
16 - BIT RISC PROCESSOR DESIGN
USING VIDE

- A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER -OF TECHNOLOGY:
in

ELECTRICAL ENGINEERING
(With Specialization in System Engineering & Operations Research)

By
PRAVIN SAKHARAM MANE

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE -

ROORKEE -247 667 (INDIA)
JUNE, 2006

_', . r1a . 'M r--'~'1312bo~—a$l 	- i

INDIAN INSTITUTE OF TECHNOLOGY
ROORKEE-247667

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in this dissertation

entitled "16 — BIT RISC PROCESSOR DESIGN USING VHDL" in the partial

fulfillment of the requirements for the award of the degree of Master of Technology in

Electrical Engineering with specialization in System Engineering and Operation

Research, submitted in the Department of Electrical Engineering, Indian Institute of

Technology Roorkee, Roorkee, is an authentic record of my own work carried out from

July 2005 to June 2006 under the guidance of Dr. Indra Gupta, Assistant Professor and

Prof. M. K. Vasantha, Professor, Department of Electrical Engineering,- IIT Roorkee,

Roorkee.

I have not submitted the matter embodied in this report for the award of any other

degree or diploma.

Date: 2.2(06 /2.)O4 	 (Mr. Pra in Sakharam Mane)

CERTIFICATE

This is to certify that the above statement made by the candidate is true to the best

of my knowledge and belief.

Pro . M. K. Vasantha

Pro essor

Department of Electrical Engineering

Indian Institute of Technology

Dr. In a Gupta

Asstt. Professor

Department of Electrical Engineering

Indian Institute of Technology

Roorkee. 	 Roorkee.

ACKNOWLEDGEMENT

At the outset I express my heartfelt gratitude to Prof. M. K. Vasantha,

Professor and Dr. Indra Gupta, Asstt. Professor, Department of Electrical

Engineering, Indian Institute of Technology Roorkee, Roorkee for their valuable

guidance, support, encouragement and immense help. I consider myself extremely

fortunate for getting the opportunity to learn and work under their able supervision. I

have deep sense of admiration for their innate goodness and inexhaustible enthusiasm.

It helped me to work in right direction to attain desired objectives. Working under

their guidance will always remain a cherished experience in my memory and I will

adore it throughout my life.

I got the ideas on this topic from the course on online computer application

techniques and I consider myself extremely lucky for learning the subject from Prof.

M. K. Vasantha. His presentation in the classroom, work and discipline in laboratory,

method of documentation and motivation will be what I would like to adhere in my

life. His enthusiasm in the topic and encouragement helped me to carry out the work

to current extent.

I am extremely thankful to Dr. Indra Gupta for her course on data structures.

Before this C was only one of the software languages for me. Through her guidance, I

came to know the powerful support the language has got for different data structures

used in applications. Most of the companies want professionals expert in this area.

Her guidance in the topic of this dissertation I would like to appreciate most.

I also acknowledge Prof. H. O. Gupta for his course on operations research,

one of the core subjects of my specialization and course on data management. His

practical knowledge and approach towards the subjects helped me to understand the

implementation of these topics in real life.

I would like to acknowledge Dr. Rajendra Prasad for his guidance on another

core subjects on System Engineering. Optimization techniques and system

performance parameter evaluation, improvements were knowledge flu to me. I would

also like to acknowledge Prof. A. K. Pant, Dr. G. N. Pillai and Dr. N. P. Padhy for

course on modeling, simulation and evolutionary technique for getting familiar with

topics like artificial neural network and genetic algorithm which were new to me.

II

I am thankful to Mr. Vishal Saxena, Mr. Vijander Singh and Ms. Nidhi Singh,
research scholars in my department for their constant encouragement throughout the
year. I am grateful to Mr. Arun Mohite, Mr. Sanjay Prabhu, Mr. Rajesh Vasnik and
Mr. Vaibhav Jain, my colleagues of SEOR group for being excellent peers and
creating a congenial environment for work. The facilities offered by the department
and its lab technicians Mr. Kalyan Singh and Mr. C. M. Joshi offered flexibilities that
deserve praises.

I am extremely thankful to my friends Mr. N. M. Mohite, Mr. Rajesh Shah,
Mr. Sayyad M. A., Mr. Sudhir Chopade and Mr. Mahesh Aurade for their moral
support throughout my post graduation.

The pleasure of nearing completion of the course requirements is immense,
but with it carries the pain of leaving behind these wonderful two years of life in the
sprawling green campus of this great historical institute. I proud myself for being the
student of this reputed institute.

I thank my wife Mrs. Swati for her help and encouragement in preparing this
report. Her support was immense because most of the time I was either in laboratory
or in front of computer to work on this topic.

I dedicate this work to my parents for their support and encouragement

through out my life.

1Pvt*S. Mane.
M. Tech. (SEOR)

III

ABSTRACT

Study over the years showed that simple instruction are used most of the time

in CISC processors and many complex instructions can be replaced by group of

simple instructions. In that sense RISC processor are designed to execute very few

simple instructions. They operate on data, which is mostly present in internal

registers. Most of the RISC processors use hardwired control approach, which

simplifies design process. External memory is accessed by LOAD and STORE

instructions. RISC processor supports only few addressing modes and most of them

are register based.

Pipelining is used to improve the throughput of the processor by dividing the

instruction execution in stages. Although single instruction takes same time for

execution as in sequential execution, parallel operations on instructions in different

stages reduces the overall time of execution. The balance of work between different

stages of pipelining is important as the slowest stage of the pipeline decides the

throughput of the processor. Four-stage pipelining is implemented in this design. The

consequences of pipelining are the structural hazards, data hazards and control

hazards. They can be handled using the methods of forwarding, stalling and flushing.

Stalling degrades the performance by delaying the instruction execution. Prefetching

unit is designed which works as a small cache. It is used to prefetch the instructions

from memory and store them inside the buffer.

Developed RISC processor handles the hardware interrupts and exceptions.

RESET has been assigned the highest priority. Six external hardware interrupts are

available and are vectored. Overflow and undefined instruction exceptions are also

dealt with.

VHDL is used as software synthesis tool for designing the processor. Xilinx

ISE 7.1i is used for this purpose. Hierarchical approach is used for modeling the RISC

processor. Basic units are described using behavioral programming and they are

interconnected using structural programming to form complete RISC processor. To

simulate the different stages of the processor, Xilinx ISE simulator is used. Simulation

is used to check the correctness of the design before placing the design for

implementation.

Spartan-II FPGA is used to implement the proposed design.

IV

LIST OF FIGURES

Figure Title of the Figure Page

No. No.

1.1 CISC Implementation 2

1.2 RISC Implementation 3

2.1 R — Type Instruction Format 7

2.2 RI — Type Instruction Format 7

2.3 I — Type Instruction Format 8

2.4 S — Type Instruction Format 8

2.5 SI — Type Instruction Format 8

2.6 R — Type Datapath 9

2.7 RI — Type Datapath 9

2.8 Load Word Datapath 10

2.9 Store Word Datapath 10

2.10 Register Branch Datapath 11

4.1 Sequential Execution 24

4.2 Pipelined Execution 24

4.3 Pipelining Requires Buffering 25

4.4 Pipelining Stalls Due to Delay in Stage 26

4.5 Example of a Data Hazard 28

4.6 A Stall Caused by Data Hazard 28

4.7 Register Forwarding 29

4.8 Register Interlocking 29

5.1 RISC Processor Block Diagram 31

5.2 Stagel-Instructions Fetch Stage 32

5.3 Stage2-Instruction Decode Stage 34

5.4 Stage3-Instruction Execution Stage 35

5.5 Arithmetic Logic Unit Block Diagram 37

5.6 Block Diagram of Shift Unit 37

5.7 Stage4-Memory/IO-Write Back Stage 38

5.8 Block Diagram of Control Unit 39

V

5.9 Branch Forwarding Unit Block Diagram 40

5.10 Execution Forwarding Unit Block Diagram 41

5.11 Interrupt and Exception Unit Block Diagram 42

5.12 TRAP Register Block Diagram 44

5.13 Prefetching Unit Block Diagram 45

5.14 Prefetch Buffer Unit Block Diagram 46

6.1 Basic Spartan-II Family FPGA Block Diagram 57

6.2 Spartan-II Input/Output Block (IOB) 58

6.3 Spartan-II I/O Banks 59

6.4 Spartan-II CLB Slice (two identical in each CLB) 61

7.1 Simulation Result of Stage-1 66

7.2 Simulation Result of Stage-2 67

7.3 Simulation Result of Stage-3 68

7.4 Simulation Result of Stage-4 69

7.5 Simulation Result of Control Unit 70

7.6 Simulation Result of Branch Forwarding Unit 71

7.7 Simulation Result of Hazard Detection Unit 72

7.8 Simulation Result of Interrupt and Exception Unit 73

7.9 Simulation Result of Prefetch Unit 74

7.10 Simulation Result of RISC Processor Connected with Memory 75

A. 1 The High-Level Design Flow 81

A.2 Place and Route Data Flow 83

LIST OF TABLES

Table NO. Title of the Table Page No.

5.1 New PC Value Selections 32

5.2 Register Codes to be Used in Instruction 34

5.3 Branch Type Differentiation 35

5.4 Type and Direction of Shift Combinations 36

5.5 Interrupts and Exceptions 43

6.1 Spartan-II FPGA Family Members 54

6.2 Spartan-II Block RAM Amounts 62

VII

ABBREVIATIONS

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuits

CISC Complex Instruction Set Computer

CLB Configurable Logic Block

CPI Clock Cycles Per Instruction

Dest. Destination

DLL Delay Locked Loop

EEPROM Electrically Erasable Programmable Read Only Memory

EPROM Erasable Programmable Read Only Memory

EX Execution

FPGA Field Programmable Gate Arrays

Func. Function

HDL Hardware Description Language

ID Instruction Decode

IF Instruction Fetch

IOB Input/Output Block

ISA Instruction Set Architecture

ISE Integrated Software Environment

LC Logic Cell

LUT Look Up Tables

NRE Non-recurring Engineering Cost

Opcode Operation Code

PC Program Counter

PCI Peripheral Component Interconnect

PLD Programmable Logic Device

PROM Programmable Read Only Memory

RAM Random Access Memory

RISC Reduced Instruction Set Computers

ROM Read Only Memory

RTL Register Transfer Level

SB Switch Box

Sorc. Source

UCF User Constraints File

VHDL Very High speed Integrated Circuit Hardware Description Language

WB Write Back

0

CONTENTS

Chapter No. Title of Chapter Page No.
CANDIDATE'S DECLARATION I

ACKNOWLEDGEMENT II

ABSTRACT IV

LIST OF FIGURES V

LIST OF TABLES VII

ABBREVIATIONS VIII

1. INTRODUCTION 1
1.1 Complex Instruction Set Computer (CISC) 1

1.2 Reduced Instruction Set Computer (RISC) 2

1.3 Objectives of the Dissertation 3

1.4 Organization of Thesis 4

2. INSTRUCTION SET ARCHITECTURE (ISA) 5

FOR RISC PROCESSOR

2.1 Number of Operands 5

2.1.1 Three Operand. Machines 5

2.1.2 Two Operand Machines 6

2.1.3 One Operand Machines 6

2.1.4 Zero Operand Machines 7

2.2 Instruction Formats 7

2.2.1 Register Format (R - type) 7

2.2.2 Register Immediate Format (RI - type) 7

2.2.3 Immediate Format (I - type) 8

2.2.4 Shift Format (S - type) 8

2.2.5 Shift Immediate Format (SI - type) 8

2.3 . Datapath 8

2.3.1 R — Type Datapath 9

2.3.2 RI — Type Datapath 9

2.3.3 Load Word Datapath 10

1~

3.

4.

5.

6.

2.3.4 Store Word Datapath 10
2.3.5 Register Branch Datapath 11

ADDRESSING MODES AND INSTRUCTION 12

SET FOR RISC PROCESSOR

3.1 Addressing Modes 12

3.1.1 Register Operand Addressing Mode 12

3.1.2 Immediate Operand Addressing Mode 12

3.1.3 Register Indirect Addressing Mode 13

3.1.4 Relative Addressing Mode 13

3.2 Instruction Set 13

PIPELINING AND HAZARDS 23

4.1 Basic Concept of Pipelining 23

4.2 Implementation of Pipelining 26

4.3 Pipelining Hazards 26

4.3.1 Structural Hazards 27

4.3.2 Data Hazards 28

4.3.3 Control Hazards 29

RISC PROCESSOR ARCHITECTURE 30

5.1 Overview of RISC Processor Architecture 30

5.2 Pipelined Stages of RISC Processor 31

5.2.1 Stage 1-Instruction Fetch Stage 31

5.2.2 Stage2-Instruction Decode Stage 33

5.2.3 Stgage3-Instruction Execution Stage 35

5.2.4 Stage4-Memory/IO-Write Back Stage 37

5.3 Control Unit 38

5.4 Branch Forwarding Unit 39

5.5 Execution Forwarding Unit 40

5.6 Hazard Detection Unit 41

5.7 Interrupt and Exception Unit 42

5.8 Prefetching Unit 44

DESIGN AND IMPLEMENTATION OF RISC 47

PROCESSOR ON FPGA

XI

7.
8.

6.1 VHDL 47
6.2 VHDL Programming Techniques 48

6.2.1 Behavioral Programming 48

6.2.2 Structural Programming 48
6.2.3 Mixed Mode Programming 49

6.3 Terminologies in VHDL 49
6.3.1 Entity 49
6.3.2 Packages 50

6.3.3 Design Libraries 50

6.3.4 Components 50

6.3.5 Configurations 50

6.4 FPGA 51

6.5 Terminology in FPGA 52

6.5.1 Features of FPGA 53

6.5.2 General Overview of Xilinx Spartan-II FPGA Family 54

6.5.3 Spartan-H Array Description 55

SIMULATION RESULTS AND CONCLUSION 63

FUTURE SCOPE 76

REFERENCES 77

APPENDICES 79

A Design Flow 80
B Instruction Set 85

C Software Code for RISC Processor (CD Attached) 87

XII

Chapter 1 	 Introduction

Chapter 1

INTRODUCTION

There are two design philosophies in market of microprocessor: Complex

Instruction Set Computers (CISC) and Reduced Instruction Set Computers (RISC). In

this introductory chapter we will explain these two trends in brief. Then objectives of

work carried out in this dissertation are stated and then the organization of rest of the

thesis is presented.

1.1 Complex Instruction Set Computer (CISC)

CISC systems use complex instructions. For example, adding two integers is

considered a simple instruction. But, an instruction that copies an element from one

array to another and automatically updates both array subscripts is considered a

complex instruction. These systems access external memory frequently for data and

support various addressing modes. The main purpose was to restrict the size of

program so that memory space can be saved. But, they require complex hardware to

support complex instruction [1].
The implementation of CISC processor includes microprogrammed control.

