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ABSTRACT 

Multi-channel ECG Signal is recorded at. the Institute of Biomedical Engineering, University 

of Karlsruhe on healthy volunteers. The aim of this project is to find out the pattern of 

variation of the QRS complex with varied respiration and heart rates. 
The recorded ECG is first conditioned in order to remove noise and artifacts. A new 

method for baseline wander correction based on Discrete Wavelet Transform has been 

proposed. An algorithm using `Haar' wavelets has been devised to automate the Multi-

channel ECG delineation after filtering. The same was tested on MIT-Arrhythmia Database. 

The resulting sensitivity and positive predictivity was found to be highly satisfactory. 

Principal component analysis is carried out on the extracted QRS waves to discover 

the `basic patterns' and the `most important deviations from mean'. Finally, a covariance 

matrix is calculated both in the temporal and spatio-temporal domain to represent the 

dependence of QRS morphology on heart rate and respiration in different individuals. 
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CHAPTER 1 
INTRODUCTION 

In today's competitive world, mental stress and tension have become a part and parcel in the 

daily life . of modern people. As we are tending more and more towards the urban 

civilisation, we are losing touch With the nature. It is a. common fact known to all that our 

ancestors lived a much better life-although they were less privileged by science. The so-

called `fast life_'style' feads to the development of blood pressure and several heart diseases. 

Cardiac arrest is supposed to be'the main .cause.of.mortality in developed countries. 

The,  analysis ' of ECG signal is extensively used as a diagnostic tool to provide 

information' on the heart function. Multi-channel electrocardiography is carried out on 

healthy.volunteers at the Institute for Biomedical Engineering, University of Karlsruhe. The 

measuremeiit starts with the subject at rest. This is continued with measurements after 

physical exercise. Finally individual variations are investigated with statistical techniques 

for biosignal analysis. 
The QRS complex, representing the contractile activity of the ventricles, is the 

base of analysis. here. Therefore, the first concentration is on the automated delineation of 

ECG Signal to localize the QRS complex in different beats. Often this becomes difficult 

owing to the time varying morphology of the QRS and also the corruption due to noise and 

artefacts from various sources.. 
Filtering is an essential pre-processing stage before delineation. A new approach 

based ;on`. Discrete Wavelet Transform has been devised here to segregate the baseline 

wander and low-frequency disturbances from ECG. High-frequency noise and artefacts are 

eliminated by means of conventional Butterworth low pass or Savitzky-Golay filter. 

After proper conditioning, the ECG signal is subjected to delineation. A `Haar' 

wavelet based method is used in this regard. Final decision regarding the wave peaks and 

boundaries are made by analysing the first level details coefficients. Although this method is 

specifically suited for multi-channel signals, it wad found to work satisfactorily on records 

taken from MIT-Arrhythmia Database. The methodology is extended for P and T wave 

delineation as well. Thereafter, QRS complexes are extracted from all the signals belonging 
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:o a. particular multi-channel data set. The R peaks are further aligned by means of a cross- 

;orrelation based technique.. 
The second stage is to carry out 'Principal Component Analysis on these aligned 

SRS,  complexes. The reconstruction parameters are computed from the principal 

.omponeiits.. Thereafter, a •.covariance -matrix is calculated for each ECG dataset, which 

;hows"the -correlation between the reconstruction parameters and also their relation with 

..espira'tion and heart rate. 
The organisation of :chapters is done accordingly.'' The second chapter gives an 

Overall idea of the,  heart -function ; and generation of ECG' waveform:' The third chapter 

:ocuses on 'ECG > measurement, the. standard= 12-lead'. system' and the .32/64—channel 

icquision (taken at the Institute). ' Fourth chapter explains the basic mathematical concepts 

-elated to this '.work., It describes the wavelet transform; principal component analysis and 

;orrelation' technique. The fifth and sixth chapters are related to ECG signal conditioning 

mnd, delineation' respectively.: The QRS extraction and alignment techniques are covered in 

:he, seventh chapter. The eighth chapter is the final stage, including PCA and Covariance 

Vlatrix formation. The conclusions and future directions are proposed. in chapter nine. And 

fast but riot the least, the front panels of the Graphical User Interface Programs developed in 

Matlab 7 are giver' in the Appendices. 



CHAPTER 2 

PHYSIOLOGICAL BACKGROUND 

In this chapter, we shall - begin with the generation of bioelectric potentials. The heart 

anatomy,: cardiovascular system,. electrical conduction system of the heart and generation of 

ECG ,signal will be covered briefly. 

2.1. SOURCES OI+BIOELECTRIC POTENTIALS 

In.:carrying. out. their various functions, certain systems of the body generate their own 

monitoring-  ,signals-  whieh.:convey:useful information, about the functions they represent. 

These signals are the bioelectric potentials associated with nerve conduction, brain activity, 

heart beat, muscle activity, and so on. Bioelectric .potentials are actually voltages produced 

as a result of the electrochemical activity of certain special types of cells. Through the use of 

transducers capable of detecting electrical voltages, these natural monitoring signals can be 

measured. and results can be displayed in a meaningful way to aid the physician in his 

diagnosis 	and 	treatment 	of various - diseases. 	Electrocardiogram , (ECG), 

Electroencephalogram (EEG), Electromyogram (EMU), Electrooculogram (EOG) etc are 

examples of such types of signals, which represent the electrical activity of the heart, brain, 

muscles and eye-muscles respectively. 
Certain types of cells within the body, such as nerve and muscle cells, are encased 

in a semi-permeable membrane that permits some substances to pass through the membrane 

while. others' are kept out. Body fluids surrounding the cells are 'conductive solutions 

containing charged atoms or ions. The principal ions are sodium (Na+), potassium (K+) and 

Chloride (Cl-).- In their resting (unexcited) state, membranes of excitable cells readily permit 

the entry of K+ and Cl- ions, but effectively block the entry of Na+ ions. The permeability 

for K+ is 50-100 times that for Na+ under the resting state. Since the various ions seek a 

balance between the inside of the cell and the outside, both according to concentration and 

electric charge, the inability of sodium ions to -penetrate the membrane results in two 

conditions. First, the concentration of Na+ ions inside the cell becomes much lower than that 

in the intercellular fluid outside. Sodium ions carrying positive charge, therefore, will tend 
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to make the outside of the cell more positive than the inside. Secondly, in an attempt to 

balance the electric charge, additional K+' ions enter the cell, causing a higher concentration 

of potassium on the inside than on the outside. However, charge balance cannot be achieved 

because of the concentration imbalance of K+ ions. Equilibrium is reached with a potential 

- difference across the membrane, negative on the inside and positive on the outside. This 

• membrane potential is: called the resting potential of the cell and is maintained until some 

kind of disturbance upsets the equilibrium. This potential ranges from —60mV to —100mV in 

• different cells. A 'cell in the resting state is said to be polarized. 

When a .cell is excited by ionic current or an external stimulus, the membrane 

changes its characteristics and begins to allow some of the Na+ ions to enter. This 

movement of sodium ions into the cell 'constitutes an ionic current flow that, further reduces 

the barrier of the membrane to Na+ ions. The net result is an avalanche effect in which Na+ 

ions literally rush into the cell to try to reach'a balance with the ,ions outside. At the same 

time; potassium ions, which were in higher. concentration inside the. cell during the resting 

state, try to leave the cell but are unable to move as rapidly as the Na+ ions.' As a result, the 

cell acquires a slightly positive potential :on the inside due to the imbalance of K+ ions. This 

• is known as the action potential (AP), which is about +20rnV for most cells. An excited cell 

displaying an action potential is said to be depolarised. The process of changing from the 

resting state to the action potential is called depolarisation. 

After some milliseconds, the rush of sodium ions through the cell membrane stops. 

The membrane tends to revert back to its original, selectively permeable condition. K+ 'ions 

continuously. flow out of the cell leading to a repolarisation of the cell. Finally, by an active 

process called ̀ sodium pump', the Na+ ions are transported outside the cell, and.the cell is in. 

its original state again. 	. 
`Figure 2.1 shows a typical action potential waveform. The time scale depends on 

the type of cell. In the nerve and muscle cells, repolarisation occurs so rapidly following the 

depolarisation that the AP appears as a spike of as little as 1 ms duration. Heart muscles, on 

the other hand, repolarises much more slowly, resulting in the associated AP lasting from 

150 to 300 ms. 
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Figure 2..1: Waveform of the action potential [1] 

Regardless of the method of excitation or intensity of the stimulus (provided it is 

sufficient to activate the cell), the AP is always the same for a given cell. This is known as 

the all-or-none law. - The net height of the AP is defined as the difference between the 

potential of the depolarised membrane at the peak of the action potential and the resting 

potential. 

Following the generation of the AP, there is a brief period during which the cell 

cannot respond to any new stimulus. This is called the absolute refractory period (lasting 

about 1 ms in nerve cells). -After this, there occurs a relative refractory period, during which 

another action potential can be triggered, but a much -stronger stimulation is required. In 

nerve cells, this period lasts for several milliseconds. 

When a cell is excited and generates an AP; ionic currents begin to flow. This 

process can, in turn, excite neighbouring cells or adjacent areas of the same cell. Now let us 

see how the AP propagates, in .case of muscle fibre or an unmyelinated nerve fibre. The 

action potential propagates along the whole .length. of a fibre without decrease in amplitude 

by, progressive depolarisation of the' membrane. .Current flows 'from a depolarised region 

through the intra-cellular fluid to adjacent inactive regions, thereby depolarising them. 

Current also flows through the extra-cellular fluids, through the depolarised membrane, and 

back into the intra-cellular space, completing the local circuit. The energy to maintain 

conduction is supplied by the fibre itself. The rate at which an action potential moves down 

a fibre or is propagated from cell to cell is called the propagation rate. The typical range for 

this rate is between 20-140 m/s for nerves and'O.2-0.4 m/s for heart muscles. Special time- 
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delay fibres between the atria and ventricles (to be discussed in next section) of the heart 

cause AP to propagate at an even slower rate, 0.03-0.05 m/s. 

2.2. THE HEART ANATOMY & CARDIOVASCULAR SYSTEM 

The heart is located in the chest between the lungs behind the sternum and above the 

diaphragm. It is surrounded by a double-layered membrane called the pericardium. The 

external layer is composed of densefibrous tissue and the inner serous layer surrounds the 

heart directly. A coating layer of fluid separates the two layers of membrane, letting the 

heart move as it beats, still being attached to the body. 

The heart is basically a four chambered organ, upper chambers called the atria and 

lower chambers known as ventricles. The ventricles are much larger than the atria. A wall of 

muscle, called the septum separates the left , and right atria. and also the left and right 

ventricles. Following figure-shows the anatomy of heart. 

Figure 2.2: Heart Anatomy [2] 

From functional point of view, the heart may be considered as a two-staged pump. 

The right half carries blood with carbon dioxide or CO2 collected from different parts of the 

body, whereas the .left half carries oxygenated blood obtained from the lungs. The 
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circulatory path for blood flow through the lungs is known as the pulmonary circulation. 

The circulatory system that supplies oxygen and nutrients to the cells of the body is called 

the systemic circulation. The cardiovascular system, as a whole, may be thought of as a 

complex hydraulic system comprising innumerable pipes (the arteries and veins) and a four-

chambered pump (the heart). 
Blood enters the heart.on the right side through two main veins: the superior vena 

cava, which leads from the body's upper extremities, and the inferior vena cava leading 

from the body's organs and extremities below the heart. The incoming blood fills the storage 

chamber, the right atrium (RA). In addition to the two above-mentioned veins, the coronary y 

sinus also empties into RA. The coronary sinus contains the blood that has been circulating 

through the heart itself via the coronary loop. 	 0  

When-the. RA is full, it contracts and forces blood through the tricuspid valve into the 

right ventricle (RV). Tricuspid valve closes when the ventricular pressure exceeds the atrial 

pressure, thereby preventingany back flow of blood. Now RV contracts and the pressure in 

the ventricle forces the pulmonary valve to open, leading blood flow into the pulmonary 

artery. Pulmonary artery divides into two towards the two lungs. Thus, the blood from RV 

enters into pulmonary circulation. 
The pulmonary artery bifurcates many times into smaller and smaller arteries, which 

become arterioles with extremely small cross sections. These arterioles supply blood to the 

alveolar capillaries, in which the exchange of oxygen and carbon dioxide takes place. The 

alveoli are the final branchings of the respiratory tree and act as the primary gas exchange 

units of the lung. The gas-blood barrier between the alveolar space and the pulmonary 

capillaries is.extremely thin, allowing for,rapid gas exchange. The red blood cells (RBC) are 

recharged with oxygen and give up their `carbon dioxide. On the other. side of the lung mass 

is a similar construction in which the capillaries feed into tiny veins, or venules. The latter 

combine to form larger veins, which in turn combine until ultimately all the oxygenated 

blood is returned to the heart via the pulmonary vein. 

Figure 2.3 shows the schematic of cardiovascular circulation: 
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Figure 2.3: The Cardiovascular System [1] 

The blood enters the left atrium (LA) from the pulmonary vein. Following the 

contraction of LA, blood is pumped to the left ventricle (LV) through mitral or bicuspid 

valve. After that, the ventricular muscles contract. Pressure produced by this contraction 

automatically closes the -mitral valve and forces the aortic valve to open. The blood then 

rushes from the ventricle into the aorta. This action takes place synchronously with the RV 

as it pumps-  blood into the pulmonaryartery. ' . ; . 

After'- passing through many bif rcations of the arteries, the oxygenated blood 

reaches the vital organs, the_ ' brain and 'the extremities. A high pressure gradient exists 

between the arteries and veins in the systemic circulation. The left ventricle, therefore, does 

the most powerful pumping action in the heart. 

The blood supply to the heart itself is from the aorta through the coronary arteries 

into a similar capillary system to the cardiac veins. This blood returns to the heart chambers 

through coronary sinus, as mentioned beforehand. 
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The heart's pumping cycle is divided into two major parts: systole and diastole. 

Systole is defined as the period of contraction of the heart muscles, specifically the 

ventricular muscle, during which time the blood is pumped into pulmonary artery and aorta. 

Diastole is the period of relaxation or dilation of the heart cavities as they till with blood. 

Systolic (maximum) blood pressure in normal adult varies between 95 to 140 111171 1-1g. 

Normal diastolic blood pressure (lowest pressure between beats) ranges from 60 to 90 mm 

Hg. 

The heart beats at an average rate of about 75 beats per minute (bpm) and pumps 

about 5'lifres'of blood per minute. 'The heart rate increases when a person stands up and 

decreases when he sits down, the range being from about 60 to 85 bpm. On the average, it is 

slightly higher in women and decreases with age. In an infant, the heart rate may be as high 

as 140 bpni under normal conditions. The heart rate also increases with heat exposure and 

other physiological and psychological factors. 

2.3. ELECTRICAL CONDUCTION SYSTEM OF THE HEART & ECG 

Electrical activation takes place in the heart muscle cell, or myocyte by means of the same 

mechanism as described in 2.1. ,Associated with the electric activation of cardiac muscle cell 

is its mechanical contraction, which occurs a little later. 

Located in the, right atrium at the superior vena cava is the sinus node (sinoatrial or 

SA node). This is the origin of electrical impulses in the heart and hence referred to as the 

`natural pacemaker'. The SA nodal cells are self_ excitatory, pacemaker cells. They generate 

action potential at the rate of about 70 per minute. From the sinus node, activation 

propagates throughout the atria, but cannot. propagate directly across the boundary between 

atria and ventricles, because of the non-conducting barrier of fibrous tissue. 

The atrioventricular node (AV node) is located at the boundary between the atria 

and ventricles. It has. an intrinsic frequency of 50 pulses/mini. However, 'if the AV node is 

triggered with a higher pulse frequency, it follows this higher frequency. In a normal heart, 

the AV node provides the only conducting "path from the atria to ventricles. Thus, under 

normal conditions, the latter can be excited only by pulses that propagate through it. 
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Figure 2.4: Electrical Conduction System of the Heart [3] 

Propagation from the AV node to ventricles is provided by a specialized 

conduction system. Proximally, this system is composed of a common bundle, called the 

Bundle of His. More distally, it separates into two bundle branches propagating along each 

side of the septum, called the right and left bundle branches. Even more distally the bundles 

ramify into Purkinje fibres that diverge - to the inner sides of the ventricular walls. 

= Propagation along the conduction system takes place at a relatively high speed once it is 

within the ventricular region, but prior to this (through the AV node) the velocity is 

extremely slow. 
From the inner side of the ventricular wall, the many activation sites cause the 

formation of a wavefront, which propagates through the :ventricular mass towards the outer 

wall. This process results from cell-to-cell activation: After each ventricular muscle region 

has depolarized, repolarization occurs. 
Because the intrinsic rate of the sinus node is the greatest, it sets the activation 

frequency of the whole heart. If the connection from the atria to the AV node fails, the AV 

node adopts its intrinsic frequency. If the conduction system fails at the bundle of His, the 

ventricles will beat at the rate determined by their own region that has the highest intrinsic 

frequency. 
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Figure 2.5: Propagation of Electrical Impulse inside the Heart [3]

• The Electrocardiogram (ECG) is the electrical manifestation of the contractile 

activity of the heart, and can be recorded fairly easily with surface electrodes on the limbs or 

chest. The 'rhythrh of the heart in terms of beats per minute 'may be easily estimated by 

counting the readily identifiable waves. ECG waveshape is altered by cardiovascular 

diseases and abnormalities such as myocardial ischemia and infarction, ventricular 

hypertrophy and conduction problems [4]. Following"figure shows the ECG waves, peaks, 

segments and intervals more clearly. 
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Figure 2.6: One ECG Cycle representing one Heart Beat 



As we have already observed in figure 2.5, a cardiac cycle is 'reflected in a period of the 

repetitive ECG signal as the- series of waves labelled as P,QRS, and T. If we view the 

cardiac cycle as a series of events, we have the following epochs in an ECG waveform [4]: 

1. The P Wave: This wave is related to atrial depolarisation.' Contraction of the atria is 

triggered by SA node impulse. The atria do not possess any specialized conduction 

nerves as the ventricles do. Contraction of the atrial muscles takes place in a slow 

squeezing manner, with the excitation stimulus being propagated b the muscle cells 

themselves: Therefore, the P wave is a slow waveform, withduration of about 80 ms. 

