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ABSTRACT 

Study over the years showed that simple instruction are used most of the time 

in CISC processors and many complex instructions can be replaced by group of 

simple instructions. In that sense RISC processor are designed to execute very few 

simple instructions. They operate on data, which is mostly present in internal 

registers. Most of the RISC processors use hardwired control approach, which 

simplifies design process. External memory is accessed by LOAD and STORE 

instructions. RISC processor supports only few addressing modes and most of them 

are register based. 

Pipelining is used to improve the throughput of the processor by dividing the 

instruction execution in stages. Although single instruction takes same time for 

execution as in sequential execution, parallel operations on instructions in different 

stages reduces the overall time of execution. The balance of work between different 

stages of pipelining is important as the slowest stage of the pipeline decides the 

throughput of the processor. Four-stage pipelining is implemented in this design. The 

consequences of pipelining are the structural hazards, data hazards and control 

hazards. They can be handled using the methods of forwarding, stalling and flushing. 

Stalling degrades the performance by delaying the instruction execution. Prefetching 

unit is designed which works as a small cache. It is used to prefetch the instructions 

from memory and store them inside the buffer. 

Developed RISC processor handles the hardware interrupts and exceptions. 

RESET has been assigned the highest priority. Six external hardware interrupts are 

available and are vectored. Overflow and undefined instruction exceptions are also 

dealt with. 

VHDL is used as software synthesis tool for designing the processor. Xilinx 

ISE 7.1i is used for this purpose. Hierarchical approach is used for modeling the RISC 

processor. Basic units are described using behavioral programming and they are 

interconnected using structural programming to form complete RISC processor. To 

simulate the different stages of the processor, Xilinx ISE simulator is used. Simulation 

is used to check the correctness of the design before placing the design for 

implementation. 

Spartan-II FPGA is used to implement the proposed design. 
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Chapter 1 	 Introduction 

Chapter 1 

INTRODUCTION 

There are two design philosophies in market of microprocessor: Complex 

Instruction Set Computers (CISC) and Reduced Instruction Set Computers (RISC). In 

this introductory chapter we will explain these two trends in brief. Then objectives of 

work carried out in this dissertation are stated and then the organization of rest of the 

thesis is presented. 

1.1 Complex Instruction Set Computer (CISC) 

CISC systems use complex instructions. For example, adding two integers is 

considered a simple instruction. But, an instruction that copies an element from one 

array to another and automatically updates both array subscripts is considered a 

complex instruction. These systems access external memory frequently for data and 

support various addressing modes. The main purpose was to restrict the size of 

program so that memory space can be saved. But, they require complex hardware to 

support complex instruction [1]. 
The implementation of CISC processor includes microprogrammed control. 

The conceptual diagram is shown in fig. 1.1. A microprogram is a small run-time 
interpreter that takes the complex instruction and generates a sequence of simple 

instructions that can be executed by hardware. This was used to eliminate the 

semantic gap between high-level language statements and the instructions of 

processor. Hence most CISC designs use microprogrammed control [1]. 
Complex instructions are generally variable in length and time if execution 

depends on specific instruction. The programs written using CISC instructions tend to 

be smaller in size. The CISC processors were designed to simplify compilers and to 

improve performance under constraints such as small and slow memories. CISC tends 

to support a variety of data structures from simple data types such as integers and 

characters to complex data structures such as records and structures. 
CISC designs provide a large number of addressing modes. The main 

motivations are (i) to support complex data structures and (ii) to provide flexibility to 

access operands. Some CISC processors like Pentium allow one of the source 

operands to be in memory. Although this allows flexibility, it also introduces 
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Chapter 1 	 Introduction 

problems. First, it causes variable instruction execution times, depending on location 
of operands. Second, it leads to variable length instructions. Variable instruction 
lengths lead to inefficient instruction decoding and scheduling [1]. 

No doubt, CISC (Complex Instruction Set Computers) has gained the 

marketplace over the years. The concept of RISC processor is the result of 
accumulation of knowledge from CISC designs and of course, changing technology. 

ISA level 

Microprogram Control 

Hardware 

Fig. 1.1 CISC Implementation 

1.2 Reduced Instruction Set Computer (RISC) 

RISC (Reduced Instruction Set Computer) processors have gained significant 
attention of designers from last few years because of many features of it. Survey by 

program analysts over the years has shown that most of the time simple instructions 

are used and complex instructions are used occasionally. It is also found that many 

complex instructions can be replaced by group of simple instructions. Thus it is 

beneficial to design a system that supports a few simple data types efficiently and 

from which the missing complex data types can be synthesized. 

RISC processors have larger register set than CISC processors to avoid the 

frequent use of external memory. Most of the instructions operate on operand present 

in internal registers. This aspect improves the performance of the processor. 

RISC designs eliminate the microprogram layer and use the hardware to 

directly execute instructions. That's why they give improved performance [1] 

The RISC terminology details are explained in the following chapters. 

2 



Chapter 1 	 Introduction 

Fig. 1.2 RISC Implementation 

1.3 Objectives of the Dissertation 

An attempt has been made to design truly 16 — bit RISC processor i.e. 

instruction size, operand size as well as all data path are 16 bit. The address bus as 
well as data bus all is 16 bit in length. Effort has been made to implement following 

features of RISC processor in the proposed design. 

❖ Simple Instructions. The objective is to design simple instructions so that 

each can execute in one clock cycle. This is possible through pipelined 
architecture. The advantage of simple instruction is that all operations can 

be hardwired. 

❖ Register-to-Register Operations. Most of the operations are carried out 

on the data present in internal registers rather than external memory. This 
simplifies instruction set design and the structure of control unit. 

❖ Simple Addressing Modes. Simple addressing modes allow fast address 

computation of operands. Most instructions use register based addressing. 

Only load and store instructions need a memory-addressing mode. 

❖ Large Number of Registers. For register based operations we need large 

number of register to optimize the design. But the fixed length of 

instruction put limit on the registers that can be designed for the processor. 

❖ Fixed-Length, Simple Instruction Format. Variable length instructions 

can cause implementation and execution inefficiencies. Hence fixed length 
format is used. The RISC processor also uses simple instruction format 

where boundaries of various fields in an instruction such as opcode, source 
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and destination operands are fixed. This allows an efficient decoding and 

scheduling of instructions. 

❖ Pipelining. The method of pipelining is used to speed-up execution. The 

problems arising due to pipelining are also handled. 

VHDL (Very high speed integrated circuit Hardware Description Language) is 

used as a programming language to implement the proposed processor. It is a special 

purpose programming language that deals with the design and modeling of digital 

systems. There are several reasons to choose VHDL to implement design :- 

1. Through the use of structural modeling, VHDL can describe how a system 

is composed of smaller systems and the connections between them. 

2. Behavioral modeling allows a system's functionality to be described using 

common programming language. 

1.4 Organization of Thesis 
Chapter 2 describes the Instruction Set Architecture (ISA) for proposed RISC 

processor. The issue of number of operands in instruction is emphasized and then the 

different instruction formats and datapaths designed for RISC processor are 

explained. 

Chapter 3 is about the addressing modes supported by the RISC processor in 

this design. All the instructions designed are also explained in this chapter. 

Chapter 4 is dealing with concepts of pipelining, its implementation and the 

handling of hazards arising due to pipelining. 

Chapter 5 describes the RISC processor architecture in detail. 

Chapter 6 is in support of the software I have used for designing RISC 

processor. An attempt has been made to implement the design on SPARTAN-II 

FPGA. Some data about SPARTAN-II FPGA is also given. 

Chapter 7 includes the simulation results of designed processor. 

Chapter 8 gives the idea about the futures scope in the present design. 
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Chapter 2 

INSTRUCTION SET ARCHITECTURE (ISA) FOR RISC 

PROCESSOR 

While designing any processor, the first thing to do is the decision of the 

instructions it can operate on, the addressing modes it support and the opcode formats 

of instructions. In the present design, an attempt has been made to implement true 16 

— bit RISC processor. A true 16 — bit RISC processor has 16 — address lines, 16 — data 

lines, all internal operations are on 16 — bit data and opcode size for every instruction 

is 16—bit. 

In this chapter some of the important concepts related to instruction set 

architecture are considered. The issue of number of operands specified in the 

instruction explicitly, which directly affects the size of opcode of instruction is 

discussed. The instruction format for various instructions will be given. 

2.1 Number of Operands 
One of the characteristics that influences the instruction set architecture (ISA) 

is the number of operands specified explicitly in the instruction. Most operations can 

be divided into binary and unary operations. Binary operations such as addition and 

multiplication require two input operands whereas the unary operations such as 

logical NOT need only a single operand. Most operations produce a single result. 

There are exceptions, however. For example, division operation produces two 

outputs: a quotient and remainder. Since most operations are binary, we need a total 

of three operands: two to specify input operands and one to specify where the result 

should go [1].  

Most recent processors use three operands. However, it is possible to design 

systems with two, one, or even zero operands. These four types are discussed in brief 

here. 

2.1.1 Three Operand Machines 
In three operand machines, instructions carry all three operands explicitly. 

This approach is used in the proposed design. For example, if the following operation 

is to be carried out: 
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A=B+C 

This can be achieved with single instruction: 

ADD A, B, C 

The advantage of this approach is that less number of instructions is required 

for carrying out any task. This saves space in memory. From design point of view it 

simplifies the task of removing the data hazards [1]. 

The disadvantage is that it restricts the number of registers designed in a 

processor. 

2.1.2 Two Operand Machines 
In two operand machines, one operand doubles as a source and destination. 

The Pentium is an example processor that uses two operands. To carry out the 

following operation: 

A=B +C 

We require two instructions: 

MOV A, B 

The advantage of this approach is that more number of registers can be 

implemented in fixed instruction length processors as only two registers to be decoded 

in the instruction [1]. 

But this is at the expense of memory space. Handling hazards become 

complicated. 

2.1.3 One Operand Machines 
In one address machines, one operand is implicit and works as destination as 

well as one source. This implicit operand is called accumulator. Hence these machines 

are called accumulator machines. The following operation can be carried out with set 

of instructions. 

A=B+C 

The required instructions are: 

STORE A 

The advantage is more registers can be designed in fixed instruction length 

format but memory space is wasted. Also handling hazards become more difficult [1]. 
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2.1.4 Zero Operand Machines 
In these machines, both source and destination are implicit. These machines 

make use of stack to carry out operation. For example, to carry out operation: 
A=B +C 

It is assumed that B and C are on the top of the stack and A is next to them. 
The instruction: 

Will fetch B and C from top of stack and after addition result will be stored back on 
the top of the stack. But storing the values of B and C on the top of stack requires 

push operation [1]. 
Three operands method is used for most of the instructions in the proposed 

design. Some instructions use two operand and single operand method. 

2.2 Instruction Formats 
The instructions implemented for the proposed design can be categorized into 

following types because each instruction use different operands and it implement 

different operation. 

2.2.1 Register Format (R - type) 
The most common style of instructions is the R — type. It has two read 

registers and one write register. Fig. 2.1 shows typical R — type instruction format. 

15 	 12 11 	9 8 	6 5 	3 2 	0 

opcode 	 Dest. 	Sorc.1 	Sorc.2 	Func. 

Fig. 2.1 R — type Instruction Format 

2.2.2 Register Immediate Format (RI - type) 
The RI — type is similar to the R — type except that second read register and 

three function bits are replaced by a 6 — bit immediate value. Fig. 2.2 shows typical RI 
— type instruction format. 

15 	 12 11 	9 8 	6 5 	 0 

opcode 	 Dest. 	Sorc. I 	Immediate Data 

Fig. 2.2 RI — type Instruction Format 
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2.2.3 Immediate Format (I - type) 
The I — type instruction has one register and 8 — bit immediate field. The 

format of typical I — type instruction is shown in fig. 2.3. 

15 	. 12 	11 	9 	8 	 1 	0 

opcode 	 Dest. 	8 — bit immediate 	 func 

Fig. 2.3 I — type Instruction Format 

2.2.4 Shift Format (S - type) 
The S — type instruction format has one source register specifying the number 

to be shifted, ` second source register to specify the number of bits by which the 

number is to be shifted and destination register to store the result [3]. 

15 	 12 	11 	98 	65 	32. 	0 

opcode 	 Dest. 	Sorc.1 	Sorc.2 	Func. 

Fig. 2.4 S — type Instruction Format 

2.2.5 Shift Immediate Format (SI - type) 
The SI — type format is used by shift instructions. It consists of one destination 

register, one source register and 5 — bit immediate field. The format of typical SI — 

type instruction is shown in fig 2.5. 

15 	 12 11 	9 8 	6. 5 	 1 0 

opcode 	 Dest. 	Sorc. 1 	5 — bit imm. 	fun 

Fig. 2.5 SI — Type Instruction Format 

2.3 Datapath 
Datapath show how data flow around processor. Each instruction follow 

different datapath as it has to access different operands. The paths for each instruction 
are combined to form overall datapath for processor. The most common datapaths are: 
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2.3.1 R — Type Datapath 
In the R — type datapath the instruction is fetched from memory and broken up 

into its various parts. The two read registers from the instruction are fetched from the 
register file and ALU performs the operation given to it by the instruction. The result 
from ALU is then written back into the register file. The conceptual diagram is shown 

below. 