The conceptual diagram is shown in fig. 1.1. A microprogram is a small run-time
interpreter that takes the complex instruction and generates a sequence of simple

instructions that can be executed by hardware. This was used to eliminate the

semantic gap between high-level language statements and the instructions of

processor. Hence most CISC designs use microprogrammed control [1].
Complex instructions are generally variable in length and time if execution

depends on specific instruction. The programs written using CISC instructions tend to

be smaller in size. The CISC processors were designed to simplify compilers and to

improve performance under constraints such as small and slow memories. CISC tends

to support a variety of data structures from simple data types such as integers and

characters to complex data structures such as records and structures.
CISC designs provide a large number of addressing modes. The main

motivations are (i) to support complex data structures and (ii) to provide flexibility to

access operands. Some CISC processors like Pentium allow one of the source

operands to be in memory. Although this allows flexibility, it also introduces

1

Chapter 1 	 Introduction

problems. First, it causes variable instruction execution times, depending on location
of operands. Second, it leads to variable length instructions. Variable instruction
lengths lead to inefficient instruction decoding and scheduling [1].

No doubt, CISC (Complex Instruction Set Computers) has gained the

marketplace over the years. The concept of RISC processor is the result of
accumulation of knowledge from CISC designs and of course, changing technology.

ISA level

Microprogram Control

Hardware

Fig. 1.1 CISC Implementation

1.2 Reduced Instruction Set Computer (RISC)

RISC (Reduced Instruction Set Computer) processors have gained significant
attention of designers from last few years because of many features of it. Survey by

program analysts over the years has shown that most of the time simple instructions

are used and complex instructions are used occasionally. It is also found that many

complex instructions can be replaced by group of simple instructions. Thus it is

beneficial to design a system that supports a few simple data types efficiently and

from which the missing complex data types can be synthesized.

RISC processors have larger register set than CISC processors to avoid the

frequent use of external memory. Most of the instructions operate on operand present

in internal registers. This aspect improves the performance of the processor.

RISC designs eliminate the microprogram layer and use the hardware to

directly execute instructions. That's why they give improved performance [1]

The RISC terminology details are explained in the following chapters.

2

Chapter 1 	 Introduction

Fig. 1.2 RISC Implementation

1.3 Objectives of the Dissertation

An attempt has been made to design truly 16 — bit RISC processor i.e.

instruction size, operand size as well as all data path are 16 bit. The address bus as
well as data bus all is 16 bit in length. Effort has been made to implement following

features of RISC processor in the proposed design.

❖ Simple Instructions. The objective is to design simple instructions so that

each can execute in one clock cycle. This is possible through pipelined
architecture. The advantage of simple instruction is that all operations can

be hardwired.

❖ Register-to-Register Operations. Most of the operations are carried out

on the data present in internal registers rather than external memory. This
simplifies instruction set design and the structure of control unit.

❖ Simple Addressing Modes. Simple addressing modes allow fast address

computation of operands. Most instructions use register based addressing.

Only load and store instructions need a memory-addressing mode.

❖ Large Number of Registers. For register based operations we need large

number of register to optimize the design. But the fixed length of

instruction put limit on the registers that can be designed for the processor.

❖ Fixed-Length, Simple Instruction Format. Variable length instructions

can cause implementation and execution inefficiencies. Hence fixed length
format is used. The RISC processor also uses simple instruction format

where boundaries of various fields in an instruction such as opcode, source

3

Chapter 1 	 Introduction

and destination operands are fixed. This allows an efficient decoding and

scheduling of instructions.

❖ Pipelining. The method of pipelining is used to speed-up execution. The

problems arising due to pipelining are also handled.

VHDL (Very high speed integrated circuit Hardware Description Language) is

used as a programming language to implement the proposed processor. It is a special

purpose programming language that deals with the design and modeling of digital

systems. There are several reasons to choose VHDL to implement design :-

1. Through the use of structural modeling, VHDL can describe how a system

is composed of smaller systems and the connections between them.

2. Behavioral modeling allows a system's functionality to be described using

common programming language.

1.4 Organization of Thesis
Chapter 2 describes the Instruction Set Architecture (ISA) for proposed RISC

processor. The issue of number of operands in instruction is emphasized and then the

different instruction formats and datapaths designed for RISC processor are

explained.

Chapter 3 is about the addressing modes supported by the RISC processor in

this design. All the instructions designed are also explained in this chapter.

Chapter 4 is dealing with concepts of pipelining, its implementation and the

handling of hazards arising due to pipelining.

Chapter 5 describes the RISC processor architecture in detail.

Chapter 6 is in support of the software I have used for designing RISC

processor. An attempt has been made to implement the design on SPARTAN-II

FPGA. Some data about SPARTAN-II FPGA is also given.

Chapter 7 includes the simulation results of designed processor.

Chapter 8 gives the idea about the futures scope in the present design.

n

Chapter 2 	 Instruction Set Architecture (ISA) for RISC Processor

Chapter 2

INSTRUCTION SET ARCHITECTURE (ISA) FOR RISC

PROCESSOR

While designing any processor, the first thing to do is the decision of the

instructions it can operate on, the addressing modes it support and the opcode formats

of instructions. In the present design, an attempt has been made to implement true 16

— bit RISC processor. A true 16 — bit RISC processor has 16 — address lines, 16 — data

lines, all internal operations are on 16 — bit data and opcode size for every instruction

is 16—bit.

In this chapter some of the important concepts related to instruction set

architecture are considered. The issue of number of operands specified in the

instruction explicitly, which directly affects the size of opcode of instruction is

discussed. The instruction format for various instructions will be given.

2.1 Number of Operands
One of the characteristics that influences the instruction set architecture (ISA)

is the number of operands specified explicitly in the instruction. Most operations can

be divided into binary and unary operations. Binary operations such as addition and

multiplication require two input operands whereas the unary operations such as

logical NOT need only a single operand. Most operations produce a single result.

There are exceptions, however. For example, division operation produces two

outputs: a quotient and remainder. Since most operations are binary, we need a total

of three operands: two to specify input operands and one to specify where the result

should go [1].

Most recent processors use three operands. However, it is possible to design

systems with two, one, or even zero operands. These four types are discussed in brief

here.

2.1.1 Three Operand Machines
In three operand machines, instructions carry all three operands explicitly.

This approach is used in the proposed design. For example, if the following operation

is to be carried out:

5

Chapter 2 	 Instruction Set Architecture (ISA) for RISC Processor

A=B+C

This can be achieved with single instruction:

ADD A, B, C

The advantage of this approach is that less number of instructions is required

for carrying out any task. This saves space in memory. From design point of view it

simplifies the task of removing the data hazards [1].

The disadvantage is that it restricts the number of registers designed in a

processor.

2.1.2 Two Operand Machines
In two operand machines, one operand doubles as a source and destination.

The Pentium is an example processor that uses two operands. To carry out the

following operation:

A=B +C

We require two instructions:

MOV A, B

The advantage of this approach is that more number of registers can be

implemented in fixed instruction length processors as only two registers to be decoded

in the instruction [1].

But this is at the expense of memory space. Handling hazards become

complicated.

2.1.3 One Operand Machines
In one address machines, one operand is implicit and works as destination as

well as one source. This implicit operand is called accumulator. Hence these machines

are called accumulator machines. The following operation can be carried out with set

of instructions.

A=B+C

The required instructions are:

STORE A

The advantage is more registers can be designed in fixed instruction length

format but memory space is wasted. Also handling hazards become more difficult [1].

Chapter 2 	 Instruction Set Architecture (ISA) for RISC Processor

2.1.4 Zero Operand Machines
In these machines, both source and destination are implicit. These machines

make use of stack to carry out operation. For example, to carry out operation:
A=B +C

It is assumed that B and C are on the top of the stack and A is next to them.
The instruction:

Will fetch B and C from top of stack and after addition result will be stored back on
the top of the stack. But storing the values of B and C on the top of stack requires

push operation [1].
Three operands method is used for most of the instructions in the proposed

design. Some instructions use two operand and single operand method.

2.2 Instruction Formats
The instructions implemented for the proposed design can be categorized into

following types because each instruction use different operands and it implement

different operation.

2.2.1 Register Format (R - type)
The most common style of instructions is the R — type. It has two read

registers and one write register. Fig. 2.1 shows typical R — type instruction format.

15 	 12 11 	9 8 	6 5 	3 2 	0

opcode 	 Dest. 	Sorc.1 	Sorc.2 	Func.

Fig. 2.1 R — type Instruction Format

2.2.2 Register Immediate Format (RI - type)
The RI — type is similar to the R — type except that second read register and

three function bits are replaced by a 6 — bit immediate value. Fig. 2.2 shows typical RI
— type instruction format.

15 	 12 11 	9 8 	6 5 	 0

opcode 	 Dest. 	Sorc. I 	Immediate Data

Fig. 2.2 RI — type Instruction Format

7

Chapter 2 	 Instruction Set Architecture (ISA) for RISC Processor

2.2.3 Immediate Format (I - type)
The I — type instruction has one register and 8 — bit immediate field. The

format of typical I — type instruction is shown in fig. 2.3.

15 	. 12 	11 	9 	8 	 1 	0

opcode 	 Dest. 	8 — bit immediate 	 func

Fig. 2.3 I — type Instruction Format

2.2.4 Shift Format (S - type)
The S — type instruction format has one source register specifying the number

to be shifted, ` second source register to specify the number of bits by which the

number is to be shifted and destination register to store the result [3].

15 	 12 	11 	98 	65 	32. 	0

opcode 	 Dest. 	Sorc.1 	Sorc.2 	Func.

Fig. 2.4 S — type Instruction Format

2.2.5 Shift Immediate Format (SI - type)
The SI — type format is used by shift instructions. It consists of one destination

register, one source register and 5 — bit immediate field. The format of typical SI —

type instruction is shown in fig 2.5.

15 	 12 11 	9 8 	6. 5 	 1 0

opcode 	 Dest. 	Sorc. 1 	5 — bit imm. 	fun

Fig. 2.5 SI — Type Instruction Format

2.3 Datapath
Datapath show how data flow around processor. Each instruction follow

different datapath as it has to access different operands. The paths for each instruction
are combined to form overall datapath for processor. The most common datapaths are:

8

Chapter 2 	 Instruction Set Architecture (ISA) for RISC Processor

2.3.1 R — Type Datapath
In the R — type datapath the instruction is fetched from memory and broken up

into its various parts. The two read registers from the instruction are fetched from the
register file and ALU performs the operation given to it by the instruction. The result
from ALU is then written back into the register file. The conceptual diagram is shown

below.

PC

Reg 1

Memo 	
T?struction 	Reg 	Reg File 	2 	ALU 	Result

ry

Fig. 2.6 R — Type Datapath

2.3.2 RI — Type Datapath
The RI — type is similar to the R — type except that the second register is

replaced with a value that is actually inside the instruction. This immediate value is

sign extended to 16 — bit and then use as the second input to the ALU. As with R —
type, the result from ALU is then written back into the register file. The conceptual

diagram for RI — type datapath is shown below..

alb'll L' &LG11U U 1111111GU1G1LG

Fig. 2.7 RI — Type Datapath

Chapter 2 	 Instruction Set Architecture (ISA) for RISC Processor

2.3.3 Load Word Datapath
The datapath for a load word is similar to the RI — type datapath with the

exception that result from the ALU is send to fetch a value from memory instead of

being written to the register file. The value that is fetched from memory is then loaded

into the register file. The conceptual diagram for load word datapath is shown below.

I PC

Instruction 	
Reg 1 	

Result
Reg File 	 ALU Memory

Memory

Extension
Sign Extended Immediate

Fig. 2.8 Load Word Datapath

2.3.4 Store Word Datapath
The store word datapath is similar to the load word with the exception that the

write register actually specifies which register to write to memory and not the register

file. The conceptual diagram for this datapath is shown below.

I 	a Sign Extended Immediate

Fig. 2.9 Store Word Datapath

10

Chapter 2 	 Instruction Set Architecture (ISA) for RISC Processor

2.3.5 Register Branch Datapath
In the register branch datapath, one register from register file is compared to

zero. If the branch type is branch on zero and register is zero then the second register

is loaded into the program counter and execution flow continues. A similar think

happens with the branch on not zero. The conceptual diagram for this datapath is

shown below.

Fig. 2.10 Register Branch Datapath

The data paths explained above are implemented in the design of RISC

processor designed in this dissertation.

11

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

Chapter 3

ADDRESSING MODES AND INSTRUCTION SET FOR
RISC PROCESSOR

As most of the instructions operate on a data which is in internal register,
RISC processor supports very few addressing modes. Most instructions use register
based addressing. Only load and store instructions need a memory addressing mode.
The supported addressing modes are explained in the first section of this chapter. The
second section is about the instructions that I have designed for this 16-Bit RISC

Processor.

3.1 Addressing Modes
The method of specifying data required for execution of an instruction is

called addressing mode. RISC processor support few addressing modes. These are
explained in the following section. RISC architecture is sometime called LOAD —
STORE architecture since only LOAD and STORE instructions are used to access
data from external memory.

3.1.1 Register Operand Addressing Mode
In this addressing mode both source and destination are registers. The

instructions supporting register addressing mode are efficient in execution because

registers are the part of processor [3]. The examples of this addressing mode are:
ADD R0, Rl, R2

AND R6, Rl, R5 etc.

3.1.2 Immediate Operand Addressing Mode
In this addressing mode one of the source operand is immediate that is it is

specified in the instruction itself. Data is stored along with instruction opcode in

program memory. This is generally used when data to be operated on is constant. The
examples of this addressing mode are:

ADI RI, R2, 08H
XRI R3, R6, 13H etc.

12

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

3.1.3 Register Indirect Addressing Mode
This addressing mode accesses external memory. The address of a memory

location to be accessed is specified in one of the register. For example:
LOAD R1, R2

This instruction load register R1 with data accessed from memory location
whose address is specified in register R2.

3.1.4 Relative Addressing Mode
This addressing mode is specially used in branching instructions. It adds

constant value to the current value of program counter so that branching will take
place at a relative address [3]. For example the instruction:

BZI R1, 08

This instruction branches to new location calculated by adding current value

of program counter with 08 if R1 contains zero.
All these addressing modes have been used while designing RISC processor.

3.2 Instruction Set
This section describes the instructions designed and implemented for the RISC

processor. These instructions can be categorized into following types.
1. Arithmetic Instructions.

2. Logical Instructions.

3. Shift and Rotate Instructions.

4. Data Transfer Instructions.

5. Branching Instructions.

6. Interrupt Related Instructions.

7. Subroutine Related Instructions.

8. Other Instructions.
In the following discussion, each field of opcode is 1-bit in length. RD

specifies 1-bit of destination register, RS1 specifies 1-bit of source register2 and so

on.

1. Arithmetic Instructions

A. ADD RD, RS1, RS2
Type of the instruction : R — type.

13

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

Opcode : 0 0 0 0 RD RD RD RS 1 RS1 RS 1 RS2 RS2 RS2 0 0 1.
Where RD is destination register, RSI and RS2 are source registers.

Description : This is R — type signed 16 — bit addition instruction which adds

the content of RS 1 and RS2 and stores the result in RD. If the result exceeds 16 — bit

then overflow exception is invoked.

B. ADDu RD, RS1, RS2

Type of the instruction : R — type.

Opcode : 0000 RD RD RD RS 1 RS 1 RS 1 RS2 RS2 RS2 0 1 0.

Where RD is destination register, RS1 and RS2 are source registers.

