
4 l •'k

MULTIPURPOSE `REPOSE USB INTERFACE USING
FP GA

A DISSERTATION
Submitted ,tf partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

ELECTRICAL ENGINEERING
(With Specialization In System Engineering & Operations Research)

By
 VA1BHAV JAIN '*

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2006

page ii

~Deduated to

My Parents

page iii

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in this dissertation

entitled, "MULTI-PURPOSE USB INTERFACE USING FPGA", submitted in the

partial fulfillment of the requirements for the award of the degree of Master of

Technology in Electrical Engineering, with specialization in System Engineering and

Operations Research, I.I.T. Roorkee, India is an authentic record of my own work

carried out from July 2005 to June 2006 under the guidance of Dr. Rajendra Prasad,

Electrical Engineering Department, Indian Institute of Technology, Roorkee, India.

The matter embodied in this dissertation report has not been submitted by me for

the award of any other degree or diploma.

Place: Roorkee

Dated: une 2006
	

VAIBHAV JAIN

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge and belief.

Dr. Raje ra Prasad

Associate Professor
Electrical Department.
IIT Roorkee
Roorkee-247667 (India)

page iv

ACKNOWLEDGEMENTS
From the core of my heart, I express my gratitude to Dr. Rajendra Prasad,

Department of Electrical Engineering, I.I.T. Roorkee, for giving me his valuable

guidance, constant support and belief in me. He gave me the opportunity to work on a

challenging topic. I cordially admire his greatness and fatigueless enthusiasm without

which it is impossible to me completes this work up to this level. Working under him is an

unforgettable experience for me I will remember him with great emotions and respect in

my future.
Special thanks must be mentioned here for Prof. M. K. Vasantha, Department of

Electrical Engineering, I.I. T. Roorkee for teaching me the fundamentals of which

indirectly helped me to understand the USB system without which this thesis would have

been incomplete.

I express my thanks to Dr. (Ms.) Indra Gupta, in charge Microprocessor and

Computer Laboratory for providing me the all the facilities in the lab including a computer

and Spartan II FPGA Kit required for this project as and when needed

I am highly grateful to the department of Electrical Engineering, IIT Roorkee for

providing me the all kinds of desired facilities for completing my work. My cordial thanks

are for Prof S.P. Gupta, Head of Electrical Engineering department and Prof. H. 0.

Gupta, Ex-head of the department, for creating the opportunities and facilities all the

time. My respectful thanks are for all the faculty members of the department for the

unforgettable help and support either direct or indirect always available to me during the

course of the work.
I wish to convey my thanks to Mr. Vishal Saxena and Mr. Vijender Singh, Mr.

Rahul Dubey Research Scholars, Department of Electrical Engineering, LIT Roorkee

for their help, guidance and support through out the year.

How can 1 forget my batch mates, hostel mates and friends, particularly, Sanjay,

Arun, & Rajesh for helpful and fruitful discussions on various topics, and for the

unforgettable experience of living with them.

In the end, I would like to appreciate my parents and my brother and sister for

their constant faith in me and for feeing confidence in me through their moral support.

Dated: June 2006
	

VAIBHAV JAIN

page v

LIST OF FIGURES AND TABLES

Figure 3-1 Simple USB Host/Device View [29].

Figure 3-2 USB Hub

Figure 3-3 Bus Topology

Figure 3-4 Full Speed Device Attachment

Figure 3-5 Low Speed Device Attachment

Figure 3-6 NRZI Encoding

Figure 3-7 NRZI Encoding After Bit Stuffing.

Figure 3-8 Bit Stuffing Algorithm.

Figure 4-1 PID Field [29].

Figure 4-2 Address Field [29].

Figure 4-3 Endpoint Field [29].

Figure 4.4 Token Packet

Figure 4.5 Data Packet Format

Figure 4-6 Successful Data Transactions

Figure 4-7 Failed Data Transactions

Figure 4-8 Device Status

Figure 5-1 Logic Block

Figure 5-2 Logic Block Pin Locations

Figure 6-1 Receiver Block Diagram

Figure 6-2 CRC —5 Algorithms

Table 6-1 Interpretation of PID Values

Figure 6-3 Transmitter Block Diagram

Figure 6-4 USB Interface Block Diagram

Figure 6-5 USB Controller State Machine

Figure 7-1 Sync_Token

Figure 7-2 Pid Token

Figure 7-3 Final Bit Sequences For OUT Transaction

page vi

Figure 7-3 Final Bit Sequences For IN Transaction

Figure 8-1 Successful Bit Sequence For IN Transaction

Figure 8-2 Simulation Result For IN Transaction.

Figure 8-3 Successful Bit Sequence For OUT Transaction

Figure 8-4 Simulation Result For OUT Transaction.

Figure AA-1 Timing Simulation Waveform

Figure AB-1 RTL View Part -1

Figure AB-2 RTL View Part -2

Table AC-1 Types of PIDs and Their Description.

Table AC-2 Device Responses To IN Transactions

Table AC-3 Host Responses To IN Transactions

Table AC-4 Device Responses to an OUT Transaction

Table AD-1 Device Status

Figure AE-1 Basic Spartan-Ii Family FPGA Block Diagram

Figure AE-2 Spartan-Ii Input/Output Block (IOB)

Figure AE-3 Spartan-Ii CLB Slice (Two Identical Slices In Each CLB)

page vii

ABBREVIATIONS

ACK Handshake packet indicating a positive acknowledgment

Bandwidth The amount of data transmitted per unit of time

Bit A unit of information used by digital computers

Bit Stuffing Insertion of a `0' in the data stream for synchronization

Clint Software resident on the host which interact with the USB

CRC CYCLIC REDUNDANCY CHECK

EOF End of Frame

EOP End of Packet

FPGA Field Programmable Gate Array

Floor planning process of choosing best connectivity in a design

Frame A series of transaction in Ims time

Host The computer where the USB host controller is installed

Hub USB device to provide additional connection to USB

IEEE Institute of Electrical and Electronics Engineering

IOB Input/Output Buffer

IOE Input/Output Element

IRP I/O Request Packet

page viii

LAB Logic Array Block

LE Logic Element (For Altera FPGA)

LUT Look Up Table

NAK Handshake packet indicating a negative acknowledgment

NRZI Not Return To Zero Invert

Packet A bundle of data organized in a group of information

PID Packet ID

PLD Programmable Logic Device

PLL Phase Locked Loops

SOF Start of Frame

SOP Start of Packet

USB Universal Serial Bus

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XST Xilinx's Synthesis Tool

page ix

CONTENTS

COVER PAGE ii

CANDIDATE'S DECLARATION iv

ACKNOWLEDGEMENTS v

LIST OF FIGURES & TABLES vi

ABBREVIATION viii

CONTENTS x

ABSTRACT xiv

CHAPTER 1: INTRODUCTION 1

1.1 	INTRODUCTION 1

1.2 	PROBLEM WORKED OUT 1

1.3 	SOLUTION ACHIEVED 1

1.4 	SCOPE OF THE REPORT 2

1.5 	ORGANIZATION OF THESIS 2

CHAPTER 2: INTRODUCTION TO UNIVERSAL SERIAL BUS 	4

2.1 INTRODUCTION 	 4

2.2 NEED OF USB 	 4

2.3 WHY USB 	 5

2.4 GOALS OF THE USB 	 6

CHAPTER 3: THE USB SYSTEM 	 7

3.1 DATA FLOW MODEL 	 7

3.2 USB HARDWARE AND SOFTWARE 	 7

3.2.1 USB DEVICE DRIVER 	 8

3.2.2 USB DRIVER 	 8

3.2.3 USB HOST CONTROLLER DRIVER 	 8

page x

3.2.4 USB HOST CONTROLLER/ROOT HUB 8
3.2.5 USB HUB 9

3.2.6 USB DEVICE 10
3.3 BUS TOPOLOGY 10
3.4 TRANSFER TYPES 11

3.4.1 CONTROL TRANSFERS 11
3.4.2 BULK TRANSFERS 12
3.4.3 INTERRUPT TRANSFERS 12
3.4.4 ISOCHRONOUS TRANSFERS 12

3.5 SIGNALING ENVIRONMENT 13
3.5.1 DIFFERENTIAL PAIR SIGNALING 13
3.5.2 DIFFERENTIAL DRIVERS 13

3.6 DEVICE SPEED IDENTIFICATION 13
3.7 DATA ENCODING AND DECODING 14
3.8 BIT STUFFING 15

CHAPTER 4: THE USB TRANSFER PROTOCOL 18
4.1 SYNC FIELD 18
4.2 FORMATS OF PACKET FIELD 18

4.2.1 PACKET IDENTIFIER FIELD 18
4.2.2 ADDRESS FIELDS 19

4.3 DATA FIELD 21
4.4 CYCLIC REDUNDANCY CHECKS 21

4.4.1 GENERATOR POLYNOMIAL 22
4.4.2 CRC'S FOR TOKEN 22
4.4.3 CRC'S FOR DATA 22

4.5 PACKET FORMATS 23
4.5.1 TOKEN PACKETS 23
4.5.2 DATA PACKETS 24

page xi

4.5.3 HANDSHAKE PACKETS 	 24

4.6 DATA TOGGLE ERRORS 	 25

4.6.1 SUCCESSFUL DATA TRANSACTIONS 	 25

4.6.2 DATA CORRUPTED OR NOT ACCEPTED 	 26

4.7 USB DEVICE STATES 	 27

CHAPTER 5: TECHNOLOGIES USED 	 29

5.1 FPGAS 	 29

5.1.1 APPLICATIONS 	 30

5.1.2 ARCHITECTURE 	 30

5.2 VHDL 	 31

5.3 DESIGN SYNTHESIS AND PROGRAMMING

OF THE FPGA 	 31

5.4 INTRODUCTION TO THE SPARTAN II

DEVELOPMENT BOARD 	 32

CHAPTER 6: BLOCK DIAGRAM AND STATE MACHINE 33

6.1 COMPONENTS 33

6.2 RECEIVER 33

6.3 TRANSMITTER 39

6.4 USB INTERFACE 43

6.4.1 TRANSACTION DECIDER 43

6.4.2 CONTROLLER 44

CHAPTER 7: IMPLEMETATION 48

7.1 VHDL IMPLEMENTATION 48

7.2 BIT SEQUENCE 48

7.3 FPGA IMPLEMMTATION 53

page xii

CHAPTER 8: RESULTS AND DISCUSSION 54

8.1 TESTING PROCEDURE 54

8.2 SIMULATION RESULTS 54

8.2.1 IN TRANSACTION 55

8.2.2 OUT TRANSACTION 57

8.3 SYNTHESIS RESULTS 59

8.4 DEVICE UTILIZATION SUMMARY 59

CHAPTER 9: CONCLUSION AND FUTURE SCOPE 60

9.1 CONCLUSIONS 60

9.2 FUTURE SCOPE OF WORK 61

REFERENCES 	 62

APPENDIX A TIMING SIMULATION WAVEFORMS 	67

APPENDIX B RTL VIEW 	 69

APPENDIX C PID TYPE AND HANDSHAKE RESPONSE 	72

APPENDIX D DEVICE STATUS 	 75

APPENDIX E 	SPARTAN-II 2.5V FPGA FAMILY 	 77

page xiii

ABSTRACT

The USB stands for Universal Serial Bus it is a very popular interface in recent computer

systems. USB replaces legacy interface, such as serial port, parallel port, and so on.

