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ABSTRACT 

Chemical processes are systems that include complicated networks of material, 

energy and signal flow. As time passes, the performance of chemical process equipment 

gradually degrades due to deterioration of process components. In addition, ambient 

disturbances endanger the process upsets. Both factors lead to values of process variables at 

variance with those expected under normal operating conditions. Early detection and 

diagnosis of process faults while the process is still operating in a controllable region can 

help avoid normal event progression and reduce productivity. Hence fault detection and 

diagnosis is an important problem with respect to safety and productivity in process 

engineering. 

Over the last decade an extensive search has been carried out in the area of 

Intelligent Control. Emerging technologies such as Fuzzy Logic have received much 

attention in the control area. In recent years Fuzzy logic has emerged as a mathematical tool 

to deal with faults in the process at incipient stage. It also provides a frame work for an 

inference mechanism that allows for approximate human reasoning capabilities to be applied 

to knowledge based systems. This technique has been claimed to yield excellent results for 

some applications. 

The distillation column is probably the most popular and important process studied 

in chemical engineering literature, it is usually controlled by conventional proportional 

integrative derivative (PID) controller. The project "Intelligent Control Application for 

Industrial Process Safety" proposes application of Fuzzy Logic in Fault detection and 

diagnosis for distillation column safety. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

With the ever increasing competition in the global market, process industries are 

faced with a situation where continuous improvement in process condition, production 

techniques, equipments, machinery etc. is the necessasity. The quest for making the 

process cost efficient often draws a process condition which is not only severe but 

may often abet abnormal (hazardous) situation unless a good safety policy and a sound 

risk analysis is observed. 

The growth of an industry is also reasonably dependent upon technological 

advances. This is especially true in the Chemical Industry, which is entering an era of 

more complex process: higher pressure, more reactive chemicals and exotic chemistry. 

More complex process requires more complex safety technology. Many industrialists 

even believe that the development and application of safety technology is actually a 

constraint on the growth of the chemical industry. 

As chemical process technology becomes more complex safety becomes 

paramount in the minds of those responsible for the design and operation of process 

plant. Until the 1960's most organizations had their own methods of safety assurance, 

relying very much on in house experience and expertise. The whole structure of 

process industries has changed dramatically in the last thirty years and much of the 

accumulated experience and expertise has now been lost. It is therefore essential that 

formal methods of safety analysis are available to the process industries to ensure the 

safe and efficient operation of their processes. 

Today, safety is equal in importance to production and has developed into a 

specific discipline, which includes many highly technical and complex theories and 

practices. Recent advances in chemical plant safety emphasize the use of appropriate 
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technological tools to provide information for making safety decisions with respect to 

plant design and operation. 

1.2 FAULT DETECTION AND DIAGNOSIS AS IMPORTANT SAFETY 

ASPECT 

One of the primary aspects of safety is the fault detection and diagnosis. 

Abnormal situations occur when processes deviate significantly from their normal 

regime during on-line operation. Abnormal situation management (ASM) deals with 

timely detection and diagnosis, assessment of the abnormal situation and 

countermeasure planning. Process fault diagnosis (PFD) is the first step in ASM 

dealing with detection and isolation of abnormal events, i.e. analysis of root causes 

that result in abnormal behavior. The area of fault detection and diagnosis is an 

important aspect of process engineering. Not only is it important from a safety 

viewpoint, but also for the maintenance of yield and quality in a process. This area has 

received considerable attention from industry and academia alike because of the 

economic and safety impact involved. The early detection of faults can help avoid 

system shut-down, breakdown and even catastrophes involving human fatalities and 

material damage. A system which includes the capacity of detecting, isolating, 

identifying or classifying faults is called a fault diagnosis system 

1.3 INTELLIGENT CONTROL (SYSTEM) 

In May 1993, a task force was created at the invitation of the Technical 

Committee on Intelligent Control of the IEEE Control Systems Society to look into 

the area of Intelligent Control and define what is meant by the term. Its findings are 

aimed mainly towards serving the needs of the Control Systems Society and on 

deriving working characterizations of Intelligent Control. Many of the findings 

however may apply to other disciplines as well. The charge to the task force was to 

characterize intelligent control systems, to be able to recognize them and distinguish 

them from conventional control systems; to clarify the role of control in intelligent 

systems; and to help identify problems where intelligent control methods appear to be 

the only viable avenues. 
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Deregulation requires that utilities exercise less conservative operation regimes 

and more precise power-flow control. This is possible only by monitoring and 

controlling the system in much more detail than is, or has been, the case in present and 

past practice. The large quantity of information required can be provided in many 

cases through advances in telecommunications and computing techniques. There is 

still the need for evaluation techniques that extract the salient information from the 

large amount of raw data to use for higher-order processing. Up until now, the 

extraction of qualitative information is still done by the human expert, who can be 

overwhelmed in emergency situations when fast decisions are needed. The future 

operators also need to have the ability to specify the operating strategy in qualitative 

form, which is then translated into quantitative form in order to be processed by the 

computer control. 

An intelligent system has the ability to act appropriately in an uncertain 

environment where an appropriate action is that which increases the probability of 

success, and success is the achievement of behavioral sub-goals that support the 

system's ultimate goal. In order for a man-made intelligent system to act appropriately, 

it may emulate functions of living creatures and ultimately human mental faculties. An 

intelligent system can be characterized along a number of dimensions. There are 

degrees or levels of intelligence that can be measured along the various dimensions of 

intelligence. At a minimum, intelligence requires the ability to sense the environment, 

to make decisions and to control action. Higher levels of intelligence may include the 

ability to recognize objects and events, to represent knowledge in a world model and 

to reason about and plan for the future. 

Intelligent Systems can be categorized as: 

➢ Expert Systems which process qualitative as well as quantitative knowledge with 

emphasis on the qualitative results. 

➢ Fuzzy Systems which quantify qualitative knowledge including uncertainties. 

➢ Artificial Neural Networks which infer quantitative information through 

approximation techniques and classify quantitative data into higher-order 

qualitative categories. 
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➢ Decision Trees (DT) which classifies quantitative data into discrete sets of 

qualitative categories. 

The concepts of intelligence and control are closely related and the term 

"Intelligent Control" has a unique and distinguishable meaning. An intelligent system 

must define and use goals. Control is then required to move the system to these goals 

and to define such goals. Consequently, any intelligent system will be a control 

system. Conversely, intelligence is necessary to provide desirable functioning of 

systems under changing conditions, and it is necessary to achieve a high degree of 

autonomous behavior in a control system. Since control is an essential part of any 

intelligent system, the term "Intelligent Control Systems" is sometimes used in 

engineering literature instead of "Intelligent Systems" or "Intelligent Machines". The 

term "Intelligent Control System" simply stresses the control aspect of the intelligent 

system. 

