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ABSTRACT 

Many non-linear, inherently unstable systems exist whose control using conventional 

methods is both difficult to design and unsatisfactory in implementation. Fuzzy Logic 

Controllers are a class of non-linear controllers that make use of human expert 

knowledge and an implicit imprecision to apply control to such systems. The 

performance of Fuzzy Logic controller depends on its control rules and membership 

functions. Hence it is very important to adjust these parameters. The incorporation of 

genetic algorithm into a fuzzy design process adds an `intelligent' dimension to the fuzzy 

controller enabling it to create and modify its rules. Genetic algorithms give the 

possibility of adjusting membership functions down to the level of individual rules. 

In this work, the idea of model generation and optimization is explored. Fuzzy process 

models will be generated and parameters of fuzzy logic controller such as centre of 

membership function and weight of the rules are optimized using the power of genetic 

algorithms. The Inverted pendulum system is used as a test system for this approach and 

studied performances obtained from Fuzzy controller with the help of SIMULINK, 

Fuzzy logic Toolbox of the MATLAB 7.01 software and Genetic algorithms. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Fuzzy logic control has been developing rapidly in recent years [5], and is being used 

successfully and widely in an increasing number of application areas, especially in 

control of complex processes, such as the control of the pH of a laboratory acid-base 

system the DC motor's speed control etc. At the same time, many scholars have been 

attracted by the problems of combining the fuzzy logic control with other new intelligent 

methods, and there are many successful examples such as: achieving fuzzy controller 

with neural networks, optimizing neural network configurations with fuzzy logic and 

optimizing fuzzy controller with new optimization methods [5,8]. Conventional control 

theory is well suited for applications where the process can be reasonably well 

characterized in advance and where the number of parameters that must be considered is 

small. There are many important processes, however, those are not well characterized or 

is subject to a large number of uncontrolled, changeable or unmeasurable parameters. 

Several studies have shown fuzzy logic control to be an appropriate method for the 

control of complex continuous unidentified or partially identified processes [5], many of 

which cannot easily be modeled in a mathematical way. This is because, unlike a 

conventional process controller such as a PID controller, no rigorous mathematical model 

is required to design a good fuzzy controller and in many cases they can also be 

implemented more easily. However, this simplicity with which they can be implemented 

also presents a bottleneck in their design. Fuzzy controllers rely on heuristic knowledge 

that is subject to the designer's interpretation and choice. However in the absence of such 

expert knowledge the design of FLC is trial and error approach rather than a guided 

approach [19]. 

Genetic algorithms provide a way of surmounting this shortcoming. This approach is a 

search and optimization technique [3]. These algorithms use some of the concepts of 

I 



evolutionary theory [3] and provide an effective way of searching a large and complex 

solution space to give close to optimal solution. 

In this report the application of GA to the design and optimization of fuzzy logic 

controllers is discussed. These controllers are characterized by a set of parameters. The 

Inverted Pendulum system, being commonly used example of a nonlinear, unstable 

system is used as test system for this approach. Control was successfully achieved in 

simulations and results from these simulations are presented. 

1.2 LITERATURE REVIEW 

D.A Linkens, H.O. Nyongesa [5], proposes an offline method for optimization of the 

membership functions of a fuzzy control rule base and they extend the same method to 

the complete process of design of a multivariable controller of a non linear process. 

F.Herrera,M. Lozano & J.L.Verdegay [6] apply GAs to optimize a rule-base of a FLC 

for which the membership functions have already been created. The tuning method 

using GA fits the membership function of the fuzzy rules dealing with the parameters of 

the membership functions. 

Li RenHou, Zhang Yi [8], proposed a method of designing fuzzy logic controller for 

complex processes. The selection of genetic algorithm control parameters is discussed for 

design of multi input multi output fuzzy control system. 

Varsek, et al.[9],proposed a genetic algorithm based technique to design and tune the 

parameters of fuzzy controller and take the control of inverted pendulum to indicate the 

effect of GA. 

C.L.Karr [10] ,applied GA's to find the position and shape of the membership functions. 

These parameters are coded in a chromosome, and the genetic search finds the functions 

that best control the system, given some evaluation function. This approach has the 
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advantage that the controller can adapt to changes in the process during the interactions, 

turning the FLC into an adaptive controller. 

M.A.Lee, H.Takagi [11], devised another interesting approach to the fusion of fuzzy 

logic and genetic algorithms. They have presented a method to control the parameters of 

the genetic algorithm that is mutation rate, crossover rate by fuzzy logic. 

L.A.Zadeh [ 12], who first introduced the fuzzy logic theory in 1965, combined the multi 

valued logic, probability theory, artificial intelligence and neural networks to develop this 

digital control methodology that simulates human thinking by incorporating the 

imprecision inherent physical systems and uncertainty. 

Mamdani [13], and his coworkers applied the fuzzy control concepts to several systems 

such as steam engines, warm level systems etc. In all case the fuzzy controller is located 

at the error channel and is composed by a fuzzy algorithm that relates (and converts) 

significant observed variable to control actions. The fuzzy rules employed depend on the 

type of system under control as well as on the heuristic functions used. 

R.Palm [14] proposed to achieve the optimal adjustment in the input SF with the help of 

input output cross correlation function , though he assigned a higher priority to the tuning 

of output SF over that of input SF's. Here the input data are assumed to follow a 

Gaussian distribution whose parameters are unknown. An optimal input SF is obtained by 

maximizing the cross correlation function which is a measure of the statistical 

dependence input and output. 

Rajini K. Mudi and Nikhil R.Pal [15], proposed a simple and robust model independent 

self tuning scheme for fuzzy logic controller. Here the output scaling factor is adjusted on 

line by fuzzy rules according to the current trend of the controlled process. The rule base 

for tuning the output SF is defined on error and change in error of the controlled variable 

using the most natural and unbiased membership functions. 



K.Belarbi, F. Titel ,et al. [16], proposed how genetic algorithm is used to find stabilizing 

controllers that minimize the number of rules. They modeled rules with binary weights on 

which constraints are imposed in order to ensure stability. 

Bandyopadhayay, R.Chakraborty, U.K.Patranabis [17], proposed a method for tuning the 

parameters of the PID controller using fuzzy genetic approach. The technique adopted is 

based on the format of dead beat control. Here the fuzzy inference mechanism has been 

used for predicting the future values of the controller output 

P.Wang, D.P.Kwok [18], applied genetic algorithms to build up an optimization 

mechanism to refine rule base of fuzzy PID controller. This scheme automatically 

optimizes the whole base of Fuzzy PID control rules under various performance indices. 

Gregory V.TAN and Xiheng HU [19], proposes a method for the design of fuzzy logic 

controller using genetic algorithms. The parameters of the fuzzy logic controller such as 

membership functions of the input and output variables are coded in real numbers. 

O.Cordon,F. Gomide ,F.Herrera, et al. [20], provides an account of genetic fuzzy systems 

with special attention to genetic fuzzy rule based systems. Here they concerned with the 

critical evaluation of the contribution of the genetic algorithms to fuzzy knowledge 

extractions. 
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CHAPTER 2 
INVERTED PENDULUM PROBLEM AND STATE-SPACE 
DESIGN 

In this chapter the Inverted Pendulum System is examined and analyzed with a view to 

obtaining its equations of motion and then to linearise these equations in order to find a 

State-Space-based model of the system. This model is used to design a controller, which 

is applied to a non-linear model of the system. 

2.1 INTRODUCTION: 

When we tried to balance a broomstick on our index finger on the palm of our hand, we 

had to constantly adjust the position of our hand to keep the object upright. An Inverted 

Pendulum does basically the same thing. 

Design a control system 
that keeps the per duru 
balanced and tracks the 

cart to a commanded 
position!!!  

Just like the broomstick, an Inverted Pendulum is an inherently unstable system. Force 

must be properly applied to keep the system intact. To achieve this, proper control theory 

is required. The Inverted Pendulum is essential in the evaluating and comparing the 

various control theories. 
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2.2 MATHEMATICAL ANALYSIS [22] 

The Inverted Pendulum is made up of a cart on top of which a pole is provided as shown 

in Figure-2.1. The Cart is constrained to move only in the horizontal x direction and 

while the Pendulum can only rotate in the x-y plane. 

Figure 2.1 Inverted Pendulum 

In order to obtain the Inverted Pendulum's model, the system's dynamics is analyzed 

using the cart and pendulum's free body diagram. The modeling parameters are shown 

below, 	 ~ 

M = 	Mass of the cart 
m = 	mass of the pendulum 
b = 	friction of the cart 
1 = 	length to pendulum center of mass 

I = 	inertia of the pendulum 

F = 	force applied to the cart 

x = 	cart position coordinate 

A = 	pendulum angle from vertical 

0 



0 

PO 

Figure 2.2 Free Body Diagrams of Pendulum 

Summing the forces in the Free Body Diagram of the cart in the horizontal direction, you 

get the following equation of motion, 

Mx+bx+N=F 	........(1) 

Note that you could also sum the forces in the vertical direction, but no useful 

information would be gained. Summing the forces in the Free Body Diagram of the 

pendulum in the horizontal direction, you can get an equation for N, 

2 

N = mx+mlAcosO —ml6 sinO 	........ (2) 

If you substitute equation (2) into the equation (1), you get the first equation of motion 
for this system, 

2 
(M+m)x+bx+mlAcos9—m16 sing = F .... (3) 

To get the second equation of motion, sum the forces perpendicular to the pendulum. 

Solving the system along this axis ends up saving you a lot of algebra. You should get the 

following equation, 

PsinO + Ncos0 — mgsin0 = ml 0+ m x cosh .... (4) 
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To get rid of the P and N terms in the equation above, sum the moments around the 

centroid of the pendulum to get the following equation, 

- PlsinO - Nlcos6 = I0 ..... (5) 

Combining these last two equations, you get the second dynamic equation, 

(I + m12  )0+ mglsinO = —ml x cosO .....(6) 

2.3 LINEARISED EQUATIONS 

Linearize the above equations (3) and (6) so that cosO = -1, sinO = -0, and (d(0)/dt)^2 = 

0. After linearization the two equations of motion become (where u represents the input), 

(I + m12  )6— mg18 = ml x 
(7) 

(M+m)x+bx—ml0=u 

2.4 STATE SPACE DESIGN 

After a little algebra, the linearized system equations can also be represented in state- 

space form: 

	

0 	1 	 0 	01 	r 	0 

	

rxl jl o 	— (I + m12  )b 	m 2  g12 	0  x 	I+ m12  
x 	I(M+m)+Mm12  I(M+m)+Mm12 

 

II.I I(M

+m)+M m12 

	

B 0 	0 	 0 	1 e + 	0 	u 

	

Loj 0 	— mlb 	mgl (M + m) 	0  e 	 m1  

I(M+m)+Mm12  I(M+m)+Mm12 	I(M+m)+Mm12  

x 
1 0 0 0 2 0 

y
_ 

0 + 0 0 1 0 u  LO] 
8 

The C matrix is 2 by 4, because both the cart's position and the pendulum's position are 

part of the output. For the state-space design problem we will be controlling a multi- 



output system so we will be observing the cart's position from the first row of output and 

the pendulum's with the second row. 

Parameters used for design are: 

M 	Mass of the cart 
m 	mass of the pendulum 
b 	friction of the cart 
1 	length to pendulum center of mass 
I 	inertia of the pendulum 

0.5kg 
0.2kg 
0.1 N/m/sec 
0.3m 
0.006kg*m^2 

2.4.1 OPEN LOOP RESPONSE 

open loop response for state space 
100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

n 

pendulum 

cart 

0 	0.2 	0.4 	0.6 	0.8 	1 	1.2 	1.4 	1.6 	1.8 	2 
time(s) 

Figure 2.3 Open loop Response of system 

As you can see, this should confirm your intuition that the system is unstable in open 
loop. 
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2.4.2 CLOSE LOOP RESPONSE 

Using state-space methods it is relatively simple to work with a multi-output system, so 

in this example we will design a controller with both the pendulum angle and the cart 

position in mind. 

step response with LQR control 
0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

0 

-0.05 
0 

Cart 
Pendulum 

0.5 	1 	1.5 	2 	2.5 	3 	3.5 	4 	4.5 	5 
time(sec) 

Figure 2.4 Closed loop Response of the system 

This controller successfully controls the system as long as the pole is not allowed to stray 

too much from the equilibrium position. When the pole angle gets too large it is unable to 

restore it to the upright position. A controller that can successfully achieve this needs to 

be able to handle the non-linearities. For this reason, Fuzzy Logic Controllers are 

used to solve the problem. 

10 



CHAPTER 3 
FUZZY LOGIC CONTROLLER 

3.1 BACK GROUND 

Fuzzy Control is based on the principles of Fuzzy Logic developed by Zadeh [12] in 

1965 and the industrial application of the first fuzzy controller by E.H. Mamdani in 1974 

[13], fuzzy systems have obtained a major role in engineering systems and consumer's 

products in 1980s and 1990s. New applications are presented continuously. It is a non-

linear control method, which attempts to apply the expert knowledge 

of an experienced user to the design of a controller. 

3.2 INTRODUCTION 

Conventional control system design depends upon the development of a mathematical 

description of the system's behaviour. This usually involves assumptions being made in 

relation to the system dynamics and any non-linear behaviour that may occur. In cases 

where assumptions in respect of non-linear behaviour cannot be made, the need to 

describe mathematically, ever increasing complexity becomes difficult and perhaps 
infeasible. 