Description : This is R — type unsigned 16 — bit addition instruction which

adds the content of RS 1 and RS2 and stores the result in RD. If the result exceeds 16

— bit then overflow exception is invoked.

C. SUB RD, RS1, RS2

Type of the instruction : R — type.

Opcode: 0000 RD RD RD RS 1 RS I RS I RS2 RS2 RS2 0 1 1

Where RD is destination register, RS 1 and RS2 are source registers.

Description : This is R — type signed 16 — bit subtraction instruction which

subtracts the content of RS2 from RS 1 and stores the result in RD. If the result

exceeds 16— bit then overflow exception is invoked.

D. SUBu RD, RS1, RS2

Type of the instruction : R — type.

Opcode : 0 0 0 0 RD RD RD RS I RS I RS 1 RS2 RS2 RS2 1 0 0

Where RD is destination register, RS1 and RS2 are source registers.

Description : This is R — type unsigned 16— bit subtraction instruction which

subtracts the content of RS2 from RS 1 and stores the result in RD. If the result

exceeds 16 — bit then overflow exception is invoked.

E. ADDI RD, RS1, D6

Type of the instruction : RI — type.

Opcode : 1 0 0 1 RD RD RD RS 1 RS 1 RS1 D6 D6 D6 D6 D6 D6.

Where RD is destination register, RS 1 is source register and D6 is 6 — bit

immediate data.

14

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

Description : This is RI — type signed 16 — bit addition instruction which adds

the content of RS1 with 6 — bit immediate data and stores the result in RD. If the

result exceeds 16 — bit then overflow exception is invoked.

F. SUBI RD, RS1, D6
Type of the instruction : RI — type.

Opcode : 10 1 0 RD RD RD RS1 RS 1 RS 1 D6 D6 D6 D6 D6 D6 .

Where RD is destination register, RS 1 is source register and D6 is 6 — bit

immediate data.

Description : This is RI — type signed 16 — bit subtraction instruction which

subtracts the 6 — bit immediate data from the content of RS 1 and stores the result in

RD. If the result exceeds 16 — bit then overflow exception is invoked.

2. Logical Instructions

A. NOT RD, RS
Type of the instruction : R — type.

Opcode: 0000 RD RD RD RS RS RS X X X 1 1 1.
Where RD is destination register, RS is source register, X don't care.

Description : This is R — type 16 — bit logical NOT instruction which

complements the content of RS and stores the result in RD.

B. AND RD, RS1, RS2
Type of the instruction : R — type.

Opcode : 0 0 0 1 RD RD RD RS1 RS 1 RS1 RS2 RS2 RS2 0 0 0.

Where RD is destination register, RS1 and RS2 are source registers.

Description : This is R — type 16 — bit logical AND instruction which

logically ANDs the content of RS 1 and RS2 bit by bit and stores the result in RD.

C OR RD, RS1, RS2
Type of the instruction : R — type.

Opcode : 0 0 0 1 RD RD RD RS1 RS 1 RS1 RS2 RS2 RS2 0 0 1.

Where RD is destination register, RS 1 and RS2 are source registers.

Description : This is R — type 16 — bit logical OR instruction which logically

ORs the content of RS 1 and RS2 bit by bit and stores the result in RD.

15

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

D. XOR RD, RS1, RS2
Type of the instruction : R —type.

Opcode: 0 0 0 1 RD RD RD RS1 RS1 RS1 RS2 RS2 RS2 010.
Where RD is destination register, RS 1 and RS2 are source registers.

Description : This is R — type 16 — bit logical XOR instruction which

logically XORs the content of RS 1 and RS2 bit by bit and stores the result in RD.

E. NOR RD, RS1, RS2
Type of the instruction : R — type.
Opcode : 0 0 0 1 RD RD RD RS 1 RS 1 RS 1 RS2 RS2 RS2 0 1 1.

Where RD is destination register, RS1 and RS2 are source registers.

Description : This is R — type 16 — bit logical NOR instruction which

logically NORs the content of RS I and RS2 bit by bit and stores the result in RD.

3. Shift and Rotate Instructions
A. SLL RD, RS1, RS2

Type of the instruction : S — type.

Opcode : 0 0 0 1 RD RD RD RS 1 RS1 RS1 RS2 RS2 RS2 1 0 0.

Where RD is destination register, RS1 and RS2 are source registers.

Description : This is S — type 16 — bit logical shift instruction which shifts the

content of RS 1 left by a value present in RS2 and stores the result in RD. The vacated

positions on the right are filled with zeros. The bits coming out of MSB are lost.

B. SRL RD, RS1, RS2
Type. of the instruction : S — type.

Opcode : 0 0 0 1 RD RD RD RS 1 RS1 RS1 RS2 RS2 RS2 1 0 1.

Where RD is destination register, RS1 and RS2 are source registers.

Description : This is S — type 16 — bit logical shift instruction which shifts the
content of RS1 right by a value present in RS2 and stores the result in RD. The

vacated positions on the left are filled with zeros. The bits coming out of LSB are lost:

C. SRA RD, RS1, RS2
Type of the instruction : S — type.
Opcode : 0 00 1 RD RD RD RS 1 RS1 RS1 RS2 RS2 RS2 11 0.

Where RD is destination register, RS1 and RS2 are source registers.

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

Description : This is S — type 16 — bit arithmetic shift instruction which shifts
the content of RS1 right by a value present in RS2 and stores the result in RD. The

vacated positions on the left are filled with the value of MSB of original data. The bits

coming out of LSB are lost.

D. ROR RD, RS1, RS2
Type of the instruction : S — type.

Opcode: 0 0 0 1 RD RD RD RS1 RS1 RS1 RS2 RS2 RS2 1 1 1.
Where RD is destination. register, RS 1 and RS2 are source registers.

Description : This is S — type 16 — bit rotate instruction which rotates the

content of RS1 right by a value present in RS2 and stores the result in RD. The bits

coming out of LSB are feed back from MSB in the vacated positions.

E. SLLI RD, RS, D5
Type of the instruction : SI — type.

Opcode : 0 1 1 1 RD RD RD RS RS RS D5 D5 D5 D5 D5 0.
Where RD is destination register, RS is source register, D5 is 5- bit

immediate data.

Description : This is SI — type 16 — bit logical shift instruction which shifts

the content of RS left by a value equal to immediate data and stores the result in RD.
The vacated positions on the right are filled with zeros. The bits coming out of MSB

are lost.

F. SRLI RD, RS, D5
Type of the instruction : SI — type.

Opcode : 0 1 1 1 RD RD RD RS RS RS D5 D5 D5 D5 D5 1.

Where RD is destination register, RS is source register, D5 is 5 — bit

immediate data.

Description : This is SI — type 16 — bit logical shift instruction which shifts

the content of RS right by a value equal to immediate data and stores the result in RD.
The vacated positions on the left are filled with zeros. The bits coming out of LSB are

lost.

G. SRAI RD, RS, D5
Type of the instruction : SI — type.

Opcode : 1 00 0 RD RD RD RS RS RS D5 D5 D5 D5 D5 0.
Where RD is destination register, RS is source register, D5 is 5 — bit

17

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

immediate data.

Description : This is SI — type 16 — bit arithmetic shift instruction which shifts

the content of RS right by a value equal to immediate data and stores the result in RD.

The vacated positions on the left are filled with the value of MSB of original data.

The bits coming out of LSB are lost.

H. RORI RD, RS, 05

Type of the instruction : SI — type.

Opcode: 1 0 00 RD RD RD RS RS RS D5 D5 D5 D5 D5 1.

Where RD is destination register, RS is source register, D5 is 5 — bit

immediate data.

Description : This is SI — type 16 — bit rotate instruction which rotates the

content of RS right by a value equal to immediate data and stores the result in RD.

The bits coming out of LSB are feed back from MSB in the vacated positions.

4. Data Transfer Instructions

A. MVIL RD, D8

Type of the instruction : I — type.

Opcode: 0100 RD RD RD D8D8D8D8D8D8D8D80.

Where RD is destination register, D8 is 8 — bit immediate data.
Description : This is I — type data transfer instruction which loads the lower

byte of the destination register with 8 — bit immediate data.

B.MVIHRD,D8

Type of the instruction : I — type.

Opcode: 0 1 0 0 RD RD RD D8 D8 D8 D8 D8 D8 D8 D8 1.

Where RD is destination register, D8 is 8 — bit immediate data.

Description : This is I — type data transfer instruction which loads the upper
byte of the destination register with 8 — bit immediate data.

C.INRD

Type of the instruction : R — type.
Opcode: 0100 RDRDRD XXXXXX 000.

Where RD is destination register, X don't care.

Description : This is R — type data transfer instruction which loads the

destination register with 16— bit data available on input port.

18

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

D. OUT R

Type of the instruction : R — type.

Opcode: 0100 RRR XXXXXX 001.
Where R is destination register, X don't care.

Description : This is R — type data transfer instruction which sends the

content of register over the 16— bit output port.

E. LW RD, RS, D6
Type of the instruction : RI — type.

Opcode: 0 1 00 RD RD RD RS RS RS D6 D6 D6 D6 D6 D6.
Where RD is destination register, RS is source register, D6 is 6 — bit

immediate data.

Description : This is RI — type data transfer instruction. This instruction loads

the destination register with the data from memory location whose address is the
addition of the contents of RS and 6 — bit immediate data. This is one of the

instructions which access external memory.

F. SW RD, RS, D6
Type of the instruction : RI — type.

Opcode: 0 1 00 RD RD RD RS RS RS D6 D6 D6 D6 D6 D6.
Where RD is destination register, RS is source register, D6 is 6 — bit

immediate data.

Description : This is RI — type data transfer instruction. This instruction sends

the content of destination register to external memory location whose address is the

addition of the contents of RS and 6 — bit immediate data. This is the other instruction

which accesses external memory.

5. Branching Instructions

A. BZ RD, RS
Type of the instruction : R — type.

Opcode : 0 0 1 0 RD RD RD RS RS RS X X X 0 1 0.

Where RD is destination register, RS is source register, X don't care.
Description : This is R — type conditional branch instruction. If the register

RD contains zero value, the contents of RS are copied in program counter and the
program execution switches to this new address. If RD doesn't contain zero value,

19

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

normal execution continues that is next sequential instruction will be executed. This is

absolute branching instruction.

B.BNZRD,RS

Type of the instruction : R — type.

Opcode : 0 0 1 0 RD RD RD RS RS RS X X X 0 1 1.
Where RD is destination register, RS is source register, X don't care.

Description : This is R — type conditional branch instruction. If the register

RD contains non-zero value, the contents of RS are copied in program counter and the
program execution switches to this new address. If RD contains zero value, normal
execution continues that is next sequential instruction will be executed. This is

absolute branching instruction.

C. BZI RD, D8
Type of the instruction : I — type.

Opcode : 0 0 1 0 RD RD RD D8 D8 D8 D8 D8 D8 D8 D8 0.
Where RD is destination register, D8 is 8 — bit immediate data.

Description : This is I — type conditional branch instruction. If the register RD

contains zero value, immediate data in the instruction is added to the current value of

program counter and program execution switches to new relative address. If RD
doesn't contain zero value, normal execution continues that is next sequential

instruction will be executed. This is PC - relative branching instruction.

D. BNZI RD, D8
Type of the instruction : I — type.

Opcode: 0010 RD RD RD D8D8D8D8D8D8D8D8 1.
Where'RD is destination register, D8 is 8 — bit immediate data.

Description : This is I — type conditional branch instruction. If the register RD

contains non-zero value, immediate data in the instruction is added to the current

value of program counter and program execution switches to new relative address. If
RD contains zero value, normal execution continues that is next sequential instruction

will be executed. This is PC - relative branching instruction..

20

Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor

6. Interrupt Related Instructions

A. EI D6
Type of the instruction : I — type.

Opcode : 0 0 1 0 D6 D6 D6 D6 D6 D6 1 0 0.
Where D6 is 6 — bit immediate data.

Description : This is I — type enable interrupt instruction. The RISC processor

has six external interrupt lines. They can be enabled or disabled using this instruction.

Each bit of D6 is for one of the interrupt line.

D6 (0) — Interrupt line 0; 0— Disabled, 1 — Enabled.

D6 (1) — Interrupt line 1; 0 — Disabled, 1 — Enabled.

D6 (2) — Interrupt line 2; 0— Disabled, 1 — Enabled.

D6 (3) — Interrupt line 3; 0— Disabled, 1 — Enabled.

D6 (4) — Interrupt line 4; 0— Disabled, 1 — Enabled.

D6 (5) — Interrupt line 5; 0 — Disabled, 1- Enabled.

B. RETI
Type of the instruction : R — type.

Opcode : 0 0 1 1 XXXXXXXXX 010.
Where X is don't care.

Description : This is R — type return from interrupt instruction. When

executed, it switches back the program execution to the address next to the address

where interruption has occurred. This back link address is stored in internal temporary

register while switching the execution to interrupt service routine. It is copied in

program counter as part of execution of RETI instruction.,

7. Subroutine Related Instructions
A. JAL RD, RS

Type of the instruction : R — type.

Opcode: 0011 RD RD RD RS RS RS XXX000.
Where RD is destination register, RS is source register, X is don't care.

Description : This is R — type jump and link instruction. When executed, it
stores the current value of program counter in RD and switches the program execution

to the location whose address is in RS. This is subroutine call instruction. The back

link address is stored in register RD as part of instruction execution.

21

B. RJAL Ku
Type of the instruction : R — type.
Opcode: 0011 RD RD RD XXXXXX 001.

Where RD is destination register and X is don't care.
Description : This is R — type return from jump and link instruction. When

executed, it copies the content of RD into program counter. This back link address in
RD was stored as part of execution of jump and link instruction. This instruction is
used at the end of subroutine.

S. Other Instructions
A. NOP

Type of the instruction : R — type.
Opcode: 0000 XXXXX.XXXX 000.

Where X is don't care.

Description : This is R — type no operation instruction. It does nothing. This

instruction can be used to replace unnecessary instructions.

B. HLT
Type of the instruction : R — type.
Opcode: 1101 XXXXXXXXX 000.

Where X is don't care.
Description : This instruction is used to stop the execution of the program.

22

Chapter 4
	 Pipelining and Hazards

Chapter 4 "

PIPELINING AND HAZARDS

To improve the execution speed of processor, instruction execution can be

divided into different parts and parallel instruction execution can be done. Although
each instruction individually takes equal time execution as in sequential execution,
parallel execution improves the throughput of the processor.

First section describes the concept of pipelining and the issues related with it.
As a consequence of pipelining, some conflicts arise which are known as hazards.
These hazards and their remedies are explained in the next section.

4.1 Basic Concept of Pipelining
Pipelining is an implementation technique whereby multiple instructions are

overlapped in execution. The key idea behind pipelining is to divide the work into

smaller pieces and use assembly line processing to complete the work. In the present
design instruction execution has been divided in four stages. In pipeline terminology,

each step is called stage because it has a dedicated piece of hardware to perform each
step. Different step are completing different parts of different instructions in parallel.

The stages are connected one to the next to form a pipe — instructions enter at one end,
progress through the stages, and exit at the other end [2].

