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ABSTRACT

Moulti-channel ECG Signal is recorded at the Institute of Biomedical Engineering, University
of Karlsruhe on healthy volunteers. The aim of this project is to find out the pattern of
variation of the QRS complex with varied respiration and heart rates.

The recorded ECG is first conditioned in order to remove noise and artifacts. A new
method for baseline wander correction based on Discrete Wavelet Transform has been
proposed. An algorithm using ‘Haar’ wavelets has been devised to automate the Multi-
channel ECG delineation after filtering. The same was tested on MIT-Arrhythmia Database.
The resulting sensiti\}ity and positive predictivity was found to be highly satisfactory.

Principal component analysis is carried out on the extracted QRS waves to discover
the ‘basic patterns’ and the ‘most important deviations from mean’. Finally, a covariance
matrix is calculated both in the temporal and spatio-temporal domain to represent the

dependence of QRS morphology on heart rate and respiration' in different individuals.
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CHAPTER 1 |
INTRODUCTION

In today’s competltlve world, mental stress anid tension have become a part and parcel in the
dally life of ‘modern” people Asi we are tending more and more towards the urban
c1v1lisat10n, we aré losing touch with- the nature. It is a. common, fact known to all that our
aficestors lived ‘a”"much'bett'er"life-althoughvthey were less privileged by: science. The so-
called fast life style’ leads to the development of blood ; pressure and several heart diseases.
YCardlac arrest is: supposed to be the main cause of mortahty in developed countries.
. The analysm of ECG s1gnal is. extenswely used as a diagnostic tool to provide
information on ‘the- heart function. Multi- channel electrocardiography is carried out on
'healthy volunteers at the Instltute for Biomedical Engmeermg, University of Karlsruhe. The
'measurement starts w1th the subject at rest. This is continued with measurements’ after
physical exercise. Finally individual variations are investigated with statistical techniques
_ fo_r biosignal analysis. . '
The QRS complex, representing the contractile activity of the ventricles, is the
base of analysis. here. Therefore, the first conc’entration is on the automated delineation of
ECG Signal to léca‘lize‘the QRS complex in different beats. Often this becomes difficult
~ owing to the time vlarying'moruhology of the QRS and also the corruption due to noise and
artefacts from various sources. | o
Frlterlng is an essential pre-processmg stage before delineation. A new apploach
“based ‘on: Dlscrete Wavelet Transform has been devrsed here to segregate the baseline
'wander and low-frequency disturbances from ECG. ngh frequency noise and artefacts are
elzmmated by means of conventlonal Butterworth low pass or Savitzky-Golay filter.
‘ After proper condltlonmg, the ECG signal is subjected to delmeatlon A ‘Haar’
'. wavelet based method is used in th1s 1egard Final decision regarding the wave peaks and
,_ boundaues are made by analysmg the first level details coefficients. Although this method is
- specifically suited for multl channel signals, it was found to work satisfactorily on records
taken from MITfArrlrythmia Database. The methodology is extended for Pv and T wave

d‘clineat.i'on as well. Thereéfter,‘ Q'RS complexes are extracted from all the signals belonging

i~



'o‘a particnlar 1nulti—<§ham1'el data set. The R peaks are further aligned by means_of a Cross- -
,orrelatlon based technique. - ' )

' “The second stage is to carry out ‘Principal Component Analysis on these aligned
QR.S" complexes The reconstruction parameters are computed from the principal
,omponents Thereafter, a ccovariance - matrix is calculated for each ECG dataset, which
;hows ‘the correlanon between the reconstructlon parameters and also thelr relation with
esprratlon and heart rate _

. The organisation” of chapters 1s done accordmgly The second chapter gives an
>verall idea of the heart’ functlon and generatron of ECG* waveform. ‘The third chapter
ocuses on' ECG measurement the standard- 12-lead” system and "'the 32/64—channel
1cqurs.tron (taken at the Instrtute) Fourth chapter explalns the basic mathematrcal concepts
elated to th1s work gt descnbes the wavelet transform, prmcrpal component analysrs and
orrelat10n techmque The fifth and sixth chapters are related to ECG signal conditioning
ind, delineation: respectrvely The QRS extraction and ahgnment techniques are covered in
he. seventh chapter. The eighth chapter is the final stage, including PCA ‘and Covarrance
Miatrix formation. The conclusions and future directions are proposed. in chapter nine. And
last but not- the least, the front panels of the Graphical User Interface Programs developed in

Matlab 7 are given in the Appendlces



CHAPTER 2

PHYSIOLOGICAL BACKGROUND

ln this chapter, we shall -begin thh the generation of bloelectrlc potentials. The heart

anatomy, cardloyascular system electrical conduction system of the heart and generation of

ECG signal will be covered briefly.

2 1. SOURCES OF: BIOELECTRIC POTENTIALS

In: carrymg “out. their vanous functlons certain systems of the body generate theu own
momtormg 51gnals, whlch convey useful 1nformat1on about the functions they represent.
These signals are the bloelectnc potentials assoc1ated with nerve conduction, bram act1v1ty,
heart beat, muscle activity, and 50 on. Bioelectric potent1als are actually voltages produced
as a result of the electrochem1ca1 actwlty of certain special types of cells. Through the use of
tr’msducers capable of detectmg electrlcal voltages, these natural monitoring signals can be
measured and results can be displayed in a meaningful way to aid the physician in his
d1agnos1s and treatment of various - diseases. Electrocardlogram (ECG)
Electroencephalogram (EEG), Electromyogram (EMQG), Electrooculogram (EOG) etc are
examples of such types of signals, which represent the electrical activity of the heart, brain,
muscles and eye-muscles respectively. | ' i

Certam types of cells within the body, such as nerve and- muscle cells, are encased
ina seml-permeable membrane that permits some substances to pass through the membrane
'wlnle others aré - kept out. Body ﬂulds surroundmg the cells are conductive solutions
contammg charged atoms or ions. The prmcxpal jons are sodium (Na+), potassium (K+) and
Chloude (Cl ) In their restmg (unexmted) state, mernbranes of excitable cells readily permit
the entry of K+ and Cl- i fons, but_effectlvely block the entry of Na+.ions. The permeability
for I(+ is 50-100 times that for Na+ under the resting state. Since the various ions seek a
' balance between the inside of the cell and the outside, both accmdmg to concentration and
electric charge the mablhty of sodxum ions to - penetxate the membrane results in two
conditions. First, the concentration of Na+ jons inside the cell becomes much lower than that

in the intercellular fluid outside. Sodium ions carrying positive charge, therefore, will tend



. to make the outside of the-cell more pbsirive thgn the ineide. Secondly, in an attempt to
|  balance the electric ché.rge additional K+ ions enter the cell, causing a higher concentration
"-;ot potassmm on the inside than on the outside. However, charge balance cannot be achieved
'because of the concentration imbalance of K+ i ions. . Equilibrium is reached with a potential
- difference across the membrane, negative on the inside and. positive-on the outside. This
. n;rembrane'potential rs called the resting potential of the cell and is maintained until some
kind of disturbance upsets the equilibrium This potential rarlges from ~60mV to-~100mV in
' dlfferent cells. A cell in the resting state is said to be polarzzed
| When a cell is excited by 1omc current or an external stimulus, the membrane
" changes its characteristics and begins to allow some of the Na+ ions to enter. This
movement of sodium ions mto the cell constitutes an ionic current flow that, further reduces
‘the barrier of the membrane to Na+ ions. The net 1esult is an avalanche effect in which Na+
‘ions literally rush into the cell to try to reach a balance with the ions outsrde At the same
~time, potassium ions, whlch were in higher concentratlon 1ns1de the.cell during the resting
. state, try to leave the cell but are unable to move as rapidly as the Na+ ions. As a result, the
cell acquires a slightly positive potential on the inside due to the imbalance of K+ ions. This
" is known as the action potential (AP), which is about +20mV for most cells. An excited cell
displaying an action potential is said to be depolarised The process of changing from the
resting state to the action potential is called depolamsatzon |
. After some milliseconds, the rush of sodrum jons through the cell membrane stops.
'.The membrane terids to revert back to its original, selectrvely permeable condition. K+ ions
contmuously ﬂow out of the cell leadrng toa repolarisation of the cell. Finally, by an active
":-:, process called ‘sodium pump the Na+ ions are transported outsrde the cell, and thecellisin.
‘:irts original state agam .
| “Figure 2.1 shows a typical action potentlal waveform The time scale depends on
the type of cell. In the nerve and muscle cells, repolarisation occurs so rapidly following the
depolarisation that the AP appears as a spike of as little as 1 ms duration. Heart muscles, on

the other hand, repolarises much more slowly, resulting in the associated AP lasting from

150 to 300 ms.
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Figure 2.1: Waveforijn of the action potential (1

Regax dless of the method of excitation or 1nter151ty of the stlmulus (provided it is
sufﬁment to activate the cell), the AP is always the same for a given cell. This is known as
the all-o r-none law.-The net herght of the AP is defined as the difference between the
potenhal of the depolarised membrane at the peak of the action potential and the resting
potential. ' | , o

.Fellorving the generation of the AP; there is a brief period during which the cell
cannot respond to any new Sfi:mtrlus. This is called the absolute refractory period (lasting
about 1 ms in nerve cells). ‘After this, there occurs a relative refractory period, during which
another action potentlal ¢an be trlggered but a much- stronger stimulation is required. In
nerve cells, this period lasts for several milliseconds. '

When a cell is exc1ted and generates an AP, lomc currents begin to flow. This
plOCCSS can, in turn, excrte nelghbourmg cells or adJacent areas of the same cell. Now let us
see how the AP propagates in- case of muscle ﬁbre or an unmyelmated nerve fibre. The
action potentlal propagates along the whole length of a fibre without decrease in amplitude
by progressive depolarisation of the membrane. .Current flows from a depolarised region
 through the intra-cellular fluid fQ adjacent inactive regions, thereby depolarising them.
Current also flows through the extra-cellular ﬂuids; through the depolarised merrlbrane, and
back into the.intra-cellular space, completing the local circuit. The energy to maintain
coriduction is sapijlied by the fibre itself. The rate at which an action potential moves down
a fibre or is plopagated from cell to cell is called the propagarzon rate. The typical range for

this rate is between 20-140 m/s for nerves and’ 0.2-0.4 m/s for heart muscles. Special time-



delay fibres between the atria and ventricles (to be discussed in next section)-of the heart

cause AP to propagate at an even slower rate, 0.03-0.05 nys.

2.2. THE HEART A'NATOMY. & CARDIOVASCULAR SYSTEM
The heart is located in the chest betwéen the lungs béllind the stémum' and above the
diaphragm. It is surrounded by a dou__ble-layéfed membrane called the pericardium. The
external layer is composed of dense fibrous tissue and the inner serous layer surrounds the
heart directly. A coating layer of fluid sepai‘ates the two layers of membrane, letting. the
heart move as it beats, still being attached to the body. .

The heart is basically a four chambered 6rgari, upper chambers: called the atria and
lower chambers known as ventricles. The ve"nt%i;ﬁles are much larger than the atria. A wall of
muscle, called the septum separates. the le‘fft-aﬁd right atria. and also the left and right

ventricles. Following figure-shows the Ianator:'ly of heart.

2t e
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Figure 2.2: Heart Anatomy [2]
From ﬁmctional point of view, the lieart may be considered as a two-staged pump.
The right half carries blood with carbon dioxide or CO; collected from different parts of the

body, whereas the left half carries - oxygenated blood obtained from the lungs. Thc



circulatory path for blood flow through the lungs is known as the pulmonary circulation.
The circulatory system that supplies oxygen and nutrients to the cells of the body is called-
the systemic circulation. The cardiovascular system, as a whole, may be thought of as a
complex hydraulic system comprisirig innumerable pipes (the arteries and veins) and a four-
chambered pump (the heart). o . .

. Blood enters the heart on the right side through two main veins: the superior vena
cava, Wthh leads from the body s upper extremities, and the inferior vena cava leading
from the body s organs and extremities below the heart The incoming blood fills the storage
chamber, the rzg/zt atrzum (RA) In addition to the two above-mentioned veins, the coronary

sinus also emptles into RA The coronary smus contains the blood that has been elrculatmg
through the heart itself v1a the coronary loop B '

~ When.the RA i is full, it contracts and forces blood through the tricuspid valve into the
right ventr icle (RV) Tricuspid valve closes wheri the ventucular pressure exceeds the atrial
pressure, thereby preventing any back flow of blood. Now RV contracts and the pressure in
the ventricle forces thé pulmonary valve to open, leading blood flow into the pulmonary
artery. Pulmonary artery divides into two towards the two lungs. Thus, the blood from RV
enters into pulmonary circulation.

The pulmonary artery bifurcates many times into smaller and smaller arteries, which
become arterioles with extremely small cross sectlons These arterioles supply blood to the
alveolar caplllaues in which the exchange of oxygen and carbon dioxide takes place. The
alveoli are the final branchings of the respiratory tree and act as the primary gas exchange
units of the lung. The gas-blood barrier between the alveolar space and the pulmonary
capillaries is extremely thm allowing forrapid gas exchange. The red blood cells (RBC) are
recharved with oxygen and give up their Garbon drox1de On the other side of the lung mass
is a smnlar construcuon in which the caprllames feed 1nto tiny vems or venules. The latter .
combme to form larger Vems whlch in turn combine until ultlmately all the oxygenatcd
blood is retumed to the heart via the pulmonary vein.’

F1gure 2.3 shows the schematrc of cardiovascular circulation.



LR “ﬁtetvuemricle

"Figure 2._3‘: The Cardiovascular System [1]

The blood enters the left atrzum (LA) from the pulmonary vein. Followmg the
- contraction of LA, ‘blood is pumped to the left ventrtcle (LV) through mitral or bzcuspzd
valve After that, the ‘ventricular muscles contract Pressure produced by this contraction
automatlcally closes the- m1tral valve and forces the aortzc valve to open. The blood then
rushes from the ventricle into the aorta. This act1on takes place synchronously with the RV
as it pumps blood into the pulmonary artery.-. _ ‘

After-passing through many blfurcatlons of the arterles the oxygenated blood
‘reaches the vital organs the brain and the extrermues A hlgh pressure gradlent exists
A between the arteries and veins in the systemic clrculatlon “The left ventrlcle therefore does
_the most powerful pumpmg action in the heart.

The blood supply to the heart itself is -frorn the aorta through the "coronary arteries

into a similar capillary system to the cardzac veins. This blood returns to the heart chambers

through coronary sinus, as mentioned beforehand



The heart’s pumping cycle is divided into two ‘major parts: systole and riiastole.
Systole is defined as the period of contraction of the heart muscles, specifically the
ventricular muscle, during which tilne the blood is pumped into. pulmonary artery and aorta.
Diastole is the period of relaxation or dilation of the heart cavities as they fill with blood.
Systolic (maximum) blood pressure in normal adult varies between 95 to 140 mm Hg.
Normal diastolic blood pressure (lowest pressure between beats) ranges from 60 to 90 mm
- The heart beats at an average rate of about 75 beats per minute (bpm) and pumps
" about 5 litres-of blood per mmute The heart rate increases when a person stands up and
decreases when he sits down, the range bemg from about 60 to 85 bpm. On the average, it is
shghtly higher in women and decreases with age. In an mfant the heart rate may be as high
as 140 bpm under nonnal conditions. The heart rate also increases with heat exposure and

other physiological and psychoIOgical factors.

2.3, ELECTRICAL CONDUCTION SYSTEM OF THE HEART & ECG
Electrical activation takes place in the heart muscle cell, or myocyte by means of the same
mechanism as described in 2:1. Associated with the electric activation of cardiac muscle cell
is its rnechanical (:ontraction, which occurs a little later.

Located in the right atrium at the superior vena cava is the sinus node (sinoatrial or
SA node). This is the origin of electrical-‘impulse's in the heart and hence referred to as the
- ‘natural pacemaker The SA nodal cells are self-excitatory, pacemaker cells. They generate :
action potential at the rate of about 70 per minute. From the sinus node, activation
propagates throughout the atrta but cannot propagate directly across the boundary between
atria and ventricles, because of the non- conductmg barrier of fibrous tissue.

- Theatr toventrzcular node (AV node) is located at the boundary between the atria
and ventrlcles It has.an intrinsic frequency of 50 pulses/min. However, if the AV node | is
triggered with a higher pulse frequency, it follows this hrgher frequency. In a normal heart,
the AV node provrdes the -only conductmg path from the atria to ventrrcles Thus, under

nonnal conditions, the latter can be excited only by pulses that propagate through it.
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Figure 2.4: Electrical eonquctton System of the Heart [3]

Propagation ‘from the AV node to Vent'ricles is provided by a specialized -
conduction system. P10x1mally, this system is composed of a common bundle, called the
Bundle of His. More distally, it separates irto two bundle branches propagating along each
side of the septum, called the rzght and left bundle branches. Even more distally the bundles -
r'uni'fy into Purkinje fibres that diverge. to the inner sides of the ventricular walls.
_:Pxopagatlon along the conductlon system takes place at a relatlvely high speed once it is
within the ventncular reglon but prlor to thlS (through the AV node) the velocxty is

' -extremely slow

From the inner side of the ventrlcular wall, the many actlvatlon sites cause the
formation of a wavefront, which propagates through the ventricular mass towards the outer
wall. This process results from cell-to-ceil activation. After each \}entricular muscle region
has dcpolarlzed repolarization occurs.