FUZzy logic [12,13] is the application of logic to imprecision and has found application in 

control system design in the form of Fuzzy Logic Controllers (FLCs) [13]. Fuzzy logic 

controllers facilitate the application of human expert knowledge, gained through 

experience, intuition or Experimentation, to a control problem. Such expert knowledge of 

a system's behaviour and the necessary intervention required to adequately control that 

behaviour is described using imprecise terms known as "linguistic variables". The 

imprecision of linguistic variables reflects the nature of human observation and judgment 

of objects and events within our environment, and their use in FLCs thus allows the 
mapping  of heuristic, system-related information to actions observed to provide adequate 

system control. In this way, FLCs obviate the need for complex mathematical 

descriptions of non-linear behaviour to the nth degree and thus offer an alternative 

method of system control [1,2]. 
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3.3 FUZZY LOGIC 

What Is Fuzzy Logic? 

Fuzzy logic is based on natural language. The basis for fuzzy logic is the basis for human 

communication. This observation underpins many of the other statements about fuzzy 

logic [4]:- 

So far as the laws of mathematics refer to reality, they are not certain. And so far 

as they are certain, they do not refer to reality. — Albert Einstein 

As complexity rises, precise statements lose meaning and meaningful statements 

lose precision. — Lotif Zadeh 

Fuzzy logic is based on the theory of fuzzy sets where variables can have 

differing degrees of membership of sets. This is unlike the more familiar crisp set theory 

where a variable is either a full member of a set or it is not a member of that set at all. 

The degree to which a variable belongs to a set can vary between 0 and 1. 

A universe of discourse is defined as the whole range of fuzzy sets to which a variable 

can belong. Each set on this universe of discourse is referred to as a membership 

function and is often described using a `linguistic variable'. On a universe of 

discourse, a variable has a degree of membership of each membership function that 

varies between 0 and 1. 

Fuzzy Logic uses rules with antecedents and consequents to produce outputs from 

inputs. The antecedents are the inputs that are used in the decision-making process or the 

"IF" parts of the rules. The consequents are the implications of the rules or the 

"THEN" parts. 

3.3.1 FUZZY LOGIC EXAMPLE 

An example of a fuzzy set is the set of humans who could be described as young. 

Most people would agree that anyone aged between zero and twenty could be 

described as being definitely young, whereas anyone over forty would be described as not 

at all young. The ages between twenty and forty are more of a grey area, however. The 

closer a person's age is to twenty the more readily they could be described as 

young. This fuzzy set is displayed in Figure 3.1 below. According to this fuzzy set a 
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Person aged fifteen is definitely young, i.e. Their degree of membership of the fuzzy set 

Young is one. However, it is less clear-cut whether a person aged thirty could be 

described as young, i.e. Their degree of membership is less than one, in this example, 

0 

Figure 3.1 The Fuzzy Set "Young" 

The Universe of Discourse of a variable is the range of values that variable can take. 

Many fuzzy sets can be defined on one Universe of Discourse and a single 

variable can have membership of more than one fuzzy set. For example, in Figure 3.2 

below we return to our "Age" example and examine the Universe of Discourse on 

which, in addition to Young, the fuzzy sets Middle Aged and Old are added. Here we can 

see that a person aged 35 has membership of two sets, Young and Middle Aged with 

degrees of membership of 0.25 and 0.33 respectively. 

13 
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Figure 3.2 "Age" Universe of Discourse 

3.4 FUZZY CONTROL 

Fuzzy Control [1,2] applies fuzzy logic to the control of processes by utilizing 

different categories, There are specific components characteristic of a fuzzy controller to 

support a design procedure. In the block diagram in Fig.3.3, the controller is between a 

preprocessing block and a post-processing block. The following explains the diagram 

block by block. 

Fuzzy Controller 

....................................................... 

RULE BASE 
PREPRO 	FUZZI- 	 DEFUZZI- 	PREPROC- 

C-ESSING 	FICATIO fl 	FICATION 	ESSING 

INFERENCE 
ENGINE 

:. ...................................................................................................................................................................................................: 

Fig 3.3 Block diagram of Fuzzy Logic Controller 
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3.4.1 PREPROCESSING 

The inputs are most often hard or crisp measurements from some measuring equipment, 

rather than linguistic. A preprocessor, the first block in Fig.3.2, conditions the 

measurements before they enter the controller. 

Examples of preprocessing are: 

• Quantization in connection with sampling or rounding to integers; 

• normalization or scaling onto a particular, standard range; 

• filtering in order to remove noise; 

• Differentiation and integration or their discrete equivalences. 

When the input to the controller is error, the control strategy is a static mapping between 

input and control signal. A dynamic controller would have additional inputs, for example 

derivatives, integrals, or previous values of measurements backwards in time. These are 

created in the preprocessor thus making the controller multi-dimensional, which requires 

many rules and makes it more difficult to design. The preprocessor then passes the data 

on to the controller. 

3.4.2 FUZZIFICATION 

The first block inside the controller is Fuzzification, which converts each piece of input 

data to degrees of membership by a lookup in one or several membership functions. The 

Fuzzification block thus matches the input data with the conditions of the rules to 

determine how well the condition of each rule matches that particular input instance. 

There is a degree of membership for each linguistic term that applies to that input 

variable. 

3.4.3 RULE BASE 

It contains the knowledge of the expert in a form of rules that could be utilized by the 

Fuzzy Inference Engine (FIE). The rules may use several variables both in the condition 

and the conclusion of the rules. 

The controllers can therefore be applied to both multi-input-multi-output (MIMO) 

problems and single-input-single-output (SISO) problems. 
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The following are example of rules: 

• If error is Zero and change in error is Zero then the control action is Zero 

• If error is Zero and change in error is Negative, then the control action is Negative 

• If error is Positive and change of error is Zero then the control action is Positive 

• If error is Positive and change of error is Negative then the control action is Zero 

3.4.4 FUZZY INFERENCE ENGINE 
The task of fuzzy inference is to make decision. However, it can only provide a fuzzy 

output. This is main part of fuzzy logic controller. It is the heart of controller. 

The rules reflect the strategy that the control signal should be a combination of the 

reference error and the change in error, for each rule, the inference engine looks up the 

membership values in the condition of the rule. 

3.4.5 DEFUZZIFICATION 

The fuzzy output provided by the FIE should be decoded into non-fuzzy output to make it 

a useful to control manipulator or plant's input. This is illustrated in figure 3.4 below: 

Fig 3.4. An example of an aggregated fuzzy output. 
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There are several defuzzification methods. 

Centre of gravity (COG) 

The crisp output value u is the abscissa under the centre of gravity of the fuzzy set. 

Here xi is a running point in a discrete universe, and p (xi), is its membership value in the 

membership function. The expression can be interpreted as the weighted average of the 

elements in the support set. For the continuous case, replace the summations by integrals. 

It is a much used method although its computational complexity is relatively high. This 

method is also called centroid of area. 

Mean of maximum (MOM) 

An intuitive approach is to choose the point with the strongest possibility, i.e. maximal 

membership. It may happen, though, that several such points exist, and a common 

practice is to take the mean of maximum (MOM). This method disregards the shape of 

the fuzzy set, but the computational complexity is relatively good. 

Let the projection of the flat segment PIP2 with maximum height on z axis be the interval 

[yl, y2] (See Fig. 3.4.). Then Zm  is determined by the formula:- 

Zn,=(yl +y2)/ 2  

Left maximum (LM), and Right maximum (RM) 

Another possibility is to choose the leftmost maximum (LM), or the rightmost maximum 

(RM). In the case of a robot, for instance, it must choose between left and right to avoid 

an obstacle in front of it. The defuzzifier must then choose one or the other, not 

something in between. 

These methods are indifferent to the shape of the fuzzy set, but the computational 

complexity is relatively small. 
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Bisector of area (BOA): 

This method picks the abscissa of the vertical line that divides the area under the curve in 

two equal halves. In the continuous case, 
x 	 Max 

u={x I f µ(x) dx = f µ(x) dx) 
Min 	 x 

Here x is the running point in the universe µ(x), is its membership, Min is the leftmost 

value of the universe, and Max is the rightmost value. Its computational complexity is 

relatively high, and it can be ambiguous. For example, if the fuzzy set consists of two 

singletons any point between the two would divide the area in two halves; consequently it 

is safer to say that in the discrete case, BOA is not defined. 

The defuzzifier must then choose one or the other, not something in between. These 

methods are indifferent to the shape of the fuzzy set, but the computational complexity is 

relatively small. 

3.4.6 POST PROCESSING 

Output scaling is also relevant. In case the output is defined on a standard universe this 

must be scaled to engineering units for instance, volts, meters, or tons per hour. An 

example is the scaling from the standard universe [-1, 1] to the physical units [-10, 10] 

volts. 

The post processing block often contains an output gain that can be tuned, and sometimes 

also an integrator. 
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CHAPTER 4 

GENETIC ALGORITHM 

4.1 BACKGROUND 

The American John Holland devised the first genetic Algorithms in the 1970's. Genetic 

Algorithms were invented to mimic some of the processes observed in natural evolution. 

Many people, biologists included, are astonished that life at the level of complexity that 

we observe could have evolved in the relatively short time suggested by fossil records. 

There is constant debate regarding the truth of Darwinian evolutionary theory as one 

scientist stated[3]: 

"The chance that a functioning cell could evolve in that time can be likened to the 

probability that a tornado sweeping through a junkyard might assemble a Boeing 747." 

--- Sir Fredrick Hoyle 

Regardless of its validity, the idea with GA is to use this power of evolution to follow the 

principles first laid down by Charles Darwin in his "survival of the fittest" theory. In 

nature, competition among individuals for scarce resources results in the fittest 

individuals dominating over the weaker ones. GAs attempt to find the optimal solution 

from the search space. Genetic Algorithms (GA) are search algorithms based on the 

mechanics of natural selection and natural genetics. [5, 3] GAs are adaptive search 

techniques which simulate both natural inheritance by genetics and a Darwinian struggle 

for survival. 

A GA starts with a population of candidate solutions that evolve through generations of 

competition and reproduction until convergence to one solution. As such they represent 

an intelligent exploitation of a random search used to solve problems. Although 

randomized, GAs are by no means random, instead they exploit historical information to 

direct the search into the region of better performance within the search space. 
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4.2 INTRODUCTION [3,4] 

The Genetic algorithm (GA) is a randomized search and optimization technique guided 

by the principle of natural genetic systems. They maintain population of knowledge 

structures that represent candidate solution and let those populations evolve time through 

competition and controlled variation 

The main advantage of the GA formulation is that fairly accurate results may be obtained 

using a very simple algorithm. It is a method of finding a good answer to a problem, 

based on the feedback received from its repeated attempts at a solution. The objective or 

fitness function is a judge of the GA's attempts. Gas do not know how to derive a 

problem's solution, but they do know, from the objective function, how closely they are 

to a better solution. 

The GA maintains a set of possible solutions (population) represented as a string of, 

typically, binary numbers (0/1).New strings are produced in each and every generation by 

the repetition of a two-step cycle. This involves first decoding each individual string and 

assessing its ability to solve the problem. Each string is assigned fitness values, 

depending on how well it is performed in an environment. In the second stage, the fittest 

string is preferentially choosen for recombination, which involves the selection of two 

strings, and the switching of the segments to the right of the meeting point of the two 

strings. This is called crossover. Another genetic operator is mutation. It is used to 

maintain genetic diversity within a small population of strings. There is a small 

probability that any bit in a string will be flipped from its present value to its 

opposite(e.g., 0 to 1), this prevents certain bits from becoming fixed at a specific value 

due to every string in the population having the same value, often causing premature 

convergence to a non-optimal solution. An additional common feature of the GA is the 

automatic inclusion of the best procedure prevents a good string from being lost by the 

probabilistic nature of reproduction and speeds convergence to a good solution. 

The GA goes through the following cycle:. Evaluate, Select and Mate, and Mutate until 

some kind of stopping criteria are reached. 
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Genetic algorithms differ from other optimization and search procedures in the following 

ways [3] 

• Gas work with a coding of the parameter set, not the parameters themselves. 

Therefore, they can easily handle integral or discrete variables. 

• GAs use probabilistic transition rules not deterministic rules 

• Gas search from a population of points, not a single point. Peaks of the search 

space can be climbed concurrently since works with a large number of points 

simultaneously. The problem of only finding local extrema is resolved. 

• Gas use only objective function information, not derivatives or other auxiliary 

knowledge. Therefore, they can deal with the non-smooth, non-continuous, and non-

differentiable function. 

• Sometimes near optimal solution that can be generated quickly, using Gas, are 

desirable than optimal solutions which require a large amount of time. 

4.3 PROCEDURE OF GENETIC ALGORITHM [4] 

A genetic algorithm for a particular problem must have the following five 

components. 

1. A genetic representation for the potential solution to the problem 

2. A way to an initial population of potential solutions 

3. An evaluation function that plays the role of the environment, rating solution in 

terms of their `fitness' 

4. Genetic operators that alter the composition of the offspring 

5. Values for the various parameters that the genetic algorithm uses (population size, 

probabilities of applying genetic operators. etc). 
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Start 

Production of the 
Initial Population 

Calculation of the fitness 
and affinity of individuals 

Production of 
individuals 
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Crossover and Mutation 

Replacing the old population 
with new one 

Gen<= 
Maxgen 

End 

Fig 4.1 Flowchart for the GA [4] 
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4.4 GENETIC REPRESENTATIONS [3,4] 

Representing or encoding the problem in hand when applying GA is a vital task. 