The amplitude of P wave is in the range of 0.1-0.2 mV. 

2. The PQ Segment: The AV node provides a delay to facilitate completion of the 

atria] contraction and transfer of blood to the ventricles before ventricular contraction 

is initiated. This results. in an iso-electric PQ segment of about 80 ms duration. 

3. The QRS Wave:. This is the manifestation of ventricular depolarisation. The 

specialised system of PurkinJe fibres stimulate contraction of ventricular -muscles in a 

rapid sequence. The almost-simultaneous contraction of the entire ventricular 

musculature results in a sharp and tall QRS complex of about 1 mV amplitude and 

80-100 ms duration. While comparing the amplitude and duration of the P and QRS 

waves, the smaller size of the atria in 'comparison to the ventricles should be taken 

care of. 

4. The ST Segment: The normally flat iso-electric ST segment is related to the plateau 

in the action potential of the left ventricular muscle cells (referring to figure 2.1). Its 

duration is about 100-120 ms. 

5. The T Wave: It is commonly referred-. to as the wave corresponding to ventricular 

repolarisation. It relates to the last phase of action potential of the ventricular muscle 

cells, when the potential returns from the 'plateau of the depolarised state to the 

resting potential through the process of repolarisation. The normal amplitude and 

duration of the T wave are 0.1-0.3 inV and 120160 ms. This is also a slow wave. 

Unlike ventricular repolarisation, atrial repolarisation does not produce any distinct 

waveform in the ECG as it is overshadowed'by the following QRS complex. 
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CHAPTER 3 

ECG MEASUREMENT 

This chapter will give an overview of the surface electrodes used in ECG measurement and 

the lead systems. 

3.1. BASICS 
As the human body forms a volume conductor, the bioelectric phenomena occurring inside 

the conductor generate , a signal measurable at the skin surface. The action potential 

propagation in the heart muscle is counted among these types of phenomena. The resulting 

ECG, therefore, can be measured with the help of non-invasive surface electrodes placed on 

the thorax or limbs. 	I 
The intervening space between the patient's skin and the electrode is filled with a 

coating of adhesive gel, which provides a conducting path. The most-used material for 

electrodes these days is silver-silver chloride (Ag-AgCI) since it approximates a 

nonpolarizable electrode. Following figure shows such an electrode. Its advantage over 

other types is a very small offset potential. 

flaubl©►ayer 

Figure 3.1: Ag-AgCl Electrode [5] . 

The instrument used to obtain and record the electrocardiogram is called an 

electrocardiograph. The electrocardiograph was the first electrical device to find widespread 

use in medical diagnostics, and it still remains the most important tool for the diagnosis of 
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cardiac disorders. Figure 3.2 shows the elementary building block of a typical 

electrocardiograph. However, the components may vary in different systems. 
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Figure 3.2: Electrocardiograph Building Blocks [1] 

The electrode positions can be seen on the body of a human being on the left side of 

the figure 3.2. The placement of electrodes on the body is referred to as the . ECG lead 

system. Here, first the standard 12-lead ECG will be discussed and then the multi-lead or 

multi-channel ECG, which is being recorded in the Institute. 

3.2. STANDARD 12-LEAD SYSTEM 

In clinical . practice, the standard 12-channel ECG is obtained using four limb electrodes and 

six chest electrodes. The variations in electrical. potentials in 12 different directions out of 

the ten electrodes are measured. These 12 different electrical views of the activity in the 

heart are normally referred to as leads. 
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Potentials VL, VR and VF are recorded from left arm, right arm and left foot 

respectively. The right foot is used to place the reference electrode. We get the three lead 

voltages I, II and III from VL, VR and VF as follows: 
I ~VL- jVR 

II = VF - VR ....................................................(3.1 )   

111=VF —VL 

VR VL 

VF 

Figure 3.3: Derivation of the Three Main Leads [5] 

According to Kirchoff s law, 
II~ I -f] III .................................................(3.2) 

The hypothetical equilateral triangle fonned by leads I, II and III (as in Figure 3.3) 

is known as Einthoven's triangle. The centre of the triangle represents Wilson's Central 

Terminal (WCT). Schematically, the heart is assumed to be placed at the centre of this 

triangle. 

The potential at WCT ( V,,,CT ) is given as: 

V. 	— VL -VR 4VF .........................................(3.3) 
3 

This is taken as the reference for chest leads. 

There are three other limb leads known as augmented limb leads. These are marked 

as aVR, aVL and aVF (aV for the augmented lead, R for the right arm, L for the left arm, 

and F for the left foot). These leads are obtained by using the exploring electrode on the 

limb indicated by the lead name, with the reference being Wilson's central terminal without 

the exploring limb lead as shown in the following figure. 
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Figure 3.4: Measurement of the Augmented Limb Lead aVL [1] 

We can express the aiigiented1èads in terns of leads I, II and-111 as follows: 

a VL = '—III 
2 

aVR= 	.................................................(3.4) 
2 

11+111 a VF= 
2 

Following figures illustrate the vector relationships among the limb leads. 
Head 

 

Head 
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Figure 3.5: aVL Derived from! & III [5] 	 Figure 3.6: Vector Relationships [5] 

We now combine all the limb leads in terms of Einthoven's triangle and WCT as in figure 

3.7. 
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Figure 3.7: Binthoven's Triangle[4] 

For measuring the potentials close to the heart, Wilson introduced the precordial 

leads (chest leads.) in 1944. These leads, Vi -V6  are placed over the left chest as described in 

figure 3.8. The points Vi and V2 are located at the fourth intercostal space just to the right 

and left of the sternum, respectively. V4 is located in the fifth intercostal space at the 

midclavicular line. The location of V3 is half-way between V2 and V4. V5 and V6 leads are 

at the same horizontal level as V4, but on the anterior axillary line and the inidaxillary line, 

respectively. 

Figure 3,8: Placement of Six Precordial Electrodes [3] 

In the above figure, the leads V4R and V3R are not used in 12-lead. ECG system. 
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Figure 3.9 summarizes the electrode positions (both limb and chest) for the 12-lead system. 
Bipolar limb leads 

Lead I 	 Lead Ii 	 Lead Ill 

. _, 	 IL  

Figure 3.9: Configuration of the 12 Leads[1] 
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3.3, MULTICHANNEL ECG AND ITS UTILITY 

Multichannel ECG is taken so as to get a volume information about the electrical activity of 

the .heart, instead of a 2-D information taken using the famous 12-lead system. Another aim 

of multichannel electrocardiography is to get the Body Surface Potential Map (BSPM). 

BSPM is a temporal sequence of potential distributions observed on the thorax 

throughout one or more electrical cardiac cycles. In practice, tens or hundreds of unipolar 

ECGs are recorded" either simultaneously or individually with subsequent time-alignment. 

For each time instant of interest, the potential measured in each lead is associated with the 

spatial location at which it was measured. The spatial distribution of the set of potentials at a 

particular instant in the cardiac cycle may then be displayed as .isopotential contour maps 

showing lines which connect all sites which have the same potential. BSPM may give 

additional diagnostic information for all types of heart diseases. 

64 and 32 Channel ECG records are = taken at the Institute of 'Biomedical 

Engineering, University of Karlsruhe using two different acquisition systems. 

Following diagram 3.10. shows the electrode positions for 32-channel ECG 

acquisition. 

Anterior 
	

m 

R  ~. 

Anterior median Tins 

Figure 3.10: Electrode Positions for 32-Channel Recording [6] 

Re 



Table 3.1 gives the description of electrode positions corresponding to Figure 3.10. 

'Electrode Name -Position 
1 ̀ RA A point in the right interclavicular fossa; medial to the border of 

the deltoid muscle and 2 cm below the lower border of the 
clavicle 

2 LA A point in the left interclavicular fossa, medial to the border of 
the deltoid muscle and '2 cm below the lower border of the 
clavicle 

3 LL Halfwaybetween the costal margin and the Iliac crest. 
4 VI Right sternal margin, fourth intercostal space 
5 V2 Left sternal margin, fourth intercostal space 
6 V4 . Left midclavicular line, fifth intercostal space 
7 V3 -Midway between V2-V4 
8 V6 : 	. Left midaxillary line V4-V5 level 
9 . V5 Left anterior axiliàry line,. V4 level 
10 V7 Left posterior axilla 	line V4-V5 level 
11 V8 Left midsca ular line V4-V5 level 
12 V2 1 H Left sternal margin; third intercostal space 
13 V4 1 H . Left midclavicular line, fourth intercostal space 
1.4 V3 1H Midway between V2 1H-V4 1H 
15 V6 1H _ . Left midaxillaiy line V4 1 H-V5 1H level 
16 V5 1 H Left anterior axillary line, V4 1 H level 
17 V7 1 H Left posterior axillary line V4 '1H-V5 1 H level 
18 V8 1.H Left midsca ular line V4 1H-V5 1H level 
1.9 V2 2H Left sternal mar in,:second intercostal space 
20 V4. 2H Left midclavicular line, third intercostal space 
21 V3 2H.'. .Midway between V2 2H-V4 2H 
22 V6 2H' Left midaxillary line V4.2H-V5 '2H level. 
23 V5 2H Left anterior axillary line, V4 2H level 
24 V7 2H Left posterioi axillaiy line V4 2H-V5 2H level 
25 V8 2H Left midsea p  ular line V4 2H-V5 2H level 
26 V2 3H Left sternal margin, first intercostal space 
27 V4 3H Left midclavicular line, second intercostal space 
28, V3 3H Midway between V2 3H-V4 3H 
29 V6 3H Left midaxillary line V4 3H-V5 3H level 
:30.. .V5 3H . Left anterior.axihlary line, V4 3H level 
31 V3 R Right sternal margin, fourth intercostal space 
32 V2 R Right midclavicular line, fifth intercostal space 
33 RL(ref In the region of the right Iliac fossa* 

* As recommended by the American uoluege or Lararology 

Table 3.1 : Description of Electrode Positions [6] 

The limb electrodes of 12-lead 'system are moved onto the thorax for multi-channel 

ECG acquisition, as per the recommendation of Mason and Likar [7]. 
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Figure 3.11: 32-Channel ECG Record taken at the Institute [6] 

Figure 3.12 shows the self-explanatory electrode positions for 64-channel ECG acquisition. 
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Figure 3.12: Electrode Positions for 64-Channel Recording [6] 
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CHAPTER 4 

BACKGROUND MATHEMATICS 

This chapter forms the backbone of my work. The important mathematical concepts used 

throughout the rest of the thesis will be described here. We shall start with Wavelet 

Transform, which is used for ECG delineation and filtering as well. Next we will move on to 

Principal Component Analysis, which finds application in Chapter 8. Correlation techniques, 

which are applicable for any biomedical signal analysis, will also be covered at the end. 

23 



4.1. WAVELET TRANSFORM 

.4.1.1. DEVELOPMENT OF WAVELET THEORY: HISTORICAL 13ACKGROUND 

Mathematical transformations are applied to a signal to obtain further information, which is 

not readily.available in its original time-domain form. 

Fourier Transform (FT) is the oldest of all transforms used in signal processing. 

Historically, Joseph Fourier (1770-1830). first introduced the remarkable idea of expansion 

of a function in terms of a trigonometric series. FT decomposes a signal into complex 

exponential functions of different frequencies. For a dontinuous signal x(t), FT is defined as 

follows: 
co 

X(f) _ f x~t).e i2~rfr dt ...............................................(4.1) 

The analysis coefficients (or the spectra) X(f) are computed as inner products of 

the signal with sinusoidal basis functions of infinite duration. The trigonometric kernel exp(-

j27tft) , used here, oscillates indefinitely, and hence, the localized information contained in 

the signal x(t) gets lost [8]. While the spectrum X(f) shows the overall strength with which 

any frequency f is contained in the signal x(t), it does not generally provide easy-to-interpret 

information about the time-localization of spectral components [9]. The analysis coefficients 

X(f) define the notion of global frequency 'f' 	a signal [10]. 

However, time domain and frequency domain constitute two alternative ways of 

looking at a signal. Although FT allows a passage- from one domain to the other, it does not 

allow a combination of the two. This method enables us to investigate problems either in the 

time domain or in the frequency domain, but not simultaneously in both. Fourier transform 

theory has been very useful for analysing harmonic signals, or signals for which there is no 

need for local information [8][9]. 

Fourier analysis is therefore an effective tool for studying stationary signals (with 

time-independent frequency content). However, many of the practically encountered signals 

(like the ECG as we shall see in the next section) are non-stationary. A complete analysis of 

non-stationary signals requires a joint time-frequency representation. 

The basic idea of time frequency representations of signals is to map a one-

dimensional signal of time, x(t), into a two-dimensional function of time and frequency, 

T,(t,f). Thus, they combine time-domain and frequency-domain analyses to yield a 
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potentially more revealing picture of the temporal localization of a signal's spectral 

components [9]. 
In order to incorporate both time and frequency localization properties in FT, 

Dennis Gabor in 1946 first introduced the windowed Fourier Transform or Short Time 

Fourier Transform. His major idea was to use a time-localization window function g(t-ti) for 

extracting local information from the Fourier transform of a signal. The parameter ti 

corresponds to the position of the window in time. `ti' is kept on varying to translate the 

window until the whole of time-domain is covered. The width of this window must be less 

or equal to the segment of the signal where stationarity is valid (i.e. frequency does not 

change). 

STFTcs'(r,f) = f [x(t).g*(t —z)].e j2'  dt .........................(4.2) 

Although STFT overcomes the drawback of Fourier Transfonn apparently, it has 

got a serious problem related to the resolution in time and frequency. The root of this 

problem goes back to Heisenberg 's Uncertainty Principle, according to which exact time-

frequency representation of a signal is not possible. Therefore, we can never know precisely 

which of the spectral components exists at what instants of time. What we can know is the 

time interval during which a certain band of frequency exists. A broader window gives 

better frequency resolution and poor time resolution. On the contrary, the time resolution 

can be improved at the cost of frequency resolution with shorter window. Once the window 

is chosen for STFT, the resolution in time and frequency domain gets fixed. However, many 

signals encountered in. our practical life (ECG being no exception) require a more flexible 

approach regarding this resolution [11]. 

Wavelet transform (WT) was developed to overcome this fixed resolution 

problem of STFT. The Multi-Resolutional Approach (MRA) in time and frequency domain 

is the heart of WT. 

4.1.2. DEFINING WAVELETS 

The basis of FT, as we have already seen, is sinusoidal waves of infinite duration. Fourier 

transform decomposes the signal of interest into sinusoids of different frequencies. 
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On the other hand, WT. decomposes the original signal into a set of compactly 

supported basis functions called wavelets (small waves), obtained from a single prototype 
mother wavelet by means of. dilation and translation (as we will see later). Wavelets are 
localized .waves of finite energy. They have their energy concentrated in time or space and 

are suited to analyse transient signals. 

	

(a) Wave. 	 (b) Wavelet 
Figure 4.1: Wave and Wavelet [12] 

Comparison between Wave and Wavelet: 

Wave 	 Wavelet 

	

1. Oscillating Function of time. 	 1. Oscillating Function of time. 

2. Duration Infinite. 

3. Smooth and Predictable. 

4. Periodic 

5. Ex: Sine & Cosine Waves 

Symlet, 

PV ::'\f\ 4c:!1V , 

Spagl~ 	 tistrGam usotd~r 	m ; ~' 	 ; 

Figure 4.2: (a) Fourier Decomposition 

2. Duration Finite. 

3. Irregular and Asymmetric. 

4. Aperiodic 

5. Ex: Daubechies, Haar, 

Coiflet Wavelet Families. 

(b) Wavelet Decomposition [13] 

4.1.3. USEFULNESS OF WT IN ECG ANALYSIS 

Electrocardiogram signal, by its very nature is a non-stationary one. It is characterized by a 

cyclic occurrence of patterns with different frequency contents (QRS complexes, P and T 

waves) [7]. Each of these patterns represents a certain distinct event as discussed in 2.3. The 
QRS complex, representing ventricular depolarisation, occurs as a high frequency, high 

amplitude spike of very small duration in the ECG cycle. On the other hand, P wave (atrial 
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depolarisation) or T wave (ventricular repolarisation) have got relatively low frequency 

contents, leading to their smoother appearance. 

Figure 4.3: Elements of ECG waveform 

The overall frequency range of ECG signal is 0.5-100 Hz with amplitude in 

ranges of mV. Low frequency components span for almost the entire duration, whereas the 

high frequency feature's (e.g. QRS complex) occur as transients. Moreover, the noise and 

artifacts affecting the ECG' signal also appear at different frequency bands and time 

intervals. By decomposing into elementary building blocks that are well localized in time 

and frequency, WT can distinguish ECG waves from serious noise, rtifacts and baseline drift 

[151. 