PC 

Reg 1 

Memo 	
T?struction 	Reg 	Reg File 	2 	ALU 	Result 

ry  

Fig. 2.6 R — Type Datapath 

2.3.2 RI — Type Datapath 
The RI — type is similar to the R — type except that the second register is 

replaced with a value that is actually inside the instruction. This immediate value is 

sign extended to 16 — bit and then use as the second input to the ALU. As with R — 
type, the result from ALU is then written back into the register file. The conceptual 

diagram for RI — type datapath is shown below.. 

alb'll L' &LG11U U 1111111GU1G1LG 

Fig. 2.7 RI — Type Datapath 
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2.3.3 Load Word Datapath 
The datapath for a load word is similar to the RI — type datapath with the 

exception that result from the ALU is send to fetch a value from memory instead of 

being written to the register file. The value that is fetched from memory is then loaded 

into the register file. The conceptual diagram for load word datapath is shown below. 

I PC 

Instruction 	
Reg 1 	

Result 
Reg File 	 ALU Memory 

Memory 

Extension 
Sign Extended Immediate 

Fig. 2.8 Load Word Datapath 

2.3.4 Store Word Datapath 
The store word datapath is similar to the load word with the exception that the 

write register actually specifies which register to write to memory and not the register 

file. The conceptual diagram for this datapath is shown below. 

I 	a  Sign Extended Immediate 

Fig. 2.9 Store Word Datapath 
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2.3.5 Register Branch Datapath 
In the register branch datapath, one register from register file is compared to 

zero. If the branch type is branch on zero and register is zero then the second register 

is loaded into the program counter and execution flow continues. A similar think 

happens with the branch on not zero. The conceptual diagram for this datapath is 

shown below. 

Fig. 2.10 Register Branch Datapath 

The data paths explained above are implemented in the design of RISC 

processor designed in this dissertation. 
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Chapter 3 

ADDRESSING MODES AND INSTRUCTION SET FOR 
RISC PROCESSOR 

As most of the instructions operate on a data which is in internal register, 
RISC processor supports very few addressing modes. Most instructions use register 
based addressing. Only load and store instructions need a memory addressing mode. 
The supported addressing modes are explained in the first section of this chapter. The 
second section is about the instructions that I have designed for this 16-Bit RISC 

Processor. 

3.1 Addressing Modes 
The method of specifying data required for execution of an instruction is 

called addressing mode. RISC processor support few addressing modes. These are 
explained in the following section. RISC architecture is sometime called LOAD — 
STORE architecture since only LOAD and STORE instructions are used to access 
data from external memory. 

3.1.1 Register Operand Addressing Mode 
In this addressing mode both source and destination are registers. The 

instructions supporting register addressing mode are efficient in execution because 

registers are the part of processor [3]. The examples of this addressing mode are: 
ADD R0, Rl, R2 

AND R6, Rl, R5 etc. 

3.1.2 Immediate Operand Addressing Mode 
In this addressing mode one of the source operand is immediate that is it is 

specified in the instruction itself. Data is stored along with instruction opcode in 

program memory. This is generally used when data to be operated on is constant. The 
examples of this addressing mode are: 

ADI RI, R2, 08H 
XRI R3, R6, 13H etc. 
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3.1.3 Register Indirect Addressing Mode 
This addressing mode accesses external memory. The address of a memory 

location to be accessed is specified in one of the register. For example: 
LOAD R1, R2 

This instruction load register R1 with data accessed from memory location 
whose address is specified in register R2. 

3.1.4 Relative Addressing Mode 
This addressing mode is specially used in branching instructions. It adds 

constant value to the current value of program counter so that branching will take 
place at a relative address [3]. For example the instruction: 

BZI R1, 08 

This instruction branches to new location calculated by adding current value 

of program counter with 08 if R1 contains zero. 
All these addressing modes have been used while designing RISC processor. 

3.2 Instruction Set 
This section describes the instructions designed and implemented for the RISC 

processor. These instructions can be categorized into following types. 
1. Arithmetic Instructions. 

2. Logical Instructions. 

3. Shift and Rotate Instructions. 

4. Data Transfer Instructions. 

5. Branching Instructions. 

6. Interrupt Related Instructions. 

7. Subroutine Related Instructions. 

8. Other Instructions. 
In the following discussion, each field of opcode is 1-bit in length. RD 

specifies 1-bit of destination register, RS1 specifies 1-bit of source register2 and so 

on. 

1. Arithmetic Instructions 

A. ADD RD, RS1, RS2 
Type of the instruction : R — type. 
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Opcode : 0 0 0 0 RD RD RD RS 1 RS1 RS 1 RS2 RS2 RS2 0 0 1. 
Where RD is destination register, RSI and RS2 are source registers. 

Description : This is R — type signed 16 — bit addition instruction which adds 

the content of RS 1 and RS2 and stores the result in RD. If the result exceeds 16 — bit 

then overflow exception is invoked. 

B. ADDu RD, RS1, RS2 

Type of the instruction : R — type. 

Opcode : 0000  RD RD RD RS 1 RS 1 RS 1 RS2 RS2 RS2 0 1 0. 

Where RD is destination register, RS1 and RS2 are source registers. 

Description : This is R — type unsigned 16 — bit addition instruction which 

adds the content of RS 1 and RS2 and stores the result in RD. If the result exceeds 16 

— bit then overflow exception is invoked. 

C. SUB RD, RS1, RS2 

Type of the instruction : R — type. 

Opcode: 0000  RD RD RD RS 1 RS I RS I RS2 RS2 RS2 0 1 1 

Where RD is destination register, RS 1 and RS2 are source registers. 

Description : This is R — type signed 16 — bit subtraction instruction which 

subtracts the content of RS2 from RS 1 and stores the result in RD. If the result 

exceeds 16— bit then overflow exception is invoked. 

D. SUBu RD, RS1, RS2 

Type of the instruction : R — type. 

Opcode : 0 0 0 0 RD RD RD RS I RS I RS 1 RS2 RS2 RS2 1 0 0 

Where RD is destination register, RS1 and RS2 are source registers. 

Description : This is R — type unsigned 16— bit subtraction instruction which 

subtracts the content of RS2 from RS 1 and stores the result in RD. If the result 

exceeds 16 — bit then overflow exception is invoked. 

E. ADDI RD, RS1, D6 

Type of the instruction : RI — type. 

Opcode : 1 0 0 1 RD RD RD RS 1 RS 1 RS1 D6 D6 D6 D6 D6 D6. 

Where RD is destination register, RS 1 is source register and D6 is 6 — bit 

immediate data. 
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Description : This is RI — type signed 16 — bit addition instruction which adds 

the content of RS1 with 6 — bit immediate data and stores the result in RD. If the 

result exceeds 16 — bit then overflow exception is invoked. 

F. SUBI RD, RS1, D6 
Type of the instruction : RI — type. 

Opcode : 10 1 0 RD RD RD RS1 RS 1 RS 1 D6 D6 D6 D6 D6 D6 . 

Where RD is destination register, RS 1 is source register and D6 is 6 — bit 

immediate data. 

Description : This is RI — type signed 16 — bit subtraction instruction which 

subtracts the 6 — bit immediate data from the content of RS 1 and stores the result in 

RD. If the result exceeds 16 — bit then overflow exception is invoked. 

2. Logical Instructions 

A. NOT RD, RS 
Type of the instruction : R — type. 

Opcode: 0000  RD RD RD RS RS RS X X X 1 1 1. 
Where RD is destination register, RS is source register, X don't care. 

Description : This is R — type 16 — bit logical NOT instruction which 

complements the content of RS and stores the result in RD. 

B. AND RD, RS1, RS2 
Type of the instruction : R — type. 

Opcode : 0 0 0 1 RD RD RD RS1 RS 1 RS1 RS2 RS2 RS2 0 0 0. 

Where RD is destination register, RS1 and RS2 are source registers. 

Description : This is R — type 16 — bit logical AND instruction which 

logically ANDs the content of RS 1 and RS2 bit by bit and stores the result in RD. 

C OR RD, RS1, RS2 
Type of the instruction : R — type. 

Opcode : 0 0 0 1 RD RD RD RS1 RS 1 RS1 RS2 RS2 RS2 0 0 1. 

Where RD is destination register, RS 1 and RS2 are source registers. 

Description : This is R — type 16 — bit logical OR instruction which logically 

ORs the content of RS 1 and RS2 bit by bit and stores the result in RD. 
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D. XOR RD, RS1, RS2 
Type of the instruction : R —type. 

Opcode: 0 0 0 1 RD RD RD RS1 RS1 RS1 RS2 RS2 RS2 010. 
Where RD is destination register, RS 1 and RS2 are source registers. 

Description : This is R — type 16 — bit logical XOR instruction which 

logically XORs the content of RS 1 and RS2 bit by bit and stores the result in RD. 

E. NOR RD, RS1, RS2 
Type of the instruction : R — type. 
Opcode : 0 0 0 1 RD RD RD RS 1 RS 1 RS 1 RS2 RS2 RS2 0 1 1. 

Where RD is destination register, RS1 and RS2 are source registers. 

Description : This is R — type 16 — bit logical NOR instruction which 

logically NORs the content of RS I and RS2 bit by bit and stores the result in RD. 

3. Shift and Rotate Instructions 
A. SLL RD, RS1, RS2 

Type of the instruction : S — type. 

Opcode : 0 0 0 1 RD RD RD RS 1 RS1 RS1 RS2 RS2 RS2 1 0 0. 

Where RD is destination register, RS1 and RS2 are source registers. 

Description : This is S — type 16 — bit logical shift instruction which shifts the 

content of RS 1 left by a value present in RS2 and stores the result in RD. The vacated 

positions on the right are filled with zeros. The bits coming out of MSB are lost. 

B. SRL RD, RS1, RS2 
Type. of the instruction : S — type. 

Opcode : 0 0 0 1 RD RD RD RS 1 RS1 RS1 RS2 RS2 RS2 1 0 1. 

Where RD is destination register, RS1 and RS2 are source registers. 

Description : This is S — type 16 — bit logical shift instruction which shifts the 
content of RS1 right by a value present in RS2 and stores the result in RD. The 

vacated positions on the left are filled with zeros. The bits coming out of LSB are lost: 

C. SRA RD, RS1, RS2 
Type of the instruction : S — type. 
Opcode : 0 00 1 RD RD RD RS 1 RS1 RS1 RS2 RS2 RS2 11 0. 

Where RD is destination register, RS1 and RS2 are source registers. 
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Description : This is S — type 16 — bit arithmetic shift instruction which shifts 
the content of RS1 right by a value present in RS2 and stores the result in RD. The 

vacated positions on the left are filled with the value of MSB of original data. The bits 

coming out of LSB are lost. 

D. ROR RD, RS1, RS2 
Type of the instruction : S — type. 

Opcode: 0 0 0 1 RD RD RD RS1 RS1 RS1 RS2 RS2 RS2 1 1 1. 
Where RD is destination. register, RS 1 and RS2 are source registers. 

Description : This is S — type 16 — bit rotate instruction which rotates the 

content of RS1 right by a value present in RS2 and stores the result in RD. The bits 

coming out of LSB are feed back from MSB in the vacated positions. 

E. SLLI RD, RS, D5 
Type of the instruction : SI — type. 

Opcode : 0 1 1 1 RD RD RD RS RS RS D5 D5 D5 D5 D5 0. 
Where RD is destination register, RS is source register, D5 is 5- bit 

immediate data. 

Description : This is SI — type 16 — bit logical shift instruction which shifts 

the content of RS left by a value equal to immediate data and stores the result in RD. 
The vacated positions on the right are filled with zeros. The bits coming out of MSB 

are lost. 

F. SRLI RD, RS, D5 
Type of the instruction : SI — type. 

Opcode : 0 1 1 1 RD RD RD RS RS RS D5 D5 D5 D5 D5 1. 

Where RD is destination register, RS is source register, D5 is 5 — bit 

immediate data. 

Description : This is SI — type 16 — bit logical shift instruction which shifts 

the content of RS right by a value equal to immediate data and stores the result in RD. 
The vacated positions on the left are filled with zeros. The bits coming out of LSB are 

lost. 

G. SRAI RD, RS, D5 
Type of the instruction : SI — type. 

Opcode : 1 00 0 RD RD RD RS RS RS D5 D5 D5 D5 D5 0. 
Where RD is destination register, RS is source register, D5 is 5 — bit 
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immediate data. 

Description : This is SI — type 16 — bit arithmetic shift instruction which shifts 

the content of RS right by a value equal to immediate data and stores the result in RD. 

The vacated positions on the left are filled with the value of MSB of original data. 

