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ABSTRACT 

Ammonia is one of the most important chemicals produced as it enjoys the 

wide use in the manufacture of fertilizers. Hence, modeling and simulation of 

ammonia manufacturing process has received considerable attention among the 

process industries way from 1960s. 

Most chemical processes are inherently nonlinear. In recent years, nonlinear 

process identification has received more attention in both research institutions and 

industries. One way to specify model structure is to combine linear dynamic models 

with static (memoryless) nonlinear functions. These kind of nonlinear models are 

called Block-Oriented models. Mostly, unless specified otherwise, all studied 

nonlinear models will have a block-oriented structure: different building blocks will 

be assembled in specific configurations and studied. 

Commonly used block-oriented models are Hammerstein model, Weiner 

model and their combinations. A Hammerstein model has nonlinear block followed 

by a linear model and a Weiner model has nonlinear model with a linear dynamic 

block followed by a static nonlinear function. 

In this work, ammonia reactor model is taken and simplified by using some 

assumptions and approximations. Then its state-space model is developed. Using 

the state-space model, the reactor temperature is controlled. 
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CHAPTER - 1 

INTRODUCTION 

Building complex systems demands that the composing subsystems are well 

known. Modeling and identification offer a solution for this request: given a set of 

measurements, mathematical equations are constructed that allow predicting or 

simulating the performance of a device before building it. This is an essential cost 

saver, both in production materials that are not wasted and in time that is not spent 

to build a prototype that a simulation would have shown to fail. This time, that is not 

lost, is translated into a reduced time to market. Also, these models can give insight 

in the working of the device and help to understand which modifications are 

necessary to obtain a desired behavior. 

If sufficient prior knowledge and physical insight is present, a so-called 

white-box model can be built. This means that by looking to the physics of the device, 

a series of equations describing the device is proposed. These equations contain 

unknown parameters that are estimated by fitting the model to the measurements. 

However, as the size of the system grows, a second force comes into play: the 

complexity that can be handled is limited. At the other extreme are black-box 

models: no prior knowledge is used and a model structure is proposed. Then the 

element of the set of models that best explains the measurements is retained as the 

model. The set of models is usually a family of systems described by unknown 

parameters, so that choosing the aforementioned element is done by minimizing 

some cost functiOn with respect to the parameters. Black-box models describe the 

behavior of a system. 
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1.1 IMPORTANCE OF NON-LINEAR MODELS 

Linear models have been used for a long time and their identification is a 

mature science. However linear modeling is not always sufficient: each model is 

only an approximation of reality and many systems are in fact nonlinear. For many 

inputs, linear approximations are valid and very useful, but as the input range is 

increased, the nonlinear effects become so important that they can't be ignored 

anymore. 

Nonlinear behavior comes in all shapes and colors. Mostly, nonlinear models 

are an approximation to reality. 

OPEN LOOP NONLINEAR SYSTEMS 

If the output of a system is a nonlinear function of its input, but not of its 

output, the nonlinear system is called an open loop nonlinear system. A discrete 

time open loop nonlinear system could be written as [3] 

y(t) = F(u(t), u(t-1), 	) 

where u(t) input signal at the time t 

y(t) output signal at the time t 

F nonlinear function 

CLOSED LOOP NONLINEAR SYSTEMS 

In contrast to the open loop nonlinear systems, closed loop nonlinear 

systems include the output in the nonlinear input output relation [3] 
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y(t) = F(u(t), u(t-1), 	 y(t-1), y(t-2), 	 

 

(1.2) 

 

APPROXIMATING NONLINEAR SYSTEMS 

The field of nonlinear systems, as discussed above, is huge. Therefore, 

it is very difficult or sometimes impossible to propose a model structure for all 

nonlinear systems at once. 

Thus, depending on the system, different approaches exist to propose models 

for nonlinear dynamic systems. Some of these approaches will be presented shortly 

here, focusing on the class of systems that can be modeled. Since no model structure 

can cover all possible nonlinear systems, approximations will be introduced. 

However, these approximations (and their approximation properties) depend on 

the input signal and the approximation criterion. 

DIFFERENT SYSTEMS, DIFFERENT MODELS 

The different models and their approximation properties for nonlinear 

systems are introduced. Table 1.1 is a summary of different models and their 

approximation properties for nonlinear systems. 
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Table 1.1: Convergence properties of different nonlinear model classes. [3] 

Model. 	Notes 

Wiener node's 	• Mean square convergence to Wiener systems with sat- 
urations and discontinuities. Derivatives of signals con-
verge for band limited inpiAt. 

• Uniform convergence "for. Volterra systems (Wiener-sys-
tems with analytic rionlitiearitieS) for a limited ::,),stern 
dependent input range (similar to Taylor expansion, 
derivatives of the system converge; too) 

• Uniforth.convergence :for fading memory systems 
(Wiener systems with continuous discontinuities) over a 
user chosen input range. Derivatives of signals ccinverge 
for band limited input. 

Non recurrent Uniform convergence .for continuous open loop nonlinear 
Neural Networks systems. No result was found in the literature about the 

onivergence of the derivatives. 

Recurrent 	Uniform convergence for continuous closed loop nonlinear 
Neural Network systems for bounded 140 and w(t) for a finite time. No 

result =:ali found in the literature about the convergenc.e of 
the derivatives. 

Bilinear. models Uniform convergence for continuous_ closed loop nonlinear 
systems :for botuided u(t) and .r(t) for a finite time. Ni 
result was found in, the literature about the convergence of 
the derivatives. 

NARMAX 	Uniform convergence for continuous closed loop nonlinear 
model s 	systems for bounded 240 and e(t). No result was toured in 

the literature about the Convergence of the derivatives. 

1.2 DEVELOPMENT OF DYNAMIC MODELS 

A brief description of deriving the dynamic models of the chemical processes 

is given here. Dynamic models are nothing but unsteady-state models derived from 

physical and chemical principles. A dynamic model can be used to characterize the 

transient behavior of a process for a wide variety of conditions. Development of a 

suitable process model can be a crucial step to success. 
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TYPES OF MODELS 

Models can be classified based on how they are obtained: 

a) Theoretical models are developed using the principles of chemistry, physics, 

and biology. 

b) Empirical models are obtained by fitting experimental data. 

c) Semi-empirical models are a combination of the models in categories (a) 

and (b); the numerical values of one or more of the parameters in a 

theoretical model are calculated from experimental data. 

Theoretical models offer two very important advantages: they provide 

physical insight into process behavior, and they are applicable over wide ranges of 

conditions. However, there are disadvantages associated with theoretical models. 

They tend to be expensive and time-consuming to develop. In addition, theoretical 

models of complex processes typically include some model parameters that are not 

readily available, such as reaction rate coefficients, physical properties, or heat 

transfer coefficients. 

Although empirical models are easier to develop than theoretical models, 

they have a serious disadvantage: empirical models typically do not extrapolate 
... 

well. More specifically, empirical models should be used with caution for operating 

conditions that were not included in the experimental data used to fit the model. 

The range of the data is typically quite small compared to the full range of process 

operating conditions. 

Semi-empirical models have three inherent advantages: (i) they incorporate 

theoretical knowledge, (ii) they can be extrapolated over a wider range of operating 

conditions than empirical models, and (iii) that require less development effort than 
5 



theoretical models. Consequently, semi-empirical models are widely used in 

industry. 

Dynamic models of chemical processes consist of ordinary differential 

equations (ODE) and/or partial differential equations (PDE), plus related algebraic 

equations. 