The mentioned characteristics of ECG signal makes wavelet transform the most 

suitable tool to deal with it. The wavelets have time-width adapted to their frequencies. The 

scale of wavelet represents its frequency range. The resolution of wavelets at different scales 

varies in the time and frequency domains — finer temporal resolution and coarser frequency 

resolution at higher scales and just the opposite at lower scales. In the application of ECG, it 

can be well appreciated that the R Peak needs to be marked with better temporal resolution, 

as compared to other waves during the cardiac cycle. 

4.1.4. CONTINUOUS WAVELET TRANSFORM (CWT) 

The Continuous Wavelet Transform (CWT) was developed as an alternative to STFT to 

overcome the fixed resolution problem in time-frequency plane. The Wavelet Transform 

provides a description of the signal in the time-scale domain (scale being in a sense opposite 

to frequency), allowing the representation of the temporal features of the signal at different 

resolutions. The wavelet (of a particular scale) is shifted along the signal and for every 

position of it, the similarity between a localised section of the original signal and the wavelet 

is examined by calculating CWT coefficients. Then this process is repeated many times with 
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a slightly compressed (or dilated) wavelet for every new cycle. At the end, the result will be 

a collection of time-scale representation of the signal, all with different resolutions. 

The continuous wavelet transform can be defined mathematically as an inner 

product of the signal and the wavelet basis functions. 

CWT" (z, s) = f X(t)y/ * r ,.dt ......... ...........................(4.3) 

The basis wavelet functions yrr ,,.(t) are derived, from a single prototype Mother 

Wavelet (t) as follows: 

t z 
Vl:,s = - i=v'( 	) ......................................(4.4) 

s 	s 

Therefore, the, transformed . signal is obtained as a -function of two variables, 

namely, r and s, the translation, and scaling coefficient, respectively. The translation and 

dilation (or, scaling) operations are performed on the mother wavelet to produce the basis 

wavelet functions. 

The term translation, is related to the location of the wavelet, as it is shifted 

through the signal x(t). This term corresponds to time information in the transform domain. 

Translating or shifting a wavelet means hastening or delaying its onset as shown below. 

0 	 0  
(a) Wavelet Function W (t) 	 (b) Wavelet Funct on translated b 'r, S// (t — r) 

Figure 4.4: Translation of Wavelet Function [13] 

The parameter scale in the wavelet analysis is similar to that used in maps. High 

scale gives a gross or. global picture of the signal, whereas low scale corresponds to a 

detailed view. Similarly, in terms of frequency, low frequencies correspond to a global 

information of a signal (that usually spans the entire signal), whereas high, frequencies 

correspond to a detailed information of a transient pattern in the signal (having relatively 

short duration). That is why scaling conveys a notion of something reciprocal to the 

frequency. Scaling, as a mathematical operation, either dilates or compresses a signal. 

Following figures illustrate the concept of scaling_ more clearly. The term ` 	' in equation 
S 

(4.4) serves the purpose of energy.normalisation of the wavelet across various scales. 
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f(t) = v(t) ; s =1 

f(t) = r/'i(2t) ; s =1/2 

f(t) = ttr(4t) ; s =l/4 

Figure 4.5: Scaling of Wavelet Function [13] 

We can describe the process of CWT through the following steps and associated figure 4.6 

[13]. 

1. Take a wavelet and compare it to a section at the start of the original signal. 

2. Calculate'a number, C, that represents how much similar the wavelet is with this 

section of the signal. The higher the value of C, more is the similarity. The value of 

C will depend on the shape of wavelet chosen, This C is nothing but the CWT 

coefficient at the initial (or smallest) scale, say s = Si and translation ti = 0 (or, the 

value oft corresponding to the initial position of the wavelet). 

Signal   

Wavelet "\ 
ttt 

C = 0.0102 
Figure 4.6 (a): Wavelet with smallest scale at initial position 

3. Shift the wavelet to the right and repeat step 2 at each position, until the whole signal 

is covered. 

.11 	9 
Signal f\ 

Wavelet F_) t__!  
Figure 4.6 (b): Same scale Wavelet shifted to right 

4. Repeat steps 1 to 3 taking a scaled (stretched) wavelet. 
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Signal  

Wov©lot  

C=0.2247 

Figure 4.6 (c): Wavelet with, a different scale 

5. Repeat steps 1 through 4 for all scales. 

Reconstruction of original time-domain signal from its CWT: Admissibility Condition 

The continuous wavelet transform is a reversible transform, provided that the 

• admissibility condition is satisfied. The reconstruction is possible by using the following 

reconstruction formula (Inverse Wavelet Transform): 

x(t) =z 
jjCW7(v,$)y/(tl 	— r Jdrds ..................................(4.5) 

C2  
s  s 

Where, C~, is a constant that depends on the wavelet used. The success of the 

reconstruction depends on this constant called, the admissibility constant, to satisfy the 

following admissibility condition: 
vz 

cw -{2yr . 	1d}~ 	< oo 	 .....:.....(4.6) 

• Where, r( ) is the FT of yr(t). Equation (4.6) implies that i?(0) = 0, which is 

f yi(t)dt = 0 .............................................(4.7) 

Equation. (4.7) is not a very restrictive requirement since many wavelet 

functions can be found whose integral is zero. For equation (4.7) to be satisfied, the wavelet 

must be oscillatory.. 

4.1.5. CLARIFYING MULTI-RESOLUTIONAL APPROACH (MRA) 

Unlike STFT which has a constant resolution at all times and frequencies, WT uses a Multi-

Resolutional Approach (MRA), i.e. varying temporal resolution for different spectral 

components, which can be clarified as follows. A lower or narrower scale (higher 

frequencies) means lesser ambiguity in time, i.e. good- time resolution. Higher scales (lower 

frequencies) - have wider support, leading to more ambiguity in time, or in other words, poor 
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temporal resolution. The following figure compares the resolution for four different 

representations. of the same signal. 

d 

p. 
Time 

Time Domain (Shannon) 

u_ 
Amplitude 

Frequency Domain (Fourier) 

(liii 
Time 

Wavelet Analysis STFT (Gabor) 

Figure 4.7: Time-Frequency Resolution at different.Sigrial Representations [13] 

The original time-domain signal has got no time resolution problem, since we 

know the value of the signal at every instant of time. In the Fourier transformed version, 

there is no resolution problem in the frequency domain, i.e. we know precisely what 

frequencies exist. Conversely, the frequency resolution in time domain and time resolution 

in Fourier domain are zero, since we have no information about them. For the two bottom 

diagrams, each box represents an equal area of the time-frequency plane, but different sized 

boxes giving different proportion to time and frequency. 

All the boxes are of same size for STFT, i.e. the time. and frequency resolutions are 

constant all over the time-frequency plane. For wavelet transform, at low frequencies (high 

scales), the height of the boxes are shorter (which corresponds to better frequency 

resolution, since there is less ambiguity regarding the value of the exact frequency), but their 

widths are longer (which correspond to poor time resolution, since there is more ambiguity 

regarding the value of the exact time). At higher frequencies (low scales), width of the boxes 

decreases, i.e. the time resolution gets better, and height of the boxes increases, i.e. the 

frequency resolution gets poorer. 

4.1.6. DYADIC WAVELET TRANSFORM (DYWT) 

This can be thought of as an intermediate stage between Continuous and Discrete Wavelet 

Transform. The CWT assigns a value to the continuum of points on the translation-scale 
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reduced by a factor of 2 and cn nn_ 

2 

4 

8 

16 

• 32 
Scale(s) . . 
log axis 	64 

plane. Therefore,. the computation takes a long time. Dyadic Wavelet Transform (DyWT) is 

based on sampling the translation-scale plane. 

.First the scale parameter (s) is discretized using a logarithmic rule. The base of 

logarithm is generally taken as 2. The scales in power of 2 are only considered (e.g. 2,4,8, 

and so on). 
Scale discretization-is given as follows, 

s = so ..................................................(4.8) 

where, so  is the base of logarithm (>1) and j= 1,2,3............,n. The number `n', representing 

total number of different `j' values, is determined considering the bandwidth of the .signal 

x(t). 
From Nyquist's Rule, we know that at higher scale (i.e. lower frequencies) the 

sampling rate can be reduced. In other words, if the translation-scale plane needs to be 

sampled with'a sampling rate of N1 at scale s1, the same plane can be sampled with a 

sampling rate of N2 at scale s2, where s1<s2 (corresponding to frequencies fl>f2) and N1<N2 

[4]. The actual relationship between N1 and N2 is, 

N2=S' N, or N2  =f2  N.......................................(4.9)  
sZ 	 f, 

Therefore, at lower frequencies, the sampling rate can be reduced saving a considerable 

amount of computation time. 

.-After discretizing the scale parameter (s), the translation parameter (ti) is discretized 

with respect to's', i.e.. a -different sampling rate is used for every`s'. Following figure 

demonstrates this idea. For the lowest scale (s=2), we sample 32 points along the translation 

axis. This means, the wavelet at this scale-will be compared with the signal x(t) at 32 distinct 

values of shift. At the next scale value (i.e._ s=4), the sampling rate of translation axis is 

Figure 4.8: Discretization of Translation-Scale Plane [1 I] 
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In accordance with equation (4.8), the translation discretization is given as, 

r= k.so .za .....................................................(4.10) 

where, ro > 0 and k = 1, 2, 3 ................m. The number `m', representing total number of 

different `k' values, is determined considering the time span of the signal x(t). 

The basis wavelet functions yr• k (t) of DyWT is derived from the mother wavelet 

0(t) as follows, 

y/J.k (t) = so J'2yi(sfl't — kzo ) ..................................(4.11) 

DyWT is defined mathematically as follows, 

DYWTX`' (j, 1c) _ ~(t)Vlj* ,k (t)dt ................................(4.12) 

Although DyWT has got computational efficiency over CWT, still it provides high degree of 

redundancy as far as data reconstruction is concerned. This redundancy, on the other hand 

consumes a significant amount of computational resources. That is why we move on to 

wavelet implementation based on digital filters- (or the Discrete Wavelet Transform') for 

discrete time signals , which is amazingly fast in operation. 

4.1.7. DISCRETE WAVELET TRANSFORM (DWT) 

Basically, the discrete wavelet transform is meant to handle discrete-time signals. The DWT 

is considerably easier to implement when compared to the CWT. The DWT. provides 

sufficient information both for analysis and synthesis of the original signal, with a 

significant reduction in the computation time. 	 - 

The foundations of DWT go back to 1976 when techniques to decompose 

discrete time signals were devised. In the case of DWT, time-scale representation of a digital 

signal is obtained using digital filtering techniques. The signal to be analysed is passed 

through filters with different cut-off frequencies at different scales. Wavelets can be realized 

by iteration of filters with rescaling. The resolution of the signal, which is a measure of the 

amount of detail information in the signal, is changed by the filtering operations, and the 

scale is changed by up-sampling and down-sampling (sub-sampling) operations. 

The DWT is computed by successive low-pass and high-pass filtering of the 

discrete time-domain signal as shown in the following figure. This is called the Mallat 

33 



Algorithm or Mallat-tree - decomposition. Its significance, is in the manner it connects the 

continuous time multi-resolution to discrete-time filters. The signal is denoted by the 

sequence x[n], integer n' denoting the sample number. Go and Ho are the low and high pass 

Analysis filters (filters used for, decomposition) respectively. At each level, the high pass 

filter produces detail information d[n], whereas,-  the low pass filter associated with scaling 

function produces coarse approximations, a[n]. 

Figure Figure 4.9: Three-level Wavelet Decomposition Tree [12] 

At each 'decomposition level, the half band filters produce signals spanning only 

half the frequency - band. This doubles the frequency resolution, as the. uncertainty in 

frequency is reduced by half. According to Nyquist s rule, the sampling frequency of a 

signal needs to be at least, double of its maximum frequency content in order to have a 

successful reconstruction. However, after. each level of decomposition, the maximum 

frequency itself gets halved, - and hence now its sampling frequency can also be reduced 

proportionally without any loss of information. This decimation by 2 halves the time 

resolution as -the entire signal is now represented by only half the number of samples. This 

also doubles the scale. 

We can see the following example to conceptualise the 'appearance of details and 

approximation coefficients across different levels. 

roximations and Details 
to original signal 

Figure 4.10: Illustration of Approximation and Detail Coefficients [13] 
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The filtering and decimation process is continued until the desired level is 

reached. The maximum number of levels depends on the length of the signal. The DWT of 

the original signal is then obtained by concatenating all the coefficients, a[n] and d[n], 

starting from the last level of decomposition. 

Reconstruction of original time-domain signal from its DWT: Orthogonal Filters 

The reconstruction is basically the reverse process of decomposition. The approximation 

and detail coefficients at every level are up-sampled by two, passed through the low pass 

and high pass synthesis filters (Gi and HI) and then added. This process is continued through 

the same number of levels as in the decomposition process to obtain the original signal. The 

Mallat Algorithm works equally well if the analysis filters, Go and Ho, are exchanged with 

the synthesis filters, GI and HI. 

d [n] 

331"1 

Xm l 

Figure 4.11; Three-level Wavelet Reconstruction Tree [12] 

To achieve desired reconstruction features, we will be using only orthogonal filters 

[5] in discrete domain. Coefficients of orthogonal filters are real numbers. The filters are of 

the same length and not symmetric. The low pass filter, Go and the high pass filter, Ho are 

related to each other by,. 

Ho(z) = z NGo(=z') ................................................................(4.13) 

Equation (4.13) means that the two filters are alternated flip of each other. These are 

also called Conjugate Mirror Filters (CMF). Also, for perfect reconstruction, the synthesis 

filters are identical to analysis filters except for a time reversal. 

Orthogonal Wavelet Families 

We will discuss the mother wavelets namely, Haar, Daubechies, Symlets and "Coiflets here. 

These - all are compactly supported orthogonal wavelets and capable of perfect 

reconstruction. 
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Scaling Function and Wavelet Functions are associated with Low-pass and High-pass 

filtering respectively. In this section, `~' denotes the Scaling:Function and `yi', the Wavelet 

Function. 

Daubechies Wavelets (dbN, N:filter order): 

scaling function, 4 —►s 
	

f— wavelet function, w 

-as 

s 	a 	a 	a 	s 	a 

tas 	 as 
decomposition low-pass filter a 

-as 
0 1 a a a 5 s 7 o f  a a 5 e r 

reconstruction low-pass filter 

~ow 	 -as 
a 1 p 5.4 V a r a 1 Y 54  

Fig 4.12: Daubechies wavelet db4 [13] 

4— decomposition high-pass filter 

4— reconstruction high-pass filter 

Daubechies wavelets are also called Maxflat wavelets as their frequency responses 

have maximum flatness at frequencies 0 and t. 

Haar Wavelet: 

This is nothing but the db1 wavelet, i.e. the Daubechies. wavelet of order 1. This is 

the simplest wavelet imaginable. The wavelet function is a simple step function. 

The wavelet function (yi) and scaling function (@) are defined as follows: 

	

Y(x) = 1 , 	if 05x~ 1 
2 

_ -1,  
2 

	

0, 	if x v- [0,1] 

	

~(X) = 1, 	if x E [0,1] 

	

= 0, 	if x 0 [0,1] 

K W 	- __ 

(b) scaling function (a) wavelet function 

Figure 4.13: Haar wavelet[16] 
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Syin:let Wavelets (symN, N:filter order): 

Symlet wavelets are modifications of Daubechies wavelets in order to improve symmetry, 

while retaining great simplicity. Still, Symlets are only near symmetric. 

scaling function, 4 —I 

1 

16 

►d 

T.6 

+ 	wavelet function, k1 

0 	Y 	d 	B 	4 	Y 	4 	5 

	

decomposition low-pass' filter —* 	¶ I decomposition high-pass filter 
.Q6 	 •a6 

0 1 2 3 d 6 8 7 0 1 R 9 	50 f 

reconstruction low-pass filter — 	 as
•_ 	4— reconstruction high-pass filter 

0 1 Y 3 A 5 0 Y 0 1 Y 3 4 3 6 7  

Fig 4.14: Symlet, sytn4 [13] 

Coiflet Wavelets (coifN, N:filter order):: 

The `coifN' y and c functions are much more symmetrical than `dbN'. 

oS 

scaling function, 4) —I 
	

4-- wavelet function, it 

1.6 

	

0 	6 	10 	16 	0 	5 	10 	15 

	

0.6 	 OS 
decomposition low-pass filter —~ ,I3l*3 fT,.0 	 4—decomposition high-pass filter 

-Ob 

	

0 0 4 8 0 10 12 14 10 	0 Y A - 	8 10 12 14 16 

OS 
reconstruction low-pass filter --~ -- reconstruction high-pass filter 

	

_Qs 	 -U.S .  

	

0 Y 4 6 0 10 10 14 16 	0 z 4 0  

Fig 4.15: Coiflet, coif3 [13] 
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4.2. PRINCIPAL COMPONENT ANALYSIS 

. 4.2.1. DEFINING PCA 
Principal Component Analysis (PCA) is an exploratory multivariate statistical technique that 

allows the identification of key - variables (or combinations of variables) in a 

• multidimensional data:set that best explains the differences between observations. Different 

• dimensions convey the notion of different variables observed against equal span of time. So, 

each, dimension is a time-vector and all the time-vectors are of same length. Given `n' 

observations on `m' variables, the goal of PCA is to reduce the dimensionality of the data 

matrix by finding `r' (_< m) new variables. These `r' principal components account together 

for as much of the variance in the original- `m' variables as possible, while remaining 

mutually uncorrelated and orthogonal [17]. 