Every recent PC and Macintosh computer includes USB ports that can connect to

standard peripherals such as keyboards, mice, scanners, cameras, printers, and drives as

well as custom hardware for just about any purpose. The aim of this work is to develop a

USB interface that can be used to transfer data. The interface is the bridge which allows

data transfer from one side to other one. Presented work is exploring an application area

of FPGA to develop an interface design on FPGA. The interface is multi-purpose so that

the data can be traveled in both the direction. This work describes the implementation of

USB 1.1 low speed interface in FPGA chip, using VHDL programming at Xilinx ISE 7.1 i

platform supported by Aldec Active HDL simulation environment. The design is targeted

to make a feel of an original USB device which is sending or receiving data from USB

port. the design contains the data lose protection and synchronization mechanism, in USB

the data travels in the form of packets , there are three type of packets Token, Data and

Handshake , the interface takes care of all the three packets and there inner contents. Due

to the limit of clock frequency the design can show only low speed transaction so only

USB 1.1 specifications are discussed here.

page xiv

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION
Nowadays extensive usage of FPGAs implies the need for communication that is

faster than a simple serial line. The designer has to transmit large packets of data

between his FPGA application and the PC. Hence the solution to the problem is USB

interface; the universal serial bus (USB) is an expansion scheme that replaces the

serial cards in a PC. It provides a high-speed serial connection to the Pc's bus and as

many as 127 devices can be connected to the same bus at a time, The USB interface is

very simple for using and universal usage, which comes from its widespread presence

in today's PCs. The designer has to install the software tools that simplify the

implementation of the USB transactions. These tools include a USB driver

implementing the basic transfer methods, and a simple application demonstrating the

way of transaction with the driver in the PC side. Well the FPGA portion consists of

the USB differential driver and the USB interface design The goal of this work, is to

develop a universal software tools for simple usage of the USB 1.1 transactions. This

design also having features for data protection by using FIFO and synchronization of

the data transfer and the low power consumption by using PLL.

1.2 PROBLEM WORKED OUT
The problem statement in front of me through this thesis was to design an interface

which allows the user to communicate through the USB port. And the design should

be multi-purpose, that the user can transfer the direction data is both the direction. It

should consume less power and there should be some mechanism to prevent the data

loses. Data transfer should be exactly identical like in USB device or the data transfer

should follow the data transfer protocol.

1.3 SOLUTION ACHIEVED
The USB interface has been designed for IN and OUT transactions. It allows the user

to communicate through the USB port. For the low power consideration PLL is

employed. This PLL also help the interface in maintaining the synchronization. For

page 1

preventing the data loss the FIFO is been implemented. Data transfer is exactly

identical like in USB device and follow the data transfer protocol. Well the design

only supports the low speed data transfer so full and high speed data transfer can not

be seen through this design, hence why the report contains the specifications and data

of the USB 1.1 only because the design is compatible to USB 1.1 only. Well with

slight modifications the design will be able to support USB 2.0.

1.4 SCOPE OF THE REPORT

Scope of this report is limited to develop an interface design for USB 1.1 data transfer

and implement it on FPGA. My interface design support two type of transactions and

follow the USB transfer protocol.

In this report more stress is given on the simulation rather that the

demonstration after implementation, although the design has been implemented on

FPGA successfully because the clock frequency is so high that user can not see the

data transfer. In simulation user can see that state of the controller at ant time. The

simulation and synthesis results are placed in the report.

The design is limited to the USB 1.1 as described above hence on USB 1.1 is

disused in this report.

1.5 ORGANIZATION OF THESIS

Chapter 2: - This chapter provides the necessary information to the USB, its need

and benefits over the existing peripherals.

Chapter 3: - This chapter provides the basics of the USB system so that the reader

can understand the USB 1.1 data transfer protocol.

Chapter 4: - This chapter provides the detailed information of USB transfer protocol

and its transfer mechanism that has been implemented on FPGA in this thesis.

Chapter 5: - This chapter provides the information regarding the tools and

technology used to develop the interface design and the reasons for choosing them.

page 2 	 ,

Chapter 6: - This chapter provides the strategy which has been used to develop the

design with the help of the block diagram and the state machine and their explanation.

Chapter 7: - This chapter provides the method by which the data transfer can be seen

or the testing procedure of the design, this chapter mainly stressed on simulation.

Chapter 8: - This chapter provides the various results and discussion on the results

and the performance of the design.

Chapter 9: - This chapter concludes the whole work and gives some suggestion for

its future developments.

page 3

CHAPTER 2

INTRODUCTION TO UNIVERSAL SERIAL BUS

This chapter provides the basic and necessary information about the USB, also gives

brief description of the need of USB & why USB is the solution of the end user

problems regarding peripheral devices and the serial ports.

2.1 INTRODUCTION
In today's era where personal computers are used in lots of applications, many new

devices have come up since IBM's original two serial port personal computer some

twenty tears ago. Scanners, portable hard drives, Zip drives, and force feedback

joystick are just a few examples of device are present on the desktop. Although

attempts have been made to present four to eight serial ports on a single PC, there was

no real standard that gained huge acknowledgment. Therefore, designers began work

on specification for a new interconnecting solution. Well USB is the solution to these

all problems.

Universal Serial Bus (USB) is a solution touted by seven leaders of the PC and

telecom industry: Compaq, DCE, IBM, Intel, Microsoft, NCE and Northern Telecom

(now Nortel Networks). USB boasts a data rate of 12 Mbps (mega byte per second)

(for USB 1.1) and allows you to connect up to 127 devices to your PC. It supports

modems, keyboard, mice, CD ROM drives, joystick, tape, floppy, hard drives,

scanners and printers. In addition, a new stream of peripherals such as telephone,

digital speakers, digital snapshot and motion cameras are to take advantage of this

existing and versatile new interface for communication with PC.

2.2 NEED OF USB
There are several problems or shortcomings present with the existing peripherals,

some of them are listed below.

> Interrupts: - Perhaps the most critical system resource problem revolves

around the allocation of the interrupts by myriad of devices; hence interrupt

shortage can become a major problem.

page 4

> Non Shareable Interface: - Standard PC interface support the

attachment of single device, hence the flexibility of such connection is

reduced.

> Cable Crazed: - Dedicated cables are required for the mouse, keyboard etc.

The variety of different connectors is required to connect particular peripheral.

➢ No Hot Attachment of Peripheral: - ever forgot to plug in your mouse

before powering up your system? After the boot process your mouse won't

work.

➢ Cost: - the cost of implementing system and peripheral devices based on the

original PC design is fairly expensive.

USB is the solution of all the problems described.

2.3 WHY USB
A question comes in mind that why I am switching to USB? Well there is something

which motivates user to switch to the USB. The motivation for the Universal Serial

Bus (USB) comes from three interrelated considerations:

> Connection of the PC to the Telephone: - It is well understood that

the merge of computing and communication will be the basis for the next

generation of productivity applications. The movement of machine-oriented

and human-oriented data types from one location or environment to another

depends on ubiquitous and cheap connectivity, and fast data transfer also. The

USB provides an easy link that can be used across a wide range of PC-to-

telephone interconnects[9].

> Ease-of-Use: - The lack of flexibility in reconfiguring the PC has been

acknowledged as the week point to its further deployment. The combination

of user-friendly graphical interfaces and the hardware and software

mechanisms associated with new-generation bus architectures have made

page 5

computers less hostile and easier to reconfigure. Moreover, from the end

user's point of view, the PC's I/O interfaces, such as serial/parallel ports,

keyboard/mouse/joystick interfaces, etc., do not have the attributes of plug-

and-play.

➢ Port Expansion: - The addition of external peripherals continues to be

constrained by port availability. The lack of a bidirectional, low-cost, low-to-

mid speed peripheral bus has held back the creative reproduction of

peripherals such as telephone/fax/modem adapters, answering machines,

scanners, keyboards, mice, etc. Existing interconnects are optimized for one

or two point products. As each new function or capability is added to the PC,

a new interface has been defined to address this need. The USB is the solution

to connectivity for the PC architecture. It is a fast, bi-directional, isochronous,

low-cost, dynamically attachable serial interface that is consistent with the

requirements of the PC Platform of today and tomorrow[9].

2.4 GOALS OF THE USB
The USB is designed to achieve some goals regarding its performance in comparison

of existing peripherals; it should sole all the problems & limitations associated with

the existing peripherals. The following criteria were applied in defining the

architecture for the USB

> Ease-of-use for PC peripheral expansion

➢ Low-cost solution that supports transfer rates up to 12Mb/s

> Full support for real-time data for voice, audio, and compressed video

> Protocol flexibility for mixed-mode isochronous data transfers and

asynchronous messaging

> Integration in commodity device technology.

> Provision of a standard interface capable of quick diffusion into product

> Enablement of new classes of devices that augment the PC's capability[13].

page 6

CHAPTER 3

THE USB SYSTEM

In this chapter the working of the USB hardware and software in the USB system is

explained and also the signaling environment.

3.1 DATA FLOW MODEL
The USB provides communication channel between a host and attached USB devices.

However, the general view to an end user sees of attaching one or more USB devices

to a host, as in Figure 3-1, is in fact a little more difficult to implement than is

indicated by the Figure. There are several main concepts, constraints, restrictions and

features must be supported to provide the end user with the reliable and perfect

operation demanded. The USB is presented in a layered fashion to ease explanation

and allow developers of particular USB products to focus on the details related to

their product.

USB
	

USB
HOST
	

DEVICE

Figure 3 -1 Simple USB Host/Device View

3.2 USB HARDWARE AND SOFWARE
The USB system composed of USB hardware and USB software

USB software

➢ USB host controller driver

➢ USB device driver

➢ USB driver

USB hardware

➢ USB devices

page 7

➢ USB hot controller/root hub

➢ USB hub

3.2.1 USB DEVICE DRIVER: - Software that executes on the host,

corresponding to a USB device. This client software is typically supplied with the

operating system or provided along with the USB device. It issues request to the USB

driver via 10 request packet (IRPs). These IRPs initiate an interrupt transfer by

establishing an IRP and supplying memory buffer into which data will be returned by

the USB device.

3.2.2 USB DRIVER: - It knows the device characteristics and knows how to

communicate with the device via USB eg. Some device require a specific amount of

throughput during each frame, while others may only require access every nth frame.

When an IRP received from the USB Clint driver, the USB driver organize the

request into individual transaction that will be executed during the series of 1 ms

frames. The USB driver sets up the transaction based on the knowledge of USB

device requirements[13].

3.2.3 HOST CONTROLLER DRIVER (HCD): - It schedules the

transaction to be broadcast over the USB by building series of transactions lists. Each

list consists of pending transaction targeted for one or more USB devices attached to

the hub. This list defines the sequence of transactions to be executed during the 1 ms

frame. The actual scheduling depends upon the no. of factors like type of transaction,

transfer requirements and transaction traffic of the other USB devices.

3.2.4 USB HOST CONTROLLER/ ROOT HUB (HOST SIDE BUS

INTERFACE): - All communication on USB originates at the host under the

software control the hardware consist of the host controller and the root hub.

➢ USB HOST CONTROLLER
The host is responsible for the following:

➢ Detecting the attachment and removal of USB devices

➢ Managing control flow between the host and USB devices

page 8

➢ Managing data flow between the host and USB devices

➢ Collecting status and activity statistics

> Providing power to attached USB devices.

The USB System Software on the host manages interactions between USB

devices and host-based device software.

The USB host occupies a unique position as the coordinating entity for the USB. In

addition to its special physical position, the host has specific responsibilities with

regard to the USB and its attached devices. The host controls all access to the USB. A

USB device gains access to the bus only by being granted access by the host. The host

is also responsible for monitoring the topology of the USB.

> THE USB ROOT HUB
The root hub provides the common points for the USB devices and performs the

following key operation:

> Controls the power to its USB ports
	 a

> Enable and disable ports

> Recognize device attached to each port

> Set and report status events associated with each port

It consists a hub controller and a repeater. The hub controller responds the

accesses made to it, and the repeater forwards transmissions to from the host.

controller.

3.2.5 USB HUB
In addition to the root hub the USB system supports additional hub that permits

extension of the USB devices. USB hub can be integrated into device such as

keyboard. , hubs may be self powered or bus powered, bus powered hubs are limited

by the amount of power available from the bus and can therefore support a maximum

of four USB ports.(1

page 9

US8 Peripheral
Devices

ry

4- U B-AB xxN1-G

USB
PC or MAC

Figure 3.2 USB Hub

3.2.6 USB DEVICES
USB devices contain descriptor that specify a given device attribute and

characteristics. There are mainly 2 types of devices

➢ High speed devices: - high speed devices see all the transaction broadcasted

over the USB and can implemented as full feature device , the device accept

communicate at a rate of 12 Mbps.

➢ Low speed device: - these devices are limited to the transaction which follow a

special permeable packet , low speed hub port remains disable during full

speed transaction permeable packet specifies that the next transaction will be a

low speed one (1.5 mbps)[15].