DEGREES OF FREEDOM ANALYSIS 

To simulate the process, we must first ensure that its model equations 

(differential and algebraic) constitute a solvable set of relations. In other words, the 

output variables, typically the variables on the left side of the equations, can be 

solved in terms of the output variables. That is, the equations must have a unique 

solution. In order for a model to have a unique solution, the number of unknown 

variables must be equal the number of independent model equations. An equivalent 

statement is that all of the available degrees of freedom must be utilized. The number 

of degrees of freedom, NF, can be calculated from the following expression, 

NF=NV-NE 	 (1.3) 

where NV is the total number of process variables and NE is the total number of 

independent equations. 

A degrees of freedom analysis allows modeling problems to be classified 

according to the following categories: 

a) NF=O: the process model is exactly specified. If NF=O, the number of 

equations is equal to the number of process variables and set of equations 

has a solution. (However, the solution may not be unique for a set of 

nonlinear equations). 
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b) NF>0: the process is underspecified. If NF>0, then NV>NE so there more 

process variables than equations. Consequently, the NE equations have an 

infinite number of solutions because NF process variables can be specified 

arbitrarily. 

c) NF<O: the process model is overspecified. For NF<O, there are fewer process 

variables than equations, and consequently the set of equations has no 

solution. 

Note that NF=O is the only satisfactory case. If NF>0, then a sufficient number of 

input variables have not been assigned numerical values. If NF<O, then additional 

independent model equations must be developed in order for the model to have an 

exact solution. 

SOLUTION OF DYNAMIC MODELS 

Once a dynamic model has been developed, it can be solved for a variety of 

conditions that include changes in the input variables or variations in model 

parameters. The transient responses of the output variables are calculated by 

numerical integration of the model equations. A large number of numerical 

integration techniques are available. Most commonly used methods are Runge-Kutta 

(RK) fourth order method and Euler's method. Euler's method is generally not used 

because of two reasons. Firstly, the truncation error per step associated with this 

method is far larger than those associated with other, more advanced, methods (for 

a given value of h). Secondly, Euler's method is too prone to numerical instabilities. 

So the most commonly used method is the Runge-Kutta 4th order method. It is used 

to integrate the above mentioned ODEs (Ordinary Differential Equations). Softwares 

are also readily available for integrating ordinary and partial differential equations. 

Most popular ones include MATLAB, Mathematica, ACSL, aspen Custom Modeler and 

Mathcad. 
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1.3 INTRODUCTION TO BLOCK-ORIENTED SYSTEMS 

The aim of this introduction is first to limit the scope to a reasonable size. 

Additionally, some basic concepts will be introduced, along with the notations. 

There are several advantages for using block-oriented models [20]: 

o Low cost in identification test. 

o Low cost in identification computation. 

o It is easy to comprehend and to incorporate a priori process knowledge. 

o They are easy to use in control. 

Except where noted otherwise, all studied nonlinear models will have a 

block-oriented structure: different building blocks will be assembled in specific 

configurations and studied. These structures are widely used and the most common 

have a specific name. 

Linear time invariant (LTI) systems 

This section introduces briefly the Linear Time Invariant (LTI) systems. 

These systems have been used for a long time and their identification has been 

studied very thoroughly. The LTI systems, represented by Fig 1.1 in all schematics, 

introduce the dynamic behavior that makes the systems "interesting". 

Fig. 1.1 Schematic representation of a linear system [3] 
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Definition 1.1 : A system is called LTI system if its input-output relation satisfies the 

following conditions: 

e The system must be linear: 

(t) = H[ui (t)] 

, a2 ctiYI (t) az Y2 (t) = H[alui (t)+ a2u2 (t)] 	 (1.3) 

Y2 (t) = H[u2(t)] 

• The system must be time invariant: 

y(t) = H[u(t)] 	y(t - r) = H[u(t -r)] 	 ..... (1.4) 

Static nonlinearities 

The output of a static nonlinearity depends only on the present input value, 

but not on past (or future) inputs. These are the simplest nonlinear system 

imaginable. They are represented by a mathematical function which maps the input 

value at instant r to the output value at the same instant. This concept is embodied 

in Figure 1.2 which symbolizes this nonlinear mapping function. 

Fig. 1.2 Schematic representation of static nonlinear system [3] 

Commonly used structures 

The basic blocks can be assembled in series, yielding Hammerstein or Wiener 

systems when two blocks are used and Hammerstein-Wiener or Wiener-

Hammerstein systems when three blocks are used. When identifying such model 
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structures, the difficulty lies in the fact that the signals between two blocks cannot 

be measured. 

1.3.1 The Hammerstein system 

As it can be seen in Figure 1.3, the input u(t) is first transferred through a 

static nonlinearity f. The unmeasured output w(t) of the static nonlinearity is 

eventually filtered by the linear system whose Frequency Response Function (FRF) 

is S. 

Fig. 1.3 A Hammerstein system 

1.3.2 The Wiener system 

They are grouped together because of their similarity illustrated by 

comparing Figure 1.3 with Figure 1.4. In the Wiener system, the input signal u(t) is 

filtered by the LTI system R first. The resulting signal v(t) is distorted afterwards by 

the static nonlinearity f. These are the same operations as for a Hammerstein 

system, but in a reversed order. 

Fig 1.4 A Weiner system 
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1.3.3 The Hammerstein-Wiener system 

A Hammerstein-Wiener system (Figure 1.5) is a combination of a 

Hammerstein system followed by a Wiener system: the linear part of both systems 

is concentrated into one linear block surrounded by two static nonlinear blocks. It 

presents an important difference with the Wiener or the Hammerstein system. This 

difference, along with an identification method for such systems is discussed in 

Chapter 5. 

The first nonlinearity f could for example be the nonlinearity of an actuator 

in a plant, followed by the LTI behavior of this plant and its nonlinear characteristic 

g. 

f 

Fig. 1.5 A Hammerstein-Weiner system [3] 

Identification of Hammerstein-Weiner model 

Hammerstein-Wiener systems contain two nonlinear blocks and an Linear 

Time Invariant (LTI) block in cascade, connected as shown in Figure 1.5. They are 

particular because their RLDS is different from the underlying linear system under 

certain circumstances. 

11 



it 

L 	
L 	  

Fig. 1.6 Estimating W in two different ways. Pay attention to the direction of the 

arrows in the right part of the picture [3]. 

The basic steps of the identification method of the RLDS of the Hammerstein-

Wiener System will be given here. 

Recall that in Figure 1.5, there is only one linear block, S. Taking inspiration 

from the identification procedure for Hammerstein systems, it is feasible to estimate 

the intermediate signal W, using the input data and the estimates of f and S. Looking 

at the estimation of Wiener systems, W could also be computed with the output data 

and the estimate of the inverse of g. 

Roughly speaking, the identification of a Hammerstein-Wiener system could 

be attempted as follows (refer also to Figure 1.6): 

1. Estimate the RLDS to estimate S. 

2. Write W as a weighted sum of basic nonlinear contributions filtered by§ . These 

weights are the parameters that appear linearly in the estimate of W (because S is a 

linear operator). 

3. Write W as a weighted sum of basis functions applied to Y. 
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4. Try and make both estimates of W equal (in a least squares sense). This yields an 

optimization problem that is easily solved, as the cost function is quadratic in the 

parameters (the weights from 2 and 3). 