1.4 OBJECTIVE OF DISSERTATION 

Fault diagnosis of control engineering systems can be based upon the generation 

of signals which reflect inconsistencies between the fault-free and faulty system 

operation so called residual signals. The large quantity of information required can be 

provided in many cases through advances in instrumentation and computing 

techniques. There is still the need for evaluation techniques that extract the salient 

information from the large amount of raw data to use for higher-order processing. Up 

until now, the extraction of qualitative information is still done by the human expert, 

who can be overwhelmed in emergency situations when fast decisions are needed. The 

future operators also need to have the ability to specify the operating strategy in 

qualitative form, which is then translated into quantitative form in order to be 

processed by the computer control. One of the main motivations for using intelligent 

systems is to provide this important interface between qualitative and quantitative 

information. 

Artificial intelligence approaches to fault diagnosis can be very effective in 

enhancing the powerful detection and isolation capabilities of quantitative model- 
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based methods. The objective of the dissertation is to demonstrate the application of 

Intelligent Control (through Fuzzy Logic) in the integration of qualitative and 

quantitative strategies in a fault diagnostic system. The Fuzzy Logic fault diagnostic 

system can minimize the probability of false-alarms and missed-alarms in fault 

decision making, while improving the level of heuristic information available for the 

human operator. 
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CHAPTER 2 

LITERATURE REVIEW 

There are a lot of literatures available on Intelligent Control, Fuzzy Logic (FL) 

as well as Distillation Column Control. For the preparation of the project report many 

papers and books have proved beneficial, some of the literatures which have been 

beneficial in preparation of this report along with the features incorporated are 

discussed below. 

For the basic understanding of the distillation column control, the book by 

Buckley, P.S., Luyben, W.L., Shunta, J.P., "Design of Distillation Column Control 

Systems", Instruments Society of America 1985, has been very helpful. The book is 

useful primarily from the stand point of an engineering design organization and is 

written keeping in view the drawbacks in the conventional control design of 

distillation column. 

Looking at background information that forms the motivation of dissertation, 

there have been a number of recent papers in the fuzzy literature showing that fuzzy 

systems are universal approximations. For basic concept of fuzzy logic, Horowitz, I., 

"Fuzzy logic tutorial", IEEE Trans. SMC, Vol. 17, No 6, Nov/Dec 1989, pp. 1085-

1087 has been used. In the paper Fuzzy Logic was conceived as a better method for 

sorting and handling data but has proven to be an excellent choice for many control 

system applications since it mimics human control logic. It can be built into anything 

from small, hand-held products to large computerized process control systems. It uses 

an imprecise but very descriptive language to deal with input data more like a human 

operator. 

Dash, S., Rengaswamy, R., Venkatasubramanian, V., "Fuzzy-logic based 

trend classification for fault diagnosis of chemical process", Computers and 

Chemical Engineering, Vol. 27, 2003, pp. 347-362, considered fault diagnosis based 

on patterns exhibited in the sensors measuring the process variables. The temporal 

patterns that a process event leaves on the measured sensors, called event signatures, 
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have been utilized to infer the state of operation. They employed a two staged 

strategy using a pattern-matching approach. The first stage identifies the most likely 

fault candidates based on a similarity measure between the observed trends and the 

event-signatures in the knowledge base. The second stage is the estimation of the 

fault magnitude. 

Elnemr, H., A., Elewa, M., M., "Expert failure detection technique for 

distillation column", IEEE, Vol. 6, 1996, pp. 1323 -1328, described an expert system 

for diagnosis of faults in a distillation column. The faults are in the incipient stage but 

may lead to serious situations in the near future. To demonstrate the feasibility of 

applying expert system in fault detection and diagnosis, they illustrated a numerical 

example. The results demonstrate the effectiveness of expert systems for real time 

fault diagnosis. 

Venkatasubramanian, V., et al. reviewed process fault detection and diagnosis in 

three paper series. In the first paper of the series, Venkatasubramanian, V., 

Rengaswamy, R., Kavuri, "A review of process fault detection and diagnosis Part 

I: Quantitative model-based methods", Computers and Chemical Engineers, Vol. 

27, 2003, pp. 293-311, they discussed a general diagnostic framework. The desirable 

characteristics of a fault diagnostic system have also been discussed. The paper also 

describes the various Quantitative model based fault diagnostic methods in detail. 

The second paper by Venkatasubramanian, V., Rengaswamy, R., Kavuri, "A 

review of process fault detection and diagnosis Part II: Qualitative models and 

search strategies", Computers and Chemical Engineers, Vol. 27, 2003, pp. 313-

326, reviewed qualitative model representations and search strategies used in fault 

diagnostic systems. Qualitative models are usually developed based on some 

fundamental understanding of the physics and chemistry of the process. Various 

forms of qualitative models such as causal models and abstraction hierarchies are 

discussed. The relative advantages and disadvantages of these representations are 

highlighted. In terms of search strategies, we broadly classify them as topographic 

and symptomatic search techniques. Topographic searches perform malfunction 

analysis using a template of normal operation, whereas, symptomatic searches look 
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for symptoms to direct the search to the fault location. Various forms of topographic 

and symptomatic search strategies are discussed. 

In the final part of the series, Venkatasubramanian, V., Rengaswamy, R., Kavuri, 

S.N., Yin, K., "A review of process fault detection and diagnosisPart III: Process 

history based methods", Computers and Chemical Engineers, Vol. 27, 2003, pp. 

327-346, discussed fault diagnosis methods that are based on historic process 

knowledge. We also compare and evaluate the various methodologies reviewed in 

this series in terms of the set of desirable characteristics we proposed in Part I. This 

comparative study reveals the relative strengths and weaknesses of the different 

approaches. The important role of fault diagnosis in the broader context of process 

operations is also outlined. 

Book by Bequette, B. W., "Process Control- Modeling, Design and 

Simulation", Eastern Economy Edition, Prentice Hall India, has been useful in 

analyzing dynamic chemical processes and developing automatic control strategies to 

operate them safely and economically. The contents of the book are written in lucid 

language and also uses interactive learning through computer based simulation 

exercises. The popular MATLAB software package, including SIMULINK block-

diagram simulation environment, is used. 