In our application, each variable (or a `dimension') refers to a QRS complex 

extracted from multi-channel 'ECG data after conditioning and delineation. PCA is applied 

both in temporal -and spatio-temporal domain to find out a minimal set of QRS complexes 

characteristic to that data-set which conveys relevant diagnostic information. 

Principal Component Analysis is designed to capture the variance in a data set in 

teens of principal components [19]."PCA involves a mathematical procedure that transforms 

a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables 

called principal components. The first principal component accounts for as much of the 

variability in the data as possible, and each succeeding component accounts for as much of 

the remaining variability as:passible [20]. 

.4.2.2 RELEVANT. MATHEMATICAL TERMS. 

Variance: 

This is a measure of the spread of a variable from the mean. Let us consider `n' 

observations of a variable A, namely, a1, a2......:........., a,,. The, variance of A can be 

defined as: 
n 	_ 

SA = %1 ........................................(4.14) 
(n-1) 
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Where, a denotes the mean. [ a = (a~ + a2 ............. +an ) l n ] 

The square root of variance is known as the Standard Deviation. 

Covariance: 

For two-dimensional data (two different variables having the same no. of observations), 

covariance provides a measure to find out how much the dimensions vary from the mean 

with respect to each other [5]. 

The covariance between two variables A = (ai,a2 .............a,) and B = 

(b1,b2............,b,,) can be mathematically defined as: 
n 
~(a, —a)(b, —b ) 

SAB = ... . (4.15) 
(n -1) 

Covariance Matrix: 

Covariance is always calculated between two dimensions. However, if we have a data set 

with more than two dimensions, there is more than one covariance measurement that can be 

calculated [21]. 

Let us consider three variables A, B and C with the same number of observations. 

Here, we can calculate three different covariance measures, namely, SAB , SB, and SCA 

Following is the covariance matrix for these three variables: 

S̀AA S̀AB S̀AC 

S S — BA 	BB 	BC .................................:.....(4.16) 

	

S 	'S'  

SCA Sc B scc 

The diagonal terms are nothing but the variances, e.g. S, = SA and so on. Also, the 

covariance matrix is a symmetric one, i.e. SAB = SBA and so on. 

	

For an m-dimensional data set, we have 	ml 	different covariance values and `m' 
(m — 2)!x2 

variances. Here, the covariance matrix will be a square symmetric matrix of order mxm. The 

formal definition can be given as, 
Smxm = (SIJ : S;j = covariance (Dim;, Dims)) .................. (4.17) 

Orthogonality & Orthonormality: 

Two vectors are said to be orthogonal if their dot-product (or scalar product) is zero. This 

means that the vectors are mutually perpendicular. 

39 



The dot-product of two vectors V = (WI, w2 . ............. . ...... wn) and W = (wI,w2, 

....................w„) is defined as in equation 4.18. 
n 

V.W = v1 w, +v2w2 + .............+vnw,, = ~viW.............................(4.18) 
i=1 

For orthogonality, 
V.W = 0 ............................................(4.19) 

A set of vectors U1, U2............................, Um (where each U; is a vector 

with m components, i.e.. U 	(u;1,ui2 .............:.............. ui„) is said to be orthonormal if 

they are pair-wise orthogonal to each other and all have a length equal to unity. 

Mathematically, this can be defined as, 

U;.UJ = 0 if i~j 

=1 if i=j........ 	..........................(4.20) 
An orthononnal (or, orthogonal) matrix is defined as a matrix whose columns are 

orthonormal (or, orthogonal) to each other. 

Corollary 1: 
The inverse of an orthogonal matrix is its transpose [18]. 

Eigenvectors and Eigen values of a matrix: 

Let H be an nxn matrix. The number 2 is an eigenvalue of H if there exists a non-zero vector 

V'(nxl) such that, 

HV=%V ..........:....:............................... (4.21) 

In this case, vector V is called the eigenvector of H corresponding to the eigenvalue ? . 

Following is an example of an eigenvector: 

2 	3 x 3 	_ 121 	4 x 3 	.......................... (4.22) 
2 1 2 	8 	2]  

Here, 
[3
] is an eigenvector of the matrix 2 1 

2 	
corresponding to the eigenvalue 4. 

Eigenvectors can only be found for square matrices. However, not every square 

matrix does have eigenvectors. Given an nxn matrix that does have eigenvectors, there are n 

of them. 
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All eigenvectors of a matrix are orthogonal to each 'other, no matter how many 

eigenvectors we have. It means we can express our data in terms of these perpendicular 

eigenvectors taken as the axes (or basis vectors). If we restrict the length of all eigenvectors 

to unity, they construct a set of orthonormal vectors. 

Corollary 2: 

A square symmetric matrix is diagonalized by a matrix of its orthonormal eigenvectoi•s [ 18]. 

This means an nxn symmetric matrix H can be expressed as in equation 4.23. 

H=EDET  ............................................(4.23) 

Where, E is the matrix of the eigenvectors of H arranged as columns and ET  is the 

transpose of E, and D is a diagonal matrix. 

4.2.3. MATHEMATICAL THEORY OF PCA 

PCA is a well-established technique for dimensionality reduction without much loss 

of -information. In other words, PCA can be thought of an analysis tool, which finds out the 

most meaningful basis to re-express a high-dimensional data set. This process automatically 

filters out undesired noise present in the data-set to certain extent, making the data more 

accessible for visualization and analysis. The new basis (computed by PCA) expresses the 

data without redundancy. 

Let us go back to the example cited in section 4.2.1, where we have `n' observations of 

`m' variables. The data matrix X is defined as follows: 
OBSERVATIONS 

XI1 X12 x13 ... ... ..• x1n 

x21: 

 

X2n 

X31 

X i ... ... ... ... ... xmn 

Figure 4.16 PCA Input Data Matrix Structure 

Here, any observation (along the column of X) refers to a vector having in components, as 
given in equation 4.24. 

V 
A 
R 
I 
A 
B 
L 
S 
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xl i  

OBS(i) = 	x.. 	............................................(4.24) 

xnhr 
And hence X can be re-written as: 

	

X= [ OBS(l) 	OBS(2) 	................. 	OBS(n) ]......: 	.............(4.25) 

The basis of representation for the observations is an rn-dimensional vector space. 

b, 	1' 0 ••• 0 

b 	
0 1 ... 0 	Initial basis (B): Identity Matrix (I) of order mxm. 

B= ' — 	 =1 

..
b.,.....,bm: Initial basis vectors (each having in 

	

0 0 ... I 	 components) 

Using PCA, we will try to find out another basis (of.smaller dimension) that best re- 

expresses our data set [2]. The new basis vectors:will be a linear combination of the original 

basis vectors (b 1......,b,). 

0 	In other words, we need to seek for a transformation matrix P (new basis matrix) of 

order rxm, which transforms an m-dimensional observation into an r-dimensional one (r_<m). 

This matrix P when multiplied to X will produce a new matrix Y (of order rxn), which is the 

re-representation of our dais set. 
PX =Y .................... 	 .. 	..........(4.26) 

Equation (4.26) represents a change of basis equation. The rows of P (p1,.....,pr  

are the new basis vectors for expressing the columns of X. [Initially we had -BX =X]. The 

rows of P are called the principal components corresponding to dataset X. 

The physical interpretation. of PCA can be given in terms of projection. Let us 

consider two-dimensional data (m=2), initially expressed in terms of conventional x and y 

co-ordinates. Following figures demonstrates the role of PCA. 
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Figure 4.17: PCA Functioning 

We can see that P1 in figure 4.17(b) represents the best fit line for the data. P2 

represents deviation from this best fit line: The maximum variation of data occurs along P1. 

We' can project all data points on P1 as shown in 4.17(c). Thus we come to a one-

dimensional representation of the data (along a straight line). Therefore, the dimensionality 

is reduced (r = 1 here) while preserving the maximum variability in the data. The original 

basis vectors (bl and b2) were nothing but the x and y axes. As apparent from 4.17(c), the 

new representation of-data (along a straight line) can be given in terms of only one axis P1. 

So, P1 is the new basis vector, which is a linear combination of b1 and b2. The task of PCA 

is to find out this P1 from given b, and b2. 

Referring to equation (4,26), the new representation of the data (Y) should be 

free of noise and redundancy, as much as possible. The signal-to-noise ratio (which is a ratio 

of the variances of the signal and noise) can be improved by maximizing the variance along 

the new basis vectors. On the other hand, the redundancy of data can be measured in terns 

of the covariance between different variables (or dimensions). We want each variable to co-

vary as little as possible with other variables. So, we need to minimize the covariance 

between the new set of variables (rows of Y) at the same time.. 
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To quantify covariance and variance in a multi-dimensional data set, we go for the 

covariance matrix as discussed before (Equation 4.17). In our example, the covariance 

• matrix for the data sets (X or Y, where each row represents a different dimension or 

variable) can be defined as follows (here we assume that each row of X is a zero-mean 

• variable). 

SX  = 	1 	XX T 	S r  = 	1 	YY T  ...................................(4.27) 
n—I 	n-1 

Computing Sx  describes all relationships between pairs of measurements in our data 

set X. We need to determine a new basis matrix (P). which will maximize the variance 

inside any particular dimension and at the same time minimize the covariance between 

different dimensions. In other words, we need to have an optimum choice of P in order to 

have a diagonal covariance matrix for Y. 

PCA assumes that all basis vectors {p1,.....pr  : rows of P} are orthonormal. In the 

language of linear algebra, PCA assumes PT  (transpose of P) to be an orthonormal matrix (columns 

of PT  being orthonormal to each other).. . Secondly, PCA assumes the directions with the Iargest 

variances are the most important ones. PCA first selects a normalized direction in m-dimensional 

space along which the variance of X is maximized- it saves this as pi. Again it finds another 

direction along which variance is .  maximized. However, because of the orthonormality condition, it 

restricts its search to all directions perpendicular to all previous selected directions [ 18]. This search 

can -theoretically continue up to m directions. However, we select only the first r directions 
accounting for more than say 99.9% of variance of the original data set. Next we shall see the 

solution for PCA using linear algebra. 

First we write Sy in terms of P-.as below, 
1 	T 	1 	 T -  1 	T T 	1 	 T T S ). = 	YY = 	(PX)(PX) = 	PXX P =  , 	P(XX )P ...........(4.28) 

n--1 	n-1 	 n-1 	n-1 

LetXX T =G, 

	

Then we have, 	 S y, = 	I  PGPT 	 :.............................. (4.29) 
n-1 

Here, matrix G will be symmetrical by definition, as it is a product of one matrix 

and its transpose. The size of G would be mxm. 

From `Corollary 2' in section 4.2.2, we can write, 
• G = EDET 	............................................................(4.30) 
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Where, D is a diagonal matrix and E is a matrix of eigenvectors of G arranged as 

columns. 
We now select the matrix P to be a matrix where each row pi of P is an eigenvector 

of XXT. Therefore, P = ET. 

Substituting. P = ET  in Equation (4.30), we get, 

G=PTDP ................................................(4.31) 

From `Corollary 1'in section 4.2.2, we can see that, 

(PT)- I  = (PT)T  
or, (PT)-I-   - P 

or, PT  = P-1  ................... 	...................................(4.32) 

Combining equations (4.29). and (4.31), we get, 
SY  =  1  PGPT  =  1  P(PrDP)Pr  = 1  (PPT  )D(PPT ) = 1  (pp-')D(PP-' ) 

n-1 	n-1- 	n-1 	n-1 

Finally we arrive at, 

S = 	D ........................................................(4.33) r n-1 

Therefore, we can conclude that our choice of P diagonalizes Sy, i.e. the goal is 

achieved. Hence the basis vectors for the new representation or the principal components are 

nothing but the eigenvectors of the covariance matrix of X. 

4.2.4. STEPS OF PCA IMPLEMENTATION 

Step 1: Construct the data matrix X (as depicted in figure 4.16) 

Step 2: Calculate- the mean of each row and subtract it from the corresponding row. 

Step 3: Calculate the covariance matrix Sx(mxm) of these zero-mean variables. 

Step 4: Calculate the eigenvectors and eigenvalues of Sx. 

Step 5: Arrange the eigenvectors in descending order of eigenvalues. Now, construct a 

matrix (P) with the first r eigenvectors (after being sorted) as rows. That means, 

the eigenvector with the highest eigenvalue will be in the first row , eigenvector 

with the 2"d  highest eigenvalue in the 2 row and so on. 

Step 6: Now obtain the new representation of data (Y) by multiplying P with X, i.e. 

Y=PX. 
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4.3 CORRELATION TECHNIQUES,  

4.3.1. AUTO AND CROSS CORRELATION FUNCTIONS 
Correlation is a statistical 'technique, which can show whether and how strongly pairs of 

variables (or waveforms) are related. 

A good method of measuring the similarity between--two waveforms is to multiply 

them together, ordinate by ordinate, and to add the products over the duration of the 

waveforms. Let us consider.the following figure. 

•• Au 	 hL A. 	A. A 

i . L 1; 	, i 	1 	. , 	. 
'i I r 

(c)  

(d)  

Figure 4.18: Correlation Calculation between different pairs of Waveforms [23] . 

In the above figure, the waveforms (a) and (b) are exactly identical. Waveforms (c) 

and (d) are identical in shape but having a time shift between them. 

To assess the similarity between (a) and (b) in mathematical terms, -we multiply 

ordinate p-1  by ordinate q i , ordinate p2  by q2, p3 by q3, and so on, and finally we add all these 

products to obtain a single number which is a measure of the similarity. This number 

represents the correlation.,  Here, waveforms (a) and (b) are identical, so that, every ordinate, 

positive or negative, contributes to a positive term to the sum. Thus, we have a large value 

of the sum (i.e. the correlation coefficients). 



If we perform the same process on waveforms (b) and (c), we find that each positive 

product is offset by another negative product and hence .their sum becomes small. Lesser 

correlation is obtained between waveforms with lesser similarity. 

Now we consider the correlation between waveforms (c) and (d). They are identical 

in shape, but one is displaced in time from the other. If we perform the same process of 

multiplying ordinates (of which r and s are typical), again we find that every positive 

product tends to be offset by a negative product, resulting in a smaller sum. Thus, if we were 

to plot the similarity between a waveform of figure 4.18(c) and a time-shifted version of 

itself, we should expect the resulting curve to assume small values for large time shifts, and 

to rise to a large positive maximum when the time shift is zero. This curve is called the auto-

correlation function (ACF). Formal definition o.f ACF is given below. 

The Auto-Correlation Function of a waveform is a graph of the similarity between 

the waveform and a time-shifted version of itself, as a function of this time-shift [23]. 

Let us consider the ACF of a sine function. The sine wave becomes exactly similar 

to itself whenever the time shift is an integral multiple of its time period. Hence, the ACF of 

it must be periodic. In reality, the ACF of a sine wave is also sinusoidal, having the same 

frequency, and being symmetrical about the point which represents zero time-shift, as 

evident from the following figure. The horizontal axis in the ACF plot represents.time shift 

and not the absolute time. 

time 
(a) Sine Wave 

1 	' 

r 
zero 

-ve time shift 	 shift 	' 	+ve time shift 

(b) ACF 

Figure 4.19: Auto-Correlation Function of a Sine Wave 

Now, we consider the ACF of a broad-band noise signal in the following figure 

4.20. 
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(a) Broa -Band Noise 	-P time 

ti 
-ve time shift 	4--- zero 	 +ve time shift 

(b) ACF shift 

Figure 4.20: Auto-Correlation Function of a Broad-Band Noise Signal [23] 

• In figure 4.20, the ACF is a sharp impulse,-  decaying quickly from the central maximum 

to very low values at large time shifts. It is because the waveform in figure 4.20(a) is similar 

to itself only at zero time shift. A very small time shift is sufficient to destroy the similarity, 

and the similarity never recurs. 
So far we have discussed about the ACF, which is concerned with the similarity 

between a waveform and a time-shifted version of itself. However, the same idea can be 

extended for two different non-identical waveforms, like the signals (b) and (c) in figure 

4.18. This is the concept behind cross-correlation. Let us consider the figure below for a 

better insight into it. 

Time-origin of 
stationary waveform 	 (a) 

• Time-origin of 	V 
moving Waveform 

n 	_ ' ̀lAtIL 	(b) 

Shift between 
waveforms 

Window of width T 	 to  

(c) CCF between (a) and (b) 
' 	 4 

Zero 
-ve time shift 	4--- Time-Shift 	 +ve time shift 

Figure 4.2 I : Cross-Correlation Function [23] 48 



In figure ,4.21, we visualize the waveform (a) as stationary and waveform (b) as 

sliding. We then view the two waveforms through a window of width T, and we assess the 

similarity between them within this time interval by our previous method of multiplying 

ordinates and summing products. For any particular shift of (b), this number represents the 

cross-correlation between (a) and (b) at that shift. The graph (c) represents the similarity-

between (a) and (b) as a function of the time-shift between them. (c) is the Cross-Correlation 

Function (CCF), whose formal definition is given below. 

The cross-Correlation Function of two waveforms is a graph of the similarity 

between the two waveforms as a function of the time shift between them [23]. 

In our application, we will be comparing two different signals through cross-

correlation. For that, we shall deal with the cross-correlation coefficient only and not the 

CCF in particular. The following section provides a mathematical definition of the 

correlation coefficients. 