Pipelining substantially reduces the execution time by overlapping execution
of several instructions. In sequential execution, for example, five instructions take 20
clock ticks supposing that each instruction goes through four stages and each stage
require one clock tick. On the other hand if same instructions go through pipelined

execution, five instructions take only 8 clock ticks. This concept is explained in fig.

3.1 and fig. 3.2. However pipeline requires hardware support [1].

The throughput of an instruction pipeline is determined by how often an

instruction exits the pipeline. Because the pipe stages are hooked together, all the
stages must be ready to proceed at the same time. The time required between moving
an instruction one step down the pipeline is a machine cycle: Because all stages
proceed at the same time, the length of the machine cycle is determined by the time

required for the slowest pipe stage [4].

23

I1

I2

13

14

I5

Instructions

Chapter 4
	 Pipelining and Hazards

Clock Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 4.1 Sequential Execution

Clock Cycle

1 2 3 4 5 6 7 8

Ii 	IF ID E Wl3

12 	 IF ID EWE

Instructions 	I3 	 IF ID E WI

14 	 IF ID E)

15 	 IF ID

Fig. 4.2 Pipelined Executions

The designer's goal is to balance the length of each pipeline stage. If the
stages are perfectly balanced, then the time per instruction on the pipelined machine

assuming ideal conditions is equal to

Time per instruction on unpipelined machine

Number of pipelined stages

Under these conditions, the speedup from pipelining equals the number of

pipelined stages. Usually, however, the stages will not be perfectly balanced;

furthermore, pipeline does involve some overhead. Thus, the time per instruction on
the pipelined machine will not have its minimum possible value, yet it can be close

[2]

24

Chapter 4
	

Pipelining and Hazards

Pipelining yields a reduction in the average execution time per instruction.
.Depending on what you consider as the base line, the reduction can be viewed as
decreasing the number of clock cycles per instruction (CPI), as decreasing the clock

ff 	cycle time, or as a combination. If the starting point is a machine that takes multiple

clock cycles per instruction, then pipelining is usually viewed as reducing the CPI.
This is the primary view we will take. If the starting point is a machine that takes on
(long) clock cycle per instruction, then pipelining decreases the clock cycle time [2].

As said earlier, pipelining requires hardware support. For four stage

instruction pipeline, we need three buffers. Each of these buffers holds only one
value, the output produced by the previous stage. This is possible because pipeline

' 	 follows just-in-time principle. Just-in-time arrival of input .causes problems because

any delay in one stage can seriously affect the entire pipeline flow [1].

Instruction 	 Instruction 	 Instruction
Fetch Buffer 	 Decode Buffer 	 Execution Buffer

Fig. 4.3 Pipelining Requires Buffering

The fact that the execution time of each instruction does not decrease puts

limits on the practical depth of a pipeline. In addition to limitations arising from

pipeline latency, limits arise from imbalance among the pipe stages and from
pipelining overhead. Imbalance among the pipe stages reduces performance since the

clock can run no faster than the time needed for the slowest pipeline stage. Pipeline
overhead arises from the combination of pipeline register delay and clock skew. The

pipeline registers or latches add setup time plus propagation delay to the clock cycle.
Once the clock cycle is as small as the some of the clock skew and latch overhead, no

further pipelining is useful since there is no time left in the cycle for useful work [5].

Due to imbalance, one of the stages takes more time for its work to complete.

Some stages take variable amount of time for its work. For example, execution stage
may require taking data from external memory which may be slow. This causes
pipeline stalls.

25

Chapter 4 	 Pipelining and Hazards

Clock Cycle

1 2 3 4 5 6 7 8 9

I1 FF ID E

12 	IF ID EX WI

I3 	 IF ID E

I4 	 IF 	ID E

15 	 IF ID E W

Instructions

Fig. 4.4 Pipeline Stalls Due to Delay in Stage

4.2 Implementation of Pipelining
In the present design, execution of an instruction is divided into following four

stages.
❖ Stage 1-Instruction Fetch Stage. This stage is responsible for fetching

the instructions from memory. With the help of prefetcher, it makes use of
idle time to fetch instructions ahead of time and store it in instruction

queue.

❖ Stage 2-Instruction Decode Stage. This stage separates opcode part,

function part and operand part of the instruction and sends it to control unit

to generate the . necessary signals for units inside the processor for

execution of an instruction. This stage also consists of registers.

❖ Stage 3-Execution Stage. This stage consists of arithmetic logic unit,

shifting unit necessary for carrying out operations on operand specified by

instruction.
❖ Stage 4/5-Memory/IO-Write Back Stage. This stage- writes the result

back in to the destination register or memory. This is final stage of

instruction execution.

4.3 Pipelining Hazards
There are situations, called hazards that prevent the next instruction in the

instruction stream from executing during its designated clock cycle. Hazards reduce
the performance from the ideal speedup gained by pipelining. There are three classes

of hazards:

Chapter 4
	 Pipelining and Hazards

1. Structural Hazards arise from resource conflicts when the hardware

cannot support all possible combinations if instructions in simultaneous
overlapped execution.

2. Data Hazards arise when an instruction depends on the results of a

previous instruction in a way that is exposed by the overlapping of
instructions in the pipeline.

3. Control Hazards arise from the pipelining of branches and other
instructions that change the PC.

Hazards in pipeline can make it necessary to stall the pipeline. They are more

complex to handle. EIiminating a hazard often requires that some instructions in the
pipeline be allowed to proceed while others are delayed [8].

4.3.1 Structural Hazards
When a machine is pipelined, the overlapped execution of instructions

requires pipelining of functional units and duplication of resources to allow all
possible combinations of instructions in the pipeline. If some combinations of
instructions can not be accommodated because of resource conflicts, the machine is
said to have a structural hazards. For example, the instruction fetch stage under

normal conditions will be accessing the memory on every clock cycle. When a load or
store instructions is used, the memory/IO-write back stage tries to access the memory.

Because of single memory architecture a conflict occurs [9]. There are two ways for
dealing with such conflict.

❖ Stalling. In this method instead of accessing memory by instruction fetch
stage, the load/store instruction is allowed to use memory and the

•processor is simply stalled until the load/store instruction is finished. The
problem with this method is that it can take a long time if there are

multiple load/store instructions in a row.

❖ Prefetching. Prefetching involves fetching instructions from memory

ahead of time and storing them in a queue in a processor. In present design

queue has been implemented that can store four instructions. In such case

instruction fetch stage will receive instructions from prefetch queue and
load/store instruction will be allowed to access memory. Prefetching

method is used to handle structural hazards.

27

Chapter 4
	 Pipelining and Hazards

4.3.2 Data Hazards

A major effect of pipelining is to change the relative timing of instructions by

overlapping their execution. This introduces data and control hazards. Data
dependencies can deteriorate performance of a pipeline by causing stall. Data hazards
occur when an instruction attempts to use a register whose value depends on the result
of previous instruction that have not yet finished. For example consider the following
case.

ADD R1, R2, R3 	IF ID E

SUB R4, R1, R5 	IF ID EXJ W]

Fig. 4.5 Example of a Data Hazard

In this case result produced by ADD instruction is. used as source for SUB

instruction. Hence until result of first instruction is not written back in destination

register, next instruction can not proceed and a stall will be introduced [7].

ADD R1, R2, R3 IF I ID I EXf 	

1

LI SUBR4,R1,R5 	IF ID E W

Fig. 4.6 A Stall Caused By Data Hazards

There are two techniques to handle data hazards.
❖ Register Forwarding. This technique, also called bypassing, works if the

two instructions involved in the dependency are in the pipeline. The basic
idea is to provide the output result as soon as it is available in the datapath.
The forwarding method is best described through the use of an example.

Fig. 4.7 shows two instructions in the pipeline, it can be observed that the

SUB instruction needs the result of the ADD instruction in the SUB's EX

stage but the ADD instruction does not write the result until the ADD's
WB stage. However it can also be seen that the result for the ADD

instruction is actually computed before the SUB instruction needs it so the

28

Chapter 4 	 Pipelining and Hazards

result is forwarded from EX stage of ADD instruction to the EX stage of

the SUB instruction [1].

ADD RI, R2, R3

SUB R4, R1, R5

Fig. 4.7 Register Forwarding

❖ Register Interlocking. This is a general technique to solve the correctness
problem associated with data dependencies. In this method, a bit is

associated with each register to specify whether the contents are correct. If
the bit is 0, the contents of the register can be used. Instruction should not

read contents of register when this interlocking bit is 1, as the register is
locked by another instruction. Fig. 4.8 shows how the register interlocking
works for ADD SUB instructions given above. ADD instruction locks R1

until result is not written in it. Hence SUB instruction can not use it as far

as it is locked by ADD instruction [1].

RI is Locked

ADD R1, R2, R3 IF ID E

SUB R4, R1, R5 	IF 	ID 	EXI

Fig. 4.8 Register Interlocking

4.3.3 Control Hazards
A control hazard occurs whenever there is a change in the normal execution

flow of the program. Events such as branches, interrupts, executions and return from
interrupts. A hazard occurs because branches, interrupts etc are not caught until the
instruction is decoded in the second stage, by the time it is decoded the following

instruction is already entered into the pipeline and left unchecked an unwanted

instruction would remain in the pipeline. There is really only one solution to this type

of hazard. That is, to implement a hardware stall. The hardware stall simply flushes

the offending instruction from the pipeline [2].

29

Chapter 5
	 RISC Processor Architecture

Chapter 5

RISC PROCESSOR ARCHITECTURE

This chapter describes the architecture of developed 16-bit RISC processor. It

is true 16-bit RISC processor as the address bus is 16-bit in length, data bus is 16-bit
in length, all registers are 16-bit wide and all operations are carried out on 16-bit data.
The first section gives the overview of RISC processor architecture. Second section
gives the details of pipelined stages of processor. Then next sections describe control

unit, branch forwarding unit, execution forwarding unit, prefetch unit, hazard
detection unit and interrupt and exception unit in detail.

5.1 Overview of RISC Processor Architecture
To improve the throughput of processor, the pipelined architecture is used.

Execution of the instruction is divided into four stages viz.

1. Stage 1- Instruction Fetch Stage.

2. Stage2- Instruction Decode Stage.

3. Stage3- Instruction Execution Stage.

4. Stage4- Memory/JO-Write Back Stage.
Every instruction proceeds to the next stage in each clock cycle and new

instruction enters the instruction fetch stage. Each individual instruction takes four

clock cycles for complete execution after entering the instruction fetch stage provided
that no stalls occur.

Control unit generate necessary signal at appropriate time for all the stages for
instruction execution. Branch forwarding unit flushes the instructions behind

branching instruction in the pipeline if branching is going to occur. Execution
forwarding unit takes care of data hazard by forwarding the result of previous

instruction to execution stage if data hazard occurs. Prefetching unit prefetches
instruction from memory when processor is not utilizing external memory. It stores

the prefetched instructions in prefetch queue, which is four words deep. Hazard
detection unit is used to detect whether conflicts are going to occur and generate the

necessary signals for other units [10]. Interrupt and exception unit handles the
external interrupts and exceptions generated internal to the processor. The fig.5.1

shows the architecture of RISC processor implemented in the design.

30

Chapter 5 	 RISC Processor Architecture

Fig. 5.1 RISC Processor Block Diagram

5.2 Pipelined Stages of RISC Processor
Four stages of the RISC processor pipeline are described below.

5.2.1 Stagel-Instruction Fetch Stage
This stage consists of program counter, program counter incrementer and

selector, which select the new value of program counter. This unit is responsible for
obtaining the instruction from memory through prefetcher. The block diagram of

instruction fetch stage is shown in fig. 5.2.
The various components of this stage and their functions are described in the

following sections.

❖ Program Counter Selector. This selector is used to decide the execution
sequence of program. Under normal sequential execution, the new
program counter value is the previous program counter value incremented
by one. For branch instruction the new program counter value will be the

branch target address. RISC processor supports vectored hardware
interrupts and RESET. The interrupt and their vectored address are given
in table 5.1. Return from interrupt is the address next to location where
interrupt had occurred. Return from subroutine is the address next to JAL

31

Chapter 5 	 - 	RISC Processor Architecture

instruction. Control unit generates the select input for program counter
selector.

Flush Inpul

Instruction
(From Prefetch

Branch PC

Return Fron
Interrupt PC

Return From
Subroutine P

Incremented PC

Instructions

Current PC Value
(to prefetcher)

Fig. 5.2 Stagel-Instructions Fetch Stage

Select Input New PC Value Remark
0000B Incremented Old PC. Sequential Executions.

0001B Branch Target Address. Branch Instruction Execution.

0010B Address Next to JAL Instruction. Return From Subroutine.

001 1B Address Next to Interruption. Return From Interrupt Routine.
0100B FFFFH Overflow.

0101B FFFOH Undefined Instruction.
0110B 0008H Interrupt 0.

0111B 000AH Interrupt 1.

l 000B 000CH Interrupt 2.
1001B 000EH Interrupt 3.
1010B 0010H Interrupt 4.
1011B FFF8H Interrupt 5.
Others 0012H RESET.

Table 5.1 New PC Value Selections

32

Chapter 5 	 RISC Processor Architecture

❖ Program Counter. It is the register which holds the address of instruction
which is to be executed. The content of it are send to prefetcher for

fetching the instruction from memory.
❖ Program Counter Incrementer. This incrementer increments the

program counter by one for normal sequential execution of the program.

❖ Instruction Fetch Stage Register. Every stage in the pipeline has its own
buffer. This buffer is used to store the output of respective stage.
Instruction fetch stage register stores the instruction coming from
prefetcher and the incremented program counter value and supply it to the

next stage. Flush input is used to flush this register for non sequential
execution to handle the control hazards.

5.2.2 Stage2-Instruction Decode Stage
This stage consists of register file, sign extension unit; branch unit,

multiplexers and instruction decode stage register. The block diagram of this stage is

shown in f g.5.3 .

•+• Register File. Register file consist of 8 registers. Each register is of 16-bit
in length. They are designated as R0, R1... R7. These registers are decoded

in the instruction as shown in following table. The source register codes
are given as input to this file and it gives content of the respective registers
as output. The write-back register code and write-back data are the other
inputs from the write-back stage to this file. If write enable input is

enabled, then data is written into the respective register. If write-back
register and source register are same data is written provided that write

enable input is high as well as same data is output as content of that
register.

❖ Sign Extension Unit. All the operations carried out inside the processor
are on 16-bit data. Hence 5-bit, 6-bit and 8-bit immediate data decoded in

the instruction is sign extended to 16-bit by this unit. The output of this

unit is used in all types of instructions having immediate data as one of the
operand and in relative branch instructions.

❖ Branch Unit. This unit is used to calculate the branch target address. It is
used to differentiate between relative branching and register indirect
branching. This function is explained in the following table.

33

Chapter 5
	 RISC Processor Architecture

❖ Multiplexers. They are used to select the source registers for instruction.

Some instructions have one source register and others have two source
registers. Appropriate selection is done by set of multiplexers.