Wood, R., K., Berry, M., W., "Terminal composition control of a binary 

distillation column", Chemical Engineering Science, Vol. 28, 1973, pp. 1707-

1717, studied terminal composition control of a pilot scale binary distillation column 

operated under the control of an IBM 1800 digital computer for disturbances in feed 

flow rate. Conventional two point control, whereby the overhead composition is 

controlled by reflux flow rate and bottom composition by means of steam rate, was 

demonstrated to be unsatisfactory. Two alternate control systems, namely a non-

interacting control system and a ratio control system were evaluated. The results show 

that a very significant improvement in the control of both compositions is achieved by 

using non interacting control. 
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Skogestad, S., and Morari, M. in "Control configuration selection for 

distillation columns", AIChE Journal, Vol. 33, No. 10, 1987, pp. 1620 — 1635, 

discussed the main issues that must be addressed when designing a composition 

control system. The paper outlines simplified control system design of two product 

distillation column by means of the following procedure. 

A Choosing two manipulated inputs for composition control (corresponding to 

specific control configuration). 

A Designing the level and pressure control system (usually three SISO controllers). 

A Designing a 2x2 controller for composition control. 

The paper provides guidelines for step I , which is considered the most 

important. Differences between control configurations have been discussed 

elaborately. The illustration of a distillation column fault diagnosis using fuzzy logic 

tool in the dissertation report has been taken from this paper. 

Gani, R., Rurz, C., A. and Camerons, I., T., "A generalized model for 

distillation columns-I" generalized model for the dynamic simulation of distillation 

columns. The model allows the solution of a wide variety of problems, from open- and 

closed-loop responses of single (and multiple) columns to operability studies (of feed 

changeover and start-up operations) and column instability studies (effect of plate 

hydraulics during transient operations). Results are given for single columns 

(including industrial) as well as multiple columns for different types of operations. 

The problems include thermodynamically close to ideal systems to highly non ideal 

systems. Efficient and robust numerical integrators are used to obtain reliable 

solutions even for difficult discontinuous operations. Results are given for single 

columns (including industrial) as well as multiple columns for different types of 

operations 

Koyuncu, M., and Yazici, A., in their paper "A Fuzzy Knowledge-Based 

System for Intelligent Retrieval" discussed the importance of developing an 

environment that permits flexible modeling and fuzzy querying of complex data and 

knowledge including uncertainty. With such an environment, one can have intelligent 
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retrieval of information and knowledge, which has become a critical requirement for 

those applications. In this paper, we introduce a fuzzy knowledge-based (FKB) system 

along with the model and the inference mechanism. The inference mechanism is based 

on the extension of the Rete algorithm to handle fuzziness using a similarity- based 

approach. The proposed FKB system is used in the intelligent fuzzy object-oriented 

database environment, in which a fuzzy object-oriented database is used to handle 

large scale of complex data while the FKB system is used to handle knowledge of the 

application domain. Both the fuzzy object-oriented database system and the fuzzy 

knowledge-based system are based on the object-oriented concepts to eliminate data 

type mismatches. 
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CHAPTER 3 

FAULT DETECTION AND DIAGNOSIS 

The term fault is generally defined as a departure from an acceptable range of 

an observed variable or a calculated parameter associated with a process. This defines 

a fault as a process abnormality or symptom, such as high temperature in a reactor or 

low product quality and so on. The underling cause(s) of this abnormality, such as a 

failed coolant pump or a controller, is (are) called the basic event(s) or the root 

cause(s). The basic event is also referred to as a malfunction or a failure. Since one 

can view the task of diagnosis as a classification problem, the diagnostic system is also 

referred to as a diagnostic classifier. 

Fig. 3.1 depicts the components of a general fault diagnosis framework. The 

figure shows a controlled process system and indicates the different sources of failures 

in it. In general, one has to deal with three classes of failures or malfunctions as 

described below: 

3.1 GROSS PARAMETER CHANGES IN A MODEL 

In any modeling, there are processes occurring below the selected level of 

detail of the model. These processes which are not modeled are typically lumped as 

parameters and these include interactions across the system boundary. Parameter 

failures arise when there is a disturbance entering the process from the environment 

through one or more exogenous (independent) variables. An example of such a 

malfunction is a change in the concentration of the reactant from its normal or steady 

state value in a reactor feed. Here, the concentration is an exogenous variable, a 

variable whose dynamics is not provided with that of the process. Another example is 

the change in the heat transfer coefficient due to fouling in a heat exchanger. 
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3.2 STRUCTURAL CHANGES 

Structural changes refer to changes in the process itself. They occur due to hard 

failures in equipment. Structural malfunctions result in a change in the information 

flow between various variables. To handle such a failure in a diagnostic system would 

require the removal of the appropriate model equations and restructuring the other 

equations in order to describe the current situation of the process. An example of a 

structural failure would be failure of a controller. Other examples include a stuck 

valve, a broken or leaking pipe and so on. 

3.3 MALFUNCTIONING SENSORS AND ACTUATORS 

Gross errors usually occur with actuators and sensors. These could be due to a 

fixed failure, a constant bias (positive or negative) or an out-of range failure. Some of 

the instruments provide feedback signals which are essential for the control of the 

plant. A failure in one of the instruments could cause the plant state variables to 

deviate beyond acceptable limits unless the failure is detected promptly and corrective 

actions are accomplished in time. It is the purpose of diagnosis to quickly detect any 

instrument fault which could seriously degrade the performance of the control system. 

3.4 DESIRABLE CHARACTERISTICS OF A FAULT DIAGNOSTIC 

SYSTEM 

Whenever an abnormality occurs in a process, a general diagnostic classifier 

would come up with a set of hypotheses or faults that explains the abnormality. 

Completeness of a diagnostic classifier would require the actual fault(s) to be a subset 

of the proposed fault set. Resolution of a diagnostic classifier would require the fault 

set to be as minimal as possible. Thus, there is a trade-off between completeness and 

resolution. The trade-off is in the accuracy of predictions. These two concepts would 

recur whenever different classifier designs are compared. The following presents a set 

of desirable characteristics one would like the diagnostic system to possess. 
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3.4.1 Quick Detection and Diagnosis 

The diagnostic system should respond quickly in detecting and diagnosing 

process malfunctions. However, quick response to failure diagnosis and tolerable 

performance during normal operation are two conflicting goals. A system that is 

designed to detect a failure (particularly abrupt changes) quickly will be sensitive to 

high frequency influences. This makes the system sensitive to noise and can lead to 

frequent false alarms during normal operation, which can be disruptive. This is 

analogous to the trade-off between robustness and performance noticed in the control 

literature. 

