FAULT IDENTIFICATION USING
NEURAL NETWORKS

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree
’ of
MASTER OF TECHNOLOGY
in
ELECTRICAL ENGINEERING
(With Specialization in System Eﬁgineering and Operations Research)

By
PRAVEEN RANGISETTI

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE
ROORKEE - 247 667 (INDIA)

JUNE, 2007



7 34[GNP

L.D. Fo. -M T “,( g (/.. ’mmmmémasuw

CANDIDATE’S DECLARATION

| hereby declare that the work that is being presented in this dissertation
report entitted “ FAULT IDENTIFICATION USING NEURAL NETWORKS”
submitted in partial fulfillment of the requirements for the award of the degree of
Master Of Technology with specialization in System Engineering and
Operations Research, to the Department Of Electrical Engineering, Indian
Institute Of Technology, Roorkee, is an authentic record of my own work
carried out, under the guidance of Dr. G. N. Pillai, Assistant Professor,
Department of Electrical Engineering.
The matter embodied in this dissertation report has not been
submitted by me for the Award of any other degree or diploma.

Date: 24-66 - 2007 T Prave gan
Place: Roorkee (PRAVEEN RANGISETTI)

This is to certify that the above statement made by the
candidate is correct to the best of my knowledge.

Q{\W X

(Dr. G. N. Pillai)

Assistant Professor,

Department of Electrical Engineering,
Indian Institute of Technology,
ROORKEE — 247 667,

INDIA.



ACKNOWLEDGEMENTS

I am very indebted to my institution, Indian Institute of
Technology, Roorkee for providing me opportunity to pursue my

Masters.

Dr. G.N.Pillai, Professor, Department of Electrical Engineering, IIT
Roorkee, my guide is the first person behind the success of this
dissertation report. I frankly agreed that this work evolved through his

support.

I am left indebted to all my friends, for letting their lives run beside
mine for a while. They had always been a cheerful company to me. My

gratitude to them cannot be expressed in words.

I thank each and every one heart fully for helping me in

completing my dissertation report.

ii



Cedbeated

T
%@M



ABSTRACT

In this thesis the aim is to detect the high impedance fault occurring on
radial electrical distribution systems using neural network based relaying
scheme. A muitilayer perceptron is used for distinguishing the linear and
nonlinear High Impedance Faults by taking the Feature vector as input.
R.M.S values of third and fifth harmonic components of feeder voltage and
feeder current are used as the feature vector obtained by applying the

Fast Fourier Transform on the Feeder voltage and Feeder current.
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NOMENCLATURE

For Generator, Transmission Line and Load Model:

Vs = Source voltage

Ls = Source inductance

(Rs) = Source resistance

X*R_line = Resistance of the line upto fault point

x*L_line = Inductance of the line upto fault point

x*C_line= Capacitance of the line upto fault point

Lf = Fault inductance

Rf = fault resistance

(I-x)*R_line = Resistance of the line beyond fault point and upto load.
(I-x)*L_line = Inductance of the line beyond fault point and upto load.
(I-x)*C_line= Capacitance of the line beyond fault point and upto load.
R_load = Load resistance

L _load = Inductance of load

Is = Source current

If = Fault current

Il = Load current
Vf = Voltage at fault point
Va or V1 = Voltage at line length X
Vb or VI = Load Voltage
v3= Third harmonic component of feeder voltage
v5 = Fifth harmonic component of feeder voltage

i3 = Third harmonic component of feeder current

i5 = Fifth harmonic component of feeder current

a=v3¥*i3/p3
b =v5 *i5/p5
c=1i3/v3
d = i5/v5
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For Perceptron Neuron Modeil:
T or Z = Target of the network
O or y = Output of the network

e = T-y = Error

Xp Xpgeeeeenne X »yo = P th Pattern fed as input to all the Ny neuron in input
layer
To Tpy eeennnn. T,y = Target of the network i.e. Expected output from all the -

Nm neuron in output layer.
Op,0py vevennn. O, = Actual output from all the Nm neuron in output layer.

Y, = Output from the i th neuron in layer j for p th pattern

W i, = Connection weight from k th neuron in layer j-1 to i th neuron in

layer j

6, = Error value associated with the i th neuron in layer j.

a or 3 or n = Learning rate

w" or W' or X«.1 = New weight obtained after addition of change in

weight

E, = Root Mean Square (RMS) of the errors in the output layer

Net= output of neuron before application of transfer function

8y = Product of error and weight propagating backward to hidden layers

from output layer

df(e)/de or g = Gradient

xii



CHAPTER-I INTRODUCTION

1.1 Introduction to High Impedance Fault

High impedance fault can be described as the fault which doesn’t draw
sufficient fault current to be recognized and cleared by over current devices.
High impedance fault is generally occurred when a current carrying wire or
conductor makes a non solid or temporary contact with the ground or
temporarily short circuited with another current carrying conductor through a
high resistance material. E.g.: A cable lying and touching the ground and a
tree branch touching the two power cables are the examples for high
impedance fault [1]. It's estimated that one-third to one-half of downed
conductor faults are high impedance faults. High impedance faults are safety
hazard to humans, live stocks, and electric utility persons. If left undetected
for hours, weeks and months they can be fatal to humans and animals at a
typical current level of 50 milli ampere or above [4]. In some cases the high
impedance fault could transform into a fire hazard if the fault media are a
building or a dc trolley in a coal mine [5]. Typical electrical faults on
distribution network will be detected by conventional over current or ground
relays which operate on the solid state comparator or electromechanical
principle. But unfortunately these relays are not being able to detect the high
impedance fault as the fault current generated due to the high impedance
fault is far below the set point level of the over current relay. This
necessitates the development of alternative methods for the detection of high
impedance faults [6]. Up to two decades before the detection of high
fmpedance fault was being an impossible task but due to advancements in
artificial intelligence technology especially Artificial Neural Networks and due
to the discovery of fast and efficient Fourier transform using the feature

vector as input made the detection of high impedance fault possible [7].

High impedance faults are characterized by their low fault current levels and
waveform distortion due to nonlinearity of ground return path due to arcing,

soil fusing and time variations in the ground resistance [8]. This nonlinearity



produces particular patterns of frequency spectral distribution in phase
voltages and currents which are indicative of high impedance fault. These
harmonic spectral variations are reflected back at the substation in varying
magnitudes and phase shifts depending on type of fault and its location [9].

High impedance faults in electrical distribution networks also exhibit ripple
type frequencies and noise patterns as well as abnormal sub, super and inter
harmonics due to ground resistance variations, soil resistance nonlinearity
and arcing [8-12]. Most of the present detection schemes are based on
conventional over current protection, ground relays based on ratio of neutral
current to fundamental positive sequence currents , harmonic identification
using one or more characterizing harmonic signals and ripple detection based
on high frequency power spectra in the frequency range (2 - 10 kHz )[6].
New ideas start emerging to utilize artificial neural networks as a robust
detection scheme. ANN based detection provides nonlinear mapping from

input diagnostic vector to the output outcome of fault classification.

1.2 Literature Review:

B.M. Aucoin , B. Don Russell [1] from Texas instruments discussed loop holes
in Warrington’s ground fault detector which used increase in the magnitude
of fundamental harmonic. He revealed that this approach can’t work
practically as the normal switching events like feeder switching, capacitor
bank switching also produce large increase in lower order harmonics and
these will falsely identify the load rich in harmonics as high impedance fault,
and they have proposed that high impedance faults exhibit marked increase
in the high frequency current components over normal system conditions
which persist for the entire duration of the arc, and for his experimentation
on high impedance faults he considered the high frequency current
components of frequency greater than 2 KHz , rather than taking low
frequency components which vary widely under different loads. This report
became very valuable for the later research on High impedance fault

detection.