1.3.4 The Wiener-Hammerstein system 

The system in this section that is the most difficult to estimate is the Wiener-

Hammerstein system. This is because of the presence of the two LT1 systems R and 

S. If there wasn't the static nonlinearity f it would even be impossible to separate 

those two LTI systems. 

Fig. 1.7 A Weiner-Hammerstein system [3] 

Identification method 

Wiener-Hammerstein systems consist of two linear dynamic systems placed 

around a static nonlinearity. These models are difficult to identify due to the 

presence of two dynamic systems. Usually, a nonlinear estimation procedure is 

necessary to estimate the parameters of the different parts. This nonlinear 

estimation procedure needs good starting values to converge quickly and/or 

reliably to a global minimum. 

Wiener-Hammerstein systems model the nonlinearity as a series of 

fundamental building blocks: linear dynamic systems and a static nonlinearity. It is 

plain to see that the static nonlinearity introduces the nonlinear behavior, while the 

linear dynamic systems allow to model the memory that might be present in the 
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system. Figure 1.7 shows the Wiener-Hammerstein structure as well as the symbols 

for the subsystems and the signal names used in this chapter. 

However, identifying Wiener-Hammerstein systems is much more difficult 

than the previous systems. 

The main objective of this work is to control the temperature of the ammonia 

reactor. 
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Chapter-2 

LITERATURE REVIEW 

Many chemical processes are non-linear in nature. Because of this reason, 

recent work on modeling methods shifted from linear models to nonlinear models. 

This chapter consists of two sections. 

1. Multivariable control and block-oriented models: it contains the different 

works done by different authors on various block-oriented models. 

2. Ammonia reactor: it contains the discussion of some of the papers on 

ammonia reactor. 

2.1. MULTIVARIABLE CONTROL AND BLOCK- ORIENTED MODELS DISCUSSION 

Crama and Schoukans (2004) discussed about an iterative scheme for the 

identification of the Hammerstein-Weiner model, which is a block oriented model 

where a linear dynamic system is surrounded by two static nonlinearities at its 

input and output. It has been proven in the paper that in absence of modeling errors, 

the iterative procedure converges locally to the true values. 

The main disadvantage of the in mentioned procedure is that it is only locally 

convergent to the true system. Since this method does not globally optimize the 

parameters of the model to minimize the cost function, its parameters should be 

used as initialization for a complex estimator optimizing all parameters at once. 
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Ender and Filho (2000) presented a new multivariable control strategy 

using neural networks. The proposed control strategy uses past and present process 

information to design the best controller, as well as to generate the new control 

actions. The neural networks can learn sufficiently accurate models and give good 

nonlinear control when model equations are not known or only partial state 

information is available. At each sampling time the controller is optimized, using the 

future error of the closed loop, generated by a neural model of the process. The 

process considered is the fixed bed catalytic rector for production of acetaldehyde 

by ethyl alcohol, which has a complex dynamic behavior. Though this reference not 

related to my work, I felt the technique used is very much efficient. 

In my view, I think it is a worth writing a paragraph about neural networks. As 

mentioned before, neural networks learn almost accurate models and can give a 

good nonlinear control when model equations are not known or only partial state 

information is available. Neural network approach allows taking into account, in an 

elegant and adequate way process non-linearities as well as variable interactions. In 

process control applications neural networks can be incorporated in the control 

strategy in either direct of indirect methods. Multilayered feedforward neural 

networks represent a special form of connectionist model that performs a mapping 

from an input space to an output space. They consist of massively interconnected 

simple processing elements arranged in a layered structure; the strength of each 

connection is characterized by its assigned weight. The input neurons are connected 

to the output neurons through layers of hidden nodes. The processing of 

information I each neuron is performed through its activation function. When the 

hidden units have a nonlinear activation function the mapping is nonlinear. In the 

process control applications neural networks can be incorporated in the control 

strategy in either direct methods or indirect methods. In the direct methods, a 
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neural network is trained to represent the inverse dynamics of the system. In this 

case, given the current state of the dynamic system and the target state for the next 

sampling instant, the network is trained to produce the control action that drives 

the system to this target state. In the indirect method the neural network is trained 

with input-output data from the dynamic system to represent the forward 

dynamics; given the current state and current control action, the network learns to 

predict the next state of the system. 

Nidhi Bhandari and Rollins (2003) proposes a multiple-input, multiple-output 

(MIMO) continuous-time modeling approach for the Wiener system that can 

accurately predict process behavior using only recent input data. The models are 

obtained from complete reliance on experimental data, and this work demonstrates 

the effectiveness of optimal statistical design of experiments (SDOE) to fully obtain 

Wiener models. This method is evaluated on a highly nonlinear continuous stirred 

tank reactor, and its performance is compared to conventional discrete-time Wiener 

modeling (DTM) using a pseudorandom sequence design (PRSD) and the same 

SDOE as the proposed method. 

The first step in the proposed procedure is to select and run an experimental 

design that will contain adequate information to estimate all significant terms in the 

model. We have found that selecting the design points from a statistical design of 

experiment (SDOE) and running them as a series of sequential step tests will 

provide adequate ultimate response and dynamic response data (with an adequate 

sampling rate). Because sequential step tests are run from steady state to steady 

state (or approximately so), it is important to keep the number of step tests (i.e., 

design points) to a minimum. In this work, a new MIMO continuous time modeling 

method, W-BEST, was introduced for 
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Wiener-type processes, which have been almost exclusively modeled by discrete-

time modeling methods. 

Juan and Enrique (2004) proposed new noniterative algorithms for the 

identification of (multivariable) block-oriented nonlinear models consisting of the 

interconnection of linear time invariant systems and static nonlinearities are 

presented. The proposed algorithms are numerically robust, since they are based 

only on least squares estimation and singular value decomposition. Two different 

block-oriented nonlinear models are considered in this paper, viz., the Hammerstein 

model, and the Wiener model. Key in the derivation of the results is the use of basis 

functions for the representation of the linear and nonlinear parts of the models. The 

performance of the proposed identification algorithms is illustrated through 

simulation examples of two benchmark problems drawn from the process control 

literature, viz., a binary distillation column and a pH neutralization process. 

Kenneth and Ahmet (2003) presented a case study of controlling a 

nonlinear polymerization reactor using functional expansion models. Functional 

expansion (FEx) models are a subclass of the general block-oriented model 

structure for nonlinear process systems. Controller design in this context uses the 

internal model control (IMC) paradigm. The primary advantage arises from the fact 

that inverting the nonlinear dynamic operator is avoided by taking advantage of the 

partitioned model inverse due to the special structure of FEx models. The robust 

stability and performance of the closed-loop system can be analyzed by expressing 

the FEx model as a linear uncertain system and using the structured singular value 

framework. By expressing nonlinearities in the closed-loop as linear systems with 

an associated uncertainty, the stability problem was converted to a linear stability 

problem. 
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2.2 AMMONIA REACTOR DISCUSSION 

Patnaik,Viswanadham and Sarma (1980) developed a state space model of 

a tubular ammonia reactor which is the heart of an ammonia plant in a fertilizer 

complex. A ninth order model with three control inputs and two disturbance inputs 

is generated from the nonlinear distributed model using linearization and lumping 

approximations. The lumped model is chosen such that the steady state 

temperature at the exit of the catalyst bed computed from the simplified state space 

model is close enough to the one computed from the nonlinear steady state model. 

The model developed in this paper is very useful for the design of 

continuous/discrete versions of single variable/multivariable control algorithms. 