Encoding can be defined as the chromosomal representation of the problem. 

There are a few ways of encoding these chromosomes such as integer, real-valued and 

ternary but one of the most popular ways is binary encoding (bit string), because it is a 

simpler string to operate on. 

For binary encoding each chromosome is constructed by stringing binary representations 

of vector components end to end (see Figure 4.2 below). The length of each chromosome 

depends on the vector dimension and the desired accuracy. 

101 101.0110101110 

Figure 4.2 A sample binary encoded chromosome consisting of a string of 16 bits 

With real-valued encoding, the parameters are kept in their real number format. Both 

forms of encodings are used in practice. 

The advantages of using a binary format is that it 

... maximizes the number of hyper plane partitions directly available in the 

encoding for schema processing. 

In other words, binary alphabets allow for greater sampling of the solution space and for 

the processing of more combinations of alleles. 

However encoding using higher cardinalities can be more efficient. For example, if a 

certain parameter could take on five possible values then it would need to be encoded 

using three bits in a binary scheme. However, this leads to eight possible alleles, three of 

which are superfluous. Using a five-letter alphabet in this case would lead to more 

efficient coding. 

It is also possible to represent genes using arrays, trees, lists etc It is necessary to ensure 

that a suitable representation of solutions with meaningful and problem specific genetic 

operators is considered. 
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4.5 INITIALIZATION AND SELECTION [6] 

4.5.1 Initialization 

To initialize a population, we can simply set some `pop_size' number of chromosomes 

randomly in a bitwise fashion. However, if we do have some knowledge about the 

distribution of potential optima, we may use such information to arrange the set of initial 

potential solutions. The rest of the algorithm is straightforward: in each generation, we 

evaluate each chromosome (using the function f on the decoded sequences of variables), 

select a new population with respect to the probability distribution based on fitness 

values, and alter the chromosomes in the new population using mutation and crossover 

operators. After some generations, when no further improvement is observed, the best 

chromosome represents an (possibly a global) optimal solution. Often, we stop the 

algorithm after a fixed number of iterations, depending on the speed and resource criteria 

4.5.2 Selection 

> A popular selection algorithm is stochastic sampling with replacement, more 

commonly known as the "Roulette Wheel" algorithm, so called because this method 

works in a way that is analogous to a roulette wheel. Each individual in a population is 

allocated a share of a wheel, the size of the share being in proportion to the 

individual's fitness. A pointer is spun (a random number generated) and the individual to 

which it points is selected. This continues until the requisite number of individuals has 

been selected. An individual's probability of selection is thus related to its fitness 

ensuring that fitter individuals are more likely to leave offspring. 

The fitness values are then calculated using the function eval (v;) for each chromosome 

vi(i=1,....pop_size). The total fitness of the population is given by 

pop_size 

F = Z eval (vi) 

i=1 

The probability of selection for each chromosome v; (i=1......,pop_size) is 

P;=eval (v1)/F 

And the cumulative probability is 
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1 

qj = I Pi 

j=1 

The selection process is based on spinning the roulette wheel pop_size times, each 

time selecting a single chromosome for a mew population in the following way. 

• Generate a random (float) number r from the range [0,z]. 

• If the r<gl,select the first chromosome (vi); otherwise, select the ith 

chromosome vi(2<=i<=pop_size) such that qi_1<r<q; 

A problem with this approach is that the number of times an individual is actually 

selected has a high variance so there is no guarantee that fitter individuals will be 

represented in the next generation. 

> Stochastic Remainder Selection is another popular algorithm. In this method the 

expectation of the number of times selected is calculated for each individual. The 

integer portions of this expectation for each individual are assigned 

deterministically and the fractional remainders are assigned in the same way as in 

roulette wheel selection. For example, an individual whose expectation of number of 

times selected was 2.4 would be certain of being selected twice and the probability of 

being selected a third time would be 0.4. This approach reduces the variance 

associated with the roulette wheel algorithm and ensures that all individuals with 

above-average fitness will be represented in the next generation. 

4.6 CROSSOVER ALGORITHMS [3,4] 

Once selection is finished crossover is performed. Individuals are paired for Mating 

and by mixing their strings new individuals are created. The most basic crossover 

algorithm is known as Single Point Crossover. A single point along the string is chosen 

and the strings are swapped over at this point. 
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Parent 1 	101,11100 

Parent2 	1.10,10010 

Chld.1 	10 . 10010 

C1 d2 	1.10 11100 

Figure 4.3 Single Point Crossover 

Multipoint crossover algorithms extend simple crossover by selecting multiple crossover 

points and alternately assigning to the first or second offspring the portions of string 

between these points. 

Parent,1 	101 111100 

Parent, 2 	11, 0101 010 

Child 1 	10 010 100 

Child 2 	11 111. 010 

Figure 4.4 Multi-point Crossover 

Uniform crossover is another crossover algorithm. This time a random mask of 1 s and Os 

of the same length as the parent strings is generated. If a bit in the mask is 1 then the 

corresponding bit in the first child will come from the first parent and the second parent 

will contribute that bit to the second offspring. If the mask bit is 0 the first parent 

contributes to the second child and the second parent to the first child. 

Parent 1 	10111100 

Parent2 	11010010 

`g k 	01001101 

Child 1 	10011110 

Child2 	1111000 00 

Figure 4.5 Uniform Crossover 
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Uniform crossover is the most disruptive of the crossover algorithms, i.e. it is the most 

likely to cause neighbouring bits that contribute in a positive way to the fitness of the 

individual to be split up. However at the same time, uniform crossover allows for more 

extensive searching of the solution space as there are significantly more potential 

offspring using this method. 

4.7 MUTATION ALGORITHMS 

For binary coding, there is really only one way to mutate. For each bit generate a 

random number and if it is less than the specified mutation probability, flip the 

bit, i.e., if it is a 1 change it to 0 or vice versa. 

Original string 	10110101 	before mutation 

Mutated string 	10100101 	After Mutation 

Mutation Point 

Fig 4.6 Example of mutation 

This mutation probability is generally kept quite low and is constant throughout the 

lifetime of the GA. However, a variation on this basic algorithm changes the mutation 

probability throughout the lifetime of the algorithm, starting with a relatively high 

rate and steadily decreasing it as the GA progresses [6]. This allows the GA to search 

more for potential solutions at the outset and to settle down more as it approaches 

convergence. 

When real-valued codings are used, the mutation algorithm can be more complex. 

Many different algorithms are used some of which are as follows: 

1 .Uniform Mutation: A random value within the constraints of the variable is 
choosen. 

2. Boundary Mutation: The variable is set to either its lower or upper bound. 
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3. Non-Uniform Mutation: The variable is assigned a value based on a bell curve 

that becomes progressively narrower as the GA progresses. This ensures that as 

convergence is approached, the range within which a variable can be mutated also 

narrows. 

4.8 ELITISM [3] 
With crossover and mutation taking place, there is a high risk that optimum solutions 

may be lost as there is no guarantee that these operations will preserve fitness. To 

combat this elitist models are often used. In these models, the best individual from a 

population is saved before any of the operations take place. After the new 

population is formed and evaluated, it is examined to see if this best structure 

has been preserved. If not, the saved copy is reinserted back into the population, usually 

at the expense of the weakest member. The GA then proceeds to perform the operations 

on this population. 

In determining how many cycles of the GA should take place, any of the following 

stopping criteria can be employed. [4] 

• When a particular point in the search space has been found. 

For example, the greatest extrema found up to this point in time. 

o 	When a certain upper limit of generations has been reached. 

For example, thirty or one thousand generations have been cycled through. 

• When a mean deviation in the population is obtained. 

For example, when any new solutions are very close to the previous generations 

solutions, using the mean as a reference. 

If after meeting one of these criteria no individuals in the population yield acceptable 

solutions to the problem at hand, the GA may simply run again, or be continued with 

extended design criteria. The GA allows the user to pick from a number of potential 

solutions — it doesn't just yield one solution. It is good at identifying simultaneously these 

other solutions for a problem that by nature has multiple solutions. 
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CHAPTER 5 
DESIGN FUZZY LOGIC CONTROLLER IN MATLAB 

5.1 INTRODUCTION 

It is well-known that human control mechanisms define exact mathematical modeling to 

perform a particular task. This is in sharp contrast with conventional approaches in the 

design of an automatic control system that often involve the construction of a 

mathematical model describing the dynamic behaviour of the plant to be controlled, and 

the application of analytical techniques to the model to derive an appropriate control law. 

Usually, such a mathematical model consists of a set of linear or nonlinear differential or 

difference equations, most of which are derived using some form of approximation and 

simplification. On the other hand, a human control mechanism uses imprecise and 

qualitative understanding of the processes to be controlled. Knowledge-based control or 

intelligent control is the name introduced to describe control systems in which the control 

strategies use behavioral (and not mathematical) description of the process, based on 

experience gathered by operators and process engineers[16]. Actions are performed either 

as a result of evaluating rules (reasoning) or as unconscious actions based on presented 

process behaviour after a learning phase. Intelligence comes in as the capability to reason 

about facts and rules and to learn about presented behaviour. While simulation results are 

typically used to `verify' the approach and some successful implementations have been 

achieved. 

Techniques from intelligent control and this are important, especially to the practitioner 

seeking a reliable implementation for a control system. The notion that since a control 

system is `intelligent', it must automatically be better than other conventional approaches 

is hype. At the same time, it is bad for control engineers to simply ignore the field of 

intelligent control as being `sloppy'. Perhaps it is not as `tidy' as conventional control, 

but this is due to the fact that the field of intelligent control is relatively new and 

unexplored. Intelligent control has certain techniques and concepts to offer; the challenge 

is to find out what it is good for, and perhaps more importantly, what it is not good for. 

From a control engineer's perspective, the best way to assess the contributions of 
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intelligent control is to perform careful theoretical and experimental engineering analysis 

as has been done in the past for conventional control systems. There is a need to build a 

bridge between conventional and intelligent control. Artificial intelligence field will drive 

the development of control theory and control technology by providing alternative 

strategies for the functionality and implementation of controllers for dynamic systems 

[4]. From the control theory point of view, the ability of intelligent control techniques to 

deal with uncertain and nonlinear systems is perhaps most significant. The great diversity 

of nonlinear systems is the primary reason why no systematic and generally applicable 

theory for nonlinear control design has yet been evolved. A range of traditional methods 

for analysis and synthesis of nonlinear controllers for specific classes of nonlinear 

systems exist: phase-plane methods, linearization techniques, and describing function 

analysis are three examples. The ability of neutral networks/fuzzy systems to represent 

nonlinear mappings is the feature to be exploited in the synthesis of nonlinear controllers, 

and many fundamental theoretical questions will need to be addressed. 

5.2 FUZZY LOGIC TOOLBOX [21] 

The Fuzzy Logic Toolbox is contained in a directory called fuzzy. Type help 

fuzzy for a listing of help topics. The Fuzzy Logic Toolbox provides tools to create and 

edit fuzzy inference system (FIS) within the framework of MATLAB. We can integrate 

our fuzzy systems into simulations with SIMULINK. The Fuzzy Logic Toolbox provides 

three categories of tools: 

* 	Command line functions 

* 	Graphical interactive tools 

* 	Simulink blocks 

To build a system entirely from the command line, the commands newfis, addvar, addmf 

and addrule would be used. The function newfis creates new FIS structures. It has up to 

seven input arguments, and the output argument is a FIS structure. The seven input 

arguments are as follows: 

* 	fisName is the string name of FIS structure; vee.fis (I used). 

* 	fisType is the type of FIS; Mamdani type is default. 
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* 	andMethod, 

* 	orMethod, 

* 	impMethod, 

* 	aggMethod, and 

* 	defuzzMethod, 

Respectively, provide the methods for AND, OR, implication, aggregation, and 

defuzzification. The defaults are, respectively, min, max, min, max and centroid (centre 

of area). The function addvar adds a variable to a FIS. It has four arguments in this order: 

* 	the name of the FIS structure in the MATLAB workspace. 

* 	The string representing the type of the variable we want to add ('input' or 

`output') 

* 	The string representing the name of the variable we want to add. 

* 	The vector describing the limiting range values (universe of discourse) for the 

variable we want to add. 

a = newfis (vee); 

a = addvar (a, `varType', `varName', 'varBounds'); 

Indices are applied to variables in the order in which they are added; so the first input 

variable added to a system will always be known as input variable number one for that 

system. Input and output variables are numbered independently. The Fuzzy Logic 

Toolbox includes many membership function types. The simplest membership functions 

are formed using straight lines. Of these, the simplest is the triangular membership 

function and it has the function name 'trimf. The triangular curve is a function of three 

scalar parameters a, b, and c; the parameters a and c locate the `feet' of the triangle and 

the parameter b locates the peak. The trapezoidal membership function, trapmf, has a flat 

top. The trapezoidal curve depends on four scalar parameters a, b, c, and d; the 

parameters a and d locate the `feet' of the trapezoid and the parameters b and c locate the 

`shoulders'. Each input/output variable existing in MATLAB workspace FIS (variables 

added by the function addvar) is resolved into a number of different fuzzy linguistic sets. 