4.3.2. CORRELATION COEFFICIENTS 

Two signals may be compared to detect common characteristics present in them through 

cross correlation. The cross correlation between two digital signals x(n) and y(n) having N 

samples each (`n' representing sample number) is defined as their inner or scalar product as 

follows: 
N 

x.Y = 	x(n)y(n) .........................................(4.34) 
n=1 

The dot product represents the projection of one signal onto the other, with each 

signal being viewed as an N-dimensional vector. The dot product can be.nonnalized by the 

geometric mean of the energies of the two signals [4]: 

N Z x(n)y(n) 

 xZ  ( n ) 	y2  (n) 

	 ..(4.35) 

AL, is called the Cross-Correlation Coefficient between the two signals x(n) and 

y(n). It can have values between 0 to 1 (or 0 to 100%). Higher values of y{,>, signifies greater 

similarity between the two signals and vice versa. 
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The Auto-Correlation Coefficient (ax.k ) can be calculated in a similar manner by 

replacing y(n) with x(n+k) in equation (4.35). x(n+k) is nothing but the signal x(n) shifted 
in time by k samples. This coefficient represents mathematically the similarity between the 
signal x(n) with itself when shifted by k samples. The expression is as follows, 

x(n)x(n + k) 
aX k — 	n-I 	 ....(4.36)

N 	 ,l12 

I[E x2n E x2n+k j) 
IIMI 	 n.1 

ax,k  can have values between 0 to 1 (or 0 to 100%). 
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CHAPTER 5 
ECG SIGNAL CONDITIONING 

The recorded ECG signal needs to be processed or conditioned in order to remove the noise 

and artifacts, before delineation. ECG noise removal has always been a subject of great 

importance. The purpose of the de-noising filtering process is to reduce the noise level in the 

signal and simultaneously prevent waveform distortion. This last characteristic is of vital 

importance to prevent wrong diagnosis or analysis of the ECG signal [24]. 

Filtering of ECG is an essential pre-processing stage before delineation. Being 

highly. sensitive to the ECG waveforms and morphologies, the delineation algorithm needs 

the input ECG to be free from noise as much as possible. In case of multi-channel ECG, first 

the reference is changed to Wilson's Centre Terminal (WCT) before any analysis. This 

ensures high Common Mode Rejection Ratio (CMRR). Filtering is carried out in two stages, 

as follows: 

First Staged Cancellation of baseline wanders 

Second Stage- Elimination of high frequency noise and artefact 
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5.1. CANCELLATION OF BASELINE WANDER 

'Normally, the baseline of ECG signal (i.e. the rest of the ECG except the peaks and waves) 

is supposed to be iso-electric at zero amplitude level. This is shown in the following figure. 

t--`'` ' 	 Baseline 
normally at 0 V 

Figure 5.1: Normal ECG free of:Baseline -Drift 

Baseline deviated 
—► from 0 V 

Figure 5.2 : ECG corrupted with Baseline Wander 

Followings can be the sources of baseline wander [4]: 

1. Coughing or breathing with large chest movement for chest-lead ECGs. 

2. If an arm or leg is moved in case of limb-lead ECG acquisition. 

3. Electrogastrogram (electrical activity of stomach) for chest-lead ECG. 

4: Poor contact and polarization of electrodes. 

5. Variations in temperature and bias in the instrumentation and amplifiers. 

The frequency components of the baseline wander are usually below 0.5 Hz. 

5.1.1. RELATED LITERATURE SURVEY 

Several methods have been proposed in the literature to eliminate baseline wander. The first 

is ensemble averaging. However, this approach is not a realistic one as the. ECGsignal 

exhibits beat-to-beat variations. Among other methods, we have polynomial interpolation. 

Linear interpolation introduces significant distortions. A third order approximation called 

cubic spline [25] is proved to give better results. Interpolation techniques make use of a 

previous knowledge of the ECG isoelectric levels estirilated from the PR intervals (knots). 

Therefore, the performance of this technique depends highly on the knots determination 

.accuracy and gets degraded as the knots become more separated in time (low heart rate). 
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To overcome the above problem, another group proposed digital narrow-band 

linear-phase filtering [26]. This method can be implemented in real time, but has two major 

draw-backs. First, the filter needs to be a FIR filter with a long impulse response, which 

means a large number of coefficients. Secondly, given that ECG and baseline wander 

spectra usually overlap, it is not possible to remove baseline wander without distorting ECG. 

Another technique has been proposed in [27], which uses a time-varying linear filter that 

selects different cut-off frequencies as a function of the heart rate'or the baseline level. This 

filter improves the time invariant FIR filter performance, but can yet distort the ST 

components of ECG and has high computational requirements. 

Another group employed Short Time Fourier Transform (STFT) to get rid of 

baseline drift [29]. Within every window, they search for a spectral component in the range 

0.0 to 1.0 Hz. Only the ECG segments containing frequency components in the specified 

range are high-pass filtered to cancel baseline wander. However, it is not possible to have 

optimal frequency and time resolution at the same time with STFT. 

Adaptive filtering has also been proposed to cancel the baseline drift [28]. An 

adaptive transversal filter with only one weight is used, where the reference input is a 

constant with a value of 1 and the primary input is the ECG signal. This filter, using the 

Least Mean Square,. (LMS) Algorithm in the adaptation process, is equivalent to a linear 

notch filter that takes the advantage of adaptive implementation, but still modifies the ST 

segment. 

In [30], a cascade -adaptive filter has been used. The first stage of the filter is 

exactly similar to that mentioned above. In the second stage, the primary input is the output 

from the first stage and the reference input is a unit impulse sequence correlated with each 

QRS complex. This needs a QRS detector to generate the impulse sequence. However, in 

our application baseline wander cancellation is accomplished as a pre-conditioning of ECG 

signal before delineation. 

Here, a DWT-based baseline wander removal algorithm has been employed, which is 

simple in implementation, yet providing promising results. 
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5.1.2. MOTIVATION 

The frequency .range of baseline wander is below 0.5Hz. Therefore, its presence will 

be reflected in the higher -level DWT approximation coefficients. This is the basic idea 

behind our approach. 

First the noisy ECG signal (contaminated with baseline wander) is decomposed into 

a certain no. of levels (n) using Discrete Wavelet Transform (as discussed in the previous 

chapter, section 4.1.7). The, highest level (nth level) approximation coefficients (A.C.) are 

supposed to represent the low frequency baseline variation signal. The nth level A.C. are 

made to be all .zeros and then the ECG signal is reconstructed following the same procedure 

as mentioned in section 4.1.7. 

A mother wavelet (e.g. coif4) is chosen arbitrarily:  and DWT, decomposition is 

carried out on one ECG signal. It was seen that each of the 8, 9th  and 10th  level 

approximation coefficients, when time-aligned to the original ECG, resemble the baseline 

wander. Following figure shows this resemblance. 

Figure 5.3: Resemblance of Baseline Wander with High Level Approximations 

However, a clear idea regarding the following two things is needed. 

1. Which mother wavelet should be applied for DWT analysis on the noisy ECG for 

best results? 

2'. What value of n should be chosen? 
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5.1.3. SIMULATION & RESULTS 

Before dealing with real ECGs, artificial signals (i.e. mixture of artificial ECG and artificial 

baseline variation signal) were taken for experimentation. Thus, with a clear knowledge of 

the component signals, the performance of filtering could be judged. 

Artificial ECG beats were generated in Matlab 6.5 with the help of inbuilt ECG 

simulator. The sampling frequency was assumed,as I KHz, or in other words the span of 

1000 samples is 1 second. The data length was taken to be 25000 samples, i.e. 25 second. 

Then, for 60 bpm (beats per minute) ECG, each beat should have a span of 1000 samples 

and hence there would be 25 beats in total. For different bpm, the span of ECG beat was 

varied accordingly and hence the total number of ECG beats. 

To find out the suitable mother wavelet and the decomposition level (n), test was 

carried out on 650 artificially generated noisy ECGs. Thirteen noise-free ECG signals in the 

range of 60 to 180 bpm were created as discussed above. At the same time, a set of fifty 

sinusoidal signals with frequencies ranging from 0.01-0.5 Hz was also created, to simulate 

the baseline wander. Thereafter, 650 test signals in total were synthesized by mixing the 

artificial ECGs with artificial baseline wander signals in one to one correspondence. 

Now, on each of the 650 test signals (or mixture signals), DWT analysis was 

carried 	out. taking 	a 	total 	of 29 	mother 	wavelets 	(syml........,sym 12, 

coifl,...,coif5,db1.........,db12) under consideration. 

On the same test signal, for each of the mother wavelets, the following procedure was 

adopted. 

1. Initialise n=1; i.e. no. of decomposition levels for DWT. 

2. Decompose the test signal till n levels (maximal n was 12) and get the DWT 

coefficients A,,, Dn, D1, D 2, ...D, (referring to figure 4.9). 

Ai : ith level approximation coefficient 

D;: ith level details coefficient 

3. Perform two reconstructions. 

First Reconstruction : With A to be all zeros, reconstruct the signal as in Figure 

4.11. The signal, reconstructed in this way is called the `ECG reconstruction'. It 

should resemble the original noise-free ECG (with which the test signal is 

synthesized) for higher values of n. 
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Second Reconstruction: Making all the coefficients other than An  (i.e. the details 

coefficients,.D ...................DI ) as zeros, reconstruct the signal as depicted in Figure 

4.1.1. The signal, reconstructed in this way is called the `Baseline Reconstruction'. It 

should resemble the original Baseline variation -signal (with which the test signal is 

• synthesized) for higher values of n. 
4. Judge the.resemblance between the original and reconstructed signals by means of 

cross-correlation. Two cross-correlation coefficients (CE & CB) were calculated. 

CE= Cross-correlation between original noise free ECG (generated by in-build 

matlab command) and the `ECG reconstruction'. 

CB= Cross-correlation between original baseline variation signal (low frequency 

sinusoid) and the `Baseline reconstruction'. 

5 Repeat steps 2 to 4 for n=1,........12. 

Now the whole process (from step 1 to 5) was repeated for 29 different mother wavelets 

applied on the same test signal. 
For each test signal, two correlation matrices (one for CE and the other for CB, 

each of order 12'x29) were constructed. The structure of each is as follows: 

Mother Wavelets 	 b,  

n 	C(l,1) .. 	. . . 	. . . . . . . . . . . . . . 	. . . . . . . . . . . . C(1,29) 

C (12,1) . . . 	. . . . . . . . . . . . . . . . . . . . . . . . . . . . . C(12, 29) 

Figure 5.4: Correlation Matrix Structure 

Where, C denotes either CE.or CB. The 1st to 12t" column represents Symlet Wavelets of 1'` 

to 12th  order (syml................,syml2) , the 13"' to 17 h̀  column represents Coiflet Wavelets 

of 1'` to 5 h̀  order (coifl .............coif5) and the remaining 18th' to 12 h̀  column represents 

Daubechies Wavelets of 1st  to 12`" order (db'l ...................db 12). 
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For 650 test signals, there were 1300 correlation matrices in total, half for CEs and 

half for CBs. Now two more matrices were computed, the first one (CEmean) being the 

mean of 650 CE matrices and the second one (CBmean) being the mean of 650 CB matrices. 

Now the positions of the first five greatest elements in both the matrices, CBmean 

and Cemean, were located. The positions are found to be exactly the same in both. This 

means that the highest element occurs in the same position (same row and column number) 

in both the matrices ---- same is true for 2"`' highest and so on. All of these five highest 

elements are found at the row corresponding to n=9. This means that generally baseline 

wander signal can be located at the 9 h̀  level approximation coefficients. 

The result is summarized in Table 5.1. 

Order No. Mother Wavelet n Mean CE % Mean CB(%)  
1 db l l " 9 99.9924 99.915 
2 s m12 9 99.9913 99.9011 
3 symlO 9 99.9909 99.8962 
4 db 10 9 99.9906 99.8925 
5 coifs 9 99.99.04 99.8894 

Table 5.1: Results Obtained from 650 Artificial Test Signals 

5.1.4. PROPOSED METHOD 

The simulated ECG and baseline variation signals cover the range of practically encountered 

signals. Therefore, either of these five mother wavelets (listed in table 5.1) is applied on our 

recorded multi-channel ECG and the 9 h̀  level approximation coefficients are cancelled out 

to get rid of the baseline wander and at the same time to ensure least distortion in the ECG 

waveform. Following is the simplified strategy for baseline wander cancellation: 

1. Carry out. DWT decomposition of the noisy ECG at hand till the 9 h̀  level (as in. 

Figure 4.9). 	 . 

2. Make the 9th  level approximation coefficients to be all zeros. 

3. Now, reconstruct the ECG (as. in Figure 4.1 1). 

5.1.5. RESULT OF APPLICATION ON REAL ECG 

Our algorithm was applied on Multi-Channel ECG data recorded at the Institute, as well as 

on signals taken from MIT- Arrhythmia Database. Following Figures demonstrate the 

success of our method. 
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Figure 5.v. L~,,..... 	.....--- 
Channel I) 

Figure 5.5: Baseline Wander Cancellation: Application on t uu nom mute-cnauuo' ~XULU.0 

no. 113, 

After eliminating the low frequency baseline wander, the next stage is filtering of 

high frequency disturbance in ECG. 
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5.2. ELIMINATION OF HIGH FREQUENCY NOISE & ARTEFACT 

The ECG is often corrupted with high frequency noise. This can be introduced due to 

instrumentation amplifiers, recording system, pick up of ambient electromagnetic signals by 

the cables, and so on. There may be random noises uncorrelated with the ECG signal like 

myoelectric, thermal etc, which can be approximated by a white noise source [24]. White 

noise is technically defined as a signal with uniform frequency spectrum over a wide range 

of frequencies (analogy with light). The harmonics of power-line interference may also be 

considered as a part of high-frequency noise relative to the low frequency nature of the ECG 

signal.• 

Figure 5.7: ECG Signal Corrupted with High Frequency Noise 

Any of the two different approaches. can be adopted to eliminate these kinds of noise, 

namely 

1. Frequency-domain Filtering 

2. Time-domain Filtering 

5.2.1. FREQUENCY DOMAIN FILTERING 

A filter is generally a frequency-selective device. It passes some frequency components of 

the signal as it is, whereas it blocks others by means of attenuation. The frequencies that are 

passed through the filter constitute the pass-band, and those that are blocked are in the stop- 
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(a) Butterworth (b) Sixth order Chebyshev 

Ai --------- 

band. Let us denote the frequency response of the filter by H(jwv) [where .`w' is the angular 

frequency in radians/sec]. For frequencies in the pass-band, the magnitude H(jw) I is 

relatively high and ideally a constant. A stop-band is characterized by a small (ideally zero) 

H(joj) 

Here, we need a low pass (LP) filter to remove high- frequency disturbance. At the 

same time, minimal loss of signal components in the pass-band needs to be ensured. Let us 

compare the magnitude response of four different kinds of low-pass filters. 

A; 
w 

(c)Sixth order Inverse Chebyshev 
	 (d) Sixth order Elliptic 

Figure 5.8: Magnitude Response of Four Different LP Filters [31 ] 

The pass-band is characterized by : AiSI H(jav) j_<A and the stop-band by 

0<~ H(ja) f<A2, A l is never less than A/2 '2 .  The frequency band cU i <w4I~2, between the 

pass-band and stop-band is called the transition band. The response decreases continually 

within this band. 

The cut-off frequency coc is taken same as the. passband 'frequency CO, for Chebyshev 

and elliptic filters. For Butterworth and Inverse Chebyshev, co c is the frequency at which the 

gain falls by 3dB, i.e. where lH(jw)1= A/2" 2 [31]. 

It is seen that although Butterworth filter does not possess a sharp transition, it offers 

the maximum flatness in the pass and stop bands, compared to the others. This maximally 

flat magnitude response makes it the most commonly used frequency domain filter. 

60 



The basic Butterworth low-pass filter function is given as, 

f-lere, N denotes the order of the filter and suffix `a' in H u (jo)) stands for the frequency 

response of the analog filter. A Butterworth filter is completely specified by its order and 

cut-off frequency. 
Following figure shows the magnitude response for different values of N. 

IH11(ic)I 

A 

A 
2112 

Figure 5.9: Butterworth LP Magnitude Response for Different Filter Orders [31] 

The ideal low-pass filter response is shown in dotted line. The filter response is monotonic 

in the pass-band as well as in the stop-band. It is apparent that the Butterworth response 

more closely approximates the ideal response (i.e. more flatness in pass-band along with 

faster and sharper transition to stop-band) as the order N increases. The Butterworth filter is 

said to have maximally flat magnitude response (compared to other filters of same order) 

since the first (2N-1) derivatives of H,,(jw) 2 are zero at o=0. 

However, the phase response of the Butterworth filter becomes more non-linear with 

increase in order as shown below.  
~W0 	 0 	1 	2 	3 

0 

(rad) 

-4 

(a) 2nd order 

Gal 

(rad) 
-J 

w4 

(b) 3rd order 

61 



(rad) 

(c) 5th order 

Figure 5.10: Butterworth LP Phase Response for Different Filter Orders [3 1] 

Wu( o) 
(rod) 

(d) 6th order 

But linear phase characteristic is essential to ensure minimum distortion of the 

original signal after filtering. In our application, second order Butterworth low pass filter 

with cut-off frequency 70 Hz seems to be the best. 
However, we use . the . Butterworth filter in - the discrete form. Let us see how the 

discrete transfer function, H(z) can be derived from equation - (5.1). 