The number of discretization intervals for the purpose of lumping has been chosen 

after conducting a number of simulation experiments. 

The proposed model consists of five partial differential equations and two 

algebraic equations with necessary boundary and initial conditions with respect to 

the space and time variables, respectively. After linearization and lumping 

approximations, and converting into state space form, it is simplified into nine 

ordinary differential equations. 

In another paper in 1980, these same authors developed direct digital 

control strategies for the above mentioned ammonia reactor using quadratic 

regulator theory and compare the performance of the resultant control system with 

that under conventional PID regulators. 

Brain, Baddour and Eyrnery (1964) simulated the dynamic behavior of a 

widely used type of ammonia synthesis reactor (The Tenessee Valley Authority 

Reactor) on a digital computer. The mathematical model, which retains the major 
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processes of transport and accumulation of enthalpy and matter, is solved by a 

series of finite difference analogs which proved to be highly efficient. 

The transient behavior of the reactor is interpreted physically, and frequency 

responses and simplified transfer functions are proposed for operation within the 

linear range. The dynamic behavior of the reactor was shown to be linear for 

perturbations in the inlet temperature smaller than 5°C around the conditions of 

maximum production. Under these conditions the dynamic behavior of the reactor 

has been described successfully by approximate transfer functions. Despite its 

simplicity it was shown that the approximate transfer function describes the true 

dynamic behavior of the reactor in both the time and frequency domains. Therefore 

these functions should be useful for correlating dynamic data when they are 

available. 

Baddour, Logeais, Brain, and Eymery (1965) developed a simple 

mathematical model of a T.V.A. ammonia synthesis reactor which approximates 

within 15 to 20% the temperature profiles and the ammonia production rates of an 

industrial reactor. With this model the effects of design and operating parameters 

upon reactor stability, ammonia production rate, and catalyst bed temperature 

profile have been studied. Using this simulation, the effects of space velocity, feed 

gas ammonia and inert contents, reactor heat conductance, and catalyst activity 

upon reactor stability, ammonia production rate, and catalyst bed temperature 

profile have been determined. 
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Chapter - 3 

PROBLEM DESCRIPTION 

3.1 REACTOR DESCRIPTION 

Ammonia is formed according to the exothermic reaction, 

N2  ± 3H2  =2NH3 . 

The synthesis gas, which consists of hydrogen and nitrogen in the 

stoichiometric proportions of 3:1, is prepared in the reformer section of the plant. 

This gas mixture compressed to a pressure of 200-300 atmospheres enters the 

synthesis converter. Fig 3.1 shows the schematic of the reactor under consideration. 

A simplified figure is given in Fig 3.2. 

The converter consists of two parts: 

(a) the catalyst bed section, and 

(b) the heat-exchanger section. 

The gases from the previous stage enter the reactor through the sheath 

between the converter shell and the cartridge housing the catalyst bed. To ensure 

stable conditions with maximum yield, it is necessary to heat the feed gases to a 

temperature of about 420°C before they enter the catalyst bed. This is economically 

achieved by preheating the feed gases first in the heat exchanger and subsequently 

in the tubes of the reacting section. 

The inlet gaseous mixture is split into three separate streams: 

(a) the main stream called the heat exchanger flow, 

(b) the second stream called the heat exchanger bypass flow, and 

(c) the third stream, known as the direct bypass flow. 
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Fig. 3.1 Synthesis converter [1]. 
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Fig. 3.2 Simplified schematic of ammonia synthesis converter [15]. 

The main stream enters the shell side of the heat exchanger via HCV-401. 

This gas stream is preheated by the hot gases flowing through the tubes. The second 

stream called the heat exchanger bypass flow, enters the reactor via HCV-402 and is 

mixed with the main stream leaving the shell side of the heat exchanger. The 

temperature of this mixture, which subsequently enters the tubes of the catalyst bed 

section, can be controlled by manipulating the heat exchange bypass flow. Due to 

heat transfer from the reacting gases flowing in the catalyst bed, the temperature of 

this gas mixture increases as it ascends the tube. The third stream known as the 

direct bypass flow enters the reactor via HCV-403 and mixes with the gas mixture 

(consisting of main stream and heat exchanger bypass) at the top of the converter. 

By controlling the direct bypass flow, the temperature of the feed gas entering the 
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converter is controlled. The feed gases now flow down the catalyst bed where the 

conversion of nitrogen and hydrogen to ammonia takes place. The outlet gases from 

the reactor enter the tubes of the heat exchanger and finally exit the converter. 

The catalyst widely used in ammonia synthesis is reduced iron promoted 

with alumina and potassium oxide. The activity of the catalyst decays with age due 

to poisoning by gases such as CO2, CO and sulphur compounds and also due to the 

high temperature to which it is subjected. Since catalyst softening occurs at high 

temperature, it is desirable to keep the maximum temperature in the reactor below 

5700C 

The three flow rates can be varied using valves. Also adequate 

instrumentation exists to measure the process variables of interest. The 

temperatures at five points along the length of the reactor are measured using 

thermocouples. Also the inlet flows are measured using differential pressure type 

flow meter. 

3.2 DATA FOR THE REACTOR 

The data for this reactor is given in a paper by Patnaik et al. [14]. 

Table 3.1: Data of ammonia reactor 

Number of tubes in catalyst portion 154 

Volume of catalyst 3.2 m3  

Number of tubes in heat exchanger 1314 

Inlet temperature to the reactor 410C 

Outlet temperature from the reactor 2320C 
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Heat exchanger flow rate 53000 m3/hr 

Direct bypass flow rate 3000 m3/hr 

Heat exchanger bypass rate 8000 m3/hr 

Analysis of gas at the inlet 

H2 - 65.5% 

N2 - 22% 

NH3 - 4.5% 

Inerts - 8% 

Operating pressure 300 atm 

The larger variation of temperature across the heat exchanger warrants the 

calculation of these below parameters from the expressions from Table 3.2. 

Table 3.2: Individual heat capacity expressions for the gases involved in the 

process (T in K , P in atm) 

C = C H2  = 6.952 - 4.576 *10-4 T + 9.563*10-7 T2  - 2.097 *10-1°T3  

C pl  = CH2  = 6.903 -3.753*10-4 T-1-1.9390-6 T2  -6.861*10-w T3  

C p3  = C HH3  = 6.5846 - 6 .1251*10-3  T +2.3663*10-6  T2  - 1 .5981*10-9  T3  

+96.1678 - 6.7571*10-2 P +(1.687 *10-4 P - 0.2225)T +(1.289*10-4  -1.0095*10-7P)T2  

C  p4 = C  'netts = 9.70 (mixture of 50% methane and 50% argon) 

-OH = 9184+ 7.2949T-3.4996*10-3 T2  -3.356*10-7 T3  +1.1625*10-1° T4  

+6329.3-3.1619P-(14.3595+4.4552*10-3P)T+(8.3395*10-3  +1.928*10-6P)T2  +51.21-0.14215P 
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The expressions given in Table 3.2 are valid for Temperature range of 500-

900 K and pressure range of 200-1000 atm. 

Enthalpy of NH3 at 298 K ( AH0  ) is calculated using Table 3.2. 

Olio  of NH3= 12600 kCal/Kgmole of NH3. 

The average molar heat capacity of the feed gas CPO  is constant for a given 

feed condition and is determined to be 7.65 kCal/Kgmole K. 

= 7.65 kCal/Kgmole K. 