The bits coming out of LSB are lost. 

H. RORI RD, RS, 05 

Type of the instruction : SI — type. 

Opcode: 1 0 00 RD RD RD RS RS RS D5 D5 D5 D5 D5 1. 

Where RD is destination register, RS is source register, D5 is 5 — bit 

immediate data. 

Description : This is SI — type 16 — bit rotate instruction which rotates the 

content of RS right by a value equal to immediate data and stores the result in RD. 

The bits coming out of LSB are feed back from MSB in the vacated positions. 

4. Data Transfer Instructions 

A. MVIL RD, D8 

Type of the instruction : I — type. 

Opcode: 0100 RD RD RD D8D8D8D8D8D8D8D80. 

Where RD is destination register, D8 is 8 — bit immediate data. 
Description : This is I — type data transfer instruction which loads the lower 

byte of the destination register with 8 — bit immediate data. 

B.MVIHRD,D8 

Type of the instruction : I — type. 

Opcode: 0 1 0 0 RD RD RD D8 D8 D8 D8 D8 D8 D8 D8 1. 

Where RD is destination register, D8 is 8 — bit immediate data. 

Description : This is I — type data transfer instruction which loads the upper 
byte of the destination register with 8 — bit immediate data. 

C.INRD 

Type of the instruction : R — type. 
Opcode: 0100 RDRDRD XXXXXX 000. 

Where RD is destination register, X don't care. 

Description : This is R — type data transfer instruction which loads the 

destination register with 16— bit data available on input port. 
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D. OUT R 

Type of the instruction : R — type. 

Opcode: 0100 RRR XXXXXX 001. 
Where R is destination register, X don't care. 

Description : This is R — type data transfer instruction which sends the 

content of register over the 16— bit output port. 

E. LW RD, RS, D6 
Type of the instruction : RI — type. 

Opcode: 0 1 00 RD RD RD RS RS RS D6 D6 D6 D6 D6 D6. 
Where RD is destination register, RS is source register, D6 is 6 — bit 

immediate data. 

Description : This is RI — type data transfer instruction. This instruction loads 

the destination register with the data from memory location whose address is the 
addition of the contents of RS and 6 — bit immediate data. This is one of the 

instructions which access external memory. 

F. SW RD, RS, D6 
Type of the instruction : RI — type. 

Opcode: 0 1 00 RD RD RD RS RS RS D6 D6 D6 D6 D6 D6. 
Where RD is destination register, RS is source register, D6 is 6 — bit 

immediate data. 

Description : This is RI — type data transfer instruction. This instruction sends 

the content of destination register to external memory location whose address is the 

addition of the contents of RS and 6 — bit immediate data. This is the other instruction 

which accesses external memory. 

5. Branching Instructions 

A. BZ RD, RS 
Type of the instruction : R — type. 

Opcode : 0 0 1 0 RD RD RD RS RS RS X X X 0 1 0. 

Where RD is destination register, RS is source register, X don't care. 
Description : This is R — type conditional branch instruction. If the register 

RD contains zero value, the contents of RS are copied in program counter and the 
program execution switches to this new address. If RD doesn't contain zero value, 
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normal execution continues that is next sequential instruction will be executed. This is 

absolute branching instruction. 

B.BNZRD,RS 

Type of the instruction : R — type. 

Opcode : 0 0 1 0 RD RD RD RS RS RS X X X 0 1 1. 
Where RD is destination register, RS is source register, X don't care. 

Description : This is R — type conditional branch instruction. If the register 

RD contains non-zero value, the contents of RS are copied in program counter and the 
program execution switches to this new address. If RD contains zero value, normal 
execution continues that is next sequential instruction will be executed. This is 

absolute branching instruction. 

C. BZI RD, D8 
Type of the instruction : I — type. 

Opcode : 0 0 1 0 RD RD RD D8 D8 D8 D8 D8 D8 D8 D8 0. 
Where RD is destination register, D8 is 8 — bit immediate data. 

Description : This is I — type conditional branch instruction. If the register RD 

contains zero value, immediate data in the instruction is added to the current value of 

program counter and program execution switches to new relative address. If RD 
doesn't contain zero value, normal execution continues that is next sequential 

instruction will be executed. This is PC - relative branching instruction. 

D. BNZI RD, D8 
Type of the instruction : I — type. 

Opcode: 0010 RD RD RD D8D8D8D8D8D8D8D8 1. 
Where'RD is destination register, D8 is 8 — bit immediate data. 

Description : This is I — type conditional branch instruction. If the register RD 

contains non-zero value, immediate data in the instruction is added to the current 

value of program counter and program execution switches to new relative address. If 
RD contains zero value, normal execution continues that is next sequential instruction 

will be executed. This is PC - relative branching instruction.. 

20 



Chapter 3 	 Addressing Modes and Instruction Set for RISC Processor 

6. Interrupt Related Instructions 

A. EI D6 
Type of the instruction : I — type. 

Opcode : 0 0 1 0 D6 D6 D6 D6 D6 D6 1 0 0. 
Where D6 is 6 — bit immediate data. 

Description : This is I — type enable interrupt instruction. The RISC processor 

has six external interrupt lines. They can be enabled or disabled using this instruction. 

Each bit of D6 is for one of the interrupt line. 

D6 (0) — Interrupt line 0; 0— Disabled, 1 — Enabled. 

D6 (1) — Interrupt line 1; 0 — Disabled, 1 — Enabled. 

D6 (2) — Interrupt line 2; 0— Disabled, 1 — Enabled. 

D6 (3) — Interrupt line 3; 0— Disabled, 1 — Enabled. 

D6 (4) — Interrupt line 4; 0— Disabled, 1 — Enabled. 

D6 (5) — Interrupt line 5; 0 — Disabled, 1- Enabled. 

B. RETI 
Type of the instruction : R — type. 

Opcode : 0 0 1 1 XXXXXXXXX 010. 
Where X is don't care. 

Description : This is R — type return from interrupt instruction. When 

executed, it switches back the program execution to the address next to the address 

where interruption has occurred. This back link address is stored in internal temporary 

register while switching the execution to interrupt service routine. It is copied in 

program counter as part of execution of RETI instruction., 

7. Subroutine Related Instructions 
A. JAL RD, RS 

Type of the instruction : R — type. 

Opcode: 0011 RD RD RD RS RS RS XXX000. 
Where RD is destination register, RS is source register, X is don't care. 

Description : This is R — type jump and link instruction. When executed, it 
stores the current value of program counter in RD and switches the program execution 

to the location whose address is in RS. This is subroutine call instruction. The back 

link address is stored in register RD as part of instruction execution. 
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B. RJAL Ku 
Type of the instruction : R — type. 
Opcode: 0011 RD RD RD XXXXXX 001. 

Where RD is destination register and X is don't care. 
Description : This is R — type return from jump and link instruction. When 

executed, it copies the content of RD into program counter. This back link address in 
RD was stored as part of execution of jump and link instruction. This instruction is 
used at the end of subroutine. 

S. Other Instructions 
A. NOP 

Type of the instruction : R — type. 
Opcode: 0000 XXXXX.XXXX 000. 

Where X is don't care. 

Description : This is R — type no operation instruction. It does nothing. This 

instruction can be used to replace unnecessary instructions. 

B. HLT 
Type of the instruction : R — type. 
Opcode: 1101 XXXXXXXXX 000. 

Where X is don't care. 
Description : This instruction is used to stop the execution of the program. 
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Chapter 4 " 

PIPELINING AND HAZARDS 

To improve the execution speed of processor, instruction execution can be 

divided into different parts and parallel instruction execution can be done. Although 
each instruction individually takes equal time execution as in sequential execution, 
parallel execution improves the throughput of the processor. 

First section describes the concept of pipelining and the issues related with it. 
As a consequence of pipelining, some conflicts arise which are known as hazards. 
These hazards and their remedies are explained in the next section. 

4.1 Basic Concept of Pipelining 
Pipelining is an implementation technique whereby multiple instructions are 

overlapped in execution. The key idea behind pipelining is to divide the work into 

smaller pieces and use assembly line processing to complete the work. In the present 
design instruction execution has been divided in four stages. In pipeline terminology, 

each step is called stage because it has a dedicated piece of hardware to perform each 
step. Different step are completing different parts of different instructions in parallel. 

The stages are connected one to the next to form a pipe — instructions enter at one end, 
progress through the stages, and exit at the other end [2]. 

Pipelining substantially reduces the execution time by overlapping execution 
of several instructions. In sequential execution, for example, five instructions take 20 
clock ticks supposing that each instruction goes through four stages and each stage 
require one clock tick. On the other hand if same instructions go through pipelined 

execution, five instructions take only 8 clock ticks. This concept is explained in fig. 

3.1 and fig. 3.2. However pipeline requires hardware support [1]. 

The throughput of an instruction pipeline is determined by how often an 

instruction exits the pipeline. Because the pipe stages are hooked together, all the 
stages must be ready to proceed at the same time. The time required between moving 
an instruction one step down the pipeline is a machine cycle: Because all stages 
proceed at the same time, the length of the machine cycle is determined by the time 

required for the slowest pipe stage [4]. 
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Fig. 4.1 Sequential Execution 

Clock Cycle 

1 2 3 4 5 6 7 8 

Ii 	IF ID E Wl3 

12 	 IF ID EWE  

Instructions 	I3 	 IF ID E WI 

14 	 IF ID E) 

15 	 IF ID 

Fig. 4.2 Pipelined Executions 

The designer's goal is to balance the length of each pipeline stage. If the 
stages are perfectly balanced, then the time per instruction on the pipelined machine 

assuming ideal conditions is equal to 

Time per instruction on unpipelined machine 

Number of pipelined stages 

Under these conditions, the speedup from pipelining equals the number of 

pipelined stages. Usually, however, the stages will not be perfectly balanced; 

furthermore, pipeline does involve some overhead. Thus, the time per instruction on 
the pipelined machine will not have its minimum possible value, yet it can be close 

[2] 
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Pipelining yields a reduction in the average execution time per instruction. 
.Depending on what you consider as the base line, the reduction can be viewed as 
decreasing the number of clock cycles per instruction (CPI), as decreasing the clock 

ff 	cycle time, or as a combination. If the starting point is a machine that takes multiple 

clock cycles per instruction, then pipelining is usually viewed as reducing the CPI. 
This is the primary view we will take. If the starting point is a machine that takes on 
(long) clock cycle per instruction, then pipelining decreases the clock cycle time [2]. 

As said earlier, pipelining requires hardware support. For four stage 

instruction pipeline, we need three buffers. Each of these buffers holds only one 
value, the output produced by the previous stage. This is possible because pipeline 

' 	 follows just-in-time principle. Just-in-time arrival of input .causes problems because 

any delay in one stage can seriously affect the entire pipeline flow [1]. 

Instruction 	 Instruction 	 Instruction 
Fetch Buffer 	 Decode Buffer 	 Execution Buffer 

Fig. 4.3 Pipelining Requires Buffering 

The fact that the execution time of each instruction does not decrease puts 

limits on the practical depth of a pipeline. In addition to limitations arising from 

pipeline latency, limits arise from imbalance among the pipe stages and from 
pipelining overhead. Imbalance among the pipe stages reduces performance since the 

clock can run no faster than the time needed for the slowest pipeline stage. Pipeline 
overhead arises from the combination of pipeline register delay and clock skew. The 

pipeline registers or latches add setup time plus propagation delay to the clock cycle. 
Once the clock cycle is as small as the some of the clock skew and latch overhead, no 

further pipelining is useful since there is no time left in the cycle for useful work [5]. 

Due to imbalance, one of the stages takes more time for its work to complete. 

Some stages take variable amount of time for its work. For example, execution stage 
may require taking data from external memory which may be slow. This causes 
pipeline stalls. 
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Clock Cycle 

1 2 3 4 5 6 7 8 9 

I1 FF ID E 
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I3 	 IF ID E 

I4 	 IF 	ID E 

15 	 IF ID E W 

Instructions 

Fig. 4.4 Pipeline Stalls Due to Delay in Stage 

4.2 Implementation of Pipelining 
In the present design, execution of an instruction is divided into following four 

stages. 
❖ Stage 1-Instruction Fetch Stage. This stage is responsible for fetching 

the instructions from memory. With the help of prefetcher, it makes use of 
idle time to fetch instructions ahead of time and store it in instruction 

queue. 

❖ Stage 2-Instruction Decode Stage. This stage separates opcode part, 

function part and operand part of the instruction and sends it to control unit 

to generate the . necessary signals for units inside the processor for 

execution of an instruction. This stage also consists of registers. 

❖ Stage 3-Execution Stage. This stage consists of arithmetic logic unit, 

shifting unit necessary for carrying out operations on operand specified by 

instruction. 
❖ Stage 4/5-Memory/IO-Write Back Stage. This stage-  writes the result 

back in to the destination register or memory. This is final stage of 

instruction execution. 