The input/output variables must be fuzzified according to each of these linguistic sets. A 

membership function can only be added to a variable in an existing MATLAB workspace 

FIS. Indices are assigned to membership functions in the order in which they are added; 
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so the first membership function added to a variable will always be known as 

membership function number one for that variable. The function addmf adds a 

membership function to FIS. The function requires six input arguments in this order: - A 

MATLAB variable name of a FIS structure in the workspace. • A string representing the 

type of variable we want to add the membership function to ('input' or 'output').' The 

index of the variable you want to add the membership function to (We cannot add a 

membership function to input variable number two of a system if only one input has been 

defined). - A string representing the name of the new membership function. • A string 

representing the type of the new membership function. • The vector of parameters that 

specify the membership function. 

a = newfis (`vee') ; 

a = addvar (a, `varType', 'varName', `varBounds') ; 

a = addmf(a, `varType', `varindex', 'mfName', 'mfType', 'mfParams'); 

Probably the trickiest part of the process of building a Fuzzy System is learning the short 

hand that the fuzzy inference systems use for building rules. This is accomplished using 

the command line function addrule. Each variable, input, or, output, has an index number, 

and each membership function has an index number. The rules are built from statements 

like this: IF input 1 is MF1 and input 2 is MF3 THEN Output is MF2 this rule is turned 

into a structure according to the following logic. If there are p inputs to a system and q 

outputs, then the first p vector entries of the rule structure correspond to inputs 1 through 

p. The entry in column 1 is the index number for the membership function associated 

with input 1. The entry in column 2 is the index number for the membership function 

associated with input 2, and so on. The next q columns work the same way for the 

outputs. Column p + q + 1 is the weight associated with the rule (typically 1; all the rules 

have equal weightage) and column p + q + 2 specifies the connective used (where and =1 

and or =2). The structure associated with the rule shown above is 1 3 2 11 The function 

addrule has two arguments. The first argument is the MATLAB workspace variable FIS 

name. The second argument is a matrix of one or more rows, each of which represents a 

given rule. The rule-list matrix takes the very specific format defined above. 
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ruleList = [ 

11111 

12211]; 

a = addrule (a, ruleList); 

If the above system has two inputs and one output, the first rule can be interpreted 

As `IF input 1 is MF 1 and input 2 is MF 1 THEN output 1 is MF 1'. To evaluate the output 

of a fuzzy  system for a given input, we use the function evalfis. It have the following 

arguments: 

* 	A number or a matrix specifying the input values. If input is a P x p matrix, where 

p is the number of input variables, then evalfis takes each of the P rows of input as an 

input vector and returns the P x q matrix to the variable, output, where each row is an 

output vector and q is the number of output variables. 

* 	The name of the FIS structure to be evaluated. 

It is possible to use the Fuzzy Logic Toolbox by working strictly from the command line. 

However, in general, it is much easier to build a system graphically. These are five 

primary GUI tools for building, editing and observing fuzzy inference systems in the 

Fuzzy Logic Toolbox: 

• The Fuzzy Inference System or FIS Editor. 

• The Membership Function Editor. 

• The Rule Editor. 

• The Rule Viewer and 

• The Surface Viewer. 
The FIS Editor handles the high level issues for the system: How many input and output 

variables? What are their names? The Membership Function Editor is used to define the 

shapes of all the membership functions associated with each variable. The Rule Editor is 

for editing the list of rules that defines the behavior of the system. The Rule Viewer is a 

display of the fuzzy inference diagram. The Surface Viewer is used to display the 

dependency of one of the outputs on any one or two of the inputs. The five primary GUIs 

can all interact and exchange information. For any fuzzy inference system, any or all of 

these five GUIs may be open. If more than one of these editors is open for a single 

system, the various GUI windows are aware of the existence of others and will, if 
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necessary, update related windows; these changes are reflected in the rules shown in the 

Rule Editor. To start building a fuzzy inference system, type fuzzy at the MATLAB 

prompt. The generic untitled FIS Editor opens. At the top is a diagram of the system with 

input and output clearly labeled. By double-clicking on the input or output boxes, you can 

bring up the Membership Function Editor. Double clicking on the fuzzy rule box in the 

centre of the diagram will bring up the Rule Editor. Just below the diagram is a text field 

that displays the name of the current FIS. Lower left of window has a series of pop up 

menus, and the lower right has fields that provide information about the current variable. 

GUI Editors: 

Fuzzy - Basic FIS Editor 

mfedit - Membership Function Editor 

ruleedit - Rule Editor 

ruleview - Rule Viewer 

surfview - Output Surface Viewer 

When you save your fuzzy system to the MATLAB workspace, you are creating a 

variable (whose name you choose) that will act as a MATLAB structure for the FIS 

system. Once you have created your fuzzy system entirely from the command line or 

using the GUI tools, you are ready to embed your system directly into Simulink and test 

it out in a simulation environment. The Fuzzy Logic Toolbox in the Simulink library 

contains the Fuzzy Logic Controller, and the Fuzzy Logic Controller with Rule Viewer 

blocks. It also includes a Membership Functions sub-library that contains Simulink 

blocks for the built-in membership functions. The Fuzzy Logic Controller with Rule 

Viewer block is an extension of the Fuzzy Logic Controller block. It allows you to 

visualize how rules are fired during simulation. To start building a Simulink Fuzzy 

Model, drag the Fuzzy Logic Controller block (with or without the Rule Viewer) from 

the Simulink library to the simulation window (This can also be done by typing fuzblock 

at the MATLAB prompt). To initiate the Fuzzy Logic Controller block, double-click on 

the block and enter the name of the structure variable describing your FIS. This variable 

must be located in the MATLAB workspace. In most cases, the Fuzzy Logic Controller 

block automatically generates a hierarchical block diagram representation of your FIS. 

The block diagram representation only uses built-in Simulink blocks. This automatic, 
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model-generation ability in called the Fuzzy Wizard. In cases where Fuzzy Wizard 

cannot handle FIS, the Fuzzy Logic Controller block uses the S-function sffis to simulate 

the FIS. 

Fo x 

0 

Fig 5.1 BLOCK DIAGRAM OF FLC FOR INVERTED PENDULUM 

5.3 SIMULATION IN MATLAB 

The block diagram of inverted pendulum is. shown in figure 5.1 and the design of inverted 

pendulum in simulink is shown in figure 5.2. 
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Fuzzy Logic 
Controller 

Figure 5.2 the Inverted Pendulum Model in Simulink 

5.4 BUILDING UP THE MAMDANI FUZZY CONTROLLER 

Triangular membership functions are used for both input and outputs [7]. All membership 

functions of input variables are (1) Pendulum Angle (2) Cart Position (3) Cart Velocity 

(4) Angular Velocity of Pendulum shown in Figure 5.3 to Figure 5.6 and output 

membership function is Control Force shown in Figure 5.7. 

5.4.1 PENDULUM ANGLE 

The controller angle is to maintain the zero. It means that the controller will keep the 

pendulum vertically standing on the cart. When the angle is negative, the pendulum is on 

the left side of the centre line. When the angle is positive, the pendulum is on the right 

side of the centre line. 

Two linguistic variable `negative' and `positive' are used for inputs. The membership 

function for the Pendulum Angle is shown in the Figure 5.3. Consider Range of the angle 

is [-0.3 0.3]. 
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Figure 5.3 The Membership Function of angle 

5.4.2 CART POSITION: 

The cart is moving on the horizontal axis. When the cart position is negative, the cart is 

on the left side of the centre on the track. When the cart position is positive, the cart is on 

the right side of the centre on the track. 

Two linguistic variable `negative' and `positive' are used for inputs. The membership 

function for the Cart Position is shown in the Figure 5.4. Consider Range of the cart 

position is [-1 1]. 

Figure 5.4 The Membership Function of Cart Position 
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5.4.3 CART VELOCITY 

The cart velocity of the inverted pendulum, when the cart velocity is negative, the cart is 

moving toward the left end of the track. When the cart velocity is positive the cart is 

moving toward the right end of the track. 

Two linguistic variable `negative' and `positive' are used for inputs. The membership 

function for the Cart Velocity is shown in the Figure 5.5. Consider Range of the cart 

velocity is [-3 3]. 

Figure 5.5 The Membership Function of Cart Velocity 

5.4.4 PENDULUM ANGULAR VELOCITY 

The angle velocity for the Inverted Pendulum, when the angle velocity is negative, the 

pendulum is moving toward the left side. When the angle velocity is positive the 

pendulum is moving toward the right side. 

Two linguistic variable `negative' and `positive' are used for inputs. The membership 

function for the Pendulum Angle Velocity is shown in the Figure 5.6. Consider Range of 

the angular velocity is [3, 3] 

r: 
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Figure 5.6 The Membership Function of Angular Velocity 

5.4.5 CONTROL FORCE 

The Control Force is only one output for the controller. I have consider 16 (Sixteen) 

linguistic variables name mfl to mfl 6 , Triangular membership function is used and 

range for the output is [-55 55]. Later we will see the Rule base for this FLC , there are 

sixteen rules are used 

Figure 5.7 The Membership Function of Output `Force' 

5.5 RULE BASE 

Rule base for the fuzzy logic controller. Here 16(Sixteen) rules are used 

The rule-list matrix where as follow. 

IF the angle is negative and cartposn is negative and cartvel is negative and anglevel is negative, 
THEN output is mfl 
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IF the angle is negative and cartposn is negative and cartvel is negative and anglevel is positive, 

THEN output is mfg. 

IF the angle is negative and cartposn is negative and cartvel is positive and anglevel is negative, 

THEN output is mf3. 

IF the angle is negative and cartposn is negative and cartvel is positive and anglevel is positive, 

THEN output is mf4. 

IF the angle is negative and cartposn is positive and cartvel is negative and anglevel is negative, 

THEN output is mf5. 

IF the angle is negative and cartposn is positive and cartvel is negative and anglevel is positive, 

THEN output is mf6. 

IF the angle is negative and cartposn is positive and cartvel is positive and anglevel is negative, 

THEN output is mf7. 

IF the angle is negative and cartposn is positive and cartvel is positive and anglevel is positive, 

THEN output is mf8. 

IF the angle is positive and cartposn is negative and cartvel is negative and anglevel is negative, 

THEN output is m19. 

IF the angle is positive and cartposn is negative and cartvel is negative and anglevel is positive, 

THEN output is mfl 0. 

IF the angle is positive and cartposn is negative and cartvel is positive and anglevel is negative, 

THEN output is mfl 1. 

IF the angle is positive and cartposn is negative and cartvel is positive and anglevel is positive, 

THEN output is mfl2. 

IF the angle is positive and cartposn is positive and cartvel is negative and anglevel is negative, 

THEN output is mfl3. 

IF the angle is positive and cartposn is positive and cartvel is negative and anglevel is positive, 

THEN output is mfl4. 

IF the angle is positive and cartposn is positive and cartvel is positive and anglevel is negative, 

THEN output is mfl5. 

IF the angle is positive and cartposn is positive and cartvel is positive and anglevel is positive, 

THEN output is mfl6. 

[Rules] 

1 1 1 1, 1 (1): 1 

1112,2(1):1 
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1121,3(1):1 

1122,4(1):1 

1211,5(1):1 

1212,6(1):1 

1221,7(1):1 

1222,8(1):1 

2 1 1 1, 9 (1) : 1 

21 12, 10(1): 1 

2121,11(1):1 

2122,12(1):1 

2 21 1, 13 (1) : 1 

2212,14(1):1 

2221,15(1):1 

2222,16(1):1 

5.6 RESPONSE OF THE SYSTEM 

Up to this we build the mamdani type Fuzzy Inference System for the inverted pendulum 

in the FIS editor and save as the vee.fis with considering four inputs and one output. 

Simulation is run for the 10 second and taken response of angle of the inverted pendulum 

shown as following figure 5.8. 

Next chapter we will see the how genetic algorithm help to optimize the fuzzy logic 

controller parameters. 
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Figure 5.8 Response of System (Angle) 
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CHAPTER 6 
OPTIMIZATION OF FLC USING GA 

6.1 STATEMENT OF THE PROBLEM 

Consider that we have fuzzy logic with four input variable and one output variable. Our 

goal is to optimize the fuzzy logic parameters such as centre of triangular membership 

function [10] and weight of the rule to get optimum result. 

In this work, triangular membership functions are used and two linguistic variable for 

each inputs. The triangular membership has three parameters a, b, & c, here we were 

change only one parameter. Thus for the four input each have two MFs resulting 8 

parameters to change. In rule base there are 16 rules, which require 16 weight parameters. 

So our main objective is to tune the parameters of fuzzy logic controller by Genetic 

Algorithm. The incorporation of genetic algorithm into a fuzzy design process adds an 

`intelligent' dimension to the fuzzy controller enabling it to create and modify its rules. 

Genetic algorithms give the possibility of adjusting membership functions down to the 

level of individual rules [18,7]. 