❖ Instruction Decode Stage Register. This is used to store the output

produced by instruction decode stage. It stores mainly content of source
register 1 and source register 2, sign extended immediate data.

elk

Write Back Result From
Write Back Stage 	 Content of Source

er
Content of Source 	I 	

Regis1

Operand Part of 	 Source Register 	 Instruction 	Content of Source

Instruction
Decode Stage 	Regis er 2

p 	 Register 	Content of Source 	Register
Multi lexer Source Register 	File 	Re ister 2 	 g

Read Register Selecto
Sign Extended
Immediat ata

Write Back Register

Write Enable

Sign Extended
Immediate Data Part of Instruction 	 Sign 	Immediate Dat

Current PC Value 	

Extension
Unit

Branch
Unit

Branch Register Content

Branch Type Select

Fig. 5.3 Stage2-Instruction Decode Stage

Branch

Register Code

RO 000B

R1 001B

R2 O 10B

R3 011B

R4 100B

R5 101B

R6 110B

R7 111B

Table 5.2 Register Codes to be Used in Instruction

34

Chapter 5 	 RISC Processor Architecture

Branch Type Target Branch Address Branch Type
Select Input

OB Contents of register in Register Indirect
branch instruction. Branching.

1B Current PC + sign Relative Branching.
extended offset.

Table 5.3 Branch Type Differentiation

5.2.3 Stgage3-Instruction Execution Stage
This stage carries out the operation specified by the instruction on the

operands and produces the required result. This stage consist of arithmetic logic unit
(ALU), instruction execution stage register and multiplexer.

Arithmetic logic unit carries out arithmetical operations like addition and

subtraction, logical operations like AND, OR, XOR, NOR and NOT, arithmetical and
logical shifts.

Decode Stage PC

Content of Source
Register 1

Content of Source
Register 2

Extended 	Arithmetic Logic
Immediate D to 	Unit (ALU)

Operation

PC

JAL Control

Multiplexer

Execution
Stage Resu

Instruction
Execution Stag

Register 	Execution
Stage PC

Fig. 5.4 Stage3-Instruction Execution Stage

❖ Arithmetic Logic Unit. This unit is composed of basic ALU, shift unit,
move immediate unit, ALU multiplexer and selector. The block diagram of
arithmetic logic unit is shown in the fig. 5.5.

35

Chapter 5
	 RISC Processor Architecture

> Basic ALU. This unit does the arithmetic operations like addition and
subtraction, logical operations like AND, OR, NAND, NOR, XOR and
NOT. In such case both source operand may be registers or one is
register and other is immediate data. In case of arithmetical operations,

overflow flag is appropriately set.

➢ Shift Unit. This unit shifts the data present in source1 by number of

bits equal to contents of source2. Shift operation may be arithmetical or
logical and it may be in right or left direction. Source2 may be register
or an immediate value [9]. Shift operation specifies the direction as well
as type of shift as in table 5.4. Shift by 8, shift by 4, shift by 2 and shift

by 1 unit are connected in series and does the specified operation only if
they are enabled. Otherwise they pass the input data as it is at the

output.

> Move Immediate Unit. This unit loads the upper or lower byte of the

specified register with 8-bit immediate data keeping the other byte as it

is.
> ALU Multiplexer. This is used to select between basic ALU result,

shift unit result and move immediate unit result as final result of

arithmetic logic unit.

> Selector. This is used to select the source2 from either source register

or immediate data.

Operation Input Type and Direction of Shift

OOB Logical Shift Left.

01B Logical Shift Right.

10B Arithmetic Shift Right.

11B Arithmetic Shift Left.

Table 5.4 Type and Direction of Shift Combinations

❖ Instruction Execution Stage Register. This register is used to store the

result of instruction execution stage. It mainly stores the result of

arithmetic logic unit and instruction execution stage PC value [.11]. The

output from this stage is fed to stage4-Memory/IO-write back stage.

36

Chapter 5
	 RISC Processor Architecture

Source Regl

Operation

16-Bit
Immediate Da

Selector
Source Reg2

Select

Basic ALU

ALU Result

Final

Shift
Immediate 	Selector

Data

Shift Result
Shift Unit

ALU
Multiplexer

Overflow

Move

Immediate MVI Result Unit
Move Immediate Data

Result Select Input

. Fig. 5.5 Arithmetic Logic Unit Block Diagram

Data to be Shifted 	 Shift by 	 Shift by 	 Shift by
8 Unit 	 4 Unit 	 2 Unit

Shift
Shift by
I Unit

Shift Enable

(3) Amount of Sl 'ft
Shift Enable (2)

Shift 	Shift Enable (1)
Control

Unit 	Shift Enable (o) Operation

Shift Operation

Fig. 5.6 Block Diagram of Shift Unit

❖ Multiplexer. It is used to select between arithmetic logic unit result and

instruction decode stage PCvalue required for JAL instruction as final

result.

5.2.4 Stage4-Memory/IO-Write Back Stage
This stage consists of output port register, memory/JO-write back pipeline

register and result selector. The block diagram of this stage is shown in fig. 5.7.

37

Chapter 5
	 RISC Processor Architecture

❖ Output Port Register. This register comes into action for OUT

instruction. The content of the register specified in the instruction is placed

on output port.
❖ Memory/lO-Write Back Pipeline Register. This register stores the data

coming from input port, the data coming from memory for store
instruction and the result produced by stage3. This register also store code
for write back register.

❖ Result Selector. Based on the instruction, this selector assigns one of the

data from memory/JO-write back pipeline register as final write back data.

Output Port Enable

Result 	 Output Port I 	 Output Port
Register

elk

Write Back

Read Result
Memory/TO-

Read Data 	I Write Back
Pipeline Register In ut Result

Input Port Data Result 	Write Back
Selector

Write Back

Write Back Data Selection

Fig. 5.7 Stage4-Memory/IO-Write Back Stage

5.3 Control Unit

This unit receives its input from stage and produce necessary control signals
for all units of the processor for execution of an instruction. It also maintains the

necessary sequence in generating control signals for stages of the pipeline. Hardwired

control is used in the control unit [13]. This unit is made up of basic control unit,

decode control register, execution control register and write back control register.

Block diagram of it is shown in fig. 5.8.

38

Chapter 5 	 RISC Processor Architecture

elk

Stage4 Control

Function 	 I Stage3 Control
Signals

Zero 	 Decode Cor
Basic Control 	 I 	Register

Unit 	I Stage2 Control

Stage4
Control Stage4 Control Signals Control Signals for

Signals 	Write Back Sta e4
Execution 	 Control

Stage3 	Control 	 Register
Control 	Register
Signals _ 	Control Signals for Stage3_

Control Signals for Stage2

Control Signals for Stage

Fig. 5.8 Block Diagram of Control Unit
• Basic Control Unit. This unit generates all control signals for processor

based on combinations of opcode, function and the value of zero line
(Only Effective for Conditional Branch Instruction). These controls signals

are passed out of control unit in sequence using three registers in the
control unit. Some control signals from basic unit are used directly for
stagel of pipeline. Others are passed to decode control register.

❖ Decode Control Register. After receiving control signals from basic
control unit, this register sends them on the next clock pulse. Some of
them are used directly to control stage2 of pipeline. Others are passed to

execution control register.
❖ Execution Control Register. Control signals received from decode

control register are passed out on the next clock pulse. Some of them are

used for controlling the stage3 and remaining is passed to write back
control register.

❖ Write Back Control Register. Control signals received from execution

control register are passed out on the next clock pulse to control stage4 of
pipeline.

Control signals necessary for other unit of the processor are taken out from the
above combination at appropriate time.

5.4 Branch Forwarding Unit
This unit is used to decide the branch target address and to create the condition

necessary for conditional branch instruction. It also tries to resolve the conflict arising

Chapter 5
	

RISC Processor Architecture

in pipeline due to branching [12]. It consists of branch forwarding detection unit, zero
detector and selectors.

❖ Branch Forwarding Detection Unit. This unit decides the condition data
and branch target address component for conditional branch instruction

execution. It may be possible that the destination of previous instruction
may be the condition data source or target address component source. In
such case this unit selects the appropriate values for these two components.

❖ Selectors. One selector is used for selecting the condition data component
and the other is used for selecting branch target address component from
the source specified in instruction, execution stage result and write back

stage result.
❖ Zero Detector. This unit checks whether the data at its input is zero in

value or not. If zero the output line is set high otherwise low. This is used
in instructions like branch on zero, branch on not zero etc.

Condition 	 Zero
Execution Stage 	 Data 	 Indicator

Selector 	 Zero Detector
Write Back Stage Result

EX

WB Stage Condition Selector
EX Write 	Branch

WB Write Bak 	Forwarding
Detection 	Branch Target Address

Snnre1n 	Unit

Source2 Reg

Target Address Component
Selector

Sourcel

Fig. 5.9 Branch Forwarding Unit Block Diagram

5.5 Execution Forwarding Unit
This unit is used to eliminate the resource conflicts occurring in pipelining.

There are certain conditions that occur in the pipeline cause resource conflicts. This
unit consists of execution stage forwarding detection unit and selectors.

.,1

Chapter 5
	 RISC Processor Architecture

❖ Execution Stage Forwarding Detection Unit. This unit creates the select
inputs for two selectors present in this stage. If the source register of
current instruction is destination of previous instruction then the source for
current instruction is not valid until the result of previous instruction is

written back. This requires stalls [1]. Other method is to forward the
execution stage result of previous instruction directly as the source for
current instruction. This method is used here.

❖ Selectors. One selector is used for selection of source1 and other is used
for selection of source2 from the source specified in the instruction,
execution stage result and write back stage result. The select input for
these selectors is generated by execution stage forwarding detection unit

based on various conditions.

Source2

Execution Stage Result
	 Forwarding Unit

Selector
Write Back Stage Result

EX Stage Write

WB Stage Write Source2 Selector
EX Write Branch

WB Write Back Forwarding
Detection Sourcel Selector

Unit

Source2

Forwarding Unit
Selector

Fig. 5.10 Execution Forwarding Unit Block Diagram

5.6 Hazard Detection Unit

This unit takes care of different hazards occurring in the pipeline of processor.
Based on various conditions of opcode, function, source register and control signals

generated by control unit, it produces three control signals. One is used to decide

41

Chapter 5 	 RISC Processor Architecture

whether program counter is to be updated or not and thus take the decision on whether
to initiate stalls or not. For handling the control hazards it is necessary to flush the
pipeline. Remaining two control signals from this unit are used for this purpose. One
is used to flush instruction fetch stage register and the other is used to flush
instruction decode stage register [2].

5.7 Interrupt and Exception Unit
This unit is responsible for handling hardware interrupts and exceptions. This

processor supports six hardware interrupts, one RESET and overflow exception.

Fig. 5.11 Interrupt and Exception Unit Block Diagram

It consists of interrupt and exception control unit, return from interrupt
register, acknowledgement register, enable interrupt register and TRAP register.
Block diagram of interrupt and exception unit is shown in fig. 5.11.

❖ Interrupt and Exception Control Unit. It checks for arithmetic overflow,
undefined instructions or external IO devices to make a request for
processing their service routine. If this unit is enabled, each line is sampled

42

Chapter 5 	 RISC Processor Architecture

in sequence of RESET, overflow, undefined and then hardware lines from
interrupt5 to interruptO. The first line to be true is serviced. The
appropriate stages of pipeline are flushed and the unit is disabled. If an
external IO device on interrupt lines was serviced; and acknowledgement
is sent out and the current program counter value is stored via TRAP
register.

❖ Return from Interrupt Register. When interrupt or exception service
routine is being processed, unit is disabled and when return from interrupt
or exception is executed unit is again enabled by this register.

❖ Acknowledgement Register. It is used to hold value of the
acknowledgement signals when an interrupt is being processed. When

clock goes high then whatever interrupt is being processed is set in the
register. The acknowledgement signals are then sent out for device being

serviced.

+ Enable Interrupt Register. Hardware interrupts can be enabled or

disabled using EI instruction. The data part of EI instruction is used for
this purpose. The following table shows the details for interrupts and
exception. The priority level is in descending order from top to bottom.

Interrupt/
Exception

Type Data Part of EI
Instruction for Enabling

Priority
Level

RESET Hardware, vectored Can not be disabled 0-highest

Overflow Exception, vectored Can not be disabled 1
Undefined Exception, vectored Can not be disabled 2
Interrupt5 Hardware, vectored 1 0 0 0 0 0 3
Interrupt4 Hardware, vectored 0 1 0 0 0 0 4
Interrupt3 Hardware, vectored 0 0 1 0 0 0 5
Interrupt2 Hardware, vectored 0 0 0 1 0 0 6
Interrupt) Hardware, vectored 0 0 0 0 1 0 7
InterruptO Hardware, vectored 0 0 0 0 0 1 8

fable 5.5 Interrupts and Exceptions

43

Chapter 5
	 RISC Processor Architecture

❖ TRAP Register. It consists of correct PC test unit and PC TRAP register.

Block diagram of it is shown in fig. 5.12.
➢ Correct PC Test Unit. It tests the program counter when an interrupt is

being serviced. It is used in case a branch instruction has been issued
before the interrupt occurred. This entity picks the correct program
counter value to be trapped.

➢ PC TRAP Register. It is used to store the correct program counter
value from the overflow, undefined instruction and the user interrupt.

IF Stage PC

Correct PC I
Test Unit 	Return Address for ID Stage PC 	 Hardware Interruvt

c 	 PC TRAP Return from Interrupt

Register
EX Stage PC

TRAP PC Select

Fig. 5.12 TRAP Register BIock Diagram

5.8 Prefetching Unit

When execution unit is not requesting any data from external memory or IO

device, prefetcher unit brings the next sequential instructions from memory and store

it in the prefetch buffer. This unit supplies the instructions to instruction fetch unit. It

consists of prefetch buffer unit, prefetching control unit and clock divider [3]. The

block diagram of prefetching unit is shown in fig. 5.13.

+:+ Prefetch Buffer Unit. This unit is made up of prefetch buffer and

Hit/Miss detection unit. Block diagram of it is shown in fig. 5.14.

> Prefetch Buffer. It is used to store the prefetched instructions from

memory. It can store four instructions along with the address from

where the particular instruction is fetched and a bit indicating the

validity of instruction. It works like small cache memory.

44

Chapter 5 	 RISC Processor Architecture

Fig. 5.13 Prefetching Unit Block Diagram

> Hit/Miss Detection Unit. It checks whether read address has a Hit or

Miss in the prefetch buffer. It does this by comparing the upper 14 bits
of read address along with the tag field of instruction stored in prefetch

buffer. If the valid bit is low then instruction is not valid and Miss

Output from this unit is. set high. If valid bit of instruction is high and
14 bits of read address match with tag field then Miss is set low which

indicate that instruction will be directly supplied by the prefetch unit.

Otherwise Miss is high and instruction has to be taken from external
memory.

❖ Prefetching Control Unit. Based on the read address received from the
instruction fetch stage, the address from which last instruction is

prefetched from external memory, the Hit or Miss in prefetch buffer and
memory control line, this unit generate the address from which the
instruction is to be fetched and also decides whether it is to be written in
prefetch buffer.

+ Clock Divider. Some components in the system may be slow and require

slower clock. Clock divider is used to generate such slower clock signal.