4.3 Pipelining Hazards 
There are situations, called hazards that prevent the next instruction in the 

instruction stream from executing during its designated clock cycle. Hazards reduce 
the performance from the ideal speedup gained by pipelining. There are three classes 

of hazards: 
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1. Structural Hazards arise from resource conflicts when the hardware 

cannot support all possible combinations if instructions in simultaneous 
overlapped execution. 

2. Data Hazards arise when an instruction depends on the results of a 

previous instruction in a way that is exposed by the overlapping of 
instructions in the pipeline. 

3. Control Hazards arise from the pipelining of branches and other 
instructions that change the PC. 

Hazards in pipeline can make it necessary to stall the pipeline. They are more 

complex to handle. EIiminating a hazard often requires that some instructions in the 
pipeline be allowed to proceed while others are delayed [8]. 

4.3.1 Structural Hazards 
When a machine is pipelined, the overlapped execution of instructions 

requires pipelining of functional units and duplication of resources to allow all 
possible combinations of instructions in the pipeline. If some combinations of 
instructions can not be accommodated because of resource conflicts, the machine is 
said to have a structural hazards. For example, the instruction fetch stage under 

normal conditions will be accessing the memory on every clock cycle. When a load or 
store instructions is used, the memory/IO-write back stage tries to access the memory. 

Because of single memory architecture a conflict occurs [9]. There are two ways for 
dealing with such conflict. 

❖ Stalling. In this method instead of accessing memory by instruction fetch 
stage, the load/store instruction is allowed to use memory and the

•processor is simply stalled until the load/store instruction is finished. The 
problem with this method is that it can take a long time if there are 

multiple load/store instructions in a row. 

❖ Prefetching. Prefetching involves fetching instructions from memory 

ahead of time and storing them in a queue in a processor. In present design 

queue has been implemented that can store four instructions. In such case 

instruction fetch stage will receive instructions from prefetch queue and 
load/store instruction will be allowed to access memory. Prefetching 

method is used to handle structural hazards. 
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4.3.2 Data Hazards 

A major effect of pipelining is to change the relative timing of instructions by 

overlapping their execution. This introduces data and control hazards. Data 
dependencies can deteriorate performance of a pipeline by causing stall. Data hazards 
occur when an instruction attempts to use a register whose value depends on the result 
of previous instruction that have not yet finished. For example consider the following 
case. 

ADD R1, R2, R3 	IF ID E 

SUB R4, R1, R5 	IF ID EXJ W]  

Fig. 4.5 Example of a Data Hazard 

In this case result produced by ADD instruction is. used as source for SUB 

instruction. Hence until result of first instruction is not written back in destination 

register, next instruction can not proceed and a stall will be introduced [7]. 

ADD R1, R2, R3 IF I ID  I EXf 	

1 
 

LI SUBR4,R1,R5 	IF ID E W 

Fig. 4.6 A Stall Caused By Data Hazards 

There are two techniques to handle data hazards. 
❖ Register Forwarding. This technique, also called bypassing, works if the 

two instructions involved in the dependency are in the pipeline. The basic 
idea is to provide the output result as soon as it is available in the datapath. 
The forwarding method is best described through the use of an example. 

Fig. 4.7 shows two instructions in the pipeline, it can be observed that the 

SUB instruction needs the result of the ADD instruction in the SUB's EX 

stage but the ADD instruction does not write the result until the ADD's 
WB stage. However it can also be seen that the result for the ADD 

instruction is actually computed before the SUB instruction needs it so the 

28 



Chapter 4 	 Pipelining and Hazards 

result is forwarded from EX stage of ADD instruction to the EX stage of 

the SUB instruction [1]. 

ADD RI, R2, R3 

SUB R4, R1, R5 

Fig. 4.7 Register Forwarding 

❖ Register Interlocking. This is a general technique to solve the correctness 
problem associated with data dependencies. In this method, a bit is 

associated with each register to specify whether the contents are correct. If 
the bit is 0, the contents of the register can be used. Instruction should not 

read contents of register when this interlocking bit is 1, as the register is 
locked by another instruction. Fig. 4.8 shows how the register interlocking 
works for ADD SUB instructions given above. ADD instruction locks R1 

until result is not written in it. Hence SUB instruction can not use it as far 

as it is locked by ADD instruction [1]. 

RI is Locked 

ADD R1, R2, R3 IF ID E 

SUB R4, R1, R5 	IF 	ID 	EXI  

Fig. 4.8 Register Interlocking 

4.3.3 Control Hazards 
A control hazard occurs whenever there is a change in the normal execution 

flow of the program. Events such as branches, interrupts, executions and return from 
interrupts. A hazard occurs because branches, interrupts etc are not caught until the 
instruction is decoded in the second stage, by the time it is decoded the following 

instruction is already entered into the pipeline and left unchecked an unwanted 

instruction would remain in the pipeline. There is really only one solution to this type 

of hazard. That is, to implement a hardware stall. The hardware stall simply flushes 

the offending instruction from the pipeline [2]. 
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Chapter 5 

RISC PROCESSOR ARCHITECTURE 

This chapter describes the architecture of developed 16-bit RISC processor. It 

is true 16-bit RISC processor as the address bus is 16-bit in length, data bus is 16-bit 
in length, all registers are 16-bit wide and all operations are carried out on 16-bit data. 
The first section gives the overview of RISC processor architecture. Second section 
gives the details of pipelined stages of processor. Then next sections describe control 

unit, branch forwarding unit, execution forwarding unit, prefetch unit, hazard 
detection unit and interrupt and exception unit in detail. 

5.1 Overview of RISC Processor Architecture 
To improve the throughput of processor, the pipelined architecture is used. 

Execution of the instruction is divided into four stages viz. 

1. Stage 1- Instruction Fetch Stage. 

2. Stage2- Instruction Decode Stage. 

3. Stage3- Instruction Execution Stage. 

4. Stage4- Memory/JO-Write Back Stage. 
Every instruction proceeds to the next stage in each clock cycle and new 

instruction enters the instruction fetch stage. Each individual instruction takes four 

clock cycles for complete execution after entering the instruction fetch stage provided 
that no stalls occur. 

Control unit generate necessary signal at appropriate time for all the stages for 
instruction execution. Branch forwarding unit flushes the instructions behind 

branching instruction in the pipeline if branching is going to occur. Execution 
forwarding unit takes care of data hazard by forwarding the result of previous 

instruction to execution stage if data hazard occurs. Prefetching unit prefetches 
instruction from memory when processor is not utilizing external memory. It stores 

the prefetched instructions in prefetch queue, which is four words deep. Hazard 
detection unit is used to detect whether conflicts are going to occur and generate the 

necessary signals for other units [10]. Interrupt and exception unit handles the 
external interrupts and exceptions generated internal to the processor. The fig.5.1 

shows the architecture of RISC processor implemented in the design. 
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Fig. 5.1 RISC Processor Block Diagram 

5.2 Pipelined Stages of RISC Processor 
Four stages of the RISC processor pipeline are described below. 

5.2.1 Stagel-Instruction Fetch Stage 
This stage consists of program counter, program counter incrementer and 

selector, which select the new value of program counter. This unit is responsible for 
obtaining the instruction from memory through prefetcher. The block diagram of 

instruction fetch stage is shown in fig. 5.2. 
The various components of this stage and their functions are described in the 

following sections. 

❖ Program Counter Selector. This selector is used to decide the execution 
sequence of program. Under normal sequential execution, the new 
program counter value is the previous program counter value incremented 
by one. For branch instruction the new program counter value will be the 

branch target address. RISC processor supports vectored hardware 
interrupts and RESET. The interrupt and their vectored address are given 
in table 5.1. Return from interrupt is the address next to location where 
interrupt had occurred. Return from subroutine is the address next to JAL 
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instruction. Control unit generates the select input for program counter 
selector. 

Flush Inpul 

Instruction 
(From Prefetch 

Branch PC 

Return Fron 
Interrupt PC 

Return From 
Subroutine P 

Incremented PC 

Instructions 

Current PC Value 
(to prefetcher) 

Fig. 5.2 Stagel-Instructions Fetch Stage 

Select Input New PC Value Remark 
0000B Incremented Old PC. Sequential Executions. 

0001B Branch Target Address. Branch Instruction Execution. 

0010B Address Next to JAL Instruction. Return From Subroutine. 

001 1B Address Next to Interruption. Return From Interrupt Routine. 
0100B FFFFH Overflow. 

0101B FFFOH Undefined Instruction. 
0110B 0008H Interrupt 0. 

0111B 000AH Interrupt 1. 

l 000B 000CH Interrupt 2. 
1001B 000EH Interrupt 3. 
1010B 0010H Interrupt 4. 
1011B FFF8H Interrupt 5. 
Others 0012H RESET. 

Table 5.1 New PC Value Selections 
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❖ Program Counter. It is the register which holds the address of instruction 
which is to be executed. The content of it are send to prefetcher for 

fetching the instruction from memory. 
❖ Program Counter Incrementer. This incrementer increments the 

program counter by one for normal sequential execution of the program. 

❖ Instruction Fetch Stage Register. Every stage in the pipeline has its own 
buffer. This buffer is used to store the output of respective stage. 
Instruction fetch stage register stores the instruction coming from 
prefetcher and the incremented program counter value and supply it to the 

next stage. Flush input is used to flush this register for non sequential 
execution to handle the control hazards. 

5.2.2 Stage2-Instruction Decode Stage 
This stage consists of register file, sign extension unit; branch unit, 

multiplexers and instruction decode stage register. The block diagram of this stage is 

shown in f g.5.3 . 

•+• Register File. Register file consist of 8 registers. Each register is of 16-bit 
in length. They are designated as R0, R1... R7. These registers are decoded 

in the instruction as shown in following table. The source register codes 
are given as input to this file and it gives content of the respective registers 
as output. The write-back register code and write-back data are the other 
inputs from the write-back stage to this file. If write enable input is 

enabled, then data is written into the respective register. If write-back 
register and source register are same data is written provided that write 

enable input is high as well as same data is output as content of that 
register. 

❖ Sign Extension Unit. All the operations carried out inside the processor 
are on 16-bit data. Hence 5-bit, 6-bit and 8-bit immediate data decoded in 

the instruction is sign extended to 16-bit by this unit. The output of this 

unit is used in all types of instructions having immediate data as one of the 
operand and in relative branch instructions. 

❖ Branch Unit. This unit is used to calculate the branch target address. It is 
used to differentiate between relative branching and register indirect 
branching. This function is explained in the following table. 
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❖ Multiplexers. They are used to select the source registers for instruction. 

Some instructions have one source register and others have two source 
registers. Appropriate selection is done by set of multiplexers. 

❖ Instruction Decode Stage Register. This is used to store the output 

produced by instruction decode stage. It stores mainly content of source 
register 1 and source register 2, sign extended immediate data. 

elk 

Write Back Result From 
Write Back Stage 	 Content of Source 

er 
Content of Source 	I 	

Regis1 
 

Operand Part of 	 Source Register 	 Instruction 	Content of Source 

Instruction
Decode Stage 	Regis er 2 

p 	 Register 	Content of Source 	Register 
Multi lexer Source Register 	File 	Re ister 2 	 g  

Read Register Selecto 
Sign Extended 
Immediat ata 

Write Back Register 

Write Enable 

Sign Extended 
Immediate Data Part of Instruction 	 Sign 	Immediate Dat 

Current PC Value 	

Extension 
Unit 

Branch 
Unit 

Branch Register Content 

Branch Type Select 

Fig. 5.3 Stage2-Instruction Decode Stage 

Branch 

Register Code 

RO 000B 

R1 001B 

R2 O 10B 

R3 011B 

R4 100B 

R5 101B 

R6 110B 

R7 111B 

Table 5.2 Register Codes to be Used in Instruction 
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Branch Type Target Branch Address Branch Type 
Select Input 

OB Contents of register in Register Indirect 
branch instruction. Branching. 

1B Current PC + sign Relative Branching. 
extended offset. 

Table 5.3 Branch Type Differentiation 

5.2.3 Stgage3-Instruction Execution Stage 
This stage carries out the operation specified by the instruction on the 

operands and produces the required result. This stage consist of arithmetic logic unit 
(ALU), instruction execution stage register and multiplexer. 

Arithmetic logic unit carries out arithmetical operations like addition and 

subtraction, logical operations like AND, OR, XOR, NOR and NOT, arithmetical and 
logical shifts. 

Decode Stage PC 

Content of Source 
Register 1 

Content of Source 
Register 2 

Extended 	Arithmetic Logic 
Immediate D to 	Unit (ALU) 

Operation 

PC 

JAL Control 

Multiplexer 

Execution 
Stage Resu 

Instruction 
Execution Stag 

Register 	Execution 
Stage PC 

Fig. 5.4 Stage3-Instruction Execution Stage 

❖ Arithmetic Logic Unit. This unit is composed of basic ALU, shift unit, 
move immediate unit, ALU multiplexer and selector. The block diagram of 
arithmetic logic unit is shown in the fig. 5.5. 
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> Basic ALU. This unit does the arithmetic operations like addition and 
subtraction, logical operations like AND, OR, NAND, NOR, XOR and 
NOT. In such case both source operand may be registers or one is 
register and other is immediate data. In case of arithmetical operations, 

overflow flag is appropriately set. 