Because the intrinsic rate of the sinus node is the gxeatest it sets the activation
frequency of the whole heart. If the connection from the atria to the AV node fails, the AV
node adopts its intrinsic frequency. If the conduction system fails at the bundle of His, the
ventricles will beat at the rate determined by'their own region that has the highest intrinsic

frequency.
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Figure 2.5: Propagzitipn of Electrical Imp\ilse:insidé the Heart [3]

The El‘pctrocardic')graml'(ECG) is the electrical manifestétibn of the contractile
activity of the heart, and can be recorded falrly easily with surface electrodes on the limbs or
chest. The rhythm of the heart in terms of beats per minute’ may be easily estimated by
counting the_readxly identifiable waves. ECG waveshape is altered by cardiovascular
diseases and abnormalities such as myocardial ischemia and infarction, ventricular
hypertrophy and conductlon problems [4]. Pollowmg figure shows the ECG waves, peaks,

segments and mtervals more clearly

QT interval
% QRS interval

PR interval

Figure 2.6: One ECG Cyc!el repre’scnt‘ing one Heart Beat



As we have already observed in ﬁgure 2.5, a cardrac cycle is reflected in a perlod of the

- repetitive ECG signal as the. senes of waves' labelled as P,QRS, and T. If we view the

cardiac cycle as a series of events, we have the followmg epochs in an ECG waveform [4]:

1.

The P Wave This wave is related to atrral depolansatmn Contractmn of the atria is
trlggered by SA node 1mpulse The atna do not possess any spec1ahzed conduction:
nerves as the. ventrlcles do. Contractron of the atrial muscles takes place in a slow
squeezing manner, with the ex01tat1on st1mulus berng propagated by the muscle cells
themselves: Therefore the P wave isa slow waveforrn w1th duratron of about 80 ms.

The amplitude of P wave is in the: range of 0. 1 0.2 mV

The PQ Segment: The AV node prov1des a delay to facﬂrtate completlon of the
atrial contraction and transfer lof blood to the ventricles before ventricular contraction
is initiated. This results in an iso- electric PQ segment of about 80 ms duration.

The QRS Wave “This is the mamfestatlon of ventricular depolansanon The

specialised system of Purkae fibres stlmulate contraction of ventricular muscles in a

rapid sequence. The almost-srmultaneous contraction of the entire ventricular
musculature results in a sharp and tall QRS complex of about 1mV amphtude and
80-100 ms duratlon While companng the amplrtude and duratlon of the P and QRS

waves, the smaller size of the atria in companson to the ventricles should be taken

" care of

The ST Segment: The normally flat iso?electric ST segment is related to the plateau

~ in the action potential of the left ventricular muscle cells (referring to figure 2.1). Its

duration is about 100-120 ms. ‘

The T Wave It is commonly referred to .as the wave correspondlng to ventricular
repolarisation. It relates to the last phase of action potentral of the ventricular muscle
cells, when the potential returns from the'plateau of the depolarised state to the
resting potential through the process of repolarisation. The normal amplitude and

duration of the T wave are 0.1-0.3 mV and 120-160 ms. This is also a slow wave.

Unlike ventrlcular repolarisation, atrial repolarlsatlon does not produce any drstmct

waveform in the ECG as it is overshadowed by the following QRS complex
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CHAPTER 3

ECG MEASUREMENT

This chapter will give an overview of the surface electrodes used in ECG measurement and

the lcad systems.

3.1. BAsICS ,
As the human body forms a volume conductor the b10electr1c phenomena occurring inside
the conductor generate a 31gnal measurable at the skin surface. The action potential
propagation. in the heart muscle is counted among these types of phenomena. The resulting
ECG, -thefefOre, can be measured with the help of non-invasive surface electrodes placed on

the thorax or limbs.

The intervening space between the patient’s skin and the electrode is filled with a
coating of adhesive gel, wﬁich provides a conducting path, ’fhe most-used material for
clectrodes these days is silvér-silver chloride (Ag-AgCl) since it approximates a

nonpolarizable electrode. Following figure shows such an electrode. Its advantage over

other types is a very small offset potential.

‘Connacting wire. ,

., \Elagiioyti it chiorida fon
Figure 3.1: Ag-AgCl Electrode [5]. ‘

The instrument used to obtain' and record: the electrooardiogram is called an
electro_cardiogrdph. The electrocardiograph was the first electrical device to find widespread

use in medical diagnostios, and it still remains the most important tool for the diagnosis of
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cardiac disorders. Figure 3.2 shows the elementary building block of a typical

~ electrocardiograph. However, the components may vary in different systems.
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Figure 3.2: Electrocardiograph Building Blocks [1]

, The electrode positions can be seen o the body of a human being on the left side of
the figure 3.2. The placement of electrodes on th'e body is _referréd to as the ECG lead

system. Here, first the standard 12- lead ECG will be discussed and then the multi-fead or

multi-channel ECG, which is being rccorded in the Institute.

3.2 STANDARD 12-LEAD SYSTEM
In clinical practice, the standard 12-channel ECG is obtained using four limb électrodes and

six chest electrodes. The variations in electrical potentials in 12 different directions out of

the ten electrodes are measured. These 12 different electrical views of the activity in the

heart are normally referred to as leads.



Potentials VL,' Vg and VF are recorded from left arm, right arm and left foot

respectively. The rigﬁt foot is used to place the reference electrode. We get the three Jead

vbltages I, II and III from Vi, v;; and VF as follows:

14y, 4v, |
H=Ve=Vy cooiiiinieniiinnnn SRS T (3.1)
=V, -V,

Figure 3.3: Derivation of the Three Main Leads [5]

According to Kirchoff’s law,
HETAI oo veeees SUUURUUPPRPPRE (3.2)

_ The hypothetical equilateral triangle formed by leads I, 1 and III (as in Figure 3.3)

is known as Einthoven's triangle. The centre of the triangle represents Wilson's Central
Terminal (WCT): Schematiczilly, the heart is assumed to be placed .at the centre of this
triangle. ' |

The potential at WCT (Z,,CT) is given as:

This is taken as the reference for chest leads.

- There are three other limb leads known as augmented limb leads. These are marked
as aVR aVL and aVF (aV for the augmented lead, R for the rlght arm, L for the left arm,
and F for the left foot). These leads are obtained by using the explonng electrode on the
limb indicated by the lead name, with the reference being Wilson’s central terminal without

the exploring limb lead as shown in the following figure.
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Figure 3.4: Measurement of the Augmented Limb Lead aVL 1 -

We can express the aﬁgiile'ﬁtéd'lé’ads in terms of leads I, II and 111 as follows:

QVL = I-1r -
2
R e/
aVR = 5 e (3.4)
AV = mnm+1
2 |
Following figures illustrate the vector relationships among the limb leads.
f'i_oud
o Lot
et
Figure 3.5: aVL Derived fromT& I [5] - ' ' . Figure 3.6: Vector Relationships [5]

We now combine all the limb leads in terms of Einthoven’s triangle and WCT as in figure

3.7.
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Right Arm - Lead I + Left Axm

 Wilason's
. ceohtral
terminal

- Lead II " Lead TIT, .

Right Leg: -
Reference .

B yé}l:.ht Leg
Figure 3.7: Einthoven’s Triangle(4] B

For measurmg the potentlals close to the heart Wilson introduced the precordial
leads (chest leads) in 1944, These leads, V1-V6 are placed over the left chest as described in
figure 3.8. The pomts \1 and V2 are located at the fourth intercostal space just to the right
and left of the sternum, respectively. 'V4 is located in the ﬁfth' intercostal space at the
mzdclavzcular line. The location of V3 is half-way between V2 and V4, V5 and V6 leads are

at the same horlzontal level as V4, but on the anterior axillary line and the midaxillary line,

respectively.

Mid-clavicular
line

Figlire 3.8: Placement of Six Precordial Electrodes (3]

In the above figure, the leads V4R and V3R are not used in 12-lead ECG system.



-Figure 3.9 summarizes the electrode positions (both limb and chest) for the 12-lead system,
Bipolar limb leads | f

teadl = . ~ Lesdll Lead I

. 'lvoui'*

e
—
"

(Augmented) Unigolar limb leads  Lead aVF
Lead aVL

Leqd aVR

g ‘l.%n- L

Uﬁibol_ar chest leads

Vout -

Figure 3.9: Configuration of the 12 Leads[1]
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3.3, MULTICHANNEL ECG AND ITS UTILITY

Multichannel ECG is taken so as to get a volume information about the electrrcal activity of
 the heart, instead of a 2-D information taken using the famous 12-lead system. Another aim
of multichannel electrocardiography is to get the Body Surface Potential Map (BSPM).

BSPM is a temporal sequence of potential distributions observed on the thorax
-throughout one or more electrlcal cardiac cycles. In practice, tens or hundreds of unipolar
ECGs are recorded erther s1multaneously or mdmdua]ly w1th subsequent time- allgnment
For each time instarit of mterest the potentlal measured in each lead is associated with the
spanal locatron at which it was measured The spatial distribution of the set of potentials at a
'partlcular mstant in the cardrac cycle may then be dlsplayed as xsopotentlal contour maps
showmg hnes which connect all sites which have the same potentral BSPM may give
addmonal dragnostlc 1nformat10n for all types of heart diseases.

64 and 32 Channel ECG records are - taken at the Institute of Biomedical
'Engmeermg, Umversrty of Karlsruhe usmg two different acqulsrtron systems.

Followmg diagram 3.10 shows the electrode posmons for 32-channel ECG
acquisition.
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Fu,urc 3.10: Electrode Positions for 32-Channel Recoxdmg [6]
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Table 3.1 gives the description of electrode positions corresponding to Figure 3.10.

- l21

| 'Electrode Name  |-Position :
1 RA ‘A point in the rlght 1nterclav1cular fossa, medlal to the border of
L : the deltoid muscle and 2 cm below the lower border of the
clavicle -
2 LA A point in the left mterclakular fossa, medial to the border of
the deltoid muscle and 2 cm below the lower border of the
"\ clavicle
13 LL Halfway between the costal margin and the Iliac crest
14 2 Right sternal margin, fourth intercostal space
15 V2 Left sternal margin, fourth intercostal space
|6 V4 . .| Left midclavicular line, fifth intercostal space
7 V3 | Midway between V2-V4
8 V6 Left midaxillary line V4-VS5 level
9 | V5 Left anterior axillary line, V4 level
10 V7 Left posterior axillary line V4-VS5 level
11 V8 Left midscapular line V4-VS level
12 1V21H | Left sternal margin, third intercostal space
13 V4 1H . | Left midclavicular line, fourth mtercostal space
14 V31H | Midway between V2 1H-V4 1H
15 V6 1H - | Left midaxillary line V4 1H-V5 1H level
16 V5 1H Left anterior axillary line, V4 1H level
17 V7 1H Left posterior axillary line V4 1H-V5 1H level
18 V8 I1H Left midscapular line V4 1H-V5 1H level
19 V22H Left sternal margin, second intercostal space .
20 . V42H | Left midclavicular line, third intercostal space
V32H- |[Midway between V22H-V42H- - -
: V62H . | Left midaxillary line V4.2H-V52H level .
123 V52H | Left anterior axillary line, V4 2H level
24 V72H Left posterior axillary line V4 2H-V5 2H level
25 V8 2H Left midscapular line V4 2H-V5 2H level
26 V2 3H Left sternal margin, first intercostal space
127 1 V4 3H Left midclavicular line, second intercostal space
128, - |V33H - | Midway between V2 3H-V4 3H
29 | V63H Left midaxillary line V4 3H-V5 3H level
130 V53H Left anterior axillary line, V4 3H level
31 - [ V3R Right sternal margin, fourth intercostal space
32 V2R Right midclavicular line, fifth intercostal space
133 RL(ref) In the region of the right Iliac fossa*

* As recommended by the American College of Cardiology -

Table 3.1 : Description of Electrode Positions [6]
The limb electrodes of 12-lead system are moved onto the thorax for multi-channel

ECG acquisition, as per the recommendation of Mason and Likar [7].
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CHAPTER 4

* BACKGROUND MATHEMATICS

This dhaptei' forms the backbone of my work. The important mathematical concepts used
throughout the rest of the thesis will be described here. We shall start with Wavelet
Transform, which is used for ECG delineation and filtering as well. Next we will move on to
Principal Compohent Analj(sis, which finds application in Chapter 8. Correlation techniques,

which are applicable for any biomedical signal analysis, will also be covered at the end.
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~4.1. WAVELET TRANSFORM

"' 4.1.1. DEVELOPMENT OF WAVELET THEORY: HISTORICAL BACKGROUND

'Mathonlatical transformations are applied to a signal to obtain further information, which is
."- _ not 'readily'.ai/ai]able in its-original time-domain formi. '
. Fourier Transform (FT) is the oldest of all transforms used in signal processing.
Historically, Joseph Fourier (1770-1830)- first introduced the remarkable idea of expansion
“of a function in terms of a trigonometric series. FT decomposes a signal into complex

exponential functions of different frequencies. For a continuous signal x(t), FT is defined as

follows:

o0

X(f)= |G i O —— @.1

—n

The analysis coefficients (or the spectra) X(f) are computed as inner products of
the signal with sinusoidal basis functions of infir nite duratton. The trigonometric kernel exp(-

: _]27Eft) used here, osmllates indefinitely, and hence, the localized information contained in

- .the signal x(t) gets lost [8]. ‘While the spectrum X(f) shows the overall strength with which

any frequency f is contained in the signal x(t), it does not generally provide easy-to-interpret
~ information about the time-localization of spectral components [9]. The analysis coefficients
: X(f) define the notion of global frequency ‘f* in a signal [10]. |
o : However, time domain and frequency domain constitute two alternative ways of
looking at a signal. Although FT allows a passage from one domain to the other, it does not
X allow a comblnatlon of the two. This method enables us to mvestlgate problems either in the
. time domam or in the frequency domain, but not smultaneously in both. Fourier transform
theory has been very useful for analysing harmonic 51gnals, or signals for which there is no
need for local .int’ormation [8][%]- | o
Fourier analysis is therefore an effective tool for studying stationary signals (with
time-independent frequency content). Howevor, many of the practically encountered signals
(like the ECG as we shall Seo in the next section) are non-stationary. A complete analysis of
non-stationary signals requires a joint timc-frequency re;ir,esentation.
The basic idea of time-frequency representations of signals is to map a one-
dimensional signal of time, x(t), into a two-dimensional function of time and frequency,

Ty(t,f). Thus, they combine time-domain and frequency-domain analyses to yield a
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potentially more revealing picture of the temporal localization of a signal’s spectral
components [9].

In order to incorporate both time and frequency localization properties in FT,
Dennis Gabor in 1946 first introduced the windowed Fourier Transform or Short Time
Fourier Transform. His major idea was to use a time-localization windoW Sunction g(t-) for
extracting local information from the Fourier transform of a signal. The parameter T
corresponds to the pesition of the window in time. ‘v is kept on varying to translate the.
window until the whole of time-domain is covered. The width of this window must be less
or equal to the segn)ent of the signal where stationarity is valid (i.e. frequency does not
change). B '

STFT®(z, f) = j[x(:).g*@(t-’r)].e'ﬂ”ﬁc_iz' ......................... (4.2)

Although STFT overcomes the drawback of Fourier Transform apparently, it has
got a serious problem related to the resolution in time and frequency. The root of this
problem goes back to Heisenberg's Unceftainty Principle, according to which exact time-
frequency representation of a signal is not possible. Therefore, we can never know precisely
which of the spectral components exists at what instants of time. What we can know is the
time interval during which a certain baﬁd of frequency exists. A broader window gives
better frequency resolution and poor time resolution. On the contrary, the time resolution
can be improved at the cost of frequency resolution with shorter window. Once the window
is chosen for STFT, the resolutlon in time and frequency domain gets fixed. However many
signals encountered in our pract1ca1 life (ECG bemg no exception) require a more flexible
.approach regarding this resolution [1 1].

Wavelet transform (WT) was developed to overcome this fixed resolution
pl‘oblem of STFT. The Multi-Resolutional Approach (MRA) in time and frequency domain
is the heart of WT..

4.1.2. DEFINING WAVELETS

The basis of FT, as we have already seen, is sinusoidal waves of infinite duration. Fourier

transform decomposes the signal of interest into sinusoids of different frequencies.
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.. .. On the other hand, WT. decomposes the original signal into a set of compactly
: Sﬁpp,qrted basis functibns- called wavelets (small waves), obtained from a single prototype
mother wavelet by means of dilation .and translation (as we will see later). Wavelets are

" localized-waves of finite energy. They have their energy concentrated in time or space and

m/\v
(a) Wave. o (b) Wavelet

Figure 4.1: Wave and Wavelet [12]

“are suited to analyse transient signals.

" Comparison between Wave and Wavelet:

1. Oscillating Function of time. - 1‘. Oscillating Function of time.
2. Duration Infinite. ‘ 2; Duration Finite.

3. Smooth and Predictable: 3. Irregular and Asymmetric.

4. Periodic ' | 4. Aperiodic |

5. Ex: Sine & Cosine Waves 5. Ex: Daubechies, Haar,

Symlet,

Coiflet Wavelet Families.

(b) Wavelet Decomposition [13]

| Fig:ﬁre 4.2: f(a) Fo_u(ier Decomposition

4.1.3. USEFULNESS OF WT INECG ANALYSIS

Electrocardiogram signal, by its very néture is a non-stationary one. It is characterized by a
cyclic occurrence of patterns with different frequency contents (QRS complexes, P and T
waves) [7]. Each of these patterns represents a certain distinct event as discussed in 2.3. The
QRS complex, representing ventricular depolarisation, occurs as a high frequency, high

amplitude spike of very small duration in the ECG cycle. On the other hand, P wave (atrial
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depolarisation) or T wave (ventricular repolarisation) have got relatively low frequency

contents, leading to their smoother appearance.