3.4.2 Isolability 

Isolability is the ability of the diagnostic system to distinguish between different 

failures. Under ideal conditions free of noise and modeling uncertainties, this amounts 

to saying that the diagnostic classifier should be able to generate output that is 

orthogonal to faults that have not occurred. Of course the ability to design isolable 

classifiers depends to a great extent on the process characteristics. There is also a 

trade-off between isolability and the rejection of modeling uncertainties. Most of the 

classifiers work with various forms of redundant information and hence there is only a 

limited degree of freedom for classifier design. Due to this, a classifier with high 

degree of isolability would usually do a poor job in rejecting modeling uncertainties 

and vice versa. 

3.4.3 Robustness 

One would like the diagnostic system to be robust to various noise and 

uncertainties. One would like its performance to degrade gracefully instead of failing 

totally and abruptly. Robustness precludes deterministic isolability tests where the 

thresholds are placed close to zero. In the presence of noise, these thresholds may have 

to be chosen conservatively. 
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3.4.4 Novelty Identifiability 

One of the minimal requirements of a diagnostic system is to be able to decide, 

given current process conditions, whether the process is functioning normally or 

abnormally, and if abnormal, whether the cause is a known malfunction or an 

unknown, novel, malfunction. This criterion is known as novelty identifiability. In 

general, sufficient data may be available to model the normal behavior of the process. , 
However, one typically does not have such historic process data available for 

modeling the abnormal regions satisfactorily (off course, if one has access to a good 

dynamic model of the process, then generating such data is much easier). Only a few 

data patterns may be available covering portions of the abnormal region. Thus, it is 

possible that much of the abnormal operations region may not have been modeled 

adequately. This will pose serious challenges in achieving novelty identifiability. Even 

under these difficult conditions, one would like the diagnostic system to be able to 

recognize the occurrence of novel faults and not misclassify them as one of the other 

known malfunctions or as normal operation. 

3.4.5 Classification Error Estimate 

An important practical requirement for a diagnostic system is in building the 

user's confidence on its reliability. This could be greatly facilitated if the diagnostic 

system could provide a priori estimate on classification error that can occur. Such 

error measures would be useful to project confidence levels on the diagnostic 

decisions by the system giving the user a better feel for the reliability of the 

recommendations by the system. 

3.4.6 Adaptability 

Processes in general change and evolve due to changes in external inputs or 

structural changes due to retrofitting and so on. Process operating conditions can 

change not only due to disturbances but also due to changing environmental 

conditions such as changes in production quantities with changing demands, changes 

in the quality of raw material etc. Thus the diagnostic system should be adaptable to 
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changes. It should be possible to gradually develop the scope of the system as new 

cases and problems emerge, as more information becomes available. 

3.4.7 Explanation facility 

Besides the ability to identify the source of malfunction, a diagnostic system 

should also provide explanations on how the fault originated and propagated to the 

current situation. This is a very important factor in designing on-line decision support 

systems. This requires the ability to reason about cause and effect relationships in a 

process. A diagnostic system has to justify its recommendations so that the operator 

can accordingly evaluate and act using his/her experience. One would like the 

diagnostic system to not only justify why certain hypotheses were proposed but also 

explain why certain other hypotheses were not proposed. 

3.4.8 Modeling requirements 

The amount of modeling required for the development of a diagnostic classifier 

is an important issue. For fast and easy deployment of real-time diagnostic classifiers, 

the modeling effort should be as minimal as possible. 

3.4.9 Storage and Computational Requirements 

Usually, quick real-time solutions would require algorithms and 

implementations which are computationally less complex, but might entail high 

storage requirements. One would prefer a diagnostic system that is able to achieve a 

reasonable balance on these two competing requirements. 

3.4.10 Multiple Fault Identifiability 

The ability to identify multiple faults is an important but a difficult requirement. 

It is a difficult problem due to the interacting nature of most faults. In a general 

nonlinear system, the interactions would usually be synergistic and hence a diagnostic 

system may not be able to use the individual fault patterns to model the combined 
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effect of the faults. On the other hand, enumerating and designing separately for 

various multiple fault combinations may not be possible for large processes. 
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Figure 3. 1 A General Fault Diagnostic System. 
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CHAPTER 4 

FUZZY LOGIC AND FAULT DIAGNOSIS 

4.1 GENERAL 

The concept of Fuzzy Logic (FL) was conceived by Lotfi Zadeh, a professor at 

the University of California at Berkley, and presented not as a control methodology, 

but as a way of processing data by allowing partial set membership rather than crisp 

set membership or non-membership. This approach to set theory was not applied to 

control systems until the 70's due to insufficient small-computer capability prior to 

that time. Professor Zadeh reasoned that people do not require precise, numerical 

information input, and yet they are capable of highly adaptive control. If feedback 

controllers could be programmed to accept noisy, imprecise input, they would be 

much more effective and perhaps easier to implement. Unfortunately, U.S. 

manufacturers have not been so quick to embrace this technology while the Europeans 

and Japanese have been aggressively building real products around it. 

In this context, FL is a problem-solving control system methodology that lends 

itself to implementation in systems ranging from simple, small, embedded micro-

controllers to large, networked, multi-channel PC or workstation-based data 

acquisition and control systems. It can be implemented in hardware, software, or a 

combination of both. FL provides a simple way to arrive at a definite conclusion based 

upon vague, ambiguous, imprecise, noisy, or missing input information. FL's approach 

to control problems mimics how a person would make decisions, only much faster. 

4.2 WORKING PRINCIPLE OF FUZZY LOGIC 

FL requires some numerical parameters in order to operate such as what is 

considered significant error and significant rate-of-change-of-error, but exact values of 

these numbers are usually not critical unless very responsive performance is required 

in which case empirical tuning would determine them. For example, a simple 

temperature control system could use a single temperature feedback sensor whose data 
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is subtracted from the command signal to compute "error" and then time-differentiated 

to yield the error slope or rate-of-change-of-error, hereafter called "error-dot". Error 

might have units of degs F and a small error considered to be 2F while a large error is 

5F. The "error-dot" might then have units of degs/min with a small error-dot being 

5F/min and a large one being 15F/min. These values don't have to be symmetrical and 

can be "tweaked" once the system is operating in order to optimize performance. 

Generally, FL is so forgiving that the system will probably work the first time without 

any tweaking. 

FL was conceived as a better method for sorting and handling data but has 

proven to be a excellent choice for many control system applications since it mimics 

human control logic. It can be built into anything from small, hand-held products to 

large computerized process control systems. It uses an imprecise but very descriptive 

language to deal with input data more like a human operator. It is very robust and 

forgiving of operator and data input and often works when first implemented with 

little or no tuning. 