45

Chapter 5

Fetched Address

Fetched Instructio

Write Enable

elk
Lower 2 Bits of
Read Address

RISC Processor Architecture

Last Fetched

Instruction

Prefetch Buffer I 	T

Valid 	I Hit/Miss I 	 Miss
Detection Unit

Upper 14 Bits of Read Address

Fig. 5.14 Prefetch Buffer Unit Block Diagram

46

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

Chapter 6

DESIGN AND IMPLEMENTATION OF RISC
PROCESSOR ON FPGA

VHDL is a language for describing digital electronics system which is used as
design tool in this dissertation. Hierarchical approach has been used for designing the
RISC processor. After designing the RISC processor and simulating the result, an
attempt has been made to implement it on Spartan-II FPGA.

This chapter begins with brief introduction of VHDL language. Next to it
basic programming technique are explained. Then emphasis is given on some
terminologies in VHDL. Some basics on FPGA are given next. Chapter ends with

data on Spartan-II FPGA.

6.1 VHDL

VHDL is an acronym which stands for VHSIC (Very High Speed Integrated
Circuits) Hardware Description Language. VHDL is designed to fill a number of
needs in the design process. First, it allows description of the structure of a system,

that is, how it is decomposed into subsystems and how those subsystems are
interconnected. Second, it allows the specification of the function of a system using

familiar programming language forms. Third, as a result, it allows the design of a

system to be simulated before being manufactured, so that designers can quickly

compare alternatives and test for correctness without the delay and expense of
hardware prototyping. Fourth, it allows the detailed structure of a design to be

synthesized from a more abstract specification, allowing designers to concentrate on
more strategic design decisions and reducing time to market [14].

VHDL is being used for documentation, verification and synthesis of large

digital designs. This is actually one of the key features of VHDL, since the same
VHDL code can theoretically achieve all three of these goals, thus saving a lot of
effort. In addition to being used for each of these purposes, VHDL can be used to take

three different approaches to describing hardware. These three different approaches
are the structural, data flow and behavioral methods of hardware description. Most of

the time a mixture of the three methods is employed. The following sections introduce

you to the language by examining its use for each of these three methodologies. [15].

47

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

VHDL was established as the IEEE 1076 standard in 1087. In 1993, the IEEE
1076 standard was updated and an additional standard, IEEE 1164 was adopted. In
1996, IEEE 1076.3 became the VHDL synthesis standard [15].

6.2 VHDL Programming Techniques
Various methods can be used to write model for digital circuit using VHDL.

Circuit in hand can be modeled using its functional description known as behavioral
programming, by describing the system with the help of its component known as
structural programming or by mixture of these two known as mixed mode
programming [14].

6.2.1 Behavioral Programming
In VHDL, a description of the internal implementation of an entity is called an

architecture body of the entity. There may be a number of different architecture
bodies of the one interface to an entity, corresponding to alternative implementations

that perform the same function. We can write a behavioral architecture body of an

entity, which describes the function . in an abstract way. Such an architecture body
includes only process statements, which are collections of action to be executed in
sequence. These actions are called sequential statements and are much like the kinds

of statements we see in a conventional programming language. The types of actions

that can be performed include evaluating expressions, assigning values to variables,

conditional execution, repeated execution and subprogram calls. In addition, there is a
sequential statement that is unique to hardware modeling languages, the signal

assignment statement. This is similar to variable assignment, except that is causes the

value on a signal to be updated at some future time [14].

6.2.2 Structural Programming
An alternative way of describing the implementation of an entity is to specify

how it is composed of subsystems. We can give a structural description of the entity's
implementation. An architecture body that is composed only of interconnected

subsystems is called a structural architecture body. If we are to describe this in
VHDL, we will need entity declarations and architecture bodies for the subsystems.

Within the architecture body the ports of the entity are also treated as signals. In the
second part of the architecture body, a number of component instances are created.

Each component instance is a copy of the entity representing the subsystem, using the

48

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

corresponding basic architecture body. The port map specifies the connection of the
ports of each component instance to signals within the enclosing architecture body
[14].

6.2.3 Mixed Mode Programming
Models need not be purely structural or purely behavioral. Often it is useful to

specify a model with some parts composed of interconnected component instances
and other parts described using processes. We use signals as the means of joining
component instances and processes. A signal can be associated with a port of a
component instance and can also be assigned to or read in a process.

We can write such a hybrid model by including both component instance and
process statements in the body of an architecture. These statements are collectively
called concurrent statements, since the corresponding processes all . execute

concurrently when the model is simulated [14].

6.3 Terminologies in VHDL
VHDL is a worldwide standard for the description and modeling of digital

hardware. VHDL gives the designer many different ways to describe hardware. The

language offers: familiar programming tools for complex and simple problems,
sequential and concurrent modes of execution to meet a large variety of design needs,

package and libraries to support design management and component reuse [16].
VHDL has ample features appropriate for describing the behavior of electronic

components ranging from simple logic gates to complete Microprocessors, High

Performance Digital Signal Processor and custom chips. Features of VHDL allow

timing aspects of circuit behavior (such as rise and fall times of signals, delays
through gates, functional operation) to be precisely described [18].

6.3.1 Entity
This is basic unit of description which gives the input and output ports of the

digital circuit to be modeled and their types. For example, if entity with name ABC, X

and Y as input ports of type bit, M and N are output ports of type bit will be expressed
in VHDL as.

Entity ABC is

Port (X: in std_logic;

Y: in std logic;

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

M: out std logic;
N: out std logic);

End entity ABC;

6.3.2 Packages
Packages are intended to hold commonly used declarations such as constants,

type declarations and global subprograms. Packages can be included within the same
source file as other design units (such as entities and architectures) or may be placed
in a separate source file and compiled into a named library. This latter method is
useful in using the contents of a package throughout a large design or in multiple
projects. The IEEE 1164 standard provides a standard package named std_logic_1 164
that includes declarations for the type's std logic, std_ulogic, std_logic_vector and

std ulogic_vector, as well as many useful functions related to those data types [17].

6.3.3 Design Libraries
A design library is an implementation-dependent storage facility for

previously analyzed design units. This results in many different implementations in

synthesis and simulation tools. In general, however, design libraries are used to

collect commonly used design units (typically packages and package bodies) into
uniquely-named areas that can be referenced from multiple source files in your design

[15].

6.3.4 Components
Components are used to connect multiple VHDL design units

(entity/architecture pairs) together to form a larger, hierarchical design. Using

hierarchy can dramatically simplify the design description and can make it much
easier to re-use portions of the design in other projects. Components are also useful

while making the use of third-party design units, such as simulation models for
standard parts, or synthesizable core models obtained from a company specializing in

such models [16].

6.3.5 Configurations
Configurations are features of VHDL that allow large, complex design

descriptions to be managed during simulation. (Configurations are not generally

supported in synthesis). One example of how to use configurations is to construct two
versions of a system-level design, one of which makes use of high-level behavioral

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

descriptions of the system components, while a second version substitutes in a post-
synthesis timing model of one or more components. 	 _

For large projects involving many engineers and many design revisions,

configurations can be used to manage versions and specify how a design is to be
configured for system simulation, detailed timing simulation and synthesis. Because
simulation tools allow configurations to be modified and recompiled without the need
to recompile other design units, it is easy to construct alternate configurations of a
design very quickly without recompiling the entire design [17].

6.4 FPGA
A field programmable gate array (FPGA) is an inexpensive hardware

component, which allows the user to program its functionality quickly and

inexpensively. This allows for cheaper prototyping and shorter time to-market of

hardware designs. FPGAs have a lower gate density than full custom (customized
VLSI chips) and semi custom (mask programmed gate arrays) design methodologies

FPGAs were first introduced in the mid-1980s to replace multi-chip glue logic circuits

with a single reconfigurable solution [18]. FPGAs have far outgrown their sole use as
a replacement for simple glue logic circuits. Presently, FPGA applications include
signal and image processing, graphic accelerators, military target

correlation/recognition, cryptograph, reconfigurable computing, and on-chip
coprocessors. FPGAs are utilized in four major design 'areas: rapid prototyping

emulation, pre-production and full-production [13]. FPGAs are the direct result of the
convergence of two distinct technologies: Programmable Logic Devices (PLDs) and

Application Specific Integrated Circuits (ASICs) [18]. A simple PLD consists of
arrays of AND and OR gates that can be used to create basic circuit designs. ASICs

are custom-made chips generally used in high volume applications because non-
recurring engineering costs (NREs) are much higher than in an FPGA design cycle.

FPGAs are sized from thousand of gates to tens-of-million gates and are available in a

variety of sizes with different packaging, internal logic blocks and process
technologies [18].

Internal FPGA architectures are commonly constructed using a symmetric tile
structure containing a network of switchboxes, logic blocks, wire channels and input-

output blocks. A switchbox (SB) is a location in the FPGA fabric that provides a

51

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

method to connect internal wires together. The switchbox allows horizontal wire
segments to switch to vertical wires. The size and contents within a logic block vary
greatly depending on the manufacture and target market. For example, FPGAs
targeted towards cost-effective solution typically contain simpler logic blocks than an

FPGA targeted for high-performance applications. Although the contents within logic

blocks can vary for different architectures, there are two basic building blocks found
in a logic block: memory elements and function generators. Memory elements provide
designers with the ability to temporarily store information until desired conditions are

met. Function generators can be configured to produce any function up to the number
of inputs into the function generator. Depending on the architecture, some function

generators can operate in different modes such as random access memory (RAM),
read only memory (ROM), or more complex modes like shift registers. FPGAs are

configured through a bitstream that loaded into the device. A bitstream is a file

created by the FPGA manufacturer that configures the switchboxes, logic blocks and

other internal FPGA logic [19].
FPGAs have redefined the boundaries if digital electronics allowing designers

to build systems piecewise. Multiple designers can rapidly test and verify the
functionality of each individual piece of a system to ensure proper functionality prior
to merging the entire system together. With increasing interest in reconfigurable

computing, FPGAs are recognized as the most viable, cost effective solution. Whether

a design is statically or dynamically reconfigurable, FPGAs provide rapid

programmability and a short time to market design cycle. Many companies have
marketed FPGAs, the major companies being Xilinx, Actel and Altera.

Reprogrammable FPGAs use EPROM, EEPROM or static RAM technology. Xilinx

FPGAs, which use static RAM technology, are the FPGAs used in this thesis [18].

6.5 Terminology in FPGA
Common terminology used in FPGA is explained with the help of specific

FPGA device in this section. For this purpose, the Spartan-II FPGA used to

implement 16-bit RISC processor is used. First we will explain some common

features of FPGA and then explain the terminologies with respect to Spartan-II
FPGA.

52

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

The Spartan-II 2.5V Field-Programmable Gate Array family gives users high
performance, abundant logic resources, and a rich feature set, all at an exceptionally

low price. The six-member family offers densities ranging from 15,000 to 200,000
system gates. System performance is supported up to 200 MHz. Spartan-II devices
deliver more gates, UOs, and features per dollar than other FPGAs by combining
advanced process technology with a streamlined Virtex-based architecture. Features
include block RAM (to 56K bits), distributed RAM (to 75,264 bits), 16 selectable 1/0
standards, and four• Delay-Locked Loops (DLLs). Fast, predictable interconnect
means that successive design iterations continue to meet timing requirements. The

Spartan-II family is a superior alternative to maskprogrammed ASICs. The FPGA
avoids the initial cost, lengthy development cycles and inherent risk of conventional
ASICs. Also, FPGA programmability permits design upgrades in the field with no

hardware replacement necessary (impossible with ASICs) [20].

6.5.1 Features of FPGA
1) Second generation ASIC replacement technology.

❖ Densities as high as 5,292 logic cells with up to 200,000 systems gates.

❖ Streamlined features based on Virtex architecture.

❖ Unlimited reprogrammability.
❖ Very low cost.

❖ Advanced 0.18 micron process.

2) System level features

❖ Select RAM hierarchical memory.

❖ 16-bit/LUT distributed RAM.

❖ Configurable 4K bit block RAM.
••• Fast interfaces to external RAM.
❖ Fully PCI compliant.

❖ Low-power segmented routing architecture.

❖ Full read back ability for verification/observability.
❖ Dedicated carry logic for high-speed arithmetic.
❖ Efficient multiplier support.
❖ Cascade chain for wide-input functions.
❖ Abundant registers/latches with enable, set, reset.
❖ Four dedicated DLLs for advanced clock control.

53

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

❖ Four primary low-skew global clock distribution nets.
❖ IEEE 1149.1 compatible boundary. scans logic.

3) Versatile I/O and packaging
❖ Pb-free package options.

❖ Low-cost packages available in all densities.
❖ Family footprint compatibility in common packages.
❖ 16 high-performance interface standards.
❖ Hot swap Compact PCI friendly.
❖ Zero hold time simplifies system timing.

4) Fully supported by powerful Xilinx development system

❖ Foundation ISE Series: Fully integrated software:

❖ Alliance Series: For use with third-party tools.
❖ Fully automatic mapping, placement and routing.

6.5.2 General Overview of Xilinx Spartan-II FPGA Family
The Spartan-II family of FPGAs have a regular, flexible, programmable

architecture of Configurable Logic Blocks (CLBs), surrounded by a perimeter of

programmable Input/Output Blocks (IOBs). There are four Delay-Locked Loops

(DLLs), one at each corner of the die. Two columns of block RAM lie on opposite
sides of the die, between the CLBs and the IOB columns. These functional elements
are interconnected by a powerful hierarchy of versatile channels. This is shown in fig.
6.1 [20].

Spartan-II

Device

Logic

Cells

System Gates

(Logic and

RAM)

CLB

Array (R

x C)

Total

CLBs

Maximum

Available

User I/O

Total

Distributed

RAM Bits

Total

Block

RAM

Bits

XC2S 15 432 15,000 8 x 12 96 86 6,144 16K
XC2S30 972 30,000 12 x 18 216 92 13,824 24K
XC2S50 1,728 50,000 16 x 24 384 176 24,576 32K

XC2S100 2,700 100,000 20 x 30 600 176 38,400 40K
XC2S150 3,880 150,000 24 x 36 864 260 55,296 48K
XC2S200 5,292 200,000 28 x 42 1,176 284 75,264 56K

Table 6.1 Spartan-H FPGA Family Members

54

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

Spartan-II FPGAs are customized by loading configurable data into internal
static memory cells. Unlimited reprogramming cycles are possible with this approach.
Stored values in these cells determine logic functions and interconnections

implemented in the FPGA. Configuration data can be read from an external serial
PROM (master serial mode), or written into the FPGA in slave serial, slave parallel,
or Boundary Scan Modes [20].

Spartan-II FPGAs are typically used in high-volume applications where the
versatility of a fast programmable solution adds benefits. Spartan-II devices provide
system clock rates up to 200 MHz. Spartan-II FPGAs offer the most cost-effective
solution while maintaining leading edge performance. In addition to the conventional

benefits of high-volume programmable logic solutions, Spartan-II FPGAs also offer
on-chip synchronous single-port and dual-port RAM (block and distributed from),

DLL clock drivers, programmable set and reset on all flip-flops, fast carry logic and

many other features [20].

6.5.3 Spartan-II Array Description
The Spartan-II user-programmable gate array, shown in figure 1, is composed

of five major configurable elements.

❖ IOBs provide the interface between the package pins and the internal logic.
❖ CLBs provide the functional elements for constructing most logic.

