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ABSTRACT 

An Artificial Neural Network (ANN) algorithm has been applied to the automatic 

phase picking of seismic signal. The aim of this work is to detect and accurately pick the 

onset time of seismic arrivals for a set of 3-component seismic data using ANN. A 

variety of features for signal detection and phase identification were analyzed in terms of 

sensitivity and efficiency. Comparing the performance of each feature in discriminating 

the P and S wave, eight features were selected as input attributes to ANN in which the 

first four attributes used for the ANN P-phase picker and next four attributes for ANN S-

phase detector. They are as follows: (1) Ratio between short-term average and long-term 

average (STA\LTA). (2) Rectilinearity, (3) Ratio of maximum to minimum horizontal 

amplitude (hmxnm), (4) Long-axis incidence angle of polarization ellipsoid (Inc1), (5) 

Ratio between horizontal power to total power (Rh2t), (6) Planarity, (7) Ratio of 

horizontal-to-vertical power (Hvratp), (8) Short-axis incidence angle of polarization 

ellipsoid (Inc3). 

These attributes were calculated in the frequency band of 1-10 Hz with a length of 

0.5 sec moving window for seismic phase identification and another length of 4 sec 

moving window for P-wave picking. The detection and phase picking is achieved using 

Back propagation Neural Network (BPNN). The results of preliminary training and 

testing with a set of broadband seismic recordings shows that the ANN seismic phase 

picker can achieve a good performance in phase identification and onset-time estimation. 

In overall result, 72% correct rate of phase identification has been achieved by the both: 

the trained ANN P-phase detector and the trained ANN S-phase detector, and 53% of P-

wave is precisely picked with onset time error less than 0.1 sec by trained ANN P-phase 

picker using STA \ LTA algorithm. The algorithms developed in the present study have 

been tested on the seismic data obtained from seismically active Garhwal Kumaon 

Himalayan region. The results provide accurate and robust automatic picks on a large 

experimental data. 
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Chapter #1 

INTRODUCTION 

1.1 SEISMOLOGY: Science of earthquakes 

An earthquake is the rapid vibration of earth created by a sudden movement of 

large sections of rocks. Earthquakes are one of the most powerful natural forces that can 

disrupt our daily lives. Some of the recent devastating earthquakes are listed in Table 1.1. 

The science dealing with earthquakes is called seismology. Seismology is the study of 

earthquakes and seismic waves that move through and around the earth. A seismologist is 

a scientist who studies earthquakes and seismic waves. 

Table: 1.1 List of some significant Earthquakes in India and its neighborhood. 

Date Epicenter Location Magnitude 

on Richter 

Scale 
Lat (°N) Long (°E) 

1819 JUN 16 23.6 68.6 KUTCH,GUJARAT 8.0 

1869 JAN 10 25 93 NEAR CACHAR, ASSAM 7.5 

1885 MAY 30 34.1 74.6 SOPOR, J&K 7.0 

1897 JUN 12 26 91 SHILLONG PLATEAU 8.7 

1905 APR 04 32.3 76.3 KANGRA, H.P 8.0 

1918 JUL 08 24.5 91.0 SRIMANGAL, ASSAM 7.6 

1930 JUL 02 25.8 90.2 DHUBRI, ASSAM 7.1 

1934JAN 15 26.6 86.8 BIHAR-NEPALBORDER 8.3 

1941 JUN 26 12.4 92.5 ANDAMAN ISLANDS 8.1 

1943 OCT 23 26.8 94.0 ASSAM 7.2 

1950 AUG 15 28.5 96.7 ARUNACHAL PRADESH- 

CHINA BORDER 

8.5 
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1956 JUL 21 23.3 70.0 ANJAR, GUJARAT 7.0 

1967 DEC 10 17.37 73.75 KOYNA, MAHARASHTRA 6.5 

1975 JAN 19 32.38 78.49 KINNAUR, HP 6.2 

1988 AUG 06 25.13 95.15 MANIPUR-MYANMAR 

BORDER 

6.6 

1988 AUG 21 26.72 86.63 BIHAR-NEPAL BORDER 6.4 

1991 OCT 20 30.75 78.86 UTTARKASHI, UP HILLS 6.6 

1993 SEP 30 18.07 -76.62 LATUR-OSMANABAD, 

MAHARASHTRA 

6.3 

1997 MAY 22 23.08 80.06 JABALPUR,MP 6.0 

1999 MAR 29 30.41 79.42 CHAMOLI DIST, UP 6.8 

2001 JAN 26 23.40 70.28 BHUJ, GUJARAT 6.9 

The Earthquakes occur due to finite physical sources buried below the surface of 

the earth. These sources generate band-limited signals, which are recorded at the surface 

of the earth by seismic instruments. The medium through which these signals propagate, 

i.e., the Earth, also acts as a filter (Figure 1.1). The detection of these signals and noise at 

the recording station can be accomplished using signal processing techniques in time as 

well as frequency domain. These algorithms are known as earthquake signal/event 

detectors. 
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Seismogram Earthquake 	 Earth / medium of 
Source 	 propagation. 	 ""'frfr4i"" 

input: Band I..,imited signal.] 	[Band Pass flterJ 	 (Output signal.  

Figure].]: Earth as a filter. 

The size of the earthquake is measured in terms of magnitude; generally the 

magnitude reported is Richter magnitude which is defined as the loglo of the maximum 

amplitude recorded (in microns) at a distance of 100 km on standard Wood Anderson 

Seismograph. The effect of earthquake at any place is measured in terms of its intensity 

on a XII point MMI scale (Modified Mercalli Intensity). Thus the Richter scale measures 

the energy released in an earthquake by measuring the size of the seismic waves and the 

Mercalli scale measures the results of an earthquake, such as the shaking and damage that 

people actually feel and observe. 

1.2 SEISMIC WAVES 
Seismic waves are the waves of intense energy caused by the sudden breaking of 

rock within the earth or an explosion. They represent the energy that travels through the 

earth and is recorded on seismographs. 

The two main types of waves are body waves and surface waves. Body waves 

can travel through the earth's inner layers, but surface waves can only move along the 

surface of the planet like ripples on water. Earthquakes radiate seismic energy as both 

body and surface waves. 

2.1 Body Waves 

The first kind of body wave is the P wave or primary wave (Figure].2). This is 

the fastest kind of seismic wave. The P wave can move through solid rock and fluids, like 

water or the liquid layers of the earth. It pushes and pulls the rock, it moves through, just 
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like sound waves push and pull air. P wave reaches the seismogram first and is recorded 

as the first seismic recording. Hence the detection of P waves for seismic warning 

systems is of utmost importance. 

P Wave 

(The arrow shows the direction in which the wave is moving). 

Figure].2: P-wave or primary wave 

The second type of body wave is the S wave or secondary wave (Figure].3) that 

is the second wave felt in an earthquake. An S wave is slower than a P wave and can only 

move through solid rock. This wave moves rock up and down, or side-to-side. 

S Wave 

  

(The arrow 

N 
Double Amp NtU tltl 

— Wavelength—.- 

_. ......................_............................._........_......__..._..~._ 
 

direction in which the wave is moving). 

Figure 1.3: S-wave or secondary wave 

shows the 

1.2.2 Surface Waves 

The first kind of surface wave is called a Love wave (Figure 1.4), named after 

A.E.H. Love, a British mathematician who worked out the mathematical model for this 
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kind of wave in 1911. It's the fastest surface wave and moves the ground from side-to-

side (Shown in Figure1.4 with small arrows). 

Love Wave 

(The arrow shows the direction in which the wave is moving). 

Figure]. 4: 	 Love 
wave 

The other kind of surface wave is the Rayleigh wave (Figurel.5), named after John 

William Strutt, Lord Rayleigh, who mathematically predicted the existence of this kind of 

wave in 1885. A Rayleigh wave rolls along the ground (Figurel.5) with rotating circle) 

just like a wave rolls across a lake or an ocean. Because it rolls, it moves the ground up 

and down and side-to-side in the same direction that the wave is moving. Most of the 

shaking felt from an earthquake is due to the Rayleigh wave, which can be much larger 

than the other waves. 

Rayleigh Wave 

(The arrow 	 shows the 
direction in which the wave is moving). 

Figurel.5: Rayleigh wave 
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1.3 SEISMOGRAPH 

Seismologists study earthquakes by observing the site of occurrence, assessing the 

damage caused by the earthquakes, and by using seismographs. A seismograph is an 

instrument that records the shaking of the earth's surface caused by seismic waves. 

Most of the seismographs used today are electronic devices, but a basic 

seismograph (Figure]. 7) is made of a drum with paper on it, a bar or spring with a hinge 

at one or both ends, a.  weight, and a pen. The one end of the bar or spring is bolted to a 

pole or metal box that is bolted to the ground. The weight is put on the other end of the 

bar and the pen is stuck to the weight. The drum with paper on it presses against the pen 

and turns constantly. When there is an earthquake, everything in the seismograph moves 

except the weight with the pen on it. As the drum and paper shake next to the pen, the 

pen makes squiggly lines on the paper, creating a record of the earthquake. This record 

made by the seismograph is called a seismogram, which is shown in figure]. 6. 

Figure]. 6: A Simple Seismogram 

By studying the seismogram, the seismologist can tell the distance and strength of 

an earthquake. The seismogram gives no information to the seismologist regarding the 

exact location of the epicenter or whether the earthquake happened so many miles or 

kilometers away from that seismograph. (Figure]. 7). To find the exact epicenter, you 

need to know what atleast two other seismographs in other parts of the country or world 
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recorded The location of an epicenter 1 is found by plotting its distance from three 

recording stations 2. Each station notes the different arrival times of P and S waves and 

uses a graph that allows the distance from the epicenter to be measured. The distance is 

then used as the radius of a circle around each station. The epicenter of the earthquake is 

located at the intersection of these three circles figurel.8. 

Rptatirrq 

rid 
J1IlIIl1 ± 1ior! 

support moves 

Figure]. 7.• The Basic Seismograph 
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Figure1.8: The location of an epicenter 

At the recording station there may be Single component (1-C) recording i.e. 

Vertical component of ground motion or three components (3-C) recording i.e. East-

West, North-South and Vertical component of ground motion. 

The data used in this dissertation work has been obtained from Garhwal Kumaon 

Himalayan Region, where there is three component continuous (24 hour) recording. Data 

is recorded at 100 samples per second. So for a 1 hour recording 1080000 

(100x3x60x60) samples are recorded or for 24 hour 51840000 (100x2x3x3600x24) 

bytes are to be stored. These data files are then segmented manually for event allocation. 

These events files range from 20 sec to 15 min. The size of these event files depends 

upon the magnitude of the earthquake and its epicentral distance. Figure].9 shows an 

event recorded and segmented in SEISAN software. 



NTT B 2 

NTT 9 N 

SkT 8 

UBT Et M 

BUT U H 

50 	52 	54 	56 	SB 	4C 
............ 	 ...................................... 

St !~ 3 ' , 	 r~nv ~(IQ•EfIV I£I!t 	hf ISNN 	 ~l:~.SF15M!) R1 

Figure 1.9: Seismic data file as displayed in SEISAN. 

1.4 Causes of earthquakes 
Earthquakes are usually caused when rock underground suddenly breaks along a 

fault. This sudden release of energy causes the seismic waves that shake the ground. 

When two blocks of rock or two plates rub against each other, they stick partially. In 

other words they don't slide smoothly and catch on each other. 