3.3 BUS TOPOLOGY
Devices on the USB are physically connected to the host via a tiered star topology, as

illustrated in Figure 3-4. USB ports points are provided by a hub. A host includes an

embedded hub within itself called the root hub. The host provides one or more

attachment points via the root hub. USB devices that provide additional functionality

to the host are known as devices.

page 10

3

Tier 4

Figure 3 - 3 Bus Topology

As can be seen that a hub is at the center of each star and the wire segment is a point-

to-point connection between the host and a hub or device, or a hub connected to

another hub or device. Multiple devices may be packaged together so that they appear

to be a single physical device. For example, a keyboard and a trackball might be

combined in a single package. In inside view of the package, the individual devices

are attached to a hub and it is the internal hub which is connected to the USB. When

multiple devices are combined with a hub in a single package, they are referred to as a

compound device. Figure 3-5 illustrates a compound device.

3.4 TRANSFER TYPES
The USB supports functional data and control exchange between the USB host and a

USB device as a set of either unidirectional or bi-directional pipes. USB data transfers

take place between host software and a particular endpoint on a USB device. The

USB architecture supports four basic types of data transfers:

3.4.1 CONTROL TRANSFERS
To configure devices control data is used by the USB System Software when they are

first attached. Other driver software can choose to use control transfers in

page 11

implementation-specific ways. Data delivery is lossless. Hence no error checking is

done.

3.4.2 BULK TRANSFERS
Bulk data specially used of larger amounts of data, such as used for printers or

scanners. Bulk data is sequential. Reliable exchange of data is ensured at the hardware

level by using error detection in hardware by using CRC method. Also, the bandwidth

taken up by bulk data can vary, depending on other bus activities. Its bandwidth

allocation priority is lowest.

3.4.3 INTERRUPT TRANSFERS
This is limited-latency transfer to or from a device. Such data may be presented for

transfer by a device or to the device at any time and is delivered by the USB at a same

rate no specified by the device. Interrupt data must consists of event notification,

characters, or coordinates that are organized as one or more bytes, hence the

bandwidth allocation priority is highest for this. Data may have response time bounds

that the USB must support; this is called bus time out.

3.4.4 ISOCHRONOUS TRANSFERS
Isochronous data is continuous and real-time in various fields like creation, delivery,

and consumption. Timing-related information is implied by the steady rate at which

isochronous data is received and transferred. Isochronous data must be delivered at

the rate received to maintain its timing, hence it can be said that that isochronous data

transfer, transfers the data at a constant rate, it is also be sensitive to delivery delays.

For isochronous pipes, the bandwidth required is typically based upon the sampling

characteristics of the associated function. A typical example of isochronous data is

voice, because in voice transmission the constancy of the transfer speed is must. If the

delivery rate of these data streams is not maintained, data loss in the data stream will

occur due to buffer or frame under runs or overruns; hence error detection is not

possible in this case[13].

page 12

3.5 SIGNALING ENVIRONMENT
The signaling specification for the USB is described in the following subsections.

3.5.1 DIFFERENTIAL PAIR SIGNALING
USB employs differential pair signaling to reduce the signal noise. Differential drivers

and receivers are used to reduce the source of signal noise listed below;

➢ Amplifier noise: - the noise introduced when both the driver and receiver of

the signal amplify a signal.

➢ Cable noise: - the noise picked up by the cable due to electromagnetic fields.

3.5.2 DIFFERENTIAL DRIVERS
The USB uses a differential output driver to drive the USB data signal onto the USB

cable. It employs inverting and non inverting buffers. The input is applied to both the

buffers yielding two outputs D+, D-The static output swing of the driver in its low

state must be below VOL (max) of 0.3V with a 1.5k load to 3.6V and in its high state

must be above the VOH (min) of 2.8V with a 15k load to ground. The output swings

between the differential high and low state must be well-balanced to minimize signal

skew. Slew rate control on the driver is required to minimize the radiated noise and

cross talk.

3.6 DEVICE SPEED IDENTIFICATION
The USB is terminated at the hub and function ends as shown in Figure 3-4 and

Figure 3 -5. Full-speed and low-speed devices are differentiated by the position of

the pull-up resistor on the downstream end of the cable:

➢ Full-speed devices are terminated as shown in Figure 3-4 with the pull-up

resistor on the D+ line.

➢ Low-speed devices are terminated as shown in Figure 3-5 with the pull-up

resistor on the D- line.

➢ The pull-down terminators on downstream ports are resistors of 15K+-5%

connected to ground.

A USB hub detects that a device has been attached to one of its ports by

monitoring the differential data lines after cable power has been applied to the

ports , when no device is attached to port, pull — down resistor on the D+ and

page 13

D- lines ensure that both data lines are near ground . when device is attached

the current flows across the voltage divider created by hub's pull down

register on either D+ or D- . Since the pull down resistor value is 15K and

device's pull — up resistor value is 1.5K a data line will rise to approximately

90 % of Vcc. When the hub detects that one of that data lines approaches Vcc

while the other remains near ground, it knows that a device has been attached.

Note that full speed devices have a pull — up on D+ and low speed devices

have that pull — up on D_, permitting the identification of device speed [18].

toll-3 a tf c r
Low-speed US8 I

I I 	u'I-Oicod US 3
Tr~nsceivsr

Transccivct 	D- -

Hub Up t eam Pert
tS~ 15°rr

R P,0t ltco +fi•/.
Host or 	 .-7
ub Port 	 V k~ffi1,51~.5E 	t"o

cr
Full-sped Futivt3Un

Figure 3-4 Full Speed Device Attachment

F ul'-speed or
Law-peed USD 	Ftpa

Tnnar tPivfr e

Ro 15KS t5'`,

r-speed US
Transceiver

low Slaw Rate
Suffers

HOW art
	 Rpd~'1.5tf3' 	%(hoamat)

F4ub Port 	 Low-seed 3 ur tton

Figure 3-5 Low Speed Device Attachment

3.7 DATA ENCODING AND DECODING
The USB employs NRZI data encoding when transmitting packets. In NRZI

encoding, a "1" is represented by no change in level and a "0" is represented by a

page 14

change in level. Figure 3 - 6 shows a data stream and the NRZI equivalent. The high

level represents the J state on the data lines in this and subsequent figures showing

NRZI encoding. A string of zeros causes the NRZI data to toggle each bit time. A

string of ones causes long periods with no transitions in the data.

IDLE 	Fo 0 1 1 0 0 1 1 0 0

IDLE 	0 1 1 1 LQ.J 1 1 1 LQJT
Figure 3-6 NRZI Encoding

3.8 BIT STUFFING

To ensure the proper signal transmission, bit stuffing is employed by the transmitting

device when sending a packet. A zero is inserted after every six consecutive ones in

the data stream before the data is NRZI encoded, to ensure at least a transition in the

NRZI. data stream. This gives the receiver logic a data transition at least once every

seven bit times to guarantee the data and clock lock. Hence this all is done in order to

clock lock. Bit stuffing by the transmitter is always enforced, without exception. If

required by the bit stuffing rules, a zero bit will be inserted even if it is the last bit

before the end-of-packet (EOP) signal. The receiver decodes the NRZI data;

recognize the stuffed bits, and discard them before placing it to the o/p. If the receiver

sees seven consecutive ones anywhere in the packet, then a bit stuffing error has

occurred and the packet should be ignored.

page 15

DATA PACKET

SYNC 	DATA

IDLE

0 1 	1 	1 0 0 0 0 0 0 	1 1 1 1 1

Figure 3-7 NRZI Encoding After Bit Stuffing.

A proper algorithm has to be followed to provide the bit stuffing in the USB interface.

The flowchart of that algorithm is shown in the Figure 3- 8. In this algorithm there is

counter which is initially set to zero and if the incoming bit is `1' then the counter is

incremented else it is reset to zero , in this process if the counter reaches to 6 then a

`0' is inserted in the data bit stream and the counter is reset to `0' . This process

continues until the packet transfer is complete.

page 16

Figure 3-8 Bit Stuffing Algorithm.

page 17

CHAPTER 4

THE USB TRANSFER PROTOCOL

This chapter provides the information about the data transfer mechanism in USB.

Each packet is started with a sync field so starting the discussion from the sync field

itself.

4.1 SYNC FIELD
All packets begin with a synchronization (SYNC) field, which is a coded sequence

that generates a maximum edge transition density. As I know that edge. The SYNC

field appears on the bus as IDLE followed by the binary string "01010100,"here it is

clear that in the sync field there is transition in each bit position in its NRZI encoding.

It is used by the input circuitry to align incoming data with the local clock and is

defined to be eight bits in length. The last two bits in the SYNC field are a symbol

that is used to identify the end of the SYNC field and, by inference, the start of the

PID.

4.2 FORMATS OF PACKET FIELD
Field formats for the token, data, and handshake packets are described here. All

packets have distinct Start- and End-of-Packet delimiters. The Start of- Packet (SOP)

delimiter is part of the SYNC field.

4.2.1 PACKET IDENTIFIER FIELD
A packet identifier (PID) immediately follows the SYNC field in every USB packet.

A PID consists of a four-bit packet type field followed by a four-bit check field as

shown in Figure 4-1. The PID indicates the type of packet and, the format of the

packet and the type of error detection applied to the packet. The four-bit check field of

the PID is used to ensure reliable decoding of the PID. The PID check field is

generated by performing a one's complement of the packet type field. A PID error

exists if the four PID check bits are not complements of their respective packet

identifier bits.

page 18

PID 0 	PID 1 	PID 2 	PID 3 PID 0 	PID 1 	PID 2 	PID 3

Figure 4-1 PID Field

The PID must be completely decoded by the host and all functions Any PID received

with a failed check field or which decodes to a non-defined value is assumed to be

corrupted and it, as well as the remainder of the packet, is ignored by the packet

receiver. If a function receives an otherwise valid PID for a transaction type or

direction that it does not support, the function must not respond. For example, an IN-

only endpoint must ignore an OUT token. PID types.

4.2.2 ADDRESS FIELDS
The fields by the help of which the device endpoints are addressed are called address

fields. There are two main address fields

➢ The device address field

> The endpoint field.

A device needs to fully decode both address and endpoint fields. Address or endpoint

aliasing is not permitted, and a mismatch on either field must cause the token to be

ignored.

> Address Field

The device address field specifies the device, via its address, weather it is source

or destination of a data packet, it depends upon the value of the token PID. As

shown in Figure 4-2, a total of 128 addresses are specified as ADDR<6:0>. The

ADDR field is specified for IN, SETUP, and OUT tokens. Upon reset and power-

page 19

up, a function's address defaults to a value of zero. Device address zero is reserved as

the default address and may not be assigned to any other use.

Lsb
	

Msb

Addr 0 	Addr 1 	Addr 2 	Addr 3 	Addr 4 	Addr 5 	Addr 6 1

Figure 4-2 Address Field

➢ Endpoint Field

The end point field is an additional four-bit (ENDP) field, as shown in Figure 4-3.

This permits more flexible addressing of devices in which more than one endpoint

registers are required. Endpoint numbers are device-specific except for endpoint

address zero. This endpoint field is defined for IN, SETUP, and OUT token PIDs.

All devices must support a control pipe at endpoint number zero (the Default

Control Pipe), because endpoint 0 is reserved for control transfer. Low-speed

devices support a maximum of three pipes per function: a control pipe at endpoint

number zero plus two additional pipes (two control pipes, a control pipe and an

interrupt endpoint, or two interrupt endpoints). Full-speed functions may support

up to the maximum of 16 endpoint numbers of any type.

(Lsb) 	 (Msb)

Endp 0 	 Endp 1 	 Endp 2 	 Endp 3

Figure 4-3 Endpoint Field

page 20

4.5 PACKET FORMATS
This section shows packet formats for token, data, and handshake packets. Fields

within a packet are displayed in these figures in the order in which bits are shifted out

onto the bus.

4.5.1 TOKEN PACKETS
Figure 4-4 shows the field formats for a token packet. A token consists of a PID,

specifying either IN, OUT, or SETUP packet type; and ADDR and ENDP fields. For

OUT and SETUP transactions, for identifying the endpoint that will receive the

subsequent Data packet the address and endpoint are used. For IN transactions, these

fields uniquely identify which endpoint should transmit a Data packet. Most important

thing is only the host can issue token packets, because host initiates all transactions.

IN PIDs define a Data transaction from a device to the host. OUT PIDs define Data

transactions from the host to a device.

