2.4885 
-1.3479 3.7417 -1.6852 •5.5255 0.42886 0.97252 -1.4757 
-0.7232 0.76607 -2.8013 3.9854 0.38476 -0.291 2.3663 

Table:7.3 The weights of output hidden layer Wpq= Columns 1 through 6 

3.5209 -7.1428 26.305 15.263 4.7571 -14.145 
-42.306 -10.36 -2.0748 -26.457 -2.6515 7.816 
8.4899 16.097 -14.044 21.864 -21.917 34.193 
11.643 -10.888 13.138 - 32.444 42.79 34.189 
24.855 -23.32 5.0913 -20.466 13.417 29:951 

-2.3158 9.5372 42.607 25.355 -30.143 -26.286 
-29.147 6.4883 -33.692 16.256 8.2189 2.8307 

23.12 23.612 -29.338 -25.417 11.87 -1.3095 
11.061 -19.962 24.731 -14.606 2.5366 10.15 
22.609 -35.718 -24.607 21.101 -17.802 -9.8699 
4.3905 26.561 21.636 -24.573 17.478 -12.807 
17.991 -12.061 14.329 -15.6 24.833 -4.0849 
14.131 -2.37 2.9005 7.7991 -11.773 -16.645 
5.6197 18.838 5.8294 2.9158 -1.8076 -11.173 
-13.65 33.786 4.5649 12.201 1.0307 10.751 
5.5279 6.1662 -2.1198 2.7799 -2.7174 -23.526 
-4.253 1.0515 -2.1606 -13.045 -6.461.4 1.5897 
12.737 -21.595 -19.607 -19.178 2.0731 -15.159 

-4.4401 -16.582 - 6.9463 9.1655 -39.281 12.204 
2.0852 -2.478 -7.6464 1.2094 6.7848 -7.4115 
6.5414 -6.7843 -4.7554 2.3912 11.51 0.94323 

-7.9592 -14.221 4.4906 -4.5619 9.8272 -10.128 
-2.7796 -5.4454 4.5053 3.8655 10.641 -13.014 
-13.218 4.7918 1.2072 8.6155 10.228 0.37052 
-7.9988 0.69064 -0.3798 2.6206 1.5841 4.8211 
2.6156 20.64 -8.2857 -3.0794 -13.686 -4.9576 



7.5.2 Testing phase 

During testing phase the word has been recorded as a wave file, and then loaded in 

to Matlab.  program and goes through feature extraction process. Features are converted to 

an S-Matrix and given as inputs to the network; the program will use the network which 

is in database for recognizing the words. 

6.5.2 Classification process 

Once test word has been recorded the speech into a wave file, the wave file is then 

loaded into the Matlab program and goes through feature extraction process. A targeted 

S-Matrix is generated and it goes through the Neural Network for classification. Inside 

the Neural Network, the targeted . S-Matrix is being compared against the reference S- 

Matrices in the database. An individual score is generated for each individual word in the 

database. The first decision applied is that the word with the highest score is deemed the 

word. This is followed by an. inspection on the highest score obtained. A second 

classification decision involves checking on whether the highest score exceeds a 

threshold. If the threshold is exceeded, then the test word is classified as the word 

corresponding to the highest score. 

Table.7.4 Vocabulary of Hindi words 

S.NO WORD NAME S:NO JVORD NAME S.NO WORD NAME. 
1 Krodh 41  Tavu 81 Kaksha 
2 Jnan 42 Shatru 82 Kathor 
3 Daan 43 Vahan 83 Kadam 
4 Satya 44 Haati 84 Kanya 
5 Daya 45 Shir 85 Ka at 
6 Buddhi 46 Chuha 86 Kamar 
7 Vidhya 47 Dus 87 Karma 
8 Ersha 48 Bees 88 . Kalian 
9 Raja 49 Assi 89 Kavita 

10 BhaltH 50 Rakhi 90 Kasam 
11 Shakti 51 Dava 91 Kagaz. 
12 Ram 52 Rassi 92 Kazal 
13 Ravi 53 Shidi 93 Kaatna 
14 Shashi 54 Chat 94 Koala 
15 Chand 55 Chata 95 Ganga 
16 Paani 56 Peti 96 Ghabir 
17 Hava 57 Khat 97 Ghatak 
18 Bhali 58 Haya 98 Chanchal 
19 Aam 59 Pashu 99 Chikna 
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20 Hosh 60 Gay 100 Ghatna 
21 Jeevan 61 Pax! 101 Jutha 
22 Jal 62 Vrux 102 Taaya 
23 Sthal 63 Baaz 103 Taarik 
24 Mabh 64 Naath 104 Tiranga 
25 Gendh 65 Ambar 105 Todna 
26 Balla 66 Anda 106 Dakal 
27 Aakhir 67 Anjam 107 Dada 
28 Akbar 68 Abtiay 108 Damad 
29 Aaph 69 Amal 109 Darji 
30 Ham 70 Amma 110 Dana 
31 Turn 71 Indr 111 Dixa 
32 Mitr 72 Ichha 112 Dulha 
33 Dost 73 Indhan 113 Doodh 
34-  Guru 74 Uday 114 Doosra 
35 Saathi 75 Udyan 115 Nambar 
36 Uva 76 Rugvedh 116 Naar 
37 Bhai 77 Rushu 117 Naya 
38 Papa 78 Ainak 11.8 Nasib 
39 Mama 79 Kan ha 119 Nisha 
40 Chacha 80 Kanjus 120 patha 