AC is calculated considering average values of specific heats over the range 

473 to 830 K. The average values are, 

= 7.02 kCal/Kgmole K, 

= 7.32 kCal/Kgmole K, 

C p3 „g  =17.668 kCal/Kgmole K 

Thus, AC = 3.29 kCal/Kgmole K. 

Catalyst activity factor is assumed constant. 

The maximum temperature in the catalyst bed (also called the hot spot 

temperature) should be below 5700C for safe operation. 
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Table 3.3: optimal values of parameters 

Variable Optimal values used in plant 

Fi (kg moles/hr) 2300 

F2 (kg moles/hr) 365 

F3 (kg moles/hr) 136 

Y yield (kg moles/hr) 540 

Catalyst activity factor 1 

U (Kcal/hr m2  °C) 1100 

U' (Kcal/hr m20C) 350 

Ammonia mole fraction at exit of reactor is 0.23. 

The dynamic model of the reactor is given in the next chapter. These 

equations are simplified and by using some assumptions and approximations, state 

space model of the reactor is developed. 
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Chapter - 4 

RESULTS AND DISCUSSION 

In this chapter, the model equations representing the synthesis converter are 

derived. The proposed model consists of five partial differential equations and two 

algebraic equations with necessary boundary and initial conditions with respect to 

the space and time variables, respectively. 

4.1 STATE-SPACE FORMULATION OF THE AMMONIA REACTOR 

4.1.1 Dynamic Model of the Reactor [13] 

The dynamic model is derived under the following assumptions: 

(1) No radial variation of temperature in the catalyst, cooling tube and walls. 

(2) No temperature difference between the catalyst particles and the gas phase. 

(3) Uniformly constant pressure throughout the converter. 

(4) Negligibly small values of heat capacities of the tube walls in the reacting and 

heat exchanger section. 

(5) No heat loss from the shell side of the heat exchanger to the environment. 

(6) Absence of longitudinal diffusion of the reactants in the reactor. 

(7) No transfer of enthalpy by conduction within the gas phase in the empty tube. 

(8) Temperature independence of the heat capacity of the gases in the reactor only. 

The larger variation of temperature across the heat exchanger warrants the 

calculation of these parameters from the exact expressions. 
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(9) It is assumed that changes in flow rate, pressure and composition propagate 

instantaneously throughout the reactor. As a direct consequence of this assumption, 

this study is primarily concerned with transient analysis of the reactor for changes 

in the feed temperature. 

All the above assumptions are proven to be valid for the tubular reactor 

considered (1). Under the assumptions 1 and 2 the reactor can be lumped radially 

into two sections as shown in the Fig. 4.1. The empty tube section represents the 

gas inside the cooling tubes, and the catalyst section include the catalyst particles 

and gas flowing through them. 

The dynamic model equations are given below: 

Material balance in the catalyst section: 

ay 
= 

V (1+-yr  r(7,,, y)  
as F (1+ y ) 

Energy balance in the empty tube section: 

aT, us -  _ (TT  — Tc.) as FC po 

	 .4.1 

	4.2 

Energy balance in the catalyst: 

—F — 	y—y* aTc. 	 (1+ v*) av aTc  	(C po AC 	) 	+ 0.59(TT  Tc ) — 	(AH0  — AC(Tc  —TB )) 	-- 
h2s2 	1+ y as 	 h2 s2 	 (1 + y)2  as ae 

	4.3 
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Fig. 4.1 Lumped representation of the TVA reactor (transient state) [2]. 

Energy balance in the shell of the heat exchanger: 

OT 'WC aT  
s  ( Pc 	s  ae h2 s21' ace' 

PVC
P 	 ) U ' 

S '(T I T '  s )v 
4 

S2 S FFCp, 
1=1 

	. 4 4 

Energy balance in the tube of the heat exchanger: 

aT T  WC pcl" + ( 	) aT  = ( WC PC  ) S (T  17 .—T  s )v7 . 
ae h2 s21' ace' 

h2s2 	±n,(a t)C p, 
	4.5 
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Mixing equations and boundary conditions: 

At the top of reactor-Energy balance 

8(1+ 13)(T,. (a = 0,0)) + gfly(T F  (0)) = (Tc  (a = 0, 0)) 	4.6 

At the top of heat exchanger-Energy balance 

8(T' S (a' = 0 ,9)) + (513(T (0)) = TT  (a = 1,0) 	47 

Boundary conditions: 

y(a = 0, 0) = y * (0); 
Tc  (a =1,0) = T (a = 0 , 0); 
T' , (a' = 1, 	= Tp  (9); 

} 	4.8 

The dynamic model consists of five coupled, nonlinear partial differential 

equations. Because of the complexity represented by this system of equations, it is 

not possible to obtain an analytical solution. The simplification of the dynamic 

model equations and simulation is done in detail. 

It can be seen that even the steady state model equations have to be solved 

iteratively because of the boundary value nature of the problem. In the steady state 

case, the heat exchanger temperature at the shell entry end is matched with the feed 

temperature. But in the dynamic case, devising a fast converging iterative technique 

to match the time varying boundary conditions is a formidable task. Because of the 

time varying split boundary conditions associated with this problem, a convergent 

solution could not be obtained using hybrid simulation. Thus it became imperative 

to simplify the model equations so that the solution of this group of equations 

becomes possible within a reasonable amount of effort and computational time. 
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4.1.2 Linearization 

In this section, the model equations (Eqs 4.1 to 4.5) are linearized around the steady 

state operating point corresponding to maximum yield. When the magnitudes of the 

disturbances are small, this linearized model adequately describes the dynamics of 

the reactor in the neighbourhood of the steady state operating point. 

Let, 

Y(a,t)-= Ys± Yt 
Tc(a,t) = Tcs +Tr 
TT  (Ce ,t) = TTS Tn 
7""T  (a',t) = T ITs -FT ITt . 

7",(ot',t) = T'ss -FT's, 

 

  

 

	4.9 

 

  

In the above equation ys , TES , Trs , T' Is , and T' ss  represent the steady state 

part and y„ Tc„ Tr„ T'n , T',1  represent the transient part of ammonia mole 

fraction, catalyst temperature, tube temperature in the reacting portion, tube 

temperature in the heat exchanger and shell temperature in the heat exchanger 

respectively. The steady state components are functions of a, the normalized 

distance. 

In order to carry out the linearization we substitute Eq. (4.9) in the dynamic 

equations (Eqs. 4.1 to 4.5) and expand the latter around the operating point using 

Taylor series and neglect the higher order terms. The steady state equations which 

can be obtained from the dynamic model are used to further simplify these 

equations. During the simplification phase some terms have been neglected because 

their contribution is negligibly small. 

Equation (4.1) can be rewritten in the form, 
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= K,(1+ Ys )  ar 
as 	 aT, Tct ± Yt[(1± Ys )2 ar  

aY Tcs 

+ 2(1 + y Ors  + 2(1 + Y s) 
ay 

Ys 

ar 11K, 
Ys 

aY
aoe

s  ± 
a
aY
a
r = 	V 

F (1+ y*)
(1+ ys  -I-  y 1)2 [r (Tcs ± T. r ,  Y s ± Y r )] 	4.10 

Let 
F(1+ 

V  
y*) – 

/C,. 
 