Epicenter 

Figure1.10. The epicenter and focus of earthquake 
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The rocks while pushing against each other do not move. After a while, the rocks 

break up because of the intense pressure built up. Eventually when the rocks break, the 

earthquake occurs. During the earthquake and afterwards, the plates or blocks of rock 

start moving, and they continue to move until they get stuck again. The spot underground 

where the rock breaks is called the focus (Figure]. 10) of the earthquake. The region right 

above the focus (on top of the ground) is called the epicenter (Figure 1.10) of the 

earthquake. The epicenter is the point on the earth's surface vertically above, the 

hypocenter (or focus), the point in the crust, where a seismic rupture begins. 

There are three main plate tectonic environments: extensional, transform, and 

compressional (Figurel.11). These environments are also called normal, reverse and 

strike-slip faults respectively. Plate boundaries in different localities are subject to 

different inter-plate stresses, producing these three types of faults that cause earthquakes. 

Each type has its own special hazards. The crust moves along cracks called faults. A fault 

is a break in the earth's crust. The earth can move in different directions depending on the 

type of fault. 

K 	`ion ! 	Cotnpressionaf 

ran sf& 

Figure].]]: Different types of faults due to which earthquakes occur (In each fault are 

shown two blocks of earth surface rubbing or pushing over each other) 
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Tension, a pulling force that causes the plates to move apart, can create a normal fault. 

The rocks above a normal fault move downward as the plates below the fault move 

upward. When the earth's plates come together, they produce compression forces that 

push on rocks from either side. Sometimes the rocks bend. In other cases, they break and 

one rock slides up over the other. In a reverse fault the rock above the fault slides up 

over the rock below the fault. At a strike-slip fault, the rocks on either side of the fault 

slide past each other. This sliding force is called shearing. As the plates slide past each 

other, the forces bend and twist the land. Sometimes the land gets caught as it slides. 

When it releases or breaks, an earthquake occurs. 

1.5 SEISMIC STATION 

Seismic stations measure the ground motion at a specific location. The data are 

converted from the analog signal produced from the ground motion into digital 

information that computers are capable of understanding and manipulating. The 

difference between networks with analog stations and networks with digital stations is the 

point at which the analog signal is converted into digital information. 

1.5.1 Analog Station 

Analog stations are called "analog" because the analog signal is converted into 

digital information at the site of data processing. This means that the analog signal must 

be sent, in our case over phone lines, from each station to the central site. Each station's 

signal is then converted from analog to digital by hardware and processed by computers. 

Signals from analog stations go off-scale quickly because the electronics and analog 

phone lines have limited dynamic range. However, each analog station is somewhat 

simpler, the time stamping of the data is done simultaneously, and the data conversion 

hardware is at central site, so the analog stations are somewhat easier to maintain. 



1.5.2 Digital station 

Digital stations, on the other hand, have high and low gain sensors and do their 

data conversion at the sensing site itself with 24 bit digitizers, thus allowing both small 

and large signals to stay on scale. The digital information is then sent via digital data link 

to central site where it is able to be used immediately by the computers processing and 

storing the data. 

Using digital stations instead of analog stations provides several important benefits: 

• The high and low gain sensors provide data on scale for both small and large 

earthquakes. 

• The digital data can be error checked so that line noise won't cause the data to be 

corrupted. 

• Although the data output by different data loggers is often of different formats, 

the network can incorporate them through simple software changes. 

1.6 Aim of the Dissertation 
Seismic warning systems (which release alert messages quickly after an 

earthquake) are dependent on automatic, quasi-real time, procedures for detecting, onset 

picking and identifying of signal phases in seismogram recordings. For systems which 

release alert messages immediately after an earthquake, the accuracy of these phase picks 

is essential for automatic and reliable hypocenter determination. Also instant detection 

and accurately picking the first P-wave arrival is immensely helpful in event localization, 

its identification and for analyzing source mechanism, especially in the era of large 

volumes of digital and real-time seismic data. Manual analysis of seismograms is time 

consuming and subjective and so there is a need to provide a more efficient alternative 

approach to detect the earthquake. Therefore an automatic method should be approached, 

ANN which is well known for its learning capability are used as detectors and pickers. 

Detectors are considered to be processes for detecting the presence of seismic phases, 

whereas pickers are considered to be processes for estimating accurately the onset time of 
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such phases. Hence Artificial Neural Network is used to detect the seismic phase and 

pick P-wave. 

1.7 Introduction to Dissertation 
The Broadband seismograms (3-component recordings) namely East, North and 

Vertical components are loaded to detect seismic phases and pick P-wave. Different 

attributes which can recognize P and S waves are selected. Depending upon the 

sensitivity and efficiency of these attributes, four attributes were selected for P-wave and 

another four attributes were selected for S-wave. These attributes were filtered in the 

range of 1-10 Hz using 2°d  order Butterworth filter. These attributes were processed with 

a sampling frequency of 10 samples/s and calculated with a 0.5 second moving window. 

Each attribute is processed by 1 Neural Network at one time. The neural network were 

trained and tested. Then the seismic phase is detected and P-wave is picked. The flow 

chart in figure]. 12 represents the dissertation on Automatic Phase Picking of Seismic 

Signals Using Artificial Neural Network. 
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Chapter #2 

ARTIFIICAL NEURAL NETWORK 

2.1 What is Artificial Neural Network? 

Artificial Neural Network, one of the groups of techniques from the area of 

Artificial Intelligence is inspired by biological systems. An artificial neural network is an 

information processing system that emulates the structure and functions of the human 

brain. It consists of numerous simple processing elements connected together according 

to certain rules and is able to response dynamically to an outside stimulus and process 

information. As is the case for the human brain, the structure and processing sequence of 

the artificial network are parallel. 

2.2 History of Artificial Neural Network 

The progress of neurobiology has allowed researches to build mathematical 

models of neurons to simulate neural behaviour. This idea dates back to the early 1940s 

when of the first abstract models of a neuron was introduced by McCulloh and Pitts 

(1943). Hebb (1949) proposed a learning law that explained how a network of neurons 

learned. Other researchers pursed this notion through the next two decades, such as 

Minsky (1954) and Rosenblatt (1958). Rosenblatt is credited with the Perceptron 

learning algorithm. At about the same time, Widrow and Hoff developed an important 

variation of perceptron learning, known as the Widrow Holf rule. 

Later, Minsky and Papert (1969) pointed out theoretical limitations of single layer 

neural network models in their landmark book Perceptrons. Due to this pessimistic 

projection, research on artificial neural networks lapsed into an eclipse for nearly two 

decades. Despite the negative atmosphere, some researchers still continued their research 

and produced meaningful results. For example, Anderson (1977) and Grossenberg 

(1980)did important work on psychological models. Khonen (1977) developed 

associative memory models. 
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In the early 1980s, the neural network approach was resurrected. Hopfield (19820 

introduced the idea of energy minimization in physics into neural networks. His 

influential paper endowed this technology with renewed momentum. Feldman and 

Ballard (1982) made the term "connectionist" popular. Sometimes the term 

connectionism is also referred to as subsymbolic processes, which have become the study 

of cognitive and Al systems inspired by neural networks (Smolensky 1988). Unlike 

symbolic Al, connectionism emphasizes the capability of learning and . discovering 

representations. Indiously, connectionism has become a common ground between 

traditional Al and neural network research. 

In the middle 1980s, the book Parallel Distributed Processing by Rumelhart and 

McClelland (1986) generated great impacts on computer, cognitive and biological 

sciences. Notably, the backpopagation learning algorithm developed by Rumelhart, 

Hinton and Williams (1986) offers apowerful solution to training a multilayer neural 

network and shattered the cruse imposed on perceptrons. A spectacular success of this 

approach is demonstrated by the NETtalk system developed by Sejnowski and Rosenberg 

(1987), a system that converts English text into a highly intelligible speech. It is 

interesting to note, however, that the idea of Backpropagation had been developed by 

Werbos (1974) and Parker (1982) independently. 

Although the neural network approach rejects the notion of separating of 

knowledge from the inference mechanisms, it does not reject the importance knowledge 

in many tasks that require intelligence. It just uses a different way to store and manipulate 

knowledge. 

The symbolic approach which has long dominated the field of Al was recently 

challenged by the neural network approach. There have been speculations about whether 

one approach should substitute for another or whether the two approaches should coexist 

and combine. More evidence favors the integration alternative in which the low-level 

pattern recognition capability offered by the neural network approach and the high level 

cognitive resoning ability provided by the symbolic approach complement eachother 

(Kandel and Langholz 1992). The optimal architecture of future intelligent systems may 

well involve their integration in one way or another. 
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2.3 Need for Artificial Neural Network 

The neural network processing typically involves dealing with large-scale 

problems in terms of dimensionality, amount of data handled and the volume of 

simulation or neural hardware processing. This large scale approach is both essential and 

typical for real life applications. The artificial neural network has a very strong learning 

ability and can adapt itself to the outside environment by learning. The artificial neural 

network can learn from incomplete and inaccurate data, even with considerable noise, 

and has a very robust error tolerance. The artificial neural network, if properly trained, 

can give an approximately optimal solution from limited and distorted information. 

2.4 INTRODUCTION TO ANN 

Various methods have been applied to the interpretation of seismic signals from a 

local seismic network. For example, JURKEVICS (1988) presented a technique for 

polarization analysis of three component seismic data. ROBERTS et al (1989) presented 

a technique for phase identification based on the auto- and cross correlations of the three 

component seismic data, etc..., The application of artificial intelligence methods to 

earthquake analysis is a relatively recent development. 

Artificial neural networks (ANNs), provide a natural alternative to the application 

of earthquake analysis as they have proven useful in handling complicated pattern 

recognition problems in other applications such as character recognition, handwritten 

(processing checks) recognition, face recognition., etc.., The artificial neural network has 

many configurations and can provide methods to solve problems in real time seismology 

such as location of earthquake, earthquake detection, magnitude determination of 

earthquake, prediction of earthquake intensity distribution, etc.., 

There are useful networks which contain only one layer, or even one element, but 

most applications require networks that contain at least the three normal types of layers - 

input, hidden, and output. The layer of input neurons receives the data either from input 

files or directly from electronic sensors in real-time applications. The output layer sends 

information directly to the outside world, to a secondary computational process, or to 
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other devices such as a mechanical control system. Between these two layers can be 

many hidden layers. These internal layers contain many of the neurons in various 

interconnected structures. The inputs and outputs of each of these hidden neurons simply 

go to other neurons. In most networks each neuron in a hidden layer receives the signals 

from all of the neurons in a layer before it, typically an input layer. After a neuron 

performs its function it passes its output to all of the neurons in the layer after it, 

providing a feedforward path to the output. Figure 2.1 shown below is the structure of an 

artificial neural network. 

Tnpnt I input 2 	 Input IN 
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Figure2. 1: Structure of a Multilayer Artificial Neural Network 

The above structure of the artificial neural network is a feed forward multilayer 

network consists of typically three layers; input, output and hidden layer. Neurons in one 

layer have connections with neurons in the next neighbouring layer. Every connection 

between neurons has a numerical value attached to it and is called its weight. Neurons in 

the input layer take input values from the variables and pass this input to each neuron of 

the successive hidden layer. The output of each neuron in the hidden layer is then 

multiplied by the weights of connected input neurons and then passed to the neurons in 

the next hidden layer or output layer. 



There are two steps for neural network development. One is a "Learning" process 

where the ANN learns from a set of representative training samples of input and output 

patterns. Another is a "generalizations" process where the trained neural network is 

applied to unknown input signals. This is explained below. 