➢ Shift Unit. This unit shifts the data present in source1 by number of 

bits equal to contents of source2. Shift operation may be arithmetical or 
logical and it may be in right or left direction. Source2 may be register 
or an immediate value [9]. Shift operation specifies the direction as well 
as type of shift as in table 5.4. Shift by 8, shift by 4, shift by 2 and shift 

by 1 unit are connected in series and does the specified operation only if 
they are enabled. Otherwise they pass the input data as it is at the 

output. 

> Move Immediate Unit. This unit loads the upper or lower byte of the 

specified register with 8-bit immediate data keeping the other byte as it 

is. 
> ALU Multiplexer. This is used to select between basic ALU result, 

shift unit result and move immediate unit result as final result of 

arithmetic logic unit. 

> Selector. This is used to select the source2 from either source register 

or immediate data. 

Operation Input Type and Direction of Shift 

OOB Logical Shift Left. 

01B Logical Shift Right. 

10B Arithmetic Shift Right. 

11B Arithmetic Shift Left. 

Table 5.4 Type and Direction of Shift Combinations 

❖ Instruction Execution Stage Register. This register is used to store the 

result of instruction execution stage. It mainly stores the result of 

arithmetic logic unit and instruction execution stage PC value [.11]. The 

output from this stage is fed to stage4-Memory/IO-write back stage. 
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Source Regl 

Operation 

16-Bit 
Immediate Da 

Selector 
Source Reg2 

Select 

Basic ALU 

ALU Result 

Final 

Shift 
Immediate 	Selector 

Data 

Shift Result 
Shift Unit 

ALU 
Multiplexer 

Overflow 

Move 

Immediate MVI Result Unit 
Move Immediate Data 

Result Select Input 

. Fig. 5.5 Arithmetic Logic Unit Block Diagram 

Data to be Shifted 	 Shift by 	 Shift by 	 Shift by 
8 Unit 	 4 Unit 	 2 Unit 

Shift 
Shift by 
I Unit 

Shift Enable 

(3)  Amount of Sl 'ft  
Shift Enable (2) 

Shift 	Shift Enable (1) 
Control 

Unit 	Shift Enable (o) Operation 

Shift Operation 

Fig. 5.6 Block Diagram of Shift Unit 

❖ Multiplexer. It is used to select between arithmetic logic unit result and 

instruction decode stage PCvalue required for JAL instruction as final 

result. 

5.2.4 Stage4-Memory/IO-Write Back Stage 
This stage consists of output port register, memory/JO-write back pipeline 

register and result selector. The block diagram of this stage is shown in fig. 5.7. 
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❖ Output Port Register. This register comes into action for OUT 

instruction. The content of the register specified in the instruction is placed 

on output port. 
❖ Memory/lO-Write Back Pipeline Register. This register stores the data 

coming from input port, the data coming from memory for store 
instruction and the result produced by stage3. This register also store code 
for write back register. 

❖ Result Selector. Based on the instruction, this selector assigns one of the 

data from memory/JO-write back pipeline register as final write back data. 

Output Port Enable 

Result 	 Output Port I 	 Output Port 
Register 

elk 

Write Back 

Read Result 
Memory/TO- 

Read Data 	I Write Back 
Pipeline Register In ut Result 

Input Port Data Result 	Write Back 
Selector 

Write Back 

Write Back Data Selection 

Fig. 5.7 Stage4-Memory/IO-Write Back Stage 

5.3 Control Unit 

This unit receives its input from stage  and produce necessary control signals 
for all units of the processor for execution of an instruction. It also maintains the 

necessary sequence in generating control signals for stages of the pipeline. Hardwired 

control is used in the control unit [13]. This unit is made up of basic control unit, 

decode control register, execution control register and write back control register. 

Block diagram of it is shown in fig. 5.8. 
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elk 

Stage4 Control 

Function 	 I Stage3 Control 
Signals 

Zero 	 Decode Cor 
Basic Control 	 I 	Register 

Unit 	I Stage2 Control 

Stage4 
Control Stage4 Control Signals Control Signals for 

Signals 	Write Back Sta e4 
Execution 	 Control 

Stage3 	Control 	 Register 
Control 	Register 
Signals _ 	Control Signals for Stage3_ 

Control Signals for Stage2 

Control Signals for Stage 

Fig. 5.8 Block Diagram of Control Unit 
• Basic Control Unit. This unit generates all control signals for processor 

based on combinations of opcode, function and the value of zero line 
(Only Effective for Conditional Branch Instruction). These controls signals 

are passed out of control unit in sequence using three registers in the 
control unit. Some control signals from basic unit are used directly for 
stagel of pipeline. Others are passed to decode control register. 

❖ Decode Control Register. After receiving control signals from basic 
control unit, this register sends them on the next clock pulse. Some of 
them are used directly to control stage2 of pipeline. Others are passed to 

execution control register. 
❖ Execution Control Register. Control signals received from decode 

control register are passed out on the next clock pulse. Some of them are 

used for controlling the stage3 and remaining is passed to write back 
control register. 

❖ Write Back Control Register. Control signals received from execution 

control register are passed out on the next clock pulse to control stage4 of 
pipeline. 

Control signals necessary for other unit of the processor are taken out from the 
above combination at appropriate time. 

5.4 Branch Forwarding Unit 
This unit is used to decide the branch target address and to create the condition 

necessary for conditional branch instruction. It also tries to resolve the conflict arising 
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in pipeline due to branching [12]. It consists of branch forwarding detection unit, zero  
detector and selectors. 

❖ Branch Forwarding Detection Unit. This unit decides the condition data 
and branch target address component for conditional branch instruction 

execution. It may be possible that the destination of previous instruction 
may be the condition data source or target address component source. In 
such case this unit selects the appropriate values for these two components. 

❖ Selectors. One selector is used for selecting the condition data component 
and the other is used for selecting branch target address component from 
the source specified in instruction, execution stage result and write back 

stage result. 
❖ Zero Detector. This unit checks whether the data at its input is zero in 

value or not. If zero the output line is set high otherwise low. This is used 
in instructions like branch on zero, branch on not zero etc. 

Condition 	 Zero 
Execution Stage 	 Data 	 Indicator 

Selector 	 Zero Detector 
Write Back Stage Result 

EX 

WB Stage Condition Selector 
EX Write 	Branch 

WB Write Bak 	Forwarding 
Detection 	Branch Target Address 

Snnre1n 	Unit 

Source2 Reg 

Target Address Component 
Selector 

Sourcel 

Fig. 5.9 Branch Forwarding Unit Block Diagram 

5.5 Execution Forwarding Unit 
This unit is used to eliminate the resource conflicts occurring in pipelining. 

There are certain conditions that occur in the pipeline cause resource conflicts. This 
unit consists of execution stage forwarding detection unit and selectors. 
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❖ Execution Stage Forwarding Detection Unit. This unit creates the select 
inputs for two selectors present in this stage. If the source register of 
current instruction is destination of previous instruction then the source for 
current instruction is not valid until the result of previous instruction is 

written back. This requires stalls [1]. Other method is to forward the 
execution stage result of previous instruction directly as the source for 
current instruction. This method is used here. 

❖ Selectors. One selector is used for selection of source1 and other is used 
for selection of source2 from the source specified in the instruction, 
execution stage result and write back stage result. The select input for 
these selectors is generated by execution stage forwarding detection unit 

based on various conditions. 

Source2 

Execution Stage Result 
	 Forwarding Unit 

Selector 
Write Back Stage Result 

EX Stage Write 

WB Stage Write Source2 Selector 
EX Write Branch 

WB Write Back Forwarding 
Detection Sourcel Selector 

Unit 

Source2 

Forwarding Unit 
Selector 

Fig. 5.10 Execution Forwarding Unit Block Diagram 

5.6 Hazard Detection Unit 

This unit takes care of different hazards occurring in the pipeline of processor. 
Based on various conditions of opcode, function, source register and control signals 

generated by control unit, it produces three control signals. One is used to decide 
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whether program counter is to be updated or not and thus take the decision on whether 
to initiate stalls or not. For handling the control hazards it is necessary to flush the 
pipeline. Remaining two control signals from this unit are used for this purpose. One 
is used to flush instruction fetch stage register and the other is used to flush 
instruction decode stage register [2]. 

5.7 Interrupt and Exception Unit 
This unit is responsible for handling hardware interrupts and exceptions. This 

processor supports six hardware interrupts, one RESET and overflow exception. 

Fig. 5.11 Interrupt and Exception Unit Block Diagram 

It consists of interrupt and exception control unit, return from interrupt 
register, acknowledgement register, enable interrupt register and TRAP register. 
Block diagram of interrupt and exception unit is shown in fig. 5.11. 

❖ Interrupt and Exception Control Unit. It checks for arithmetic overflow, 
undefined instructions or external IO devices to make a request for 
processing their service routine. If this unit is enabled, each line is sampled 
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in sequence of RESET, overflow, undefined and then hardware lines from 
interrupt5 to interruptO. The first line to be true is serviced. The 
appropriate stages of pipeline are flushed and the unit is disabled. If an 
external IO device on interrupt lines was serviced;  and acknowledgement 
is sent out and the current program counter value is stored via TRAP 
register. 

❖ Return from Interrupt Register. When interrupt or exception service 
routine is being processed, unit is disabled and when return from interrupt 
or exception is executed unit is again enabled by this register. 

❖ Acknowledgement Register. It is used to hold value of the 
acknowledgement signals when an interrupt is being processed. When 

clock goes high then whatever interrupt is being processed is set in the 
register. The acknowledgement signals are then sent out for device being 

serviced. 

+ Enable Interrupt Register. Hardware interrupts can be enabled or 

disabled using EI instruction. The data part of EI instruction is used for 
this purpose. The following table shows the details for interrupts and 
exception. The priority level is in descending order from top to bottom. 

Interrupt/ 
Exception 

Type Data Part of EI 
Instruction for Enabling 

Priority 
Level 

RESET Hardware, vectored Can not be disabled 0-highest 

Overflow Exception, vectored Can not be disabled 1 
Undefined Exception, vectored Can not be disabled 2 
Interrupt5 Hardware, vectored 1 0 0 0 0 0 3 
Interrupt4 Hardware, vectored 0 1 0 0 0 0 4 
Interrupt3 Hardware, vectored 0 0 1 0 0 0 5 
Interrupt2 Hardware, vectored 0 0 0 1 0 0 6 
Interrupt) Hardware, vectored 0 0 0 0 1 0 7 
InterruptO Hardware, vectored 0 0 0 0 0 1 8 

fable 5.5 Interrupts and Exceptions 
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❖ TRAP Register. It consists of correct PC test unit and PC TRAP register. 

Block diagram of it is shown in fig. 5.12. 
➢ Correct PC Test Unit. It tests the program counter when an interrupt is 

being serviced. It is used in case a branch instruction has been issued 
before the interrupt occurred. This entity picks the correct program 
counter value to be trapped. 

➢ PC TRAP Register. It is used to store the correct program counter 
value from the overflow, undefined instruction and the user interrupt. 

IF Stage PC 

Correct PC I 
Test Unit 	Return Address for ID Stage PC 	 Hardware Interruvt 

c 	 PC TRAP Return from Interrupt 

Register 
EX Stage PC 

TRAP PC Select 

Fig. 5.12 TRAP Register BIock Diagram 

5.8 Prefetching Unit 

When execution unit is not requesting any data from external memory or IO 

device, prefetcher unit brings the next sequential instructions from memory and store 

it in the prefetch buffer. This unit supplies the instructions to instruction fetch unit. It 

consists of prefetch buffer unit, prefetching control unit and clock divider [3]. The 

block diagram of prefetching unit is shown in fig. 5.13. 

+:+ Prefetch Buffer Unit. This unit is made up of prefetch buffer and 

Hit/Miss detection unit. Block diagram of it is shown in fig. 5.14. 

> Prefetch Buffer. It is used to store the prefetched instructions from 

memory. It can store four instructions along with the address from 

where the particular instruction is fetched and a bit indicating the 

validity of instruction. It works like small cache memory. 
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Fig. 5.13 Prefetching Unit Block Diagram 

> Hit/Miss Detection Unit. It checks whether read address has a Hit or 

Miss in the prefetch buffer. It does this by comparing the upper 14 bits 
of read address along with the tag field of instruction stored in prefetch 

buffer. If the valid bit is low then instruction is not valid and Miss 

Output from this unit is. set high. If valid bit of instruction is high and 
14 bits of read address match with tag field then Miss is set low which 

indicate that instruction will be directly supplied by the prefetch unit. 

Otherwise Miss is high and instruction has to be taken from external 
memory. 