Later Emanuel, A.E:, Cyganski, D., Orr, J.A., Shiller, S.,Gulachcnski, E.M., [2]
from their experimentation work proposed that if we consider the harmonics
of very high frequency it’s becoming difficult to guess the fault as their
magnitude is very low , and suggested that it's better to consider the Second
and Third harmonic currents as their magnitude is also considerable for
detection of the fault and as well as the requirement of much variation in
magnitude through out the duration of arc for the detection of high
impedance fault will also be fulfilled if second and third harmonics are
considered.

Aucoin., B. Michael, and Jones., Robert H.,[3] considered the implementation
issues of High impedance fault detection procedures. In this paper they
discussed background research on this topic. They revealed that at the
beginning research is concentrated on developing a sensitive detector to
detect and clear faults; most cost effective approach is a substation based
detector operating on electrical parameters using existing transducers and
interrupters. One detector is to be incorporated in each feeder, this causes
tripping of entire feeder during fault. Later a microcomputer based technique
was developed but none of these were being able to distinguish high
impedance fauit from other faults. They gave some examples for fault and
hazardous condition. An electrical fault is a condition for which an energized
conductor contacts another conductor or a grounded object. An electrical
hazard is a condition in which electrocution or fire may readily occur as the
conductor is near ground or an object or with in reach of public. A hazardous
condition can be one in which no fault is present. An intact primary conductor
fallen off insulators hanging one meter above the ground is not a fault but
hazardous, since it will not convey any electrical information upon which
action can be taken. Conversely a circuit may be faulted but may not be a
hazard. e.g.: A tree limb in contact with an intact overhead primary and a
conductor on ground in a remote location may not be a threat though it's a
fault. One will expect to have high impedance fault detectors on every feeder
to have at most safety, but it’s not practically possible. So they have
classified few areas for locating the HIFD on each feeder, they are urban and



suburban feeders with high population density; feeders with small conductor
which is more likely to break; feeders with prior history of downed conductor
trouble; areas with heavy tree growth, very dry areas or feeders with
numerous , lengthy single phase laterals. They suggested the operating time
of HIFD as 15 to 60 sec. they also told that it’s necessary to bring awareness
in the people as most of them can’t distinguish among power, telephone and
cable TV lines. Later many researchers started using different harmonic
components from fundamental to fifth harmonic.

A.M. Sharaf , L.A. Snider , K. Debnath [4] obtained positive, negative and
zero sequence components of third harmonic component voltage and current
values. They have trained the neural network using these components and
succeeded in well detection of the high impedance fault compared to his
predecessors.

L. A. Snider, Yuen Yee Shan [5-7] proposed that many previous methods
developed based on DSP can‘'t work well inithe detection of high impedance
fault as the data available is very less, and he suggested that ANN is the best
one to use because it can distinguish the fault well if we train it using the
data available due to its pattern recognition capability.

Adel M. Sharaf ,Guosheng Wang [9-10] in their work have considered four
types of fault conditions i.e. Linear fault, Nonlinear fault, Bolted fauit , No
fault and simulated these faults at different lengths of line , different source
and fault impedances. They observed some common patterns in each fault
and proposed some patterns to distinguish the fault occurred based on those
patterns of waveforms obtained.

L.A. Snider [5-7] in all his papers modeled the high impedance fault by a
diode model. Sharaf A.M. used no modeling for the fault. He just modeled
the transmission line using nominal pi model. All most all the researchers
using ANN have used Back propagation algorithm for it’s simplicity.

A.M. Sharaf, L.A. Snider, K. Debnath [12] used negative and zero sequence
components of second, third, fifth harmonic components for training the

neural network.



T.M. Lai, L. A. Snider,E. Lo, D.Sutanto [13-14] developed a High impedance
fault detection technique based on Discrete Wavelet transform. But this can’t
determine the properties of output coefficients.

M. M. Eissa, G.MA. Sowilam, A.M. Sharaf [15] used third and fifth harmonic
components of feeder voltage and current obtained by applying FFT for
training the neural network. They have also specified some patterns
observed in their simulation of fault at different locations of line. This method
is followed in this thesis for obtaining the feature vector which will be used
for training the neural network.

Howard Demuth, Mark Beale [16] discussed different transfer functions, back

propagation algorithms.

1.3 Organization of Thesis:

Chapter 1 discusses the introduction and literature review of the entire
thesis. Chapter 2 discusses modeling and simulation of High Impedance Fault
and the way of distinguishing the linear and nonlinear faults by observing few
patterns is revealed. Chapter 3 discusses the weight changing methodology
by Back propagation algorithm and this is represented with diagrams. The
transfer functions are represented with diagrams. Chapter 4 gives all the
results of thesis. The conclusions are given in chapter 5. The data obtained

by simulation and the parameters used for simulation are given in Appendix.



CHAPTER-2 HIGH IMPEDANCE FAULT SIMULATION

Introduction:
High impedance fault can be described as the fault which doesn't draw

sufficient fault current to be recognized and cleared by over current devices.
If left undetected for hours, weeks and months they can be fatal to humans
and animals at a typical current level of 50 milli ampere or above. The
description of this fault is described below with help of a radial distribution
model of the power system.

2.1 Single Line Diagram Representation of HIF System

The single line diagram of sample system used for the study of high
impedance fault detection is shown in figure 2.1 below.

Utility / Substation | Feed'e:_ —— |

Ve Va Vi o
{12 H S |
: CcCT )
Source BT T — EilnFela r
fault Y
Terminal
Relay Load

l x | f-x
(distance to fault)

Figure 2.1: Single line diagram of system subjected to high impedance fauit [15]
Figure 2.1 Shows a generator connected to load by a transmission line in
which an ordinary over current relay is placed.

Where Vs = Source voltage.
Vf = Voltage at fault point.
Vb = Load voltage.
Va= Voltage generated after excluding the drop in source.
| = Feeder length
x= Distance of fault location from the source point.



2.2 Per Phase Equivalent Circuit of HIF Model

The per-phase equivalent circuit of the above system is modeled as shown
below in figure 2.2. From figure 2.2 it’s obvious that the transmission line is
modeled using nominal pi model which will be used generally for medium
length transmission lines.

Where

Vs = Source voltage

Ls = Source inductance

(Rs) = Source resistance

x*R_line = Resistance of the line upto fault point

x*L_line = Inductance of the line upto fault point

x*C_line= Capacitance of the line upto fault point

Lf = Fault inductance

Rf = fault resistance

(I-x)*R_line = Resistance of the line beyond fault point and upto load.
(I-x)*L_line = Inductance of the line beyond fault point and upto load.
(I-x)*C_line= Capacitance of the line beyond fault point and upto load.
R_load = Load resistance

L_load = Inductance of load

B L 3wRke  flbe vf (Rl Qe Vh

$ + fm W #
VI —
T‘ b . R Jnad
§ ?
y "|-x)¥2 [ine f‘
T T
L boad
—t —

Figure 2.2: Per phase equivalent circuit of high impedance fault model [15]



In general the high impedance fault can be linear or nonlinear. In case of
linear fault the fault resistance is constant and is not a function of any

parameter.
In case of non linear fault the fault resistance is a function of current and is

given by Rf = Rf0 (1+ « (If/If0) ~ ) where a and f are constants.

2.3. Simulation Diagram of HIF Model
The simulation diagram is developed for fault from figure 2.2 and it is shown

in figure 2.3 given below.