Once a network has been structured for a particular application, that network is 

ready to be trained. To start this process the initial weights are chosen randomly. Then, 

the training, or learning, begins. There are two approaches to training - supervised and 

unsupervised. Supervised training involves a mechanism of providing the network with 

the desired output either by improving the network's performance or by providing the 

desired outputs with the inputs. Unsupervised training is where the network has to make 

sense of the inputs without outside help. The vast bulk of networks utilize supervised 

training. Unsupervised training is used to perform some initial characterization on inputs. 

2.5 Neuron modeling 

A neuron with a single scalar input with no bias appears on the left below. 

Summer output n = WP +b 

Neuron output a = f (wp+b) 

npu Neuron without bias 	nnput Neuron with bias 

Figure2.2: Single input neuron 

The scalar input p is transmitted through a connection that multiplies its strength by 

the scalar weight w, to form the product wp, again a scalar. Here the weighted input wp is 

the only argument of the transfer function f, which produces the scalar output a. The 

neuron on the right has a scalar bias, b. The bias may be viewed as simply being added to 
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the product wp as shown by the summing junction or as shifting the function f to the left 

by an amount b. It has the effect of raising or lowering the net input of the activation 

function, depending on whether it is positive or negative, respectively. The bias is much 

like a weight, except that it has a constant input of 1. 

The transfer function net input n, again a scalar, is the sum of the weighted input wp 

and the bias b. This sum is the argument of the transfer function f. Here f is a transfer 

function, typically a step function or a sigmoid function, which takes the argument n and 

produces the output a. It is to be noted that w and b are both adjustable scalar parameters 

of the neuron, The central idea of neural networks is that such parameters can be adjusted 

so that the network exhibits some desired or interesting behavior. Thus, the network can 

be trained to do a particular job by adjusting the weight or bias parameters, or perhaps the 

network itself will adjust these parameters to achieve some desired end. 

2.6 TRANSFER FUNCTIONS 
Referring to figure 2.2, the processing elements consist of two parts. The first part 

consists of an adder for summing up the input signals, weighted by the respective 

synapses of the neuron, and the second part consists of an activation function for limiting 

the amplitude of the out put of the neuron. The activation function is also referred to as a 

squashing function, in that it squashes the permissible amplitude range of the output 

signal to some finite value. The normalized amplitude of the output of a neuron lies 

within the closed unit interval [0, 1] or [-1, 1]. 

The activation function, denoted by .(I), defines the output of the neuron in terms 

of the individual local field 1. The threshold function passes information (usually a +1 

signal) only when the output of the first part of the artificial neuron exceeds the threshold 

value T. A single neuron with a threshold activation function is known as a single-layer 

perceptron, whereas the same neuron with a signum activation function is known as an 

adaline. 

1 if I>=1 

~(I), 

0 if I<=0 
	

(assume 0 (I) = a) 
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The different activation functions are as follows: 

2.6.1 Hard-Limit Transfer Function 

Figure2.3: Hard-Limit Transfer Function 
The hard-limit transfer function shown above limits the output of the neuron to either 0, if 

the net input argument n is less than 0; or 1, if n is greater than or equal to 0. 

2.6.2 Linear transfer function 

Figure2.4: Linear transfer function 

2.6.3 Sigmoid transfer function 

The sigmoid function, whose graph is s-shaped, is the common form of activation 

function used in the construction of ANNs. It is defined as a strictly increasing function 

that exhibits a graceful balance between linear and non-linear behaviour. The sigmoid 

function passes negative information when the output is less than the threshold value T 

and positive information when the output is greater than the threshold value T. It is a 

continuous function that varies that gradually between two asymptotic values, typically 0 

and 1, or -1 and +1. The sigmoid transfer function shown below takes the input, which 

may have any value between plus and minus infinity, and squashes the output into the 

range 0 to 1. 
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Figure2.5: Log-Sigmoid Transfer Function 
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Where a is a slope parameter of the sigmoid function which adjusts the abruptness 

of this function as it changes between the two asymptotic values. By varying the 

parameter a, one can obtain sigmoid function of different slopes. 

This transfer function is commonly used in Backpropagation networks, in part 

because it is differentiable. The symbol in the square to the right of each transfer 

function graph shown above represents the associated transfer function. These icons will 

replace the general f in the boxes of network diagrams to show the particular transfer 

function being used. 

2.7 Summary of Artificial Neural Networks 

Feedforward: 

■ Perceptron 

• Adaline and Madaline 

• Backpropagation Network 

• Radial Basis Function Network (RBFN) 

• General Regression Network 

• Modular Neural Network (MNN) 

■ Learning Vector Quantization(LVQ) Network 

• Probabilistic Neural Network (PNN) 

• Fuzzy Neural Network (FNN) 

Recurrent: 

• Hopfield Network 

• Boltzmann Machine 

■ Kohonen's Self-Organizing Feature Map (SOFM) 
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• Recirculation Network 

• Brain-State-in-a-Box (BSB) 

• Adaptive Resonance Theory (ART) Network 

• Bi-directional Associative Memory (BAM) 

2.8 APPLICATIONS OF NEURAL NETWORK 

2.8.1 Neural Network Applications in general 

Neural network Applications, May provide a model for massive parallel 

computation, More successful approach of "parallelizing" traditional serial algorithms, 

Can compute any computable function, Can do everything a normal digital computer can 

do, and Can do even more under some impractical assumptions. Some of the applications 

where neural network used are: Recognizing and matching complicated, vague, or 

incomplete patterns, Data is unreliable, Problems with noisy data, Prediction, 

Classification, Data association, Data conceptualization, Filtering, Recognition and 

Planning. The above applications are explained as follows: 

Prediction: learning from past experience 

• Pick the best stocks in the market 

• Predict weather 

• Identify people with cancer risk 

Classification 

• Image processing 

• Predict bankruptcy for credit card companies 

• Risk assessment 

Recognition 

• Pattern recognition: SNOOPE (bomb detector in U.S. airports) 

• Character recognition 

• Handwriting: processing checks 
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Data association 

• Not only identify the characters that were scanned but identify when the scanner 

is not working properly 

Data Conceptualization 

• Infer grouping relationships 

e.g. extract from a database the names of those most likely to buy a particular 

product. 

Data Filtering 

• Take the noise out of a telephone signal, signal smoothing 

Planning 

• Unknown environments 

• Sensor data is noisy 

• Fairly new approach to planning 

2.8.2 Neural network Applications in Earthquake Engineering 

Many process related to earthquake engineering and engineering seismology use 

ANN as one of the major tools. Some of the uses of ANN are: 

1. Discrimination of Earthquakes and Underwater explosions. 

2. Picking of Seismic Arrivals 

3. Seismic Signal classification. 

4. Earthquake Prediction. 

5. Magnitude Prediction. 

6. Seismic Phase Identification. 

7. Seismic data Processing. 

8. Prediction of Seismicity cycles in highly seismic areas. 

9. Prediction of Peak Ground Acceleration by utilizing the strong motion data. 

In most of the applications mentioned above Multilayer Feedforward Backpropagation 

Neural Network has been widely used. The Back-Propagation Neural Network is 

explained in detail in the next chapter. 
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Chapter # 3 

BACKPROPAGATION NEURAL NETWORKS 

3.1 Backpropagation Neural Network 

The Backpropagation network is probably the most well known and widely used 

among the current types of neural network systems available. In contrast to earlier work 

on perceptron, the Backpropagation network is a multilayer feedforward network with a 

different transfer function in the artificial neuron and a more powerful learning rule. The 

learning rule is known as Backpropagation, which is a kind of gradient descent technique 

with backward error (gradient) propagation, as depicted in figure 3.1. The training 

instance set for the network must be presented many times in order for the 

interconnection weights between the neurons to settle into a state for correct classification 

of input patterns. While the network can recognize patterns similar to those they have 

learned, they do not have the ability to recognize new patterns. This is true for all 

supervised learning networks. In order to recognize new patterns, the network needs to 

be retrained with these patterns along with previously known patterns. If only new 

patterns are provided for retraining, then old patterns may be forgotten. In this way, 

learning is not incremental over time. This is a major limitation for supervised learning 

networks. Another limitation is that the Backpropagation network is prone to local 

minima, just like any other gradient descent algorithm. 

The Backpropagation network in essence learns a mapping from a set of input 

patterns (e.g., extracted features) to a set of output patterns (e.g., class information). This 

network can be designed and trained to accomplish a wide variety of mappings. This 

ability comes from the nodes in the hidden layer or layers of the network which learn to 

respond to features found in the input patterns. The features recognized or extracted by 

the hidden units (nodes) correspond to the correlation of activity among different inputs 

units. As the network is trained with different examples, the network has the ability to 
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Figure3.1. The Backpropagation network 

generalize over similar features found in different patterns. The key issue is that the 

hidden units must be trained to extract a sufficient set of general features applicable to 

both seen and unseen instances. To achieve this goal, at first, the network must not be 

overtrained. Overtraining the network will make it memorize the individual input-output 

training pairs rather than settling in the mapping for all cases. To prevent this undesired 

effect, one way is to terminate training once a performance plateau has been reached. 

Another way is to prune the network, creating a bottleneck between the input and output 

layers. The bottleneck will force the network to learn in a more general manner. This 

issue is explored later. 

The Backpropagation network is capable of approximating arbitrary mappings 

given a set of examples. Furthermore, it can learn to estimate posterior probabilities 

(P(w;/x) for classification. The sigmoid function guarantees that the outputs are bounded 

between 0 and 1. In the multiclass case, it is not difficult to train the network so that the 

outputs sum up to 1. With accurate estimation of posterior probabilities, the network can 

act as a Bayesian classifier. 
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The Backpropagation network consists of one input layer, one output layer, and 

one or more hidden layers. If the input pattern is described by n bits or n values, then 

there should be n input units to accommodate it. The number of output units is likewise 

determined by how many bits or values are involved in the output pattern. Theoretical 

guidance exists for determining the numbers of hidden layers and hidden units (see later 

discussion). They can be recruited or pruned as indicated by the network performance. 

Typically, the network is fully connected between and only between adjacent layers. The 

Backpropagation algorithm (Rumelhart, Hinton, and Williams 1986) is formulated below. 

3.1.1 The Backpropagation algorithm 

The Backpropagation algorithm is formulated as: 
• Weight Initialization 

Set all weights and node thresholds to small random numbers. Note that the 

threshold is the negative of the weight from the bias unit. 

• Calculation of activation 

1. The activation level of an input is determined by the instance presented to 

the network. 

2. The activation level O  of an hidden and output unit is determined by 

O~ = F(WJiOI —0, ) 

where W is the weight from an input O~ , e~ is the node threshold and F 
is a sigmoid function:  

F(a) _ - 1 
l+ea 

• Weight Training 

1. Start the output units and work backward to the hidden layers recursively. 

Adjust weights by 

W11 (t+1)=W11 (t)+AW11 

where Wit is the weight from unit i toj at time t and AW~i is the weight 
adjustment. 
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2. The weight change is computed by 

= )78O, 

where r) is a trial independent learning rate (0<11<1) and t5~ is the error 

gradient at unit j. Convergence is sometimes faster by adding a momentum 

term: 

w1, (t+1)=W1t (t)+r~B~O. +a[W1i (t)—W1i (t-1)] 
where 0< a <1 

3. The error gradient is given by: 

For the output units: 6, =01 (1— 01 ] T1 — o )  

where T1 is the desired (target)output activation O~ is the actual output at 
unit j . 