1L

Figure 4.3: Elements of ECG waveform

’If'he overall frequency range of ECG Signal is 0.5-100 Hz with amplitude in
ranges of mV. Low ‘frequeh'cy components span for almost th'e!enti:re.c'luration, whereas the
high ﬁ'ecjuelic‘;y features (e.g. QRS complex) occur as transients. Moreover, the noiée and
artifacts affe»cting' the ECG  signal also appear at different frequency bands and time
intérvals. By decomposing into eleméntary building blocks that are well localized in time
and frequency, WT can distinguish ECG waves from serious noise, rtifacts and baseline drift

[15]. |
| The mentioned characteristics of ECG signal makes wavelet transform the most
suitable tool to deal with it. The wavelets have time-width adapted to their frequencies. The
 scale of wavelet represents its frequency range. The resolution of wavelets at different scales
varies in the time and frequency domains — finer temporal resolution and coarser frequency
resolution at higher scales and just the opposite at lower scales. In the application of ECG, it
can be well appreciated that the R Peak needs to be marked with better temporal resolution,

as compared to other waves during the cardiac cycle.

4.1.4. CONTINUOUS WAVELET TRANSFORM (CWT) |

The Continuous Wavelet Transform (CWT)- was developed as an alternative to STFT to
‘ovércome the fixed r_esolution problem in time-freqqency plane. The Wavelet Transform
'provides a _description of the signal in the time-scale domain (scale being in a sense opposite
to frequ‘ency), allowing the ;eﬁresentation of the temporal features of the signal at different
resolutions. The wavelet (of a particular 'scale) is shifted along the signal and for every
position of it, the similarity between a localised section of the original signal and the wavelet

1s examined by calculating CWT coefficients. Then this process is repeated many times with
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a shghtly compressed (or dllated) wavelet for every new cycle. At the end, the result will be

- acollection of tlme-scale representanon of the signal, all with different resolutions.

The continuous wavelet transform can be deﬁned mathematically as an inner

product of the signal and the wavelet basis functions.

CWT/ (z,5) = 'fx(t}y/*m.dt ...... e 4.3)
The basis wavelet functions y, (¢)are derived. from a single prototype Mother

Wavelet y|(t) as follows:
Vey = L;zf(t—_'—r) ..................................... (4.4)
 Therefore, the. »transforrried.signal is obtained as a function of two - variables,
namely, © and s, the translation and. acqliﬁg coefficient, respectively. The translation and
dilation (or, scalirig) operations are perfoﬁhed on the mother wavelet to produce the basis

wavelet functions.

The term translation is related to the location of the wavelet, as it is shifted
ﬂuough the signal x(t). This term cotresponds to time information in the transform domain.

Translating or shifting a wavelet means hasteﬂing or delaying its onset as 'shown below.

OI n : - 4 OI : V/\ nv,.,
I— (a) Wavelet Function w (1) '

Flgure 4.4: Translatlon of Wavelet Function [1 3]

~ (b) Wavelet Functton translated by <, {/ (t-17)

The parameter scale in the wavelet analysxs is 51m11ar to that used in maps. High
scale gives a gross or global picture of the signal, whereas low scale corresponds to a
‘detailed view. Similarly, in terms of frequency, low frequencies correspond to a global
information of a signal (that usually spans the entire signal), whereas high frequencies
correspond to a detailed information of a transient pattern in the signal (having relatively
short duration). That is why scaling conveys a notion of something reciprocal to the

 frequency. Scaling, as a mathematical operation, either dilates or compresses a signal.

Follov'ving figures illustrate the concept of scaling more clearly. The term ‘_L_’ in equation
S s

(4.4) serves the phrpoSe of energy normalisation of the wavelet aci'ess various scales.
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)= () ;s=

fity= w(2t) ;s=1/2

fity= w(4t) ;s=1/4

Fl;,uxe 4 5 Scahng of Wavelet Functlon [‘l 3]
We can describe the process of CWT through the following steps and associated figure 4.6
[13].

I. Take a wavelet.and compare it to a section at the start of the ox'iginal signal,

‘2. Calculate a number, C, that represents how much similar the wavelet is with this
section of the signal, The higher the value of C, more is the similarity. The value of
C will depend on the shape of wavelet chosen. This C is nothing but the CWT

coefficient at the initial (or smallest) scale, say s = s; and translation T = 0 (or, the

value of T corresponding to the initial position of the wavelet).

m{\/\f\f\%

Wavelet g

C= 0.0102
Figure 4.6 (a): Wavelet with smallest scale at initial position

3. Shift the wavelet to the right and repeat step 2 at each position, until the whole signal

is covered.

Wavelol ] ‘ )

Figpré 4.6 (b): Same scale Wavelet shifted to rxght
4. Repeat steps 1 to 3 taking a scaled (stretched) wavelet.

Uneikiikn
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Signal

§

Wavelet -

Tr———
h .
- it T

C=0.2247
Figure 4.6 (c): Wavelet with a different scale

5. Repeat steps | througﬁ 4 for all scales.

Reconstruction of original time-domain s1gnal from its CWT: Admmsxbnhty Condition
The continuous wavelet transform is a reversible transform, provided that the
‘admissibility condition is satisfied. The reconstruction is poss1ble by using the following

reconstruction formula ([nverse Wavelet Transform):
x()=— ”CWT"’ (7, s)— ( — T]drds creerrenerienesnin e ne e (4.5)

W sr )

Where, Cy 1s a constant that depends on the wavelet used. The success of the
. reconstructlon depends -on this constant called, the aa’mzsszbzlzty constant, to satisfy the

following admissibility condition:

{ j:—-%z-d(:} D 1)
" Where, (&) is the FT of \y(t) Equation (4.6) implies that (0) =0, which is
. 'J’y/(‘t)dt=0.....;........................................(4.7)

Equatio‘n (4.7) is not a very restrictive requirement since many wavelet
. functions can be found whose integral is zero. For eémation (4.7) to be satisfied, the wavelet

must be oscillatory. .

4.1.5. CLARIFYING MULTI-RESOLUTIONAL APPROACH (MRA)

Unlike STFT which has a constant resolution at all times and frequencies, WT uses a Multi-
Resolutional Appfoach (MRA), i.e. varying temporal resolution for different spectral
components, whi‘ch. can be clarified as follows. A lower or_narro_wér scale (higher
frequencies) means lesser ambiguity in time, i.e. good:time resolution. Higher scales (lower

- frequencies) have wider support, leading to more ambiguity in time, or in other words, poor
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temporal ;ésolution. The following figure compares the resolution for four different

representations of the same signal'.

g -
g £
B u- T
Time - ' “Amplitude
Time Domain (Shannon) Frequency Domain (Fourier)
¥ |
g »
. 3
g .
& N .
“Time i Time o
STFT (Gabor) Wavelet Analysis

" Fi guré 4.7: Time-Frequency Resolution at different Signal Representations [13]

The original time-domain signal has got no’ time-resolution problem, since we
know the value of the signal at every instant of time. In the Fourier transformed version,
there is no resolution problem in the frequency domain, i.e. we know precisely what
frequencies exist. Conversely, the frequency resolution in time domain and time resolution
in Fourier dmﬁain are zero, since wé have no infonnatidn about them. For the two bottom
diagrams, each box represents an equal area of the time-frequency plane, but-different sized
boxes giving different proportion to time and frequency.

- All the boxes are of same size for STFT, i.e. the time and frequency resolutions are
~constant all over the timé-freqﬁency plane. For wavelet transform, at low frequencies (high
scales), the height of the boxes are shorter (which corresponds to better frequency
resolution, since there is less‘ ambiguity regarding the value of the exact frequency), but their
widths are longer (which correspond to pé)or time resolution, since there is more ambiguity
regarding the value of the exact time). At higher frequencies (low scales), width of the boxes

decreases, i.e. the time resolution gets better, and height of the boxes increases, i.e. the

frequency resolution gets poorer.
4.1.6. DYADIC WAVELET TRANSFORM (DYWT)

This can be thought of as an intermediate stage between Continuous and Discrete Wavelet

Transform. The CWT assigns a value to the continuum of points on the translation-scale
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. plane. Therefore,.the computation takes a long time. Dyadic Wavelet Transform _(D&WT) is
based on samplmg the translation-scale plane.

o First the scale parameter (s) is discretized using a logarithmic rule. The base of
. logarlthm is genera]ly taken as 2. The scales in power of 2 are only considered (e g. 2,4.8,
» and so on).

Scale discretization is given as follows,

S = 87 et (4.8)

where s, 1s the base of loganthm (>1) and j=1,2 3,n The number ‘n’, representing

total number of dlffcrent 4 valucs is determined considering the bandwidth of the signal
x(t).

From Nyquist’s Rule, we know that at higher scale (i.e. lower frequencies) the
sampling rate can be reduced. In other words, if the translation-scale plane needs to be
sampled with a sampling rate of N at scale s;, the same plane can be sampled with a
sampling rate of Ny at scale s, wheré s,<s; (corresponding to frequencies fi>f) and N;<N

[4]. The actual relationship between Ny and Nz is ,

N =3N, or Ny=LZN, i e, 4.9)
8, /i

Therefore, at lower: frequencies, the sampling rate can be reduced saving a considerable

| amount of computation time. | 4
... After dlscretlzmg the scale parameter (s), the translation parameter (t) is discretized
’with ,respecvt to's’, i.e. a different samphng_rate is used for every‘s’. Following figure
dc.',m’_dnstrates this idea. For the lowest scale (s=2), .Awe.sarr'lp'le 32 points along the_translatioh
E ‘a'xis'.:- This means, the wavelet at this scale will be compared with the signal x(t) at 32 distinct

values of shift. At the next scale value (i.e. s=4), the sampling rate of translation axis is

_ reduced by a factor of 2 and so on. : > Translation ( )‘
; . ) ) ranslation (T

Scalé(s) .
log axis

_Figure 4.8: Discretization of Translation-Scale Plane [11]
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In accordance with equation (4.8), the translation discretization is given as,

where, 7, >0 andk=1,2,3,............... m. The number ‘m’, representing total number of

different ‘k’ values, is determined considering the time span of the signal x(t).

The basis wavelet functions y,, (t)‘ of DyWT is derived from the mother wavelet

u/i(t) as follows,

-j12,, (=]
l//j'k(t)=soj W(Solt—kro) .................................. (411)
DyWT is defined mathcmatik:aﬂy as follows, |
DyWTY (j,k) = _ﬂx(t)y/;._k O ereeeereeereeeeeer e (4.12)

Althoﬁgh DyWT has got computational efficiency over CWT, still it provides high degree of
- rédundancy as far as data reconstruction is concerned. This redundancy, on the other hand
' consumes a éigﬁificant amount of computational resources. That is why we move on to
wavelet ihipleméntation based on digital filters. (or the ‘Discrete Wavelet Transform’) for

discrete time signals , which is amazingly fast in operation.

4.1.7. DISCRETE WAVELET TRANSFORM (DWT)

Basically, the discrete wavelet transform is meant to handle discrete-time signals. The DWT
is considerably easier to impleinent when compared to the CWT. The DWT. provides
sufficient information both for analysis and synthesis of the original signal, with a
significant reduction in the computation time.

The foundations of DWT go back to 1976 when techniques to decompose
discrete time signals were devised. In the Sase of DWT, time-scale representation of a digital
signal is obtained using digital filtering techniques. The signal to be analysed is passed
through filters with different cut-off frequencies at different scales. Wavelets can be realized
by iteration of filters with rescaling. The resolution of the signal, which is a measure of the
amount of detail information in the signal, is ¢changed by the filtering operations, and the
scale is changed by up-sampling and down-sampling (sub-sampling) operations.

The DWT is computed by successive low-pass and high-pass filtering 6f the

discrete time-domain signal as shown in the following figure. This is called the Mallat
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Algorithm or Mallat-tree -decomposition. Its significance is in the manner it connects the
continuous timé multi-resolution to dis_or_ete-time filters. The signal is _denoted by"'the
sequence x[n], integer ‘0 denoting the sample‘number. Gy and Hy are the low and high pziss
Analysis filters (filters used for docomposition) respectively. At each level, the high pass
filter produoes detail information d[n], Wheieas,' the low pass filter associated with scaling

function produces coarse approximations, a[n].

Xfn}

Figuie 4.9: Three-level Wavelet Decomposition Tree [12]

At each ‘decomposition level, the half band ﬁltefS"produce signals spanning only
hé.lf the frequency band. This doubiés the frequeiicy résoiution, as the. uncertainty in
' fre-quency'i_s riaducéd by half. Acoording to Nyquist’s rule, the sampling frequency of a
signal needs to be at least. double of i_ts‘moximum frequency content in order to have a
SUCcessﬁil reconstruction. _However, after- each level of decomposition, ihe maximum
frequency itself gets lialved,' and hence now its sampling frequency can also be reduced
proportionzilly without any loss of information. This decimation by 2 halves the time
resolution as 'thej enﬁre signal is now 'represented by only half the} number of samples. This
‘also doubles the scale. | | :
We can see the following example to conceptualise the appearance of details and

approximation coefficients across different levels.

~
%
H
H

cA, cD: Approximations and Details

time-aligned to original signal

" Figure 4.10: Illuétration of Approximation and i)etail Coefficients [13]
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The filtering and decimation process is continued until the desired level is
reached. The maximum number of levels depends-on the length of the signal. The DWT of
the original signal is then obtained by concatenating all the coefficients, a[n] and d[n],

starting from the last level of decomposition.

Récénstructioﬁ of or'iginal time-domain sigﬁai from its DWT: Orthogonal Filters
The recbnstruction is basically the reverse process of decomposition. The approximation
and detail coefficients at every level are up-sampled by two, passed through the low pass
and high bass synthesis filters (G1 and H,) and then added. This process is continued through
the same number of .le\?/él.s as in the decomposition prbcess to obtain the o'riginallsignal. The
Mallat Algorithm works equally well if the analysis ﬁiters, Gy and Hy, are exchanged with
the synthesis filters, G, and H;. - ‘

W
dln
e 2 ] r | {o |
_ NEReE

o[} o]

Figure 4.11; Three-level Wavelet Reconstruction Tree [12]

—% X[n]

To achieve desired reconstruction features, we will be using bnly orthogonal filters:
[5] in discrete domain. Coefficients of orthogonal filters are real numbers. The filters are of
the same length and not symmetric. The low pass filter, Go and the high pass filter, Hy are
relat¢d to each other by, - - v
Ho(Z) = ZNGH(EZ ) et s (4.13)

Equation (4.13) means that the two filters are alternated flip of each other. These are
also called Conjugate Mirror Filters (CMF). Also, for perfect reéonstruction, the synthesis

filters are identical to analysis filters except for a time reversal.

Orthogonal Wavelet Famﬁies
We will discuss the mother wavelets namely, Haar, Daubechies, Symlets and Coiflets here.
These -all are compactly supported orthogonal wavelets and capable of perfect

reconstruction.
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Scaling Function and Wavelet Functions are associated with Low-pass and High-pass
filtering respectively. In this section, ‘9> denotes the Scaling:Function and ‘y’, the Wavelet

Function.

Daubechies Wavelets (dbN, N:filter order):

scaling function,  —Ps}

<«— wavelet function, y
of '

~Q8F,

44— decomposition high-pass filter

decomposition low-pass filter -

reconstruction low-pass filter 44— reconstruction high-pass filter

. Tig 4.12: Daubechies wavelet db4 [13]

Daubechies wavelets are also called Maxflat wavelets as their frequency responses

have maximum flatness at frequencies 0 and 7.

. Haar Wavelet:

‘This is nothing but fhe dbl wavélct, i.e. the Daubechies wavelet of Ordef 1. This is
~ the simplest wavelet imaginable. The wavelet fiinction is a simple step function.

| The wavelet function (y) and scaling function (¢)’are defined as follows:

yx) =1, if 0<xg-

2 ox) =1, ifxe[01]
= if | .
L .‘ffxﬁl - o =0, if xg[0,1]
=0, if xe[0,1] '
w uu;
] "
. o ; r», e s o e o e s s v ..‘
(a) wavelet function _ ) ‘ (b) scaling function

Figure 4.13: Haar wavelet[16]
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Symlet Wavelets (symN, N:filter order):
Symlet wavelets are modifications of Daubechies wavelets in order to improve symmetry,

while retaining great simplicity. Still, Symlets are only near symmetric.

1.6 1.5
1 ’ t
Qs [s1:]
scaling function, ¢~ : ok 44— wavelet function, v/
Q8 Q6
-t ) . -1
0 7 4 % 0 2 4 8
decomposition low-pass filter —95[ % :
—3— 4— decomposition high-pass filter

 <¢— reconstruction high-pass filter

Fig 4.14: Symlet, sym4 [13]

Coiflet Wavelets (coifN, N:filter order)::

The ‘coifN’ v and ¢ functions are much more symmetrical than ‘dbN’.