4.3 NECESSITY OF FUZZY LOGIC 

FL offers several unique features that make it a particularly good choice for 

many control problems. 

a) It is inherently robust since it does not require precise, noise-free inputs and can 

be programmed to fail safely if a feedback sensor quits or is destroyed. The output 

control is a smooth control function despite a wide range of input variations. 

b) Since the FL controller processes user-defined rules governing the target control 

system, it can be modified and tweaked easily to improve or drastically alter 

system performance. New sensors can easily be incorporated into the system 

simply by generating appropriate governing rules. 

c) FL is not limited to a few feedback inputs and one or two control outputs, nor is it 

necessary to measure or compute rate-of-change parameters in order for it to be 

implemented. Any sensor data that provides some indication of a system's actions 
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and reactions is sufficient. This allows the sensors to be inexpensive and 

imprecise thus keeping the overall system cost and complexity low. 

d) Because of the rule-based operation, any reasonable number of inputs can be 

processed (1-8 or more) and numerous outputs (1-4 or more) generated, although 

defining the rule base quickly becomes complex if too many inputs and outputs 

are chosen for a single implementation since rules defining their interrelations 

must also be defined. It would be better to break the control system into smaller 

chunks and use several smaller FL controllers distributed on the system, each with 

more limited responsibilities. 

e) FL can control nonlinear systems that would be difficult or impossible to model 

mathematically. This opens doors for control systems that would normally be 

deemed unfeasible for automation. 

4.4 LINGUISTIC VARIABLES 

In 1973, Professor Loth Zadeh proposed the concept of linguistic or "fuzzy" 

variables. Think of them as linguistic objects or words, rather than numbers. The 

sensor input is a noun, e.g. "temperature", "displacement", "velocity", "flow", 

"pressure", etc. Since error is just the difference, it can be thought of the same way. 

The fuzzy variables themselves are adjectives that modify the variable (e.g. "large 

positive" error, "small positive" error, "zero" error, "small negative" error, and "large 

negative" error). As a minimum, one could simply have "positive", "zero", and 

"negative" variables for each of the parameters. Additional ranges such as "very large" 

and "very small" could also be added to extend the responsiveness to exceptional or 

very nonlinear conditions, but aren't necessary in a basic system. 

Thus, FL does not require precise inputs, is inherently robust, and can process 

any reasonable number of inputs but system complexity increases rapidly with more 

inputs and outputs. Distributed processors would probably be easier to implement. 

Simple, plain-language IF X AND Y THEN Z rules are used to describe the desired 

system response in terms of linguistic variables rather than mathematical formulas. 

The number of these is dependent on the number of inputs, outputs, and the designer's 

control response goals. 
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4.5 THE RULE MATRIX 

The fuzzy parameters of error (command-feedback) and error-dot (rate-of-

change-of-error) were modified by the adjectives "negative", "zero", and "positive". 

To picture this, imagine the simplest practical implementation, a 3-by-3 matrix. The 

columns represent "negative error", "zero error", and "positive error" inputs from left 

to right. The rows represent "negative", "zero", and "positive" "error-dot" input from 

top to bottom. This planar construct is called a rule matrix. It has two input conditions, 

"error" and "error-dot", and one output response conclusion (at the intersection of 

each row and column). In this case there are nine possible logical product (AND) 

output response conclusions. Although not absolutely necessary, rule matrices usually 

have an odd number of rows and columns to accommodate a "zero" center row and 

column region. This may not be needed as long as the functions on either side of the 

center overlap somewhat and continuous dithering of the output is acceptable since the 

"zero" regions correspond to "no change" output responses the lack of this region will 

cause the system to continually hunt for "zero". It is also possible to have a different 

number of rows than columns. This occurs when numerous degrees of inputs are 

needed. The maximum number of possible rules is simply the product of the number 

of rows and columns, but definition of all of these rules may not be necessary since 

some input conditions may never occur in practical operation. The primary objective 

of this construct is to map out the universe of possible inputs while keeping the system 

sufficiently under control. 
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4.6 FUZZY KNOWLEDGE-BASE (FKB) 

The knowledge base of the FKB system includes intelligent objects having 

fuzzy attributes and rules. A fuzzy inference method is used for deduction of fuzzy 

conclusions. The objects with deduction capability are called as intelligent objects in 

this study. 

e Rn  

Fuzzifier 
e 	Fuzzy Set (A, I-1A) 

A 

Fuzzy Rule Base and Fuzzy Inference Engine 
IF e is A AND el is Al ... AND en  is An  THEN u 

B 

Defuzzifier 
Fuzzy Set (B, tB) 	u 

u R 

Figure 4. 1 Working of Fuzzy Logic. 
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4.6.1 STRUCTURE OF FUZZY RULES 

In FKB, knowledge is represented by IF—THEN rules in which the antecedent 

and the consequent involve linguistic variables. 

For example 

IF x is A THEN y is B 

where x and y are linguistic variables, and are fuzzy sets. The antecedent of a 

rule may be composed of more than one clause connected by the fuzzy logical 

operators AND and OR. 

For example 

IF dose is high OR dose is VeryHigh AND exposureTime is long 

THEN pollution is very Dangerous 

Fuzzy rules are used to derive new attributes or to specify some constraints 

using not only crisp but also fuzzy attributes of different objects. The variables of rules 

represent attributes of objects or objects themselves. For example, consider the domain 

of the following fuzzy attributes of the pollutants class. 

Domain (dose): {VeryHigh, High, Medium, Low}. 

Domain (exposure Time): {VeryLong, Long, Medium, Short). 

Domain (status): {VeryDangerous, Dangerous, LessDangerous} 
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Fuzzy rules are defined using these linguistic values as follows: 

IF pollutants dose is VeryHigh 

AND pollutants exposure Time is VeryLong 

THEN pollutants status is VeryDangerous 

The rule given here exemplifies the exact syntax of the fuzzy IF—THEN rules utilized 

in the IFOOD language. 

(R-1) defrule X.status ([VeryDangerous], Y) 

:- pollutants (X), X.dose ([Verylligh], 0.7) 

X exposureTime ([VeryLong], 0.6) 

where, X.status ([VeryDangerous], Y) is the consequent of the rule (the THEN 

part or the left-hand side (LHS) of the rule) and the right-hand side (RHS) of the ":-" 

sign is the antecedent of the rule (the IF part). In the consequent of the rule, Y is the 

membership degree of the rule conclusion, which is computed by using the matching 

degrees of the rule antecedent conditions, the matching degree of the rule conclusion 

and the implication function. 