For the hidden units: 8 = O  (1— O~ ) SkWkJ 
K 

where S~ is the error gradient at unit k to which a connection 
points from hidden unit j. 

4. Repeat iterations until convergence in terms of the selected error criterion. 

An iteration includes presenting an instance, calculating activations, and 

modifying weights 

The name `Backpropagation" comes from the fact that the error (gradient) of 

hidden units are derived from propagating backward the errors associated with output 

units since the target values for the hidden units are not given. In the Backpropagation 

network, the activation function chosen is the sigmoid function, which compresses the 

output value in the range between 0 and 1. The sigmoid function is advantageous in that 

it can accommodate large signals without saturation while allowing the passing of small 

signals without excessive attenuation. Also, it is a smooth function so that gradients can 

be calculated, which are required for a gradient descent search. 
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A Derivation of Backpropagation (Fu Limin 2003) Here, we show how to derive the 

Backpropagation learning rule given by 

©Wji 

If unit] is an output unit, then its 8~ is calculated by 
81=(T1 —0J)F'(netf ) 

where 
(nett )=EW1I OI 

i 
F is a sigmoid function, and 

01= F(net1 )=F(jW1101 ) 
i 

If unit j is a hidden unit, then its B~ is given by 
S1 = F/(net1) Z 8KWK1 

K 
The Backpropagation procedure minimizes the error criterion 

E=1/21T1 —O~)2 
i 

Gradient Descent yields 
AW~i = —iff / aW1i 

By using the chain rule, we obtain 
aE/ aWj = (UL av~)(Uo~ r j  

In the case when unit] is an output unit, 
(3E/801)= -(T1 —O~) 

and 
(30~ /aW11 )=F1'(net1 ) Ol 

Thus, 
aE/aW11 = (3E/a01 ) (aO1 /aW11 ). 

-(T~ —Off ) F1'(net1 ) OZ 
= - j j O j 

So, we obtain 
AW11 =778~O~ 

When unit] is a hidden unit, T1 is not given. Applying chain rule gives 
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(aE / SOS) 7E aE I aOK)(aOk /501)  
k 

The output of unit k is given by 
Ok = F(I Wkf O J ) 

f 

Thus the term (50k / a0~) can be transformed by 
(50k /aO~)=F'(netk )Wkj 

As a result, 
(aE/a0j)=ZaE/aOK )(aOk /aO J ) 

k 

_ — k(Tk — Ok ) F' (netk )Wks 
- k8k Wki 

Thus, 
aE/aW1.i = (SE /a0~) (aOd /aW1.1 ) 

= -(j k5k WkJ ) F j ' (nett ) O~ 
= -8j O, 

Then we obtain 

AW11 =178~O1 

Error Surface 
(Cross Section) 

i_ccrat Minimum 
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, 

Descent  

Weight Space 

Figure 3.2: Search on the error surface along the gradient 
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3.1.2 Step size 
A careful selection of the step size (the learning rate) is often necessary to ensure 

smooth convergence. It has been shown that a large step size may cause the network to 

become paralyzed. When network paralysis occurs, further training does little for 

convergence. On the other hand, if the size is too small, convergence can be very slow. 

Some have suggested tovary the step size adaptively during training. There appears to 

be more empirical guidance than theoretical understanding on this issue. 

3.1.3 Local Minima 
Figure 3.2 shows that back propagation searches on the error surface along the 

gradient (steepest descent) in order to minimize the error criterion. 

E=1/2T1 —O~)2 
i 

It is likely to get stuck in a local minimum. 

The problem of local minima has been tackled in a number of ways. 

Incorporating a random component into the weight adjustment is one way to escape the 

local minimum. As in simulated annealing, a parameter called the temperature is defined 

so that for a higher temperature, more randomness can be introduced into the training 

process. When the temperature goes down to zero, the process becomes completely 

deterministic. The genetic algorithm has also been applied to deal with this problem. It 

proceeds by starting with multiple initial weight settings and recombining trained weights 

during the process. The cost of either approach is the prolonged training time. 

3.1.4 Learning Speed 
Some techniques have been used to accelerate the convergence of a gradient 

descent technique 'like Backpropagation. Newton's method uses the information of the 

second-order derivatives. Quasi-Newton methods approximate second-order information 

with first-order information. Conjugate gradient methods compute a linear combination 

of the currant gradient vector and the previous search direction (momentum) for the 

current search direction. A detailed discussion on this issue is made by Shanno (1990). 
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The network training time can also be improved by some tricks, such as joggling 

the weights or using slightly noisy date (Caudill 1991; Stubbs 1990). It has been found 

that if the activation level is restricted to the range from - V2 to V2, convergence time may 

be reduced by half compared with the 0-to-1 range (Stornetta and Huberman 1987). This 

improvement proceeds from the fact that a weight coming from neuron of zero activation 

will not be modified. This idea is implemented by changing the input range to — %2  to V2 

and using the following activation function: 

1 --+ 
2 l+ea  

Where a is the argument of the function. An alternative function is the hyperbolic 

tangent function (tanh), which lies in the range from- 1 to 1. 

3.1.5 Stopping Criteria 
The process of adjusting the weights based on the gradients is repeated until a 

minimum is reached. In practice, one has to choose a stopping condition. There are 

several stopping criteria that can be considered: (Fu Limin 2003). 

* 	Based on the error to be minimized: In pattern recognition, one might 

consider stopping the procedure once the training data are correctly classified. When this 

is not the case, a fixed threshold is used so that the procedure is stopped if the error is 

below it. However, this criterion does not guarantee generalization to new data. 

* 	Based on the gradient: The algorithm is terminated when the gradient is 

sufficiently small. Note that the gradient will be zero at a minimum by definition. 

* 	Based on cross-validation performance: This criterion can be used to 

monitor generalization performance during learning and to terminate the algorithm 

when there is no more improvement. 

The first two criteria are sensitive to the choice of parameters and may lead to poor 

results of the parameters are improperly chosen. The cross-validation criterion does not 

have this drawback. It can avoid overfitting the data and can actually improve the 

generalization performance of the network. However, cross-validation is much more 

computationally intensive and often demands more data. 

32 



3.1.6 Network Size 
The Backpropagation network can approximate an arbitrary mapping only when 

the network will produce the best result for a given problem. If the network is too small. 

It cannot learn to fit the training data well. On the other hand, it the network is able to 

learn may solutions that are consistent with the training data but most of them are likely 

to be poor approximations of the actual model. 

The network should have such a size as to capture the structure of the data and 

eventually to model the underlying problem. With some specific knowledge about the 

problem structure, one can sometimes form a good estimate of the proper network size. 

With little prior knowledge, the size of the network must be determined by trial 

and error. One approach is to grow the network starting with the smallest-possible 

network until the performance begins to level off or decline. The network size is 

increased by adding more nodes in fixed layers or by adding new layers. Alternatively, 

we can proceed the other way around. That is, starting with a large network, we apply a 

pruning technique to remove those weights and nodes which have little relevance to the 

solution. In this approach, one needs to know how to select a "large" network to begin 

with. 

In most cases, a two-layer network (with a single hidden layer) suffices to solve 

the problem. Numerous bounds on the number of hidden nodes in a two-layer network 

have been derived. However, most of them assume that the activation function is a hard-

limiting function. Formal analysis will be more difficult in the case of a sig:oid 

function. 

3.1.7 Complexity of Learning  
It has been shown that the problem of finding a set of weights for a fixed-size 

network which performs the desired mapping exactly for given training data is NP-

complete. That is, we cannot find. optimal weighs in polynomial time. So, for a very 
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large problem, it is unlikely that we can determine the optimal solution in a reasonable 

amount of time. 

Learning algorithms like Backpropagation are gradient descent techniques which 

seek only a local minimum. These algorithms usually do not take exponential time to 

run. Empirically, the learning time on a serial machine for Backpropagation is about 

O(N3 ) where N is the number of weights in the network (Hinton 1989). The slowness 

of finding a local minimum is perhaps due to the characteristics of the error surface being 

searched. In the case of a single-layer perceptron, the error surface is a quadratic bowl 

with a single minimum, and the search on it is relatively easy. By contrast, in the 

multilayer backpropagation network, the error surface is typically convoluted, which 

obviously prohibits an efficient search. Increasing the learning rate to speed up the 

leaning process ma cause instability when it reaches the steep part of the surface. Several 

alternative methods have been proposed, such as the momentum and the second- order 

methods mentioned earlier. 

3.1.8 Generalization 

Generalization is concerned with how well the network performs on the problem 

with respect to both seen and unseen data. It is usually tested on new data outside the 

training set. Generalization is dependent on the network architecture and size, the 

learning algorithm, the complexity of the underlying problem, and the quality and 

quantity of the training data. Research has been conducted to answer such questions as: 

• How many training instances are required for good generalization? 

• What size network gives the best generalization? 

• What kind of architecture is best for modeling the underlying problem? 

• What learning algorithm can achieve the best generalization? 

It is often difficult to answer any of these questions without fixing some factors. But an 

important goal is to develop a general learning algorithm which improves generalization 

in most or all circumstances. This is addressed in the next section. 
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For simplicity, we focus our discussion on learning logic functions of d binary 

variables. In this problem, there are 2" different patterns in the domain and there are 22  

possible functions. The network for identifying the true function should have d input 

units and one output unit. In general, the larger the network, the larger the set of 

functions it can form and the more likely the true function is in this set. We can think of 

the use of training data as a means of rejecting incorrect functions. Hopefully, at the end 

of training, there is only one function left which is the true function sought. If this is not 

the case, we wish the function learned to be the function that best approximates the true 

function. In this sense, the more training instances, the more likely the network can 

identify the true function. However, this is true only when the network is large enough 

(but not too large) to implement the true function. 

Hush and Home (1993) describe the approaches to study generalization and the 

methods to improve generalization. In one approach, the• average generalization of the 

network is defined to be the average of the generalization values of all functions that are 

consistent with the set of training instances. The generalization value of a function is the 

fraction of the domain (of 2" instances) for which the function produces the correct 

output. 

In the second approach, the generalization error of the network is defined as the 

difference between the generalization on the training data (which forms an estimate of the 

true generalization) and the generalization on the actual problem. Since the network 

tends to fit the training data, the generalization with respect to it will be overly optimistic. 

However, in many cases, the generalization error can be bounded (a worst-case analysis), 

and this bound can be made arbitrarily small by increasing the number of training 

instances. 
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Chapter # 4 

POLARIZATION ANALYSIS OF THREE 
COMPONENT SEISMIC ARRAY DATA 

4.1 Introduction 

The accuracy of automatic event location is an important and practical problem in 

network seismology. Numerous reliable methods have been developed to automatically 

estimate the onset time and phase detection using P and S arrivals from a seismic network 

(e,g., Dai Henchang and Colin Macbeth 1995, reviewed P-phase pickers that had been 

implemented in practical applications of seisimic networks at that time. 

Many researchers have discussed the polarization properties of the seismic signals, 

Jurkevics (1988) presented a technique for polarization analyses of three component 

seismic data particularly of S waves that is based on a time domain algorithm originally. 

The availability of three component data improves the chance of detecting the seisimic 

arrivals on the basis of physical differences in particle motion between P and S waves. 