W p + 1 - i ] 1_ vl
Source [ PC ks | BIL| m s 'T
Rsls 1K) Integrator
il
> Lt 1 -l 1 if '
- wLtine.sws=Riine | 2P(1+0.65u(1)70Y2) - P
% line g Fon P kg
W ] duct
N {3mf Derivatived
+ 4
- ™
(4% Liinest(HXfRline
(15} line i+ 62 y o
1 y -
> LisHRI T’ : -
vy U0 {nlegratort

Figure2. 3: Simulation diagram used to simulate the non linear fault

The diagram shown above is obtained by modeling the per-phase equivalent
circuit shown in figure 2.2 by nodal analysis. The equations used in the
modeling of above diagram are shown below.

Vs—-Va

Source current (Is) = —————
Rs+sLs



Fault current (If) = Ia - Ib |

Va- Vf : Va- Vf
where lIa = —— - = - -
line impedance upto fault point ~ (X*L_line)s+x*R_line
and Ib = Vi Vi

line impedance upto the end of line from fault point

_ Vi- Vi
((x)*L_line)s +(1-x)*R_line

Vi _ V1
load impedance =~ R load + (L_load)s

Load current (Il) =

Voltage at fault point (Vf) = (If) * (Rf + Lf*%)

Current flowing through capacitor x* C_line = Source current (Is) - Current

flowing through line before fault point (Ia)

Current flowing through capacitor (I-x)* C_line = Current flowing through

line beyond fault point (Ib) - Load current (Ii)

Va = {Current flowing through capacitor x* C_line} * {Impedance of

1

capacitor x* C_line } = (Is- Ia)* —mFF—
P - P=A ) s(x*C_line)

Vb= {Current flowing through capacitor (1-x)* C_line} * {Impedance of

1
s((1-x)*C_line)

capacitor (1-x)* C_line } = (Ib- I)*

[Note: The suffixes a (or) 1 and b (or) | indicate the same]

2.4. High Impedance Fault Pattern Characteristics

Here we have obtained voltage and current at the feeder. By pattern
recognition method it’s concluded that the plot between v1 and il is skewed

banana in case of nonlinear fault as shown in figure 2.4 below.
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Figure 2.4 Plot of vl vs i1 in case of nonlinear fault at x=0.05

3rd and 5" harmonic components of these fundamental values can be found
out by applying the one cycle Fast Fourier transform. This is represented in
the figure 2.5 given below. These harmonic components exhibit certain
pattern recognition characters using which the Linear and Non linear High
impedance faults can be distinguished. It's observed that the plot of a vs b is
collapsed lines, plot of p3 vs p5 is collapsed and retraced lines; plot of ¢ vs d
is triangle shaped lines in case of non- linear fault.

Where a=v3*i3/p3
b = v5 * i5/p5
c =i3/v3
d = i5/v5

10
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Figure 2.5: plot representing harmonic extraction using one cycle FFT

The plot qf b vs a for nonlinear fault is shown in figure 2.6 given below.

25

Figure 2.6: plot of b vs a in case of non linear high impedance fault



The plot of d vs ¢ for nonlinear fault is shown in figure 2.7 given below.

—

0.4 T T T T T T ¥ T
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Figure 2.7: plot of d vs ¢ in case of non linear high impedance fault
The plot of p5 vs p3 for nonlinear fault is shown in figure 2.8 given below.

4.5 T L] ¥ T ¥ L] ¥ T T

4+ -

05t .

U f 1 1 1 1 1
a 1 2 3 4 5

L
B
LN x 10°

Figure 2.8: plot of p5 vs p3 in case of non linear high impedance fault
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By pattern recognition method it's concluded that the plot between v1 and il

is ellipse in case of linear fauit as shown in figure 2.9 below.

x 10
3 T L} Ll L T
21 n
=
g T 1
=
e =1
E of .
=
oL A
3 1 ) i 1 t 1 1
-80 -B0 -40 20 0 20 40 B0 a0

"~
<" fundamental component of current if

Figure 2.9 Piot of vl vs il in case of linear fault at x=0.867

The characteristics exhibited by the 3™ and 5™ harmonic components in case
of Linear fault are given by the following patterns.

The plot of a (vs) b is bow shaped loop.

Plot of ¢ (vs) d is closed loop.

Plot of p3 (vs) p5 is retraced lines.

Where a=v3 *i3/p3
b = v5 *i5/p5
c =i3/v3
d =i5/v5

13



The plot of b vs a for linear fault is shown in figure 2.10 given below.

0.12

0.1

-08

< | 0.06

0.04

0.02

T

0.2

0.25

Figure 2.10 Plot of b vs a in case of iinear fault at x=0.867

The plot of d vs c for linear fault is shown in figure 2.11 given below.

0.2
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Figure 2.11 Plot of d vs c in case of linear fault at x=0.867
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The plot of p5 vs p3 for linear fault is shown in figure 2.12 given below.

X 104

12 4 I ) ] L

J 1
0 0.5 1 1.5 2 25 3

p3 5
“/\ x 10

Figure 2.12 Plot of p5 vs p3 in case of linear fault at x=0.867

These patterns are generalized by observing many plots at different fault
location and for different values of source and fault impedances at a
particular fault location. For this purpose the fault is simulated by creating it
at different locations through out the length of the line. [Note: location of
fault can be changed by just changing the value of x in the simulation
diagram shown in figure 2.3.] It's very cumbersome to observe all the plots
every time and identify the fault. And the plots may become very close in
most of the cases if there is no much nonlinearity. But if a neural network is
trained with a set of fault data it easily recognizes the type of fault if

occurred at later time based on its pattern observing capability.

15



CHAPTER-3 BACK PROPAGATION ALGORITHM

3.1. General Architecture of Neuron

The perceptron neural network was developed based on data processing
characteristics of human brain. The advantage in using this technique is due
to their ability to learn from examples and generalize the result for the inputs
not seen in the training phase.

An elementary neuron with R input is shown in figure 3.1 below. Each input
is denoted by p and weight is denoted by w. Each input p is weighted with
some weight. A neuron can be seen as a combination of summer of weighted

inputs and transfer function.

Figure 3.1: An elementary neuron with R input [16]

The sum of the weighted inputs with bias forms the net input to the transfer

function f and is given by the following expression.
n=wl,1pl+wl,2p2+... + wl, RoR + b

Any differentiable transfer function can be used by the neuron to generate

the output.

3.2. Types of transfer functions:

There are many transfer functions in the literature, but in general only four

types of transfer functions will be used. Their description is given below.

16



3.2.1. Hard limit transfer function: The hard-limit transfer function is shown
in figure 3.2 below.

Figure 3.2: Representation of Hard Limit Transfer function [16]

This function limits the output of the neuron to 0 or 1 depending on the net
input applied to transfer function.If the net input n is less than 0 output of
the transfer function is 0 and if n is greater than or equal to O the output is
1.

3.2.2. Linear transfer function: The linear transfer function is shown in figure
3.3 below.

a = purelinin) L
Linear Transfer Function

Figure 3.3: Representation of Linear Transfer function [16]

The linear transfer function will not change the output and it simply passes
out the net output.

17



3.2.3. Log sigmoid transfer function: The log sigmoid transfer function is

shown in figure 3.4 given below.

Figure 3.4: Representation of Log- Sigmoid Transfer function [16]

The log-sigmoid transfer function takes any value between tw as the input
and squashes the output into the range 0 to 1. This transfer function is
commonly used in back propagation networks since it is differentiable.