4.6.2 SIMILARITY MATCHING 

In the intelligent fuzzy object-oriented database environment, there are no sharp 

boundaries among fuzzy terms. We use similarity relations to define similarities 

between pairs of elements in the fuzzy domain. Even when there is no exact matching, 

similar rule(s) may still be activated. Normally, when the matching degrees of 

predicates in the rule's antecedent are greater than 0, a rule will be activated. 

However, in order to eliminate undesired effects and increase the efficiency of 

querying, a threshold value is used. For example, the threshold levels are 0.7 for the 

dose attribute and 0.6 for the exposure Time attribute in the rule (R-1). Users can 

specify any threshold levels in their queries. We support this flexibility because one 
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user may prefer more restricted values as output while another may request all the 

possible values. A default threshold value is employed when the user does not specify 

it. 

For example, consider the rule (R-1) given above. If there is a pollutant's object 

matching exactly with the rule antecedent (i.e., dose is VeryHigh and exposure Time 

is VeryLong), the rule will succeed. However, if the values of an object do not exactly 

match with a rule's antecedent, there can still be matching in our FKB system, since it 

employs the similarity matching approach. Here, by similarity matching we mean that 

not only the rule with exact matching is activated but also any other rule may be 

activated when the fuzzy values of objects are similar to the corresponding predicates 

in the rule's antecedent. For example, the similarity between high and VeryHigh and 

the dose attribute of an object are specified as follows: 

p. (high, Very High) = 0.8 and Object.dose = [high]. 

Even though the object value of the dose attribute is High, instead of VeryHigh, 

the antecedent of the rule is satisfied with a matching degree of 0.8 (for dose), since 

the similarity of high to VeryHigh is greater than the given threshold value. Since the 

model permits to represent both fuzzy and crisp values, some objects may have fuzzy 

values and some may have crisp values for the same attribute. If the value of an object 

attribute is fuzzy, the rules are activated using similarity matching. If the value of an 

object attribute is crisp, then the membership degree of this crisp value to the fuzzy set 

in the rule is determined by using a predefined fuzzy membership function. If that 

membership value, which is in [0, 1], is greater than or equal to the specified threshold 

value, then the rule condition is satisfied. 

A rule's antecedent may be composed of more than one condition. Each 

condition in a rule antecedent may have its own matching degree with a corresponding 

object value. Therefore, we compute an overall matching degree of the rule 

antecedent. Here, we use the operator for combining the degree of matching of 

conjunction (AND) conditions and the operator for combining the degree of matching 

of disjunction (OR) conditions, as shown as follow: 
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For AND operator: liantccedent 

For OR operator: 1-1,antecedent -= Min(11 412, • • ...• ,f-tn)• 

Considering the rule (R-1) given above, each object term is matched with a 

matching degree (i.e., X.dose ([Verylligh], 0.7) and X.exposureTime ([VeryLong], 

0.6)). In addition to object terms, the rule also includes a class term (i.e., 

pollutants(X)). The matching degree of this term is the object inclusion degree which 

represents the degree of membership of the object to the class that it belongs to. This 

degree is computed during the object creation and stored with the object. This 

matching degree is directly obtained from the database when needed. 

For example, consider the rule (R-1) given previously and calculate its overall 

matching degree using the following values: 

i-IG 	 = 	0.8 

al.dose 	 = 	[high] 

	

al .exposureTime 	 = 	medium 

	

j.ts(high, VeryHigh) 	 = 	0.9 

gs  (Medium, VeryLong) 	 = 	0.6 

The overall matching degree of the rule (R-1) 

}-Lantecedent = min( 0.8, 0.9, 0.6) = 0.6 

Another issue related to the rule definitions is the usage of fuzzy and crisp 

attributes together in the rule definitions. If an antecedent predicate is defined using a 

crisp attribute, then the traditional pattern matching is applied and the matching degree 

of this predicate is one (1) in case of successful matching, otherwise the rule fails. 
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4.6.3 FUZZY INFERENCE METHOD 

Fuzzy implication rules are generalization of two-valued logic. We use the 

generalized modus ponens for fuzzy implications in the knowledge base. Fuzzy 

inference mechanism produces a conclusion that is both qualified and quantified. The 

conclusion is qualified using modus ponens (MP) inference method as follows: 

Rule 	: x is A y is B 

Fact 	: x is A' 

Infer 	: y is B' 	 where µs  (A', A) > 0 

Fuzzy inference mechanism quantifies the conclusion with a membership 

degree using an implication function. There are different implication functions 

proposed in literature. One such implication function is the Godelian's fuzzy 

implication function. It is easy and efficient to calculate the membership degrees of 

the conclusions by this function. 

t (xi is A —> yi  is B) = 	1, 	1-LA (xi) 5_ 1-1B (Y) 

i-tB (3(1), 	µA (x > 1-1B 

For example, assume that similarity of High to VeryHigh is given as 0.9 and 

similarity of Dangerous to VeryDangerous is given as 0.7 

Rule 	: IF pollutant dose is high THEN pollutant.status is dangerous. 

Fact 	: pollutant.dose is VeryHigh 

Infer 	: pollutant.status is VeryDangerous. 
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Matching degree of antecedent is: 

klose(High, V eryHigh) 
	

0.9 

Matching degree of consequent is: 

[tstatus ( Dangerous, VeryDangerous) 	= 	0.7 

Since the matching degree of antecedent (i.e., 0.9) is greater than the matching 

degree of consequent (i.e., 0.7), the membership degree of the rule conclusion is 0.7. 

Therefore, the status of the object is VeryDangerous with a membership degree 0.7. 

In the given example, the rule's antecedent includes only one condition. If a rule 

antecedent consists of more than one condition, then the overall matching degree of 

the rule's antecedent is calculated as explained before. 

Another important issue related to the fuzzy inference is that implication itself 

may be specified as fuzzy in addition to the fuzziness in the rule antecedent and 

consequent. Fuzziness in the implication is formulated as follows: 

0 
x is A --> y is B, 

where 0 is the uncertainty level given to the implication. 

For example, if we say that the intelligence level of a person more or less 

determines the success of the person. The implication here is specified by a fuzzy term 

and can be represented with the 0 value in [0, 1], i.e., 0.5. We may assign different 

values to the following fuzzy terms: 

Definitely: 1.0 

Almost: 0.9 

Very: 0.7 

More or less: 0.5. 
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The fuzziness level of the obtained conclusion will be reduced proportional to 

the fuzziness level specified in the implication itself. For example, if we fuzzify 

implication using more or less, then its implication level is 0.5. The conclusion can be 

obtained by taking algebraic product of the value obtained from the rule antecedent 

and consequent, and the value assigned to the implication itself. If we modify the 

example given above, the conclusion is computed as follows: 

Rule: 	IF pollutant dose is high 

THEN pollutant status is dangerous (0.5). 