Three-component recordings are important for broadband seismic monitoring because 

broadband seismic phases can exhibit large horizontal motions. Simple side-by-side 

displays of three component seismograms can assist an analyst performing 

interpretations. However, a more quantitative approach involves processing the signals 

and extracting or enhancing their polarization content. The objective of the work 

described in this paper has been to implement a practical algorithm for polarization 

analysis which can be applied to three component data from seismic arrays. Basically, the 

technique involves filtering the signals into a series of narrow frequency bands, applying 

short sliding time windows and then computing the polarization ellipse from the 

covariance matrix in each window in each band. Instead of polarization filtering the 

traces, a series of attributes describing the particle motion characteristics as a function of 

time are output. Application to three component arrays is accomplished by averaging 

covariance matrices for all array sensors before solving the eigenproblem. Various 

attributes characterizing the particle motions are extracted from the motion ellipse. All 

these attributes are functions of time. 
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4.2 Attribute Selection for Seismic Arrivals 
Polarization is the main source of information derivable from the three-

component ' seismic data, and it is widely used for event location, phase identification. 

The polarization is estimated in each window as follows. 

Let X = [xy J (Where i = 1,...N; j = 1,2,3) be the data matrix in one window, where 
is the ith sample of component j and N is the number of the samples. The mean of 

each component over this window is taken here to be zero. 

The covariance matrix S is evaluated as 

XXT 1 N 
S~f = 	=—LX 0 x jk, 

N  N ~=1 

Where T denoted transpose. The S is a 3*3 real and symmetric covariance matrix. 

Explicitly, the terms of S are the auto variances and cross-variances of the three 

components motion: 

'Szz `Szn `~ze 

S = SnzSnnSne 

SezSen s̀ee 

Where Szn denotes the cross variances of the vertical and north components, etc. The 

index convention used here is z=1, n=2, e=3. The covariance matrix S is poisitive semi-

definite, which means that its eigenvalues are real and non negative (some may be zero). 

S is the matrix of coefficients termed the polarization ellipsoid, obtained through the best 

fit to the data in a least squares sense. The principle axes of the ellipsoid are estimated by 

solving the algebraic eigen problem for S. Once the principale axes of the polarization are 

estimated, the particle motion in the data window is determined. Information describing 

the characteristics of ground motion is extracted using attributes computed from the 

principale axes. Those polarization parameters particularly useful for characterizing the 

broadband seismic phases are as follows except the first one (STA \ LTA) is a 

conventional algorithm and all the remaining seven are polarization parameters. 

(1) Ratio between short-term average and long-term average (STA\LTA), 

(2) Rectilinearity (Rect), 
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(3) Ratio of maximum to minimum horizontal amplitude (hmxnm), 

(4) Long -axis incidence angle of polarization ellipsoid (Inc 1), 

(5) Ratio between horizontal power to total power (Rh2t), 

(6) Planarity (Plan), 

(7) Ratio of horizontal-to-vertical power (hvratp) 

(8) Short -axis incidence angle of polarization ellipsoid (Inc3), 

The first four attributes are used to identify for P-Wave Phase identification and 

the next four attributes are used for identification of S-Wave Phase identification. A 

variety features of attributes of P-Waves and S-Waves has been discussed previously by 

(e.g., Cichowicz., 1993; Tarvainen, 1991). To compare the performance of these 

attributes in discriminating the P and S phase, eight attributes are discussed in this study. 

They are defined are as follows: 

(1) Ratio of short term average (STA) to long term average (LTA) Allen (1978): 

STA 
LTA 

3(i) is calculated recursively in a moving window at time i, and its value will change if 

the amplitude of signal changes. It is not a polarization attribute but a commonly used 

detector. 

(2) Rectilinearity (Jurkevics, 1988): 

Rect = 1 - /12  + 113  
22 	, 

where 2,  22  and 23  are the eigen values such that Al  > 2 > A. Rect. is a P-Type 
attribute. 

(3) Ratio of maximum to minimum horizontal amplitude (Jin Wang, 2002): 

hmxnm= FT2' 
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where A1 , and 22  are the maximum and minimum eigenvalues of the horizontal 
component. 

(4) Long axis incidence angle (Jurkevics, 1988): 

cos-I  (lull ) Inc]=  
,r/2 

where Inc 1 is an apparent incidence angle (measured clockwise from vertical and 

normalized by r / 2) of the eigen vector associated with the largest eigen value and ul i  is 

a direction of the cosine vector . For P waves Inc 1 approaches zero since most of the P-

Wave energy is in the vertical direction. In contrast, Inc 1 approaches unity for S waves. 

(5) Ratio between horizontal power to total power (Jurkevics, 1988): 

Lxn (J)+ xe (J)] 
Rh2t = j=1  

LxnCJ)+xe (Al 
j =1 

Where xn  , Xe  and xZ  are amplitudes of three component recordings and N is the total 

points in the window. 

(6) Planarity (Jurkevics, 1988): 

Plan=1-  
223  

A! 
+22 

Palnarity is an S-Type attribute because the particle motion of S -wave should be 

confined to a plane. 

(7) Ratio of horizontal-to-vertical power(Jin Wang, 2002): 

hvr'atp = Snn + See 
2sZZ 
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where sn,~ , sZZ and see are the diagonal elements of the covariance matrix. 

(8).Short axis incidence angle (Jurkevics, 1988): 

Inc 1 = 
cos'1(u31 ) 

7r/2 
where Inc 1 is a normalized angle measured clockwise from the vertical direction and u31 

is the direction cosines . For S-wave, Inc3 approaches zero since most of the S-wave 

energy is the horizontal plane, For P-wave, Inc3 approaches 1 in contrast. 

For the covariance matrix calculation, the choice of both window length and 

frequency bandwidth is subject to the usual trade-off between resolution and variance. To 

avoid smearing information between close arrivals and to capture the 'Physical varying 

properties of polarization, short window band are required. However, longer window 

band yield more stable and reliable estimates. In this experiment, a window length of 

10samples/sec is chosen to study the signal polarization attributes. The Second-order 

recursive Butterworth filters are first applied to seismograms, and then the time-varying 

attributes are computed continuously in the moving window. After examining all 

computed attributes, we have found that the features in the 1 to 10Hz bands have better 

response to P and S-wave arrivals for Broadband seismograms. 

A set of seismograms, three-component recordings recorded at Garhwal Kumaon 

Himalayan region is used for illustration. Recordings of 25 earthquakes at station NTT 

(New Tehri Town) and SRT (Srikot) are used to calculate the above mentioned signal 

characteristics. Table 4.1 gives parameters of these earthquakes and figure 4.1 shows the 

locations of stations used for calculation. Table 4.2 summarizes the responses of 

calculated attributes to Broadband P and S waves recorded at station NTT and SRT. 

From Table 4.2, we can see that the STA/LTA and Rh2t have the best performance in 

response to the P- and S-wave arrivals. 



Table4.1: Events used in this article, among these 10 events are used as training 
data for ANN P and S phase detector and P phase picker. All these events are used for 
testing. 

Event Year/month/day Hr/min/sec 

Latitude 

(N0) 

Longitude 

(E 0) 

Depth 

(Km) Station 

1 2004/04! 01 10 48 20.07 29.198 76.951 15.0 NTT 

2 2004/04/02 15 50 49.17 30.144 78.276 6.2 NTT 

3 2004/04/02 22 34 20.89 34.690 71.016 15.0 SRT 

4 2004/04/03 02 51 48.01 32.181 80.811 15.0 SRT 

5 2004/04/04 141628.23 30.483 78.547 1.2 NTT 

6 2004/04/05 02 24 39.03 30.713 78.727 15.0 SRT 

7 2004/04/05 17 03 34.16 30.486 78.479 15.0 NTT 

8 2004/04/08 23 40 53.77 30.712 78.599 15.0 SRT 

9 2004/04/10 171457.44 36.015 71.129 15.0 NTT 

10 2004/04/10 22 43 54.47 31.767 69.462 15.0 SRT 

11 2004/04/12 15 09 32.27 34.646 73.723 15.0 NTT 

12 2004/04713 14 16 54.76 30.455 78.507 15.0 NTT 

13 2004/05/01 07 09 32.92 35.495 78.853 14.0 NTT 

14 2004/05/02 06 52 44.39 30.224 78.965 14.0 NTT 

15 2004/05/03 14 22 52.93 37.163 73.844 1.1 NTT 

16 2004/05/03 17 33 48.46 34.670 86.933 15.0 NTT 

17 2004/05/04 05 08 49.23 35.844 98.949 15.0 NTT 

18 2004/05/04 11 39 57.35 25.073 97.327 15.2 NTT 

19 2004/05/04 12 03 16.11 30.453 78.509 15.0 NTT 

20 2004/05/04 17 16 57.15 29.372 79.707 20.7 NTT 

21 2004 / 05 /04 21 55 13.49 28.624 77.336 15.0 SRT 

22 2004/05/05 13 48 30.88 30.692 78.377 15.0 NTT 

23 2004/06/01 01 39 55.89 30.377 78.434 15.0 NTT 

24 2004/06/03 10 14 26.44 29.028 79.647 15.0 NTT 

25 2004/06/04 06 32 50.78 35.487 86.130 15.0 NTT 
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Figure4. 1: Location of the station 

Among the eight calculated attributes, two types of response for local P- and S-

wave signals are recognized One type has the same response direction for both P and S 

waves, such as STA/LTA, Rect, Plan and hvratp. Another type has opposite response 

directions for local P and S waves, such as Rh2t, Inc3, hmxnm and Incl. To distinguish 

P-and S-wave arrivals, we prefer to use those attributes that have different responses to P 

and S waves. This is explained from figures 4.3 to 4.10. Considering the performance and 

the physical meaning of those attributes, we decided to choose STA/LTA, Rect, hmxnm 

and Inc 1 as four input attributes of the neural network for P-phase picker. And the other 

attributes such as Rh2t, Plan, hvratp and Inc3 are used as the input attributes for S-Phase 

picker. 

Table4.2: Summary of responses of P and S waves of recording NTT and SRT in Table4.1 

Sta\Lta Rect Plan Hvratp Hmxnm Rh2t IncI Inc3 

P S P S P S P S P S PS P SP S 

Response Up Up Up Up Up Up Up Up Down Down Down Up Down Up Up Down 

Direction 
Correct 100 100 92 84 100 92 96 100 92 96 88 78 64 68 68 68 

Response 
Rate,% 

Response P and S waves have same response direction P and S waves have opposite 
Type directions 
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above figure and the second figure an enlarged window represents the response direction 
of P and S wave in STA \LTA attribute 
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Figure4.7: Represents Hvratp attribute time series for the seismograms in the above 
figure and the second figure an enlarged window represents the response direction of P 
and S wave in Hvratp attribute. 
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Chapter # 5 

AUTOMATIC PHASE PICKING OF SEISMIC 
SIGNALS USING ARTIFICIAL NEURAL 

NETWORK 

5.1 Introduction 

As seismic networks have expanded dramatically in recent years more and more 

data must be processed, the hand picking procedure for seismograms has become not 

only time consuming but also inaccurate in the sense that reading error is easily 

influenced by the analyst. A reliable and accurate automatic phase picking system is 

therefore greatly in demand in modern seismology, not only in the studies of the earth 

structure but also in the other fields such as real time seismology, which could make use 

of an automatic phase picking system to automate epicenter determination, mechanism 

calculations and so on. 