Expanding the right hand side of Eq. (4.10) by Taylor series and neglecting higher 

order terms, 

  

	

aY 	 , ar aYS  +-1  = K,[(1+ ys )2  + 2y, (1+ Y s) ± Yi 2  ][rs(Tcs , Y s ) +  

	

as as 	 ar, 
"r,s- 

ar 
K t  + — yj .........4.11 

Ys 

 

From steady state considerations, it is known that ay —s  = K1(1+ y 0 2  r s - as 

Making use of this relation, and neglecting the second order terms of the perturbed 

values, and rearranging, we get 

4.12 

Similarly Eqs. (4.2) and (4.3) can be written as, 

aT,  
as = K  2(Tt — Tel) 	4.13 
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Ys TcS 

(  
ar 

aT c 
aTc1 ao  ......4.15 

—K3[-Opo — AC Ys 	-1-3/̀  Y*1 a 
as 

(Tcs. -F T,) + 0.59(Ts  + TTt TcS —TY) 1+ys  +y,  

Or 
—K3 [A — AC(T s  + T„ — TB )]K4 [1's 44,3  

   

Or 
Y, 	

e 
=

a
(Tes +Tc,) 

Ys 

.......4.14 

  

Where, 

K2  = 	
US 

K3  = 	 K4 —
v 

FC po 	h2  S2 	F 

Making use of the corresponding steady state equation and using the following 

approximations, 

[po — AC Ys-HY' —Y* )=opo 
1+Ys 

Ail 0  — AC(Tc — TB) = Ail 0  

1-F ys + yt  =1+ Ys 

Eq. 4.14 can be written as 

aT  
—K3 C po 

aa
ct 

 + 0.59 (TT,Tct ) K3K401-10  

Similarly Eqs. (4) and (5) can be reduced to 

aT s,v
S 
 aT .

s 	
K

5 	
U' Avs (T'n —T',1 ) 

ae 
	 K

5 / aa" 
= 	

Ste. 
	p,  

i=1 

	4.16 
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aTt 	K  vT 
 aT 'Ti  = —IC5U' AvT(T'Tr – T'Si)  

	

ae 	5  1' a av 	4 

E n, (a',t)C p, 
1=1 

	4.17 

Where K5  = 
h2S2  

The terms al' and ±.a  can be obtained by differentiating r . The values of ( 
aTc 	ay 

(

-8r), (—ar and r depend on steady state temperature and concentration and aTc.  ay 

thus are functions of distance. From knowledge of the steady state values at various 

points, these terms are calculated at different points along the bed. These have been 

plotted in Fig. 4.2 as functions of normalized distance. The values of these partial 

derivatives at different points along the reactor length are later used, to develop the 

lumped model. 

4.1.3 Lumping Of the Linear Partial Differential Equations 

In this section, we further simplify the linear distributed model of the reactor 

described by Eqs. (4.12)-(4.13) and (4.15)-(4.17) using discrete space 

approximation. 

The linear partial differential equations describing the distributed model of 

the reactor are converted into ordinary differential equations by discretizing the 

length of the reactor and the heat exchanger into a number of segments. At each 

discretization point, the values of the quantities I r• ) , (—ar and rs  appearing in ( 

Eqs. (4.12) and (4.15) are obtained from Fig. 4.2 by computing the weighted 

WC pc 

arc ay 
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average over the interval. The accuracy of the lumped model obviously depends on 

the number of discretization steps used. The larger the number of intervals, the 

better is the accuracy. Also the number of differential equations increases linearly 

with the number of intervals chosen. 

On the other hand, coarser discretization may lead to inaccurate models. In 

this study we consider the effect of the fineness of discretization and conclude that 

the reacting portion can be divided into five parts and the heat exchanger into two 

parts as shown in Fig. 4.3. The results of this study can be found in the later 

sections. Orcutt & Lamb have used the linearized lumped model to investigate the 

stability of the ammonia reactor. They also have concluded that the reactor 

dynamics for this purpose can be satisfactorily described by dividing the reacting 

section into five parts and treating the heat exchanger as a single unit. In what 

follows, the discretization procedure is presented. 

Equation 

+ 

(4.12) can be 

b(a)T, 

a r y s )2  

arranged as, 

, ar +20H - Mrs  +20- ys  
191  

Tcs 

Ys 

	4.18 

K1 	4.19 

	4.20 

aa 

where 

a(a)= 

and 

b(cx)= Ki (1+ 

ail 

yo2 aa; 
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Fig. 4.2 Variation of (  Or  ) (ar 
aT, ' 

and r with normalized distance [15]. 
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Fig. 4.3 Schematic diagram of the ammonia reactor after discretization [13] 
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Substituting 

ay, 	Y1(1) —  Yz(j —1)  
as 	Act 

into Eq. (4.18) and simplifying we get 

Yi ( j)L Aa aki/1— 
Y 
'Act 

—1)  +NATI(j) 

here j = 1, 2, 3 ...N 

where Aa is the step size of normalized distance. 

The above equation can be compactly written as 

Ay= Bt,-Fdy0  

	4.21 

	4.22 

where y and te  arie the N x 1 vectors representing the perturbed values of 

ammonia mole fraction and catalyst temperature at different points, A and B are N x 

N matrices, d is N x 1 vector and yo  = y, (0). 

Similarly Eq. (4.14) can be written as, 

Htt  = dt to  — K2t, 	4.23 

H is an N x N matrix, t, is an N x 1 vector representing the perturbed values of tube 

temperature at different points and tic, = T, (o) . Substituting the values of various 

constants in Eq. (4.15) we obtain 

0.5061 0.506 	 Tc AA  0-59Tn(j)+TaCI)Pl) 	 Ter(j 1)+cl(i)Yt ( i)= 	4.24 Aa Aa 	 dO 
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where, 

c (j) = —0.59 — K 4 K5 A110 aarT  

d (j) = — araY  K 4 K 56411 0  
yS 

 

T,s  

Equation (4.16) can be written as, 

ic  = Ctc  + Dy + 0.59t, + 0.506dteo 	where tc0  = 7', (0) . 	......4.25 

Solving Eqs. (4.22) and (4.23) for y and tt and substituting these into Eq (4.25) we 

get 

ic  = [C + DA-'B — 0.59*3.1888H1t, + [DA-'d 0.506d 0.59H-'di 
yo 

two 
to  

	4.26 

Next let us consider Eqs. (4.16) and (4.17). Representing i s and t ', as the perturbed 

values of shell side and tube side temperatures in the heat exchanger and 

substituting the values of various constants, we obtain 

at 's 	 s  ati 9.4 	=12.8(t'1-t '5 ) 
ae 	as .......4.27 

at 
 it ±47 atl  = 53.2(t 's  —pi ) 

ae as ... ..... 4.28 
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In arriving at the linear Eq. (4.28) from (4.17), the denominator of the latter 

equation has been obtained by taking the average of the steady state values of this 

term at various points in the heat exchanger. Since the heat exchanger is divided 

into two parts, Eqs. (4.27) and (4.28) can be written as 

s(j) .12.8/ ( j)-31.6t's( j)+18.81', (j +1) 	where j = 0, 1 	4.29 
dB 

dt 

dO
it(j) 

 53.2t 's  (j)-147.2t ',(j)+ 94t (j —1) 	where j = 1, 2 	4.30 

The boundary conditions are, is (2) = t f  = perturbation in feed temperature and 

t (0) = t c (a =1) . 

The mixing equation at the top of the reactor, Eq (4.6), can be perturbed around the 

steady state to yield 

tco  = 0.955t,0  + 0.047tf  — 0.0595u3  + 0.0029u, + 0.0029u2  	4.31 

where u, , u2  and u3  are the perturbations in F, 	. 