Changing equation (5.1) in terms of Laplace variable `s', we get 

)2N) 
1 

	
........ ................................(5.2) 

1+( S 

The poles of the squared transfer function [in equation (5.2)] are located with equal 

spacing around a circle of radius w, in the s-plane, distributed symmetrically on either side 

of the imaginary axis s = j w. 

Imaginary 

Left-halt s-plane 
	 Right-halt s-plane 

pV4 
Real 

►~~ 
	 ►~~ 

Butterworth circle 
radius = 1.453085 radians 

Figure 5.11: Pole Locations of H,, (s)H,, (—s) [4] 
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Following observations can be made regarding the pole locations: 

1. No pole will lie on the imaginary axis itself (i.e. s =j). 

2. Poles will appear on real axis for odd N. 

3, The angular spacing between the poles is 7t/N. 

4. If H 1 (s)H,(—s) has a pole at s= si,, it will have a pole at s = -sr  as well. 

5. For the filter  coefficients to be real, complex poles must appear in conjugate pairs. 

6. The pole positions in the s-plane are given by, 

r 1  (2i-

S = CO,eJlr\2} 2N ) ..........................................(5.3) 

Where, i =1,2,...I.......2N 

In order to obtain a stable and causal filter, we need to form H,, (s) with only the N 

poles on the left-hand side of the s-plane. Selecting these poles the transfer function in the 

analog Laplace domain becomes as given in equation 5.4. 

HC (s) 	(s — Pi)(s — PA)(s p3 )............ (s — 
PN) ........................... (5.4) 

where, pk, k=1,2.........N, are the N poles of the transfer function in the left-half of the s-

plane, and G is a gain factor specified as needed to normalize the gain at DC (s = 0) to be 

unity. 

The transfer function H1 (s) may be mapped to the z-domain by applying the 

bilinear transformation as follows: 

.(5.5) 

Here, T denotes the sampling interval. If the sampling frequency. of ECG recording be 

1 KHz; T=1 ms. The transfer function H(z) obtained after bilinear transformation can be 

simplified to the form, 

H(z)=  

Ea.z-F  
k=O 

......................................(5.6) 
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where ak, k=0,1,2, ....,N are the filter coefficients or tap weights (with ao=1) and G' is the 

gain factor needed to obtain IH(z)H=tat DC, that is, at z =1. We can see that the filter has N 

zeros at z=-1. 
If x(n) be the input and y(n) be the output, we have the following input-output 

relation of the filter: 
N 	 N 

Y(n) _ Y bkx( 12 —k)—k)—La~Y(n —k) ............................. (5.7) 

Where bk, k=0,1,2, ....,N are another set of filter coefficients or tap weights. 

The filter is now in the form of an IIR filter, whose direct form realization is given 

in figure 5.12. 

x(n) 

z.. 

Figure 5.12: Direct Form Realization of the IIR Filter [4] 

In our case, the Matlab function `butter' is used to generate the filter coefficients 

with specified order (second order) and cut-off frequency (70- Hz). Following figure 

demonstrates the performance of this filter on ECG data. Input to this filter is the ECG 

obtained after adjusting the reference and cancelling the.baseline wander. 
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Figure 5.13: Performance of Butterworth Low Pass Filter 

5.2.2. TIME DOMAIN FILTERING 

Time domain filters are useful in eliminating random noise. In most cases, time-domain 

processing is found to be faster than frequency domain filtering [4]. For ECG signal 

conditioning, Savitzky-Golay (SG) Filter is sometimes used as an alternative to Butterworth 

LP filter. SG filter can be thought of a generalized Moving Average (MA) filtering. For 

better insight, we begin with MA filtering. 

A Moving Average filter smooths data by replacing each data point with the average of 

the neighbouring data points defined within the span [32].. The general form is as follows, 

y(n) = Ybk x(n — k) .............................................:..(5.8) 
k=0 

Where, x and y are the input and output of the filter, respectively. The bk values are the filter 

coefficients or tap weights, k=0,1,2........., N.. `N' is the order of the filter. The effect of 

division by the number of samples used (N+1) is included in the values of the filter 

coefficients. The signal flow diagram of a generic MA filter is given in the following figure. 
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Figure 5.14: Signal Flow Diagram of an MA Filter [4] 

The z-domain transfer function of the filter is given as, 

H( z ) = 

 

Y(z)  - Ebk z-k  = bo  +b,z-' +b2z 2  + .................. +b , ,z -N (5.9) 
X (Z) k=p 

An MA filter is a finite impulse response (FIR) filter with the following attributes and 

advantages: 
The impulse response h(k) has a finite number of terms: h(k) = bk 

k=0,1,2......... ,N. 

• An FIR filter may be realized non-recursively with no feedback. 

• The output depends only on the present input sample and a few past input samples. 

• The filter-transfer function in z-domain has no poles except at z = 0. This makes the 

• filter inherently stable. 

• The filter has linear phase if the series of tap weights is symmetric or anti-symmetric. 

Savitzky-Golay Filtering can be thought of as a generalized moving average. SG 

filter-coefficients are derived by performing an unweighted linear least square fit using a 

polynomial of a given degree. For this reason, it is also called a digital smoothing 

polynomial filter or least squares smoothing filter. 
Matlab function 'sgolayfilt' is used to implement the SG filter with specified degree 

(d). of fitting polynomial and filter span (s). The following two conditions must be ensured, 

1. The span (s) must be odd. This is also known as the frame size. 

.2. The polynomial degree (d) must be less than the span (s). If d = s-1, the filter will. 

produce no smoothing. 



SG filter is typically suitable to smooth out a noisy signal whose frequency span 

(without noise) is large, like our ECG signal. In this type of application, SG filters perform 

much better than standard averaging FIR filters, which tend to filter out a significant portion 

of the signal's high frequency content along with the noise [5]. SG filters are optimal in the 

sense that they minimize the least-squared .error in fitting a polynomial to frames of noisy 

data. Following figure demonstrates the performance of SG filter (with d= 2 and s = 5) on 

the same signal of figure 5.13 (a). 

Figure 5.15: Performance of Savitzky-Golay. Filter 

5.2.3. DRAWBACKS OF BUTTERWORTH/ SAVITZYKY-GOLAY FILTER 

The advantage of the Savitzky-Golay Filter is that it takes lesser computation time. 

However, it is not possible to predict which one is the best among these two. For some ECG 

data sets, Butterworth LP filter works better than Savitzky-Golay Filter, whereas for some 

other data sets the latter is found to be better. It depends on the nature of contamination. 

For Butterworth low-pass filter, the cut off frequency is taken as 60-70 Hz in our 

application. However, ECG signal itself sometimes has frequency components more than 70 
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Hz (specially the QRS. complex). Under such circumstances, Butterworth Filtering produces 

severe distortion of the signal. Savitzky-Golay filter also performs poorly on narrow peaks. 

This becomes evident from the following figure. 

Savit ky-Golay Smoothing 
as 
60 

40 

20 

2 	3 	4 	o 	 b 	 • 	 1' 

tai  .. 

date 
— S-G adratic 

2 	3 	4 	 o 
(a) 

2 	s 	a 	5 	6 	7 	 e 
(C) 

Figure 5.16: Performance of Savitzky-Golay Filter on Narrow Peaks [32] 

Figure (a) shows the data added with noise. Figures (b) and (c) show the result 

of smoothing; with a: quadratic and quartic polynomial respectively. The dotted line 

represents the data without adding noise. Higher degree polynomials can more accurately 

capture the heights' and widths of narrow peaks, but can do poorly at smoothing wider peaks. 

We use quadratic polynomial fitting in our application. This reduces the sharpness of the 

QRS complex sometimes. 
Cancellation of frequency content greater than 70 Hz by Butterworth LP filter 

or smoothing by SG filter might -smooth out the R peak sometimes along with the noise. 

Therefore,-resampling (as discussed in next chapter, section 6.4) is often used during R peak 

detection to enhance the sharpness. 
Both of the filtering schemes for high frequency noise elimination will 

introduce some distortion in the ECG signal, however small it may be. Still, this filtering is 

essential before delineation. Therefore, we use the two-stage filtered (i.e. baseline wander 
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cancelled and Butterworth LP/Savitzky-Golay filtered) ECG signal only for delineation 

purpose. For Principal Component Analysis, QRS complexes are extracted from the one-

stage filtered (i.e. only Baseline wander cancelled) ECG signal based on the delineation 

result as discussed in Chapter 7. 



CHAPTER6 

DELINEATION OF MULTI-CHANNEL ECG 

Most of the clinically useful information in the ECG is found in the intervals and amplitudes 

defined by its significant points (characteristic wave peaks and boundaries). Delineation of 

ECU signal means identifying the component waves and complexes in each and every heal. 

In our algorithm, we will detect 11 fiducial points in each beat. P and T waves are delineated 

completely by locating the wave onsets, offsets and peaks for each (corresponding to six• 

marking points per beat). For QRS complex delineation, we detect the locations of Q wave 

onset, Q peak, R. peak , S peak and S wave offset (5 marking points per beat). 

The -automatic detection of ECG waves is important to cardiac disease diagnosis. A 

good performance of an automatic ECG analysing system depends heavily upon the accurate 

and reliable detection of the QRS complex, as well as the P and T waves [34]. 

6.1. RELATED LITERATURE SURVEY 

ECG delineation, specially the QRS complex detection has always been a subject of major 

importance in research. An extensive review of approaches proposed in the last decade can 

be found in [34]. One can find in the literature many different delineation approaches based 

on mathematical models, the signal envelope, matched filters, ECG slope criteria, second-

order derivatives, low-pass, differentiation, the wavelet transform, non-linear time-scale. 

decomposition, adaptive filtering, artificial neural networks or hidden Markov models [14]. 

Lot of research has been made in the field. of ECG delineation using Wavelet 

Transform (WT). In [15][14][35], Dyadic Wavelet Transform (DyWT) has been proposed. 

A spline wavelet, which is a derivative of a smoothing function,-, has been used as the 

prototype mother wavelet. The implementation is carried out by means of digital filters. The 

WT at'a particular scale is proportional to the derivative of the filtered version of the signal 

with a smoothing impulse response at that scale. Therefore, the zero-crossings of the WT 

correspond to the local maxima or minima of the smoothed signal at different scales, and the 

maximum absolute .values of the WT are associated with maximum slopes in the filtered 
signal. 
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In [15], first modulus maximum lines corresponding to R waves are searched across 

four different scales, namely, 21, 22  ,23  and 24, using different threshold for different scales 

(based on the corresponding rms value). For a valid R wave, the Lipschitz regularity [34] 

must be greater than zero. Also, the R wave corresponds to a positive maximum-negative 

minimum pair at each characteristic scale. After applying certain definite criteria, the 

isolated and redundant modulus maximum lines were rejected.. Finally the R peaks were 

located at the zero-crossing points between the positive maximum-negative minimum pairs 

at scale 2'. On the right and left of each detected R peak, the local modulus maxima lines 

were taken care of for the delineation of rest of the wave peaks and boundaries. 

In [14], the same procedure of [15] is extended and evaluated on several manually 

annotated databases. They also generalize the filter coefficients (for DyWT) for different 

sampling frequencies of the'ECG. Moreover, they considered more morphological variations 

for T wave in addition to those listed in [15]. 

In [35], only the QRS complex detection is accomplished as they are more interested 

in the heart rate variability. They made use of the property that the absolute value of DyWT 

has localized maxima across several consecutive scales at the instant' of occurrence of 

transients. Applying a definite threshold criterion, the peaks are located in a particular scale. 

Then the next higher scale is scanned in the same way. If the no. of peaks in both cases does 

not agree, computation is. carried out for the next scale. Finally, for acceptance as QRS 

locations, three consecutive scales should agree, on the same no. of peaks and also the 

corresponding peak locations in different scales must be within tolerable time deviation. 

In [36], an on-line QRS detection algorithm was developed based on the Haar 

Wavelet and implemented as a recursive filter. They also use magnitude threshold to 

determine the location of R peaks. 
In our algorithm, the DWT decomposition as discussed in section 4.1.7 is used with 

Haar function as prototype wavelet. A running window and subsequent accumulation 

method makes our approach threshold-independent. 

6.2. MOTIVATION 
The first level details coefficients obtained from the Haar wavelet based DWT 

decomposition of ECG signal (after conditioning) are analysed in our method. In this 
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section, we will try to discover the utility of `Haar' wavelet in ECG delineation. As depicted 

already in figure 4.13, Haar function has a step nature. This is found to be very sensitive to 

any slope change in the original, signal. 

Before going to the real ECG signal, the Haar wavelet is applied on some signals 

with specific shape (e.g. a straight line with a constant slope, a triangular wave, a cosine 

wave etc). Every signal is decomposed into first level approximation (Al) and details 

coefficient (Dl) as in Figure 4.9. Now the reconstruction is performed with Al set to all 

zeros following the same , strategy of Figure 4.11. The signal, produced this way will be 

nothing but the Dl coefficients time-aligned to the original signal (by means of up-

sampling). This signal (reconstructed back with Al all zeros) is referred to as the `First 

Level Details Signal (FLDS)' throughout this chapter. 

First let us see the FLDS obtained from a straight line signal with constant slope. 

Straight line signal 

—+ FLDS 

Figure 6. 1: First Level Details Signal Resulting from a Straight Line . 

The above figure shows that all the samples of FLDS are of the same amplitude and 

of alternating signs. 

Now, the same thing is repeated on a symmetric triangular wave. 

Symmetric Triangular 
Pulse 

—* FLDS 

Figure 6.2: First Level Details Signal Resulting from a Triangular Pulse 

The above figure illustrates the following characteristics to be discussed next. 
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(1) Samples of FLD.S are of the same -amplitude and alternating signs as long as the 

slope remains constant. 

(2) When the slope of the signal is zero, FLDS samples have zero magnitude. 

(3) When there is a direction change (or sign change in slope) in the original signal, e.g. 

at the peak of a triangle, two consecutive samples of FLDS are of same sign. Here, 

when the slope changes its. sign from positive to negative (i.e. direction of signal 

changing from +ve to —ve signifying a positive peak), that reflects two consecutive 

positive samples in FLDS--- the first one of them marking the instant of direction 

change (or in other words, occurrence of peak)..  

(4) The slope magnitude is the . same on either side- of the triangle, only the sign is 

different. This owes to the symmetry of the triangle. So, all the samples of FLDS 

falling under the span of the triangle are of same absolute magnitude. 

Next, let us see what happens to the FLDS. if the triangle of the previous example is 

made just upside down. 

7 77 
Symmetric Triangular 
Pulse'(-ve Peak) 

—* FLDS 

Figure 6.3: FLDS Resulting from a Triangular Pulse with Negative Peak 

It can be seen that when there is a negative peak (signifying direction change of the signal 

from —ve to -+ve), there are two consecutive samples in FLDS with `negative' sign — the first 

one marking the instant of the peak. 
The flowing two characteristics are computed from the FLDS, on the basis of 

observations made so far:. 	. 

1. Direction Change Mark (DCM): This is a time vector comprising the same no. of 

elements as the original signal or FLDS. All elements of this vector will have zero 

magnitude except at the direction changing points. Whenever there are two positive 
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consecutive samples in FLDS, the element of DCM corresponding to the first sample 

will be '+1'. On the other hand, two consecutive negative samples of FLDS will 

reflect a '-1' in the corresponding element of DCM. Therefore, a '+1' in DCM will 

signify a positive peak in the original signal and a '-1' will .represent a negative 
peak. 

2. Direction Change Sharpness (DCS): This is also a time vector having exactly the 

same span as DCM. All, the elements of DCS will be zero except at those positions 

where DCM has a non-zero value. 

If DCM has a `+1', the corresponding sample of FLDS is tracked. The 

absolute difference in magnitude between this sample and the next sample of FLDS 

is calculated and this value is put at the corresponding position of DCS. 

If DCM has a '-1 ',.again the corresponding sample of FLDS is tracked. The 

absolute difference in magnitude between this sample and the next sample of FLDS 

is calculated like before. Now, this difference is multiplied with —1 and the 

resulting negative value is put at the corresponding position of DCS. 

Therefore, the samples of DCS will be a replica of those of DCM as far as the 
sign is concerned. 

• If the DCM sample is zero, corresponding DCS sample will also be zero. 

• If the DCM sample is positive (i.e. +1) , the -corresponding DCS sample will also 
be positive (but can have any magnitude depending on FLDS). 

• If the DCM sample is negative (i.e. -1) , the corresponding DCS sample will also 

be negative (but can have any magnitude depending on FLDS). 

Now let us see how these things , FLDS, DCM and DCS will look like on a cosine signal. 

L - 	1 	Cosine Signal 

lllltlllllllli ~'1ti 	r 	111 Il n1P5'~ }(. 	—iP 	FLDS 

- 
	— 	

--- D CM 

—+ DCS 

Figure 6.4:,FLDS, DCM and DCS Resulting from a Cosine Signal 
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• In Figure 6.4, we can. see that the slope of the cosine signal varies continuously and 

the samples of FLDS follow the pattern of slope change closely. We have a collection of 

ordered pairs of consecutive samples--- elements belonging to the same ordered pair will 

have the same magnitude but opposite sign. This leads to the symmetrical positive and 

negative halves of FLDS. Moreover, two consecutive samples of FLDS (belonging or not 

belonging to the same ordered pair) are always of opposite signs------- - only exceptions are 

found at the local extrema of the original signal (where the slope changes its sign). 