A phase picking task contains two steps; 1) Detecting a phase and 2) Reading its 

arrival time. A few applications of ANNs to Seismology have been carried out. For 

example, Del Edoardo Pezzo et al (2003), have applied Artificial Neural Networks to the 

explosion seismology for discriminating natural earthquakes versus explosions. and 

Robert Essenreiter et al (1998) have applied Artificial Neural Networks to reflection and 

McCormack Michael et al (1993) for refraction studies. Sharma Mukut et al (2005) have 

developed an approach to earthquake prediction in Himalayas using neural network 

techniques. Feng Xia-ting (1997) have applied neural network for modeling earthquake 

magnitude series. Pathak (2002), (1998) et at have applied neural networks for simulation 

of earthquake design in the himalayan region. Dai and Mcbeth (1995) have performed a 

study to test the ability of an ANN to detect and pick seismic arrivals. Jin Wang and Ta-

liang Teng (1997), has designed two types of ANN-based based detectors for event 

triggering and P Picking and in (1995) as seismic detector. Wang Jin (2002) applied 

neural networks for seismic phase picking. We have designed a neural network system as 

an seismic phase picker that uses eight attributes in which four attributes are used as an 
4 
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P-phase picker and another four attributes as an S-phase picker. The objective of this 

study is to design an ANN based automatic phase picker for seismic signal. 

5.2 IDENTIFICATION OF SEISMIC PHASE USING ANN 

We have designed a neural network system as an seismic phase picker that uses 

eight attributes in which four attributes are used as an P-phase picker and another four 

attributes as an S-phase picker. The below figures represent the block diagram for both P-

phase picker and S-phase picker. 

5.2.1 P-Phase identification using ANN 

STA/LTA Subnet 1 

Rectilinearity 	
j Subnet_2 

P-Wave 
Hmxnm Subnet 3 

Inc I {__Subnet4 

Yes 

No 

U(t) 

Rh2t 

 

 

Planarity 

Hvratp 

Inc3 

Yes 

No 

Figure 5.1: Block diagram for the development of the ANN Seismic Phase detector. It 
consists of four preprocessors, four neural subnets, and one final decision neuron. 

U(t) _ [Z(t), N(t), E(t)], where Z,N,E represents three components of signals namely 
vertical, north and east direction. 

For P Phase detection, the three component seismograms are input to the system, 

four attributes are computed by four preprocessors. The four attributes used here are 1) 

Ratio of short term average to long term average (STA/LTA) which is calculated from 
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one horizontal component 2) Rectilinearity which is calculated from the eigen values of 

the covariance matrix 3) Ratio of maximum to minimum horizontal amplitude (hmxmn) 

which is calculated from the eigen values of the horizontal component 4) The incident 

angle of long axis of eigen vector of the covariance matrix (Incl). These attributes which 

are used as preprocessors, are given as input to the neural network, trained and the output 

that is, the phase detection and picking is then carried out. Each neural network process 

one attribute at a time and a final decision neuron to declare the phase arrival. The 

explanation of the optimization and training of Backpropagation Neural Network is given 

below. 

5.2.2 Optimization and Training of the BPNNs 

A BPNN must be trained before any picking work is carried out, but we first have 

to determine some important details concerning the network's architecture and 

parameters. Unfortunately, despite the wide use of BPNNs and their success in solving a 

variety of problems, there is still no substantial theoretical support for how the 

architecture and parameters should be determined. Usually, however, they are determined 

by constantly monitoring the performance of the network with test data. 

5.2.2.lThe Architecture of the BPNNs 

The Number of Layers: Values in a window containing n dots can be regarded 

as a vector in an n dimension space. BPNNs create the decision boundary for the n 

dimension space, making it possible to recognize patterns. Any given decision boundary 

can closely be approximated by a two layer network having a sigmoid activation 

function. Thus, we apply a two-layer network-one hidden layer and one output layer-in 

our system. Note that the input layer is not counted in the number of layers because there 

is no computation carried on this layer. 

The Number of Input Nodes: One sample point corresponds to one input node in 

a BPNN. Because the sampling rate of the data is 100 samples per second, we reduce the 

sampling rate to 10 samples per second; the number of input nodes for the detector is 50. 
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The Number of Hidden Nodes: Many important issues, such as determining the 

appropriate number of hidden nodes in a network for a specific task are solved in practice 

by trial and error. The issues involved in this process are complex because they are 

highly problem dependent (Fu Limin 2003). With too few hidden nodes, the network 

may not be powerful enough for a given learning task. With a large number of hidden 

nodes, computation is too expensive, and its generalizability is more limited. In general, 

a network with a large number of nodes is capable of memorizing the training set but may 

not generalize well. Therefore, smaller networks are preferred over larger ones. Our 

experiments show that when the number of hidden nodes is 1/10 the number of input 

nodes, the network is powerful enough for accurate detection to occur. We also found 

that network performance is not sensitive to a small change in the number of hidden 

nodes and therefore we choose 4 neurons in the hidden layer. 

Connection 
1 	Weights 

Connection 
Weights 	 ; 

2 

3 

Output Layer 
(1 neuron) 

• a— Ridden Lyer
(4 neurons) 

Input Layer 
(50 neurons) 

Figure 5. 2. Structure of the ANN Phase Identification. 
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The Number of Output Nodes: When BPNNs are used for classification, there are 

usually N output nodes for an N class problem, with each node representing one class. 

For a two class problem, however, there is another approach that uses only one output 

node, with the' ON and OFF states standing for each class, respectively. Usually, the two 

approaches make no essential difference, but the former approach is a general purpose 

one that can be applied to other multi-class problems. We therefore use a single output 

node in our system, which is trained to an output (ON) for signal patterns and an (OFF) 

for noise patterns. 

5.2.3 Training function (TRAINGDM) 

The performance function or error criteria (goal) for the algorithm have been set 

to Mean square error (MSE). The same neural architecture is trained for different values 

of goals and corresponding output values are compared with actual predicted values from 

calculation. The training algorithm used is TRAINGDM (Gradient Descent method). 

Gradient descent algorithm is used, as it improves the performance of ANN by reducing 

the total error by changing weights along its gradient. TRAINGDM is a network training 

function that updates weight and bias values according to gradient descent with 

momentum. 

The Parameters of the Neural Network Training function is explained below 

1. The range of randomly chosen initial weight values. 

2. Slant of sigmoid activation function: 

3. Values of network's ON and OFF: (1- E) and E 

4. Network's learning rate: i 

5. 	Momentum coefficient: a 

Generally, training begins with randomly chosen initial weight values. This 

phenomenon results from the behavior of the sigmoid function. A network's training 

efficiency can be improved by adjusting e in the sigmoid function F(x) =1 /(1 + e 

while our system works quite well when E is simply set to 1 because we do not use 
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networks with large dimensionality. The sigmoid function also tells us that the output 

value will be 0 only when x = —co and will be 1 only when x = cc. Moreover, because 

the modification of weights is based on the derivative of the sigmoid function, the first 

derivative of the sigmoid function is very small for the large x. It is therefore preferable 

to use a larger value of E than 0 as the desired output values. The learning rate 17 refers 

to the coefficient of the negative gradient that determines the change of weight in 

Backpropagation. A large value of i will lead to rapid learning, but the weight may then 

oscillate, whereas low values imply slow leaning. Values between 0.1 and 0.9 have been 

used in many applications; i is set at 0.65 in our application. Another coefficient to be 

determined is the so-called momentum coefficient a. The momentum is added to the 

weight update rule so that the training will not get stuck in some local minima and 

significantly reduce the number of iterations for convergence. In our system, we set to be 

0.7. 

5.2.3.1 Limitations and cautions of TRAINGDM 
The gradient descent algorithm is generally very slow because it requires small 

learning rates for stable learning. The momentum variation is usually faster than simple 

gradient descent, since it allows higher learning rates while maintaining stability, but it is 

too slow for many practical applications. These two methods would be used only when 

incremental training is desired. You can use Levenberg-Marquardt training (Hagen et al, 

2002) for small and medium size networks, if you have enough memory available. If 

memory is a problem, then there are a variety of other fast algorithms available. 

5.2.4 Transfer or Activation functions 

The selection of activation function plays an important role in designing neural 

network. In the present model (network) a bipolar sigmoid function f [u (t)] = tanh[g.u(t)] 

for the hidden layer and linear function f[u(t)] = log[g.u(t)] for the output layer were 

considered. The transfer functions used in the proposed neural network are TANSIG and 

LOGSIG. The training input vectors which are normalised values between 0 and 1.So, the 
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transfer function used in the input layer is .TANSIG. The transfer function used in the 

output layer is LOGSIG. 

5.2.5 Selecting Training Data Sets for P-phase 
Selecting appropriate training data sets is one of the most critical steps in a 

successful training. Our training data set is a subset of actual data. For our phase-picking 

task, the training set should include both signal patterns and noise patterns. The signal 

pattern should represent the typical features of a signal with different frequency 

characters. We do not include the later phase signal patterns because they are much more 

complex and we do not have enough prepicked data for training and testing. Also, we 

exclude those patterns with a very low S/N ratio that can hardly be distinguished from 

noise patterns. A signal's onset point is fixed at a certain position in the moving window, 

following Dai's technique. The part before the onset is made longer than the part after it 

in order to achieve better distinction between the signal patterns and noise patterns. 

Further, the fixed onset point for training signal patterns provides a basis for determining 

the onset time from the detector's output. The noise patterns are extracted from the noise 

parts of the seismic waveforms and are the same length as the signal patterns. The below 

frgure5.5 provides details regarding the signal patterns and noise patterns for each 

attributes of P-wave. How many patterns are needed for good training? And among these 

patterns, how many should be signal patterns and how many noise patterns? A rule of 

thumb is that the patterns in the training set should cover the main categories of signal 

and noise patterns. And Therefore I selected 10 noise pattern categories and 10 signal 

pattern categories. The below figure shows the corresponding attributes of the training 

data for P-waves and background noises. The STA\LTA sequence normalized by the 

maximum value in each window indicates the signal-to-noise variation with time. The 

maximum signal-to-noise ratios of the training patterns for P wave ranges from 20-60 

which result in a group of step like patterns while the background noises have a group of 

flattened lines. The signal patterns for Rectilinearity vary from 0.2 'to 1.0 while the 

background noises are less 0.1. The signal patterns for ratio of maximum to minimum 

horizontal amplitude (hmxmn) which is calculated from the Eigen values of the 

horizontal component decay from 0.1 to 0, where as the background noise vary from 0.2 
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to 1. The Inc 1, a polarization measure derives from the covariance matrix and normalized 

by90°  , has very stable low values for the P-waves. All patterns of Incl are below 0.35, 

corresponding to the long-axis incidence angle less than 22.5° , which indicates that most 

of the P-wave energy is distributed in the horizontal plane. Then the four neural networks 

were trained with the training sets. 
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Figure5.3: The training patterns of four attributes for P-arrivals and 
background noises. P-wave window was selected from 10 points before P arrival to 
40 points after P-arrival. The background noises were extracted just before the 
signals arrive. 
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5.2.6 Termination of Training 
In the neural computing area, there is a phenomenon called overtraining. This 

phenomenon refers to the idea that the network performs poorer with test data when it is 

over-fitted to the training data. Hence, training iteration should be halted at a certain 

point even though the error for the training set can be reduced further. In order to achieve 

proper termination of the training process, we form another independent data set that has 

the same number of samples as the training set and generally is called a validation set in 

the neural computing world. The error measured with the validation set often shows a 

decrease at first, followed by an increase as the network starts to .over fit. Training can 

therefore be stopped at the point of smallest error with respect to the validation set. 

5.2.7 Phase Detection of P-Wave 
To detect the P-Phase we first calculate the observed preprocessing for each 

attribute, taking each windowed segment of this, and feed it to the trained neural network. 