Equation (4.7) representing the mixing equation at the top of the heat exchanger can 

be linearized to result in 

ti  (5) = 0.00288u, — 0.019u2  + 0.87t (0) + 0.131tf  	4.32 

By repeated application of Eq. (4.13) in a backward difference scheme to 

obtain an expression for tm and by using this expression along with Eqs. (4.31-4.32) 

we get a set of five coupled differential equations from Eq. (4.26). Similarly one can 

get a set of four coupled differential equations from Eqs. (4.29-4.30). The first set of 

five linear ordinary differential equations represent the dynamics of the reacting 

portion whereas the latter set of 4 equations represent the dynamics of the heat 
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exchanger. If these nine temperatures form the elements of a state vector then one 

can obtain the state variable form of the dynamic equations which is presented in 

the following section. 

4.1.4 State Space Representation 

Let 

	

T 	r x =Lx1 ,x2,x3,x4 ,x5 ,x6 ,x7 ,x8,x91 

= [tom (1), tc  (2), tc  (3), tc  (4), to  (5), t 't  (1), t 't  (2), t (0), t (1)] 

uTn 
r = L111 ,142 ,1431 

dT 
A
= [tf,YO ]  

tc (1),tc(2),tc (3),t,(4) and t (5) are incremental catalyst temperatures at the five 

discrete points in the reactor. Then the linearized equations (4.26) and (4.29)-(4.30) 

after minor arrangements can be represented by 

	

.i(t)= Ax(t)-F Bu(t)-F Dd(t) 	4.33 

where x(t) is a 9 x 1 state vector, u(t) is a 3 x 1 manipulated vector, d(t) is a 2 x 1 

disturbance vector and A, B and D are 9 x 9, 9 x 3 and 9 x 2 matrices respectively. 

—4.019 	5.12 	0 	0 	—2.082 	0 	0 	0 	0.87 - 
—0.346 0.986 0 	0 —2.34 0 	0 	0 0:97 
—7.909 15.407 —4.069 0 	—6.45 	0 	0 	0 	2.68 
—21.816 35.606 —0.339 —3.87 —17.8 	0 	0 	0 	7.39 
—60.196 98.188 —7.907 0.340 —53.008 	0 	0 	0 	20.4 

	

0 	0 	0 	0 	94 	—147.2 	0 	53.2 	0 
0 0 0 0 0 94 —147.2 0 0 

	

0 	0 	0 	0 	0 	12.8 	0 	—31.6 	0 

	

0 	0 	0 	0 	12.8 	0 	0 18.8 —31.6 

A = 
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0.01 —0.011 —0.051-  0.251 —1438.916- 
0.003 —0.021 0 0.147 —323.846 
0.009 —0.059 0 0.405 —82.771 
0.024 —0.162 0 1.13 —22.637 

B = 0.068 —0.445 0 D = 3.07 —5.456 
0 0 0 53.2 0 
0 0 0 18.8 0 
0 0 0 0 0 
0 0 0 0 0 

4.1.5 Stability of State-Space Models 

A state-space model is said to be stable if the response x(t) is bounded for all 

u(t) and d(t) that are bounded. The stability characteristics of a state-space model 

can be determined from a necessary and sufficient condition: 

Stability Criterion for State-Space Models: 

A state-space model (Eq. 4.33) will exhibit a bounded response x(t) 

for all bounded u(t) and d(t), if and only if all of the eigen values of A have 

negative real parts. 

Note that stability is solely determined by A; the elements of B and C have no effect. 

The stability of Eq. 4.33 is therefore determined by finding the eigen values 

of A. 

Here eigen values are calculated using the MATLAB command, eig, after defining A: 

The eigen values of A are: 
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-147.20, -153.1, -50.65, -38.76, -14.38, -4.52, -4.56, -3.86 and -4.54. 

Because all the nine eigen values have negative real parts, the state space model is 

stable. 

4.2 SIMULATED RESPONSES 

The nine ordinary differential equations given by Eq. (4.33) are simulated using C++ 

program using Runge-Kutta 4th order method. 

The purpose of this simulation study is 

1. to check whether the response obtained using the linear model equation 

agrees with those reported in the literature [2]. 

2. to determine the effect of the fineness of discretization on the response and 

from these results to fix the discretization intervals for both the reactor and 

heat exchanger. 

3. apart from the above reasons, the knowledge of the open-loop behaviour of 

the system is important in determining the specifications for proceeding with 

the control system design. 

The system is subjected to a step disturbance of 5°C in the feed temperature 

which has a steady state value of 42°C. This corresponds to a 12.5% perturbation 

after this nominal value. Even though feed temperature and ammonia mole fraction 

are the components of the disturbance vector, we consider the former because the 

results obtained can be compared with those reported in the literature. Moreover, 

the effect of thermal perturbations are of interest to the plant operators. The 

response at different points along the length of the reactor is shown in Fig. 4.4. The 

steady state program is run with the new feed temperature (the nominal feed 
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temperature incremented by the step disturbance). The perturbed temperature 

profile thus obtained should check with the profile obtained by the dynamic 

simulation. It has been established that the profiles match within reasonable 

accuracy. The error in the steady state temperature at the exit of the catalyst bed is 

0.4%. In the absence of experimental data, the results obtained are compared with 

those reported by Brian et al. [2]. The trend of the response agrees with that shown 

in their work. 

The pulse response of the system at the reactor exit is shown in Fig. 4.5. The 

initial "inverse response' is clearly reflected in both the above response curves. 

In order to gain a greater insight into plant dynamics, the system is subjected 

to a step change of 7.5 kgmoles/hr in direct bypass flow rate. The response curves 

are shown in Fig. 4.6. It is interesting to note that the "inverse response" is more 

pronounced as the bottom end of the reactor is approached. 

4.3. EFFECT OF FINENESS OF DISCRETIZATION 

In an earlier section the linear state space model is derived after dividing the 

reacting section into 5 parts and heat exchanger into 2 parts. The division of the 

heat exchanger into 2 equal parts is justified because its dynamics is very fast and 

this is not as significant as the reacting portion where the main reaction takes place. 

The partial derivatives being functions of the length of the reactor, weighted average 

values of these are used in the model. 

To study the sensitivity of the dynamic model of the system to the number of 

discretization steps, the reacting section is considered separately. The state variable 

representation for this is obtained for different cases of discretization: N = 3, 4, 5 
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and 7, where N is the number of steps into which the reactor is divided. The reactor 

shows unstable behaviour when N 3 even though this corresponds to a stable 

operating point. 

The dynamic behaviour of the reactor for N = 4, 5 and 7 is considered. The 

criterion used for comparing these cases is the percentage error in the steady state 

temperature at the exit of the catalyst bed. This information is summarized in Table 

4.1. From this table, it is clear that no significant improvement can be achieved by 

choosing N > 5 thus justifying our earlier choice of five discretization intervals for 

the reactor length. 

Table 4.1: Percentage error in catalyst bed exit temperature for different 

discretization step sizes 

N 
Percentage error in 

tc(S) 

3 Reactor is unstable 

4 0.6% 

5 0.4% 

7 0.32% 
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Fig. 4.4 Open-loop response to 5°C step in feed temperature (N = 5). 
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Fig. 4.5 Pulse response at catalyst bed exit end. 
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Fig. 4.6 Response to step change in direct bypass flow rate (step: 7.5 kg moles/hr). 
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4.4 PID CONTROL FOR THE REACTOR 

In an earlier paper by Patnaik et al. [14], the authors have developed an 

optimization program to determine the optimum temperature profile that 

maximizes the ammonia yield. The reactor is to be operated at the "blow-out" point 

(highest temperature stable operating point) to achieve higher throughput. 