However, DCM or DCS are only sensitive to the change in `sign' of slope (i.e. a 

direction change in the signal) and not to the • change in `magnitude' of slope. While 

observing the difference in magnitude of DCS elements in Figure 6.4, the time discretization 

in plotting should be taken care of. 
Now, let us see the application on real ECG segments (after two-stage conditioning as 

described in Chapter 5). 

QRS Complex 

--0- FLDS 

.40 

ur 

6 ~on 	p- k 	
Soff 

	

R 
- 	Spk 	—* DCM 

Qp 

~— 	— — —► DCS 
p 

Figure 6:5: FLDS, DCM and DCS Resulting from a QRS Complex 

It can be seen that five direction changing points are marked in DCM 

corresponding to a QRS complex, namely, Q onset, Q peak, R peak, S peak and S offset. 
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(a) 	 (b). 

Figure 6.6: FLDS, DCM and DCS Resulting from (a) P Wave, (b) T Wave 

For both of P and T waves, the onsets, offsets and peaks have been marked in DCM. 

Now, for each.ECG beat, 11 fiducial points are marked as shown in figure 6.7. 

—4 One ECG Beat 

00  00  ISO  200 . •  250  300  350  400 

--® FLDS 

•~0 	 SO 	 100 	 150 	 ,00 	 i50 	 ]00  

0  -  50  100  Igo  2110  350  300  250  a 

L  1 " 
0  50  I00  1!0  )00  ]50  ]00  ]50  Ii 

:Pon,.2:Ppk, 3:Poff, 4:Qon , 5:Qpk, 6:Rpk, 7:Spk, 8:Soff, 9:Ton, I O:Tpk, I I:Toff 

Figure.6.7: FLDS, DCM and DCS Resulting from a Whole ECG Beat 

DCM 

—* DCS 

6.3. SINGLE CHANNEL DELINEATION STRATEGY 

First we will start with the.delineation strategy on a single channel ECG data. Then it will.be 

modified for multi-channel delineation. 

R Peak Detection 

All the E, peaks from the ECG data are detected first, after proper conditioning. For 

this, we take help of a running window of fixed length. The procedure can be described step 
by step as follows: 
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1. Window Length Selection: 
First few seconds (2-6 seconds) of ECG containing some 5 or 6 R peaks is plotted on a 

graph to decide on the window size. The mean R-R interval (observed from this plot) is 

taken care of while deciding the window length (WL) for the whole data. 

WL should only satisfy the following two conditions: 

(1) It should be less than one R-R interval. This will prevent false negative (defined in 

section 6.5) detection. 

(2) It should be more than half of the R-R interval, to prevent false positive (defined in 

section 6.5) detection. 

2. Extending Data Length: 
The ECG data-length is extended at the end by a set of samples of zero amplitude spanning 

WL. Say if the ECG length be L,. the new length will be (L+WL). The last WL samples will 

all have zero magnitude. 

This is. done so that even the last data sample can be analysed properly. The 

window translation is carried on the signal of length (L+WL). Translation is stopped when 

the remaining data length is found to be less than WL. 

3. Running Fixed Length 'Window: 
The window is made to run over the whole data set (spanning L+WL) in steps of say 5 

samples (sampling frequency of ECG being in the range of 250-1000Hz). A still smaller step 

will take longer computation time. However, a longer step might introduce errors in 

detection (reason will be clear in the next step). The incremental step (IS) of 5 samples 

seems optimal. IS should be chosen in such a way that WL- is always divisible by it. 

The . instant of occurrence of the max/min (depending on. R peaks being 

positive/negative) value of DCS inside each window is noted. If the window encompasses 

any R peak, then it will cause the sharpest direction change in the ECG, and hence the 

max/min value in the corresponding sample of DCS. If the channel is known to have 

positive R peaks, the time of occurrence of the highest DCS value for each and every 

window will be accumulated in a vector called `Extreme Direction Change Sharpness' 

(EDCS). If the ECG channel contains negative R peaks, the time of occurrence of the lowest 

values of DCS will be accumulated in EDCS. Following figure 6.8 illustrates the. 

phenomenon. 	 , 
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Figure 6.8: Running Window on ECG Signal 

In the above figure, the ECG channel consists of positive R peaks. Hence, the instant of 

occurrence of the highest DCS value inside each window is saved in EDCS. Also it is seen 

that in each ECG beat, the DCS corresponding to the R peak is the highest. 

An interesting phenomenon is noticed afterwards. If the same R peak is 

enveloped by `n' consecutive windows, the same value will occur consecutively n times in 

the EDCS vector. Following figure makes this observation clear. 
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• Figure 6.9: Running-Window on one ECG Beat 

It is seen that all the above windows, except win (i+n) envelop the same R peak 

and hence they will reflect the same value in EDCS. Here the number of windows, which 

are tracking the same R peak, is assumed to be V. Let us examine the value of this V. 

It can be seen that `win i' is the first window, which starts enveloping this R peak 

and `win (i+n-1)' is the last one to track this same R peak. From `win (i+n)' onwards, this R 

peak will not be encompassed. The end of `win i' and the start of the `win (i+n)' are exactly 

coincident. This is ensured by the divisibility of WL by IS. Hence we can easily interpret, 

n=WL/IS .....................................................(6.1) 
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4. Identification of R peaks from EDCS Values: 

After the windowing and accumulation of EDCS over the whole length of signal is 

accomplished, the next concentration is on localizing the R peaks. First, all the values of 

EDCS greater than exact ECG length (L), are discarded. Now, the elements in EDCS 

occurring at least `n' times consecutively are denoted as the locations of R peak. 

It can now be understood why IS should not have a large value. For larger IS, total 

no of window positions (in course of translation) will be lesser and that will lead to lesser 

accumulation of each individual R peak in EDCS. Under such circumstances, the 

accumulation of R peak might become comparable with that of P or T peaks. This is why IS 

should be kept as small as possible depending on the computation time that can be allowed 

and the memory resources. 

5. Enhancement of DCS: 

It is clear that the success of R peak localization solely depends on the elements of EDCS, 

which are in turn determined by' the samples of DCS. If some mechanism can be devised, 

which will enhance the DCS samples corresponding to R peak locations --- that will surely 

be an improvement in our methodology. With this aim, three different sets of DCS are 

calculated: 

1) DCS up: ECG Signal (after extending by WL) is up-sampled by a factor of 2 and the 

DCS corresponding to this upsampled ECG is computed. Now, in order to achieve the same 

length. (L+WL) as the normal ECG, this DCS is downsampled by 2. 

2) DCS normal: The DCS obtained from the ECG signal (after extending by WL) with 

normal sampling rate. 

3) DCS_down: Original ECG Signal (after extending by WL) is down-sampled by a factor 

of 2 and the DCS corresponding to this down-sampled -ECG is calculated. Now, in order to 

achieve the same.length (L+WL) as the ECG, this DCS is up-sampled by 2. 

Therefore, all the three, namely, DCS_up, DCS_normal and DCS_down are time 

aligned with the.normal ECG signal (originally recorded). We calculate the modified DCS 
as follows, 

DCS_modified = DCS_up + DCS_normal + DCS_down ............(6.2) 
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The window translation is carried on DCS_modified . EDCS formation and 

thereafter R peak detection is now made considering the modified DCS. Up-sampling is 
.done by means of interpolation and down-sampling, by discarding every alternate sample. 

Following Figure 6.10 shows the enhancement of DCS_modified in comparision to 

DCS_normal corresponding to R peak locations, 
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Figure 6.10: Enhancement of R Peaks: DCS_normal & DCS_modified Compared 

• The vertical scales should be noted while comparing DCS_normal and 

• DCS_modified in the, above- figure. This. modified DCS is only used for R peak detection. 

For delineation of P,Q,S and T waves we use only DCS_normal (refered to as DCS). 

6. Modification of R peak detection method for Exercise ECG: 
For exercise ECG, the bprri is not stable 'any more and hence the beat-to-beat 

variation in R-R intervals is quite high. For that reason, it is not reasonable to keep the 
window length (determined on the basis of initial R-R intervals) fixed for the whole data. 

I-ere, we, split the ECG in segments of 5 minutes with an overlap of 2 seconds between two 
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consecutive segments. Now, for each segment, the R peak detection will be carried out as 

described before. The mean R-R interval obtained from the previous segment is taken care 

of to determine the window length (WL) for the next segment. 

P & Q Waves Detection 

Alter detecting all R peaks in the ECG, we now zoom into each and every beat. A search 

window, spanning half of the previous R-R interval is taken prior to each detected R peak as 

shown in Figure 6.11. 

Figure 6.11: Detection and Delineation of P and Q waves 

Here, it is an example of a positive R peak, negative Q peak and positive P peak, reflecting 

`+1', -̀1' and `+1' in DCM respectively. The `-1' in DCM immediately prior to the R peak 

is the, location of Q peak. The '+1' just before the Q peak is the onset of Q wave. Had the Q 

peak been positive, it would have caused a `+1' in DCM and the corresponding Q-onset a '- 

Now after detecting the Q onset, the highest positive DCS value prior to it is 

located. This is the P peak. The two `-1' in DCM surrounding the P peak are its onsets and 

offsets. Had the P wave been negative, search should have been made for the lowest 

negative DCS value to locate the peak and the two surrounding '+1' in DCM for the onset 
and offset. 
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S & .T Waves Detection 

In a similar method, S and T waves are delineated in each and every beat after detecting all 

the R peaks in the filtered  ECG. Here, for each beat, a search window spanning half of the 

next R-R interval is takennext to each detected R peak as shown in Figure 6.12. 

1' and '+l'. in DCM respectively. The `-1' in DCM immediately next to the R peak is the 

location of S peak. The '+I' in DCM immediately after the S peak is the offset of S wave. 

Had the S peak been positive, it would have reflected a '+1' in DCM and the corresponding 

S-offset a `-1'. 
On the right of S offset, the T wave peak, onset and offset are determined in the 

sane manner as it is for P wave. 
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6.4. MULTI—CHANNEL DELINEATION 
T 

When there are many different channel data pertaining to the same ECG record, it is 

reasonable to take into consideration the delineation result obtained from a number of 

channels to reach the final decision. 

The - R peak detection is carried out simultaneously on several channels. The 

selected channels for this purpose. should have unipolar R peaks (negative or positive) as 

shown in the following figure 6.13: 

(a) Positive R Peak 	 (b) Negative R peak 

Figure 6.13: Unipolar R peaks 

The detection strategy for each individual channel will be exactly same as that 

described before under section 6.3. Say, we select 20 channels for R detection and the no. of 

beats present in the ECG is say 10. Now, each of these 10 R peaks will be detected in 20 

channels. So, for each and . every R peak location, there will be 20 values (or sample 

numbers). 

Say for one particular R peak, we have the following result (denoting the sample 

no.) from 20 different channels: 

99,99,1O1,99,100,120,99,99,100,101,98,100,1 00,94,100,99,98,100,100,99 

A histogram plot of these values is given in figure 6.14. 

Figure .6.14: Histogram for Saine R Peak Location Detected in 
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It is seen that the values 100 and. 99 are -having the highest , frequency of occurrence. 

Therefore, the final decision regarding this R peak location will be the sample number, 

obtained as the integral. mean of 100 and 99 (i.e. 100). The general rule is to find out the 

value with highest frequency of occurrence. If more than one' value is found to satisfy the 

same condition, the integral mean of them is taken as the final decision. 

The number of false. positive or false negative detections (defined in section 6.5) can 

be reduced considering multiple channel results. 'In order to be accepted as a final decision, 

the same R peak needs to be detected at least in half the no, of selected channels (here 10). 

This way, false positive detection is reduced. On the other hand, if there is any false negative 

detection in one channel, the same can be corrected, considering delineation 'results from 

other channels. This way, our delineation algorithm becomes more robust and independent 

of single channel errors. 

After 'computing the final decision regarding. the. R peak location in Multi-Channel 

ECG, next step is the delineation of P,Q,S and T waves. For P and T waves, only the peaks 

are detected in the first go. Again simultaneous detection is performed on selected number 

of channels. The channels selected for P/T wave delineation should have a prominent 

unipolar P/T wave (negative- orpositive peak). Channels selected for Q/S delineation should 

show prominent Q/S spikes. The same kind of histogram-based method is used 'to get the 

final: delineation result for PR.peak, Q onset, Q peak, S peak, S offset and T peak. 

Now with the final decision regarding the locations of P and T peaks, the respective 

onsets and offsets in different channels are identified based on the same peak locations for 

all channels. Again, the histogram method is taken care of to get the final delineation of 

onsets and -offsets of P and T wave. 

Therefore, the delineation is carried out in three stages: 

1. R peaks delineation 

2. Q peaks, Q onsets, 'S peaks, S offsets, T peaks and P peaks delineation 

3. Delineation of the onsets and offsets of P and T waves 

Each delineation stage is dependent on the previous stage. The channels for 

delineation should be selected judiciously so as to ensure prominent wave-shapes. 
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The result of delineation obtained from our algorithm is stored in a matrix form, as 

shown in the following figure. Each row represents information pertaining to a particular 

beat, whereas each column denotes one of the 11 fiducial points. 

Pon Ppk Poff Qon Qpk Rpk Spk Soff Ton Tpk Toff 

Beat /I 

Beat #2 

Figure 6.15: Structure of Delineation Result Matrix (DRM) 

.6.5. VALIDATION 

The performance. of the delineation algorithm was checked by comparing the automatic 

delineation result against manual delineation. Following mathematical calculations were 

performed to evaluate this comparison. 

1. Mean Error (M.E.): 
Mean of the difference between manual & automatic delineation (in terms of 

no. of samples) 

2. Standard Deviation (S.D.): 

:Standard deviation of the -difference between manual & automatic Delineation 

(also in terms of no. of samples) 

3. True and false positives /negatives: 

Real Existing Existing Not Existing Not Existing 

Predicted Existing Not Existing Existing Not Existing 

True Positive 

(TP) 

False Negative 

(FN) 

False Positive 

(FP) 

True Negative 

(FN) 
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4. Sensitivity (Se): 

Se=  TP  x 100% TP+FN 
S. Positive Predictivity (P+): 

P+_ P  x100% ......................................(6.4) TP+FP 
The algorithm of single-channel.R peak detection was tested on several records taken 

from MIT-Arrhythmia database. The output of our algorithm was compared with the manual 

annotation provided with each record. 

Record 

No. 
100 101 103 113 115 122 234 100 I03 

Channel 

No. 
1 1 1 1. 1 1. .1 2 2' 

Samples 

taken 
650000 650000 650000 650000 650000 650000 650000 650000 400000 

FN 0 3. 0 3 1 -6 20 1 0 

FP 1 4„•.. .: ; 	0 .4 6. 5. 1 0 0 

" TP' 2271 1863 2084 1791 1953 2469 2732 2271 1294 

Se 100 99.84 100 99.83 99.95 99.75 99.27 99.95 100 

P+ 99.96 99.78 100 99.78 99.69 99.8 99.96 100 100 

M.E. -1.9 -0.48 -2.23 -1.74 -3.16 -3.95 ' ' -1.43 .0.736 -2.97 

S.D. . 2.46 1.18 2.31 1.38 3.54 5.87 1.26 2.4 3.08 

Table 6.1: Validation of Delineation Result on MIT-Arrhythmia Database 

The overall Sensitivity (Se) and Predictivity (P+) obtained for MIT-Arrhythmia Database 

was 99.84% and 99.89% respectively. 

Table 6.2 shows the validation result for a 32-Channel ECG data set with sampling 

frequency 1 KHz. The output of our algorithm was compared with the manual estimation of 

first 22 beats. Manual estimation is done by us, and hence is not a perfect cardiological 

annotation. 
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Pon Ppk Poff Qon Qpk Rpk Spk Soff Ton Tpk Toff Overall 

M.E. -0.48 -1.83 -4.52 3.52 1.17 -0.52 0.26 0.09 1.08 0.78 0.09 -0.03 

S.D. 3.96 3.39 3.29 1.04 1.03 0.59 0.75 0.42 1.12 0.95 1.59 2.83 

Se 100 100 100 100 100 100 100 100 100 100 100 100 

P+ 100 100 100 100 100 100 100 100 100 100 100 100 

Table 6.2: Validation of Delineation Result on Multi-Channel ECG 

The overall Sensitivity (Se) and Predictivity (P+) values for. this dataset were both 

100% 
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CHAPTER 7 

QRS COMPLEX EXTRACTION AND ALIGNMENT 

The aim of QRS complex extraction and alignment is to create the input data matrix for 

Principal Component Analysis, as depicted in Figure 4.16. Here, different variables mean 
different QRS complexes. The total no. of observations should be taken so that even the 
longest QRS interval is taken care of. The time-alignment of .QRS complexes is needed in 

order to avoid error in PCA output. 

7.1. METHOD 

First let us see the QRS extraction methodology, which is based on our delineation. result. 
1) Determining the longest QRS span: The QRS interval is defined as the time Iength 

between the Q wave onset till the S wave offset. The longest QRS span (in terms of 

time samples) for a particular ECG dataset is determined from the Delineation Result 

Matrix (DRM) (referring to figure 6.15) and a safety factor is added to it in order to 

take care of errors in delineation. If this comes to be an even number, we make it odd 

by adding 1 to it. 

2) Initialising the QRS Extraction Matrix (QEM): This matrix should have as many 

no. of. rows as the no. of detected beats in the corresponding ECG data set (i.e. same 

as the no. of rows of DRM). The number of columns should be the longest QRS span 

plus safety factor (odd number always). 