Fact: 	pollutant.dose is VeryHigh 

Infer: 	pollutant.status is VeryDangerous. 

Notice that 0.5 is the uncertainty level assigned to the implication. That is, if 

pollutant.dose is high, than we can more or less infer that pollutant. status is dangerous. 

1-tconcluston = 0.7 x 0.5 = 0.35 

where 0.7 is the value obtained from the rule antecedent and consequent as 

computed in the previous example. 

Since all the similar rules will be activated during fuzzy inference, we combine 

the conclusions of the activated rules to produce the final output of inference. We 

combine the conclusion by using the maximum operator as follows: 

IIHNAL = Max (Pat, µR2,• • • •, µRn)• 
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CHAPTER 5 

FUZZY LOGIC BASED FAULT DIAGNOSTIC SYSTEM 

5.1 PROCESS FAULT SIGNATURES AND PATTERN RECOGNITION 

The temporal patterns that a process event leaves on the measured sensors are 

called event signatures. The event signatures can be represented by language based on 

trend exhibited by the signatures or any mathematical tool. 

The first step is the pattern recognition process. The process signatures retrieved 

online from the sensors are related with the characteristic trends in the knowledge-

base of the diagnostic system. The signature trend to event mapping process is an 

important issue. In real life systems, precision tends to be vague or more so, when 

dealing with qualitative features like signature trends. An important factor in their 

consideration is that unlike crisp and definitive measures such as numbers, there is 

some latitude i.e. degree of fuzziness associated with them, both in the identification 

and matching stages. Trends present scope of variation even for the same underlying 

event. It is important to understand the concept of a trend as understood when visually 

seen can be different from what results when a particular trend 	identification 

scheme is employed. 

In the case study for matching of signature trend with characteristic fault 

signatures simple least square error technique is employed. 
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Figure 5.1 Fuzzy Logic Based Fault Diagnostic System 
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5.2 RULE-BASED KNOWLEDGE-BASE 

To identify faults in the system knowledge base is used in mapping fault 

signatures to the faults in the form of if — then rules. The fault signatures are patterns 

that are exhibited by the sensors in response to a fault, obtained either from dynamic 

simulations or historical databases. An example of the i th rule (i th fault) is shown 

below. 

If sensor S 1—* trend Tr*i, AND 

sensor S2—* trend Tr*2; AND 	 then 

Fault is Fi 

where I =1,2,....M rules relating sensor trends to the M fault scenarios. Tr*i , 

refers to the fault signature exhibited by sensor S1 for fault Fi. The inferencing here is 

multivariable in nature due to conjunction operator and used here. 

According to the effectiveness in classification and broadness in identification 

representative signature for each sensor for each fault with varying magnitude is 

required to be stored. 

5.3 RULES EVALUATION 

To evaluate the rules for an observed trend Tr, fuzzy inferencing is employed. 

By comparing Tr fuzzily with the signature trend Tr* in each part j of the antecedent 

in the I th rule, a similarity index SIJ, is obtained. This is the degree of match between 

the observed trend Tr and that in the knowledge — base Tr*. Once all the SIi, are 

evaluated, the overall confidence index CI, of the ith rule's consequent is calculated. 

The fuzzy logic interpretation of AND as minimum is employed, thus CI, is given by 

the minimum over. all the antecedent parts j 

CI, = mini  [Slid 
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This evaluation is physically intuitive. The truth value of a hypothesis takes a 

value between 0 and 1, and the strength of a rule is considered equivalent to the 

weakest link i.e. the part of the antecedent with the smallest SF, value. Once all the CI, 

are obtained, the faults are ranked in the decreasing order of their confidences. 

One important issue here is about fault resolution. If all the faults can be 

qualitatively resolved i.e., distinguishable*  based only on the measured sensor 

signatures, then this would result in a high degree of accuracy in pin pointing the 

actual fault. However if this is not the case i.e. the CI, are close, it is necessary to add 

more discriminating sensors to resolve the conflict. 

Once the most likely fault candidate F* is identified, it is passed to the next 

stage to evaluate the severity (fault magnitude). 

INPI TT Fen tii rec 

 

S1 
KNOWLEDGE RACE 

 

   

Jth ' Antecedent 
	

Consequent 

If S1 is Trend Tri AND S2 is Trend Tr2  ...then Fault is F1  

     

       

     

If SI is Trend Tr, AND S2 Trend Trk..... then Fault is F,„ 

   

     

       

F, 
F2 

F10 

Figure 5. 2 Trend matching based on Fuzzy Inferencing using Similarity Indices. 
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5.4 DISTILLATION COLUMN- CASE STUDY 

In this section the application of the Fuzzy Logic Fault Diagnostic strategy will 

be studied for Distillation Column. The main control objective of the distillation 

column is to maintain the top and bottom product compositions. The mathematical 

model of the distillation column is based on mass — energy balances. The model of the 

distillation column is expressed in a linear constant multivariable system. 

7  
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Figure 5. 3 Schematic Diagram of the column. 
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Assumptions and conditions: 

➢ Constant molar flows. 

➢ Binary separation is observed 

➢ Relative volatility of the system does not change along the column 

temperature. 

➢ The column control is one to one PI control configuration. 

Table 5. 4. 1 Data for Distillation Column 

Feed Condition Saturated liquid 

Relative volatility, a 1.5 

No. of theoretical trays, N 40 

Feed tray location, NF 	(reboiler = 1) 21 

Feed rate, F (kmol/min) 1 

Feed composition, zE 0.5 

Distillate Composition, yD 0.99 

Bottom product compositon, xB  0.01 

Distillate rate, D (kmol/min) 0.5 

Bottom product rate, B (kmol/min) 0.5 

Minimum reflux rate, Lmin (kmol/min) 1.39 

Reflux rate, L (kmol/min) 2.71 
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5.5 SIMULATED STEP FAULT SCENARIOS 

To evaluate the proposed strategy fault scenarios are simulated for knowledge-

base construction and testing. The measurement sensors and the fault variables for the 

case study are shown in Table 5. 4. 2. To construct the knowledge-base we carry out 

fault simulations in positive and negative deviations for all the 4 input fault variables. 

Three levels of step faults (low, medium and high) are simulated in each direction for 

all the fault variables (totaling 4 x3 x2 = 24 scenarios) as shown in Table 5.5.1 

through 5.5.4. The level of the fault is treated as a fuzzy variable with fuzzy values 

low, medium and high. 