(Lsb) 	 (Msb)

PID 	 ADDR 	 ENDP 	 CRC 5

Figure 4.4 Token Packet

The last part of the token packet is a five-bit CRC that covers the address and

endpoint fields as shown above. The CRC does not cover the PID, because error in

PID is checked by its own check field. Token packets are delimited by an EOP after

three bytes of packet field data. In the end of the packet the EOP field is there this

signifies that the packet has been ended. During the EOP the D+ and D- lines of the

differential driver are both idle.

page 23

up, a function's address defaults to a value of zero. Device address zero is reserved as

the default address and may not be assigned to any other use.

Lsb
	

Msb

Addr 0 	Addr 1 	Addr 2 	Addr 3 	Addr 4 	Addr 5 	Addr 6

Figure 4-2 Address Field

> Endpoint'Field

The end point field is an additional four-bit (ENDP) field, as shown in Figure 4-3.

This permits more flexible addressing of devices in which more than one endpoint

registers are required. Endpoint numbers are device-specific except for endpoint

address zero. This endpoint field is defined for IN, SETUP, and OUT token PIDs.

All devices must support a control pipe at endpoint number zero (the Default

Control Pipe), because endpoint 0 is reserved for control transfer. Low-speed

devices support a maximum of three pipes per function: a control pipe at endpoint

number zero plus two additional pipes (two control pipes, a control pipe and an

interrupt endpoint, or two interrupt endpoints). Full-speed functions may support

up to the maximum of 16 endpoint numbers of any type.

(Lsb) 	 (Msb)

Endp 0 	 Endp 1 	 Endp 2 	 Endp 3

Figure 4-3 Endpoint Field

page 20

4.3 DATA FIELD
The range of the data field may from zero to 1,023 bytes and must be an integral

number of bytes. Data bits within each byte are shifted out LSb first. Data packet size

varies with the transfer type.

4.4 CYCLIC REDUNDANCY CHECKS
The basic idea of CRC algorithms is simply to treat the message as an enormous

binary number, to divide it by another fixed binary number, and to make the

remainder from this division the checksum. Upon receipt of the message, the

receiver can perform the same division and compare the remainder with the

"checksum" (transmitted remainder). Cyclic redundancy checks (CRCs) are used to

protect all non-PID fields in token and data packets. In this context, these fields are

considered to be protected fields. The PID is not included in the CRC check of a

packet containing a CRC. CRC generation is done before bit stuffing and

consequently CRCs are decoded in the receiver after stuffed bits have been removed.

Token and data packet CRCs provide 100% coverage errors. A failed CRC is

considered to indicate that one or more of the protected fields is corrupted and causes

the receiver to ignore those fields, and, in most cases, the entire packet.

Usually, the checksum is then appended to the message and the result

transmitted.

At the other end, the receiver can do one of two things:

➢ Separate the message and checksum. Calculate the checksum for

The message (after appending W zeros) and compare the two

checksums.

➢ Checksum the whole lot (without appending zeros) and see if it

comes out as zero!

These two options are equivalent. For CRC generation and checking, well the second

one is applied in the interface design. The shift registers in the generator and checker

are seeded with an all zeros pattern. For each data bit sent or received, the high order

page 21

bit of the current remainder is XORed with the data bit and then the remainder is

shifted left one bit and the low-order bit set to zero. If the result of that XOR is one,

then the remainder is XORed with the generator polynomial. When the last bit of the

checked field is sent, the CRC in the generator is inverted and sent to the checker

MSb first. When the last bit of the CRC is received by the checker and no errors have

occurred, the remainder will be equal to the polynomial residual. A CRC error exists

if the computed checksum remainder at the end of a packet reception does not match

the residual. Bit stuffing requirements must be met for the CRC, and this includes the

need to insert a zero at the end of a CRC if the preceding six bits were all ones [20 —

24].

4.4.1 GENERATOR POLYNOMIAL

For getting the better accuracy of the CRC algorithm the generator polynomial should

be chosen wisely, the polynomial should be such that the reminder after the division is

unique in every case. So the standard polynomials are used in the interface design to

ensure the 100% accuracy of the CRC algorithm.

4.4.2 CRC's FOR TOKEN

A five-bit CRC field is provided for token CRC, it covers the ADDR and ENDP fields

of all tokens. The generator polynomial is the standard one for S bit CRC is:

G(X)=X5+X2+1

The binary bit pattern that represents this polynomial is 00101 B. After appending the

checksum to the message polynomial and re calculating CRC it comes out to be

"00000B" with the same generator polynomial.

4.4.3 CRC's FOR DATA

The data CRC is a 16-bit polynomial applied over the data field of a data packet. The

generating polynomial is:

G(X)=X16+X15+X2+1

The binary bit pattern that represents this polynomial is 10000000000001018. After

appending the checksum to the message polynomial and re calculating CRC it comes

out to be "0000000000000000B" with the same generator polynomial [20 — 24].

page 22

4.5 PACKET FORMATS
This section shows packet formats for token, data, and handshake packets. Fields

within a packet are displayed in these figures in the order in which bits are shifted out

onto the bus.

4.5.1 TOKEN PACKETS
Figure 4-4 shows the field formats for a token packet. A token consists of a PID,

specifying either IN, OUT, or SETUP packet type; and ADDR and ENDP fields. For

OUT and SETUP transactions, for identifying the endpoint that will receive the

subsequent Data packet the address and endpoint are used. For IN transactions, these

fields uniquely identify which endpoint should transmit a Data packet. Most important

thing is only the host can issue token packets, because host initiates all transactions.

IN PIDs define a Data transaction from a device to the host. OUT PIDs define Data

transactions from the host to a device.

(Lsb) 	 (Msb)

PID 	 ADDR 	 ENDP 	 CRC 5

Figure 4.4 Token Packet

The last part of the token packet is a five-bit CRC that covers the address and

endpoint fields as shown above. The CRC does not cover the PID, because error in

PID is checked by its own check field. Token packets are delimited by an EOP after

three bytes of packet field data. In the end of the packet the EOP field is there this

signifies that the packet has been ended. During the EOP the D+ and D- lines of the

differential driver are both idle.

page 23

4.5.2 DATA PACKETS
The next packet after the token is the data packet. A data packet consists of a PID

which identifies that it is DATA 0 or DATA I packet, a data field containing zero or

more bytes of data, and a CRC as shown in Figure 4.5. There are two types of data

packets, identified by differing PIDs: DATAO and DATAI. Two data packet PIDs are

defined to support data toggle synchronization. That is defined later in this chapter.

depending upon the transer type

8 bits 	 0-.1C23 bytes 	 16 bets

PID f 	 DATA 	 CRCIG

Figure 4.5 Data Packet Format

Data must always be sent in integral numbers of bytes. The data CRC is computed

over only the data field in the packet and does not include the PID, which has its own

check field. CRC and EOP field are the same as in taken packet.

4.5.3 HANDSHAKE PACKETS
The third packet in the transaction is handshake packet which tells that data been

transmitted successfully or not. It consists of only a PID field. It reports the status of

the data transmission. Only transaction types that support flow control can return

handshakes. Handshakes are always returned in the handshake phase of a transaction

and may be returned, instead of data, in the data phase. Handshake packets are

delimited by an EOP after one byte of packet field.

There are mainly three types of handshake packets:

> ACK

➢ NAK

➢ STALL

ACK indicates that the data packet was received without any errors over the data field

and that the data PID was received correctly means CRC check is passed. In short the

data transmission is successful. An ACK handshake is applicable only in transactions

page 24

in which data has been transmitted and where a handshake is expected. ACK can be

returned by the host for IN transactions and by a device for OUT transactions.

NAK indicates that a function was unable to accept data from the host (OUT) or that a

function has no data to transmit to the host (IN). In short the data transmission is not

successful. NAK can only be returned by device in the data phase of IN transactions

or the handshake phase of OUT transactions. The host can never issue NAK. For

showing the NAK the host does not issue ant command, it indicate that a device is

temporarily unable to transmit or receive data hence the device recognize that host has

rejected the data and it retransmit the data.

STALL is returned by a device in response to an IN token or after the data phase of

an OUT transaction .STALL indicates that a device is unable to transmit or receive

data, or that a control pipe request is not supported. The host is not permitted to return

a STALL under any condition.

4.6 DATA TOGGLE ERRORS
The USB provides a method to ensure data sequence synchronization between data

transmitter and receiver during various transactions. This strategy provides a means of

ensuring that the handshake phase of a transaction was interpreted perfectly by both

the transmitter and receiver. Synchronization is achieved by the use of the DATAO

and DATA! PIDs and separate data toggle sequence bits for the data transmitter and

receiver. Receiver sequence bits toggle only when the receiver is able to accept data

and receives an error-free data packet with the correct data PID. Transmitter sequence

bits toggle only when the data transmitter receives a valid ACK handshake. Hence the

data transmitter and receiver must have their sequence bits synchronized at the start of

a transaction. The synchronization mechanism used varies with the transaction type.

4.6.1 SUCCESSFUL DATA TRANSACTIONS
Figure 4 - 6 shows the case where two successful transactions have encountered. For

the data transmitter, this means that it toggles its sequence bit upon receipt of ACK.

Toggle in the receiver bits occurs if it receives a valid data packet and the packet's

data PID matches the current value of its sequence bit. Toggle in the transmitter bits

page 25

occur after it receives and ACK to a data packet. If data cannot be accepted, the

receiver must issue NAK and the sequence bits of both the transmitter and receiver

remain as it is. If data can be accepted and the receiver's sequence bit matches the

PID sequence bit, then data is accepted and the sequence bit is toggled. That's why it

is called data toggle method. Two-phase transactions in which there is no data packet

leave the transmitter and receiver sequence bits unchanged.

T 	Data 0 	R 	

O)Accept

Data

Reject data 	data 	0

T 	ACK 	R 	T 	ACK 	R
1 	 1 	0 	 0

Figure 4-6 Successful data transactions

4.6.2 DATA CORRUPTED OR NOT ACCEPTED

If data cannot be accepted or the received data packet is corrupted, the receiver will

issue a NAK or STALL handshake, and the receiver will not toggle its sequence bit.

Figure 4 - 7 shows the case where a transaction is NAKed and then retried. Any non-

ACK handshake will generate similar behavior. The transmitter, having not received

an ACK handshake, will not toggle its sequence bit. Hence, a failed data packet

transaction leaves the transmitter's and receiver's sequence bits synchronized and un-

toggled. The transaction will then be retried and, if successful, will cause both

transmitter and receiver sequence bits to toggle.

page 26

T 	Data 0 	T 	Data 1

0 	 j 	0CTcctda1

T 	NAK 	R 	T 	ACK 	R
0 	 0 	1 	 1

Figure 4-7 Failed data transactions

4.7 USB DEVICE STATES

A USB device has several possible states. Some of these states are visible to the USB

and the host, while others are internal to the USB device. This section describes those

states. The states of the device can be easily seen in the Figure 4 — 8. In each active

state if there is no bus activity for bus time out then the device goes to the suspended

state. The figure describes the entire process of device configuration. The conditions

and the behavior of the states are self explanatory by their names and their presence in

the Figure 4 — 8 so no description is being provided here[28].

page 27

Figure 4-8 Device Status

page 28

CHAPTER 5

TECHNOLOGIES USED

The two main technologies which I had used in this work are

> FPGA

➢ VHDL.

The final USB interface has been developed on FPGA and VHDL is the language in

which the design is developed.

5.1 FPGAs
FIELD PROGRAMMABLE GATE ARRAY (FPGA): FPGAs came into existence

before 25 .CPLDs and FPGAs include a relatively large number of programmable

logic elements. In CPLD logic gate densities range up to tens of thousands of logic

gates, while FPGAs typically range from tens of thousands to many million. FPGA is

a semiconductor device containing programmable logic components with

programmable interconnects. These components are reprogrammable to alter the

functionality of basic logic gates such as AND, OR, XOR, NOT and moreover up to

the complex combinatorial functions simple mathematical functions. These logic

components also include memory elements. The hierarchy of programmable

interconnects allows the logic blocks of an FPGA to be interconnected per the

requirement of system designer, these logic blocks and interconnects can be

programmed after the manufacturing process by the customer/designer (hence the

term "field programmable") so that the FPGA can perform whatever logical function

is needed. Well there is a drawback also that is generally FPGAs are slower than their

counterparts' application-specific integrated circuit (ASIC), moreover they can't

handle as complex a design, and draw more power. However, there are advantages

also such as a shorter time to market, ability to re-program in the field to fix bugs, and

lower engineering costs. The basic differences between CPLDs and FPGAs are in

their architectures. A CPLD has a somewhat restrictive structure consisting of one or

more programmable sum-of-products logic arrays feeding a relatively small number

of clocked registers. Hence it is less flexible, but the advantage is more predictable

page 29

timing delays and a higher logic-to-interconnect ratio. on the other hand, The FPGA

architectures are dominated by interconnect. This makes them far more flexible but

also far more complex to design for. Another difference is in most FPGAs the

presence of higher-level embedded functions (such as adders and multipliers)[1].