We shift the window by one sample at a time and feed each segment in to the network, 

storing the output. The procedure is repeated until the end of the seismogram is reached. 

In general the output lies between the ideal for a signal or for a noise. The below figures 

represent the corresponding input and output of the neural network for each attribute. In 

each attribute an arrival corresponds to a sharp change so that a threshold may be 

sufficient to detect the arrival and a marker in each figure indicates the detection of P-

phase. 
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These attributes were tested on a data set of seismic events from Gharwal 

Kumaon Region. Around 25 events of varying length (20 sec- 15 min) are checked using 

these algorithms. The results show that STA \ LTA algorithm has detected 68%, 

Rectilinearity has detected 84%, and Incl has detected 56% and 76% by Hmxnm. In 

overall 72% has detected correctly for P-phase 

5.2.8 S-Phase identification using ANN 

For S-. Phase detection, the three component seismograms are input to the system, 

four attributes are computed by four preprocessors as shown in the figure5. 1. The four 

attributes are as follows: (1) Ratio between horizontal power to total power (Rh2t), (2) 

Planarity, (3) Ratio of horizontal-to-vertical power (Hvratp), (4) Short -axis incidence 

angle of polarization ellipsoid (Inc3). The S-phase detection is identified similarly as the 

P-phase is identified; it has the similar structure of neural network 50 input neurons, 4 

neurons in the input layer and 1 in the output layer. Similarly, the four neural subnets are 

input to the final decision neuron. 

5.2.9 Selecting Training Data Sets for S-phase 

Similar to P-phase, 10 noise patterns and 10 signal patterns are chosen. The below 

figure shows the corresponding attributes of the training data for P-waves and 

background noises. The Rh2t, a polarization measure from signal power, changes 

typically from 0.4 to 0.7 for outgoing S-waves, while background noises have almost the 

same values for the same window and have various values for different time windows. 

The Planarity which is a measure of planar characteristic of the polarization ellipsoid 

indicate a large peaks for the S arrival varying from 0.5-1.0, where the background noises 

are within the range of 0.01-0.1. Hvratp, which is ratio of horizontal to total power, 

indicates large peaks in signal patterns to S arrival. Inc3, a polarization measure derives 

from the covariance matrix and normalized by 90° , has very stable low values for the S- 

waves. All patterns of Incl are below 0.35, corresponding to the short-axis incidence 

angle less than 22.5° , which indicates that most of the S-wave energy is distributed in the 

horizontal plane. Then the four neural networks were trained with the training sets. 
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Figure5.8: The training patterns of four attributes for S-arrivals and 
background noises wave window was selected from 10 points before S arrival to 40 
points after S-arrival. The background noises were extracted just before the signals 
arrive. 
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5.2.10 Phase Detection of S-phase 
Similarly to detect the S-Phase we first calculate the observed preprocessing for 

each attribute, taking each windowed segment of this, and feed it to the trained neural 

network. We shift the window by one sample at a time and feed each segment in to the 

network, storing the output. The procedure is repeated until the end of the seismogram is 

reached. In general the output lies between the ideal for a signal or for a noise. The below 

figures represent the corresponding input and output of the neural network, for each 

attribute. In each attribute an arrival corresponds to a sharp change so that a threshold 

may be sufficient to detect the arrival and a marker in each figure indicates the detection 

of S-phase. The results show that Rh2t algorithm has detected 68%, Planarity has 

detected 92%, and Inc3 has detected 60% and 80% by Hvratp. In overall 72% has 

detected correctly for S-phase. 
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Figure5.11: Detection of S-phase by Hvratp, the maxima peak with threshold greater 
than 0.4 is identified as S-wave 
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5.3 PICKING OF ONSET TIME FOR P-WAVE 
In picking the onset time for P-wave, the raw data is used without resampling the 

original frequency. These datas have sampling time of 100 samples per second. Since in 

the above method the sampling time was 10 samples per second, the error was so large in 

picking the onset time for P-wave. In order to get better accuracy and less error, the 

original data is used. From the results obtained from the detection of seismic phase it was 

found that the STA \ LTA algorithm produced better results than any other attribute it 

was found 53% of P-phase is detected with in sample difference of 0-10 samples. 

Therefore I choose this algorithm to find out the onset time for P-wave. The algorithm is 

preprocessed from one horizontal component and input to the artificial neural network. 

The neural network used here is Backpropagation neural network. The structure of 

artificial neural network consists of 400 input neurons, one hidden layer with 40 neurons 

and two neurons in the output layer. The two nodes in the output layer is to flag the 

result: the output is (1,0) for an arrival and (0,1) for pure noise. By means of trial and 

error method we finally choose.40 neurons in the hidden layer. Although this solution is 

considered optimal for the current application, further architecture optimization could 

undoubtedly be achieved by a more exhaustive search procedure on a more powerful 

computer. Similarly like P-phase detection a small number of recordings are used to train 

the network, and the remainders are used to test the performance of the trained network. 

The performance of a trained neural network depends on the training data sets. If we use 

incorrect or inconsistent data to train the neural network, we cannot expect it to give a 

correct answer for new data. For training, the input, segments include either background 

signal or the P wave with some early background signal. The P-wave training segments 

are chosen to include waves with different characters. The function of this.  primary picker 

is to flag as many changes of input as possible and discard those which are P arrivals. 

The segments are arranged so that the predicted onset time of every signal lies at the 

hundredth sample, for which the network output flags (1, 0). This behavior is imprinted on 

every training example. Ten different P-Waves and Ten background signal training 

segments used in the study. After training the neural network is ready to pick the waves. 

To detect or pick an arrival we first calculate the observed STA\ LTA, taking each 

windowed segment of this, and feed it to the trained neural network. We shift the window 
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by one sample at a time and feed each segment into the network, storing the output. The 

procedure is repeated until the end of the seismogram is reached. In general, the output 

(01(t),02(t)) lies between the ideal for a signal or for a noise (for example, (0.8, 0.2) or 

(0.4, 0.6)). To provide a single indication of the onset, we use a function F(t) which 

highlights the difference between the actual output and ideal noise: 

F(t) = 0.5 [(01(t))2  + (1-02(t)2)J 
Figure 5.14 shows an example of output of the neural network for one of the data 

segments in our chosen data set. The peaks in F(t) correspond to abrupt changes in input 

of STA\LTA, with a small value implying a smooth change. These in turn are dependent 

on changes of the amplitude and frequency through the weightings in the network. In this 

curve, there is a large peaks corresponding P wave. Their positions of their maxima occur 

exactly at the manually chosen (onset times of the P wave). We find that for most cases 

an arrival corresponds to a sharp change in F(t) so that a threshold may be sufficient to 

detect the arrival and the P-wave is picked. The below figure shows the picking the onset 

time for P-wave. 
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Figure5.13: Input to the Neural Network for Phase Picking 
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The results showed that out of 25 events, 17 events are detected and picked in 

which 53% have an error < 0.1 second and 29% have time error with in 0.1-0.5 second 

and 6% time error with in 0.5-1 second and 12% have time error with in 1-1.5 second. 

The ANN also works well low SNR, the below figure shows the time difference between 

picking by ANN P-phase picker and by manual picking versus the signal-to-noise 

ratio(SNR).The results of ANN P-phase picker are very satisfactory. 
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Figure5.15: The time difference between picking by the ANN P-phase picker and 
by manual picking versus signal-to-noise-ratio. 

5.4 Software details 

The algorithms which are developed from the eight attributes have been 

implemented using Matlab 7. Neural Network tool box has been used for training and 

testing the neural network. The below figure shows network manager in the neural 

network tool box which is explained clearly. 
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Figure5.16. Representation of Network Manager in Neural Network tool box 

To get started on a new problem does the following: 

1. Create new Input and Target data with [NEW DATA] or import data from the 

workspace or a file with [IMPORT] . 

2. Create a new Network with [NEW NETWORK] or import a network from the 

workspace or a file with [IMPORT]. 

3. Select the network in the Network list and click [TRAIN...] to open the network's 

window to the training tab. 

4. You can use the network's window to train the network, simulate it, or perform other 

tasks such as initialization or editing weights. 

Here are descriptions of each button: 

[HELP] — Opens Help window. 

[NEW DATA...] - Allows you to type in data. 

[NEW NETWORK...] - Allows you to create a new network. 

[IMPORT] - Imports data and networks from the workspace or a file. 

[EXPORT] - Exports data and networks to the workspace or a file. 

[VIEW] - Opens the selected data or network for viewing and editing. 
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[DELETE] - Removes the selected data or network. 

[INITIALIZE] - Opens the selected network for initialization. 

[TRAIN] - Opens the selected network for training. 

[ADAPT] - Opens the selected network for adaptive training. 

Here are descriptions of each list: 

Networks - List of networks. 

Inputs - Data to present to a network. 

Targets - Data defining the desired network outputs. 

Outputs - Response of a nework to its inputs. 

Errors - Difference between targets and outputs. 

Input Delays - Input delay states for networks with input delays. 

Layer Delays - Layer delay states for networks with layer delays. 

The results of seismic phase detection and P-wave picking are explained in the 

next chapter. 
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Chapter #6 

RESULTS 

6.1 AUTOMATIC PHASE IDENTIFICATION OF P-WAVE USING 
ANN 

The detection of P-phase which has been found out by the four 'attributes namely 

STA \ LTA, Rectilinearity, Hmxnm and Inc 1 have been tested on 25 events obtained 

from Garhwal Kumaon Himalayan region. The parameters i.e. filter band, length of 

moving window, sampling frequency, and the parameters of Backpropagation neural 

network, like the structure of the neural network, learning rate and momentum coefficient 

are all optimized to same extent by trial and error method, applying over the same data. 

Pie chart below shows the percentage representation of P-phase detected by STA \ LTA 

using ANN. Out of 25 events used for the detection 68% (i.e., 17 events) has been 

detected P-phase correctly, The ANN P-phase detector of STA \ LTA shows that 82% 

have been detected within sample difference of 20 samples from the 17 events. 

Figure6.1: Percentage distribution of P phase detection of ANN by STA I LTA 

The figure 6.2 represents the pie chart of detection by Rectilinearity, it was found 

that out of 25 events used for testing the ANN 84% (i.e., 21 events) has been correctly 
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detected the P-phase among which 62% of P- phase has been with in a sample interval of 

0-20 samples. 

Figure6.2: Percentage distribution .of P-phase detection of ANN by Rectilinearity 

Out of 25 events which is used for testing the attribute Hmxnm for P-phase 

detection, 19 events has been detected correctly i.e.76% has been detected correctly, the 

results shows that 29% are with in a sample interval of 0-20 samples. And 37% have 

large sample interval of 51-150 samples. 

Automatic Detection of P-Phase by Hmxnm in terms of 
sample interval of Analyst Pick 

37% 

with in 51-150 42% 

samples ~  with in 0-20 
samples 

21% 
with in 2l-5O- 

samples 

Figure 6.3: Percentage distribution of P-phase detection ofANN by Hmxnm 
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The next pie chart in figure 6.4 represents the phase detection by Incl. Out of 25 

events used for testing 14 events has been detected that is 56% has been detected. Among 

the 14 events 29% are with in a sample interval of 0-20 samples .This is shown below. 

Figure 6. 4: Percentage distribution of P phase detection of ANN by Inc] 

For each and every event the above attributes were tested, therefore it was found 

that in each event if any atleast three attribute has detected P-phase correctly, then it has 

declared P-phase for that event. In overall out of 25 events 18 events has detected 

correctly that is 72% has declared P-phase correctly. 