Table 5. 4. 2 Measurement and fault variables for Distillation Column. 

MEASUREMENT 

SENSORS MEASURED VARIABLE 

S1 

S2 

Distillate composition, YD 

Bottom product composition, xs 

No. DISTURBANCE VARIABLE (FAULTS) 

1 

2 

3 

4 

Feed flow rate, F 

Feed concentration, zF 

Reflux rate, L 

Steam flow rate, V 
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Table 5. 5. 1 Fault scenario for varying feed flow rate, F. 

LEVEL FAULT 

+0.2 Highr 

+0.08 MedF 

+0.01 LowF+  

-0.01 Lowr 

-0.08 Medr 

-0.2 Hight--  

Table 5, 5. 2 Fault scenario for varying Feed Composition, zF. 

LEVEL FAULT 

+0.15 HighzF+  

+0.1 MedzF+  

+0.04 LowzF+  

-0.04 LowzF 

-0.1 MedzF 

-0.15 HighzF 
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Table 5. 5. 3 Fault scenario for varying reflux flow rate, R. 

LEVEL FAULT 

+1.0 HighL+  

+0.5 MedL+  

+0.1 LowL+  

-0.1 LowL- 

-0.5 MedL- 

-1.0 HighL- 

Table 5. 5. 4 Fault scenarios for varying steam flow rate, V. 

LEVEL FAULT 

+0.75 Highr 

+0.40 Medr 

+0.10 Low V±  

-0.10 LowV- 

-0.40 MedV 

-0.75 HighV- 
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Figure 5.4 (a) Fault Signatures for increasing feed flow rates as obtained by Sl. 

Figure 5.4 (b) Fault Signatures for increasing feed flow rates as obtained by $2. 
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Figure 5.4 (d) Fault Signatures for decreasing feed flow rates as obtained by S2. 
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Figure 5.5 (a) Fault Signatures for increasing feed composition as obtained by Sl. 

Figure 5. 5 (b) Fault Signatures for increasing feed composition as obtained by S2. 
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Figure 5.5 (d) Fault Signatures for decreasing feed composition as obtained by S2. 
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Figure 5.6 (a) Fault Signatures for increasing reflux flow rates as obtained by Si. 

Figure 5.6 (b) Fault Signatures for increasing reflux flow rates as obtained by S2. 
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Figure 5.6 (c) Fault Signatures for decreasing reflux flow rates as obtained by Si. 
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Figure 5.6 (d) Fault Signatures for decreasing reflux flow rates as obtained by S2. 
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Figure 5. 7 (a) Fault Signatures for increasing steam flow rates as obtained by Sl. 

Figure 5. 7 (b) Fault Signatures for increasing steam flow rates as obtained by S2. 
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Figure 5. 7 (c) Fault Signatures for decreasing steam flow rates as obtained by Si. 

Figure 5.7 (d) Fault Signatures for decreasing steam flow rates as obtained by S2. 
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5.6 KNOWLEDGE BASE 

The Plots, fault signatures left by various simulated faults, forms the knowledge 

base of the Fuzzy Fault Diagnostic System. The data so obtained from the plots can 

be stored as array of points with small interval time. The simulation time for 

obtaining the fault signatures is kept as 300 minutes. This depends upon the process 

sluggishness to change in input conditions. The more sluggish the process to respond 

for input variations, the more will be the simulation period and vice — versa.. 

However the plots can be stored in the knowledge base in array format with small 

time interval depending upon the degree of resolution. The various fault signatures 

obtained by the simulation of process model are as given in the plots. 

5.7 TESTING OF FAULT CASES 

A test fault scenario is simulated; to be tested with the fuzzy logic based proposed 

diagnostic system. 

For the case study a variation of +0.1 kmol/min in feed supply rate is affected. 

The event signature so obtained from sensors for the fault r = +0.1, is fuzzily 

matched with the knowledge base of the diagnostic system. 

5.8 RESULT AND DISCUSSION 

5.8.1 Result 

Upon Fuzzy matching the following result is obtained. 

The array structure of the fault signature is compared with fault signature arrays 

in the knowledge base of the diagnostic system. The matching technique applied here 

is least square error method. 

The test fault F+ = +0.1 yields the following result. 

For the fault signature MedF+  (F+  = +0.08) 

Sensor Trend Si gives a fuzzy matching with similarity index SI = 0.59 

Sensor Trend S2 gives a fuzzy matching with similarity index SI = 0.29 

CI = min [SI] = 0.29 
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The test fault does not find match with the other fault signatures in the Fuzzy logic 

knowledge base. 

Simulated Fault 	Fault 1st  SI 	CI = min[SI] 	Fault2nd  SI 	CI=min[SI] 

F+  = +0.1 	Medr 	0.59 0.29 

5.8.2 Discussion 

As the test fault fits only with the Medr fault signature within the fuzziness 

range, it is the only viable fault that may have occurred. Hence it can be concluded 

that with 29 % confidence index fault Medr has occurred. 

5.9 CONCLUSION 

The whole technique is data driven that is no fundamental understanding of the 

process is incorporated. Hence the performance is limited by the quality of the 

knowledge base. A poor fault resolution in this technique can thus arise when trends 

exhibited are similar for all the measured sensors across different faults thus leaving 

little or no evidence for distinguishability. To overcome this problem either additional 

discriminating sensors need to be added or finer features may help distinguish the 

faults needs to be emphasized. 

5.10 SCOPE FOR FUTURE WORK 

Artificial Intelligence in the form of Fuzzy Logic, Neural Network etc, is 

increasingly becoming an useful tool to model and reason about process behavior 

and hence Fault Diagnosis. There has been plenty of research work in the field of 

artificial intelligence to make it a more practical tool for Fault Detection and 

Diagnosis. The Dissertation report attempts to showcase one such application of 

Fuzzy Logic in Fault Diagnosis. 

Among the various Fault Diagnostic techniques, fault diagnosis based on patterns 

exhibited in the sensors measuring the process variables is considered in this report. 

The temporal patterns that a process event leaves on the measured sensors are 

utilized to infer the state of operation using a pattern matching approach. A fuzzy 
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reasoning approach is worked out to ensure robustness to the inherent uncertainty in 

the identified trends and to provide succinct mapping. 

In the dissertation report process trend based matching is done with simple 

numerical technique. However, better Process Trend Analysis techniques can 

improve resolution in the identification of various faults. Research is being carried 

out to bring more feasible process trend analysis techniques which are more 

acceptable to Intelligent Diagnostic Systems. 
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