5.1.1 APPLICATIONS
the applications of FPGAs are never ending which includes include DSP, aerospace

and defense systems, ASIC prototyping, imaging in medical science , computer

vision, speech recognition, bioinformatics, computer hardware emulation and a

growing range of other areas. FPGAs originally began as competitors to CPLDs and

competed in a similar space, that of glue logic for PCBs.

5.1.2 ARCHITECTURE
The typical basic architecture consists of an array of configurable logic blocks (CLBs)

and routing channels. Multiple I/O pads may fit into the height of one row or the

width of one column. Generally, all the routing channels have the same number of

wires.

An application circuit must be mapped into an FPGA with adequate resources.

The typical FPGA logic block consists of a 4-input lookup table (LUT), and a flip-

flop, as shown below[30].

Inputs ~ 4LUT
ut
	Q Flip 	Out

Clock— Flop

Figure 5 -1 Logic Block

There is only one output, which can be either the registered or the unregistered LUT

output. The logic block has four inputs for the LUT and a clock input. The locations

of the FPGA logic block pins are shown below.

page 30

i n3

in2
i n4

out

in1 	out

Figure 5 -2 Logic Block Pin Locations

5.2 VHDL
Very high speed integrated circuit (VHSIC) Hardware Description Language (HDL).

VHDL is a language for describing digital electronic systems. It comes in the

existence from United States Government's Very High Speed Integrated Circuits

(VHSIC) program, initiated 25 years ago. At that time there was a need for a standard

language for describing the structure and function of integrated circuits (ICs). Hence

the VHSIC Hardware Description Language (VHDL) was developed, and

subsequently adopted as a standard by the Institute of Electrical and Electronic

Engineers (IEEE) in the US. VHDL can fulfill a number of needs in the design

process. Firstly, it allows description of the structure of a design that is how it is

decomposed into sub-components, and how those sub- components are mapped.

Secondly, it allows the specification of the function of designs using familiar

programming language forms. Thirdly, as a result, it allows a design to be simulated

before being manufactured, so that designers can quickly compare alternatives and

test for correctness without the delay and expense of hardware prototyping [3,4,31].

5.3 DESIGN SYNTHESIS AND PROGRAMMING OF THE FPGA
Once the VHDL code has been compiled it must be synthesized. Synthesis converts

the VHDL description into a set of components these components can be assembled

in the target FPGA. Xilinx Foundation series is used as synthesizer in this process.

After the synthesis stage completes it comes to the implementation stage. The

operations that are performed in the implementation tool are to map, place and route

and "configure" the design. When the synthesis tool maps the design it takes the

synthesized primitives and allocates them to available resources on the target FPGA.

Constraints such as pin assignments can be set at this stage that is given by the user.

page 31

Once mapping is complete the implementation tool places and routes the design. The

timing constraints must be satisfied hence the logic blocks and I/O blocks used to

implement the design are chosen in order to meet any timing constraints. The final

task implemented by the synthesizing software is to form a binary file that is called

.bit file normally, which is used to program the FPGA. The program is finally

implemented on FPGA and the user can verify his results now [2].

5.4 INTRODUCTION TO THE SPARTAN II DEVELOPMENT
BOARD
The SpartanTM-II 2.5V Field-Programmable Gate Array family gives high

performance to the end user moreover abundant logic resources, and a rich feature set,

all this is available at exceptionally low price. The six-member family offers densities

of the system gates ranging from 15,000 to 200,000 .System performance is supported

up to 200 MHz. Spartan-II devices deliver more gates, I/Os. It is having included the

block RAM (to 56K bits); distributed RAM (to 75,264 bits), 16 selectable I/O

standards, and four DLLs. Successive design iterations continue to meet timing

requirements. It is a superior alternative to mask-programmed ASICs. The initial cost,

lengthy development cycles, and inherent risk of conventional ASICs are avoided in

the FPGA. Also the programmability of FPGA permits design upgrades in the field

with no hardware replacement necessary which is impossible with ASICs. Details of

features and architecture can be found in the Appendix E [30].

page 32

CHAPTER 6

BLOCK DIAGRAM AND STATE MACHINE

6.1 COMPONENTS
The USB interface I have designed is divided in 3 main components

➢ Receiver.

➢ Transmitter.

➢ USB interface.

These components work in conjunction for the correct operation of the interface. The

main component is USB interface which controls the operation of the receiver and

transmitter.

The further sections describe the details of the each component.

6.2 RECEIVER
The start of any transaction starts from the receiver because each transaction started

by the host so the receiver receives the bits forms the host and identifies the type of

transaction and all the necessary information for the successful transaction , hence

you can say the receiver is an information extractor.

The receiver performs the following tasks

➢ Detecting the start of packet (SOP).

> Decoding the NRZI encoded data from the USB bus.

> Removing stuffed bits.

> Serial to Parallel Conversion.

> 5-bit and 16-bit CRC calculation for error checking.

> Informing controller of type of transaction being conducted.

> Extracting data from the transaction and sending it to the device specific logic.

➢ Informing device specific logic of the address and endpoint that are the targets

of a USB transaction.

page 33

DERIVED CLOCK (GLOBAL)

INPUT CLOCK
PLL

BITS

DEVIDE
O~LO~'SOP DETECTOR

START
e'TS 	NRZI DECODER

CRC CRC

CLOCK DRIVER
	

5 16

STUFFED BIT
REMOVER

4 BIT PID
PID CHECKER

	
88IT PID 	DEMULTIPLXER
	

SIPO
TYPE

Figure 6 -1 Receiver Block diagram

The details of each block are described below.

page 34

➢ PLL

The first and the most important part of the receiver is a PLL (Phase Lock Loop).

Basically PLL is used for clock synchronization, in the USB interface the clock

signals of the transmitter and receiver may differ substantially so there is a lack of

synchronization between transmitter and receiver The USB cable does not provide

a separate clock signal. The receiver must somehow synchronize its clock signal

with that of the transmitter in order to receive an entire packet without

misinterpreting any information. Hence observing when signal transitions occur is

employed so that the, the receiver can tell where one bit ends and another begins

and synchronize the receiver to the incoming bit stream. This block is responsible

for clock recovery. The work of PLL is to sample the incoming data at some

sampling rate well the maximum clock frequency of the development board is

20MHz. Since data is received from the host at 1.5MHz the input can be run to the

PLL process at 6MHz allowing the receiver to sample the incoming data at 6MHz.

The PLL checks for a transition in the data being received by the receiver. If there

were a transition the output clock signal would be toggled. If there were no

transition, the PLL would detect if two input clock cycles had passed since the last

toggle of the Output clock signal. If yes, the signal would be toggled. Hence a

complete output wave is formed this way every incoming bit is sampled. For keep

tracking of when to toggle the output clock signal a counter is used. The PLL can

effectively only synchronize the USB Interface's clock phase with that of the host.

It is important to note that it does not replicate the host's exact Frequency because

the development board's clock is not fast enough. In order for the receiver not to

lose synchronization a transition on the incoming bit stream must occur on a

regular basis. NRZI encoding does not guarantee a regular Transition. (NRZI

explained below)A bit stream of only `l's results in an encoded bit stream without

transitions.

> CLOCK DRIVER
The clock driver gives the divided clock to the transmitter and the USB interface

so that the all operation can be synchronized.

page 35

➢ START OF PACKET DETECTOR
In USB the data travels in the form of packets, each packet start with a particular

start of packet sequence, so that the synchronization between the packets should

not be loosed, the work of this block is to detect the sequence "01010100" in the

received bits the actual sync is "00000001" but it is NRZI encoded as

"01010100". I update the state of the SOP on the receiving of each bit and finally

when the last state is achieved the SOP is detected. The sequence "00000001" is

chosen for ensuring the maximum transition density in the bit sequence.

➢ UPDATER
Well as the name signifies this block just updates one signal in the component.

The updater is the block which updates the state of the SOP detector o that SOP

detector can reach to its final state.

> NRZI DECODER
As I have discussed in the USB system and USN transfer protocol the received

bits must be NRZI decoded first before processing to the USB interface. The bits

sended by the host of the transmitter to the receiver are NRZI encoded; the NRZI

encoding is explained in chapter 4, so the receiver has to decode this encoded

sequence. As in NRZI the `0' is represented by a transition and `1' is represented

by no transition. In decoding if the coming bit is same as the previous one then it

is `1' else `0'.

➢ STUFFED BIT REMOVER
As I have discussed in the USB system and USN transfer protocol before NRZI

encoding the bit stuffing is done hence after NRZI decoding stuffed bit must be

removed. Bit stuffing is used for recovering the synchronization loss due to no

transition in the bits. At the receiving end the receiver has to remove the stuffed

bit , the logic used to remove this bit is to find a sequence 6 consecutive '1' or `0'

in the decoded sequence. If the sequence found the next bit is discarded because it

is stuffed one.

page 36

➢ SERIAL IN PARALLAL OUT (SIPO)
As the incoming data was parallel format so that the output should be the same

hence a SIPO is employed there for giving the parallel output. It accepts the data

in serial form after the stuffed bit has been removed and gives output 8 bits.

➢ DEMULTIPLEXER
Definitely the most important part of the receiver is the demultiplexer it the

output byte by the SIPO and the CRC are fed to the demultiplxer and depending

upon the selecting signals the various bits of the data out and CRC are allotted to

the address , endpoints , PID, CRC check fields.

➢ CRC 5
The 5-bit CRC calculator process calculates the CRC for incoming bits. If the

calculated CRC matches that sent in the packet, the receiver knows that the packet

has been received correctly. Figure 7-6 shows how the 5-bit CRC process

calculates the CRC. If the input to the CRC calculator is 1 the current value of the

CRC register is XORed with the Polynomial Xs + X2 + I before being shifter left.

Other wise the CRC register is shifted left without being XORed. The schematic

shown in the figure works because a bit XORed with 0 is equal to itself.

Figure 6-2 CRC — 5 Algorithms

page 37

➢ CRC 16

The 16-bit CRC calculator calculates the value of the 16-bit CRC for packets sent

by the transmitter. The reader may surprise that why CRC 5 is not in the

transmitter. Note that the transmitter does not have to calculate the 5-bit CRC

since this is used as a check in TOKEN packets only. The transmitter does not

send token packets. Though a 16-bit CRC will be mentioned here, for a more

detailed description refer to the website "Understand Cyclic Redundancy Check".

The 16-bit CRC checksum is applied to data packets. It works by shifting the bits

left, in the same manner as CRC 5 has done. If the present input is a `1', then the

value of the CRC register is XORed with the polynomial 1 10000000000000 100.

The CRC calculator works by shifting the data left and XORing the 15th, 14th and

3rd digits with the input because 1000000000000101B is the standard generator

polynomial. The value of the register only shifts left if the input is a 0. The data is

only changed if the input is a 1 since any bit XORed with 0 is equal to itself. A

16-bit CRC is calculated as follows. A 16-bit value is used to hold the result of the

CRC calculation. This value is initialized to `0'; it may also be initialized by `1'.

If the input bit is a `0' the value is shifted left `1' bit. If the input is a `1' the value

is shifted left 1-bit and XORed with the polynomial, X16 + X15 + XZ + 1. The

binary bit pattern that represents this polynomial is 1000000000000101B. Please

see the USB Specifications, details of which are provided in the references, for

more information on 16-bit CRC and USB.