6.2 IMPLEMENTATION 

Our goal is to optimize the fuzzy logic controller by tuning the membership 

function [6,8] of the input variable as the output variable parameters are fixed and each of 

the input variables quantified into two MFs, 24 parameters of the FLC are needed to be 

tuned by Genetic Algorithm. Functional block diagram is shown in fig 6.2 and the whole 

work is divided into eight steps can be shown in flow chart. 
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FLOW CHART 

START 

READ THE REQUIRED NUMBER 
OF GENERATION 

GENERATE INTIAL POPULATION RANDOMLY 

DEFINE SUB-CHROMOSOME FOR PARAMETERS OF 
FLC 

DECODE THE SUBCHROMOSOME AND GET ACTUAL 
VALUE OF PARAMETERS (bin2deci) 

DESIGN FUZZY LOGIC CONTROLLER 

SIMULATE THE INVERTED PENDULUM USING FLC 
AND TAKE ERROR OF ANGLE & ANGULAR 

VELOCITY 

CALCULATE FITNESS VALUE OF EACH STRING 

2 
	 1 



E 
	 1 

REPRODUCTION OPERATION: PRODUCE 
OFFSPRING USING FITNESS VALUE 

CROSSOVER OPERATION 

MUTATION OPERATION 

RECORD: FITNESS VALUE, MUTATION RATE, 
NO. OF GENERATION 

NO 	
IS GEN. NO.= 

USER DEFINED 
NUMBER? 

YES 

DISPLAY RESULTS 

END 

Fig 6.1 Flow Chart for combining both Fuzzy and GA 
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Major Steps in Combining both Fuzzy and Genetic Algorithms 

1. Initialization of population. 

2. Coding of FLC parameters. 

3. FLC design. 

4. Calculation of fitness value. 

S. 	Reproduction using Roulette Wheel. 

6. Crossover. 

7. Mutation. 

8. Record and display of the results. 

User 
supply 

Initial 
Population 

Randomized 

Record the 
information 

6.2 FUNCTIONAL BLOCK DIAGRAM OF GA OPTIMISING PROCESS 

6.2.1. INTILIZATION OF POPULATION 

Initial population is the random population, here 8 MFs each have 5 bits thus for the all 

inputs allotted 40 bits. 16 rules, each rule have allotted 3 bits thus for rules have 48 bits. 

So length of the string 40 + 48 = 88 bits strings with 0 and 1 bit is required. and 



considering initial population is 10 which is generated by the randsrc command with 

dimension 88 by 10 matrices with 0 and 1 bits with probability of 0.5. 

6.2.2. CODING OF FLC PARAMETERS 

The Genetic Algorithm deals with the coded parameters, 8 parameters of the FLC that 

need to be tuned to get the optimize results, must be encoded into a finite length of string. 

The linear mapping method is used for this purpose that can be expressed as follows [4]. 

Va = Vmin + (Vmax-Vmin)*Vb / (2N-1) 

Where Va is the actual value of the parameter, and Vb is the integer represented by a N-

bit string gene. Vmax is Vmin are user defined upper and lower limits of the gene 

respectively. The encoded genes are concatenated to form a complete chromosome. 

It can observed that Gene 1 to 2 are allotted to the sub chromosome of the first controller 

input, each way 3 to 4, 5 to 6 and 7 to 8 are respectively for the remain three inputs, 9 

to 16 gene are allocated to the 16 rules. The coded parameters of the FLC are arranged as 

shown in the following. 

BITS 	: 1 1......101111......201121......301131.......401141 ...............88 

	

Input-1 Input-2 	Input-3 Input-4 	16 Rules 

GENE 	:X1121 	13141 	15161 	17181 	191101........1161 

6.2.3 CALCULATION OF FITNESS VALUE 

The task of defining the fitness is usually application specific. Our main objective is to 

keep upright the Inverted Pendulum means pole remain vertical position during the cart 

moving along the horizontal axis. Initial value of the pole is 0 rad, so consider it is 

desired value. 

47 



In this project the value(data) for two output of the system during the simulation is taken, 

(1) Angle(e) and (2) Angular velocity(e1). Because considering all four inputs the 

problem becomes the Multi Objective Genetic Algorithm, it's required so much time. 

So the fitness function is as follows. 

f=e2+e12  

6.2.4. REPRODUCTION 

The roulette wheel selection is used to reproduce new strings in the new generation. 

Following MATLAB command is used for that purpose. 

RW= randscr(1,1,[l 2345678910;fl f2f3 f4f5f6f7f8f9fl0]); 

Where RW is roulette wheel output, fl,f2...flO is fitness value of strings. The randscr 

command randomly generates one digit between 1 and 10. The fitness value is the 

probability of generating particular digit. 

Thus the string with the higher fitness value has a higher probability of contributing 

offspring in the next generation. 

6.2.5 CROSSOVER. 

Crossover in GA occurs when the selected chromosomes partially exchange the 

information in the gene, i.e., part of a string is interchanged between two selected 

candidates. The probability of crossover is selected as 70%. If the crossover occurs than it 

is required to find the mate in mating pool and cross-site. 

The rand perm command is used to select one of the strings from first five strings 

randomly. The selected string and sixth string does crossover after selecting cross-site 

randomly. For selection of cross-site randsrc command is used. These steps are repeated 

for five times. After selecting cross-site flipud command is used to does the crossover. 
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6.2.6 MUTATION 

Dynamic mutation rate is used in the GA operation as it provides faster convergence. To 

prevent from immature convergence and high mutation rate, step wise dynamic mutation 

is used. That is given as follows. 

(1) For generation 1 to 5 numbers of mutation = 0 

(2) For generation 6 to 15 numbers of Mutation = 0.015 * 88 * 10* (1 /fitness value) 

(3) For generation 16 to 35 numbers of Mutation = 0.02*88* 10*(1/fitness value) 

(4) For generation 36 to 50 numbers of Mutation = 0.03*88* 10*(1/fitness value) 

6.2.7 RECORD AND DISPLAY OF THE RESULTS 

All the new generation information is recorded for analysis of results. The graph showing 

the change the position of the MFs parameters, pendulum angle position after 

optimization, the variation in the fitness value and mutation rate is generated at the end of 

GA operation. 

The following figure is shown the membership function of the variable for all inputs after 

applying the Genetic algorithms. Figure 6.3 to 6.6 are for the inputs and 6.7 is for the 

response of the system. Figure 6.8 shows the response of the system with parameter 

variation and figure 6.9 shows the response of the system with fuzzy and fuzzy combined 

with GA and finally Figure 6.10 shows the plot of fitness value & mutation rate Vs 

generation. 

6.2.7.1 PENDULUM ANGLE 

After applying the GA, the Membership function is tuned and change its position for all 

four inputs, here shows for Inputl (angle) 

Range=[-0.3 0.3] 

MF 1='negetive' :'trimf , [-0.3 -0.3 0.0929] 

MF2='positive':'trimf,[-0.08 0.3 0.3] 



Figure 6.3 Membership Function of angle after Optimization 

6.2.7.2 CART POSITION 
Range=[-1 1] 

MF 1 ='negative': 'trimf, [-1 -1 0.260645161290323] 

MF2='positive':'trimf , [-0.22 1 1 ] 

Figure 6.4 The Membership Function of Cart Position after Optimization 

6.2.7.3 CART VELOCITY 
Range=[-3 3] 

MF 1='negetive':'trimf, [-3 -3 1.01935483870968] 

MF2='positive':'trimf,[-0.941935483870968 3 3] 

1 
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Figure 6.5 The Membership Function of Cart Velocity after Optimization 

6.2.7.4 PENDULUM ANGULAR VELOCITY 

Range=[-3 3] 

MF1='negative':'trimf,[-3 -3 1.13548387096774] 

MF2='positive' : 'trimf, [-1.1741935483871 3 3] 

Figure 6.6 The Membership Function of Angular Velocity after Optimization 

6.2.7.5 Rule List after Optimization of FLC 

1 1 1 1, 1 (0.928571428571429) : 1 

1 1 1 2, 2 (0.857142857142857) : 1 

11 2 1,3 (0.5) : 1 

11 2 2, 4 (0.642857142857143) : 1 
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1211,5(1):1 

1 2 1 2, 6 (0.857142857142857) : 1 

1 2 2 1, 7 (0.928571428571429) : 1 

1 2 2 2, 8 (0.928571428571429) : 1 

2 1 1 1, 9(0.785714285714286):  1 

2 11 2, 10 (0.571428571428571) : 1 

2 1 2 1, 11(0.642857142857143): 1 

2122,12(1):  1 

22 1 1, 13 (0.928571428571429) : 1 

2 2 1 2, 14 (0.928571428571429) : 1 

2221, 15(0.5): 1 
2 2 2 2, 16 (0.785714285714286) : 1 

6.2.7.6 RESPONSE OF THE SYSTEM 

Figure 6.7 Response of System (Angle) 
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The response of the system with Parameter variation is shown in Fig 6.8 and Comparison 

of both Fuzzy and Fuzzy combined with Genetic Algorithms is shown in Fig 6.9 

Fig 6.8 System response with parameter variation 
Pole mass=.5 kg, l kg 
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Fig 6.9 Response of system with fuzzy and fuzzy+Ga 

6.2.7.7. TABLE FOR FITNESS VALUE & MUTATION RATE 

SR NO. GENERATION FITNESS VALUE MUTATION RATE 

1. 0 1.6301 0 

2. 1 1.3478 0 

3. 2 1.5529 0 

4. 3 1.6820 0 

5. 4 2.8109 0 

6. 5 3.0183 4.3733 

7. 6 2.7634 4.7768 

8. 7 2.6835 4.9189 

9. 8 2.7104 4.8702 

10. 9 2.7723 4.7614 

11. 10 2.7676 4.7696 

12. 11 2.7892 4.7325 
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13. 12 3.0000 4.4000 

14. 13 2.8480 4.6349 

15. 14 3.0190 4.3724 

16. 15 2.8134 6.2558 

17. 16 2.3357 7.5353 

18. 17 2.2985 7.6571 

19. 18 2.8468 6.1824 

20. 19 3.1739 5.5452 

21. 20 3.1640 5.5626 

22. 21 3.2419 5.4289 

23. 22 3.3246 5.2939 

24. 23 1.9317 9.1112 

25. 24 3.3579 5.2414 

26. 25 3.4933 6.2977 

27. 26 3.5797 6.1458 

28. 27 3.2789 6.7095 

29. 28 3.4999 6.2858 

30. 29 3.5744 6.1548 

31. 30 3.5949 6.1197 

32. 31 3.5252 6.2407 

33. 32 3.4293 6.4154 

34. 33 3.0430 7.2297 

35. 34 4.6315 4.7501 

36. 35 5.9241 4.4564 

37. 36 6.0568 4.3588 

38. 37 4.8241 5.4725 

39. 38 4.2622 6.1940 

40. 39 4.4746 5.9000 

41. 40 4.9343 5.3502 
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42. 41 5.2650 5.0142 

43. 42 4.8964 5.3917 

44. 43 3.8351 6.8839 

45. 44 4.0455 6.5257 

46. 45 5.1748 5.1016 

47. 46 4.8283 5.4678 

48. 47 5.3564 4.9287 

49. 48 5.3728 4.9136 

50. 49 5.5836 4.7281 

51. 50 5.5949 4.7612 

Figure 6.10 The Plot of Generation Vs Fitness & Mutation 
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The objective values for the maximum fitness and mutation rate per iteration are shown 

in above figure. Here, 50 generation is used. we can see the fitness value is increased or 

decreased as no. of generation increase but at last got highest fitness value. 

Selection criteria are used: - Roulette Wheel selection. Plots for Fitness Vs. Generation 

for Roulette Wheel Selection and Number of bits Mutate in every generation. 
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CHAPTER 7 
CONCLUSIONS 

In this project first design of Fuzzy logic controller for inverted pendulum is carried out 

and it is showed that the design of FLC is easy to work with and to adapt, rules can 

always be deleted, modified ,added and they can provide more effective control of non-

linear systems than a linear controller as there is more flexibility in designing the 

mapping from the input to the output the only difficulties are in the designing the rule 

base, that is to decide weights of the rules and ranges of parameters. The incorporation of 

genetic algorithm into a fuzzy design process adds an intelligent dimension to the fuzzy 

controller enabling it to create and modify its rules. 

It has been shown that the use of genetic algorithms offers a feasible method for the 

optimization of the knowledge-base of fuzzy logic controllers. The simulation results 

proved that the proposed method based on GA is an effective way to tune the parameters 

such as centre of membership functions, weight of rules of fuzzy logic controller for 

inverted pendulum problem. 

7.1 FUTURE SCOPE OF WORK 

For this project, a broad investigation into applying Genetic Algorithms to Fuzzy Logic 

Controllers was carried out. 

Suggestions for follow-up work that may come after this project are: 

1. Perform a more in-depth study of how the various parameters and 

encodings affect GA performance in FLC optimization. This work require 

enough time for more investigations of this kind. 

2. Investigate more thoroughly if GAs can be applied to FLCs or other types of 

nonlinear controllers, like Neural network so that they may successfully control 

fully the inverted pendulum system. 
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3. Investigate whether any of the assumptions made in designing FLCs such as 

using only triangular membership functions and consider two MFs for each input 

allowing an more number of these sets have a significant impact on the 

performance obtainable from the controllers. 