6.2 AUTOMATIC PHASE IDENTIFICATION OF S-WAVE USING 
ANN 

The detection of S-phase which has been found out by the four attributes namely 

Rh2t, Planarity, Hvratp and Inca have been tested on 25 events obtained from Garhwal 

Kumaon Himalayan region. The parameters i.e. filter band, length of moving window, 

sampling frequency, and the parameters of Backpropagation neural network, like the 

structure of the neural network, learning rate and momentum coefficient are all optimized 

to some extent by trial and error method, applying over the same data. Pie chart below 

shows the percentage representation of S-phase detected by Rh2t using ANN. Out of 25 

events used for the detection 68% (i.e., 17 events) has been detected S-phase correctly, 
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The ANN S-phase detector of STA \ LTA shows that 23% have been detected within 

sample interval of 0-10 samples from the 17 events. 

Figure 6.5: Percentage distribution of S-phase detection of ANN by Rh2t 

The figure 6.6 represents the pie chart of detection by Planarity, it was found that out of 

25 events used for testing the ANN 92% (i.e., 23 events) has been correctly detected the 

S-phase among which 48% of S- phase has been with in a sample interval of 0-30 

samples. 

Automatic Detection of S-Phase by Planarity in terms of 
sample interval of Analysts Pick 

with in 11-20 
samples 

52% 	 18% 
with in 31-60 	 with in 0-10 

samples 	 samples 

12% 
with in 21-30 

samples 

Figure 6. 6: Percentage distribution of S phase detection ofANN by Planarity 
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Out of 25 events which is used for testing the attribute Hvratp for S-phase 

detection, 20 events has been detected correctly i.e.80% has been detected correctly, the 

results shows that 55% are with in a sample interval of 0-20 samples. And 10% have 

large sample interval of 51-120 samples. 

Automatic Detection of S-Phase by Hvratp in terms of 
sample interval of Analysts Pick 

10% 
30% 

with in 51-120 with in 0-10 

samples samples 

3 35% 
25%  

with in 21-5 ~ ith in 11-20 

samples samples  

Figure 6. 7: Percentage distribution of S-phase detection of ANN by Hvratp 

The next pie chart in figure 6.8 represents the S-phase detection by Inc3. Out of 

25 events used for testing 15 events has been detected that is 60% has been detected. 

Among the 15 events 34% are with in a sample interval of 0-20 samples This is shown 

below. 

Automatic Detection of S-Phase by Inc3 terms of sample 
interval of Analyst Pick 

40% 

with in 61-25C 
samples 

34% 

with in 
Isamples 

26% 

with in 21-60 
samples 

Figure6.8: Percentage distribution of S phase detection of ANN by Inc3 
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6.3 AUTOMATIC PHASE PICKING OF P-WAVE USING ANN 

The Phase picking of P-wave by ANN is done using the conventional algorithm 

STA \ LTA; they have been tested on 25 events obtained from Garhwal Kumaon 

Himalayan region. The parameters i.e. filter band, length of moving window, sampling 

frequency, and the parameters of Backpropagation neural network, like the structure of 

the neural network, learning rate and momentum coefficient are all optimized to some 

extent by trial and error method, applying over the same data. Here the structure of neural 

network is 400-40-2 which implies that 400 as input neurons, 40 neurons in hidden layer 

and 2 neurons in the output layer. In comparing all the eight attributes STA \ LTA was 

found to be precise with detecting P-phase with less sample interval, and so I choose this 

algorithm STA \ LTA for picking purpose. Here the resampling is not done, the sampling 

frequency is used as it is 100 samples / second. In order to get more accuracy in picking 

we used the original data itself. The pie chart explains clearly about the phase picking of 

P-wave using ANN. It has found that out of 25 events 17 events has been detected and 

picked correctly. Among the 17 events, 53% are picked correctly with less than 0.1 

second, 29% are picked with in 0.1-0.5 second and 18% are picked with in 0.51-1.5 

second. 

Autopicks within some time interval ofAnalysts pick of 
P-wave 

29% 
with in 0.1-0.5 

second 

E r 6% 
53% :' with in 0.51-1.0 

less than 0.1 .. second 
second 

12% 
"—within 1-1.5 

second 

Figure6.9: Percentage distribution of P phase picking of ANN by'STA I LTA 
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Chapter # 7 

CONCLUSIONS AND DISCUSSION 

7.1 Conclusions 
The objective of the work described in this article is to implement the artificial 

neural networks for seismic phase detection and P-wave picking which is important for 

teleseismic, local and regional seismic monitoring. Faster computer, improved 

algorithms, and better data quality make it possible now to process real-time seismic data 

quickly, accurately and automatically. To take advantage of recent developments in the 

digital signal processing, we designed automatic phase identification and picking system 

that can process several properties of the signal simultaneously using artificial neural 

networks. The artificial neural network used in this study is multilayer feedforward 

Backpropagation neural network which is used in many applications. Feature selection 

from input signal is an important process in application of artificial neural networks. 

Properly selecting the features of signal will result in better performance of a neural 

network. In this study, several attributes related to P-phase arrival and S-phase arrival 

were analysed in terms of sensitivity and efficiency. Comparing the performance of each 

feature in discriminating the P and S wave, eight features were selected as input attributes 

in which the first four are used for the ANN P-Wave and next four attribute for S-Wave 

picker : (1) Ratio between short-term average and long-term average (STA\LTA). (2) 

Rectilinearity, (3) Ratio of maximum to minimum horizontal amplitude (hmxnm), (4) 

Long-axis incidence angle of polarization ellipsoid (Inc 1) (5) Ratio between horizontal 

power to total power (Rh2t), (6) Planarity, (7) Ratio of horizontal-to-vertical power 

(Hvratp), (8) Short-axis incidence angle of polarization ellipsoid (Inc3). The preliminary 

training and testing were conducted with a set of seismic readings obtained from Garhwal 

Kumaon Himalayan region. The results of the training and testing show that the artificial 

neural networks P-phase picker and S-phase detector can detect seismic phase and pick 

P-wave with satisfactory time accuracy. Overall, an result of 72% correct rate of phase 

identification has been achieved by both, the trained ANN P-phase detector and the 

trained S-phase detector, and 53% of P-wave are precisely picked with less than 0.1 sec 
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onset time error by STA \ LTA algorithm using ANN P-phase picker. We believe that 

this method is a very promising approach in automatic phase identification and onset time 

estimation. 

7.2 Discussions with Future Scope 
This work forms part of an ongoing programme of research to develop a fully 

automatic subsystem for earthquake analysis, for which picking the seismic arrivals is the 

key procedure. Since in this analysis we develop an approach towards the task of arrival 

identification of P wave using polarization characteristics, the algorithms discussed in 

this dissertation work well for quasi-real time algorithms. We intend- this approach so 

that more complex wave trains such as an S and L wave may be picked and analysed. 

Accuracy of these algorithms can be enhanced further if the noise encroachment at the 

recording station is reduced. For instance, there is a hut and there are three trees near the 

recording station of Garhwal Kumaon, which are the sources of man-made noise and air 

vibration (both are surface waves). Ultimately we hope to integrate other ANN units into 

a processing flow for record editing and event classification and mechanism 

determination. The neural network can also be applied to other seismic classification, 

discrimination and inversion problems and it will emerge as an important seismological 

tool in the future. 

83 



REFERENCES 

Andy Jurkevics, {October 1998}, "Polarization Analysis of Three-Component Array 
data", Bulletin of the seismological society of America, 78, pp 1725-1743. 
Brijesh Pandya, Pankaj Porwal and Pradipta banerji, (2002), "Application of 
artificial neural network in development of site-specific response spectra ", 12th SEE 
(Symposium on earthquake Engineering), IIT Roorkee. pp. 199-207. 

Carr Mathew, Richard Cooper, et al., {August 2001}, "The integration of surface 
seismic and borehole data using artificial neural network clustering methods ", ASEG 
15th  Geophysical conference and Exhibition, Brisbane. 
Dai Hengchang and Colin Macbeth, (1995), "Automatic picking of seismic arrivals in 
local earthquake data using an artificial neural network", Geophys.J.Int. 120, pp. 758-
774. 

Del Edoardo Pezzo, Anna Esposito, et al., {2003}, "Discrimination of earthquakes and 
underwater explosions using neural networks ", Bulletin of the seismological society of 
America, 93, pp 215-223 
Estela Minaya, Percy Aliaga, et al., "Neural network and wavelets model in seismic 
location for the central Andes of Bolivia", Army space defense and missile 
command.25th  Seismic Research Review — Nuclear Explosion Monitoring: Building the 
Knowledge Base. 
Feng Xia-ting, M. Seto and K. Katsuyama, (1997), "Neural dynamic modeling on 
earthquake magnitudes magnitude series ",Journal of Geophysics 128, pp. 547-556. 

Fu Limin, (2003), "Neural Networks in Computer Intelligence ", Tata McGraw-Hill 
Edition. 
Hagen, Demuth & Beale (2002), "Neural Network Design ", Thomason 
LearningHaykin Simon "Neural Networks" Second Edition, Pearson Education. 

McCormack Michael D., David E. Zaucha, and Dennis W. Dushek, (January 1993), 
"First- break refraction event picking and seismic data trace editing using neural 
networks ", Bulletin of the seismological society of America 58, pp. 67-78. 
Pathak, J D.K. Paul and P.N. Godbole, {2002}, "ANN based model for simulation of 
design earthquake in the Himalayan region ", 12th  SEE (Symposium on earthquake 
Engineering), IIT Roorkee. pp. 187-198. 
Pathak, J D.K. Paul and P.N. Godbole, (December 1998), "Application of ANN in 
simulation of earthquake: A critical review ", 11th  symposium on earthquake Engineering, 
IIT Roorkee. pp. 271-280. 
Robert Essenreiter, Martin Karrenbach, & Sven Treitel {July 1998), "Multiple 
Reflection Attenuation in Seismic Data Using Backpropagation ". IEEE Ttransactions on 
Signal Processing, Vol. 46, No. 7. 

84 



Sharma Mukat L., and Manoj K. Arora, {2005}, "Prediction of seismicity cycles in the 
Himalayas using artificial neural network", ACTA Geophysica polonica, 53, pp. 299-
309. 

Stein S & Wysessern {2003}, "An Introduction to Earthquakes and Earth's Structures" 
— Blackwell Publishing. 
Wang Jin {2002}, "Adaptive training of neural networks for automatic seismic phase 
identification", Pure applied geophysics. 159, pp 1021-1041 
Wang Jin and Ta-liang Teng, {1997}, "Identification and picking of S phase using an 
artificial neural network", Bulletin of the seismological society of America, 87, pp. 
1140-1149. 

Wang Jin and Ta-Liang Teng, {February 1995,} "Artificial neural network-based 
seismic detector", 85, pp. 308-319. 

www.deprem.cs.itu.edu.tr/neural,  "Neural network based electric field pattern 
recognition for earthquake prediction" 
www.quake.gatech.edu,  "Artificial neural network applications in earthquake 
prediction" 

Yair Shimshoni and Nathan Intrator, {May 1998} "Automatic seismic classification by 
integrating ensembles ofANN", IEEE, Transaction in signal processing, Vol 46, No.7. 

Zhao Y and Kiyoshi Takano {1999}, "An artificial neural network approach for 
broadband seismic phase picking", Bulletin of the seismological society of America. 89, 
pp 670-680. 
Zurada Jacek M, {2004}, "Introduction to Artificial Neural Systems ", Jaico Publishing 
House. 


	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Reference