❖ Prefetching Control Unit. Based on the read address received from the 
instruction fetch stage, the address from which last instruction is 

prefetched from external memory, the Hit or Miss in prefetch buffer and 
memory control line, this unit generate the address from which the 
instruction is to be fetched and also decides whether it is to be written in 
prefetch buffer. 

+ Clock Divider. Some components in the system may be slow and require 

slower clock. Clock divider is used to generate such slower clock signal. 
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Fig. 5.14 Prefetch Buffer Unit Block Diagram 
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Chapter 6 

DESIGN AND IMPLEMENTATION OF RISC 
PROCESSOR ON FPGA 

VHDL is a language for describing digital electronics system which is used as 
design tool in this dissertation. Hierarchical approach has been used for designing the 
RISC processor. After designing the RISC processor and simulating the result, an 
attempt has been made to implement it on Spartan-II FPGA. 

This chapter begins with brief introduction of VHDL language. Next to it 
basic programming technique are explained. Then emphasis is given on some 
terminologies in VHDL. Some basics on FPGA are given next. Chapter ends with 

data on Spartan-II FPGA. 

6.1 VHDL 

VHDL is an acronym which stands for VHSIC (Very High Speed Integrated 
Circuits) Hardware Description Language. VHDL is designed to fill a number of 
needs in the design process. First, it allows description of the structure of a system, 

that is, how it is decomposed into subsystems and how those subsystems are 
interconnected. Second, it allows the specification of the function of a system using 

familiar programming language forms. Third, as a result, it allows the design of a 

system to be simulated before being manufactured, so that designers can quickly 

compare alternatives and test for correctness without the delay and expense of 
hardware prototyping. Fourth, it allows the detailed structure of a design to be 

synthesized from a more abstract specification, allowing designers to concentrate on 
more strategic design decisions and reducing time to market [14]. 

VHDL is being used for documentation, verification and synthesis of large 

digital designs. This is actually one of the key features of VHDL, since the same 
VHDL code can theoretically achieve all three of these goals, thus saving a lot of 
effort. In addition to being used for each of these purposes, VHDL can be used to take 

three different approaches to describing hardware. These three different approaches 
are the structural, data flow and behavioral methods of hardware description. Most of 

the time a mixture of the three methods is employed. The following sections introduce 

you to the language by examining its use for each of these three methodologies. [15]. 
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VHDL was established as the IEEE 1076 standard in 1087. In 1993, the IEEE 
1076 standard was updated and an additional standard, IEEE 1164 was adopted. In 
1996, IEEE 1076.3 became the VHDL synthesis standard [15]. 

6.2 VHDL Programming Techniques 
Various methods can be used to write model for digital circuit using VHDL. 

Circuit in hand can be modeled using its functional description known as behavioral 
programming, by describing the system with the help of its component known as 
structural programming or by mixture of these two known as mixed mode 
programming [14]. 

6.2.1 Behavioral Programming 
In VHDL, a description of the internal implementation of an entity is called an 

architecture body of the entity. There may be a number of different architecture 
bodies of the one interface to an entity, corresponding to alternative implementations 

that perform the same function. We can write a behavioral architecture body of an 

entity, which describes the function . in an abstract way. Such an architecture body 
includes only process statements, which are collections of action to be executed in 
sequence. These actions are called sequential statements and are much like the kinds 

of statements we see in a conventional programming language. The types of actions 

that can be performed include evaluating expressions, assigning values to variables, 

conditional execution, repeated execution and subprogram calls. In addition, there is a 
sequential statement that is unique to hardware modeling languages, the signal 

assignment statement. This is similar to variable assignment, except that is causes the 

value on a signal to be updated at some future time [14]. 

6.2.2 Structural Programming 
An alternative way of describing the implementation of an entity is to specify 

how it is composed of subsystems. We can give a structural description of the entity's 
implementation. An architecture body that is composed only of interconnected 

subsystems is called a structural architecture body. If we are to describe this in 
VHDL, we will need entity declarations and architecture bodies for the subsystems. 

Within the architecture body the ports of the entity are also treated as signals. In the 
second part of the architecture body, a number of component instances are created. 

Each component instance is a copy of the entity representing the subsystem, using the 
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corresponding basic architecture body. The port map specifies the connection of the 
ports of each component instance to signals within the enclosing architecture body 
[14]. 

6.2.3 Mixed Mode Programming 
Models need not be purely structural or purely behavioral. Often it is useful to 

specify a model with some parts composed of interconnected component instances 
and other parts described using processes. We use signals as the means of joining 
component instances and processes. A signal can be associated with a port of a 
component instance and can also be assigned to or read in a process. 

We can write such a hybrid model by including both component instance and 
process statements in the body of an architecture. These statements are collectively 
called concurrent statements, since the corresponding processes all . execute 

concurrently when the model is simulated [14]. 

6.3 Terminologies in VHDL 
VHDL is a worldwide standard for the description and modeling of digital 

hardware. VHDL gives the designer many different ways to describe hardware. The 

language offers: familiar programming tools for complex and simple problems, 
sequential and concurrent modes of execution to meet a large variety of design needs, 

package and libraries to support design management and component reuse [16]. 
VHDL has ample features appropriate for describing the behavior of electronic 

components ranging from simple logic gates to complete Microprocessors, High 

Performance Digital Signal Processor and custom chips. Features of VHDL allow 

timing aspects of circuit behavior (such as rise and fall times of signals, delays 
through gates, functional operation) to be precisely described [18]. 

6.3.1 Entity 
This is basic unit of description which gives the input and output ports of the 

digital circuit to be modeled and their types. For example, if entity with name ABC, X 

and Y as input ports of type bit, M and N are output ports of type bit will be expressed 
in VHDL as. 

Entity ABC is 

Port (X: in std_logic; 

Y: in std logic; 
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M: out std logic; 
N: out std logic); 

End entity ABC; 

6.3.2 Packages 
Packages are intended to hold commonly used declarations such as constants, 

type declarations and global subprograms. Packages can be included within the same 
source file as other design units (such as entities and architectures) or may be placed 
in a separate source file and compiled into a named library. This latter method is 
useful in using the contents of a package throughout a large design or in multiple 
projects. The IEEE 1164 standard provides a standard package named std_logic_1 164 
that includes declarations for the type's std logic, std_ulogic, std_logic_vector and 

std ulogic_vector, as well as many useful functions related to those data types [17]. 

6.3.3 Design Libraries 
A design library is an implementation-dependent storage facility for 

previously analyzed design units. This results in many different implementations in 

synthesis and simulation tools. In general, however, design libraries are used to 

collect commonly used design units (typically packages and package bodies) into 
uniquely-named areas that can be referenced from multiple source files in your design 

[15]. 

6.3.4 Components 
Components are used to connect multiple VHDL design units 

(entity/architecture pairs) together to form a larger, hierarchical design. Using 

hierarchy can dramatically simplify the design description and can make it much 
easier to re-use portions of the design in other projects. Components are also useful 

while making the use of third-party design units, such as simulation models for 
standard parts, or synthesizable core models obtained from a company specializing in 

such models [16]. 

6.3.5 Configurations 
Configurations are features of VHDL that allow large, complex design 

descriptions to be managed during simulation. (Configurations are not generally 

supported in synthesis). One example of how to use configurations is to construct two 
versions of a system-level design, one of which makes use of high-level behavioral 
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descriptions of the system components, while a second version substitutes in a post- 
synthesis timing model of one or more components. 	 _ 

For large projects involving many engineers and many design revisions, 

configurations can be used to manage versions and specify how a design is to be 
configured for system simulation, detailed timing simulation and synthesis. Because 
simulation tools allow configurations to be modified and recompiled without the need 
to recompile other design units, it is easy to construct alternate configurations of a 
design very quickly without recompiling the entire design [17]. 

6.4 FPGA 
A field programmable gate array (FPGA) is an inexpensive hardware 

component, which allows the user to program its functionality quickly and 

inexpensively. This allows for cheaper prototyping and shorter time to-market of 

hardware designs. FPGAs have a lower gate density than full custom (customized 
VLSI chips) and semi custom (mask programmed gate arrays) design methodologies 

FPGAs were first introduced in the mid-1980s to replace multi-chip glue logic circuits 

with a single reconfigurable solution [18]. FPGAs have far outgrown their sole use as 
a replacement for simple glue logic circuits. Presently, FPGA applications include 
signal and image processing, graphic accelerators, military target 

correlation/recognition, cryptograph, reconfigurable computing, and on-chip 
coprocessors. FPGAs are utilized in four major design 'areas: rapid prototyping 

emulation, pre-production and full-production [13]. FPGAs are the direct result of the 
convergence of two distinct technologies: Programmable Logic Devices (PLDs) and 

Application Specific Integrated Circuits (ASICs) [18]. A simple PLD consists of 
arrays of AND and OR gates that can be used to create basic circuit designs. ASICs 

are custom-made chips generally used in high volume applications because non-
recurring engineering costs (NREs) are much higher than in an FPGA design cycle. 

FPGAs are sized from thousand of gates to tens-of-million gates and are available in a 

variety of sizes with different packaging, internal logic blocks and process 
technologies [18]. 

Internal FPGA architectures are commonly constructed using a symmetric tile 
structure containing a network of switchboxes, logic blocks, wire channels and input-

output blocks. A switchbox (SB) is a location in the FPGA fabric that provides a 
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method to connect internal wires together. The switchbox allows horizontal wire 
segments to switch to vertical wires. The size and contents within a logic block vary 
greatly depending on the manufacture and target market. For example, FPGAs 
targeted towards cost-effective solution typically contain simpler logic blocks than an 

FPGA targeted for high-performance applications. Although the contents within logic 

blocks can vary for different architectures, there are two basic building blocks found 
in a logic block: memory elements and function generators. Memory elements provide 
designers with the ability to temporarily store information until desired conditions are 

met. Function generators can be configured to produce any function up to the number 
of inputs into the function generator. Depending on the architecture, some function 

generators can operate in different modes such as random access memory (RAM), 
read only memory (ROM), or more complex modes like shift registers. FPGAs are 

configured through a bitstream that loaded into the device. A bitstream is a file 

created by the FPGA manufacturer that configures the switchboxes, logic blocks and 

other internal FPGA logic [19]. 
FPGAs have redefined the boundaries if digital electronics allowing designers 

to build systems piecewise. Multiple designers can rapidly test and verify the 
functionality of each individual piece of a system to ensure proper functionality prior 
to merging the entire system together. With increasing interest in reconfigurable 

computing, FPGAs are recognized as the most viable, cost effective solution. Whether 

a design is statically or dynamically reconfigurable, FPGAs provide rapid 

programmability and a short time to market design cycle. Many companies have 
marketed FPGAs, the major companies being Xilinx, Actel and Altera. 

Reprogrammable FPGAs use EPROM, EEPROM or static RAM technology. Xilinx 

FPGAs, which use static RAM technology, are the FPGAs used in this thesis [18]. 

6.5 Terminology in FPGA 
Common terminology used in FPGA is explained with the help of specific 

FPGA device in this section. For this purpose, the Spartan-II FPGA used to 

implement 16-bit RISC processor is used. First we will explain some common 

features of FPGA and then explain the terminologies with respect to Spartan-II 
FPGA. 
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The Spartan-II 2.5V Field-Programmable Gate Array family gives users high 
performance, abundant logic resources, and a rich feature set, all at an exceptionally 

low price. The six-member family offers densities ranging from 15,000 to 200,000 
system gates. System performance is supported up to 200 MHz. Spartan-II devices 
deliver more gates, UOs, and features per dollar than other FPGAs by combining 
advanced process technology with a streamlined Virtex-based architecture. Features 
include block RAM (to 56K bits), distributed RAM (to 75,264 bits), 16 selectable 1/0 
standards, and four• Delay-Locked Loops (DLLs). Fast, predictable interconnect 
means that successive design iterations continue to meet timing requirements. The 

Spartan-II family is a superior alternative to maskprogrammed ASICs. The FPGA 
avoids the initial cost, lengthy development cycles and inherent risk of conventional 
ASICs. Also, FPGA programmability permits design upgrades in the field with no 

hardware replacement necessary (impossible with ASICs) [20]. 

6.5.1 Features of FPGA 
1) Second generation ASIC replacement technology. 

❖ Densities as high as 5,292 logic cells with up to 200,000 systems gates. 

❖ Streamlined features based on Virtex architecture. 

❖ Unlimited reprogrammability. 
❖ Very low cost. 

❖ Advanced 0.18 micron process. 

2) System level features 

❖ Select RAM hierarchical memory. 

❖ 16-bit/LUT distributed RAM. 

❖ Configurable 4K bit block RAM. 
••• Fast interfaces to external RAM. 
❖ Fully PCI compliant. 

❖ Low-power segmented routing architecture. 

❖ Full read back ability for verification/observability. 
❖ Dedicated carry logic for high-speed arithmetic. 
❖ Efficient multiplier support. 
❖ Cascade chain for wide-input functions. 
❖ Abundant registers/latches with enable, set, reset. 
❖ Four dedicated DLLs for advanced clock control. 
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❖ Four primary low-skew global clock distribution nets. 
❖ IEEE 1149.1 compatible boundary. scans logic. 