1.E ' 15
1 1
2.5 0.5
scaling function, ¢ —bu . <«4— wavelet function, v
45 -u5
0 5 w18 0 s W 8

decomposition low-pass filter —»
. «— decomposition high-pass filter

U6
0 2 4 B8 10 12 13 @

- a.l
reconstruction low-pass filter —P>
. . : 4— reconstruction high-pass filter

D 2 4 68 0 10 2 141 0°2 4 B B 1012 W6

Fig 4.15: Coiflet, coif3 [13]
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4.2, PRINCIPAL COMPONENT ANALYSIS

_._‘4 2 1 ‘DEFINING PCA '
o Pr1n01pa1 Cornponent Analysw (PCA) is an exploratory multlvarlate statlstlcal techmque that
. allows the ldentlﬁcatlon of "key variables (or combinations of variables) in a
: multidimensional .'data_'sj;et that best explains the differences between observations. Different
* dimensions convey the notion of different variables observed againat equal span of time. So,
each dimension is a time-vector and all the time-vectors are of same length. Given ‘n’
observations on ‘m’ variables, the goal of PCA is to reduce the dimensionality of the data
matrix by finding ‘r’ (<'m) new variables. These ‘r’ principal components account together
for as much of the variance in the original-"‘m’ variables as possible, while -remaining
mutually uncorrelated and orthogonal [17]. '
In our apphcatlon each variable (or a ‘dimension’ ) refers to a QRS complex
“extracted from multi-channel ECG data after condltlomng and delineation. PCA is applied
both in temporal and spatio-temporal domain to find out a minimal set of QRS-complexes
characteristic to that data-set which conveys relevant diagnostic information .
Principal Component Analysis is de51gned to capture the variance in a data set in
terms of principal components [19]. PCA involves a mathematical procedure that transforms
~a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables
called principal components. The first principal component accounts for as much of the

- variability in the data as possible, and each succeeding component accounts for as much of

'_,.)"; the rémajning variability as possible [20].

" 4.2.2 RELEVANT MATHEMATICAL TERMS,
-Variance: |

This is' a measure of the spread: of a variable from the mean. Let us consider ‘n’

observations of a variable A, namely, a;, a;, ...... e , a,. The variance of A can be
defined as: A
i(a, _5)2
S ==k e e (4.14)
g (n—1) \
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Where, a denotes the mean, [E =(a, +a, oo, +a,)/n ]

The square root of variance is known as the Standard Deviation.

Covariance:
For two-dimensional data (two different variables having the same no. of observations),

covariance provides a measure to find out how much the dimensions vary from the mean

with respect to each other [5].

The covariance between two variables A = (é;,az, ........... ) and B =
(by,ba,..ven.. ,bn) can be mathematically defined as:
- 2(a—a)b-b)

L e i et erreeennen 4 15

S 48 (n-1) ( )

Covariance Matrix:
Covariance is always calculated between two dimensions. However, if we have a data set

with more than two dimensions, there is more than one covariance measurement that can be

calculafcd [21].

Let us consider three variables A, B and C with the same number of observations.
Here, we can calculate three different covariance measures, namely, S,;,S,. and S,.

Following is the covariance matrix for these three variables:
SAA SAB SAC
S={8s Ssg Sge|reerer v (4.16)
SCA SCB SCC

The diagonal terms are nothing but the variances, e.g. §,,=S, and so on. Also, the -

covariance matrix is a symmetric one, i.e. S,, =S,, and so on.

For an m-dimensional data set, we have (__2_)'5 different covariance values and ‘m
m-—24)x

variances. Here, the covariance matrix will be a square symmetric matrix of order mxm. The
formal definition can be given as, | »

S™™=(Sy: Sy = covariance (Dimj, Dim;)).......c.ovvnnnn. 4.17
Orthogonality & Orthonormality:

Two vectors are said to be orthogonal if their dot-product (or scalar product) is zero. This

means that the vectors are mutually perpendicular.
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The dot-product of two vectors V = (Wi, W2, .....ccoeeevirennn,, WI) and W = (W), Wy,

,w,) is defined as in equation 4.18.

VW= vlwl + VW, drerrrisanes o o v,W, = Zvjwj .................... '.......(4.18)

~ For orthogonality,

AV | PSPPI (4.19)
N A set of vectors Uy, U2, ccvveiiiiiiniiniennnennn, , Um (Where each U; vis a vector
with m components, i.e. Ui= (Wi, Uizyreeervereest. SO eeveey Uin) IS said to be orthonormal if

they are pair-wise orthogonal to-'eacli other and all have a length equal to unity.
Mathematically, this can be defined as, '
Ui.Uj= 0 if i#

An orthonormal (or, orthogonal) matrix is defined as a matrix whose columns are

orthonormal (or, orthogonal) to each other.

 Corollary 1:
_The inverse of an orthogonal matrix is its transpose [18]. -

Eigenvectors and Eigenvalues of a matrix:

" Let H be an nxn matrix. The number X is an eigenvalue of H if there exists a non-zero vector

- V'(nx1) such that,

‘In this case, vector V is called the eigen\}éctor of H corresponding to the eigenvalue A.

. Following is an example of an eigenvector:

B ﬂ'xmzmﬂxm ............. e (422)

3 ! 23 |
Here, {2} is an eigenvector of the matrix |:2 1] corresponding to the eigenvalue 4.

Eigenvectors can only be found for square matrices. ‘However, not every square
matrix does have eigenvectors. Given an nxn matrix that does have eigenvectors, there are n

of 'thcm.
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All eigenvectors of a matrix are orthogonal to each other, no matter how many
eigenvéctors we have. It means we can express our data in terms of these perpendicular
eigenvectors taken as the axes (or basis vectors). If we restrict the length of all eigenvectors
to unity, they construct a set of orthonormal vectors.

Corollary 2: ' '
A square symmetric matrix is diagonalized by a matrix of its orthonormal eigenvectois [18]. -

This means an nxn symmetric matrix H can be expressed as in equation 4.23.

Where, E is the matrix of the eigenvectors of H arranged as columns and E” is the
transpose of E, and D is a diagonal matrix.
4.2.3. MATHEMATICAL THEORY OF PCA
PCA is a weIf-establishéd téchniqu'e‘for dimensionality reduction without much loss
of-information. In other words, PCA can be thought of an analysis tool, which finds out the
most meaningful basis to ré-express a high-dimensional data set. This process automatically
filters out undesired noise present in the data-set to certain extent, making the data more
accessible for visualization and analysis. The new basis (computed by PCA) expresses the
data without réedundancy.
Let us go bzick to the example cited in section 4.2.1, where we have ‘n’ observations of

‘m’ variables. The data matrix X is defined as follows:
OBSERVATIONS : ' >

Xn | X2 X13 Xln

X21 : , X2n

X31

Xml see eee e LN ] X (XX} xmn

Figure 4.16 : PCA Input Data Matrix Structure

Here, any observation (along the column of X) refers to a vector having m components, as
given in equation 4.24.
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~ % .
; Xo;
OBSE)=| 7 | (4.24)
_xmr'
And hence X can be re-written as:
X=[ OBS(1) OBS(2) ..cccocevrevnnnn. LOBS(m))..oi (4.25)

- The basis of representation for the observations is an m-dimensional vector space.

b, 1 0 - 0]

b, 01 - 0
B=| " |=|. . . .|=1

Initial basis (B): 1dentity Matrix (I) of order mxm.

Fo b,,...A bm: In1t1al basis vectors (each having m
b 0o 0 - 1 . components)

Using PCA, we will try to find out another basis (of smaller dimension) that best re-
expresses our data set [2]. The new basis vectors will be a linear combination of the original

basis vectors (by,... A --sbm).

0 In other words, we need to seek for a transformation matnx P (new basis matrix) of-
order rxm, which transforrs an m-dlmensmnal observation into an r-dlmensmnal one (r<m)
. This matrix P when multiplied to X will produce a new matrix Y (of order rxn), which is the

- re-represeritation of our data set.

Equatxon (4.26) represents a change of basis equatlon The rows of P (p1,.....,pr ).
are the new basis vectors for expressing the columns of X, [Initially we had BX =X]. The
rows of P are called the principal components corresponding to dataset X. '

The physical interpretatioh~of PCA can be given in terms of projection. Let us
consider two-dimensional data (m=2), initially expressed in terms of conventional x and y

co-ordinates. Following figures demonstrates the role of PCA.
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(c) Projecting all data points on P!

Figure 4.17: PCA Functioning

We can see that Pl in figure 4.17(b) represents the best fit line for the data. P2
represents deviation from this best fit line. The maximum variaﬁon of data occurs along Pl
We can prOJect all data points on Pl as shown in 4.17(c). Thus we come to-a one-
dimensional representatlon of the data (along a stralght line). Therefore, the dimensionality
is reduced (r 1" here) while preserving the max1mum variability in the data. The ongmal
basis vectors (b; and b,) were nothing but the x and y axes. As appaient from 4.17(c), the
new representation of data (along a straight line) can be given in terms of only one axis P1.
So, Pi is_ the new basis vector, which is a linear combination of by and by, The task of PCA
is to find out this P1 from given by and by,

Referring to equation (4.26), the new representation of the data (Y) should be
" free of noise and redundancy, as much as possible. The signal-to-noise ratio (which is a ratio
of the variances of the signal and noise) can be improved by maximizing the variance along
the new basis vectors. On the other hand, the redundancy of data can be measured in terms
of the covariance between different variables (or dimensions). We want each variable to co-
vary as little as possible with other variables. So, we need td minimize the covariance

between the new set of variables (rows of Y) at the same time..
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To quantify covariance and variance in a multi-dimensional data set, we go for the
covariance matrix as discussed before (Equation 4.17). In our example, the covariance
“matrix for the data sets (X or Y, where each row represents a different dimension or

variable) can be defined as follows (here we assume that each row of X is a zero-mean

) variable):

S, =__TXX_T 5 Sy :;:TYY’» ................................... (4.27)

Computing S, describes all relationships between pairs of measurements in our data

set X. We need to determine a new basis matrix (P) which will maximize the variance
inside any particular dimension and at the same time minimize the covariance between
different dimensions. In other words, we need to have an optimum choice of P in order to

have a diagonal covariance matrix for Y.

PCA assumes that all basis vectors {pi,.....pr : rows of P} are orthonormal. In the
language of linear algebra, PCA assumes P (transpose of .P) to be an orthonormal matrix (columns
of PT being ox'thononml to each other) . . Secondly, PCA assumes the directions wifh the largest
variances are the most important ones. PCA first selects a normallzed direction in m-dimensional
“space. along which the variance of X is maximized- it saves thlS as p;. Again it ﬁnds another
direction along which variance is maxxmxzed However, because of the orthonormahty condition, it
restricts its search to all dlrectlons perpendicular to all prevxous selected directions [18]. This search

can -theoretically continue up to m directions. However we select only the first r directions

' .. accounting for more than say 99.9% of variance of the ongmal data set. Next we shall see the

o solutlon for PCA usmg linear algebra.

First we write Sy i m terms of P-as below,

S, = l -—-—(PX)(PX) —1—P/W(TPT =—.1——P(XXT)PT e (4.28)
n—1 - n—1 n-1 n-1 )
Let XXT =G,
Then we have,” Sy = —1IPGPT e teraeer et e e aran, (4.29)
4 , n— :

. Here, matrix G will be symmetrical by definition, as it is a product of one matrix.

and its transpose. The size of G would be mxm.
From ‘Corollary 2’ in section 4.2.2, we can write, | .
G —_ EDET BT S L I (4‘30)
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Where, D is a diagonal matrix and E is a matrix of eigenvectors of G arranged as

columns.
We now select the matrix P to be a matrix where each row p; of P is an eigenvector

of XX". Therefore, P = ET.
Substituting P = E' in Equation (4.30), we get,

| G=PTDP oot (4.31)
From ‘Corollary 1’in section 4.2.2, we can see that,
(PTy'= ()T
or, (PT)'_IF'-' P

O, BT P e (4.32)

Combmmg equatlons (4.29).and (4.3 1) we get,

Sy =;—_—1PGPT — P(PTDP)PT =———(PPT)D(PP )-———(PP")D(PP")
Finally we arrive at,
S, = D e (4.33)
n-1

~ Therefore, we can conclude that our choice of P diagonalizes Sy, i.e. the goal is
achieved. Hence the basis vectors for the new representation or the principal components are

nothing but tlie eigenvectors of the covariance matrix of X.

4.2.4. STEPS OF PCA IMPLEMENTATION

Step 1: Construct. the data matrix X (as depicted in figure 4.16)

Step 2: Calculate the mean of each row and subtract it from the corresponding row.

Step 3: Calculate the covariance matrix Sx(mxm) of these zero-mean variables.

Step 4: Calculate the eigenvectors and elgenvalues of Sx.

Ste‘a 5 Arrahge the eigenvectors in descending order of eigenvalues. Now, construct a
matrix (P) with the first r eigenvectors (after being sorted) as rows. That means,

‘the eigenvector with the highest eigenvalue will be in the first row , eigenvector

with the 2" highest eigenvalue in the 2" row and so on.

"Step 6: Now obtain the new representation of data (Y) by multiplying P with X, i.e.
Y=PX.
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| 4 3 CORRELATION TECHNIQUES

4 3.1. AUTO AND CROSS CORRELATION FUNCTIONS

- -_Correlatlon is-a statistical technique, whlch can show whethcr and how strong]y palrs of

variables (or waveforrns) are related.

A good method of measurmg the similarity between two waveforrns is to multiply

‘them together, ordma;e by ordinate, and to add the products over the duration of the

waveforms. Let us conside:r.the'folloWing figure.

Ilmlqa
n {1 it |

(¢)

(d)

ISHIFTY

- Flgure 4.18: Correlation Calculatlon between dlfferent pairs of Waveforms [23]

In the above figure, the waveforms (a) and (b) are exactly identical. Waveforms (c)
and (d) are identical in shape but having a time shift between them:

To assess the similarity between (a) and (b) in- mathematlcal tcrms “we multiply
ordinate p; by ordinate q , ordinate pz by gz, p3 by q3, and so on, and finally we add all these
products to obtain a single number which is a measure of the similarity. This number
represents the correlation. Here, waveforms (a) and (b) are identical, so that, every ordinate,

positive or negative, contributes to a positive term to the-sum. Thus we have a large value

of the sum (i.e. the correlation coefficients).

46



If we perform the same process on waveforms (b) and (c}), we find that each positivc

product is offset by another negative product and hence their sum becomes small. Lesser
' correlation is obtained between aneforms with lesser similarity.

Now we consider the correlation between waveforms (¢) and (d). They are identical
in shape, but one is displaced in time from the other. If we perform the same process of
multiplying ordinates (of which r and s are typical), again we find that every positive
product tends to be offset by a negative product, resulting in a smaller sum. Thus, if we were
to plot the similarity between a waveform of figure 4.18(c) and a time-shifted version of
itself, we should expect the resulting curve to assume small values for large time shifts, and
to rise to a large positive maximum when the time shift is zero. This curve is called the auto-
correlation function (ACF). Formal definition of ACF is given below. | A

The Auto-Correlation Function of a waveform is a graph of the similarity between
the waveform and a time-shifted version of itself, as a function of this time-shift [23].

Let us consider the ACF of a sine function. The sine wave becomes exactly similar
to itself whenever the time shift is an integral multiple of its time period. Hence, the ACF of
it must be periodic. In reality, the ACF of a sine wave is also sinusoidal, having the same
frequency, and being symmetrical about the point which represents zero time-shift, as
evident from the following figure. The horizontal axis in the ACF plot represents.time shift

and not the absolute time.

(a) Sine Wave

|
|
!
l

!
.. zero C
-ve time shift 4——— shift —_—p +ve time shift
{(b) ACF
Figure 4.19: Auto-Correlation Function of a Sine Wave .

Now, we consider the ACF of a broad-band noise signal in the following figure

4.20.
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(a) Broad-Band Noise —Ptime

--ve time shift {——— zero —————)p +ve time shift
: (b) ACF 'shift ‘

Figure 4.20: Auto-Correlation Function of a Broad-Band Noise Signal [23]

In figure 4.20, the ACF isa sharp impulse, decaying quickly from the ccntral maximum
" to very low values at large time shifts. It is because the waveform i in figure 4.20(a) is similar
“to itself only at zero time shift. A very small time shift is sufficient to destroy the similarity,
and the smnlarlty never recurs. | | | ‘

So far we have discussed about the ACF, which is concerned with the similarity
between a waveform- and a time-shifted version of itself. However, the same idea can be
extended for two different non—1dentlcal waveforms like the signals (b) and (c) in figure
" 4.18. This is the concept behlnd Cross- correlatlon Let us consider the figure below for a

better insightinto it.-

Time-origin of
stationary waveform

(a) -

Time-origin of
moving Iaveform

o [
Shift betwean
| waveforms

<— Window of width T —p

(c) CCF between (a) and (b)

|
|
1
t
4
|

1
- Zero

-ve time shift 4—-———-T1mc-Sh|ft —————} +ve time shift

Figure 4.21: Cross-Correlation Functi_on [23] 48



In figure 4.21, we visualize the waveform (a) as stationary and waveform (b) as
sliding. We then view the two waveforms through a window of widfh_T, and we assess the
similarity between them within this time interval by our previous methed of multiplying
ordinates and summing products. For any particular shift of (b), this number represents the
cross-correlation between (a) and (b) at that shift. Tﬁe graph (c) represents the similarity-
between (a) and (b) as a function of the time-shift between them. (c) is the Cross-Correlation
Function (CCF), whosé formal definition is given below. |

The Cross-Correlation Function of two waveforms is a graph of the similarity
between the two waveforms as a function of the time shift betwéen them [23].

‘In our application, we will be comparing two different signals through cross-
correlation. For that, we shall deal with the cross-correlation coefficient only and not the
CCI:‘ in particular. The following section provides a mathematical definition of the

Ry

correlation coefficients.