3.2.4. Tan-sigmoid transfer function: The Tan-sigmoid transfer function takes
any value between oo as the input and the output will also be in the range

+0 . The Tan-sigmoid transfer function is shown in figure 3.5 below.

a= xmﬁgm} _ ,
“?aﬁ-»sigmﬁia Tmnsief F‘ﬁmﬁoﬁ

Figure 3.5: Representation of Tan~ Sigmoid Transfer function [16]

Till now we have seen perceptron neuron of only one layer but we can adapt
neural network of any layers. The sample multilayer perceptron neuron is
shown in figure 3.6 given below. Here we have shown equal number of

neuron in all the 3 layers. But practically this may not happen and each layer
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may have different number of neuron. Feed forward networks often have one
or more hidden layers of sigmoid neurons followed by an éutput layer of
linear neurons. Multiple layers of neurons with nonlinear transfer functions
allow the network to learn non linear and linear relationships between input
and output vectors. The linear output layer lets the network produce values
outside the range -1 to +1.0n the other hand, if you want to constrain the

outputs of a network (such as between 0 and 1), then the output layer |

should use a sigmoid transfer function (such as logsig).

a=flqWap+h)  m=PEWaasb) 2 =BEWeassb)
=D AW R OWHA OWipb)brb)

Figure 3.6: Representation of Multi Layer Perceptron architecture [16]

Here we are training the network to gi\/e output in the range [0 1] so logsig
transfer function is used. This training is done using the back propagation
algorithms. Backpropagation is a supervised learning technique used for
training artificial neural networks. It was first described by Paul Werbos in
1974, and further developed by David E. Rumelhart, Geoffrey E. Hinton and
Ronald J. Williams in 1986. It is most useful for feed-forward networks
(networks that have no feedback, or simply, that have no connections that
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loop). The term is an abbreviation for "backwards propagation of errors”.
Backpropagation requires that the transfer function used by the artificial
neurons (or "nodes") be differentiable.

since it will be used up in updating the weights. The derivative of logsig can
be obtained by dlogsig. The back propagation algorithm trains a given feed-
forward multilayer neural network for a given set of input patterns with
known classifications. When each entry of the sample set is presented to the
network, the network examines its output response to the sample input
pattern. The output response is then compared to the known and desired
output and the error value is calculated. Based on the error, the connection
weights are adjusted. The back propagation algorithm is based on Widrow-
Hoff delta learning rule in which the weight adjustment is done through mean
square error of the output response to the sample input .The set of these
sample patterns are repeatedly presented to the network until the error

value is minimized. The algorithm is shown below.

3.3. Back Propagation Algorithm
1. Initialize the weights in the network (often randomly)
2. Repeat
* For each example e in the training set do
a. O = neural-net-output (network, e); forward pass
b. T = teacher output for e
¢. Calculate error (T - O) at the output units
d. Compute &y for all weights from hidden layer to output layer backward

pass
e. Compute Sy for all weights from input layer to hidden layer; backward
pass continued
f. Update the weights in the network
* end
3. until all examples classified correctly or stopping criterion satisfied

4. Return (network)
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The figure 3.7 illustrates the back propagation multilayer network with

M layers. N, represents the number of neurons in layer j. Here the network

is presented theP th pattern of training sample set with N, dimensional

input X, X,; cnnne X,vo and N, dimensional known output
response’ly, T, ......... T.m - The actual response to the input pattern by the
network is represented as0,, O,, ......... Opyy - Let Y, be the output from the i

th neuron in layer j for p th pattern; W ,, be the connection weight from k th
neuron in layer j-1 to i th neuron in layer j ; and d, be the error value

associated with the i th neuron in layer j.

j=layer # =0 j=1

j=M

Xpt @ < ?(’)— Op1 = T
K e 5

% 020 SO0t

-
™~

/o,
X @ () / \_\O— O T,
N

Nj = # neurons Mo N

The ith neuron in layer j

Yo

Figure 3.7: Back propagation neural network [17]
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The algorithm description is given below.

1. Connection weights are initialized with small random values.
2. Present the p th sample input vector of pattern

Xp=Xp Xpyoeeeannnn X,voand the corresponding output target

T, =Tp Tpy eeennnnn. Ty, to the network.

3. Pass the input values to the first layer, layer 1. For every input node i

in layer 0, perform:

4. For every neuron i in every layer j =1, 2,....... M. from input to
output layer, find the output from the neuron:

N,
in = f(z Y(j-l)ijfk)
k=1

1

where f(X) = m

5. Obtain output values for every output node i in layer M, perform:

OP' = YMi

Y

6. Calculate error value & , for every neuron i in every layer in
backward order j =M,M —1,......,2,1 from output to input layer, followed

by weight adjustments.

For the output layer, the error value is: ¢,, =Y,,,(1-Y,,,)(T,, -Y,,) and

for hidden layers:
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Nj+]

5_,',' = in(l - in)z 5(j+1)kW(j+l)ki)

k=1

The weight adjustment can be done for every connection from neuron k in

layer i-1 to every neuron i in every layer i

W™ = Y.

ik T ik Jitji

Where p represents weight adjustment factor normalized between 0 and 1.

The derivation of the equations above will be discussed soon.

The above steps will be repeated for every training sample pattern p, and
repeated for these sets until the root mean square (RMS) of output errors is

minimized.

We now attempt to derive the error and weight adjustment equations shown
above. Let's begin with the Root Mean Square (RMS) of the errors in the

output layer defined as:
2
E, = —Z (ij - OPj) for the P th sample pattern.

In generalized delta rule the error value &, associated with the i th neuron
in layer j is the rate of change in the RMS error E, respect to the sum-of-

product of the neuron:

OE,
Onetji

0, ==

Ji

where n et represents the sum-of-product value.

With the chain rule, we can obtain the rate of change in the RMS error E, in

response to weight change:
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0E,  OE, Onet
OW ,, Onelii OW

0

e w
g OW 1

=-8 Y,

(=170 +..... + Y(j_l)kWU_l),.k +..... ]

(/-1)i0

0
= =0y a—Wj;k—Yu-l)kW(j—l)ik

=9 ¥

We can say that the weight change is proportional to this value above
AW ,, = Bé ,Y ,_,,, Where S is a constant.

Thus, weight change can be performed as: W ,"" =W, + AW

To find an error value associate with the neuron, again using the chain rule,

we get:

5, = -2E, 9V,
M an,.anetjf

For output layer j=MandO,, = Y,,, .

Thus,
O0E, 0Y,,
0o,, Onetumi

5Mi=_

G, 1 & oY,
—_ T -0 )*]1—=—Mi_
ao,,i[z le( i rs) ]6netMi
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0

1
=_601,i [?[(Tp1_01,1)2+ ........ +(7T,,
15} 1 |
= — [—[(TPi_OPi)z]f (netlui)
00, 2

Using equation
Spi = (Tp; = Op ) f(netm)[l = f(netrui)]]

= (T, - Opi)(ofi)(l = 05p)

— 0, +..0]

onetumi

Of (netumi)

This should correspond with equation For error values associated with the

hidden layer neurons, we cannot use target values. For this reason, the part

OE,

Ji

in equation needs to be found using a different approach. We use the

chain rule applied to the sum-of-product values of neurons in the front layer

j+1. 4
OE, oF, anet(j+1)1+ oE, anet(j+1)2+
dY, Onet(;+ 0¥, dnet(;+1)2  9Y,
N  + 1
_ ]Z (_ OE, omet(s+na,
a=1 Onet(j+1)a oY,
N j+1 3
= Z [_ 5(j+l)a F(onW(jH)ao + o + inW(j+1)ai
a =1 st
N j + 1 P
= Z [ - 5(j+1)a W_[inW(j+l)ai]
a =1 i

+ ...