Genetic algorithms combined with other intelligent techniques, such as neural networks, 

expert systems and fuzzy logic control systems open a new way to design and construct 

intelligence control systems adapted to complex processes. 
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Appendix 
mm 

I FUZZy CONTROL FOR INVERTED PENDULUM using GA 
I this program uses randbits .m(to produce the random metrics with 0 & 1 
element) 
bkn2decj.m(convert parameters value binary to decimal value) 

% 	INITIALIZE POPULATION:- 
IPIGI; 
user entryinput('Enter no. generations range[1

— Guser entry; 
1.. Ii TIALIZATION OF .PCPC.JLAT.ION: - 

g=1; 
while g<=G+1; 
p=1; 
q=10; 
while p<=q 

CODING (FL: PARAMETERS) 

I STI:RINGS ARE ELEC FROM THE INITIAL POPULATION 

sl = 	[12(1,1:88)]; 
s2 = 	[IP(2,1:88)]; 
s3 = 	[IP(3,1:88)]; 
s4 = 	[12(4,1:88)]; 
s5 = 	[12(5,1:88)]; 
s6 = 	[12(6,1:88)]; 
s7 = 	[12(7,1:88)]; 
s8 = 	[12(8,1:88)]; 
59 = 	[12(9,1:88)]; 
slO [IP(10,1:88)]; 

I 	 brStros  for the NEc of Input (angle) 

C11= [IP(p,1:5)]; 
Al2= [IF (q, 6:10)]; 

SU.bsL.ri. rig i:or the MFs of Input: (cartposn) 

C21= [IP(p,11:15)]; 
A22= [IP(p,16:20)]; 

I Substrir1gs for the EEc of Input (cartvel) 

C31= [IP(p,21:25)]; 
A32= [IP(p,26:30)]; 

I Duhst:r,.i.ng for the NEs of Input (anqieve..1) 

C41= [IP(p,31:35)], 
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A42= [IP (p, 36:40) ] ; 

Subs Y..'.a.71q5 for t1ie RuLe Weights _S 

W1 =[IP(p,41:43)]; 
W2 =[IP (p, 44:46) ] ; 
W3 =[IP(p,47:49)]; 
W4 =[IP(p,50:52)]; 
W5 =[IP(p, 53:55) ] ; 
W6 =[IP(p,56:58)]; 
W7 =[IP(p,59:61)]; 
W8 =[IP(p,62:64)]; 
W9 =[IP(p,65:67)]; 
W10 =[IP (p, 68:70) ] ; 
W11 =(IP (p, 71:73) ] ; 
W12 =[IP(p,74:76)]; 
W13 =[IP (p, 77:79) ] ; 
W14 =[IP (p, 80:82) ] ; 
W15 =[IP(p,83:85)]; 
W16 =(IP(p,86:88)]; 

' DECODING THE PARAMETERS OF HFs VALUE FROM BINARY TO DECIMAL 
S; FOR  A 

a12 =bin2deci(Al2,5,-0.12,-0.08); 
a22 =bin2deci(A22,5,-.28,-.22); 
a32 =bin2deci(A32,5,-1.2,-0.8); 
a42 =bin2deci(A42,5,-1.2,-0.8); 

cll =bin2deci(C11,5,0.08,0.12); 
c21 =bin2deci(C21,5,0.23,0.28); 
c31 =bin2deci(C31,5,0.8,1.2); 
c41 =bin2deci(C41,5,0.8,1.2); 

% FOR RULE WEIGHTS 
wl =bin2deci(W1,3,0.5,1); 
w2 =bin2deci(W2,3,0.5,1); 
w3 =bin2deci(W3,3,0.5,1); 
w4 =bin2deci(W4,3,0.5,1); 
w5 =bin2deci(W5,3,0.5,1); 
w6 =bin2deci(W6,3,0.5,1); 
w7 =bin2deci(W7,3,0.5,1); 
w8  =bin2deci(W8,3,0.5,1); 
w9 =bin2deci(W9,3,0.5,1); 
w10 =bin2deci(W10,3,0.5,1); 
wll =bin2deci(W11,3,0.5,1); 
w12 =bin2deci(W12,3,0.5,1); 
w13 =bin2deci(W13,3,0.5,1); 
w14 =bin2deci(W14,3,0.5,1); 
w15 =bin2deci(W15,3,0.5,1); 
w16 =bin2deci(W16,3,0.5,1); 

% FL\, DE 7_GI1IN(; 

S=  
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% input anq.1.eM.ES 
S =addvar(s, YLnput', 'angle', [-0.3 0.31); 
S =addmf(s,' input ',1,'negetIve','trimf',[-0.3 -0.3 cli]); 
S =addrnf(s, 'input',1, 'positive', 'tr:irnf', [a12 0.3 0 .3]); 
% Input cart position MFs 
S =addvar(s,hirlputV,Vcartposnu,[_1 1]); 
S =addmf(5,  input V,2,Y  negative  V,  'trim.-", E-1 -1 c21}); 
S =addmf(s, VirlputV,2, 'positive', 'trimf', [a22 1 1]); 

% input cart veioc.:L ty MFs 
S =addvar(s, 'input r V  cart:vei' , [-3 31 
S =addraf(s,Vinputh,3,mnegetive,VtrirnfV,[_3 -3 c31]); 
s =addiaf(s, VIT1Put V 3 Vpositive V, 'trjrnf', [a32 3 3]); 

% Input angular velocity MFs 
s =addvar(s, 'input', VanglevelV,  [-3 3]); 
s =ad.dmf(s ,Vinput1,4, VrlegativeV,VtrirnfV,[_3 -3 c41]); 
s =addmf(s, VinpiJjV,4,  'pos.:LL:i.ve', 'trirnf', [a42 3 3]); 

Output control force ME's 
s =addvar (s, ' output', V  force  V [55 55]); 
s =addinf (s, V.ij t:p 	V  1, 'rnfl V 	rim V  [-55 -55 -48] ) ; 
S =addinf(s, 'output Vi  'mf2', 'triinf ', [-55 -47.5 -401); 
s =addmf(s, 'output', 1, 'mf3', 'trim-;: '  , [-47 -40 -33]); 
S =addmf(s,VoutputV,1,mf4,VtrimfV,[_40 -33 -26]); 
S =addinf (s, 'output', 1, 'mf5', 'trimi', [-33 -25 -17] ) ; 
s =addrrif(s, !out. pu.t:;V,i, V:rn f6V, V.t.:r:in.lrV, [-26 -18 -10]); 
s =acldmf(s, Voutput' ,1, !mf7V, VtrimfV, [-17 -10 -3]); 
s addmf(s, 'output', 1, 'ipf8' 'trim 	[-10 -3 4]); 
S addmf(s, 'outpijt',i, 'mf9', 'trimf', [3 4 11]); 
s =addmf(s, 'output',l, VmfioV,  'trimf' [4 11 18]); 
s =addmf(s, ' out Put' , 1, 'rnfil V , V4:r:m;fl , [11 18 25]);  
S =addmf(s,'output',1,'mfi2','trimf',[18 25 33]); 
S =addmf(s, 'output', 1, 'IrLf13', ' "Cr imf', [25 32 40]); 
S ead.dmf(s, 'output',l, 'mfl4', 'trimf', [33 40 48]); 
S =addmf(s,'output',1,'mflS','trimf',[40 48 55]); 
S =addxnf(s, 'output',l, ':rri[:i6', 't:rimf' , [48 55 55]); 

% Rule L:i.st: 
ruleLjst= 

1 1 1 1 1 wi 1 
1 1 1 2 2 w2 1 
1 1 2 1 3 w3 1 
1 1 2 2 4 w4 1 
1 2 1 1 5 w5 1 
1 2 1 2 	6 w6 1 
1 2 2 1 7 w7 I 
1 2 2 2 8 w8 1 
2 1 1 1 	9 w9 1 
2 1 1 2 10 wiO 1 
2 1 2 1 	11 wil 1 
2 1 2 2 	12 w12 1 
2 2 1 1 	13 w13 1 
2 2 1 2 	14 w14 1 
2 2 2 1 	15 w15 1 
2 2 2 2 	16 w16 1]; 
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s = addrule(s,ruleList); 
writefis(s,'vee'); 
fismatrix = readfis ('vee') ; 
vee = fismatrix; 
inv1 
set _param (gcs, ' Sa veOutput' , 'on')  
set _param(gcs,'Saverormat','StructureWithTime') 
sim(gcs); 
b 
abs(e(10,1))+abs(e(30,1))+abs(e(50,1))+abs(e(70,1))+abs(e(90,1))+abs(e( 
100,1))+abs(e (120,1))... 

+abs(e(140,1)) +abs (e(160,1))+abs(e(180,1)) +abs (e(200,1)) +abs (e(220,1))+ 
abs (e (240, 1) ) +abs (e (260, 1)) .. . 

+abs (e(280,1)) +abs (e(300,1)) +abs (e(320,1)) +abs (e(340,1)) +abs (e(350,1))+ 
abs (e(370,1)) +abs (e(380,1))... 

+abs(e(390,1))+abs(e(400,1))+abs(e(410,1))+abs(e(420, 1))+abs(e (430,1))+ 
abs (e(440,1)) +abs (e(450,1))... 

+abs(e(460,1))+abs(e(470,1))+abs(e(480,1))+abs(e(490,1))+abs(e(500,1)); 
J= 
abs(el(10,1))+abs(el(30,1))+abs(el(50,1))+abs(el(70,1))+abs(el(90,1))+a 
bs(el(100,1))+abs(el(120,1))... 

+abs (el(140,1))+abs(el(160, 1))+abs(el(180, 1))+abs (el (200,1))+abs (el (220 
l) )+abs (el (240, 1))+abs (el (260, 1)) .. . 

+abs(el(280,1))+abs(el(300,1))+abs(el(320,1))+abs(el(340,1))+abs(el(350 
l))+abs (el (370, 1))+abs (el (380, 1)) .. 

+abs (e1(390,1)) +abs (el (400,1))+abs (el (410,1)) +abs (el (420,1)) +abs (el (430 
,1))+abs(el(440,1))+abs(el(450,1))... 

+abs(el(460,1))+abs(el(470,1))+abs(el(480,1))+abs(el(490,1))+abs(el(500 
,1) ); 
switch p; 
case 1 

yl=b; 
z1=j; 

case 2 
y2=b; 
z2=j; 

case 3 
y3=b; 
z3=j; 

case 4 
y4=b; 
z4=j; 

case 5 
y5=b; 
z5=j; 

case 6 
y6=b; 
z6=j; 

case 7 
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y7=b; 
z7=j; 

case 8 
y8=b; 
z8=j; 

case 9 
y9=b; 
z9=j; 

case 10 
ylO=b; 
zl0=j; 

end 
p=p+l; 
end; 
Generation = g-1 
R = [yl y2 y3 y4 y5 y6 y7 y8 y9 y10]; 
Q = [zl z2 z3 z4 z5 z6 z7 z8 z9 z10]; 

3. CAI.,CE T..AT ON OF FITNESS VALUE 

p=l;q=10; 
while p<=q; 
V1=R(l,p); 
Q2=Q(l,p); 
f = V1*V1 + Q2*Q2 + 0.0000000001; 
switch p; 
case 1; 

of=f; 
case 2 

o2=f; 
case 3 

o3=f; 
case 4 

o4=f; 
case 5 

o5=f; 
case 6 

o6=f; 
case 7 

o7=f; 
case 8 

o8=f; 
case 9 

o9=f; 
case 10 

ol0=f; 
end 
p=p+1; 
end 
T =01+o2+o3+o4+o5+o6+o7+o8+o9+olO; 
Fitness_Value = T 
fl =ol/T; 
f2 =o2/T; 
f3 =o3/T; 
f4 =o4/T; 



f5 =o5/T; 
f6 o6/T; 
f7 o7/T; 
f8 r08/T; 
f9 o9/T; 
f10=o10/T; 
Fi = [ol 02 o3 o4 05 o6 07 o8 o9 010]; 

4. REPRODUCTION USING ROULETTE WHEEL 

wheel sp-in 1 to 10 
p=1;q=lO; 
while p<=q; 
RW=randsrc(1,1,[1 2 3 4 5 6 7 8 9 10;fl f2 f3 f4 f5 f6 f7 f8 f9 flO]); 
switch RW 
case 1 

r=sl; 
case 2 

r=s2;  
case 3 

r=s3;  
case 4 

r=s4;  
case 5 

r=s5;  
case 6 

r=s 6; 
case 7 

r=s7;  
case 8 

r=s8;  
case 9 

r=s9;  
Case 10 

r=slO; 
end; 

switch p; 
case 1 

rl=r; sl=r; 
case 2 

r2=r; s2'=r; 
case 3 

r3=r; s3=r; 
case 4 

r4=r; s4=r; 
case 5 

r5r; s5=r; 
case 6 

r6=r; s6=r; 
case 7 

r7=r; s7=r; 
case 8 

r8=r; s8=r; 
case 9 

r9=r; s9=r; 
case 10 

rlO=r;slO=r; 
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end; 
p=p+1; 

end; 
5. CROSSOVER 

Pc=randsrc(1,1,[1 0; 0.7 0.3]); 
if Pc==1 
p=1; q=5; 
M =randperm (5) ; 
while p<=q 
CS =randsrc(1,1,[1:1:87]); 

if 	M(l,p)==1; 
R2=rl; 

elseif M(1,p)==2; 
R2=r2; 

elseif M (1, p) ==3; 
R2=r3; 

elseif M(l,p)==4; 
R2=r4; 

elseif M(l,p)==5; 
R2=r5; 

end; 

L 	Pc .._.. p:Y..f ,..iaJ..L..i.a..L.y J.t 	(,.:_C)s.",:)'v'E 1' 