3) Versatile I/O and packaging 
❖ Pb-free package options. 

❖ Low-cost packages available in all densities. 
❖ Family footprint compatibility in common packages. 
❖ 16 high-performance interface standards. 
❖ Hot swap Compact PCI friendly. 
❖ Zero hold time simplifies system timing. 

4) Fully supported by powerful Xilinx development system 

❖ Foundation ISE Series: Fully integrated software: 

❖ Alliance Series: For use with third-party tools. 
❖ Fully automatic mapping, placement and routing. 

6.5.2 General Overview of Xilinx Spartan-II FPGA Family 
The Spartan-II family of FPGAs have a regular, flexible, programmable 

architecture of Configurable Logic Blocks (CLBs), surrounded by a perimeter of 

programmable Input/Output Blocks (IOBs). There are four Delay-Locked Loops 

(DLLs), one at each corner of the die. Two columns of block RAM lie on opposite 
sides of the die, between the CLBs and the IOB columns. These functional elements 
are interconnected by a powerful hierarchy of versatile channels. This is shown in fig. 
6.1 [20]. 

Spartan-II 

Device 

Logic 

Cells 

System Gates 

(Logic and 

RAM) 

CLB 

Array (R 

x C) 

Total 

CLBs 

Maximum 

Available 

User I/O 

Total 

Distributed 

RAM Bits 

Total 

Block 

RAM 

Bits 

XC2S 15 432 15,000 8 x 12 96 86 6,144 16K 
XC2S30 972 30,000 12 x 18 216 92 13,824 24K 
XC2S50 1,728 50,000 16 x 24 384 176 24,576 32K 

XC2S100 2,700 100,000 20 x 30 600 176 38,400 40K 
XC2S150 3,880 150,000 24 x 36 864 260 55,296 48K 
XC2S200 5,292 200,000 28 x 42 1,176 284 75,264 56K 

Table 6.1 Spartan-H FPGA Family Members 
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Spartan-II FPGAs are customized by loading configurable data into internal 
static memory cells. Unlimited reprogramming cycles are possible with this approach. 
Stored values in these cells determine logic functions and interconnections 

implemented in the FPGA. Configuration data can be read from an external serial 
PROM (master serial mode), or written into the FPGA in slave serial, slave parallel, 
or Boundary Scan Modes [20]. 

Spartan-II FPGAs are typically used in high-volume applications where the 
versatility of a fast programmable solution adds benefits. Spartan-II devices provide 
system clock rates up to 200 MHz. Spartan-II FPGAs offer the most cost-effective 
solution while maintaining leading edge performance. In addition to the conventional 

benefits of high-volume programmable logic solutions, Spartan-II FPGAs also offer 
on-chip synchronous single-port and dual-port RAM (block and distributed from), 

DLL clock drivers, programmable set and reset on all flip-flops, fast carry logic and 

many other features [20]. 

6.5.3 Spartan-II Array Description 
The Spartan-II user-programmable gate array, shown in figure 1, is composed 

of five major configurable elements. 

❖ IOBs provide the interface between the package pins and the internal logic. 
❖ CLBs provide the functional elements for constructing most logic. 

❖ Clock DLLs for clock-distribution delay compensation and clock domain 

control. 
❖ Versatile multi-level interconnects structure. 
As can be seen in fig. 6.1, the CLBs from the central logic structure with easy 

access to all support and routing structures. The IOBs are located around all the logic 

and memory elements for easy and quick routing of signals on and off the chip. 
Values stored in static memory cells control all the configurable logic elements and 

interconnect resources. These values load into the memory cells on power-up and can 

reload if necessary to change the function, of the device. Each of these elements will 
be discussed in detail in the following sections [20]. 

❖ Input/Output Block (IOBs). The Spartan-II IOB, as seen in fig. 6.2, 
features inputs and outputs that support a wide variety of I/O signaling 

standards. These high-speed inputs and outputs are capable of supporting 

various state of the art memory and bus interfaces. The three IOB registers 
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function either ad edge-triggered D-type flip-flops or as level-sensitive 
latches. Each IOB has a clock signal (CLK) shared by the three registers 
and independent Clock Enable (CE) signals for each register [19]. In 

addition to the CLK and CE control signals, the three registers share a 
Set/Reset (SR). For each register, this signal can be independently 
configured as a synchronous Set, a synchronous Reset, an asynchronous 
Preset, or an asynchronous Clear. A feature not shown in the block 
diagram, but controlled by the software, is polarity control. The input and 
output buffers and all of the IOB control signals have independent polarity 
controls [20]. Optional pull-up and pull-down resistors and an optional 

weak-keeper circuit are attached to each pad. Prior to configuration all 
outputs not involved in configuration are forced into their high-impedance 

state. The pull-down resistors and the weak=keeper circuits are inactive, 

but inputs may optionally be pulled up. The activation of pull-up resistors 

prior to configuration is controlled on a global basis by the configuration 
mode pins. If the pull-up resistors are not activated, all the pins will float. 

Consequently, external pull-up or pull-down resistors must be provided on 

pins required to be at a well-defined logic level prior to configuration [20]. 

All pads are protected against damage from electrostatic discharge (ESD) 
and from over-voltage transients. Two forms of over-voltage protection are 

provided, one that permits 5V compliance, and one that does not. For 5V 

compliance, a zener-like structure connected to ground turns on when the 

output rises to approximately 6.5V to the output supply voltage, VCCO. 
The type of over-voltage protection can be selected independently for each 

pad [20]. 
+ Input Path. A buffer in the Spartan-II IOB input path routes the input 

signal either directly to internal logic or through an optional input flip-flop. 
An optional delay element at the D-input of this flip-flop eliminates pad-

to-pad hold time. The delay is matched to the internal clock-distribution 

delay of the FPGA and when used, assures that the pad-to-pad hold time is 

zero. Each input buffer can be configured to conform to any of the low-
voltage signaling standards supported. In some of these standards the input 
buffer utilizes a user-supplied threshold voltage, VREF. The need to 

supply VREF imposes constrains on which standards can used in close 
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proximity to each other. There are optional pull-up and pull-down resistors 
at each input for use after configuration [19]. 

❑❑❑❑❑❑❑❑❑❑❑❑  
DLL DDEJIJfl0900009 

❑0 

❑  E111E]EIE10 ❑ O 

❑ ❑  ❑  ❑  ❑  ❑ ❑ 0 
❑0 

EIE]EIE]EIE] ❑D § ❑❑❑D❑❑  o_ 
DI__II 

 ❑❑❑❑❑❑  

0
0 ❑❑❑0011 0 
❑F' " 1111❑❑❑❑  

DLL 
DEThDU0099000 
0000❑❑❑❑DL]❑❑  

XC2 

CLBs 
0000❑❑❑❑❑❑❑❑  

DLL 

LILIILVIIH ~❑ ❑  
I n 
ID 

❑❑ 

❑  ❑  

❑❑❑ 0 

Io 

D❑  
0❑  

	

Ii 	ID EELHIEIL 
0000❑❑  o0 
0000❑❑  o0 

I  

0000❑❑  o0 
00000MOU 	DLL 
CJ❑❑❑❑D❑❑❑❑❑  
S15 	 1/0 LOGIC 

Fig. 6.1 Basic Spartan-11 Family FPGA Block Diagram 

❖ Output Path. The output path includes a 3-stzte output buffer that drives 

the output signal onto the pad. The output signal can be routed to the 
buffer directly from the internal logic or through an optional IOB output 

flip-flop. The 3-stzte control of the output can also be routed directly from 

the internal logic or through a flip-flip that provides synchronous enable 

and disable. Each output driver can be individually programmed for a wide 
range of low-voltage signaling standards. Each output buffer can source up 

to 24 mA and sink up to 48 mA. Drive strength and slew rate controls 
minimize bus transients [20]. In most signaling standards, the output high 

voltage depends on an externally supplied VCCO voltage. The need to 
supply VCCO imposes constraints on which standards can be used in close 

proximity to each other. An optional weak-keeper circuit is connected to 
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each output. When selected, the circuit monitors the voltage on the pad and 
weakly drives the pin High or Low to match the input signal. If the pin is a 
connected to a multiple-source signal, the weak keeper holds the signal in 
its last state if all drivers are disabled. Maintaining a valid logic level in 
this way helps eliminate bus chatter. Because the weak-keeper circuit uses 
the IOB input buffer to monitor the input level, an appropriate VREF 

voltage must be provided if the signaling standards require one. The 
provision of this voltage must comply with the I/O banking rules [20]. 
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Fig. 6.2 Spartan-II Input/Output Block (IOB) 

❖ I/O Banking. Some of the I/O standards described above require VCCO 
and/or VREF voltage. These voltages are externally connected to device 

pins that serve groups of IOBs, called banks. Consequently, restrictions 

exist about which I/O standards can be combined within a given bank. 
Eight I/O banks result from separating each edge of the.  FPGA into two 
banks as shown in figure 3. Each bank has multiple VCCO pins which 

must be connected to the same voltage. Voltage is determined by the 
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output standards in use [20]. Some input standards require a user-supplied 
threshold voltage, VREF. In this case, certain user-I/O pins are 
automatically configured as inputs for the VREF  voltage. About one in six 
of the UO pins in the bank assume this role. VREF  pins within a bank are 
interconnected internally and consequently only one VREF  voltage can be 
used within each bank. All VREF  pins in the bank, however, must be 
connected to the external voltage source for correct operation. In a bank, 
inputs requiring VREF  can be mixed with those that do not but only one 
VIF  may be used within a bank. Input buffers that use VREF  are not 5V 
tolerant. The Vcco  and VREF pins for each bank appear in the device pin-
out tables. Within a given package, the number of VREF and Vcco pins can 
vary depending on the size of device. In larger devices, more I/O pins 
convert to VREF pins. Since these are always a superset of the VREF  pins 
used for smaller devices, it is possible to design a PCB that permits 

migration to a larger device. All VREF  pins for the largest device 
anticipated must be connected to the VREF voltage and not used for UO 
[20]. 
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Fig. 6.3 Spartan-II I/O Banks 
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❖ Configurable Logic Block (CLBs). The basic building block of the 
Spartan-II CLB is the logic cell (LC). An LC includes a 4-input function 

generator, carry logic and storage element. Output from the function 
generator in each LC drives the CLB output and the D input of the flip-
flop. Each Spartan-II CLB contains four LCs, organized in two similar 
slices; a single slice is shown in fig. 6.4. In addition to the four basic LCs, 
the Spartan-II CLB contains logic that combines function generators to 
provide functions of five or six inputs [20]. 

❖ Look-Up Tables (LUTs). Spartan-II function generators are implemented 
as 4-input look-up tables (LUTs). In addition to operating as a function 

generator, each LUT can provide a 16x1-bit synchronous RAM. 
Furthermore, the two LUTs within a slice can be combined to create a 

16x2-bit or 32x1-bit synchronous RAM, or a 16x1-bit dual-port 

synchronous RAM. The Spartan-II LUT can also provide a 16-bit shift 

register that is ideal for capturing high-speed or burst-mode data. This 
mode can also be used to store data in application such as Digital Signal 

Processing [20]. 

❖ Storage Elements. Storage elements in the Spartan-II slice can be 

configured either as edge-triggered D-type flip-flop or as level-sensitive 
latches. The D inputs can be driven either by function generators within 

the slice or directly from slice inputs, bypassing the function generators. In 
addition to Clock and Clock Enable signals, each slice has synchronous set 

and reset signals (SR and BY). SR forces a storage element into the 
initialization state specified for it in the configuration. BY forces it into the 

opposite state. Alternatively, these signals may be configured to operate 

asynchronously. All control signals are independently invertible and are 
shared by the two flip-flops within the slice [20]. 

❖ Additional Logic. The multiplexer in each slice combines the function 

generator outputs. This combination provides either a function generator 
that can implement any 5-input function, a 4:1 multiplexer, or selected 

functions of up nine inputs. Similarly, the F6 multiplexer combines the 
outputs of all four function generators in the CLB by selecting one of the 

F5-multiplexer outputs. This permits the implementation of any 6-input 

function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each 
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CLB has four direct feed through paths; one per LC. These paths provide 
extra data input lines or additional local routing that does not consume 
logic resources [20]. 
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Fig. 6.4 Spartan-II CLB Slice (two identical in each CLB) 

❖ Arithmetic Logic. Dedicated carry logic provides fast arithmetic carry 
capability for high-speed arithmetic functions. The Spartan-Il CLB 

supports two separate carry chains, one per slice. The height of the carry 

chains is two bits per CLB. The arithmetic logic includes an XOR gate that 
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allows a 1-bit full adder to be implemented within an LC. In addition, a 
dedicated AND gate improves the efficiency of multiplier implementation. 

The dedicated carry path can also be to cascade function generators for 

implementing wide logic functions [20]. 