➢ PID CHEKER
Well this is the block which is actually starting the transaction, because it tells that

the transaction is IN or OUT. Hence it is an important block from the interface

point of view. It tells the interface that which type of the packet has been received

by the receiver it ells that weather the packet is a token packet, a data packet if

data that of which type and weather it is a handshake packet. It checks the PID of

the packet and compares it with the standard one there are two types of the fields

in PID type field and the check field the check field in reverse of the PID field, it

is also error checking method. The standard valued for the PID field for different

packets are given below in the table 6 -1.

page 38

S.NO PACKET TYPE TYPE FEILD CHECK FEILD

1 SOP "1010" "0101"

2 SETUP "loll" "0100"

3 OUT "1000" "0111"

4 IN "1001" "0110"

5 DATA 0 "1100" "0011"

6 DATA 1 "1101" "0010"

7 ACK "0100" "loll"

8 NAC "0101" "1010"

9 STALL "0111" "1000"

Table 6 -1 Interpretation of PID Values

6.3 TRANSMITTER
The next component in the interface is the transmitter the transmitter starts it work

when there is an IN transaction then after the token packet the transmitter starts

sending the data packet otherwise in OUT transaction the transmitter sends only the

handshake packet , briefly I can summaries the work of the transmitter in following

tasks.

➢ Parallel to serial conversion.

➢ Bit Stuffing.

➢ Sending start of packet (sync) sequence.

➢ Calculating and sending 16-bit CRC of packet so host can do error checking.

➢ Generate the correct PID as specified by the controller.

> Allowing controller to decide what type of byte to send.

Figure 6 - 3 shows a block diagram of the key components of the transmitter.

page 39

DERIVED CLOCK (GLOBAL)

FIFO

H a U 	r
J 	G] 	 J 	 H
W
N 	 IL 	 n

MULTIPLEXER BIT 	
PID 	CRC

GENERATOR 	16

16 BIT CRC IN 8, 8 BIT FORMAT

BIT
STUFFER

NRZI
ENCODER PISO

DIFFRENTIAL
DRIVER

0

z

Figure 6-3 Transmitter Block Diagram

page 40

> NRZI ENCODER
The incoming bits are to be NRZI encoded as per the requirement of the transfer

protocol. hence I had implemented an NRZI encoder. In NRZI encoding the `0' is

represented as a transition and '1 'is represented as no transition.

> CRC 16 CALCULATOR
The 16-bit CRC calculator calculates the value of the 16-bit CRC for packets sent

by the transmitter. Note that the transmitter does not have to calculate the 5-bit

CRC since this is used as a check in TOKEN packets only. The transmitter does

not send token packets. Though a 16-bit CRC will be mentioned here, The 16-bit

CRC checksum is applied to data packets. It works by shifting the bits left. If the

present input is a 1, then the value of the CRC register is XORed with the standard

polynomial 110000000000000100. The CRC calculator works by shifting the data

left and XORing the 15th, 14th and 3rd digits with the input. The value of the

register only shifts left if the input is a 0. The data is only changed if the input is a

1 since any bit XORed with 0 is equal to itself. A 16-bit CRC is calculated as

follows. A 16-bit value is used to hold the result of the CRC calculation. This

value is initialized to 0. If the input bit is a 0 the value is shifted left 1 bit. If the

input is a 1 the value is shifted left 1-bit and XORed with the polynomial, X16 +

Xis + X2 + 1. The binary bit pattern that represents this polynomial is

10000000000001018.

> PID GENERATOR
The PID Generator is told the type of PID to generate by the interface, through the

pid_select port. The interface determines what type of PID to send after making

sure that downstream data packets have been received correctly. If data has been

received correctly, an acknowledgment (ACK) packet is sent. Otherwise a

negative acknowledgement (NAC) packet is sent. It selects the PID with the help

of an input_ select signal which is a 2 bit signal. Depending upon the value of the

signal it decides that PID is ACK or NAK.

page 42

> MULTIPLEXER
The controlling part of the transmitter from the interface point of view the

incoming data is first of all latched in the multiplexer and the depending the 3 bit

mult_select signal it select signal which is given by the interface the multiplexer

gives the byte out for the processing through the transmitter, it can be said that

multiplexer is a controller inside the transmitter itself.

> FIRST IN FIRST OUT (FIFO)
This block is not included in the USB transfer protocol this block is added for data

protection. The incoming data is first of all latched in a FIFO so that if the data

changes before going out of the transmitter then there will be no data lose hence

the transmitter work start with the byte coming out of the FIFO. Any type of FIFO

can be used synchronous and asynchronous; in the USB interface I have designed

I used a synchronous FIFO which is having width of 8 bits and depth of 16.

6.4 USB INTERFACE
The transmitter and receiver are the supporting parts to the interface the actual

component in my design is USB interface The interface forms the bridge between the

host and the controller in controls the operation of both receiver and transmitter. It

decides that what will be the data coming out and through the input to the transaction

decider it decides that what will be the type of the transaction it controls the

transmitter and receiver data paths. The controller must be able to handle the

following packet types:

> Out and In.

> Data 0 and Data 1.

➢ ACK, NAK.

There are two sub parts in the interface which are.

➢ Transaction decider.

> Controller.

6.4.1 TRANSACTION DECIDER
This is the simple block which only decides the type of the transaction will be by

simple if else logic, actually it dose not decides the transaction type transaction type is

page 43

decided by the PID type it actually decides the bit sequence to the input of the

receiver and according to the correct bit stream the PID of the token packet is decided

correctly weather it is an IN transaction or it is an OUT transaction.

6.4.2 CONTROLLER
The controller is the main part of this interface design, as the name signifies it

controls the entire process of the transaction, the transmitter and receiver works only

like a component of this controller the controller is actually a state machine. This state

machine is controlled by various signals it is a Mealy machine the next state of the

controller is dependent on the present state and the input. The data travels in the

packet form in each packet there are several stages these stages are the states of the

state machine. In each state there are some signal are^and some are reset as described

below in the description. In the block diagram shown in the Figure 6 — 4 of the

controller this can be easily seen that the controller is the block which is connected to

the every lock in the interface.

page 44

RECEIVER

W

U

TRANSACTION

U "'

C

CONTROLLER D
Q
CJJ

OUT W

~ Z

W

TRANSMITTER

Figure 6-4 USB Interface Block Diagram

W

F-

W

LL

L

The state machine is as follows.

page 45

Figure 6 — 5 USB Controller State Machine

page 46

> Sync_Tocken: - This is the reset state and after the successful transmission the

state machine returns to this state.

➢ Pid_tocken: - In this state machine checks the packet id of the token packet

and identifies that it is an IN transaction or OUT transaction.

➢ ADD: - In this the address of the USB device is been calculated and shown as

output of the interface.

Endp: - In this state the register number in the USB device is been calculated

and shown as the output of the interface.

> Crc_tocken: - In this the CRC_5 for the token packet is been checked if the

final CRC 5 is "00000" then CRC check is passed else it goes pid_tocken state

back.

> Eop_tocken: - In this state the eop pin is set hence the D_plus and D_minus

both are low for some cycles. Signifies to the host that that the token packet is

ended here.

> Sync_data: - Depending upon the type of transaction this state decides that the

synchronization sequence to be send by the receiver or the transmitter.

> Pid_data: - In this state the PID of the data packet is checked weather it is a

DATA 0 packets or DATA 1 packet.

> Data: - Depending upon the type of transaction the data byte is received from

the host or the transmitter.

> Crc data: - In this state if OUT transaction is there then CRC 16 is been

checked if it comes out to be "0000000000000000" then CRC check is passed

else the state machine returns to the data state. If IN transaction is there CRC

is not checked because it is the work of the host.

> Eop_data: - In this state the eop pin is set hence the D_plus and D_minus

both are low for some cycles. Signifies to the host that that the data packet is

ended here.

> Sync_handshake:- Depending upon the type of transaction this state decides

that the synchronization sequence to be send by the receiver or the transmitter.

> Pid_handshake: - In this state the PID of the handshake packet is checked

weather it is an ACK or NAC packet.

> Eop_handshake: - In this state the eop pin is set hence the D_plus and

D_minus both are low for some cycles. Signifies to the host that that the

handshake packet is ended here.

page 47

CHAPTER 7

IMPLEMETATION

7.1 VHDL IMPLEMENTATION
In USB interface all the transaction should be started by the host itself but here only

the interface part is implemented hence the start of the transaction is started by the

user defined bits to the receiver (because each transaction is started by the host so the

receiver has to take the bits from the host and decide further transaction). In the FPGA

board implementation the clock frequency is so high that I can not give the bits

sequence by hand so I have made a transaction decider in the interface which asks

user to tell which type of transaction he wants depending that it feds the particular bit

sequence in the receiver.

7.2 BIT SEQUENCE
The bit sequence I have made a series of 96 bits which is fed to the receiver

depending upon the type of transaction. This bit sequence is designed with taking

precaution that receiver works with NRZI decoded bits. The complete bit sequence

can be divided in several parts; there is a special bit sequence for each state. That is

described below.

➢ SYNC_TOKEN
The synchronization sequence for any packet is "00000001" but receiver works on

NRZI decoded data so before feeding this synchronization sequence the sequence

should be NRZI encoded hence it is "01010100". As shown in the Figure 7 -1

below.

page 48

Sync Pattern

NRZI

encoded
	ISync Pattern 	-- ►

Figure 7 -1 Sync_Token

➢ PIP _TOKEN

The next coming field id pid_tocken, it tells that which type of transaction it is IN

or OUT. This is the field which identifies that what type of transaction host wants

to do, for IN and OUT transaction the cases are shown below.

> For IN transaction the type field of pid_tocken is "1001" and check field

is its invert that is "0110" hence the complete byte is "10010110" and after

NRZI encoding it is "01001110" . As shown in the Figure 7 -2 below.

> For OUT transaction the type field of pid tocken is "1000" and check

field is its invert that is "0111" hence the complete byte is "10000111" and

after NRZI encoding it is "01010000" . As shown in the Figure 7 -2 below

IN 	0 1 0 0 1 1 1 0

i0000
OUT

Figure 7 — 2 Pid_Token

page 49

Address is defined as the last 7 bits of the output of the receiver. Let us select the

address "0000000" for this the NRZI encoded bit sequence is "1010101".

➢ ENDP
Endpoint is defined as the bits (0, 7, 6, and 5) of the output of the receiver, for

selecting endpoint "0000" the output of the receiver should be "000XXXXO"

hence input to the receiver in NRZI encoded form is "0101".

➢ CRC_5
The 5 bit CRC is calculated on the 11 bit data (address and endpoint) with taking

the generator polynomial G(X) = X4 + X2 + 1 the CRC for "10101010101"

comes out to be "00101".

➢ EOP TOCKEN
In this state the eop bit is set hence no need to send any bit sequence, for

maintaining the synchronization some arbitrary bits can be send.

➢ SYNC_DATA
Now data packet had been started so the first byte will be a sync byte, there may

be two cases IN and OUT.

➢ For IN transaction the sync sequence is fed by the transmitter.

➢ For OUT transaction the sync sequence is same as "01010100".

> PID_DATA
Depending upon the transaction there may be two cases.

➢ For IN transaction the pid_data field is given by the transmitter itself.

➢ For OUT transaction the pid_data field is (type field and check field) Let it

be DATA 0 then type field is "1100" and the check field is "0011" so the

complete byte is "11000011" and in NRZI encoded form "00101000".

page

5 Fc=
,~.b.~..rL

➢ DATA
Depending upon the transaction there may be two cases.

➢ For IN transaction the data is feed by the transmitter at the time of

implementation hence let take the input "11101011" = EBh...
➢ For OUT transaction let the data is "01100001" so in NRZI encoded form

it comes out to be "11101011".

➢ CRC_DATA
Depending upon the transaction there may be two cases.

➢ For IN transaction the crc_data is calculated by the transmitter on the data

bits "11101011"with the help of the generator polynomial X16 + X15 + X2 +

1 , the CRC 16 comes out to be "0000001011111010".
> For OUT transaction the crc data is been calculated on the data bits

"11101011 "with the help of the generator polynomial X16 + X15 + X2 + 1,

the CRC 16 comes out to be "0000001011111010".

➢ EOP_DATA
In this state the eop bit is set hence no need to send any bit sequence, for

maintaining the synchronization some arbitrary bits can be send.

> SYNC_HANDSHAKE
Now handshake packet had been started so the first byte will be a sync byte, there

may be two cases IN and OUT.
➢ For IN transaction the sync sequence is same as "01010100".

> For OUT transaction the sync sequence is fed by the transmitter.

> PID_HANDSHAKE
Depending upon the transaction there may be two cases.

➢ For IN transaction the pid_handshake field is (type field and check field)

Let it be ACK then type field is "0100" and the check field is "1011" so the

complete byte is "01001011" and in NRZI encoded form "11011000".