❖ Clock DLLs for clock-distribution delay compensation and clock domain

control.
❖ Versatile multi-level interconnects structure.
As can be seen in fig. 6.1, the CLBs from the central logic structure with easy

access to all support and routing structures. The IOBs are located around all the logic

and memory elements for easy and quick routing of signals on and off the chip.
Values stored in static memory cells control all the configurable logic elements and

interconnect resources. These values load into the memory cells on power-up and can

reload if necessary to change the function, of the device. Each of these elements will
be discussed in detail in the following sections [20].

❖ Input/Output Block (IOBs). The Spartan-II IOB, as seen in fig. 6.2,
features inputs and outputs that support a wide variety of I/O signaling

standards. These high-speed inputs and outputs are capable of supporting

various state of the art memory and bus interfaces. The three IOB registers

55

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

function either ad edge-triggered D-type flip-flops or as level-sensitive
latches. Each IOB has a clock signal (CLK) shared by the three registers
and independent Clock Enable (CE) signals for each register [19]. In

addition to the CLK and CE control signals, the three registers share a
Set/Reset (SR). For each register, this signal can be independently
configured as a synchronous Set, a synchronous Reset, an asynchronous
Preset, or an asynchronous Clear. A feature not shown in the block
diagram, but controlled by the software, is polarity control. The input and
output buffers and all of the IOB control signals have independent polarity
controls [20]. Optional pull-up and pull-down resistors and an optional

weak-keeper circuit are attached to each pad. Prior to configuration all
outputs not involved in configuration are forced into their high-impedance

state. The pull-down resistors and the weak=keeper circuits are inactive,

but inputs may optionally be pulled up. The activation of pull-up resistors

prior to configuration is controlled on a global basis by the configuration
mode pins. If the pull-up resistors are not activated, all the pins will float.

Consequently, external pull-up or pull-down resistors must be provided on

pins required to be at a well-defined logic level prior to configuration [20].

All pads are protected against damage from electrostatic discharge (ESD)
and from over-voltage transients. Two forms of over-voltage protection are

provided, one that permits 5V compliance, and one that does not. For 5V

compliance, a zener-like structure connected to ground turns on when the

output rises to approximately 6.5V to the output supply voltage, VCCO.
The type of over-voltage protection can be selected independently for each

pad [20].
+ Input Path. A buffer in the Spartan-II IOB input path routes the input

signal either directly to internal logic or through an optional input flip-flop.
An optional delay element at the D-input of this flip-flop eliminates pad-

to-pad hold time. The delay is matched to the internal clock-distribution

delay of the FPGA and when used, assures that the pad-to-pad hold time is

zero. Each input buffer can be configured to conform to any of the low-
voltage signaling standards supported. In some of these standards the input
buffer utilizes a user-supplied threshold voltage, VREF. The need to

supply VREF imposes constrains on which standards can used in close

56

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

proximity to each other. There are optional pull-up and pull-down resistors
at each input for use after configuration [19].

❑❑❑❑❑❑❑❑❑❑❑❑
DLL DDEJIJfl0900009

❑0

❑ E111E]EIE10 ❑ O

❑ ❑ ❑ ❑ ❑ ❑ ❑ 0
❑0

EIE]EIE]EIE] ❑D § ❑❑❑D❑❑ o_
DI__II

 ❑❑❑❑❑❑

0
0 ❑❑❑0011 0
❑F' " 1111❑❑❑❑

DLL
DEThDU0099000
0000❑❑❑❑DL]❑❑

XC2

CLBs
0000❑❑❑❑❑❑❑❑

DLL

LILIILVIIH ~❑ ❑
I n
ID

❑❑

❑ ❑

❑❑❑ 0

Io

D❑
0❑

	

Ii 	ID EELHIEIL
0000❑❑ o0
0000❑❑ o0

I

0000❑❑ o0
00000MOU 	DLL
CJ❑❑❑❑D❑❑❑❑❑
S15 	 1/0 LOGIC

Fig. 6.1 Basic Spartan-11 Family FPGA Block Diagram

❖ Output Path. The output path includes a 3-stzte output buffer that drives

the output signal onto the pad. The output signal can be routed to the
buffer directly from the internal logic or through an optional IOB output

flip-flop. The 3-stzte control of the output can also be routed directly from

the internal logic or through a flip-flip that provides synchronous enable

and disable. Each output driver can be individually programmed for a wide
range of low-voltage signaling standards. Each output buffer can source up

to 24 mA and sink up to 48 mA. Drive strength and slew rate controls
minimize bus transients [20]. In most signaling standards, the output high

voltage depends on an externally supplied VCCO voltage. The need to
supply VCCO imposes constraints on which standards can be used in close

proximity to each other. An optional weak-keeper circuit is connected to

57

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

each output. When selected, the circuit monitors the voltage on the pad and
weakly drives the pin High or Low to match the input signal. If the pin is a
connected to a multiple-source signal, the weak keeper holds the signal in
its last state if all drivers are disabled. Maintaining a valid logic level in
this way helps eliminate bus chatter. Because the weak-keeper circuit uses
the IOB input buffer to monitor the input level, an appropriate VREF

voltage must be provided if the signaling standards require one. The
provision of this voltage must comply with the I/O banking rules [20].

T 	 Vcco

	

SR 	 Package

	

D 	 Pin
TFF

'LK 	 CK 	 VCC

CCE 	 EC 	 OE 	 Programmable 	 I/O

SR 	 Bias & ESD 	Package Pin
Network

SR
Programmable

	

OFF 	 Output Buffer 	I 	Internal

	

CK 	 Reference

OCE 	 EC

Programmable
Delay 	 ack VePF

IQ

	[<IIIIII] 	[lI]•f SR 	 Programmable 	 Package Pin
I 	 D 	 Input Buffer IFF

ICK

ICE 	 EC
To Other To Next UO

External Vp
Inputs of Bank

Fig. 6.2 Spartan-II Input/Output Block (IOB)

❖ I/O Banking. Some of the I/O standards described above require VCCO
and/or VREF voltage. These voltages are externally connected to device

pins that serve groups of IOBs, called banks. Consequently, restrictions

exist about which I/O standards can be combined within a given bank.
Eight I/O banks result from separating each edge of the. FPGA into two
banks as shown in figure 3. Each bank has multiple VCCO pins which

must be connected to the same voltage. Voltage is determined by the

58

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

output standards in use [20]. Some input standards require a user-supplied
threshold voltage, VREF. In this case, certain user-I/O pins are
automatically configured as inputs for the VREF voltage. About one in six
of the UO pins in the bank assume this role. VREF pins within a bank are
interconnected internally and consequently only one VREF voltage can be
used within each bank. All VREF pins in the bank, however, must be
connected to the external voltage source for correct operation. In a bank,
inputs requiring VREF can be mixed with those that do not but only one
VIF may be used within a bank. Input buffers that use VREF are not 5V
tolerant. The Vcco and VREF pins for each bank appear in the device pin-
out tables. Within a given package, the number of VREF and Vcco pins can
vary depending on the size of device. In larger devices, more I/O pins
convert to VREF pins. Since these are always a superset of the VREF pins
used for smaller devices, it is possible to design a PCB that permits

migration to a larger device. All VREF pins for the largest device
anticipated must be connected to the VREF voltage and not used for UO
[20].

Bank 0 	 Bank 1
Ba 	 Ba

nk
GCKL3 	GCKL2 	 2k

Spartan-II
Device

Ba Ba nk 6 	 nk
GCKL1 	GCKLO 	 3

Bank 5 A 	A Bank 4 I
Fig. 6.3 Spartan-II I/O Banks

59

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

❖ Configurable Logic Block (CLBs). The basic building block of the
Spartan-II CLB is the logic cell (LC). An LC includes a 4-input function

generator, carry logic and storage element. Output from the function
generator in each LC drives the CLB output and the D input of the flip-
flop. Each Spartan-II CLB contains four LCs, organized in two similar
slices; a single slice is shown in fig. 6.4. In addition to the four basic LCs,
the Spartan-II CLB contains logic that combines function generators to
provide functions of five or six inputs [20].

❖ Look-Up Tables (LUTs). Spartan-II function generators are implemented
as 4-input look-up tables (LUTs). In addition to operating as a function

generator, each LUT can provide a 16x1-bit synchronous RAM.
Furthermore, the two LUTs within a slice can be combined to create a

16x2-bit or 32x1-bit synchronous RAM, or a 16x1-bit dual-port

synchronous RAM. The Spartan-II LUT can also provide a 16-bit shift

register that is ideal for capturing high-speed or burst-mode data. This
mode can also be used to store data in application such as Digital Signal

Processing [20].

❖ Storage Elements. Storage elements in the Spartan-II slice can be

configured either as edge-triggered D-type flip-flop or as level-sensitive
latches. The D inputs can be driven either by function generators within

the slice or directly from slice inputs, bypassing the function generators. In
addition to Clock and Clock Enable signals, each slice has synchronous set

and reset signals (SR and BY). SR forces a storage element into the
initialization state specified for it in the configuration. BY forces it into the

opposite state. Alternatively, these signals may be configured to operate

asynchronously. All control signals are independently invertible and are
shared by the two flip-flops within the slice [20].

❖ Additional Logic. The multiplexer in each slice combines the function

generator outputs. This combination provides either a function generator
that can implement any 5-input function, a 4:1 multiplexer, or selected

functions of up nine inputs. Similarly, the F6 multiplexer combines the
outputs of all four function generators in the CLB by selecting one of the

F5-multiplexer outputs. This permits the implementation of any 6-input

function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

CLB has four direct feed through paths; one per LC. These paths provide
extra data input lines or additional local routing that does not consume
logic resources [20].

G4

G3

G2

G1

F51N

BY

SR

F4

F3

F2

F1

BX

CIN

CLK

CE

COUT

YB

Y

YQ

X

XQ

Fig. 6.4 Spartan-II CLB Slice (two identical in each CLB)

❖ Arithmetic Logic. Dedicated carry logic provides fast arithmetic carry
capability for high-speed arithmetic functions. The Spartan-Il CLB

supports two separate carry chains, one per slice. The height of the carry

chains is two bits per CLB. The arithmetic logic includes an XOR gate that

61

Chapter 6 	 Design and Implementation of RISC Processor on FPGA

allows a 1-bit full adder to be implemented within an LC. In addition, a
dedicated AND gate improves the efficiency of multiplier implementation.

The dedicated carry path can also be to cascade function generators for

implementing wide logic functions [20].

❖ BUFTs. Each Spartan-II CLB contains two 3-state drivers (BUFTs) that
can drive on-chip busses. Each Spartan-II BUFT has an independent 3-
state control pin and an independent input pin.

❖ Block RAM. Spartan-II FPGAs incorporate several large block RAM
memories. These complements the distributed RAM Look-Up Tables
(LUTs) that provide shallow memory structures implemented in CLBs.

Block RAM memory blocks are organized in columns. All Spartan-II
devices contain two such columns, one along each vertical edge. These

columns extend the full height of the chip. Each memory block is four
CLBs high, and consequently, a Spartan-II device eight CLBs high will

contain two memory blocks per column and a total of four blocks. Each
block RAM cell is a fully synchronous dual-ported 4096-bit RAM with

independent control signals for each port. The data widths of the two ports

can be configured independently, providing built-in bus-width conversion.

The Spartan-II block RAM also includes dedicated routing to provide an
efficient interface with both CLBs and other block RAMs [20]

Spartan-lI

Device No. of Blocks

Total Block RAM

Bits

XC2S 15 4 16K

XC2S30 6 24K

XC2S50 8 32K

XC2S 100 10 40K

XC2S 150 12 48K

XC2S200 14 56K

Table 6.2 Spartan-H Block RAM Amounts

62

Chapter 7 	 Simulation Results and Conclusion

Chapter 7

SIMULATION RESULTS AND CONCLUSION

Basic entities have been programmed using behavioral model and they are

used as components to form the different units of RISC processor. These units in term
are used as components for building the RISC processor using structural
programming. The simulation results for different unit and final RISC processor are
shown below.

Simulation results for stage! shown in fig, 7.1. Based on value of selection
input (OPC) generated by control unit for instruction in execution stage, next program

counter value (pcValue) is decided. Instruction from prefetch unit at address specified
in program counter is taken and is forwarded to next stage. If flush input is high,

instruction fetch stage register is flushed out.
Simulation results for stage2 are shown in fig. 7.2. This stage decides the

combination of read registers based on regSelect input. Input rf enable is used for
enabling the write operation in register file. If branch instruction is there in execution

stage, then type of branching (absolute or relative) is decided by branch_select input.

The contents of read registers are forwarded to next stage.
Simulation results for stage3 are shown in fig. 7.3. The ex select input

activated one of the components out of basic ALU, shift unit and move immediate

unit. The input alu_function decides the operation to be carried out on the data at
input. Contents of source registers and sign extended immediate data are input to this

stage. The result and the code for write back register are forwarded to next stage.
Simulation results for stage4 are shown in fig. 7.4. The input memSel is used

to select from data on input port, data read from memory and result of execution stage

as final result to be written back into destination. When output_enable is high, the
result is placed on the output port. Final result and code for write-back register are
output from this stage.

Simulation results for control unit are shown ' in fig. 7.5. Based on
combinations of opcode and function, it generates the control signals for all the units

of processor. For example, it generates alu function signal for stage3 (execution
stage). The control signals are sequenced properly.

63

Chapter 7
	

Simulation Results and Conclusion

Simulation results for branch forwarding unit are shown in fig. 7.6. This unit
selects the proper branch target address. If resource conflict is there in branch

instruction, then result from execution unit is selected as target address. Otherwise the
content of register specified in instruction is used as target address.

Simulation results for hazard detection unit are shown in fig. 7.7. If the
destination of instruction is source of next instruction then the necessary control
signals are generated by this unit. Also in case of branch instruction, the instruction
following the branch instruction needs to be flushed out.

Simulation results for interrupt and exception unit are shown in fig. 7.8.
RESET has been assigned highest priority and when it is high, the pcSel output is set

to PH to select the new PC value as 0012H in stage!. In case of hardware interrupts
and exceptions, the proper return address is saved in TRAP register.

Simulation results for prefetch unit are shown in fig. 7.9. It receives the

address from instruction fetch stage and supplies instructions to it. When data bus is

idle it prefetches the instructions from memory and store them in prefetch queue.
Simulation results for designed RISC processor connected to memory are

shown in fig. 7.10. This is the simulation result for small program of addition having

resource conflicts. The data for addition was 1010H and 3030H. Simulation result

shows that this conflict is successfully handled.
Hierarchical approach greatly simplifies the design of a processor. Because of

this it, is possible to model basic units of processor using behavioral programming
method of VHDL at an elementary level. Pipelining is the most important part of any

processor. Division of execution process of an instruction is critical in designing
pipelining. If the work is not distributed properly over different stages of pipeline,

performance degrades because the slowest stage decides the throughput of the

pipeline. Maintaining the sequence in the working of the pipeline is also one of the

important points to consider while designing stages of pipeline.
Hardwired approach is used in this design because instructions are very few,

simple operations are to be carried out on the data, instruction length is fixed and
-hence less number of control signals need to be generated for all the instructions.
Clock signal is used as the basis for generating control signals in sequence for all the
pipelined stages and other units of processor.