N ..... Di t::.:l.ng 

% CS 	cr ross  

if  
R1=r6; 

elseif p==2; 
R1=r7; 

elseif p==3; 
Rl=r8; 

elseif p==4; 
R1=r9; 

elseif p==5; 
R1=r10; 

end; 
switch CS 

case 1 
a=[R1(1,2:88);R2(1,2:88)]; 
F=f1ipud(a); 
R1=[R1(1,1) F(1,1:87)]; 
R2=[R2(1,1) F(2,1:87)]; 

case 2 
a=[R1(1,3:88);R2(1,.3:88)]; 
F=flipud(a); 
R1=[Rl(1,1:2) F(1,1:86)]; 
R2=[R2(1,1:2) F(2,1:86)]; 

case 3 
a=[R1(1,4:88);R2(1,4:88)]; 
F=flipud(a); 
R1=[R1(1,1:3) F(1,1:85)]; 
R2=[R2(1,1:3) F(2,1:85)]; 

case 4 
a=[R1(1,5:88);R2(1,5:88)]; 
F=flipud(a); 
R1=[Rl(1,1:4) F(1,1:84)]; 
R2=[R2(1,1:4) F(2,1:84)]; 

case 5 
a=.[R1(1,6: 88);R2(1,6:88)]; 
F=flipud(a); 
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R1=[Rl(1,1:5) F(1,1:83)]; 
R2=[R2(1,1:5) F(2,1:83)]; 

case 6 
a= [Rl(1,7:88);R2(1,7:88)]; 
F=flipud(a); 
R1=[R1(1,1:6) F(1,1:82)]; 
R2=[R2(1,1:6) F(2,1:82)]; 

case 7 
a= [Rl(1,8:88);R2(1,8:88)]; 
F=flipud(a); 
R1=[R1(1,1:7) F(1,1:81)]; 
R2=[R2(1,1:7) F(2,1:81)1; 

case 8 
a=[Rl(1,9:88);R2(1, 9:88)]; 
F=flipud(a); 
R1=[R1(1,1:8) F(1,1:80)]; 
R2=[R2(1,1:8) E(2,1:80)1; 

case 9 
a = [R1(1,10:88);R2(1,10 88 )]; 
F = flipud(a); 
Rl = [R1(1,1:9) F(1,1:79)]; 
R2 = [R2(1,1:9) F(2,1:79)]; 

case 10 
a = [R1(1,11:88);R2(1,11:88)]; 
F = flipud(a); 
R1= [R1(1,1:10) F(1,1:78)]; 
R2 = [R2(1,1:10) F(2,1.78)]; 

case 11 
a = [R1(1,12:88);R2(1,1288)]; 
F = flipud(a); 
R1= [R1(1,1:11) F(1,1:77)]; 
R2 = [R2(1,1:11) F(2,1:77)]; 

case 12 
a = [Rl(1,13:88);R2(1,13:88)]; 
F = flipud(a); 
Rl = [Rl(1,1:12) F(1,176)1; 
R2 = [R2(1,1:12) F(2,1:76)]; 

case 13 
a = [Rl(1,14:88);R2(1,14:88)]; 
F = flipud(a); 
R1 = [R1 (1, 113) F(1, 1:75) ] ; 
R2 = [R2(1,1:13) F(2,1:75)]; 

case 14 
a = [R1(1,15:88);R2(1,15:88)]; 
F = flipud(a); 
R1 = [R1(1,1:14) F(1,1:74)]; 
R2 = [R2(1,1:14) F(2,1:74)]; 

case 15 
a = [R1(1,16:88);R2(1,16:88)]; 
F = flipud(a) ; 
R1 = [R1(1,1:15) F(1,1:73)]; 
R2 = [R2(1,1:15) F(2,1:73)]; 

case 16 
a = [R1(1,17:88);R2(1,17:88)]; 
F = flipud(a); 
R1= [R1(1,1:16) F(1,1:72)1; 
R2 = R2(1,1:16) F(2,1:72)1; 



case 17 
a = [Rl(1,18:88);R2(1,18:88)]; 
F = flipud(a); 
R1 = [R1(1,1:17) F(1,1:71)]; 
R2 = [R2(1,1:17) F(2, 1:71) ] ; 

case 18 
a = [R1(1,19:88);R2(1,19:88)]; 
F = flipud(a); 
R1 = [R1(1,1:18) F(1,1:70)]; 
R2 = [R2(1,1:18) F(2,1:70)]; 

case 19 
a = [R1(1,20:88);R2(1,20:88)]; 
F = flipud(a); 
R1 = [R1(1,1:19) F(1,1:69)]; 
R2 = [R2(1,1:19) F(2,1:69)]; 

case 20 
a = [R1 (1,21:88);R2(1,21:88)]; 
F = flipud(a); 
Rl = [Rl(1,1:20) F(1,1:68)]; 
R2 = [R2(1,1:20) F(2,1:68)]; 

case 21 
a = [R1(1,22:88);R2(1,22:88)]; 
F = flipud(a); 
R1= [R1(1,1:21) F(1,1:67)]; 
R2 = [R2(1,1:21) F(2,1:67)]; 

case 22 
a = [R1(1,23:88);R2(1,23:88)]; 
F = flipud(a); 
R1= [R1(1,1:22) F(1,1:66)]; 
R2 = [R2(1,1:22) F(2,1:66)]; 

case 23 
a = [R1(1,24:88);R2(1,24:88)]; 
F = flipud(a); 
Rl = [R1(1,1:23) F(1,1:65)]; 
R2= [R2(1,1:23) F(2,1:65)]; 

case 24 
a = [Rl(1,25:88);R2(1,25:88)]; 
F = flipud(a); 
R1= [R1(1,1:24) F(1,1:64)]; 
R2= [R2(1,1:24) F(2,1:64)]; 

case 25 
a = [R1(1,26:88);R2(1,26:88)]; 
F = flipud(a); 
R1 = [Rl(1,1:25) F(1,1:63)]; 
R2 = [R2(1,1:25) F(2,1:63)]; 

case 26 
a = [R1(1,27:88);R2(1,27:88)]; 
F = flipud(a); 
Rl = [R1(1,1:26) F(1,1:62)]; 
R2 = [R2(1,1:26) F(2,1:62)]; 

case 27 
a = [R1(1,28:88);R2(1,28:88)]; 
F = flipud(a); 
Rl = [R1(1,1:27) F(1,1:61)]; 
R2 = [R2(1,1:27) F(2,1:61)]; 

case 28 
a = [R1(1,29:88);R2(1,29:88)]; 
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F 	= flipud(a); 
Rl = [R1(1,1:28) 	F(1,1:60)]; 
R2 = [R2(1,1:28) 	F(2, 1:60) ] ; 

case 29 
a 	= [RI(1,30:88);R2(1,30:88)]; 
F 	= flipud(a); 
Rl = [R1(1,1:29) 	F(1,1:59)]; 
R2 = [R2(1,1:29) 	F(2, 1:59) ] ; 

case 30 
a 	= [Rl(1,31:88);R2(1,31:88)]; 
F 	= flipud(a); 
Ri = [RI(1,1:30) 	F(1,1:58)]; 
R2 = [R2(1,1:30) 	F(2,1:58)]; 

case 31 
a 	= [Rl(1,32:88);R2(1,32:88)]; 
F 	= flipud(a); 
RI = [R1 (1, 1:31) 	F(1, 1:57) ] ; 
R2 = [R2(1,1:31) 	F(2,1:57)]; 

case 32 
a 	= [Rl(1,33:88);R2(1,33:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:32) 	F(1,1:56)]; 
R2 = [R2(1,1:32) 	F(2,1:56)]; 

case 33 
a 	= [RI(1,34:88);R2(1,34:88)]; 
F 	= flipud(a); 
Rl = [Rl(1,1:33) 	F(1,1:55)]; 
R2 = [R2(1,1:33) 	F(2,1:55)]; 

case 34 
a 	= [Rl(1,35:88);R2(1,35:88)]; 
F 	= flipud(a); 
Rl = [R1(1,1:34) 	F(1,1:54)]; 
R2 = [R2(1,1:34) 	F(2,1:54)]; 

case 35 
a 	= [R1(1,36:88);R2(1,36:88)]; 
F 	= flipud(a); 
Rl = [Rl(1,1:35) 	F(1,1:53)]; 
R2 = [R2(1,1:35) 	F(2,1:53)]; 

case 36 
a 	= [R1(1,37:88);R2(1,37:88)]; 
F 	= flipud(a); 
R1= [R1(1,1:36) 	F(1,1:52)]; 
R2= [R2(1,1:36) 	F(2,1:52)]; 

case 37 
a 	= [R1(1,38:88);R2(1,38:88)]; 
F 	= flipud(a); 
Rl = [Rl(1,1:37) 	F(1,1:51)]; 
R2= [R2(1,1:37) 	F(2,1:51)]; 

case 38 
a 	= [R1(1,39:88);R2(1,39:88)]; 
F 	= flipud(a); 
Rl = [Rl(1,1:38) 	F(1,1:50)]; 
R2 = [R2(1,1:38) 	F(2,1:50)]; 

case 39 
a 	= [R1(1,40:88);R2(1,40:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:39) 	F(1,1:49)]; 
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R2 = [R2(1,1:39) 	F(2, 1:49) ] ; 
case 40 

a 	= [Rl(1,41:88);R2(1,41:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:40) 	F(1,1:48)]; 
R2 = [R2(1,1:40) 	F(2,1:48)]; 

case 41 
a 	= [Rl(1,42:88);R2(1,42:88)]; 
F 	= flipud(a); 
Rl = [R1(1,1:41) 	F(1,1:47)]; 
R2 = [R2(1,1:41) 	F(2,1:47)]; 

case 42 
a 	= [R1(1,43:88);R2(1,43:88)]; 
F 	= flipud(a); 
Rl = [R1(1,1:42) 	F(1,1:46)]; 
R2 = [R2(1,1:42) 	F(2, 1:46) ] ; 

case 43 
a 	= [R1(1,44:88);R2(1,44:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:43) 	F(1,1:45)]; 
R2 = [R2(1,1:43) 	F(2,1:45)]; 

case 44 
a 	= [R1(1,45:88);R2(1,45:88)]; 
F 	= flipud(a); 
Rl = [R1(1,1:44) 	F(1,1:44)]; 
R2 = [R2(1,1:44) 	F(2,1:44)]; 

case 45 
a 	= [R1(1,46:88);R2(1,46:88)]; 
F 	= flipud(a); 
R1 = [R1 (1, 1:45) 	F (1, 1:43) ] ; 
R2 = [R2(1,1:45) 	F(2,1:43)]; 

case 46 
a 	= [R1(1,47:88);R2(1,47:88)]; 
F 	= flipud(a); 
Rl = [Rl(1,1:46) 	F(1,1:42)]; 
R2 = [R2(1,1:46) 	F(2,1:42)]; 

case 47 
a 	= [Rl(1,48:88);R2(1,48:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:47) 	F(1,1:41)]; 
R2 = [R2(1,1:47) 	F(2,1:41)]; 

case 48 
a 	= [R1(1,49:88);R2(1,49:88)]; 
F 	= flipud(a); 
Rl = [R1(1,1:48) 	F(1,1:40)]; 
R2 = [R2(1,1:48) 	F(2,1:40)]; 

case 49 
a 	= [Rl(1,50:88);R2(1,50:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:49) 	F(1,1:39)]; 
R2 = [R2(1,1:49) 	F(2,1:39)]; 

case 50 
a 	= [Rl(1,51:88);R2(1,51:88)]; 
F 	= flipud(a); 
R1= [R1(1,1:50) 	F(1,1:38)]; 
R2 = [R2(1,1:50) 	F(2, 1:38) ] ; 

case 51 
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a 	= [R1(1,52:88);R2(1,52:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:51) F(1,1:37)]; 
R2 = {R2(1,1:51) F(2,1:37)]; 

case 52 
a 	= [R1(1,53:88);R2(1,53:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:52) F(1,1:36)]; 
R2 = [R2(1,1:52) F(2, 1:36) ] ; 

case 53 
a 	= [R1 (1, 54:88) ; R2 (1, 54:88) ] ; 
F 	= flipud(a); 
R1 = [R1(1,1:53) F(1,1:35)]; 
R2 = [R2(1,.1:53) F(2,1:35)];  

case 54 
a 	= [R1 (1, 55:88) ; R2 (1, 55:88) ] ; 
F 	= flipud(a); 
R1= [R1(1,1:54) F(1,1:34)]; 
R2 = [R2(1,1:54) F (2, 1:34) ] ; 

case 55 
a 	= [R1 (1, 56:88) ; R2 (1, 56:88) ] ; 
F 	= flipud(a); 
R1 = [R1(1,.1:55) F(1, 1:33) ] ; 
R2 = [R2(1,1:55) F(2, 1:33) ] ; 

case 56 
a 	= [Rl(1,57:88);R2(1,57:88)]; 
F 	= flipud(a); 
R1== [Rl(1,1:56) F(1,1:32)]; 
R2 = [R2(1,1:56) F(2,1:32)]; 

case 57 
a 	= [R1 (1, 58:88) ; R2 (1, 56:88) ] ; 
F 	= flipud (a) ; 
Rl = [R1 (l, 1:57) F(1,1:31)]; 
R2 = [R2(1,1:57) F(2,1:31)]; 

case 58 
a 	= [Rl (1, 59:88) ; R2 (1, 59:88) ] ; 
F 	= flipud(a); 
Rl = [Rl (l, 1:58) F(1, 1:30) ] ; 
R2 = [R2(1,1:58) F(2, 1:30) ] ; 

case 59 
a 	= [R1(1,60:88);R2(1,60:88) ]; 
F 	= flipud(a); 
Rl = [Rl (l, 1:59) F(1, 1:29) ] ; 
R2 = [R2 (1, 1:59) F(2, 1:29) ] ; 