)]
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= Z [ = 0 ivra? (ji1yail

i - . 0Y,
Finally, combining with I we get:

- Onetyi
5,,» == Z [- 6(j+1)aW(j+l)ai}5;;e_]t; = ij(l—yj,-) Z [5(j+1)aPV(j+1)ai]
a=1 a=1

By substituting this in W ™" =W, + 6 ,Y,, new weight is obtained.

3.4. Description of Back Propagation Algorithm using 3 layer neural
network

The diagrammatic representation of the calculation of weights for multilayer
neural network by Back propagation algorithm is shown below.To illustrate
this process consider the three layer neural network with two inputs and one

output as shown in figure 3.8 below.

Figure 3.8: Three Layer Neural Network [17]

Each neuron is composed of two units. First unit adds products of weights
coefficients and input signals. The second unit realise nonlinear function,
called neuron activation function. Signal e is adder output signal, and y =
f(e) is output signal of nonlinear element. Signal y is also output signal of

neuron.
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x,‘ w Y «
? . H
. B W TN nor-linear y-i{e)
BUFIITHNG i3 22 slament -
Junction * f(e)

X W,
Figure 3.9: Description of Neuron as a Composition of 2 units [17]

To teach the neural network a set of data will be used for training it. The
training data set consists of input signals (x; and x> ) assigned with
corresponding target (desired output) z. The network training is an iterative
process. In each iteration weights coefficients of nodes are modified using
new data from training data set. pictures below illustrate how signal is
propagating through the network, Symbols w;m), represent weights of
connections between network input x,, and neuron n in input layer. Symbols

yn represents output signal of neuron n.

n=A ’(’**’(xl)lxl + W )
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¥y = (W + Weegpat)

\Wixts3

Figure 3.10: Qutputs of 3 Neuron in first hidden layer (v, y2, ¥3) [17]

Outputs of all the 3 neurons in first layer are shown in figure 3.10 shown
above.Propagation of signals through the hidden layer are shown below.
Symbols w,,, represent weights of connections between output of neuron m
and input of neuron n in the next layer. Outputs of the 2 neurons in second

layer are shown in figure 3.11
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Vo= Ja(ryg ¥y + 100 ¥y + 34 33)

Figure 3.11: Outputs of 3 Neuron in second hidden layer (ys, vs) [17]

Propagation of signals through the output layer is shown in figure 3.10.

= fo(Wag Vs + W6 ¥s)

Figure 3.12: Output of Neuron in output layer (ys) [17]
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Figure 3.14: propagation of error signal from output layer to second hidden layer

The propagation of error signal from second hidden layer to first hidden layer
is shown in figure 3.15.
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Figure 3.15: propagation of error signal from second hidden layer to first hidden
layer

The modification in weights coefficients between first hidden layer and input

will be as shown below in figure 3.16.

Wiy = Wy + 775

~

Wixa = Wy + 7785,

b 3
y
x,
Wiry2 = Wexrya + 775 iéﬁi“ﬁxl
Wixya = 1V(x2}2 + 775, %g@“xz
X, :
y
X2
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Cdfs(e) .
de ~°

dfs(e)

(e
Wisg = Wsg + 170 —Ez g
56 = Wsg Vs
de

¢ J— # g

Figure 3.16 The modification in weights coefficients between first hidden layer and

input

Coefficient 7 is the learning rate. There are 2 techniques to select this

parameter.The first method is to start teaching process with large value of
the parameter. While weights coefficients are being established the
parameter is being decreased gradually. The second method starts teaching
with small parameter value. During the teaching process the parameter is
being increased when the teaching is advanced and then decreased again in
the final stage. Starting teaching process with low parameter value enables

to determine weights coefficients signs.

df(e)/de represents derivative of neuron  activation function.

34



CHAPTER-4 RESULTS AND DISCUSSION

4.1. Implementation in Matlab 7.0.1

The training and testing of the feed forward neural network for distinguishing
the linear and nonlinear faults is done using back propagation algorithm in
Matlab 7.0.1.The first step in training a feed forward netwdrk is to create the
network object. The function newff creates a feed forward network. Before
training a feed forward network, the weights and biases must be initialized.
The newff command will automatically initialize the weights. The function sim
simulates a network. sim takes the network input p, and the network object
net, and returns the network outputs a. Once the network weights and biases
have been initialized, the network is ready for training. The network can be
trained for function approximation (nonlinear regression), pattern
association, or pattern classification. In this thesis training is being done for
pattern classification. The training process requires a set of examples of
proper network behavior -network inputs p and target outputs t. During
training the weights and biases of the network are iteratively adjusted to
minimize the network performance function net.performFcn. The default
performance function for feed forward networks is mean square error mse -
the average squared error between the network outputs a and the target
outputs t.

The implementation of back propagation algorithm updates the network
weights and biases in the direction in which the performance function
decreases most rapidly - the negative of the gradient. One iteration of this

algorithm can be written as
Xpt1 = Xg = O 8y
Where X, a vector of current weights and biases is, gis the current

gradient, and ¢, is the learning rate. RMS values of third and fifth harmonic

components of voltage and current at feeder are found out at each location
of the fault. Half of the data obtained like this is used for training the neural
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fwork by using back propagation algorithm and the remaining half is used
or testing it. In the present case the neural network is trained to give an
sutput value of 1 for linear fault and 0 for nonlinear fault. We have adapted 3
layer neural network consisting of 4 neuron in each hidden layer and 2
neuron in output layer and log sigmoid function is used in all the layers.
Learning rate of 0.565 is used and a momentum factor of 0.585 is used in
the training phase of the neural network. Percentage of training and testing
samples classified by different back propagation algorithms of the neural

network are shown below in table 4.1.

Table 4.1 percentage classification for different Back propagation algorithm:

s.no. Back propagation Percentage of Percentage of
algorithm used samples classified samples classified

in training in testing

1. Trainlm 100 100

2. Traingdm 66.85 65.78

3. Trainr 95.72 95.18

4. Trainb 81.28 82.88

5. Traingd 62.57 61.5

6. Traingda 87.70 86.1

7. Traingdx 90.375 87.7

8. Trainrp 100 96.8

9. Trainbr 100 99.47

10. Trainoss 99.47 98.4

11. Trainbfg 98.4 95.73

12. Traincgf 95 95

13. Traincgp 98.4 98.4

14. Traincgb 96.26 93.6

15. Trainscg 98.93 98.39
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Figure 4.1 Training the feed forward network with trainim algorithm
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Figure 4.2 Training the feed forward network with ‘trainbr’ algorithm

Performance curves due to training the feed forward network by the back

propagation algorithms with trainlm and trainbr are shown in figure 4.1 and
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4.2. The percentage classification for different combination of neuron in 2

hidden layer are given in table 4.2.

Table 4.2 percentage classification for different combination of neuron:

Back No. of No. of Percentage | Percentage of
propagation | neurons in | neurons | of samples samples
S.no algorithm first in second | classified in | classified in
used hidden hidden training testing
layer layer
1. Trainlm 4 8 100 97.86
6 100 98.4
8 8 100 98.5
8 6 100 95.2
4 6 100 97.33
6 4 100 95.2
6 6 93.58 93.58

Percentage of samples classified during training and testing of the three layer
network for different combination of transfer functions used by the neuron

are shown below in table 4.3.