Structural hazards, data hazards and control hazards are resolved using hazard

detection unit, execution forwarding unit and branch forwarding unit. An instruction

Chapter 7
	

Simulation Results and Conclusion

called JAL and RJAL has been designed equivalent to CALL and RETURN with the

difference that the return address is saved in one of the register rather than external

memory. Only LOAD and STORE instructions access the external memory. All other

instructions operate on a data present in internal registers or immediate data present in

the instruction itself.

An attempt has been made to implement the designed processor on Spartan-II

FPGA.

65

o

¢ O
•

LI1FL t t. i i i

w ~ O

~-. O N p o0 CU W

.c„

O O O O 0

f ~ 4

V1

Vl

Q

O

is

T

0
N
bJJ

Chapter 8 	 Future Scope

Chapter 8

FUTURE SCOPE

The emphasis is placed on only implementing the common features of RISC
processor in this work. Other aspects like device utilization on FPGA, power
consumption can be taken into consideration and methods can be found out for their
minimization. The work can be extended to

❖ Development of a 32-bit RISC processor having the features like
protection for data, support for virtual memory etc..

❖ Development of separate hardware for memory.

❖ Development of full cache memory subsystem inside the processor.
❖ Implementation of branch prediction logic.

76

References

REFRENCES

1. Sivarama P. Dandamudi, "Fundamentals of Computer Organization and
Design", Springer-Verlog, New York, Inc., 2003.

2. John L. Hennessy and David A. Patterson, "Computer Architecture a
Quantitative Approach", 3 1̀ Edition, Morgan Kaufmann Publishers, Inc.,
2000.

3. William Stallings, "Computer Organization and Architecture: Designing for
Performance", New Delhi: Prentice Hall of India, 2000.

4. Morris M. Mano, "Computer System Architecture", New Delhi : Prentice Hall
of India, 1989.

5. Holzmann D.J. and Mayer U., "RISC and ASIC-technologies of the nineties",
CompEuro 1989, VLSI and Computer Peripherals. VLSI and Microelectronic

Applications in Intelligent Peripherals and their Interconnection Networks',
Proceedings, pp. 148-150.

6. Xiao Li, Longwei Ji, Bo Shen, Wenhong Li and Qianling Zhang, "VLSI

Implementation of a High-Performance 32-Bit RISC Microprocessor",
Communications, Circuits and Systems and West Sino Expositions, IEEE

2002, International Conference, pp. 1458-1461, vol.2.
7. Smyth N., McLoone. M. and McCanny J.V., "Reconfigurable Cryptographic

RISC Microprocessor", VLSI Design, Automation and Test, 2005. (VLSI-

TSA-DAT). 2005 IEEE VLSI-TSA International Symposium, pp. 29-32.
8. Wicks J.A., Jr. and Martin H.L., "Design of a Fault-Tolerant RISC

Microprocessor Using VHDL", System Theory, 1991, Proceedings, Twenty-
Third Southeastern Symposium, pp. 354-358.

9. Dolle M. and Schlett M., "A Cost-Effective RISC/DSP Microprocessor for
Embedded Systems", Micro, IEEE, 1995, pp. 32-40.

10. Seung Ho Lee, Beoyng Yoon Choi and Moon Key Lee, "ASIC
Implementation of a RISC Microprocessor for Portable Workstation",

TENCON '95. 1995 IEEE Region 10 International Conference on
Microelectronics and VLSI, pp. 484-487.

11. Bailey D.H., "RISC Microprocessors and Scientific computing",
Supercomputing '93. Proceedings, IEEE, 1993, pp. 645-654.

77

References

12. Choquette J., Gupta M., McCarthy D. and Veenstra J., "High Performance
RISC Microprocessors", Micro, IEEE, 1999, pp. 48-55.

13. Becker J.E., Bieser C., Thomas A., Muller-Glaser K.D. and Becker J.,
"Hardware/Software Co-training by FPGA/ASIC Synthesis and Programming
of a RISC Microprocessor-core", Microelectronic Systems Education, 2003.
Proceedings. 2003 IEEE International Conference, pp. 134-135.

14. Peter J. Ashenden, "The Designer's Guide to VHDL", 2°d Edition, Morgan
Kaufmann Publishers, 2003.

15. J.Bhaskar, "VHDL Primer", 3 d̀ Edition, Pearson Education Asia, 2001.

16. Douglas L. Perry, "VHDL Programming by Example", 4th Edition, Tata

McGraw Hill, 2002.

17. Ben Cohen, Kluwer, "VHDL Coding Styles and Methodologies", 2"d Edition,

Academic Publishers, 2000.

18. Stephen M. Triberger., "Filed Programmable Gate Array Technology",

Kluwer Academic Publishers.

19. Xilinx Application Note, Spartan-II Series and Xilinx ISE 7.1i Design

Environment, 2001.

20. Spartan-II Platform FPGA Handbook October 24, 2002.

78

Appendices

APPENDICES

79

Appendix A 	 Design Flow

Appendix A

DESIGN FLOW

A.1 Introduction
This chapter describes the design flow used to create complex FPGA and

ASIC devices. The designer starts with a design specification, creates RTL
description, verifies that description, synthesizes the description to gates, uses place
and route tools to implement the design in the chip and then verifies that the final
result is correct in terms of function and timing. The design flow is shown in fig. A. 1.

A.2 Specification

All designs should start with a detailed specification of the exact tasks the
application should do and include details on how fast tasks must de completed.

A.3 Design Entry
In general design entry would done through any hardware description

language (HDL) such as VHDL or Verilog. In this thesis, VHDL is used for design
entry. One of the best uses of VHDL today is to synthesis ASIC and FPGA devices.

A.4 Simulator
Simulation is the representation of the structure and behavior of a digital logic

system through the use of computer. A simulator interpret the HDL description and
produces readable output, such as timing diagram, that predicts how the hardware will
behave before it is actually fabricated. Simulation allows the detection of functional
errors in a design without having to physically create the circuit. The stimulus that

tests the functionality of the design is called a test bench. Thus, to simulate a digital
system, the design is first described in HDL and then verified by simulating the
design and checking it with a test bench, which is also written in HDL.

Appendix A
	 Design Flow

Constraints

(Pin, Area, Timing)

Synthesize

Net-list(s)

Translate

Map

Maps the design to the board logic

Place and Route

Floor planned, placed and routed design

Configure

The design to downloaded to board

Fig. Al The High-Level Design Flow

A.5 User Constrain File
The UCF file maps signals in VHDL code to pins on the FPGA board. The

signal name in your .vhd file must match the net name in the UCF file. If the names

do not match, change the name in your .vhd file, not the net name in the .UCF file.

This UCF file and .vhd files are the input to the synthesis process.

A.6 Synthesis

After the hardware has been written, simulated and debugged, it needs to be

synthesized. In some cases, rewriting the hardware description will be necessary to

make the hardware partitions synthesizable. If any code is rewritten, the hardware

81

Appendix A 	 Design Flow

must be simulated again to make sure it still meets the requirements of the

specifications.

Synthesis is an automatic method of converting a higher level of abstraction to

a lower level of abstraction. There are several synthesis tools available currently. In

this thesis, ISE tool which is provided by Xilinx was used for synthesis.

The current synthesis tool converts the Register Transfer Level (RTL)

descriptions to gate level netlists. These gate level netlists consists of interconnected

gate level macro cells. Models for the gate level cells are contained in technology

libraries for each type of technology supported. The netlists, which are generated from

synthesis tool, are device independent, so its contents do not depend on the particulars

of the FPGA. It is usually stored in a standard format called the Electronic Design

Interchange Format (EDIF) [19].

A.7 Implementation
In the Design Implementation stage, the netlist produced by the design entry

program is converted into the bitstream file which configures the FPGA. The first step

Maps the design onto the FPGA resources; the second step Places or assign logic

blocks created in the mapping process in specific locations in the FPGA. The third

step Routes the interconnect paths between the logic blocks. The output is a Logic

Cell Array File (LCA) for the particular FPGA; this process is explained in detail in

section A.7. This LCA file is then converted into a bitstream file for configuring the

FPGA [19].

5.8 Place and Route
Place and route tools are used to take the design netlist and implement the

design in the target technology device. The place and route tools place each primitive

from the netlist into an appropriate location on the target device and then route signals

between the primitives to connect the device according to the netlist. Place and route

tools are typically very architecture and device dependent. These tools are tuned to

take advantage of each architectural and routing advantage the device contains. FPGA

vendors provide these tools because the differences in architectures are large enough

that writing a common tool for all architectures would be very difficult. Fig. A.2

shows a dataflow diagram of the place and route [19].

Appendix A 	 Design Flow

Netlist Placement
Constraints

Timing
Constraints

Device 	 Place and Route
Information

Device
Implementation

Fig. A.2 Place and Route Data Flow

Input to the place and route tools are the netlist in EDIF or another netlist
format and possibly timing constraints. The format of the netlist input file varies from
manufacture to manufacturer. Some tools use EDIF [19].

Another input to some place and route tools is the timing constraints, which
give the place and route tools an indication about which signals have critical timing

associated with them and to route these nets in the most timing efficient manner.
These nets are typically identified during the static timing analysis process during

synthesis. These constraints tell the place and route toll to place the primitives in close

proximity to one another and to use the fastest routing. The closer the cells are, the
shorter the routed signals will be and the shorter the time delay [19].

Some place and route tools allow the designer to specify the placement of
large parts of the design. This process is also known as floorplanning. Floorplanning

allow the user to pick locations on the chip for large blocks of the design so that
routing wires are as short as possible. The designer lays out blocks on the chip as

general areas. The floorplanner feeds this information to the place and route tools so
that these blocks are placed properly. After the cells are placed, the router makes the
appropriate connections.

83

Appendix A
	 Design Flow

After all the cells are placed and routed, the output of the place and route tools
consists of data files that can be used to implement the chip. In the case of FPGAs,
these files describe all of the connections needed to make the FPGA macro cells
implement the functionality required. Antifuse FPGAs use this information to burn

the appropriate fuses, while reprogrammable devices downloaded this information to
the device to turn on the appropriate transistor connections.

The otherr output from the place and route software is a file used to generate
the timing file. This file describes the actual timing of the programmed FPGA device

or the final ASIC device. This timing file, as much as possible, describes the timing
extracted from the device when it is plugged into the system for testing. The most
common format of this file for most simulators is SDF (Standard Delay Format).

Sometimes, proprietary formats are generated and later translated to SDF. SDF is used
to back-annotate the post route timing information from place and route tools into the
post layout timing simulation.

A.9 FPGA Configuration
Configuration is a process in which the circuit design (bitstream file) is

downloaded into the FPGA. The method of configuring the FPGA determines the
type of bitstream file. FPGAs can be configures by PROM. The serial PROM is the

most common. The FPGA can either actively read its configuration data out of
external serial or byte parallel PROM (master mode), or the configuration data can be
written into the FPGA (slave and peripheral mode).

N

o

~

o

N

o

N
P4
- 04

-d

N

V

y

C/)

II

c

II

~

II

d

N

II

Q

N

II

Q

N

p;
.0

(n

N

c1

y.
-

II

A

-

b

O

-d
.= .0 .~

o
.o 0

o o °a

O

° d

II

r• - o- o o- o- o- o
.4 - o o - o o - o o -

0 0 0 - -- o © o p
N
CJ) P4

N
C/) a

N
C

N
Cl) w

N
V] w

N
C/)
w

N
C1) c~

N
C!1 a

N
Cl)

N Cl) w
N C/) 04

N C/) w
N C 9

N C/] w
N
Cl)

N
V]

N
C/)

N
Cl)

N
C/)

N
V)

N
C/)

N
C/)

N
V]

N
Cl)

N
Cl)

N N
rA

N
V)

N
Cl)

N
c/]

Cl
v)

N
Cl)

N
vi

Cl
v)

N
v)

N
v

Cl
z

N
vD

N
vi

N
vA

N N
v)

Cl) V] Cl) Cl) C/1 C/) —C/) C/A V/ CA C/] V) Cl) O

O .-ti
a
—

9
,- A

a4
—4

as
—4

as
—4

c„
P/

w
—4

w
—4

w
1

r4
,--4

P4
—4

as
—

w
—4

04
-4

p
p

C/O
Pi
—
Cl)

Cl)
04
.-r
(!)

Cl)
Lei
.--.
Cl)

Cl)
P4
—4
Cl)

Cl)
Pc
—4
Cl)

C!)
ai
_-+
co Cl)

V]
P4
'--
C!)

C!]
Pi
_
C/)

ci
g
—
C/)

V]
0.i
--i
CI]

V)
P i
—4
CJ)

Cl)
g
.--i
V]

C/A
ly.
—
(/]

C!]
P4
--i
Cl)

>. ?C
iC

O O O O O O O O O O O O O O O O —
O O O O O O O O O O O O co O O O O

O O O O O O O O O O O O O O O O O O

G) G) G) G) G) G) G) O C) G) G) N N d)

O

N

z N c*M d' v i ~O l . 0 C~ O *-~ N M In ~ N

kn
00

cj

a~

-.

o II

o

as a"a w

—

ti

v

a

H

w

o

o0

o

o

00

o

+

it

°

+

II

II

>'

tx
II
a9

'

v
o

Pn
II
9a

°

II

kn
A

II
9a

~o
+

v~

V!

A
CA s4

~n

II
o

II
9a

II

U

a
co

x

.—
0

m
0

o
0

o
0

Q
A
Q
Q

Q
A
A
A

001
Q
A
A

Q
Q
A
A

A
Q
A

A
Q
A
A

A
Q
Q
A

A
Q
A
A

A
Q
Q
Q

Q
Q
Q
Q

Q
Q
A
A

A
A
A
A

A A A A
~C

x Cl)

r

v~ A

U)

to

7C

~c '—`

o0

00

00

00

00

co

0o

00 v)

Cl)

v)

Cl)

vi

Cl)

Cl)

Cl)

v)

Cl)

Cl)

Cl)

Cl)

V)

Cl)

~c
~e

rn c~ Cl rx A A vD rw
X
~c

<
~

00
A

00
A

00
A

00
A Cl) rs!

Cl)
►x Cl) rx

Cl)
c~

Cl)
r~

Cl)
rz!

U) w Cl) a X

0 0 0 0 -- r+ o o .- o o o
.--i -- -- .-+ .-+ — p O O O — — O O O — — O O
O O O O O O O '-+ — + !- — .-- O O O O O r-+ —

N U U U U U U

1

p. Q p U

A A

m

U) P

aa w

oo

as LLLLLo

A

aa

P4

U)~

CL! a' P4 04 Co, cn

06 C1 C N M n 116 l~ 06 O~ C N M Vi 1G I~ — •-- N N N N N N N N C`2 N M M M M M M M M

00

Appendix C 	 Software Code for RISC Processor

Appendix C

SOFTWARE CODE FOR RISC PROCESSOR

The CD given along with this report contains the software code for all the

units in RISC processor. The coding is done in VHDL and Xilinx ISE 7.1 i is used as a
synthesis tool. Xilinx ISE simulator is used for simulation.

87

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	References
	Appendix