4.3.2. CORRELATION COEFFICIENTS
Two signals may be compared to detect common characteristics present in them through
cross correlation. The cross correlation between two digital signals x(n) and y(n) having N

samples each (‘n’ representing sample number) is defined as their inner or scalar product as

follows:

N
XY =D XYY oo (4.34)

n=|

The dot product represents the projection of one signal onto the other, with each
signal being viewed as an N-dimensional vector. The dot product can be normalized by the

geometric mean of the energies of the two signals [4]:

2 Hmym)
[ x%n)}jy%n)}

n= n=|

;.’.vy =

y{wis called the Cross-Correlation Coejﬁcien‘t between the two signals x(n) and
y(n). It can have values between 0 to 1 (or 0 to 100%). Higher values of ;'L.y signifies greater

similarity between the two signals and vice versa.
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The Auto-Correlation Coefficient (a,,) can be calculated in a similar manner by

replacing y(n) with x(n+k) in equation (4.35). x(n+k) is nothing but the signal x(n) shifted

" in time by k samples. This coefficient represents mathematically the similarity between the

- signal x(n) with itself when shifted by k samples. The expression is as follows,

f:x(n)x(n +k)
a, 2=l Certrieeerererareerreres R (4.36)

k= " " 172
[Z x*(n)Y x*(n+ k)]

n=} nwl

a,, can have values between 0 to 1 (or 0 to 100%).




CHAPTER S
ECG SIGNAL CONDITIONING

The recorded ECG signal needs to be processed or conditioned }in order to remove the noise
and artifacts, before delineation. ECG noise removal has always been a subject of great
importance. The purpose of the de-noising filtering process is to reduce the noise level in the
signal and simultaneously prevent waveform distortion. This last characteristic is of vital
importance to prevent wrong diagnosis or analysis of the ECG signal [24].

Filtering of ECG is an essential pre-processing stage before delineation. Being
highly sensitive to the ECG waveforms and morphologies, the delineation algorithm needs
the input ECG to be free from noise as much as possible. In case of multi-channel ECG, first
the reference is changed to Wilson’s Centre Terminal (WCT) before any analysis. This
ensures high Common Mode Rejection Ratio (CMRR). Filtering is carried out in two stages,
as follows: '

First Stage=> Cancellation of baseline wanders

Second Stage=> Elimination of high frequency noise and artefact
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5.1. CANCELLATION OF BASELINE WANDER

.'Normal]y, the baseline of ECG sxgnal (1 e. the rest of the ECG except the peaks and waves)

I1s supposed to be iso- electrlc at zero amphtudc level. This is shown in the followmg figure.

kmﬂé"’&“‘” LL‘J‘ Vw& e L'L-—“" — Basellne

normally ato v

Figure 5.1: Normal ECG free of ‘Baseline Drift

“@MMML/\J -

Figure 5.2 : ECG corrupted with Baseline' Wander

Baséline deviated
» from0V

Followings can be the sources of baseli'ne wander [4]:

I. Coughing or breathing with large chest movement for chest-lead ECGs.
If an arm or leg is moved in case of limb-lead ECG acquisition.
Electrogastrogram (electrical activity of stomach) for chest-lead ECG.

Poor contact and polarlzatlon of electrodes.

A e

Variations in temperature and blas in the instrumentation and ampllﬁexs

The frequency components of the baseline wander are usually below 0.5 Hz.

- '5‘.1.1.'REL.ATED LITERATURE SURVEY

Several methods have been proposed in the literature to eliminate baseline wander. The first
" is ensemble averaging. However, this approach is not a realistic one as the.ECG signal
exhibits beat-to-beat variations. Among other methods, we have polynomial interpolation.
Linear interpolation introduces significant distortions. A third order approximation sal]ed
cubic spline [25] is proved to give better results. Interpolation techniques make use of a
previous knowledge of the ECG isoelectric levels estimated from the PR intervals (knots).
- Therefore, the performance of this technique deb,ends highly on the knots determination

accuracy and gets degraded as the knots become more separated in time (low heart rate).
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To overcome the above problem, another group proposed digital narrow-band
linear-phase ﬁitcring [26]. This method can be implemented in real time, but has two m‘il_im'
draw-backs. First, the filter needs to be a FIR filter with a long impulse response, which
means a large number of coefficients. Secondly, given that ECG and baseline wander
spectra usually overlap, it is not possible to remove baseline wander without distorting ECG.
Another technique has been proposed in [27], which uses a time-varying lincar filter that
selects different cut-off frequencies as a function of the heart rate-or the baseline level. This
filter improves -the time invariant FIR filter performance, but can yet distort the ST
components of ECG and has high computational requirements.

Another group employed Short Time Fourier Transform (STFT) to get rid of
baseline drift [29]. Within every window, they search for a spectral component in the range
0.0 to 1.0 -Hz. Only the ECG segments containing frequenc‘y' components in the specified
ranige are high-pass Aﬁltered to cancel baseline wander. However, it is not possible to have
optimal frequency and time resolution at the same time with STFT.

Adaptive filtering has also beeﬁ proposed to cancel the baseline drift [28]. An
adaptive transversal filter with ohly one. weight is used, where the reference input is a
constant with a value of 1 and the primary input is the ECG signal. This filter, using the
Least Meah Square (LMS) Algorithm in the adaptation process, is equivalent to a linear
notch filter that takes the advantage of adaptive implementation, but still modifies the ST
segment. S _ :
In [30], a cascade adaptive filter has been used. The first stage of the filter is
exactly similar to that mentioned above. In the second stage, the primary input is the output
from the first stage and the reference input is 2 unit impulse sequence correlated with each
QRS complex. This needs a QRS detector to generate the impulse sequence. However, in
our application baseline wander cancellation is accomplished as a pre-conditioning of ECG
signal before delineation.

Here, a DWT-based baseline wander removal algorithm has been employed, which is

simple in implementation, yet providing promising results.
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5.1.2. MOTIVATION

... . The frequency range of baseline wander is below 0.5Hz. Therefore, its presence will
be reflected in the higher level DWT approximation coefficients. This is the basic idea
behind our approach. |

First the noisy ECG signal (contaminated with baseline wander) is decomposed into

a certain no. of levels (n) using Discrete Wavelet Transform (as discussed in the previous

chapter, section 4.1.7). The highest level (nth level) approximatiori coefficients (A.C.) are

suppoéed to represent the low frequency baseline variation signal. The nth level A.C. are

made to be all zeros and then the ECG signal is reconstructed following the same procedure
as mentioned in section 4. 1.7. _ ' |

A mother wavelet (e.g. coif4) 'i,s" chosen arbitrarily. and DWT decomposition is

carried out on one ECG signal. It was seen that cach of the 8% 9" and 10" level

approximation coefficients, when time-aligned to the original ECG, resemble the baseline

wander. Following figure shows this resemblance.

& . e 3 % .»‘ RN L SO AR

T L o
Figure 5.3: Resemblance of Baseline Wander with High Level Approximations

However, a clear idea regarding the following two things is needed.
1. Which mother wavelet should be applied for DWT analysis on the noisy ECG for

best results?

2. What value of n should be chosen?
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5.1.3. SIMULATION & RESULTS

Before‘dcaling wi'th-rea'l ECGs, artificial signals (i.e. mixture of artificial ECG and artificial
baseline variation vsignal) were taken for experimentation. Thus, with a clear knowledge of
the component signals, the performance of filtering could be judged.

Artificial ECG beats were generated in Matlab 6.5 with the help of inbuilt ECG
simulator. The sampling frequency was assumed. as 1 KHz, or in other words the span of
1000 samples is | second. The data length was taken to be 25000 samples; i.e. 25 second.
Then, for 60 bpm (beats per minute) ECG, each beat should have a span of 1000 samples
and hence there would be 25 beats in total. For different bpm, the span of ECG beat was
varied accordmgly and hence the total number of ECG beats. '

To find out the sultable mother wavelet and the decomposition level (n), test was
carried out on 650 art1ﬁc1a!1y generated noisy ECGs. Thirteen noise-free ECG signals in the
range of 60 to 180 bpm were created as discussed above. At the same time, a set of fifty
sinusoidal s-i-g'haIsAwith ffequencies ranging frém 0.01-0.5 Hz was also created, to simulate
the baseline wander. Thereafter, 650 test signals in total were synthesized by mixing the
aﬁiﬁciai ECGs with artificial baseline wander signals in one to one correspondence.

Now, on each of the 650 test signals (or mixture signals), DWT analysis was
carried out. taking a total of 29 mother wavelets (syml,....... ,Syml2,
- coifl,...,coif5,dbl,........ ,db12) under consideration.

On the same test signal, for each of the mother wavelets, the following procedure was
adopted
1. Initialise n=1; i.e. no. of decomposmon levels for DWT.
2. Decompose the test signal till n levels (maximal n was 12) and get the DWT
coefficients Ay, Dy, Di.1, D2, ..:Dl (referring to figure 4.9).
A, : ith level approximation coefficient ' |
Dy ith level details coefficient |
3. Perform two reconstructions.

First Reconstruction : With A, to be all zeros, reconstruct the signal as in Figure

4.11. The signal, reconstructed in this way is called the ‘ECG reconstruction’. It
should resemble the original noise-free ECG (with which the test signal is

synthesized) for higher values of n.
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Second Reconstruction: Making all the coefficients other ‘than A, (i.e. the details

coefficients,-D, ereeene Dl) as zeros, reconstruct the signal as depicted in Figure
..4.11. The 51gnal reconstructed in 1 this way is called the ‘Baseline Reconstruction’. It
should resemble the original Baseline variation signal (w1th which the test signal is
o synthesxzed) for hlgher values of n.
. 4. Judge the. resemblance between the original and reconstructed signals by means of
cross-correlation. Two cross-correlation coefficients (CE & CB) were calculated.
CE= Cross-correlation between original noise free ECG (generated By in-build
matlab}connnand) and the ‘ECG reconstruction’. '
CB= Cross-correlation between original baseline variation signal (low frequency
sinusoid) and the ‘Baseline reconstruction’.

S. Repeat steps 2 to 4 for n=1,........12.

" Now the whole process (from step | to 5) was repeated for 29 different mother wavelets

applied on the same test signal.
For each test signal, two correlation matrices (one for CE and the other for CB,

each of order 12x29) were constructed. The structure of each is as follows:

Mother Wavelets _ >
m o CU). e U e C(1,29)
v o | h .

CUZD) . o o C(12,29)

Figure 5.4: Correlation Matrix Structure

Where, C denotes either: CE.or CB. The Ist to 12" column represents Symlet Wavelets of 1%

to 12" order (syml,.............. ,sym12) , the 13™ to 17" column represents Coiflet Wavelets
of 1¥ to 5" order CLU1 2 POTR ,coifS) and the remaining 18™ to 12 column represents
Daubechies Wavelets of 19 to 12 order (dbl,..eiiiinnnnn, ,db12).
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For 650 test signals, there were 1300 correlation matrices in total, half for CEs and
half for CBs. Now two more matrices were computed, the first one (CEmean) being the
mean of 650 CE matrices and the second one (CBrnean) being the mean of 650 CB matrices.

Now the positions of the first five greatest elements in both the matrices, CBmean
and Cemean, were located. The positions are found to be exactly the same in both. This
means that the highest element occurs in the same position (same row and column mimbcr)
in both the matrices ---- same is true for 2™ highest and so on. All of these five highest
elements are found at the row cprrespondihg to n=9. This means that generally baseline
wander signal céin- be located at the 9™ leve.l approximation coefficients.

The result is summarized in Tablé 5.1.

Order No. Mother Wavelet n Mean CE (%) Mean CB (%)
T dbll 9 99,9924 99.915
2 | syml2 9. 99.9913 - 99.9011
3 syml0 9 ' - 99.9909 99.8962
4 dbl0 9 . 99.9906 99.8925
5 coifS |~ 9 . 99.9904 - |. - 99.8894

Table 5.1: Results Obtained from 650 Artificial Test Signals

5.1.4. PROPOSED METHOD
The simuhted ECG and baseline variation sigﬁals cover the range of practically encountered
signals. Lhcrufore either of these five mother wavelets (listed in table 5. 1) is applied on our
recorded multi-channel ECG and ‘the 9™ level approximation coefficients are cancelled out
to get rid of the baseline wander and at the same time to ensure least distortion in the ECG
waveform. Followmg is the simplified strategy for baseline wander cancellation:

1. .Carry out: DWT decomposmon of the n01sy ECG at hand till the 9th level (as in

Fi igure 4. 9) |
2. Make the 9th level approximation coefﬁc1ents to be all zeros.

3, Now, reconstruct the ECG (as in Figure 4.11).

5.1.5. RESULT OF APPLICATION ON REAL ECG
Our algorithm was applied on Multi-Channel ECG data recorded at the Institute, as well as

on signals taken from MIT- Arrhythmia Database.. Following Figures demonstrate the

success of our method.
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~ After eliminating the low frequency baseline wander; the next stage is filtering of

high frequency disturbance in ECG.
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5.2. ELIMINATION OF HIGH FREQUENCY. NOISE & ARTEFACT
The ECG is often corrupted with high frequency noise. This can be introduced due to
instrumentation amplifiers, recording system, pick up of ambient electromagnetic signals by
the cables, and so on. There may be random noises uncorrelated with the ECG signal like
myoelectric,'thermal ete, whiCh can be approxiﬁated by a white noise source [24]. White
noise is technically d;:ﬁned as é signal with uniform frequency spectrum over a wide range
of frequencies (analogy with light). The harmonics of power-line interference may also be

considered as a part of high-frequency noise relative to the low frequency nature of the ECG

' signal. '

T
L T e

e
Figure 5.7. ECG Signal Co;rupted with High Frequency Noise
Any of the two different approaches ¢an be adopted to eliminate these kinds of noise,
namely
1. Frequency-domain Filtering

2. Time-domain Filtering

5.2.1. FREQUENCY DOMAIN FILTERING
A ﬁltgr is generally a frequency-selective device. It passes some frequency components of
the signal as it is, whereas it blocks others by means of attenuation. The frcquexicies that are

passed through the filter constitute the pass-band, and those that are blocked are in the stop-
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" band. Let us denote the frequency response of the filter by H(jw) [where ‘o’ is the angular

frequency in radians/sec]. For frequencies in the pass-band, the magnitude |H(jw)| is

relatively high and ideally a constant. A stop-band is characterized by a small (ideally zero)
|H(j)l. -

Here, we need a low pass (LP) filter to remove high frequency disturbance. At the

same time, minimal loss of signal components in the pass-band needs to be ensured. Let us

compare the magnitude response of four different kinds of low-pass filters.

Ab;
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(a) Butterworth

jHGo)|

S L

A
E u,w, T w
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. (c)Sixth order Inverse Cﬁebysilev o . (d) Slxth order E]hpnc
Figure 5.8: Magnitude Response of Four Different LP Filters [31]

The pass-band ‘is -characterized by . A\<|H(jw)|<A and the ‘stop-band by
0<| H(jw) |<Aq, Al is never less than 4/2"?. The frequency band o <w<w,, between the
pass-band and stop-band is called the transition' band. The response decreases continually

within this band.

The cut-off frequency . is taken same as the passband frequency ; for Chebyshev
and elliptic filters. For Butterworth and Inverse Chebyshev, o is the frequency at which the
gain falls by 3dB, i.e. where | H(jw) = 4/2" [31].

It is seen that although Butterworth filter does not possess a sharp transmon, it offers |
“the maxrmum flatness in the pass and stop bands, compared to the others This maximally

ﬁ ﬂat magnltude response makes it the most commonly used frequency domam filter.
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The basic Butterworth low-pass filter function is given as,

(2] T

Here, N denotes the order of the filter and suffix ‘a’ in H,(jw) stands for the frequency

|H,(jo)l=

response of the analog filter. A Butterworth filter is completely specified by its order and

cut-off frequency.
Following figure shows the magnitude response for different values of N.

[Ha(eo)|

Q

Figure 5.9: Butterworth LP Magnitude Response for Different Filter Orders [31]

The ideal low-pass filter response is shown in dotted line. The filter response is monotonic
in the péss—band as well as in the stop-band. It is apparent that the Butterworth response
more closely approximates the ideal response (i.e. more flatness in pass-band along with
faster and sharper transition to stop-band) as the order N increases. The Butterworth filter is

said to have maximally flat magnitude response (compared to other filters of same order)
since the first (2N-1) derivatives of | H,(jw)|* are zero at @=0,

However, the phase response of the Butterworth filter becomes more non-linear with

increase in order as shown below. /oo,
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Figure 5.1 0: Butterworth LP Phase Response for Different Filter Orders [3171.

But linear phase characteristic is essential to ensure_minimum distortion of the
original signal after filtering. In our application, second order Butterworth low pass filter
with cut-off frequency 70 Hz seems to be the best. _

However, we use. the. Butterworth filter in- the dlscrete form. Let us see how the

" discrete transfer function H(z) can be derlved from equation’(5.1).
Changing equation (5.1) in terms of Laplac;e vafiable ‘s’, we get
1 TP (5.2)

The poles of the squared transfer function [in equation (5.2)] are located with equal

H,(s)H,(-5)=

spacing around a circle of radius . in the s-plane, distributed symmetrically on either side

of the imaginary axis s = jo.

Imaginary

Left=half s~plans Right-half s-plane

Real

Butterworth circle
radius = 1.463085 radians

Figure 5.11: Pole Locations of H (s)H,(-s) [4]
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F ollowihg observations can be made regarding the pole locations:
1. No pole will lie on the imaginary axis itself (i.e. s = jo). |

2. Poles will appear on real axis for odd N.

(U8}

. The angular spacing between the poles is 7/N.