Table 4.3 percentage classification for different transfer function used by neuron:

s.no | Transfer Transfer Transfer Percentage | Percentage
function used | function used function of samples of samples
by neuron in by neuron in used by classified in | classified
first hidden second neuron in training in testing
layer hidden layer | output layer

1. Logsig Logsig Logsig 100 100

2. Tansig Tansig Tansig 100 97.86

3. Purelin Purelin Purelin 82.89 83.96

4, Hardlim Hardlim Hardlim 42.24 42.24

5. Logsig Logsig Purelin 100 100

6. tansig Tansig purelin 100 97.3
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CHAPTER-5 CONCLUSIONS

The values of feeder voltage and feeder current are obtained for two kinds of
fault cases (i.e. linear and nonlinear) by simulating the model of High
Impedance Fault system. The values of third and fifth harmonics are
obtained by applying the Fast Fourier Transform. RMS values of these
harmonics are used to train the Multilayer Perceptron Neural Network for
classification of these two types of faults. It consists of two hidden layer and
one output layer. Each hidden layer consists of four neuron and one output
layer consists of two neuron. This network is trained by using the Back
propagation algorithm. Many types of back propagation algorithms are tested
and it's found that trainlm and trainbr are classifying these two kinds of
faults more perfectly compared to other algorithms. As well as for selecting
the no of neuron the network is tested for different number of neuron in each
layer and it’s found that the network consisting of four neuron in each hidden
layer is performing well. The network is tested for different transfer function
and it's found that its performance is good when log-sigmoid transfer
function is used in all the 3 layers or when tan-sigmoid transfer function is
used by the neuron in two hidden layer and linear transfer function is used

by neuron in output layer.
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APPENDIX

Parameters

The parameters used in the simulation shown in figure 2.3 are shown below.
Source voltage (Vs) = 25 kv.

Source inductance (Ls) = 3 mh to 7mh.

Source resistance (Rs) = 0.3 to 0.7 ohm.

Frequency = 314 rad/sec

Resistance of the line (R_line) = 0.25 ochmy/ km

Inductance of the line (L_line) = 0.99472 mh/km

Capacitance of the line (C_line) = 0.01117 microfarad /km

Load resistance (R_load) = 200 chm.

Inductance of ioad (L_load) = 0.2 Henry.

Fault inductance (Lf) = 3 mh to 7 mh.

In case of linear fault fault resistance (Rf) = 20 to 30 ohm.

Incase of non linear fault the fault resistance is a function of current and is given by
Rf = RfO (1+alfa (If/1f0) ~ beta) where Rf0=20 to 30 ohm, alfa = 0.6, beta = 2.0.
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DATA
The data obtained by simulation for training and testing the neural network for linear

fault is shown below,

X v3 v5 i3 i5
lineardata= [ OTE)-ZS - 4.131 5.514 3'.09834 0.02402
0.025 3.953 2.085 0.1005 0.02543
0.025 1.6 0.7916 0.09831 0.0257
0.025 2.269 0.3301 0.1505 0.07113
0.05 6.576 4.784 0.07748 0.007527
0.075 5.674 8.168 0.08715 0.02525
0.10 10.44 10.63 0.04726 0.03885
0.125 8.425 11.50 0.009257 0.09639
0.15 9.579 16.24 0.01831 0.1067
0.175 11.59 16.99 0.0199 0.1055
0.20 3.715 3.367 0.04891 0.008923
0.225 8.626 12.99 0.01805 0.04045
0.25 2.043 3.526 0.04884 0.01721
0.275 7.821 12.63 0.01131 0.03882
0.30 10.95 18.79 0.01254 0.07266
0.3 17.67 28.95 0.04296 0.1252
0.3 11.87 16.73 0.04627 0.05117
0.3 13.99 21.9 0.01883 0.08308
0.325 7.351 12.49 0.01229 0.03414
0.35 19.41 30.54 0.04162 0.1133
0.375 19.41 32.06 0.04211 0.1125
0.40 23.63 39.67 0.05597 0.1321
0.425 24.01 39.01 0.0531 0.1256
0.45 34.02 56.35 0.08645 0.177
0.475 37.82 63.04 0.09785 0.1922
0.50 26.66 43.85 0.0536 0.1193
0.5 23.75 39.69 0.04815 0.111
38.65 64.43 0.08826 0.1761

0.5
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0.5
0.525
0.55
0.575
0.60
0.625
0.65
0.675
0.70
0.725
0.75
0.775
0.80
0.8
0.825
0.85
0.875
0.90
0.925
0.95
0.975
0.975
0.975
0.975
0.975
0.01
0.02
0.03
0.04
0.06
0.07
0.08
0.09
0.11
0.12

14.63
39.56
18.42
10.60
30.25
26.43
35.17
103.1
3.951
38.5
11.53
34.83
36.21
23.99
29.17
43.74
65.76
67.23
14.63
32.16
11.96
13.71
10.8
12.29
13.59
2.604
3.21
1.968
4.779
3.383
3.342
6.661
3.893
11.33
8.654

' 24.02

65.90
29.52
17.19
50.45
43.94
58.7
170
3.902
63.95
20.15
57.81
59.8
39.53
48.11
72.74
108.4
109.7
24.67
53.62
19.62
22,52
17.53
20.18
22.29
1.012
1.16
2.113
3.702
6.495
6.568
5.17
7.437
9.968
12.12

0.01476
0.09131
0.02505
0.002381
0.0538
0.04139
0.06363
0.223
0.01763
0.06684
0.006667
0.05041
0.0535
0.02622
0.03929
0.06544
0.1051
0.1073
0.009181
0.03689
0.002975
0.004955
0.002566
0.03285
0.004783
0.1067
0.1129
0.08831
0.07083
0.06361
0.06085
0.07833
0.02157
0.04029
0.01721

0.05889
0.1776
0.07048

0.03056
0.1151
0.09561
0.1292

0.3771

0.002303

0.1316
0.02454
0.1024

0.1085

0.06413
0.08274
0.1257
0.1877
0.1898
0.03005
0.07733
0.02179
0.02658
0.01818
0.0227
0.02636
0.03138

0.04712

0.02579
0.02779
0.04318
0.04272
0.01515
0.07673
0.03143
0.09892
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0.13
0.14
0.16
0.17
0.18
0.19
0.2
0.2
0.2
0.2
0.2
0.21

0.22

0.23
0.24
0.26
0.27
0.28
0.29
0.31
0.32
0.33
0.34
0.36
0.37
0.38
0.39
0.4

0.4

0.4

0.4

0.4

0.41
0.42
0.43

9.376
11.47
12.26
6.739
12.48
11.94
6.39
4.95
2.844
6.088
10.61
15.59
4.722
19.36
11.08
15.67
20.38
16.66
3.801
17.29
17.61
14.41
22.42
24.67
15.96
4.879
11.28
23.73
18.9
18.8
21.63
12.43
28.86
22.81
7.508

15.24
10.41
20.08
9.872
18.99
11.82
10.51
8.818
5.154
10.04
17.69
26.45
2.848
30.61
18.75
22.7
34.41
28.15
6.12
29.01
29.3
24.03
36.66
41.4
26.59
4.732
16.3
39.91
31.36
30.67
35.44
19.32
48.02
37.51
6.819

0.02287
0.05337
0.03523
0.03885
0.01961
0.0286
0.01651
0.02953
0.04261
0.02001
0.01295
0.04656
0.05885
0.06619
0.02446
0.02616
0.06436
0.04398
0.03552
0.03794
0.04903
0.02728
0.06248
0.07061
0.02782
0.03349
0.005322
0.05336
0.03767
0.03662
0.04515
0.008569
0.07642
0.05057
0.02838