> For OUT transaction the pid_data field is given by the transmitter itself.

page 51

> EOP_HANDSAKE
In this state the eop bit is set hence no need to send any bit sequence, for

maintaining the synchronization some arbitrary bits can be send.

> FINAL BIT SEQEUNCES
Hence the final bit sequence for the OUT transaction is. Shown in Figure 7 — 3

and Figure 7-4 below.

a 	Q 	 a 	0

010101000101000010101010101001010101010010101000111010110101010000101000111010110000001001111010

	

y 	 useless bits added

	

DI 	

01
C. 	 7 	a
n 	n 	 0

y 	tr 	 CL
[0

Figure 7-3 Final Bit Sequences For OUT Transaction

And for the IN transaction.

a
la g 	 a 	 v

0 	 0 	 n
0 m

"010101000100111010101010101001010101100000000000010011101010101010101011000001010100110110001100";
'CO

	

~ 	 useless bits waiting to data packet over 	7
w 	I 	 IC)

	

o
	Oi 	 ui

	

H

	
y 	 y

 0)

W

Figure 7-3 Final Bit Sequences For IN Transaction

page 52

7.3 FPGA IMPLEMMTATION
The program has been successfully loaded on the Xilix Spartanll FPGA development

board. The done bit set on the FPGA board gives the guarantee that the results of the

VHDL program will be as it is. But the clock frequency is too high that the user can

not see the data transmission with the rapid glowing of the Leeds. So I prefer to show

the demonstration by the help of simulation because in simulation there is a facility to

see the outcome of the program at any moment, but in FPGA development board I can

not see the transaction because the transaction has been completed in milliseconds.

For seeing the output on the FPGA kit the clock dividing is a bad idea although if I

reduce the clock below 6 MHz than the interface can not be used in actual USB

communication and for seeing the LEDs 6 MHz is still too high.

page 53

CHAPTER 8

RESULTS AND DISCUSSION

For the verification of my design I have tested the output of the program and the

results at different test inputs, out of them I m showing one of the test results.

8.1 TESTING PROCEDURE
For testing the interface design as I have described in the Chapter - 7 that user has to

choose that which type of transaction he wants, he can choose either IN or OUT

transaction, initially a fast input clock has to be given to the system which will further

divided by the software itself, the reset is a global signal hence it had to be given and

the last the input for the IN transaction should be given.

Hence in start there are only 4 inputs

➢ Fast clock

➢ Reset

➢ Input

> Transaction type

For starting the transaction first of all reset pin should be set so that all the signals ,

outputs are set to be `0', the make reset `0' for starting the transaction , if user choose

transaction type is `1' then it is OUT transaction, if user choose transaction type is `0'

then it is IN transaction .

The results and discussions on them can be divided in two categories

➢ Simulation results

> Synthesis results

8.2 SIMULATION RESULTS
As I have described earlier that simulation is the best method to see the performance

of the interface design the simulation results can be seen on the platform of Active

HDL 6.1. the simulations for two types of transactions are given below.

➢ IN transaction

> OUT transaction

page 54

8.2.1 IN TRANSACTION
For IN transaction choose transaction type `0' as soon as the reset pin is `0' the bit

sequence

-0 	 a
Ia 	C 	 d a

m 	 s I')
m

"01010'100010011101010101010100101010110000000000001001110101010101010101100000'1010100110110001100";
-------------------------------- N 01 	 I

useless bits waiting to data packet over
m 	 n C, n

o 	 m 	 a.
(D 	 N
7 	 y

x

Figure 8 —1 Successful Bit Sequence For IN Transaction

starts sending 1 bit in each clock to the controller this bit sequence is particularly

designed for IN transaction let the input data be "11101011" = EBh then the output

data will be NRZI encoded and it can be seen on the D plus pin, as can be seen in the

figure clearly as soon as the SOP is detected the continue bit is set and the state

machine enters in the pid token state. The address and endpoints are "0000000" and

"0000" the crc 5 is "00000" that's indicate that CRC is matched and the CRC check

is passed. The sync_data byte is sended by the transmitter hence it can be seen on the

D_plus pin the data byte "11101011" is NRZI encoded as "00011000" which is seen

at the D_plus pin, the synch_handshake is sended by the host that is also visible at

D_plus pin .the data has been transfer successfully so the pid_handsake should be

ACK hence pid_type should be 6 according to the program. After the successful

transaction of the data the successful pin is set. Whenever the machine is in the state

of eop then for some clock cycles both D_plus and D_minus are `0' else both are

different. The result of the simulation are shown in the Figure 8 -2, reader can verify

the performance of the interface design. The red circles are points where the desired

results occur.

page 55

page 56

8.2.2 OUT TRANSACTION
For OUT transaction choose transaction type `1' as soon as the reset pin is low the bit

sequence

a Q
o 	 n 	 ~
N O N a)

010101000101000010101010101001010101010010101000111010110101010000101000111010110000001001111010

useless bits added

n N

0. n

10
10.

y I0. N

N 	 ~

Figure 8 —3 Successful Bit Sequence For OUT Transaction

starts sending I bit in each clock to the controller this bit sequence is particularly

designed for OUT transaction let the input data be "01100001" = 61h , NRZI encoded

"11101011"this data can be seen on the output pins in the data state as soon as the

data state passes its 8rt bit . As can be seen in the figure clearly as soon as the SOP is

detected the continue bit is set and the state machine enters in the pid_token state. The
address and endpoints are "0000000" and "0000" the crc_5 is "00000" that's indicate

that CRC is matched and the CRC check is passed. sync data is been sended by the

host the pid_data is "00101000" which is NRZI decoded as "11000011" = C3h which

can be seen on pid t pin. The CRC 16 is sended by the host for "11101011" it comes

out to be "0000001001111010" the CRC 16 is "0000h" hence CRC check is passed

.after that the sync_handshake, and pid_handshake signals been sended by the

transmitter that can seen on the D_plus pin . after the successful transaction of the

data the successful pin is set. whenever the machine is in the state of eop then for

some clock cycles both D plus and D minus are `0' else both are different. The result

of the simulation are shown in the Figure 8 -4, reader can verify the performance of

the interface design. The red circles are points where the desired results occur.

page 57

H 	24 a oa co:e e,

PI
I i

II 	
I

'a
•.:L . - 	n • c . 	C 	 ..- c

I o

(11 	 V
pi 	 '

. . . 	 .

	

1 	 : 	 :

. 	 . 	. 	; 	.-•• 	. 	.. 	-
:Q 	cC'O• 	3 	: 	 : c
I 	 • 	. 	! 	. 	.
I 	 i 	 ;

; 	 . 	 •

I 	: 	: 	! 	! 	•: 	 .

	

! 	! 	 :
: 	 -

i 	 .
• . 	• 	 I 	• 	; 	! 	: 	 -

. 	• 	
; 	 i 	, 	 , 	. 	 •0

	

. 	 . 	. 	• 	 ".
: 	• 	• 	. 	: 	! 	 : 	: 	! 	-

. 	: 	

l

rt

Figure 8-4 Simulation result for OUT transaction.

page 58

8.3 SYNTHESIS RESULTS
the program has been successfully synthesized and the then it had been translated,

mapped, placed and routed also successfully on Xilinx FPGA Spartan II development

Board. The RTL view of the design can be seen in the Appendix B. In reset condition

it displays the reset and in IN or OUT transaction condition the transfer is so fast that

one can not the blinking of the LEDs so only D_plus, D_minus and successful pin

values can be seen in the board. LEDs.

8.4 DEVICE UTILIZATION SUMMARY
Selected Device: 2s200pg208-5

Number of Slices:

Number of Slice Flip Flops:

Number of 4 input LUTs:

Number of bonded IOBs:

Number of GCLKs:

468 out of 2352 19%

568 out of 4704 12%

597 out of 4704 12%

34 	out of 144 23%

2 	out of 4 50%

page 59

CHAPTER 9

CONCLUSION AND FUTURE SCOPE

9.1 CONCLUSIONS
After seeing the simulation results and the implementation on the development board

it can be concluded that the USB interface has been implemented successfully and

designs provides an interface for "system on a chip" designers to connect to a USB

bus. This will save their designing time and the time required debugging and testing a

USB Controller if they were to implement the functionality of the interface

themselves. This design can be used for the develop board like Altera or Xilinx. The

electronic industries race to reduce the size of devices has led to the design of entire

systems on a . chip. The USB standard has made attaching peripherals to PCs

incredibly simple. These trends of "System on a Chip" and the rising popularity of

USB is the basis of this thesis. Due to the limited clock frequency of the FPGA

development board used for this thesis only low speed USB was implemented. Low

speed USB has a maximum bandwidth of 1.5 MHz. although a high speed USB

interface can easily be developed with slight alteration in the design.

The word multi-purpose signifies itself because this interface can be used to

transfer data in both IN and OUT direction. Moreover any peripheral can be attached

to transfer the data just after parallel port interface is ready The three components in

the interface design which are

➢ Transmitter

> Receiver

> \ USB Interface

works in synchronization so that no bit is loosed hence the interface work for data

protection also, more over one FIFO is also implemented in the transmitter

component so that if the data changes before the data packet starts then the previous

data should not be loosed hence the FIFO implementation approach is also helpful in

data protection, this FIFO approach is not present USB transfer protocol hence it may

be considered as an added advantage in the interface design. A PLL has been

implemented in the receiver component which synchronize the all parts of the

page 60

interface moreover due to the dynamic clock management in the PLL it also helps in

power saving.

For the testing and verification of the design the simulation results and the

synthesis results are placed in the report user can verify the design for its own data.

This thesis helped tremendously for understanding the USB protocol and its

working, and my VHDL knowledge is greatly enhanced because of writing the code

for the interface design, near about all major tools of VHDL has been used in the

design.

9.2 FUTURE SCOPE OF WORK
Well nothing in this world is finally completed and modifications and developments

are available to every work, so my work also, 	h€rr. i4 few modifications

and some more developing works which can be added to this thesis in future.

➢ In this interface the design asks user to tell the type of transaction initially well

if the parallel port interface is implemented then through the parallel port user

can send his data with the bit sequence in this case the user don't want to tell

that what type of transaction he wants, his bit sequence will automatically

detect the type of transaction.

➢ After the data is present on the Dplus and D minus pins the data can be

placed to USB port through the USB cable. Sc~l ca/ dad `Ic7 Oc<ur..v~.

➢ For seeing the actual data transfer to some computer a device driver should be

written , it can be written Linux, actually the USB device drivers are freely

available with windows software but this design has some limitations and

modification so a different device driver has to be written. Well this

modification is beyond the scope of this topic.

➢ This designs is limited to only low speed data transfer because the clock

frequency is limited so it can not use Isochronous data transfer , using the

Altera development board the full speed interface can be made.

➢ An ADC can be implemented instead a parallel port interface so that any

peripheral can be attached to design to transfer the data.

page 61

REFRENCES

FPGA Research at the University of Toronto, performs research in FPGA
ASIC and CAD, HTTP:
http://www.eecg.toronto.edu/EECG /RESEARCWFPGA.html

2. Mentor Graphics ,"FPGA ADVANTAGE, Design, simulation and
systhesis"HTTP:
http://www.mentor.com/products/fpga pld/fpga advantage/
index.cfm?v=google&p=adwords_fpga&s= l x 1 &g=fpga&c=fpga_ocid_7 1 2b_
cfp_581._ceid 20-1x1-&asid=260

Perry, D. L. 2004. VHDL: Programming By Example, 4th ed. New York:
McGraw-Hill Companies inc.