4. 1f H,(s)H,(-s) hasa pble ats= sp, it will have a pole at s = -s, as well.
S. For the filter coefficients to be real, complex poles must appear in conjugate pairs.
6. The pole positions in the s-plane are given by, |
S (2;-1))
(1 |
- 2 2N : )
;=W T (5.3)

Where, 1=1,2,........... 2N

In order to obtain a stable and causal filter, we need to form H (s) with only the N

poles on the left-hand side of the s-plane. Selecting these poles the transfer function in the
analog Laplace domain becomes as given in equation 5.4.
G

H(s)=—————————————————————— et 54
) T P P = P — ) G

where, px, k=1,2,........ N, are the N poles of the transfer function in the left-half of the s-
'p]ane, and G is a gain factor specified as needed to normalize the gain at DC (s = 0) to be
unity. | '

The transfer function A, (s) may be mapped to the z-domain by -applying the

s_%(:zlj ............................................. (5.5)

Here, T denotes the sampling interval. If the sampling frequency.of ECG recording be

bilinear transformation as follows:

IKHz, T=1 ms. The transfer function H(z) obtained after bilinear transformation can be

simplified to the form,
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where ay, k=0,1,2, ....,N are the filter cpefﬁcients or tap weights (with ag=1) and G' is the

gain factor needed to obtain [H(z)|=1at DC, that is, at =]. We can see that the filter has N

' ieros atz=-1. - ‘
If x(n) be the input and y(n) be the output, we have the following input-output

relation of the filter:
N N ' '
Yy =D bx(n=k) =D @ y(n=k) oo (5.7)
k=0 k=l o

Where by, k=0,1,2, ....,N are another set of filter coefficients or tap weights.
The filter is now in the form of an IIR filter, whose direct form realization is given

in figure 5.12.

x(n) - l

®
@

| Figure 5.12: Direct Form Realization of the IIR Filter [4]

In our case, the Matlab function ‘butter’ is used to generate the filter coefficients
‘with specified order (second order) and cut-off frequency (70. Hz). Following figure
demonstrates the performance of this filter on ECG data. Inpuit to this filter is the ECG

obtained after adjusting the reference and cancelling the baseline wander.
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(b) Output

SR TR T R LB
f Butterworth Low Pass Filter

Figure 5.13: ?erférmanc’éb

5.2.2. TIME DOMAIN FILTERING
Time domaiﬁ filters are useful in eliminating random noise. In most cases,' time-domain
processing is found to be faster than frequency domain filtering [4]. For ECG signal
conditioning, Savitzky-Golay (SG) Filter is sometimes used as an alternative to Butterworth
LP filter. SG filter can be thought of a generalized Moving Average (MA) filtering. For
better insight, we begin with MA filtering. .

A Moving Average filter smooths data by replacing each data point with the average of

the neighbouring data points defined within the span [32]. The general form is as follows,
N - N o ..
'y(n)=Zbkx(n—k)................. ...... e ereereneaen, ...(5.8)
k=0

Where, x and y are the input and output of the filter, respectively. The by values are the filter
coefficients or tap weights, k=0,1,2......... JN..‘N’ is the order of the filter. The effect of
division by the number of samples used (N+1) is included in the values of the filter

coefficients. The signal flow diagram of a generic MA filter is given in the following figure.
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Figure 5.14: Signal Flow Diagram of an MA Filter 4]

The z-domain transfer function of the filter is given as,

H(z )_ J@) sz =b, +bz" bz 2 e +b,z7" (5.9)
| | X2 = ~
An MA filter is a finite impulse response (FIR) filter with the following attributes and
advantages: ) ' "
e The impulse Aresp-onse h(k) has a finite number of terms: ll(k) = by ,
k=0,1,2......... N |

e AnFIR filter may be realized non—recursively with no 'feedback.
.o The output depends only on the present input sample and a few past input samples.
o The filter. transfer function in z-domain has no poles except at z = 0. This makes the
filter mherently stable.
o The filter has linear phase if the series of tap welghts is symmetrlc or anti-symmetric.
Savitzky-Golay Filtering can be thought of as a generalized moving average, SG
filter. coefﬁcxents are derived by performing an unweighted linear least square fit using a
_ polynorm al of a given degree For this reason, 1t is also called a digital smoothing
polynomial filter or least squares smoothing filter. ,
Matlab function ‘sgolayfilt’ 1s used to 1mplement the SG ﬁlter with specified degree
(d).of fitting po]ynormal and filter span (s) The followmg two conditions must be ensured,
1. The span (s) must be odd. This is also known as the frame size.
2. The polynormal degree (d) must be less than the span (s). If d = s-1, the filter w1ll,

produce no smoothing.
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SG filter is typically suitable to smooth out a noisy signal who-se frequency span
(without noise) is largé, Iiké our ECG signal. In this type of application, SG filters perform
much better than standard averaging FIR filters, which tend to filter out a significant portion
of the signal’s high frequency content along with the noise [5]. SG filters are optimal in the
sense that they minimize the Icast-squared error in fitting a polynomial to frames of noxsy

data. Following figure demonstrates the performance of SG filter (with d= 2 and s = 5) on

the same sngnal of ﬁgure 5.13 (a)

(b) Output

Figure 5.15: Performance of Savitzky-Golay. Filter

5.2.3. DRAWBACKS OF BUTTERWORTH/ SAVITZYKY-GOLAY FILTER
The advantage of the Savitzky-Golay Filter is that it takes lesser computation time.
However, it is not possible to predict which one is the best among these two. For some ECG
data sets, Butterworth LP filter works better than Savitzky-Golay Filter, whereas for some
other data sets the latter‘is found to be better. It depends on the nature of contamination.

For Butterworth low-pass filter, the cut off frequency is taken as 60-70 Hz in our

application. However, ECG signal itself sometimes has frequency components more than 70
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Hz (specially the QRS complex). Under such circumstances, Butterworth Filtering produces
severe distortion of the signal. Savitzky-Golay filter also performs poorly on narrow peaks.

* This becomes evident from the following figure.

Savilzky-Golay Smoothing

—

-

. ‘l i
1. 2 . 3 4 5 6 7 8
(©). '

Figure 5.16: Performance of Savirzky-Golay Filter on Narrow Peaks [32]

Frgure (a) shows the data added with. norse Figures (b) and (c) show the result
of ‘smoothing with a: - quadratic and quartlc po]ynomlal respectively. The dotted line
represents the data without adding noise. Higher degree polynomials can more accurately
.'capture the heights and widths of narrow peaks, but can do poerly at smoothing wider peaks.
We use quadratic polynomial fitting in our appli'catio'n.-This reduces the sharpness of the
QRS complex sometimes. |

Cancellation of frequency’ content greater than 70 Hz by Butterworth LP filter
or smoothing by SG filter might smooth out the R peak sometimes along with the noise.
Therefore, resampling (as discussed in next chapter, section 6.4) is often used during R peak
detection to enhance the sharpness. ' | | ‘

‘Both of the filtering schemes for hlgh frequency noise elimination will
" introduce some drstomon in the ECG s1gnal however small it may be. Still, this filtering is

essentral before delineation. Therefore, we use the two- stage ﬁltered (i.. baseline wander
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cancelled and Butterworth LP/Savitzky-Golay filtered) ECG signal only for delineation
purpose. For Principal Component Analysis, QRS complexes are extracted from the one-
stage filtered (i.e. only Baseline wander cancelled) ECG signal based on the delineation

result as discussed in Chapter 7.
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CHAPTERG
DELINEATION OF MULTI-CHANNEL ECG

Most of the clinically useful information in the ECG is found in the intervals and amplitudes
defined by its significant points (eharacteristie wave peaks and boundaries). Delineation of
ECG signal means identifying the component waves and complexes in each and cvery beal.

In our algorithm, we will detect 11 fiducial points in each beat. P and T waves are delineated
completely by locating the wave onsets, offsets and peaks for each (corresponding to six’
marking points pe_x".beat). For QRS complex delineation, we detect the locations of Q wave
onset, Q peak, R peak , S peak and S wave offset (5 marking points per beat).

The ‘automatic detection of ECG waves is important to cardiac disease diagnosis. A
good performénce of an automatic ECG analys_ing system depends heavily upon the accurate

and reliable detection of the QRS complex, as well as the P and T waves [34].

6.1. RELATED LITERATURE SURVEY
ECG delineation, specially the QRS complex detection has always been a subject of major
importance in research. An extensive review of approaches proposed in the last decade can
‘be found in [34]. One can find in the literature many different delineation approaches based
on mathematical models, the signal envelope, niatched filters, ECG slope criteria, second-
order derivatives, low-pass. differentiation, the wavelet transform, non-linear time-scale.
decomposition, adaptive ﬁltering, artificial nenral networks or hidden Markov medels [14].
Lot of research has been made in the field of ECG delineation using Wavelet
Transform (WT). In [15][14][35], Dyadic Wavelet Transform (DyWT)‘has been proposed.
A spline wavelet, which is a derivative of a smoothing function, has been used as the
prototype mother wavelet. The implementation is carried out by means of digital filters. The
WT at'a particular scale is proportional to the derivative of the filtered version of the signa]
with a smoothing impulse response at that scale. Therefore, the zero-crossings of the WT
correspond to the local maxima or minima of the smoothed signal at different scales, and the
maximum absolute .vaiues of the WT are associated with maximum slopes in the filtered

signal.
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In [15], first modulus maximum lines corresponding to R waves are searched across
four different scales, namely, 2!, 2% ,2* and 2%, using different threshold for different scales
(based on the correspondmg rms value). For a valid R wave, the szschztz regularity [34]
must be greater than zero. Also, the R wave corresponds to'a pos1t1ve maximum-negative
minimnrn pair at each characteristic scale After applying certain definite criteria, the
" isolated and redundant modulus maximum lines were rejected. Finally the R peaks were
| located at the zero- crossmg points ‘between the posmve maximum-negative minimum parrs
at scale 2'.' On the right and left of each detected R-peak, the local modulus maxima lines
were taken care of for the deh‘neation of rest of the wave peaks and boundaries.

In [14], the same procedure of [15] is extended and evaluated on several manually
annotated databases. They also generalize the’ ﬁlter coefficients (for DyWT) for different
sampling frequencies of the ECG. Moreover they con81dered more morphologlcal variations
for T wave in addition to those listed in [15].

In [35], only;the_QRS comple:t detection is accomplished as they are more interested

in the heart rate variability. They made use of the property that the absolute value of DyWT

. has locallzed max1ma across several consecutive scales at the instant of occurrence of

transrents Applymg a deﬁnlte threshold criterion, the peaks are located in a partlcular scale.
Then the next higher scale is scanned in the same way. If the no: of peaks in both cases does
' ,'not’}agree, computation is.carried out for the next scale. Finally, for acceptance as QRS
locations, three consecutive scales should agree. on the same no. of peaks and also the
corresponding peak locations in different scales must be within tolerable time deviation.

In [36], an on-line QRS detection algorithm was developed based on the Haar
Wavelet and 'implemented‘as a recursive filter, They also use rnagnitude threshold to
determme the locatlon of R peaks. - |

In our algonthm the DWT decomposmon as discussed in section 4.1.7 is used with
Haar function as prototype wavelet. A running window and subsequent accumulation

method makes our approach threshold-independent.

6.2. MOTIVATION
The first level details coefficients obtained from the 'Haar wavelet based DWT

decomposition of ECG signal (after conditioning) are analysed in our method. In this
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section, we will try to discover the utility of ‘Haar’ wavelet in ECG délineatiqn. As dépi_ctcd
already in figure 4.13, Haar function has a step nature. This is found to be very sensitive to
any slope change in the original signal. | |

Before going to the real ECG signal, the Haar wavelet is applied on some signals
with speci'ﬁc shape (e.g.'a straight line with a constant slope, a triangular wave, a cosine
wave ‘ctc), Every signal is decomposed into first level approximation (Al) and details
coefficient (D1) as in Figure 4.9. Now the reconstruction is performed with Al set to all
zeros following the same strategy of Figu;é.4.l 1. The signal, prodﬁced this way will be
nothing but the D1 coefficients time-aligned to the original signal (by means of up-
sampling). This signal (reconstructed back with Al all zeros) is referred to as the ‘First
Level Details Signal (FLDS)’ throughout this chapter.

First let us see the FLDS obtained from a straight line signal with constant slope.

5‘:” T T ] 1 T T M—’_L,_.--‘-’"W* ’. . . .

o} M“MW—”’ | — Straight line signal
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Figure 6.1: First Level Details Signal Resulting from a Straight Line .

.The above figure shows that all the samples of FLDS are of the Same amplitude and

of alternating signs.

Now, the same thing is repeated on a symmetric triangular wave.
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Figure 6.2: First Level Details Signal Resulting from a Triangular Pulse
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The above figure illustrates the following characteristics to be discussed next.
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(1) Samples of FLDS are of the same -amplitude and alternating signs as long as the

 slope remains constant.

(2) When the slope of the signal is zero, FLDS samples have zero magnitude.

(3) When there is a direction change (or sign change in slope) in the original signal, e.g.
at the peak of a triangle, two consecutive samples of FLDS are of same sign. Here,
when the slope changes its.sign from positive to negative (i.c. direction of signal
chaﬁging from +ve to —ve signifying a positive peak), that reflects two consecutive
positivé samples in FLDS--- the first one of them marking the instant of direction
change (or in other words, occurrence of peak). -

(4) The slope magnitude is the same on either side' of the triangle, only the sign is
different. This owes to the sy_mmctry of the triangle. So, all the samples of FLDS
falling under the span of the triangle are of same absolute magnitude. -

Next, let us see what happens to the FLDS if the triangle of the previous .example is
made just upside down.

i}
aal \\ .
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Symmetric  Triangular
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oo}

] —» FLDS

Figure 6.3: FLDS Resulting from a Triangular Pulse with Negative Peak - -

It can be seen that when there is a negative peak (signifying direction change of the signal
" from —ve to +ve), there are two consecutive samples in FLDS with ‘negative’ sign — the first

one marking the instant of the peak.
~ The flowing two characteristics are computcd from the FLDS, on the basis of
observations made so far: - ' _
1. Direction Change Mark (DCM): This is a time vector comprising the same no. of
. elements as the 6riginal signal or FLDS. All .cler_nents of this vector will have zero

magnitude except at the direction changing points. Whenever there are two positive
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Now |

consecutive samples in FLDS, the element of DCM corresponding to the first sample
will be ‘“+1°. On the other hand, two consecutive negative samples of FLDS _wil]
reflect a *~1’ in the corresponding element of DCM. Therefore, a ‘+1° in DCM will
signify 2 positive peak in the original signal and a ‘-1’ will represent a negative
peak. ‘

bDirection Change Slzarpnéss (DCS): This is also a time vector having exactly the
same span as DCM. All the elements of DCS will be zero except at those positions
where DCM has a non-zero value. T . |

IfDCM has a “+1”, the corresponding sample of FLDS is tracked. ~The
absolute difference in magnitude Between this sample and the next sampie of FLDS
is calculated and this value is put at the corresponding position of DCS.

If DCM has a ‘-1, again the corresponding sample of FLDS is tracked. The
absolute difference in magnitude between this sample and the next sample of FLDS
is calculated like before. Now, this difference is multiplied with —1 and the

| resulting negative value is put at the corresponding position of DCS.
Therefore, the samples of DCS will be a replica of those of DCM as far as the
sign is concerned. _
* If the DCM sample is zero, corresponding DCS sample wiil also be zero.
e Ifthe DCM samplé is positive (i.e. +1) , the corresponding DCS sample will also
~ be positive (but can have any magnitude depending on FLDS).
 If the DCM sample is negative (i.e. -1) , the corresponding DCS sample will also
be negative (but can have any magnitude depending on FLDS).

et us see how these things , FLDS, DCM and DCS will look like on a cosine signal.
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Figure 6.4: FLDS, DCM and DCS Resulting from a Cosine Signal
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In Figure 6.4, we can see that the slope of the cosine signal varies continuously and
the samples of FLDS follow the pattern of slope change closely We have a collection of
ordered paus of consecutive samples--- elements belonging to. the same ordered pair will

“have the same magnitude but opposite sign. This leads to the symmetrical posmve and
- negative halves of FLDS. Moreover, two consecutive samples of FLDS (belongmg or not
belonging to the same ordered palr) are always of opposxte signs------- ‘only exceptions are
B found at the local extrema of the original signal (where the slope changes its sign). |
However, DCM or DCS are only sensitive to the change in ‘sign’ of slope (i.e. a
- direction change in .the"si‘gnal) and nof to fhe'. change in ‘magnitude’ of ‘slope. While
observing the difference in magnitude of DCS elements in Figure 6.4, the time discretization
in plotting should be taken care of. | | |

Now, let ug see the application on real ECG segments_(éfter two-stage conditioning as

described in Chapter 5).
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A j .Figure 6.5: FLDS, DCM _aﬁd DCS Resulting from a QRS Complex

It can be seen that five direction changing points are marked in DCM

corresponding to a QRS complex, namely, Q onset, Q peak, R peak, S peak and S offset.
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Figure 6.6: FLDS, DCM and DCS Resultmg from (a) P Wave, (b) T Wave
For both of P and T waves, the onsets, offsets and peaks have been marked in DCM.