However, the feed concentration and temperature disturbances tend to change the 

temperature profile inside the reactor and thus drive the reactor away from this 

maximal yield operating point. Hence, regulation of the temperature along the 

length of the reactor around the optimal profile in the presence of disturbance 

inputs is important and forms a dominant design objective for control system 

design. 

The model has three control inputs (flow rates), two disturbance inputs 

(concentration and temperature variables), and nine state variables (temperatures). 

It is observed that the direct bypass flow rate has the maximum influence on the 

temperature profile of the reactor. The other two flow rates remain at their steady-

state optimal values. In designing the control law, we consider the following 

discrete equivalent of the continuous PID controller employing a rectangular 

integration scheme: 

T " p„= p+ K,[en +—Eek +1-(e„—e„_,)] 
17, k-0 

	4.34 

T = the sampling period (the time between successive measurement of the 

controlled variable). 7 " tottvitits, 
en  = error at the nth sampling instant for n = 1, 2, 3, 	 

pn = controller output at the nth sampling instant 

Kc = Controller Gain 
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The parameters Kc, Tr and TD in (4.34) need to be tuned to obtain the desired 

response. Controller gains obtained using the root locus method are chosen as initial 

values and later tuned to get acceptable responses. 

In this, temperature (T) inside the reactor is controlled. 

Manipulated variable used is direct bypass flow rate, q3. 

Disturbance variable is inlet temperature of component A, Tin. 

The block diagram of the reactor temperature control is given in Fig. 4.7 

Tin 

Gload 

Pt' -is 
psi 

	 C13 	 

Kv -O. Gp(s) 
T 

Tm' 
mA 

Fig 4.7 Block diagram for the reactor temperature control 

Each of the variables inside the block diagrams should be known to get the 
response. 

Measuring element chosen is T-type thermocouple which has a time constant of 3 

millisec and temperature range of 350 K to 750 K. 
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(output range) _ (100 - 0)% Km — 	 — 1 
(input range) 	(450-350) 

The control gain Kv must include the I/P transducer gain in order to provide a 

steady-state relation between the computer output p (in %) and the flow rate 

through the control valve, q3. 

Kv = KIP  , 	 dq3  
 dpt  

...... 	(4.35) 

where pt is the transducer output pressure. 

Kip = (15-3)/(20-4) = 0.75 psig/mA 

Eq (4.35) can be written as 

3 	d ) l 
Kv = KIP( d 

dq
l ).(  dpt  

...... 	(4.36) 

If valve actuator is designed so that the fraction of lift 1 varies linearly with the IP 

transducer output pt, then 

dl 	Al 	1— 0 	= .0833 psig _ i  
dp t  Apt  15 — 3 

Let equal percentage valve is used. 

Design equation for sizing control valves is given by, 

q = C f (1) VAP  ..............4.37 
gs  

	

Where q = flow rate 	 f(1) = flow characteristic 

	

1 = valve lift 	 Cv = valve coefficient 
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AP = pressure drop across the valve 

gs  = specific gravity of the fluid. 

Specification of the valve size is dependent on the so-called valve characteristic f. 

Three control valve characteristics are mainly used. For a fixed pressure drop across 

the valve, the flow characteristic f (0 f 1) is related to the lift /(0 1 1), that is, 

the extent of valve opening, by one of the following relations: 

Linear 	: f =1 

Quick opening 	: f = -11 	 ... 	 4.38 

Equal percentage : f = R" 

where R is a valve design parameter that is usually in the range 20 to 50. The 

quick-opening valve above is referred to as a square root valve. The equal 

percentage valve is given that name because the slope of the f vs. 1 curve, df/dl, is 

proportional to f, leading to an equal percentage change in flow for a particular 

change in / anywhere in the range. 

One widely used guideline is that the valve be half open at nominal operating 

conditions. 

Let equal percentage valve is used with R = 35. 

Then valve design equation can be expressed as (from Eqs 4.37 and 4.38) 

q3  = Z(35)1-1  	 4.39 

where CvVAPv = Z 
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We know that valve is half opened at nominal conditions. Value of q3 at nominal 

condition is given in Table 3.1 which is 3000 m3/hr. 

Hence at 1= 0.5, q3 = 3000 m3/hr. 

Substituting in Eq. 4.39 we get Z = 17751 

Hence 	q3 =17751(35)t-1. 

By finding (dq3/d1) at nominal conditions and substituting it in Eq. 4.36 we get the 

value of Kv. Kv is found to be 385.83. 

Kv = 385.83 

Using the above mentioned steps, numerical integration of the differential 

equation by using C++ program, we can solve the block diagram (Fig. 4.6) for 

different values of normalized distance. 

The graphical results obtained are given in Fig. 4.8. 

The graph for a =1.0 is given separately because it does not have any offset. 

It is observed from simulation studies that the PID controller at the exit end 

of the reacting portion has a slow speed of response (220 s) and results in a 

maximum temperature change of 200 percent (expressed as a percentage of input 

disturbance of 5°C). The choice of sampling time is an important aspect in the design 

of all discrete control algorithms since it can be regarded as one of the critical 

control parameters. Since the temperature variables under consideration have 

relatively slow dynamics, a choice of 30 s for the sampling time has proven quite 

reasonable. The other parameters used are Kc = 2.0, TD = 40 secs and T1 = 10 secs. 
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Fig 4.8 Response with a discrete PID controller 
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CHAPTER 5 

CONCLUSIONS 

Most of the chemical processes are nonlinear. The importance of nonlinear 

models and approximating these models has been studied here. It has also been 

discussed about different types of block-oriented models and their representation. 

There are many nonlinear modeling methods. Depending on the system, 

different approaches exist to propose models for nonlinear dynamic systems. Since 

no model structure can cover all possible nonlinear systems, approximations will be 

introduced. 

The problem considered is the control of an ammonia reactor. Economic 

gains for such reactors accrue from the choice of process conditions that result in 

the operation of the reactor at maximum yield steady state operating point and by 

improved control which allows smaller excursions and faster responses to set point 

changes and faster responses and less variation in product yields to load 

disturbances. 

The ability to track and operate at the optimal operating point requires the 

combination of good process models, accurate identification of its parameters and 

appropriately chosen control system structure. For chemical reactors, essential 

parameters to be estimated include kinetic reaction rate constants as well as 

poisoning and fouling and the control objective is to maintain its temperature 

profile close to the optimal one. 

Accordingly, this study laid emphasis on development of dynamic models. 

The dynamic model of the ammonia reactor consists of five partial differential 

equations and two algebraic equations with necessary boundary and initial 
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conditions with respect to the space and time variables, respectively. It is simplified 

and its state-space model is developed by using some assumptions and 

approximations which are of proven validity in actual operation. The required data 

is taken from the cited reference. 

The state-space model is used to develop the open loop response of the 

reactor for a step change of 50C in feed temperature along the length of the reactor. 

The pulse response of the system at the reactor exit is developed. In order to gain a 

greater insight into plant dynamics, the system is subjected to a step change in 

direct bypass flow rate. 

Then the reactor temperature is controlled using PID controller. The 

response of the reactor temperature along the length of the reactor is also shown. 

A logical next step would be to extend these results to include the front end 

of the ammonia process. 
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