4. Bhasker, J. 1997. A VHDL Primer. Allentown, PA: Star Galaxy Press

5. Wakerly, J. F. 2000. Digital Design: Principles and Practices, 3rd ed. Upper
Saddle River, NJ: Printice Hall.

6. Mano, M. M. 2001. Digital Design, 3`d ed. Upper Saddle River, NJ: Printice
Hall

7. FPGA World "Demos on Demand" [Online Demos are available by vendors of
VLSI firm, HTTP:
htt//www.demosondemand.com/dod/

8. CTU Prague, Faculty of Electrical Engineering Department of Computer
Science and Engineering "FPGA IMPLEMENTATION OF USB 1.1 DEVICE
CORE" Karlovo namesti 13, Praha 2
h.ttp://service.felk.cvut.cz

9. USB on-the-go interface for portable devices
Remple, T.B.;
Consumer Electronics, 2003. ICCE. 2003 IEEE International Conference on
17-19 June 2003 Page(s):8 - 9

10. The design of a USB device controller IYOYOYO
Kouyama, T.; Nano, H.; Kon, C.; Shimizu, N.;
Design Automation Conference, 2003. Proceedings of the ASP-DAC 2003.
Asia and South Pacific
21-24 Jan. 2003 Page(s):573 — 574

11. USB on-the-go interface for portable devices
Remple, T.B.;

page 62

Consumer Electronics, 2003. ICCE. 2003 IEEE International Conference on
17-19 June 2003 Page(s):8 - 9

12. Universal serial bus implementation in an integrated access chip for ISDN
systems
Cruickshank, H.; Sun, Z.; Fan, Z.;
Communications, IEE Proceedings-
Volume 148, Issue 4, Aug. 2001 Page(s):207 —211

13. Universal serial bus (USB) to universal interface using field programmable
gate arrays (FPGA) to mimic traditional hardware [military aircraft testing
applications]
Stong, N.;
AUTOTESTCON 2003. IEEE Systems Readiness Technology Conference.
Proceedings
22-25 Sept. 2003 Page(s):386 — 391

14. USB printer driver development for handheld devices
Damodharan, T.K.; Rhymend Uthariaraj, V.;
Information Technology Interfaces, 2004. 26th International Conference on
2004 Page(s):599 - 602 Vol.1

15. A microcontroller based data acquisition system with USB interface
Popal, M.; Marcu, M.; Popa, A.S.;
Electrical, Electronic and Computer Engineering, 2004. ICEEC '04. 2004
International Conference on
5-7 Sept. 2004 Page(s):206 - 209

16. Advanced low power system design techniques using the universal serial bus
microcontroller
Hathaway, T.; Verma, V.;
Northcon/96
4-6 Nov. 1996 Page(s):270 — 274

17. A cyclic-executive-based QoS guarantee over USB
Chih-Yuan Huang; Li-Pin Chang; Tei-Wei Kuo;
Real-Time and Embedded Technology and Applications Symposium, 2003.
Proceedings. The 9th IEEE
27-30 May 2003 Page(s):88 — 95

18. Universal serial bus (USB) power management
Lynn, K.;
WESCON/98
15-17 Sept. 1998 Page(s):194 — 201

19. Universal serial bus (USB) power management
Lynn, K.;
WESCON/97. Conference Proceedings
4-6 Nov. 1997 Page(s):434 - 441

page 63

20. Interleaved cyclic redundancy check (CRC) code
Jun Jin Kong; Parhi, K.K.;
Signals, Systems and Computers, 2003. Conference Record of the Thirty-
Seventh Asilomar Conference on
Volume 2, 9-12 Nov. 2003 Page(s):2137 - 2141 Vol.2

21. Hardware design and VLSI implementation of a byte-wise CRC generator
chip
Sait, S.M.; Hasan, W.;
Consumer Electronics, IEEE Transactions on
Volume 41, Issue 1, Feb. 1995 Page(s):195 — 200

22. Single bit error correction implementation in CRC-16 on FPGA
Shukla, S.; Bergmann, N.W.;
Field-Programmable Technology, 2004. Proceedings. 2004 IEEE International
Conference on
2004 Page(s):319 — 322

23. Cyclic redundancy code (CRC) polynomial selection for embedded networks
Koopman, P.; Chakravarty, T.;
Dependable Systems and Networks, 2004 International Conference on
28 June-1 July 2004 Page(s):145 — 154

24. A tutorial on CRC computations
Ramabadran, T.V.; Gaitonde, S.S.;
Micro, IEEE
Volume 8, Issue 4, Aug. 1988 Page(s):62 — 75

25. High-speed parallel CRC circuits in VLSI
Pei, T.-B.; Zukowski, C.;
Communications, IEEE Transactions on
Volume 40, Issue 4, April 1992 Page(s):653 — 657

26. Dynamic Clock Management for Low Power application in FPGAs
Ian Brynjolfson and Zeljko Zilic
Deratment of Electrical Engineering , McGill University
Montreal, quebec, Canada.

27. Dynamic Speed-Setting of a Low-Power CPU", Proceedings of 1st
ACMIntenwtionul Conference on Mobile Computing and Networking,
1995.

28. USB specification 1.1, September 1998:
http://www.usb.ora

29. ANDERSON, D.:Universal serial bus system architecture' (Mind-
Share Inc., 1997) ISBN 0-201-46137-4

30. Xilinx application notes at
htn://www.xilinx.com

page 64

31. Ashenden P.J. 1997 "The VHDL Cookbook" Morgan Kaufmann Publishers
http://www.cs.ade1aide.edu.au/-petera.

page 65

APPENDIX

page 66

APPENDIX A
TIMING SIMULATION

WAVEFORMS

page 67

u -

11 a
0 . to 0

WO

21

. a 	oco - 	-O 0) 	0.

V

rn - P - -

to

1!. C.

.• fl: .

CD

C.
C

Figure AA -1 Timing Simulation Waveform

page 68

U;L

777+ W

:1k

a
Ii
 XT

APPENDIX B
RTL VIEW

page 69

Figure AB -1 RTL VIEW PART -1

page 70

to

ON H
18

Figure AB -2 RTL VIEW PART -2

page 71

APPENDIX C
PID TYPE AND HANDSHAKE

RESPONSE

page 72

PID Type PID Name PED[3:Q]" Description

Token OUT 0001 B Address + endpoint number in host-to-function
transaction

1#V 1001 B Address + endpoint number in function-to-host
transaction

SOF 0101 B Start-of-Frame marker and frame number

SETUP 11016 Address + endpoint number in host-to-function
transaction for SETUP to a control pipe

Data DATAO 00118 Data packet PID even

DATA1 1011 B Data packet PID odd

Handshake ACK 0010E Receiver accepts error-free data packet

NAK 1010E Rx device cannot accept data or Tx device cannot send
data

STALL 11108 Endpoint is halted or a control pipe request is not
supported.

Special PRE 11008 Host-issued preamble. Enables downstream bus traffic
to low-speed devices.

Table AC - 1 Types of PIDs and their description.

Token Received
Corrupted

Function Tx
Endpoint Halt
Feature

Function Can
Transmit Data

Action Taken

Yes Don't care Don't care Return no response

No Set Don't care Issue STALL handshake

No Not set No Issue NAK handshake

No Not set Yes issue data packet

Table AC -2 Device Responses To IN Transactions

page 73

Data Packet
Corrupted

Host Can
Accept Data

Handshake Returned by Host

Yes: N/A Discard data, return no response

No No Discard data, return no response.

No Yes Accept data, issue. ACK

Table AC - 3 Host Responses To IN Transactions

Data Packet
Corrupted

Receiver
Halt
Feature

Sequence Bits
Match

Function Can
Accept Data

Handshake Returned
by Function

Yes N/A N/A N/A None

No Set N/A N/A STALL

No Not set No N/A ACK

No Not set Yes Yes ACK

No Not set Yes No NAK

Table AC —4 Device Responses to an OUT Transaction

page 74

APPENDIX D
DEVICE STATUS

page 75

Atta Powe Def Addr Config Suspen State

ched red ault ess ured ded

NO - - - - - Device is not attached to the
USB. Other attributes are not
significant.

YES NO - - - - Device is attached to the USB,
but 	is 	not 	powered. 	Other
attributes are not significant.

YES YES NO - - - Device is attached to the USB
and powered, but has not been
reset.

YES YES YES NO - - Device is attached to the USB
and powered and has been reset,
but has not been assigned a
unique address. Device responds
at the default address.

YES YES YES YES NO - Device is attached to the USB,
powered, has been reset, and a
unique device address has been
assigned. 	Device 	is 	not
configured.

YES YES YES YES YES NO Device is attached to the USB,
powered, has been reset, has a
unique address, is 	configured,
and is not suspended. The host
may 	now 	use 	the 	function
provided by the device.

YES YES - - - YES Device is, at minimum, attached
to the USB and is powered and
has not seen bus activity for 3
ms. It may also have a unique
address and be configured for
use. 	However, 	because 	the
device is suspended, the host
may 	not 	use 	the 	device's
function.

Table AD —1 Device Status

page 76

APPENDIX E
SPARTAN-II 2.5V FPGA FAMILY

page 77

FEATURES
1. Second generation ASIC replacement technology.

➢ Densities as high as 5,292 logic cells with up to 200,000 system gates.

➢ Streamlined features based on Virtex architecture.

> Unlimited reprogrammability.

> Very low cost.

➢ Advanced 0.18 micron process.

2. System level features

> Select RAM+TM hierarchical memory:

➢ 16 bits/LUT distributed RAM

➢ Configurable 4K bit block RAM
➢ Fast interfaces to external RAM

➢ Fully PCI compliant

> Low-power segmented routing architecture

➢ Full read back ability for verification/observability

> Dedicated carry logic for high-speed arithmetic

➢ Efficient multiplier support

> Cascade chain for wide-input functions

> Abundant registers/latches with enable, set, reset

➢ Four dedicated DLLs for advanced clock control

> Four primary low-skew global clock distribution nets

➢ IEEE 1149.1 compatible boundary scan logic

3. Versatile I/O and packaging

> Pb-free package options

> Low-cost packages available in all densities

> Family footprint compatibility in common packages

> 16 high-performance interface standards

> Hot swap Compact PCI friendly

> Zero hold time simplifies system timing
4. Fully supported by powerful Xilinx development system

> Foundation ISE Series: Fully integrated software

> Alliance Series: For use with third-party tools

> Fully automatic mapping, placement, and routing

page 78

GENERAL OVERVIEW
The Spartan-II family of FPGAs have a regular, flexible, programmable architecture

of Configurable Logic Blocks (CLBs), surrounded by a perimeter of programmable

Input/Output Blocks (IOBs). There are four Delay-Locked Loops (DLLs), one at each

corner of the die. Two columns of block RAM lie on opposite sides of the die,

between the CLBs and the IOB columns. These functional elements are

interconnected by a powerful hierarchy of versatile routing channels (see Figure AE -

1). Spartan-II FPGAs are customized by loading configuration data into internal static

memory cells. Unlimited reprogramming cycles are possible with this approach.
Stored values in these cells determine logic functions and interconnections

implemented in the FPGA. Configuration data can be read from an external serial

PROM (master serial mode), or written into the FPGA in slave serial, slave parallel,
or Boundary Scan modes. Spartan-II FPGAs are typically used in high-volume

applications where the versatility of a fast programmable solution adds benefits.
Spartan-II FPGAs are ideal for shortening product development cycles while offering

a cost-effective solution for high volume production. Spartan-II FPGAs achieve high-

performance, low-cost operation through advanced architecture and semiconductor

technology. Spartan-II devices provide system clock rates up to 200 MHz. Spartan-II

FPGAs offer the most cost-effective solution while maintaining leading edge

performance. In addition to the conventional benefits of high-volume programmable

logic solutions, Spartan-II FPGAs also offer on-chip synchronous single-port and

dual-port RAM (block and distributed form), DLL clock drivers, programmable set

and reset on all flip-flops, fast carry logic, and many other features.

page 79

U U1 .J 	Iju .1..

i

.. I I U 11.1.1. Ullu..

!.NI"I_IIIn-.
EEIIII milli uiHull

Bpi X I I 	go
EE

•1 :!
Bill 	11 •

• L.0 — —1 • —.
__

liii, lull
IntoUIUUiU

VO LOGIC 	 XC2515

Figure AE -1: Basic Spartan-11 Family FPGA Block Diagram

ARCHITECTURAL DESCRIPTION

Spartan-11 Array
The Spartan-IT user-programmable gate array, shown in Figure AE- 1, is composed of

five major configurable elements:

> JOBs provide the interface between the package pins and the internal logic

CLBs provide the functional elements for constructing most logic

Dedicated block RAM memories of 4096 bits each

> Clock DLLs for clock-distribution delay compensation and clock domain

control

Versatile multi-level interconnects structure.

As can be seen in Figure AE -1, the CLBs form the central logic structure with easy

access to all support and routing structures. The JOBs are located around all the logic

page 80

G4

03

02

G1

FS1N

By

SR

F4

F3

F2

F1

BX

CIN

CLK

CE

COUT

YB

EH

Figure AE -3: Spartan-11 CLB. Slice (two identical slices in each CLB)

page 82

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Reference
	Appendix