Now, for each ECG beat, 11 fiducial pomts are marked as shown in figure 6 7.
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' Figpré 6.7: FLDS, DCM and DCS Resulting from a Whole ECG Beat

6.3. SINGLE CHANNEL DELINEATION STRATEGY

1 —» One ECG Beat

—»  FLDS
1 —»> DCM
"= pcs

First we will start with the delineation strategy on a single channel ECG data. Then it will be

modified for multi-channel delineation.

R Peak Detection

All the R peaks from the ECG data are detected first, after proper conditioning. For

this, we take help of a runnmg window of fixed length_. The procedure can be described step

by step as follows:
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| '. 1. Wmdow Length Selection: _
First few seconds (2- 6 seconds) of ECG containing some 5 or 6 R peaks is plotted on a
~ graph to decrde on the window size. The mean R-R mterval (observed from this plot) is
taken care of while demdmg the window length (WL) for the whole data.
WL should only satlsfy the followmg two conditions:
(H It should be less than one R-R interval. This will prevent false negative (defined in
section 6.5) detection. -
(2) 1t should be more than half of the R-R interval, to prevent false positive (defined in
section 6.5) detection.
2. Extending Data Length: _
The ECG data-length is extended at the end by a set of samples of zero amplitude spanning
- WL. Say if the ECé length be L, the new length will be (L+WL). The last WL samples will
all have zero magnimde.< '

Tlris is. done so that even the last data sample can be analysed properly. The
window translation is carried on the signal of length (L+WL). Translation is stopped when
the remaining data length is found to be less than WL. -

3. Running Fixed Length Window: |
" The window is rnade to run over the whole data set (spanning L+WL) in steps of say 5
* samples (sampling frequency of ECG being in the range of 250-1000Hz). A still smaller step
will take longer computation time. However, a longer step might introduce errors in
detection (reason will be clear in the next step). The incremental step (IS) of 5 samples -
seems optimal. IS should be chosen in such a wey -that WL is always divisible by it.

| ‘The. instant -of occurrence of the max/min (depending on. R peaks being
positive/negative) value of DCS inside each window is noted. If the window ENCOMpasses
any R peak, then it will cause the sharpest direction change in the ECG, and hence the
max/min value ln the corresponding sample of DCS. If the channel is known to have
positive R peaks, the time of occurrence of the highest DCS value for each and every
window will be accumulated in a vector called ‘Extreme Direction Change Sharpness’
(EDCS). If the ECG channel contains negative R peaks, the time of occurrence of the lowest
values of DCS will be accumulated in EDCS. Following figure 6.8 illustrates the -

phenomenon. o
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Figure 6.8: Running Window on ECG Signal

. wini win (i+1) win(i+2)

. In the above figure, the ECG _chanﬁel consists of positive R peaks. Hence, the instant of
occurrence of the highest DCS value inside each window is saved in EDCS. Also it is seen
that in each ECG beat; the DCS corresponding to the R peak is the hi ghest.

4 An interesting phenomenoﬁ is noticed afterwards. If the same R peak is
enveloped by ‘n’ consecutive windows, the same value will occur co.nsecut'ively n times in

the EDCS vector. Following figure makes this observation clear.
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.. Figufc 6.9: Running-Window on one ECG Beat

It is seen that all the above windows, except win (i+n) envelop the same R peak
and hence they will reflect the same valie in EDCS. Here the number of windows, which
E are trécking the same R peak,' fs assumed to be ‘n’, Let us examine the value of tﬁis ‘n’.

It can be seen that ‘win i’ is the first window, which starts enveloping this R peak
and ‘win (i+n-1)" is the last one to track this same R peak. From ‘win (i+n)’ onwards, this R
peak will not be encompassed. The end of ‘win i’ and the start of the ‘win (i+n)’ are exactly

coincident. This is ensured by the divisibility of WL by IS. Hence we can easily interpret,
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4. Identification of R peaks from EDCS Values:

After the windowing and accumulation of EDCS over the whole length of signal is
accomplished, the next concentration is on localizing'the R peaks. First, all the values of
EDCS greater than exact ECG length (L), are discarded. Now, the elements in EDCS
occurring at least ‘n’ times consecutively are denoted as the locations of R peak.

It can now be tmderstood why IS should not have a large value. For larger IS, total
no of window positions (in course of translation) will be lesser and that will lead to lesser
accumulation of each individual R peak in EDCS. Under such circumstances, the
accumulation ef R peak might become comparable with that of P or T peaks This is why IS
should be kept as small as poss1b1e dependlng on the computatlon time that can be allowed
and the memory resources
5 Enhancement of DCS
It is clear that the success of R peak localization solely depends on the elements of EDCS,
which are in turn determined by the samples of DCS. If some mechanism can be devised,
which will enhance the DCS samples corresponding to R peak locations --- that will surely
be an improvementAin our methodology. With this aim, three different sets of DCS are
calculated: ‘ A
1) DCS_up: ECG Signal (after extending by WL) is up-sampled by a factor of 2 and the
DCS corresponding to this upsampled ECG is computed. Now, in order to achieve the same
length. (L+WL) as the normal ECG, this DCS is downsampled by 2.

2) DCS_normal. The DCS obtained from the ECG signal (after extending by WL) with

normal sampling rate. | | |

3) DCS_down: Original ECG Signal (after extending by WL) is down-sampled by a factor

of 2 and the DCS corresponding to this down-sampled ECG is calculated. Now, in order to

achieve the same. length (L+WL) as the ECG, this DCS is up-sampled by 2. '
Therefore all the three, namely, DCS ~up, DCS _normal and DCS_down are time

aligned with the normal ECG 51gnal (ongmally recorded). We calculate the modified DCS

as fo]lows
- DCS_modifted = DCS_up + DCS_normal + DCS_down ............ (6.2)
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The window translation is carried on DCS modlﬁed EDCS formation and
thereafter R peak detectlon is now made- considering the modified DCS. Up sampling is
{done by means of mterpolat;on and down-sampling, by discarding every alternate sample.

| Following Figure 6.10 shows the enhancement of DCS_modified in comparision tb

DCS_normal corresponding to R peak locations,
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" Figure 6.10: Enhancemerﬁ of R Peaks: DCS_nom}al & DCS_modified Compared

- - The vertiéal scales should be noted while comparing DCS_normal and
DCS modlﬁed in the above figure Th1s mod1ﬁed DCS is only used for R peak detection.
'For delineation of P,Q,S and T waves we use only DCS_ nonnal (refered to as DCS).
6. Modifi cation of R peak detectwn metlzod for Exercise ECG: o

' For exercise ECG the bpm is not stable any more and hence the beat—to-beat
- variation in R-R intervals is quite high. For that reason, it is not reasonable to keep the
.wiqdow length (determined on the basis of initial R-R intérvgls) fixed for the whole data.

‘Heére, we split the ECG in segments of S minutes with an over-fap of 2 seconds between two
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consecutive segments. Now, for each segment, the R peak detection will be carried out as
described before, The mean R-R interval obtained from the previous segment is taken care
of to determine the window length (WL) for the next segment.

P & Q Waves Detection
After detecting all R peaks in the ECG, we now zoom into each and every beat. A scarch
window, spanning half of the previous R-R interval is taken prior to each detected R peak as

shown in Figure 6.11.
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Figure 6.11: Detéction and Delineation of P and Q waves

Here, it is an example of a positive R peak, negative Q peak and positive P peak, reflecting
“+1°, ‘-1’ and ‘+1” in DCM respectively. The “~1” in DCM immediately prior to the R peak
is the location of Q peak. The “+1” just before the Q peak is the onset of Q wave. Had the Q
peak been positive, it would have caused a ‘+1” in DCM and the corresponding Q-onset a ‘~
I |

Now after detecting the Q onset, the highest positive DCS value prior to it is
located. This is the P peak. The two ‘-1’ in DCM surrounding the P peak are its onsets and
offsets. 'Had the P wave been negative, search should have been made for the lowest
negative DCS value to locate the peak and the two surrounding ‘+1’ in DCM for the onset
and off'set.
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‘ _ S & T Waves Detection ,
In a similar method, S and T waves are delineated in each and every beat after detecting all
the R peaks in the filtered ECG. Here, for each beat, a search window spanning half of the

‘next R-R interval is takennext to each detected R peak as shown in Figure 6.12.

Fiéure 6.12: Detection and De'liheatibn of S and T waves

3

This'examplé shows ﬁoéiti\ie R peak negatiVe S peak and positive T peak, causing “+1°,
“1-and “+1” in DCM respectively. The ‘-1’ in DCM immediately next to the R peak is the
Jocation of S peak The “+1” in DCM immediately after the S peak i is the offset of S wave.
‘Had the S peak been positive, it would have reflected a ‘+1° m DCM and the corresponding

S-offseta ‘~1".

On the right of S offset, the T wave peak, onset and offset are determined in the

same manner as it is for P wave.
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6.4. MULTI-CHANNEL I?ELINEATION
When there are many different channel data pertaining to the same ECG record, it is
reasonable to take into consideration the delineation result obtained from a number of
channels to reach the final decision.

The R peak detection is carried out simultaneously- on several channels. The
selected channels for this purpose: should have unipolar R peaks (negative or positive) as

 shown in the following figure 6.13;

e 87
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(a) Positive R Peak o (b) Negative R peak
Figure 6.13: Unipolar R peaks ‘

The detection sfiateg}? for each individual channel will be exactly same as that
described before under section 63 Séy, we select 20 channels for R detection and the no. of
beats present in the ECG is say 10. Now, each of these 10 R peaks will be detected in 20
channels. So, for each and.every R peak location, there will be 20 values (or sample
numbers). |

Say for one particular R peak, we have the following result (denoting the sample
no.) from 20 different channels; | '

_9.9,99,1(!1,99,100,120,.‘99,99',100,101,98;100,100,94,100,99,98,100,100,99

A histogram plot of these values is given in figure 6.14.

1. 1
u 08 [ (I3 120 1

-Figure -6,14; Histogram for Same R Peak Location Detected in
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It is seen that the values 100 and 99 are having the high'estf frequency of occurrence.
Therefore, the final decision regarding this R peak lo§ation ;vi_ll be the sample number,
“obtained as the integral mean of 100 and 99 (i.e. 100).-The general rule is to find out the
value with highest freQuency of occurrence. If more than one value is found to satisfy the
same conditi'on, the integral mean of them is taken as the final decision. .
The number of false. positive or false negative detections (deﬁned in section 6.5) can
. be reduced considering multiple channel results. In order to be accepted as a final decision,
the same R peak needs to be detected at least in half the no. of selected channels (here 10).
“This way, false positive detection is reduced. On the other hand, if there is any false negative
detection in one channel, the same can be corrected. considering delineation results from
- other channels. This way, our delineation algoritlﬁn becomes more robust and independent
of smgle channel errors.

‘After computmg the final demsxon regardmg the R peak location in Multi-Channel

B ~ECG, niext step is the dehneatlon of P Q S and T waves. For P and T waves, only the peaks

are detected in the ﬁrst go. Again simultaneous detection is performed on selected number
of channels. The channels selected for P/T wave delineation should have a prominent

~ . unipolar P/T wave (negative'.'orvpo‘si_tive peak). Channels selected for Q/S delineation should

' '-‘i"sllow prominent Q/S spikes. The same kind of histogram-based method is used to get the

N _ﬁnal delineation result for-P.peak, Q onset, Q peak, S peak, S offset and T peak.

Now with the final decision regarding the locations of P and T peaks, the respective
onsets and offsets in di‘fferent channels are identified based on the same peak locations for
all channels. Again, the hiétogram method is taken care of to get the final delineation of
- onsets and.-offsets of Pand T wave.

Therefore, the delineation is carfied out in three stages:
I. R peaks delineation |
2. Q peaks, Q onsets, S peaks, S offsets, T peaks and P peaks delineation
3. Delineation of the onsets and offsets of P and T wa(zes

Each delineation stage is dependent on the previous stage. The channels for

delineation should be selected judiciously so as to ensure prominent wave-shapes.
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The result of delineation obtained from our algorithm is stored in a matrix form, as
shown in the following figure. Each row represents information pertaining to a particular

beat, whereas each column denotes one of the 11 fiducial points.
Ppk | Poff | Qon | Qpk | Rpk Soff

Pon Spk Ton | Tpk | Toff

Beat i1
Beat #2

Figure 6.15: Structure of Delineation Resuit Matrix (DRM)

6.5. VALIDATION
The performance. of the delmeatlon algonthm was checked by comparing the automatic
delineation result against manual delmeatlon Following mathematical ca]culatlons were
performed to evaluate this comparison.
. Mean Error (ME.):
Mean of the difference between manual & automatic delineation (in terms of
no. of samples) ' »

2. Standard Deviation (S.D.):

: :Standard déviation _bf the difference between manual & automatic Delineation

- (also in terms of no. of samples)

3. ‘Tiue and false positives / negatives:

- Real‘

Existing

Existing

Not Existing

Not Existing

Predictéd

Existing

Not Existing

Existing

Not Existing

True Positive
(TP)

False Negative
(FN)

False Positive
. (FP)

True Negative
(FN)
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4. Sensitivity (Se): .

5. Positive Predictivity (P+):

Se = 100% ererererereeserereseeereeeeeeenens (6.3)
TP + FN ,
e 100% eerererrreeeeeeeeeneneneees eerreeres (6.4)
TP+ FP - K

The algonthm of smgle-channel R peak detection was tested on several records taken

from MIT Arrhythmla database The output of our algorlthm was compared Wlth the manual'

- annotation provided with each record. -

Record
100 101 103 113 115 122 234 100 . 103
No. '
Channel ’
. 1 1 1 1 1 1. B 2 2
Samples | - o ' '
ok 650000 | 650000 | 650000 | 650000 | 650000 | 650000 | 650000 | 650000 § 400000
aken . . . :
FN 0 3. 0 3 1 6 20 1 0
S B R 2R R I A R N
- TP 2271 1863 :-  _ ;20:84 . 1.791 1953 - 2469 ' 2732 - 2271 1294
: . 'Se' 100 99 84 | 100 "9'9.‘83 09995 1| 99.75 99.27 99,95 | 100
- P+ " 9996 99.78. 100 99.78 | 99.69 99.8 | 99.96 100 100
ol M.E. -1.9 -0;48 : -2.23 -1.74 3,16 .| -3.95 -1.43 0736 | -2.97
1 S.D.. 2.46. /| 1.18 2.31 1.38 3.54 5.87 1.26 2.4 3.08

Table 6.1: Validation of Delineation Result on MIT-Arrhythmia Database

The overall Sensitivity (Se) and Predictivity (P+) obtained for MIT-Arrhythmia Database
was 99.84% and 99.89% respectively. '

Table 6.2 shows the- validation result for a 32- Channel ECG data set with sampling

frequency 1 KHz. The output of our algonthm was compared with the manual estimation of

- first 22 beats. Manual estimation is done by us, and hence is not a perfect cardiological

annotatlon
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Pon |  Ppk Poff | Qon Qpk Rpk Spk Soff Ton Tpk | Toff Overall
ME. | -048 | -1.83 | -4.52 | 3.52 1.17 | -0.52 | 0.26 0.09 1.08 | 0.78 0.09 -0.03
S.D. 3.96 3.39 329 | 1.04 1.03 | 0.59 0.75 | 0.42 1.12 0.95 1.59 2.83
Se 100 100 100 100 -100 100 100 | 100 100 100 100 100
P+ 100 100 100 100 100 100 100 100 100 100 100 100

Table 6.2: Validation of Delineation Result on Mulfi-Channcl ECG

100%.
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CHAPTER 7
QRS COMPLEX EXTRACTION AND-ALIGNMENT

The aim of QRS complex extraction and alignment is to create the input data matrix for
Principal Component Analysis, as depicted in Figure 4.16. Here, different variableé mean
different QRS complexes. The total no. of observations should be taken so that even the
longest QRS interval is taken care of. The time-alignment of QRS complexes is needed in

-order to avoid error in PCA output,

7.1. METHOD
First let us see the QRS extraction methodology, which is based on our delineation resui.

1) Determining the longest QRS 'spa'n:.The QRS interval is defined as the time length
' between the Q wave onset till the S wave offset. The longest QRS span (in terms of
time safnp'les) for a particular ECG dataset is determined from the Delineation Result
Matrix (DRM) (referring to figure 6.15) and a safety factor is added to it in order to
take care of errors 1n delineatioxi. If this comes to be an even number, we make it odd

by adding 1 to it. ‘
'2) Initialising the QRS Extraction Matrix (QEM): This matrix should have as many
‘no. of: rows as the no. of detected beats in the corresponding ECG data set (i.e. same
as the no. of rows of DRM). The number:of columns should be the longest QRS span

plus safety factor (odd number always).
- 3) Posttzomng of R peak: Although the delineation is carried on the ECG after two
‘stages of filtering, QRS complexes are extracted from the ﬁrst-stage filtered ECG
(i.e. only after cancelling baseline wander but no high frequency filtering). The R
peak location for a particular beat i is found from DRM and then the corresponding
magmtude is obtained from the ﬁlst-stage filtered ECG and copied in the middle
column of that particular row of QEM, | .
4) Copying the QRS complex: After positioning the R peak in the middle column of the
respective row, the ECG sample magnitudes are COpied'from both sides of the R
“peak in QEM. | |

Figure 7.1 demonstrates the procedure of QRS extraction from a particular channel,
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) : m (a) One-Stage Filtered ECG
(no high frequency filtering)

Max QRS Dl:vaﬁm-* safety factor
Odd no. of columns

Figure -7.1': QRS Extractioﬁ Procedure _

If the QRS Delineation is made perfectly, then the extracted QRS will be time-aligned. We .
can see in figure 7.1(b) that all the R peaks lie in a vertical line. However, if there is any
error'fthat ‘creeps in delineation result, it will lead to mi_éaiignment. Hence, improved

alignment of extracted QRS complexes is pcrfdrmed ‘based on cross-correlation technique.