Table.7.5 Recognition results obtained for a vocabulary of 4 Hindi words 

S.NO 
WORD 
NAME 

ACCURACY 
IN 

I Krodh 100 
2 Jnan 100 
3 Daan 100 
4 Saty 100 

Table.7.6 Recognition results obtained for a vocabulary of 8 Hindi words 

S.NO 
WORD 
NAME 

ACCURACY IN 

I Krodh 100 
2 Jnan 100 
3 Daan' 100 
4 Saty 100 
5 Daya 100 
6 Buddhi 100 
7 Vidhya 100 
8 Ersha 100 



Table:7.7 Recognition results obtained for a vocabulary of 16 Hindi words 

S.NO 
WORD 
NAME 

ACCURACY IN 

1 Krodh 80 
2 Jnan 60 
3 Daan 60 
4 Satya 70 
5 Daya 70 
6 Buddhi 90 
7 Vidh a 90 
8 Ersha 90 
9 Raja 100 

10 Bhal.L i 80 
11 shakti 80 
12 Ram 70 
13 Ravi 70 
14 Shashi 60 
15 Chand 60 
16 Paani 80 

From the Tables 7.5, 7.6 and 7.7 it is seen that the recognition accuracy in case of 

reduced vocabulary is far more than the larger vocabulary. By recognition accuracy we 

mean how many times that word is recognized accurately out of the number of times it 

was spoken for recognition. It is due to the fact that the approach used is whole word. 

However, if phoneme-based approach is used the recognition accuracy will be much 

larger and the execution time is much smaller than the case which is discussed. However, 

other factors also influence the recognition rate like the effect of noise, effect of room 

acoustics, and appearance of similar words. 
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Chapter - 8 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

8.1 Conclusion 

An experimental speaker dependent isolated word recognition system for Hindi 

language was implemented. The choice of Hindi language, on its part, has not been 

arbitrary. A major part of the motivation for choosing Hindi as the language for 

recognition system comes from its local relevance. Whereas the English speaking 

community forms a very small percentage of India's population, Hindi being the national 

language of India is much more widely accepted. Hindi also offers several advantages as 

the language for speech recognition. It does not have a separate phoneme-set and a 

separate Alphabet. In other words, the alphabet itself is the phoneme-set. Besides, the 

Hindi Alphabet is very well categorized on the basis of similarities in articulation 

methods of its letters. This property of Hindi makes it free of homonyms, thus obviating 

the complexity of handling them in design of speech recognition systems. The advantages 

are even more in the case of phoneme-based recognizers, where a phonetic dictionary is 

not required for speech to text conversion. The results were found to be satisfactory. 

With the positive results collected, Speech recognition using Neural Network has 

proven to be excellent in classifying speech signals: Unlike traditional speech recognition 

techniques which involve complex Fourier transformations, the method used in coding 

the signal is simple and accurate. 

From the results, it is obvious that single syllable words are more reliable in terms 

of training. This is probably because humans' pronunciations of single syllable words are 

more consistent. There are still a few "False" acceptances and "False" rejections being 

detected. This may be considered a serious issue when it is applied in a high security 

room. The main reason behind these errors is due to the inconsistency . in the human 

speech. This dissertation has addressed the question of whether neural networks can serve 

as a useful foundation for a large vocabulary, speaker dependent speech recognition 

system. 

This work has been studied and analyzed for different techniques of speech 

recognition. The first part was started from the recognition background, which is based 
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on the digital signal theory and modeling of the speaker vocal tract. Then various 

techniques for reducing amount of test data or feature extraction is discussed. Further, we 

studied most popular speech recognition methods, which are commonly used in the 

speech recognition. Finally, the new approach developed for training the neural 

network's architecture proved to be simple and very efficient. It reduced considerably the 

amount of calculations needed for finding the correct set of parameters. If the traditional 

approach had been used instead, the amount of calculations would have been higher. 

8.2 Future scope 

In this dissertation work speaker dependent isolated word speech recognition of 

Hindi words is implemented. However using the phoneme-based approach instead of 

whole word approach can further increase the accuracy. The work can be further 

extended to any one of the directions: 

1. Phoneme-based approach to speaker dependent isolated word speech recognition 

can be implemented because the accuracy in this case will be far better than that 

in the whole word. 

2. From speaker dependent to speaker independent type of speech recognition. Such, 

that the user and it do not affect the recognition accuracy is able to recognize the 

words spoken by different speakers. 

3. From isolated word to continuous word speech recognition. So, that it will be able 

to recognize the continuous speech, such as lectures, debates, politician's speech 

etc., which find more applications in the commercial sector. 

4. Using variable input length neural networks can further increase the accuracy of 

recognition. 

5. The vocabulary size can be increased from small vocabulary system to large 

vocabulary. 
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