case 60 
a 	= [Rl (1, 61:88) ;R2 (1, 61:88) ] ; 
F 	= flipud(a); 
R1 = [R1(1,1:60) F(1,1:28)]; 
R2 = [R2(1,1:60) F(2,1:28)]; 

case 61 
a 	= [Rl (1, 62:88) ;R2 (l, 62:88) ] ; 
F 	= flipud(a); 
R1 = [R2 (1, 1:61) F(1,1:27)]; 
R2 = [R2(1,1:61) F(2,1:27)]; 

case 62 
a 	= [R1 (1, 63:88) ;R2 (1, 63:88) ] ; 
F 	= flipud(a); 
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R1 = [R1(1,1:62) F(1,1:26)]; 
R2 = [R2(1,1:62) F(2,1:26)1; 

case 63 
a 	= [R1(1,64:88);R2(1,64:88)]; 
F 	= flipud(a); 
Rl = [R1(1,1:63) F(1,1:25)]; 
R2 = [R2(1,1:63) F(2,1:25)]; 

case 64 
a 	= [Ri(1,65:88);R2(1,65:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:64) F(1,1:24)]; 
R2 = [R2(1,1:64) F(2,1:24)]; 

case 65 
a 	= [Rl(1,66:88);R2(1,66:88)]; 
F 	= flipud(a) ; 
R1= [R1(1,1:65) F(1,1:23)]; 
R2 = [R2(1,1:65) F(2,1:23)]; 

case 66 
a 	= [R1(1,67:88);R2(1,67:88)]; 
F 	= flipud(a); 
R1 = [R1(1,1:66) F(1,1:22)]; 
R2 = [R2(1,1:66) F(2,1:22)]; 

case 67 
a 	= [R1 (1, 68:88) ; R2 (.1, 68:88) ] ; 
F 	= flipud(a); 
R1 = [R1(1,1:67) F(1,1:21)]; 
R2 = [R2(1,1:67) F(2,1:21)]; 

case 68 
a 	= [R1(1,69:88);R2(1,69:88)]; 
•F 	= flipud(a); 
R1 = [Rl(1,1:68) F(1,1:20)]; 
R2 = [R2(1,1:68) F(2,1:20)]; 

case 69 
a 	= [R1(1,70:88);R2(1,70:88)]; 
F 	= flipud(a); 
Rl = [R1(1,1:69) F(1,1:19)]; 
R2 = [R2(1,1:69) F(2,1;19)]; 

case 70 
a 	= [Rl(1,71:88);R2(1,71:88)j; 
F 	= flipud(a); 
Rl = [R1(1,1:70) F(1,1:18)]; 
R2 = [R2(1,1:70) F(2,1:18)j; 

case 71 
a 	= [R1(1,72:88);R2(1,72:88)]; 
F 	= flipud(a); 
R1= [R1(1,1:71) F(1,1:17)]; 
R2 = [R2(1,1:71) F(2,1:17)]; 

case 72 
a 	= [R1(1,73:88);R2(1,73:88)]; 
F 	= flipud(a); 
Rl = [R1(1,2:72) F(1,1:16)]; 
R2 = [R2(1,1:72) F(2,1:16)]; 

case 73 
a 	= [R1(1,74:88);R2(1,74:88)]; 
F 	= flipud(a); 
Rl = [R1(1,1:73) F(1,1:15)]; 
R2 = [R2(1,1:73) F(2,1:15)]; 
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case 74 
a = [R1(1,75:88);R2(1,75:88)]; 
F = flipud(a); 
R1 = [R1(1,1:74) F(1,1:14)]; 
R2 = [R2(1,1:74) F(2,1:14)]; 

case 75 
a = tRl (1,76:88) ;R2 (1,76:88) ] 
F = flipud(a); 
R1 = [R1(1,1:75) F(1,1:13)]; 
R2 = [R2(1,1:75) F(2,1:13)); 

case 76 
a = [Rl(1,77:88);R2(1,77:88)]; 
F = tlipud(a); 
Rl = [R1(1,1:76) F(1,1:12)]; 
R2 = [R2(1,1:76) F(2, 1:12) ] ; 

case 77 
a = [R1(1,78:88);R2(1,78:88)]; 
F = flipud(a); 
Rl = [R1(1,1:77) F(1,1:11)]; 
R2 = [R2(1,1:77) F(2,1:11)]; 

case 78 
a = [R1(1,79:88);R2(1,79:88)]; 
F = flipud(a); 
R1= [R1(1,1:78) F(1,1:10) ]; 
R2 = [R2(1,1:78) F(2,1:10) ]; 

case 79 
a = [R1(1,80:88);R2(1,80:88)]; 
F = flipud(a); 
R1 = [R1(1,1:79) F(1,1:9)]; 
R2 = [R2(1,1:79) F(2, 1:9) ] ; 

case 80 
a = [R1(1,81:88);R2(1,81:88)]; 
F = flipud(a); 
Rl = [R1(1,1:80) F(1,1:8)]; 
R2 = [R2(1,1:80) F(2,1:8)]; 

case 81 
a = [Rl(1,82:88);R2(1,82:88)]; 
F = flipud(a); 
Rl = [Rl(1,1:81) F(1,1:7)]; 
R2 = [R2(1,1:81) F(2,1:7)]; 

case 82 
a = [R1(1,83:88);R2(1,83:88)]; 
F = flipud(a); 
R1 = [R1(1,1:82) F(1,1:6)]; 
R2 = [R2(1,1:82) F(2,1:6)]; 

case 83 
a = [R1(1,84:88);R2(1,84:88)]; 
F = flipud(a); 
Rl = [R1(1,1:83) F(1,1:5)]; 
R2 = [R2(1,1:83) F(2,1:5)]; 

case 84 
a = [R1(1,85:88);R2(1,85:88)]; 
F = flipud(a); 
Rl = [Rl(1,1:84) F(1,1:4)]; 
R2 = [R2(1,1:84) F(2,1:4)]; 

case 85 
a = [Rl(1,86:88);R2(1,86:88)]; 
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F = flipud(a); 
R1 = [Rl(1,1:85) F(1,1:3)]; 
R2 = [R2(1,1:85) F(2,1:3)]; 

case 86 
a = [R1(1,87:88);R2(1,87:88)]; 
F = flipud(a); 
R1 = [R1 (1, 1 :86) F(1,1:2)3; 
R2 = [R2(1,1:86) F(2,1:2)]; 

otherwise 
a = [R1(1,88);R2(1,88)]; 
F = flipud(a); 
R1 = [R1(1,1:87) F(1,1)]; 
R2 = [R2(1,1:87) F(2,1)]; 

end; 
if  

sl=R2; 
elseif M(l,p)==2; 

s2=R2; 
elseif M(l,p)==3; 

s3=R2; 
elseif M(l,p)==4; 

s4=R2; 
elseif M(l,p)==5; 

s5=R2; 
end; 

if  
s6=R1; 

elseif p==2; 
s7=Rl; 

elseif p==3; 
s8=R1; 

elseif p==4; 
s9=Rl; 

elseif p==5; 
s10=R1; 

end; 
p=p}l; 
end; 
end; 

6. UT' T.T.ON . - 

0.03*88*10*(1/T); 
if g<=5 

i=0; 
elseif g>=6 & g<=15 

i=0.015*88*10*(1/T); 
elseif g>=16 & g<=25 

i=0.02*88*10*(1/T); 
elseif g>=26 & g<=35 

i=0.025*88*10*(1/T); 
else i=i; 
end; 
i=i;Mutation rate=i,a=l; 
RG = [sl; s2; s3; s4; s5; s6; s7; s8; s9; s10;]; 
while a<=i 

1=randsrc(l,1,[(1:10)]); 
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m=randsrc (1, 1, [1:88]); 
O=RG(1,rn); 
if o==O; 

RG (1, m) =1; 
elseif o==1; 

RG(1,m)=0; 
end; 
a=a+1; 

end; 
IPRG; 

c;NERATI0N OUTPUT - 
--------------- 

if 
G1=IP; P0=T; 10=1; F0=Fi; 

elseif g==2; 
G2=IP; P1=T; il=i; F1=Fi; 

elseif g==3; 
G3=IP; P2=T; 12=1; F2=Fi; 

elseif g==4; 
G4=IP; P3=T; 13=1; F3=Fi; 

elseif g==5; 
G5=IP; P4=T; ±4=1; F4=Fi; 

elseif g==6; 
G6=IP; 5=T;i5=i; F5=E'i; 

elseif g==7; 
G7=IP; P6=T; i6=i; F6=Fi; 

elseif g==8; 
G8=IP;P7=T;i7=i;F7=Fi; 

elseif g==9; 
G9=IP; P8=T; 18=i; F8=Fi; 

elseif g==10; 
G1O=IP;P9=T;19=j;F9=Fj; 

elseif g==11; 
G11=IP; P10=T; ilO=i; F1O=Fi; 

elseif g==12; 
G12=IP; P11=T; ±11=1; F11=Fi; 

elseif g==13; 
G13=IP; P12=T; i12=i; F12=Fi; 

elseif g==14; 
G14=IP; P13=T; i13=i; F13=Fi; 

elseif g==15; 
G15=IP; P14=T;i14=i; F14=Fi; 

elseif g==16; 
G16=IP; P15=T;115=1;F15=Fj; 

elseif g==17; 
G17=IP; P16=T; 116=1; F16=F1; 

elseif g==18; 
G18=IP; P17=T; i17=i; F17=Fi; 

elseif g==19; 
G19=IP; P18=T; i18=i; F18=F±; 

elseif g==20; 
G20=Ip; P19=T; i19=i; F19=F1; 

elseif g==21; 
G21=IP; P20=T; i20=i; F20=Fi; 

elseif g==22; 
G221P; P21=T; ±21=1; F21=Fi; 

elseif g==23; 
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G23=IP;P22=T;i22=i;F22=Fi; 
elseif g==24; 

G24=IP;P23=T;i23=i;F23=Fi; 
elseif g==25; 

G25=IP;P24=T;i24=i;F24=Fi; 
elseif g==26; 

G26=IP;P25=T;i25=i;F25=Fi; 
elseif g==27; 

G27=IP;P26=T;i26=i;F26=Fi; 
elseif g==28; 

G28=IP;P27=T; i27=i;F27=Fi; 
elseif g==29; 

G29=IP;P28=T;i28=i;F28=Fi; 
elseif g==30; 

G30=IP;P29=T;i29=i;F29=Fi; 
elseif g==31; 

G31=IP;P30=T;i30=i;F30=Fi; 
elseif g==32; 

G32=IP;P31=T;i31=i;F31=Fi; 
elseif g==33; 

G33=IP;P32=T;i32=i;F32=Fi; 
elseif g==34; 

G34=IP;P33=T;i33=i;F33=Fi; 
elseif g==35; 

G35=IP;P34=T;i34=i;F34=Fi; 
elseif g==36; 

G36=IP;P35=T;i35=i;F35=Fi; 
elseif g==37; 

G37=IP;P36=T;i36=i;F36=Fi; 
elseif g==38; 

G38=IP;P37=T;i37=i;F37=Fi; 
elseif g==39; 

G39=IP;P38=T; i38=i;F38=Fi; 
elseif g==40; 

G40=IP;P39=T;i39=i;F39=Fi; 
elseif g==41; 

G41=IP;P40=T;i40=i;F40=Fi; 
elseif g==42; 

G42=IP;P41=T;i41=i;F41=Fi; 
elseif g==43; 

G43=IP;P42=T;i42=i;F42=Fi; 
elseif g==44; 

G44=IP;P43=T;i43=i;F43=Fi; 
elseif g==45; 

G45=IP;P44=T;i44=i;F44=Fi; 
elseif g==46; 

G46=IP;P45=T;i45=i;F45=Fi; 
elseif g==47; 

G47=IP;P46=T;i46=i;F46=Fi; 
elseif g==48; 

G48=IP;P47=T;i47=i;F47=Fi; 
elseif g==49; 

G49=IP;P48=T;i48=i;F48=Fi; 
elseif g==50; 

G50=IP;P49=T;i49=i;F49=Fi; 
elseif g==51; 

P50=T;i50=i;F50=Fi; 
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end; 
g=g+1; 

end; 
9 DISPLAY OF RESULTS :- 

if Generation ==50 
y=[P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 
P20 P21 P22 P23 P24 P25 P26... 

P27 P28 P29 P30 P31 P32 P33 P34 235 P36 P37 P38 P39 P40 P41 P42 P43 
P44 P45 P46 P47 P48 P49 P50]; 
I=[il i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 114 i15 i16 i17 i18 i19 
i20 i21 i22 i23 i24 i25 i26... 

i27 i28 i29 i30 i31 i32 i33 i34 i35 i36 i37 i38 i39 i40 i41 i42 i43 
i44 i45 i46 i47 i48 i49 i50]; 
x=1:1:50; 
subplot (2, 1, 1); 
plot (x. Y, ' -r•' ) 
xlabel('x = GENERATION ----->') 
ylabel('Y = FITNESS VALUE ---->') 
title('PLOT OF FITNESS') 
legend('fitness') 
subplot (2, 1, 2); 
plot (x, I, 'r') 
xlabel('x = GENERATION ----->') 
ylabel('Y = MUTATION RATE ---->') 
title('PLOT OF MUTATION') 
legend ('fitness=' ) 
end 
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