The procedure is as follows.
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1) Calculate the mean QRS by taking the mean of all rows of QEM and consider this as
the template for cross-correlation. The idea of taking the mean as the template for
cross-correlation has been an inspiration from [37] and [3 8]-

2) Calculate the cross-correlation coefficient between each of the extracted QRS and
the template.

3) Now shift each of the QRS complexes a little bit towards left and towards right (till
+3 and -3 samples) from the template and go on calculating the cross-correlation
coefficient between the template and the QRS at that position.

-4) Each QRS is finally aligned at the position corresponding to the highest cross-
correlation coefﬁcicﬁt. The final matrix containing aligned QRS is referred to as the
PCA Input QRS Matrix (PIQM).

Before applying the above method on our extracted QRS complexes, it was tested on 100

shifted Meyer Functions. Following figure shows the result.

Shifted Meyer Functions:
1%, 50* and 100" shown

Mean of the 100 shifted functions:
Template for Cross-Correlation

¥
/ 355 Aligned Meyer Functions:

} 1%, 50" and 100" shown
g (completely overlapped)

Figure 7.2: Test of Alig

nment Technique on Shifted Me
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This method will correct if there is any misalignment between the extracted QRS

‘complexes, Following figure 7.3 shows.this correction.
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‘However, if the QRS are alfeady aligned after extraction, this procedure will make no

difference. Fdllowing figure illustrates this point.

R R

: ) (b)r Output of Alignmen A]gorithm:' Same as input (a)
Figure 7.4: QRS Alignment: Case 2

Output of this stage, i.e. the matrix PIQM will be the input to our next PCA module.
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CHAPTER 8

TEMPORAL & SPATIO-TEMPORAL ANALYSIS OF QRS COMPLEX

This analysis is pérformed on QRS complexes extracted from Multi-Channel ECG of
healthy young people, of age between 22 and 33. The respiration signal acquisition was
carried out simultaneously while recording the ECG. Apart from the QRS data, two more
vectors are used in the analysis of every data set, namely the heart rate vector and the

respiration vector. First we shall see how these are computed.

8.1. DEFINING RESPIRATION & HEART RATE VECTORS

The Respiration VectorR = [, 7, ...... Yy ], where N represents the total number of beats in the

ECG data, is computed from the acquired discrete respiration Signal S(n) as follows:

n=qff,

ry= 28y (8.1)

=on p

Where, on,, and off;, are the corresponding QRS onset and offset instants obtained from the
Delineation Result Matrix (DRM).

The Heart Rate Vector Hr = [h,, h,...... hN]is computed from the R-R intervals (referring to
DRM) as follows [39]:

60x S.F.
................................. 8.2
—DRM (8.2)

h, =
DRM p+L6
S.F. denotes the sampling frequency of the ECG dataset. Here, it should be noted that the 6

column of DRM contains the R peak locations.

8.2. TEMPORAL ANALYSIS
The first step in this procedure is to carry out a Principal Component Analysis on the data

matrices (D], ......... ,D32’ 64

superfix denoting channel number) from different channels. The
matrix D' (i=1,2,....32/64 depending on 32/64 Channel ECG) is the transpose of PIQM
(Chapter 7) for the corresponding channel. The size of D' is MxN, where M is the QRS

duration in terms of sample numbers and N is the number of heart beats, as mentioned
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before. This D' is the PCA input matrix. It should be noted that unlike the PCA data matrix
definition; given in Figure 4.16, here the variables (i.c. QRS) appear along the column. This
modification is made to take advantage of the Matlab in-built command ‘princomp’.

Slm11a1 to the PCA 1mplementat10n steps mentioned under section 4.2. 4, the. followmg
procedure is adopted for each and every channel (by means of princomp’ command): .

1. The mean QRS is calculated as,

Here, ‘i’ is the index to channel no. and ‘p’ to the beat number, as mentioned before.
Each QRS denotes a vector of length M.

5 Next the covariance matrix Ci of size NxN is computed from the zero-mean channel

data:
o =I4_1_72(QRS:' —’QEE)T (QRs;', —@1—9‘) ............................ (8.4)

3. The eigenvectors and the eigenvalues of C' are derived. The eigenvectors are then

sorted in descending order of their associated eigexlvalues. First k eigenvectors,

namely eig!,eigy,...cowe- ,eig! are selected as the principal components, Each of eig; ,

where 1 </ <k is a column vector of length N .
4. The reprcsentaition of QRS data in each of the eigenvector space is calculated as:

PCrep! = D' (€ig]) ceverveervesnesmsmssinnssimssisssissnsses (8.5)
Each PCrep! is a column vector of length M (i.e. the QRS vector length).
Following figure 8.1, shows the extracted (and aligned) QRS complexes from one channel

(made overlapped on gach other).
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QRS from all beats
40 T T T T T T

35f . 4

0F .

25+ -

1 1 1 I L 1
0 100 200 300 400 500 600 700

Figure 8.1: Extracted QRS complexes from one channel

Here, only the first 3 eigenvectors are selected as the principal componets, i.e. k=3. The
eigem)alues associated to the rest of the eigenvectors are nearly zero. Figure 8.2 shows the
representation of QRS data in each of the first three eigenvector spaces and figure 8.3

illustrates the associated eigenvalues (in terms of percentage variance).

Representation in First Principal Componient Space

100 T T T T T T
0 ‘——-—_—/_\/\ .
-100 1 1 1 1 1 1
0 100 200 300 400 500 600 700
Representation in Second Principal Component Space
2 T T T T T T
0Ff " - -
2 L 1 1 1 L t
¢} 100 200 300 400 500 600 700
Representation in Third Principal Component Space
2 T T T T T T
0 :/\__.\,_.—-—\\/\’]«JM%—\_ 4
2 1 1 1 1 { !
0 100 200 300 400 500 600 700

Figure 8.2: Representation of QRS data in the Principal Component Space
The change in polarity corresponding to PCrep| is taken care of by the reconstruction

parameters to be discussed next.
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Principal Components

Figure 8.3: Percentage of total variance in QRS data expressed by the principal components (temporal)

5. Thereafter, the Reconstruction Parameter Matrix .RPM = (a ,,',> for each channel is
computed on the basis of selected eigenvectors as follows,

a ,=(Pcrep;')T(QRSj,—'Q—JéE’).....................; ............. (8.6)

Thé Reconstruction Parameter Vector RPV' associated with any eigenvectoreigj

can
be given as,

(RPV')T = [0y, i@y Joose s 8.7)

RPV' is nothing but the [ column of RPM'.
The QRS complexes can be reconstructed in terms of the principal components as

follows:

ORS| = QRSi +ay, % PCrep, +a,, x PCrepl +a, ; % PCrep!

ORS; = QRS" +a,, X PCrep, +a,, X PCrepy +a, 5 % PCreps

QRSN QRS +ay, x PCrep, +a,\,2><PCrep2 +aN3><PCrep3

The beat-to-beat variation of reconstruction parameters, heart rate and 1esp1ratlon for the

same channel is plotted in Figure 8.4.
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Figure 8.4: Beat to Beat Characteristics (temporal)

6. Now we calculate a covariance matrix quantifying the dependence between the

reconstruction parameter, heart rate and respiration vectors as follows:

RPV! RPV? RPV? R Hr
RPV' | 2.3678%107 | 1.6059%10° 25691 1.2586x10° |- 2882.9
RPV? | 1.6059%10° | 2195.8 16.156 1.4759x10° 84.168
RPV’ | 25691 16.156 495.53 1.2467x10° | = 5.4775
R | 1.2586x10° | 1.4759x10° [ 1.2467x10° [ 1.9077x10"" | 1.4878x10°
Hr 2882.9 84.168 5.4775 1.4878x10° 10.231

Table 8.1: Final Covariance Matrix (temporal)
The final covariance matrix elements, given in the table above, are neither normalised, nor

zero-centred. The relative degree of covariance between each RPV and respiration and heart

rate vectors are as shown in figure 8.5,
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RPV >

Figure 8.5: Covariance of RPVs with _Rcspiration and Heart Rate (temporal)

8.2. SPATIO-TEMPORAL ANALYSIS
The only difference between this and the former one is the PCA input data matrix. The data

matrix D for spatio-temporal analysis is a combination of all_(D‘,‘ ......... D*¥%%). The size of
D will be M?xN, where M’( M’=Mx32 or M’=Mx64 depending on 32/64 channel data), is

the QRS vector length over all'32/64 cannels. Schematically, the structure of D is given as .

follows.

Beat#]  Beat #2 e e e e Beat #N

6
D]ZI 4

Figure 8.6: PCA Input Data Matrix for Spatio-temporal Analysis
The procedural steps (1 t0 6) are exactly similar to those for temporal analysis.

Spatio-temporal analysis identifies principal components in the combined spatio-temporal

domain, which means considering temporal variations of all the channels pertaining to a
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Multi-channel data set simultaneously. In this case, we end up with a single covariance

matrix including all the channels.

4

Here also, the first three eigenvectors are chosen as the principal component. The

percentage of total variance expressed by them is found to be similar to that for any

individual channel under temporal analysis (referring to Figure 8.3).

% Variance o

¥ ¥

Principal Components

Figure 8.7: Percentage of total variance in QRS data expressed by the principal components (Spatio-temporal)

The beat-to-beat characteristics for spatio-temporal analysis are shown below.
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Figure 8.8: Beat to Beat Characteristics (Spatio-temporal)

The final covariance matrix for spatio-temporal analysis of the same data set is given in

Table 8.2.
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RPV' RPV? RPV? R Hr
RPV' | 2373x10" | 3.6952x10" 5.072%10° | 1.5987x10 | 4.5518%10™
RPV* 3.6952%10™ | 2.2483x10" 2.1018x10° | 3.0233x10’ 46743
RV | 5.072<10° | 2.1018x10° | 2.7733%10° | 2.1678x10° | = 4857.8
R 1 1.5087x10"| 3.0233x10° | 2.1678x10’ 1.9077x10"" | 1.4878x10°
Hr ) 4 5518x10% | 46743 4857.8 | 1.4878x10° 10.231

Table 8.2: Final Covariance Matrix (spatio-temhoral)

Here also, the elements of final covariance matrix are not zero-centred and normalised.
The relative covariance between the reconstructxon parameter vectors and resplratlon and

heart rate. vectors are also found similar to those in temporal analysis (referrmg Figure 8.5).

xi0® Covariance wilh Respiralion

a— . "3
RPY ———p>

Figure 8.9: Covariance of RPVs with Respiration and Heart Rate (Spatio-temporal)

All the figures given here, for temporal and spatio-temporal analysxs are pet’tammg
to the same Multi-Channel data set.

The reconstruction parameters corresponding to the first eigenvector shows high
degree of correlation (covariance) with heart rate and respiration pattern, as evident from the
results of temporal and spatio-temporal analysis. Moreover, the first pnnmpal component
accounts for more than 99% variability in the QRS data set. Therefore, QRS morphology is

found to be highly sensitive to the heart rate variability, as well as changes in respiration

pattern.
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CHAPTER 9

CONCLUSIONS & FUTURE DIRECTIONS

Our analysis is based on QRS complexes. The delineation algorithm should give error-free
result for the success of temporal and spatio-temporél analysis. To achieve this aim, we
started with ECG conditioning. A ne§v wavelet-based method has been proposed for the
correction of baseline wander. The best prototype wavelets in this regard have been
determined through simulation. For high frequency noise rcmovél, Butterworth Low pass or
Savitzky-Goiay Filter was employed. However, finding out new kinds of filtering technique,
which yields better results in this regard, can be an inieresting area of future research. The
filtering approach should be an optimum one — noise removal and ensuring minimum signal
dfstoﬁion at the same time.

The starting point of ECG delineation is R peak detection. Our méthod was tested
on nine different signals (containing a total of 18,762 R peaks) from MIT Database and it
yielded an overall sensitivity and positive predictivity of 99.84% and 99.89% resﬁectively.
The algorithm was applied on 30 multi-channel data sets (containing approximately 30,000
R peaks in total) recorded at the Institute. The result was found to be highly satisfactory.

However, the delineation method is based on the assuniption that the R peaks cause
the sharpest change in direct’ion (highest DCS) in a ECG cycle. Whenever this condition
- fails, R peak detection is subjected to error. To ensure this condition, the DCS enhancement
procedure using re-sampling was used sometimes. If the sampling frequency of ECG is less,
this problem arises. With MIT signals sampled at the rate of 360 Hz, the use of re-sampling
was essential to achieve good fcsults in R peak detection. However, when the sampling
" frequency itself is more than 1KHz, no such enhancement procedure is needed. It will be
interesting to find some constraints, other than re-sampling to make this delineation more
robust and accurate.

~In the Principal Component Analysis, we have seen that first three eigenvectors
characterize the whole QRS data. The first principal component itself accounts for more
than 99% variability in the QRS data set. This can be thought of as an efficient means for

data compression.
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The reconstruction parameters corresponding to the first threé principal components,
spec1ally the first one, show high degree of correlation (covariance) with heart rate and
respiration pattern.. Therefore, we may conclude that the QRS morphology is hlghly

influenced by the heart rate variability, as well as changes in respiration pattern.

. For future work in this area, the same idea can be extended to discover how the
ECG: pattem typically changes with blood pressure. The QRS analysxs when applied to
_patient data (case of Ischemia, Ventricular Tachycardla etc) can be helpful to find a
diagnostic pattern typical to those diseases. The correlation between QRS morphology and

heart rate variability for different heart diseases may also carry useful diagnostic

information.
The 1dea of carrying out a PCA can be extended to P and T waves as well. These

represent atrial depolarlsatlon and ventricular repolarisation respectively. For the diagnosis

some diseases, P and T wave morphology plays an important role.

We hope that the slowly emerging cardiac diseases may be diagnosed in early stage

with this kind of analysis.
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Appendix I:

GRAPHICAL USER INTERFACE FOR ECG COND[TIONINC

let to 'Cancel Baseline Wander'*:

Proaczmesns

; A 5] o 5] s
g’%{ ;g 25 % ? 3 i
\( i Bt K3 {2@ ﬁl

Filtering the ReSult
Jx D

First the raw ECG data is loaded from a mat file. Inmediately after that, the no. of channels

and the data length (in samples) are displayed.
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The first step is baseline wander cancellation. The prototype wavelet for this purpose

can be selected from the pop-up menu.

The next step is hlgh frequency interférence elimination. Either Butterworth low pass

or Savitzky-Golay filter can be selected. Now the selected ﬁltermg option will be dlsplayed

-----

The ﬁltermg output cau be seen from figures-— all channels at a tlme or a selected

channel in selected range. There are options for redoing the filtering if the output is not

 satisfactory.
On pressing the save command, the filtering-output (both after first stage and second

stage separately) will be saved along with the filter description in a mat file.
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Appendix II:

GRAPHICAL USER INTERFACE TO DECIDE CHANNELS FOR ECG
DELINEATION

atrix’

s

view structure

First the filtered ECG data is loaded from a mat file. The two-stage filtered ECG can be
plotted on figures to aid the decision of channel selection,
First the structure of selection matrix should be viewed by pressing the corresponding

button. If the selection matrix for this ECG data is already‘def'med, the button “load” will
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appear, otherwise, the button ‘create’ will be enabled. Now, the channels should be selected
~ one by one and if it is found to have pxomment peak (P, Q R,S, and /or T), the corresponding
>one should be marked as positive or negative by the user. The “edit” pushbutton allows
editing the properties for a particular channel.

The number of channels selected for delmeatlon of any particular wave 1s displayed

side by side to aid the user. Finally, the selection matrix can be saved in‘'a mat file in the

" same folder of the loaded ECG data.
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Appendix III:

GRAPHICAL USER INTERFACE FOR ECG DELINEATION

First the filtered ECG signal file is loaded. This file contains both—the first-stage filtered

signal and also the two-stage filtered one. The number of channels, data length (samples)
and the sampling rate is d‘isplayéd after loading.

First the Window Length (WL) and Incremental Step (IS) have to be decided before
proceeding to R peak delineation. IS should be chosen on the basis of displayed Sampling

Frequency. There are two options to initialise WL — it can be user-defined or can be
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estimated from initial beats of ECG. The estimation time (2-6 seconds) can be selected from
_ the pop-up menu. 60% of the mean R- R interval resuiting from the R peak detection (ﬁlst
" few seconds, as selected by user) with defined IS and 500 ms WL is displayed as the
estimated window size. Also, the detected points are plotted in a figure on the ECG. If the
initial detectxon is satisfactory, this estlrnatlon can be accepted Else, the user can reject it
and go for estlmatlon w1tu ’o;/er a longer tlme or can define WL w1thout further estimation.
During estlrnatxon, WLhils lw:;ys made d1v181ble by IS The’ same should be ensured if it is

defined . o .
' Aﬁer dec1d1ng WL and IS the next step is R peak detectlon User may take advantage

of upsamplmg and/or downsampling in this regard After detecting all the R peaks, the
number of beats will be displayed. Now step by step, the user can go for the. delmeatlon of
Q/S wave rand thereafter, P/ T wave. At every stage, the result of delineation can be
displayed fer the whole time range or a selected time length.

Finally,vthe ‘delineation result and PCA input file are saved in two different mat files.
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