❖ BUFTs. Each Spartan-II CLB contains two 3-state drivers (BUFTs) that 
can drive on-chip busses. Each Spartan-II BUFT has an independent 3-
state control pin and an independent input pin. 

❖ Block RAM. Spartan-II FPGAs incorporate several large block RAM 
memories. These complements the distributed RAM Look-Up Tables 
(LUTs) that provide shallow memory structures implemented in CLBs. 

Block RAM memory blocks are organized in columns. All Spartan-II 
devices contain two such columns, one along each vertical edge. These 

columns extend the full height of the chip. Each memory block is four 
CLBs high, and consequently, a Spartan-II device eight CLBs high will 

contain two memory blocks per column and a total of four blocks. Each 
block RAM cell is a fully synchronous dual-ported 4096-bit RAM with 

independent control signals for each port. The data widths of the two ports 

can be configured independently, providing built-in bus-width conversion. 

The Spartan-II block RAM also includes dedicated routing to provide an 
efficient interface with both CLBs and other block RAMs [20] 

Spartan-lI 

Device No. of Blocks 

Total Block RAM 

Bits 

XC2S 15 4 16K 

XC2S30 6 24K 

XC2S50 8 32K 

XC2S 100 10 40K 

XC2S 150 12 48K 

XC2S200 14 56K 

Table 6.2 Spartan-H Block RAM Amounts 
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Chapter 7 

SIMULATION RESULTS AND CONCLUSION 

Basic entities have been programmed using behavioral model and they are 

used as components to form the different units of RISC processor. These units in term 
are used as components for building the RISC processor using structural 
programming. The simulation results for different unit and final RISC processor are 
shown below. 

Simulation results for stage! shown in fig, 7.1. Based on value of selection 
input (OPC) generated by control unit for instruction in execution stage, next program 

counter value (pcValue) is decided. Instruction from prefetch unit at address specified 
in program counter is taken and is forwarded to next stage. If flush input is high, 

instruction fetch stage register is flushed out. 
Simulation results for stage2 are shown in fig. 7.2. This stage decides the 

combination of read registers based on regSelect input. Input rf enable is used for 
enabling the write operation in register file. If branch instruction is there in execution 

stage, then type of branching (absolute or relative) is decided by branch_select input. 

The contents of read registers are forwarded to next stage. 
Simulation results for stage3 are shown in fig. 7.3. The ex select input 

activated one of the components out of basic ALU, shift unit and move immediate 

unit. The input alu_function decides the operation to be carried out on the data at 
input. Contents of source registers and sign extended immediate data are input to this 

stage. The result and the code for write back register are forwarded to next stage. 
Simulation results for stage4 are shown in fig. 7.4. The input memSel is used 

to select from data on input port, data read from memory and result of execution stage 

as final result to be written back into destination. When output_enable is high, the 
result is placed on the output port. Final result and code for write-back register are 
output from this stage. 

Simulation results for control unit are shown ' in fig. 7.5. Based on 
combinations of opcode and function, it generates the control signals for all the units 

of processor. For example, it generates alu function signal for stage3 (execution 
stage). The control signals are sequenced properly. 
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Simulation results for branch forwarding unit are shown in fig. 7.6. This unit 
selects the proper branch target address. If resource conflict is there in branch 

instruction, then result from execution unit is selected as target address. Otherwise the 
content of register specified in instruction is used as target address. 

Simulation results for hazard detection unit are shown in fig. 7.7. If the 
destination of instruction is source of next instruction then the necessary control 
signals are generated by this unit. Also in case of branch instruction, the instruction 
following the branch instruction needs to be flushed out. 

Simulation results for interrupt and exception unit are shown in fig. 7.8. 
RESET has been assigned highest priority and when it is high, the pcSel output is set 

to PH to select the new PC value as 0012H in stage!. In case of hardware interrupts 
and exceptions, the proper return address is saved in TRAP register. 

Simulation results for prefetch unit are shown in fig. 7.9. It receives the 

address from instruction fetch stage and supplies instructions to it. When data bus is 

idle it prefetches the instructions from memory and store them in prefetch queue. 
Simulation results for designed RISC processor connected to memory are 

shown in fig. 7.10. This is the simulation result for small program of addition having 

resource conflicts. The data for addition was 1010H and 3030H. Simulation result 

shows that this conflict is successfully handled. 
Hierarchical approach greatly simplifies the design of a processor. Because of 

this it, is possible to model basic units of processor using behavioral programming 
method of VHDL at an elementary level. Pipelining is the most important part of any 

processor. Division of execution process of an instruction is critical in designing 
pipelining. If the work is not distributed properly over different stages of pipeline, 

performance degrades because the slowest stage decides the throughput of the 

pipeline. Maintaining the sequence in the working of the pipeline is also one of the 

important points to consider while designing stages of pipeline. 
Hardwired approach is used in this design because instructions are very few, 

simple operations are to be carried out on the data, instruction length is fixed and 
-hence less number of control signals need to be generated for all the instructions. 
Clock signal is used as the basis for generating control signals in sequence for all the 
pipelined stages and other units of processor. 

Structural hazards, data hazards and control hazards are resolved using hazard 

detection unit, execution forwarding unit and branch forwarding unit. An instruction 
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Simulation Results and Conclusion 

called JAL and RJAL has been designed equivalent to CALL and RETURN with the 

difference that the return address is saved in one of the register rather than external 

memory. Only LOAD and STORE instructions access the external memory. All other 

instructions operate on a data present in internal registers or immediate data present in 

the instruction itself. 

An attempt has been made to implement the designed processor on Spartan-II 

FPGA. 

65 



o 

¢ O 
• 

LI1FL t t. i i i 

w ~ O 

~-. O N p o0 CU  W 

.c„ 

O O O O 0 

f ~  4 

V1 

Vl 

Q 

O 

is 



T 











0 
N 
bJJ 









Chapter 8 	 Future Scope 

Chapter 8 

FUTURE SCOPE 

The emphasis is placed on only implementing the common features of RISC 
processor in this work. Other aspects like device utilization on FPGA, power 
consumption can be taken into consideration and methods can be found out for their 
minimization. The work can be extended to 

❖ Development of a 32-bit RISC processor having the features like 
protection for data, support for virtual memory etc.. 

❖ Development of separate hardware for memory. 

❖ Development of full cache memory subsystem inside the processor. 
❖ Implementation of branch prediction logic. 
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Appendix A 	 Design Flow 

Appendix A 

DESIGN FLOW 

A.1 Introduction 
This chapter describes the design flow used to create complex FPGA and 

ASIC devices. The designer starts with a design specification, creates RTL 
description, verifies that description, synthesizes the description to gates, uses place 
and route tools to implement the design in the chip and then verifies that the final 
result is correct in terms of function and timing. The design flow is shown in fig. A. 1. 

A.2 Specification 

All designs should start with a detailed specification of the exact tasks the 
application should do and include details on how fast tasks must de completed. 

A.3 Design Entry 
In general design entry would done through any hardware description 

language (HDL) such as VHDL or Verilog. In this thesis, VHDL is used for design 
entry. One of the best uses of VHDL today is to synthesis ASIC and FPGA devices. 

A.4 Simulator 
Simulation is the representation of the structure and behavior of a digital logic 

system through the use of computer. A simulator interpret the HDL description and 
produces readable output, such as timing diagram, that predicts how the hardware will 
behave before it is actually fabricated. Simulation allows the detection of functional 
errors in a design without having to physically create the circuit. The stimulus that 

tests the functionality of the design is called a test bench. Thus, to simulate a digital 
system, the design is first described in HDL and then verified by simulating the 
design and checking it with a test bench, which is also written in HDL. 
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Constraints 

(Pin, Area, Timing) 

Synthesize 

Net-list(s) 

Translate 

Map 

Maps the design to the board logic 

Place and Route 

Floor planned, placed and routed design 

Configure 

The design to downloaded to board 

Fig. Al The High-Level Design Flow 

A.5 User Constrain File 
The UCF file maps signals in VHDL code to pins on the FPGA board. The 

signal name in your .vhd file must match the net name in the UCF file. If the names 

do not match, change the name in your .vhd file, not the net name in the .UCF file. 

This UCF file and .vhd files are the input to the synthesis process. 

A.6 Synthesis 

After the hardware has been written, simulated and debugged, it needs to be 

synthesized. In some cases, rewriting the hardware description will be necessary to 

make the hardware partitions synthesizable. If any code is rewritten, the hardware 

81 



Appendix A 	 Design Flow 

must be simulated again to make sure it still meets the requirements of the 

specifications. 

Synthesis is an automatic method of converting a higher level of abstraction to 

a lower level of abstraction. There are several synthesis tools available currently. In 

this thesis, ISE tool which is provided by Xilinx was used for synthesis. 

The current synthesis tool converts the Register Transfer Level (RTL) 

descriptions to gate level netlists. These gate level netlists consists of interconnected 

gate level macro cells. Models for the gate level cells are contained in technology 

libraries for each type of technology supported. The netlists, which are generated from 

synthesis tool, are device independent, so its contents do not depend on the particulars 

of the FPGA. It is usually stored in a standard format called the Electronic Design 

Interchange Format (EDIF) [19]. 

A.7 Implementation 
In the Design Implementation stage, the netlist produced by the design entry 

program is converted into the bitstream file which configures the FPGA. The first step 

Maps the design onto the FPGA resources; the second step Places or assign logic 

blocks created in the mapping process in specific locations in the FPGA. The third 

step Routes the interconnect paths between the logic blocks. The output is a Logic 

Cell Array File (LCA) for the particular FPGA; this process is explained in detail in 

section A.7. This LCA file is then converted into a bitstream file for configuring the 

FPGA [19]. 

5.8 Place and Route 
Place and route tools are used to take the design netlist and implement the 

design in the target technology device. The place and route tools place each primitive 

from the netlist into an appropriate location on the target device and then route signals 

between the primitives to connect the device according to the netlist. Place and route 

tools are typically very architecture and device dependent. These tools are tuned to 

take advantage of each architectural and routing advantage the device contains. FPGA 

vendors provide these tools because the differences in architectures are large enough 

that writing a common tool for all architectures would be very difficult. Fig. A.2 

shows a dataflow diagram of the place and route [ 19]. 
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Netlist Placement 
Constraints 

Timing 
Constraints 

Device 	 Place and Route 
Information 

Device 
Implementation 

Fig. A.2 Place and Route Data Flow 

Input to the place and route tools are the netlist in EDIF or another netlist 
format and possibly timing constraints. The format of the netlist input file varies from 
manufacture to manufacturer. Some tools use EDIF [19]. 

Another input to some place and route tools is the timing constraints, which 
give the place and route tools an indication about which signals have critical timing 

associated with them and to route these nets in the most timing efficient manner. 
These nets are typically identified during the static timing analysis process during 

synthesis. These constraints tell the place and route toll to place the primitives in close 

proximity to one another and to use the fastest routing. The closer the cells are, the 
shorter the routed signals will be and the shorter the time delay [19]. 

Some place and route tools allow the designer to specify the placement of 
large parts of the design. This process is also known as floorplanning. Floorplanning 

allow the user to pick locations on the chip for large blocks of the design so that 
routing wires are as short as possible. The designer lays out blocks on the chip as 

general areas. The floorplanner feeds this information to the place and route tools so 
that these blocks are placed properly. After the cells are placed, the router makes the 
appropriate connections. 

83 



Appendix A 
	 Design Flow 

After all the cells are placed and routed, the output of the place and route tools 
consists of data files that can be used to implement the chip. In the case of FPGAs, 
these files describe all of the connections needed to make the FPGA macro cells 
implement the functionality required. Antifuse FPGAs use this information to burn 

the appropriate fuses, while reprogrammable devices downloaded this information to 
the device to turn on the appropriate transistor connections. 

The otherr output from the place and route software is a file used to generate 
the timing file. This file describes the actual timing of the programmed FPGA device 

or the final ASIC device. This timing file, as much as possible, describes the timing 
extracted from the device when it is plugged into the system for testing. The most 
common format of this file for most simulators is SDF (Standard Delay Format). 

Sometimes, proprietary formats are generated and later translated to SDF. SDF is used 
to back-annotate the post route timing information from place and route tools into the 
post layout timing simulation. 

A.9 FPGA Configuration 
Configuration is a process in which the circuit design (bitstream file) is 

downloaded into the FPGA. The method of configuring the FPGA determines the 
type of bitstream file. FPGAs can be configures by PROM. The serial PROM is the 

most common. The FPGA can either actively read its configuration data out of 
external serial or byte parallel PROM (master mode), or the configuration data can be 
written into the FPGA (slave and peripheral mode). 
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Appendix C 

SOFTWARE CODE FOR RISC PROCESSOR 

The CD given along with this report contains the software code for all the 

units in RISC processor. The coding is done in VHDL and Xilinx ISE 7.1 i is used as a 
synthesis tool. Xilinx ISE simulator is used for simulation. 
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