0.1012
0.005422
0.1349
0.01974
0.09893
0.02724

0.04577
0.02607

0.005797
0.04226
0.09919
0.1439
0.03004
0.1708
0.1011
0.1006
0.1615
0.1266
0.003625
0.1132
0.1287
0.09222
0.1483
0.1593
0.0886
0.01004
0.04534

0.1285
0.1035
0.1012

0.1155

0.0547
0.1638
0.1209
0.006265
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0.44
0.46
0.47
0.48
0.49
0.51
0.52
0.53
0.54
0.56
0.57
0.58
0.59
0.61
0.62
0.63
0.64
0.64
0.64
0.64
0.64
0.64
0.66
0.67
0.68
0.69
0.7
0.7
0.7
0.7
0.7
0.71
0.72
0.73
0.74

26.24
3.877
36.63
3.414
16.86
10.6
39.09
21.96
13.51
24.25
15.52
32.09
28.35
68.06
32.19
18.89
10.55
3.82
28.13
13.77
35.28
23.12
14.58
38.35
8.045
24.94
30.33
31.9
36.14
55.5
21.36
20.23
28.06
19.37
76.73

43.62
4,198
60.8
2.749
26.03
15.82
64.07
36.2
22.93
40.61
24.85
53.4
47.23
112.8
53.23
30.94
14.14
5.139
46.74
21.24
58.11
37.88
23.79
63.97
12.12
41.82
50.54
52.82
60.07
92.25
35.12
32.94
46.69
32.88
127.2

0.06482 0.1424
0.02629 0.005054
0.09231 0.1845
0.02594 0.005779
0.01839 0.06498
0.004049 0.03029
0.09253 0.1815
0.03649 0.09036
0.009543 0.0456
0.0443 0.1007
0.0137 0.0503
0.06349 0.1312
0.05037 0.1101
0.1548 0.2754
0.06041 0.1245
0.025 0.0666
0.005704 0.0195
0.01956  0.003523
0.04781 0.1033
0.007319 0.03696
0.06363 0.129
0.03376  0.08089
0.01243 0.04456
0.06851 0.1352
0.007213 0.01569
0.03347 0.07877
0.04717 0.1007
0.05123 0.1076
0.05945 0.121
0.1044 0.1909
0.0253 0.06568
0.02134 0.06012
0.04234 0.09329
0.0186 0.05363
0.1443 0.253
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0.76
0.77
0.78
0.79
0.81
0.82
0.83
0.84
0.86
0.87
0.87
0.87
0.87
0.87
0.87
0.88
0.89
0.91
0.92
0.93
0.94
0.96
0.97
0.98
0.99

7.918
48.58
115.7
50.23
39.78
41.19
33.43
48.16
36.41
68.04
15.82
15.58
40.7

26.94
23.01
39.7

15.69
33.69
39.65
12.01
8.568
23.62
12.14
8.705
3.73

13.09
80.67
190.3
83.43
65.66
67.66
54.26
79.08
60.13
112.3
26.96
24.41
67.58
43.3
38.74
65.83
25.91
55.27
66.11
20.1
12.96
39.06
19.68
13.83
3.791

0.00669
0.08167
0.224
0.08308
0.05971
0.06123
0.04419
0.07303
0.05336
0.1085
0.009322
0.009251
0.05732
0.02944
0.02406
0.05774
0.01122
0.04417
0.05171
0.004893
0.005122
0.022222
0.002164
0.004656
0.01454

0.01837
0.1526
0.3764
0.155
0.1179
0.1203
0.0927
0.1383
0.1063
0.1929
0.03271
0.0337
0.113
0.06851
0.05844
0.1127
0.03912
0.09067
0.1017
0.02259
0.01248
0.05497
0.02239
0.01248

0.003956]

Where x = fault location if whole distance = 1.0 P.U.

v3 = R.m.s value of third harmonic component of voltage at fault point
v5 = R.m.s value of fifth harmonic component of voltage at fault point
i3 = R.m.s value of third harmonic component of fauit current

i5 = R.m.s value of fifth harmonic component of fault current

Similarly the data obtained by simulation for training and testing the neural network

for non-linear fault is shown below.

0.025
0.025

231

166.5

147.9
107.3

34.24
34.62

13.38
13.68
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0.025
0.025
0.05
0.075
0.10
0.125
0.15
0.175
0.20
0.2
0.2
0.2
0.225
0.25
0.275
0.30
0.325
0.35
0.375
0.40
0.425
0.45
0.475
0.50
0.5
0.5
0.5
0.525
0.55
0.575
0.60
0.625
0.65
0.675
0.70

167
135.8
196.3
167.2
140.4
114.5
91.54
77.94
57.68
34.18
50.41
57.71
47.49
31.16
36.74
17.4
6.038
6.209
5.726
17.64
12.64
19.63
6.326
48.49
4.606
2.558
4.278
43,17
38.94
26.26
38.91
38.10
12.09
24.89
40.56

107.3
85.49
111.6
80.41
66.28
54.54
49.72
33.75
28.69
15.27
22.61
25.49
16.31
29.65
5.989
24.28
29.65
38.23
36.61
51.61
39.51
48.2
3.02
91.36
18.19
8.744
5.646
80.76
72.45
50.23
70.4
68.17
24.36
46.18
70.47

34.5
34.65
28.91
24.26
20.30
16.93
14.09
11.64
9.626
9.7
9.663
9.572
7.93
6.564
5.403
4.474
3.701
3.066
2.544
2.116
1.766
1.48
1.298
1.009
1.071
1.103
1.102
0.8706
0.7418
0.6501
0.54
0.4727
0.4543
0.3694
0.2945

13.62
13.74
9.95
7.366

5.388
3.963
2.953
2.143
1.631
1.591
1.602
1.593
1.18

0.9538
0.5842

0.5438
0.4308

0.3599
0.2787

0.2799
0.1852

0.1964

0.0661

0.2821

0.06281

0.05488

0.05362
0.2468
0.1996
0.1298

0.1726

0.1592
0.05143
0.09109
0.1471

49



0.725
0.75

0.775
0.80

0.825
0.85

0.875
0.90

0.925
0.95

0.975
0.990
0.005
0.010
0.015
0.020
0.030
0.035
0.040
0.045
0.055
0.060
0.065
0.070
0.080
0.085
0.090
0.095
0.105
0.110
0.115
0.120
0.130
0.135
0.140

68.16
35.31
115.4
38.07
52.78
4.156
14.87
71.84
89.55
33.98
2.92
3.099
260.5
253.2
245.8
238.6
223.6
217.5
211.6
203.7
185.8
186.4
177.6
170
159.1
156.9
142.8
142.6
127.1
123
127
119.2
108.7
102.6
95.74

115.8
61.57

192.2
65.1

89.32
8.887
25.98
120

148.90

57.57
2.881
3.81
184.7
174.3
164.6
155.4
139.5
132.1

123.4
118.1
106.5
101.9
92.06
91.51
86.49
80.68
72.31
75.03
63.55
62.74
52.01
50.03
51.2
55.09
45.18

0.2269
0.2356
0.1438
0.1736
0.1314
0.1801
0.1518
0.06256
0.08222
0.07634
0.1128

0.105
38.97
37.76
36.56
35.38
33.11
32.03
30.96
29.92
27.91
26.99
26.03

25.15
23.46
22.64
21.81
21.07
19.59

18.9

18.18
17.53

16.31
15.75
15.15

0.2378
0.1206
0.3794
0.1189
0.1563
0.00739
0.03444
0.1926
0.2466
0.08393
0.00627
0.00440