3) Positioning of R peak: Although the delineation is carried on the ECG after two 

stages of filtering, QRS complexes are extracted from the first-stage filtered ECG 

(i.e." only after cancelling baseline wander but no high frequency filtering). The R 

peak location for a particular beat is found from DRM and then the corresponding 

magnitude is obtained from the first-stage filtered ECG and copied in the middle 

column of that particular row of QEM. 

4) Copying the QRS complex: After positioning the R peak in the middle column of the 

respective row, the ECG sample magnitudes are copied from both sides of the R 

peak in QEM. 

Figure 7.1 demonstrates the procedure of QRS extraction from a particular channel. 

a 



N 

(a) One-Stage Filtered ECG 
(no high frequency filtering) 

NECKe 
Column 

Mex QRS M rdian+safety factor 

Odd no. of column 

Figure 7,1: QRS Extraction Procedure 

If the QRS Delineation is made perfectly, then the extracted QRS will be time-aligned. We. 

can see in figure 7.1(b) that all the R peaks lie in a vertical line. However, if there is any 

error that 'creeps in delineation result, it will lead to misalignment. Hence,, improved 

alignment of extracted QRS complexes is performed based on cross-correlation technique. 

The procedure is as follows. 
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1) Calculate the mean QRS by taking the mean of all rows of QEM and consider this as 

the template for cross-correlation. The idea of taking the mean as the template for 
cross-correlation has been an inspiration from [37] and [38]. 

2) Calculate the cross-correlation coefficient between each of the extracted QRS and 
the template. 

3) Now shift each of the QRS complexes a little bit towards left and towards right (till 

+3 and —3 samples) from the template and go on calculating the cross-correlation 
coefficient between the template and the QRS at that position. 

4) Each QRS is finally aligned at the position corresponding to the highest cross-

correlation coefficient. The final matrix containing aligned QRS is referred to as the 
PCA Input QRS Matrix (PIQM). 

Before applying the above method on our extracted QRS complexes, _ it was tested on 100 
shifted Meyer Functions. Following figure shows the result. 



This method will correct if there is any misalignment between the extracted QRS 

.complexes. Following figure 7.3 shows, this correction. 

(a) Extracted QRS 
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(b) Aligned QRS 

Figure 7.3: QRS Alignment: Case I 
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However, if the QRS are already aligned after extraction, this procedure will make no 

difference. Following figure illustrates this point. 

tai s xrractea Qr%b: Alreday'l'ime- aligned due to perfect Delineation 

(b) Output of Alignment Algorithm:,  Same as input (a) 
Figure 7.4: QRS Alignment: Case 2 

Output of this stage, i.e. the matrix PIQM will be the input to our next PCA module. 
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CHAPTER 8 

TEMPORAL & SPATIO-TEMPORAL ANALYSIS OF QRS COMPLEX 

This analysis is performed on QRS complexes extracted from Multi-Channel ECG of 

healthy young people, of age between 22 and 33. The respiration signal acquisition was 

carried out simultaneously while recording the ECG. Apart from the QRS data, two more 

vectors are used in the analysis of every data set, namely the heart rate vector and the 

respiration vector. First we shall see how these are computed. 

8.1. DEFINING RESPIRATION & HEART RATE VECTORS 

The Respiration Vector R = [r, , r2  ......rN ] , where N represents the total number of beats in the 

ECG data, is computed from the acquired discrete respiration signal S(n) as follows: 
n=off 

r 	S( n ) ..............................................( 8.1) 
n=on p  

Where, on, and offp  are the corresponding QRS onset and offset instants obtained from the 
Delineation Result Matrix (DRM). 

The Heart Rate Vector Hr = [h, , hz  ......hN  ] is computed from the R-R intervals (referring to 

DRM) as follows [39]: 

h 	 60 x S.F. =  

p 	DRMp+1,6  — DRM p  6 .................................($.2) 

S.F. denotes the sampling frequency of the ECG dataset. Here, it should be noted that the 6th 

column of DRM contains the R peak locations. 

8.2. TEMPORAL ANALYSIS 

The first step in this procedure is to carry out a Principal Component Analysis on the data 

matrices (D1..........,D32"64: superfix denoting channel number) from different channels. The 

matrix D' (i=1,2,....32/64 depending on 32/64 Channel ECG) is the transpose of PIQM 

(Chapter 7) for the corresponding channel. The size of D' is MxN, where M is the QRS 

duration in terms of sample numbers and N is the number of heart beats, as mentioned 
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before. This D' is the PCA input matrix. It should be noted that unlike the PCA data matrix 

definition; given in Figure 4.16, here the variables (i.e. QRS) appear along the column. This 

modification is made to take advantage of the Matlab in-built command 'princomp'. 
Similar to the PCA implementation steps mentioned under section 4.2.4, the.following 

procedure is adopted for each and every channel (by means of `princomp' command): 

1. The mean QRS is calculated as, 
1 
	 QRS' ..........................................(8.3) 

Here, `i' is the index to channel no. and `p' to the beat number, as, mentioned before. 

Each QRS', denotes a vector of length M. 

2. Next the covariance matrix C' of size NxN is computed from the zero-mean channel 

data: 

C` = 	I 	~(QRsi 	QRS i y (QRSi, — QRSi ) ............................(8 .4) 

3. The eigenvectors and the eigenvalues of C' are derived. The eigenvectors are then 

sorted in descending order of their associated eigenvalues. First k eigenvectors, 

namely erg; , eig2,........., eigA are selected as the principal components. Each of eig; , 

where -1 <_ I <_ k is a column vector of length N 

4. The representation of QRS data in each of the eigenvector space is calculated as: 
PCrepl' = D' (e1S;) ..............................................(8.5) 

Each PCrep; is a column vector of length M (i.e. the QRS vector length). 

Following figure 8.1; shows the extracted (and aligned) QRS complexes from one channel 

(made overlapped on each other). 
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Figure 8.I: Extracted QRS complexes from one channel 

Here, only the first 3 eigenvectors are selected as the principal componets, i.e. k=3. The 

eigenvalues associated to the• rest of the eigenvectors are nearly zero. Figure 8.2 shows the 

representation of QRS data in each of the first three eigenvector spaces and figure 8.3 

illustrates the associated eigenvalues (in terms of percentage variance). 

Representation in First Principal Component Space 
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Representation in Third Principal Component Space 
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Figure 8.2: Representation of QRS data in the Principal Component Space 

The change in polarity corresponding to PCrep, is taken care of by the reconstruction 

parameters to be discussed next. 
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Principal Components 

Figure 8.3: Percentage of total variance in QRS data expressed by the principal components (temporal) 

5. Thereafter, the Reconstruction Parameter Matrix RPM' _ (an,,) for each channel is 

computed on the basis of selected eigenvectors as follows, 
'  

a P.r = (PCrepi )T {QRSP  — QRS )...................................(8.6)  

The Reconstruction Parameter Vector RPV' associated with any eigenvectoreig' 

can 
be given as, 

(RPV')T 	 a 	... 	....................... .(8.7) 

RPV' is nothing but the 1 h̀  column of RPM' . 
The QRS complexes can be reconstructed in terms of the principal components as 

follows: 

QRS = QRS!  + a1 ,1  x PCrepi + a12  x PCrepz  + a1 ,3  x PCrepi 

QRS = QRS' + a2., x PCrep; + a2.2  x PCrepZ + a2,3  x PCrep3 

QRSN = QRS + aNJ x PCrepl + a,,2  x PCrepz + aN 3  x PCrep3 

The beat-to-beat variation of reconstruction parameters, heart rate and respiration for the 

same channel is plotted in Figure 8.4. 
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Figure 8.4; Beat to Beat Characteristics (temporal) 

6. Now we calculate a covariance matrix quantifying the dependence between the 

reconstruction parameter, heart rate and respiration vectors as follows: 

RPV ' RPVZ RPV3 R Hr 

RPV' 2.3678 x l 0 1.6059x105  25691 1.2586x108  2882.9 
RPV 1.6059x105  2195.8 16.156 1.475.9x 10 84.168 
RPV 25691 16.156 495.53 1.2467x 10 5.4775 

R 1.2586x10 1.4759x 10- 1.2467x 10 1.9077x 10 1.4.878x 10 
Hr 2882.9 .84.168 5.4775 1.4878x 105 10.231 

Table 8.1: Final Covariance Matrix (temporal) 

The final covariance matrix elements, given in the table above, are neither normalised, nor 

zero-centred. The relative degree of covariance between each RPV and respiration and heart 
rate vectors are as shown in figure 8.5. 
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Figure 8.5: Covariance of RPVs with Respiration and Heart Rate (temporal) 

8.2. SPATIO-TEMPORAL ANALYSIS 
The only difference between this and the former one is the PCA input data matrix. The data 

1  
matrix D for spatio-temporal analysis is a combination of all.(D ..........D

32i64) The size of  

D will be M'xN, where M'(M'=Mx32 or M'=Mx64 depending on 32/64 channel data), is 

the QRS vector length over all 32/64 cannels. Schematically, the structure of D is given as 

follows. 

Beat#1 	Beat #2 	••• 	••• 	"' 	 Beat#N 

D1 

Dwea 

Figure 8.6: PCA Input Data Matrix for Spatio-temporal Analysis 
The procedural steps (1 to 6) are exactly similar to those for temporal analysis. 

Spatio-temporal analysis identifies principal components in the combined spatio-temporal 

domain, which means considering temporal variations of all the channels pertaining to a 
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Multi-channel data set simultaneously. In this case, we end up with a single covariance 
matrix including all the channels. 	 ' 

Here also, the first three eigenvectors are chosen as the principal component. The 
percentage of total variance expressed by them is found to be similar to that for any 
individual channel under temporal analysis (referring to Figure 8.3). 

% Variance 

Principal Components 

Figure 8.7: Percentage of total variance in QRS data expressed by the principal components (Spatio-temporal) 

The beat-to-beat characteristics for spatio-temporal analysis are shown below. 
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Figure 8.8: Beat to Beat Characteristics (Spatio-temporal) 

The final covariance matrix for spatio-temporal analysis of the same data set is given in 
Table 8.2. 
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RPV' RPV2  RPV3  R 
Hr 

RPV 2'.373x10' 3.6952X10'°  5.072X10' 1.5987x 10 4.5518x 1.0 

RPV 3.6952X10 2.2483x10 2.1018x10 3.0233x10 46743 

RP V 5.072x 10  2.1018X10' 2.7733X109  2.-1678x l0 4857.8 

R 1.5987X1010 , 3.0233x1 2.1678x 10 .1.9077 X 10 1.4878 X 10 

Hr 4.5518x 10 0  46743 4857.8 1.4878x 105  10.231 

Table 8.2: Final Covariance matrix (spauo-lernpuI I l 

Here also, the elements of final covariance matrix are not zero-centred and normalised. 

The relative covariance between the reconstruction parameter vectors and respiration and 

heart rate. vectors are also found similar to those in temporal analysis (referring Figure 8.5). 
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Figure 8.9: Covariance of RPVs with Respiration and Heart Rate (Spatio-temporal) 

All the figures given here, for temporal and spatio-temporal analysis are pertaining 

to the same Multi-Channel data set. 
The reconstruction parameters corresponding to the first eigenvector shows high 

degree of correlation (covariance) with heart rate and respiration pattern, as evident from the 

results of temporal and spatio-temporal analysis. Moreover, the first principal component 

accounts for more than 99% variability in the QRS data set. Therefore, QRS morphology is 

found to be highly sensitive to the heart rate variability, as well as changes in respiration 

pattern. 
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CHAPTER 9 

CONCLUSIONS & FUTURE DIRECTIONS 

Our analysis is based on QRS complexes. The. delineation algorithm should give error-free 

result for the success of temporal and spatio-temporal analysis. To achieve this aim, we 

started with ECG conditioning. A new wavelet-based method has been proposed for the 

correction of baseline wander. The best prototype wavelets in this regard have been 

determined through simulation.-  For high frequency noise removal, Butterworth Low pass or 

Savitzky-Golay Filter was employed. However, finding out new kinds of filtering technique, 

which yields better results in this regard, can be an interesting area of future research. The 

filtering approach should be an optimum one — noise removal and ensuring minimum signal 

distortion at the same time. 

The starting point of ECG delineation is R peak detection. Our method was tested 

on nine different signals (containing a total of 18,762 R peaks) from MIT Database and it 

yielded an overall sensitivity and positive predictivity of 99.84% and 99.89% respectively. 

The algorithm was applied on 30 multi-channel data sets (containing approximately 30,000 

R peaks in total) recorded at the Institute. The result was found to be highly satisfactory. 

However, the delineation methodis based on the assumption that the R peaks cause 

the sharpest change in direction (highest DCS) in a ECG cycle. Whenever this condition 

fails, R peak detection is subjected to error. To ensure this condition, the DCS enhancement 

procedure using re-sampling was used sometimes. If the sampling frequency of ECG is less, 

this problem arises. With MIT signals sampled at the rate of 360 Hz, the use of re-sampling 

was essential to achieve good results in R peak detection. However, when the sampling 

frequency itself is more than 1 KHz, no such enhancement procedure is needed. It will be 

interesting to find some constraints, other than re-sampling to make this delineation more 

robust and accurate. 

In the Principal Component Analysis, we have seen that first three eigenvectors 

characterize the whole QRS data. The first principal component itself accounts for more 

than 99% variability in the QRS data set. This can be thought of as an efficient means for 

data compression. 
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The reconstruction parameters corresponding to the first three principal components, 

specially the first one, show high degree of correlation (covariance) with heart rate and 

respiration pattern. Therefore, we may conclude that the QRS morphology is highly 

influenced by the heart rate variability, as well as changes in respiration pattern. 

For future work in this area, the same idea can be extended to discover how the 

ECG: pattern typically changes with blood pressure. The QRS analysis, when applied to 

patient data (case of Ischemia, Ventricular Tachycardia etc) can be helpful to find a 

diagnostic pattern typical to those diseases. The correlation between QRS morphology and 

heart rate variability for different heart diseases may also carry useful diagnostic 

information. 
The idea of carrying out a PCA can be extended to P and T waves as well. These 

represent atrial depolarisation and ventricular repolarisation respectively. For the diagnosis 

some diseases, P and T wave morphology plays an important role. 

We hope that the slowly emerging cardiac diseases may be diagnosed in early stage 

with this kind of analysis. 
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Appendix I: 

GRAPHICAL USER INTERFACE FOI2 ECG CONDITIONING 

First the raw ECG data is loaded from a mat file. Immediately after that, the no. of channels 

and the data length. (in samples) are displayed. 

I 0 



The first step is baseline wander cancellation. The prototype wavelet for this purpose 

can be selected from the pop-up menu. 
The next step is high frequency interference elimination: Either Butterworth low pass 

or Savitzky-Golay filter can be selected. Now the selected filtering option will be displayed 

and the parameters for corresponding filter have to be defined by the user.. 

The filtering output can be seen from figures--- all channels at a time or a selected 

channel in selected range. There are options for redoing the filtering if the output is not 

satisfactory. 
On pressing the save command, the filtering -output (both after first stage and second 

stage separately) will be saved along with the filter description in a mat file. 
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Appendix II: 

GRAPHICAL USER INTERFACE TO DECIDE CHANNELS FOR ECG 
DELINEATION 

First the filtered ECG data is loaded from a mat file. The two-stage filtered ECG can be 

plotted on figures to aid the decision of channel selection. 

First the structure of selection matrix should be viewed by pressing the corresponding 

button. If the selection matrix for this ECG data is already defined, the button "load" will 



appear, otherwise, the button `create' will be enabled. Now, the channels should.  be selected 

one by one and if it is found to have prominent peak (P,Q,R,S, and /or T), the corresponding 

one should be marked as positive or negative by the user. The "edit" pushbutton allows 

editing the properties for a particular channel. 

•The number of channels selected for delineation of any particular wave is displayed 

• side by side to aid the user. Finally, the selection matrix can be saved in a mat file in the 

same folder of the loaded ECG data. 
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Appendix III: 

GRAPHICAL USER INTERFACE FOR ECG DELINEATION 

First the filtered ECG signal file is loaded. This file contains both—the first-stage filtered 

signal and also the two-stage filtered one. The number of channels, data length (samples) 

and the sampling rate is displayed after loading. 

First the Window Length (WL) and Incremental Step (IS) have to be decided before 

proceeding to R peak delineation. IS should be chosen on the basis of displayed Sampling 

Frequency. There are two options to initialise WL — it can be user-defined or can be 



estimated from initial beats of ECG. The estimation time (2-6 seconds) can be selected from 

the pop-up menu. 60% of the mean R-R . interval resulting from the R peak detection (first 

few seconds, as selected by user) with defined IS and 500 ms WL is displayed as the 

estimated window size. Also, the detected points are plotted in a figure on the ECG. If the 

initial detection is satisfactory, this estimation can be accepted. Else, the user can reject it 

and go for estimation with over `a longer time or can define WL without further estimation. 

During estimation, WL is always made divisible by IS The same should be ensured if it is 

defined. 	 ".. 
After deciding WL and IS, the next step is R peak detection. User may take advantage 

of upsampling and/or downsampling in this regard. After detecting all the R peaks, the 

number of beats will be displayed. Now step by step, the user can go for the delineation of 

Q/S wave and thereafter, P/ T wave. At every stage, the result of delineation can be 

displayed for the whole time range or a selected time length. 

Finally, the delineation result and PCA input-file are saved in two different mat files. 
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