16.86
15.93
15.04
14.2
12.62
11.88
11.21
10.55
9.397
8.79
8.32
7.802
6.887
6.483
6.112
5.729
5.078
4.77
4.475
4.198
3.725
3.532
3.305
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0.145
0.155
0.160
0.165
0.170
0.180
0.185
0.190
0.195
0.205
0.210
0.215
- 0.220
0.230
0.235
0.240
0.245
0.255
0.260
0.265
0.270
0.280
0.285
0.290
0.295
0.305
0.310
0.315
0.320
0.330
0.335
0.340
0.345
0.355
0.360

98.06
91.67
83.67
76.62
74.37
77.33
65.43
61.16
57.41
54.23
53.35
53.81
56.41
51.05
41.94
41.82
33.61
33.02
26.44
24.62
40.47
19.18
18.57
17.37
16.5

24.33
16.09
11.41
25.04
2.27

5.326
2.521
3.08

10.39
5.353

48.22
48.83
34.7
40.23
30.09
35.19
30.77
32.65
26.05
21.12
29.31
23.5
19.44
16.16
21.24
24.44
37.68
18.55
28.78
26.58
13.52
29
27.23
26.04
29.9
7.574
17.87
25.97
1.417
36.11
27.65
38.64
37.6
20.22
21.6

14.61
13.56
13.03
12.58
12.09
11.2
10.8
10.4
10
9.254
8.919
8.572
8.234
7.625
7.357
7.078
6.827
6.301
6.078
5.842
5.613
5.204
5.012
4.829
4.644
4.303

4.15

3.985
3.85
3.558

3.426

3.3
3.176

2.968
2.861

3.127
2.777
2.576
2.486
2.295
2.021
1.939
1.857
1.73
1.499
1.468
1.329
1.196
1.054
1.072
1.022
1.05
0.8469
0.8523
0.7919
0.6216
0.6903
0.6382
0.604
0.5893
0.4319
0.4647
0.4462
0.3422
0.4339
0.3691
0.3944
0.3696
0.2843
0.2823
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0.365
0.370
0.380
0.385
0.390
0.395
0.405
0.410
0.415
0.420
0.430
0.435
0.440
0.445
0.455
0.460
0.465
0.470
0.480
0.485
0.490
0.495
0.505
0.510
0.515
0.520
0.530
0.535
0.540
0.545
0.555
0.560
0.565
0.570
0.580

14.26
9.65
2.583
9.184
12.59
5.138
7.37
20.05
15.02
21.18
0.5472
13.69
8.229
9.375
19.03
2.13
8.117
38.48
23.14
8.642
29.01
15.24
23.86
12.47
12.29
13.76
26.29
22.59
27.78
17.14
30.91
24.49
24.68
37.66
21.6

6.51
11.99
29.56
14.24
43.89
25.27
33.63
54.25
44.49
54.55
17.5
39.65
29.96
2.307
46.77
16.84
0.9534
77.4
50.98
26.6
59.89
36.45
50.14
30.8
29.99
32.54
52.73
46.15
54.45
36.66
58.82
48
47.89
69.08
42.29

2.766
2.657
2.455
2.391
2.272
2.219
2.057
1.964
1,892
1.821
1.736
1.646
1.611
1.587
1.435
1.412
1.389
1.266
1.2
1.19
1.118
1.107
1.019
1.002
0.9707
0.9463
0.8653
- 0.8396
0.81
0.8089
0.7272
0.7165
0.6951
0.6626
0.6381

0.2195
0.2112
0.2385
0.1923
0.2588
0.206
0.2126
0.2716
0.2103
0.2502
0.1347
0.1758
0.1533
0.08667
0.1856
0.08356
0.07151
0.2725
0.1704
0.1091
0.1978
0.126
0.1602
0.09137
0.08105
0.1034
0.1541
0.1221
0.155
0.1065
0.164
0.1327
0.1221
0.1877
0.1027
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0.58

0.58

0.58

0.585
0.590
0.595
0.605
0.610
0.615
0.620
0.630
0.635
0.640
0.645
0.655
0.660
0.665
0.670
0.680
0.685
0.690
0.695
0.705
0.710
0.715
0.720
0.730
0.735
0.740
0.745
0.755
0.760
0.765
0.770
0.780

7.083

40.5
14.94
34.67
4.456
23.84
21.8
40.07
29.34
29.52
69.85
77.77
22
28.48

. 2.253

18.29
40.39
24.47
35.74
28.68
32.53
35.92
40.61
26.71
84.45
18.93
10.82
10.04
36.91
90.74
18.72
14.61
18.97
10.41
22.73

15.11
71.83
30.24
63.52
13.45
45.57
41.74
71.95
53.95
53.9
120.5
133.4
40.93
51.62
7.902
34.35
70.97
44.47
63.07
51.17
57.39
62.87
69.82
47.35
142.7
33.66
20.69
16.37
63.84
152.2
33.35
26.59
33.7
19.72
39.79

0.6826
0.6155
0.6644
0.6095
0.6421
0.586
0.5574
0.5097
0.5086
0.4944
0.4013
0.3756
0.4588
0.4266
0.4564
0.4124
0.3659
0.3863
0.3432
0.3485
0.3351
0.3157
0.3052
0.3008
0.2219
0.3033
0.306
0.3058
0.2483
0.1868
0.255
0.2556
0.2429
0.2483
0.2202

0.03956
0.1873
0.07632
0.1709
0.0359
0.1136
0.1036
0.1751
0.131
0.1245
0.2853
0.3117
0.09572
0.1136
0.008546
0.06966
0.1567
0.0975
0.1347
0.1079
0.1228
0.1351
0.1513
0.0951
0.3015
0.0575
0.03405
0.01996
0.1286
0.313
0.06328
0.03734
0.06213
0.02797
0.07181
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0.785
0.790
0.795
0.805
0.810
0.815
0.820
0.830
0.835
0.840
0.845
0.855
0.860
0.865
0.870
0.880
0.885
0.890
0.895
0.905
0.910
0.915
0.920
0.930
0.935
0.940
0.945
0.955
0.960
0.965
0.970
0.980
0.985

50.08
15.62
50.33
22.62
35.39
18.72
65.58
35.21
15.72
39.69
23.36
7.012
22.81
3.04

29.55
19.36
28.94
8.563
62.44
53.71
36.42
51.3

2.289
49.02
52,42
47.47
41.15
30.09
10.66
20.04
14.71
4.65

4.194

85.3
27.76
85.52
39.43
59.67
32.55
110.4
59.35
26.15
67.57
40.78
6.96
39.03
6.678
50.77
32.48
48.93
14.96
104.9
90.1
61.73
85.44
1.255
82.5
88.1
79.61
69.26
51.01
18.13
34.12
25.19
7.636
6.614

0.1686
0.2213
0.164
0.1905
0.1801
0.1892
0.1125
0.1541
0.1767
0.1378
0.1572

0.1833
0.1456

0.1741
0.1272
0.1389
0.1153
0.1515
0.07866

0.08139
0.09142

0.08763
0.1425

0.07021

0.06201
0.073
0.07441
0.08051
0.1064
0.0901
0.09512

0.1058
0.1046

0.1576
0.04584
0.1583
0.06335
0.11
0.057
0.1914
0.1036
0.03625
0.1185
0.05518
0.004531
0.06686
0.002403
0.0719
0.05201
0.07685
0.014
0.1736
0.1498
0.09598
0.1429
0.0092
0.1292
0.1356
0.1256
0.1065
0.07377
0.0201
0.04592
0.03084
0.001792
0.00022
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