
IMPLEMENTATION OF
FIR FILTER IN FPGA

A DISSERTATION
. Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

ELECTRICAL ENGINEERING
(With Specialization in System Engineering & Operations Research)

By

DEVARA DILIP KUMAR

Jr
CIS

J~C of rECHryaX01

LL 	WSJ ~~ ~ ~ ~ ~ ~n~.~►

DEPARTMENT OF ELECTRICAL- ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2006

CONTENTS

Chapter 	 Topic 	 Page No.

CANDIDATE'S DECLARATION

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF FIGURES

1. INTRODUCTION TO FIR FILTER 1
1.1 Scope of the Report .4

1.2 Organization of the Report 4

2 FIR Filter Structures and Design

2.1 Z Transform 6

2.2 Filter Structures 8•

2.2.1 	Direct Structures 9

2.2.2 	Cascade Decomposition 10

2.2.3 	Parallel Decomposition 12

2.2.4 	Distributed Arithmetic Approach 13

2.3 Approximating the Filter Coefficients 16

2.4 Windowing Techniques 19

3 Implementing the filter in FPGA 21

3.1 Choosing the Filter structure 21

3.2 Data Representation 22

3.3 Implementing Cascade Decomposition 24

3.3.1 Algorithm Implementing Cascade

Decomposition 25

3.4 Implementing the Distributed Arithmetic

approach in FPGA 	 27

3.4.1 Algorithm implementing the

Distributed Arithmetic approach 	30

4 	Simulation Results 	 31

5 	Overview of Virtex 2 Pro and the Kit 	38

6. 	Conclusion and Future scope of work 	51

6.1 Conclusions 	 51

6.2 Future scope of work 	 51

References 	 52

INDIAN INSTITUTE OF TECHNOLOGY
ROORKEE-247667

CANDIDATE'S DECLARATION

I hereby declare that the work, which is being presented in this dissertation

entitled "Implementation of FIR filter in FPGA" in the partial fulfillment of the

requirement for the award of the degree of Master of Technology in Electrical

Engineering with specialization in System Engineering and Operation Research,

submitted in the Department of Electrical Engineering, Indian Institute of

Technology Roorkee, Roorkee, is an authentic record of my own work carried out

during July 2005 to June 2006 under the supervision of Dr. Indra Gupta, Assistant

Professor and Prof. M. K. Vasantha, Professor, Department of Electrical Engineering,

IIT Roorkee, Roorkee.

I have not submitted the matter embodied in this dissertation .for award of any

other degree.

Date: 30to 6 f 100 6
	

(Devara Dilip Kumar)

Place: Roorkee

CERTIFICATE

This is to certify that the above statement made by the candidate is true to the best

of my knowledge and belief.

Vq

Prof. . K. Vasantha

Department of Electrical Engineering,
Indian Institute of Technology Roorkee.
Roorkee — 247667.

Asstt. Professor,
Department of Electrical Engineering,

Indian Institute of Technology Roorkee.
Roorkee-247667.

ACKNOWLEDGEMENTS

I take this opportunity to express my sincere gratitude to Prof. M.K. Vasantha,

Professor, and Dr.- Indra Gupta, Asstt. Professor, Department of Electrical

Engineering, IIT Roorkee, for encouraging me to undertake this dissertation as

well as providing me their valuable guidance and inspirational support.

I consider myself fortunate for getting the opportunity to learn and work under

their able supervision. They provided me the latest technology to work on and

state of the art facilities and equipments at the lab. Their able guided ensured me

that I should not have any lack of resources while carrying out my thesis work. I

have deep sense of admiration for their innate kindness and enthusiasm. Working

under their guidance will always remain a cherished experience. I once again

thank Prof. M.K. Vasantha for allowing me to attend the classes of course,

"Advance Computer Control Systems" which helped me a lot in the dissertation

work.

I also thank all the teachers of SEOR group who, with their encouraging and

caring words, constructive criticism and suggestions, have contributed directly or

indirectly in a significant way towards the completion of this report.

I am especially thankful to Mr, Solomon Raju, Research Scholar, Dept of

Electronics and Computer Engg, IIT Roorkee, for his valuable guidance in

working with the Virtex 2 Pro kit.

I also thank Mr. Vishal Saxena and Mr. Vijender Singh, Research Scholar, for

extending their kindness in every aspect during my time spent in Lab.

I am thankful to Mr. Kalyan Singh and Mr. C.M. Joshi, Laboratory staff of

Microprocessor & Computer Lab for providing me their co-operation in the time

of need.

I also thank all my friends who have encouraged me and gave valuable

suggestions in my thesis work.

Most of all, I thank the God Almighty for providing me His grace and help in all

my work.

Devara Dilip Kumar

ABSTRACT

The Finite Impulse Response (FIR) filter is a digital filter widely used in Digital

Signal Processing applications in various fields like imaging, instrumentation,

communications, etc. Programmable digital signal processors (PDSPs) can be used

in implementing the FIR filter. However, in realizing a large-order filter many

complex computations are needed which affects the performance of the common

digital signal processors in terms of speed, cost, flexibility, etc.

Field-Programmable gate Array (FPGA) has become an extremely cost-effective

means of off-loading computationally intensive digital signal processing

algorithms to improve overall system performance. The FIR filter implementation

in FPGA, utilizing the dedicated hardware resources can effectively achieve

application-specific integrated circuit (ASIC)-like performance while reducing

development time, cost and risks.

In this thesis, an Eight-order low-pass FIR filter is implemented in FPGA. Two

different known approaches in the filter theory are used in this implementation.

Firstly,. Cascade Decomposition is considered which overcomes the coefficient-

sensitivity problem prevalent in FIR Direct Structures. However, this approach

requires more number of complex multiplications than the FIR Direct structures

that limits the speed of operation in real-time. Secondly, Distributed Arithmetic

approach in realizing a digital filter is considered. This approach gives a better

performance than the common filter structures in terms of speed of operation, cost

and power consumption in real-time. It replaces the uses of - complex

multiplications by using Adders, Shift Registers and Look-Up Tables. The FIR

filter is implemented in Virtex-2-Pro FPGA and simulated with the help of Xilinx

ISE (Integrated Software Environment)..

List of Figures

Figure 	 Page No:

1.1: Digital Filter as a system 1

2.1 Basic Block elements 8

2.2 Direct Structures 9

2.3 Signal Flow Diagram of Direct Structures 10

2.5.1 Block Representation of Parallel Decomposition 12

2.5.2 Signal Flow Diagram for parallel Decomposition 13

2.6: Basic Block diagram of Distributed Arithmetic approach 16

2.7: Ideal magnitude response of Low-Pass filter 18

3.1 Fixed-Point Representation 22

3.2.1 Block structure of Eight-order Cascade Decomposition 25

3.2.2 Signal Flow Diagram of Eight-order Cascade Decomposition 25

3.3 Block Diagram for an Eight-order filter using DA approach 29

3.4 Contents of three Look-Up-Tables 29

5.1 Virtex-2Pro ordering information 38

5.2 Virtex2Pro board Flash PROM .45
5.3 Virtex-2 Pro board SRAM 45

5.4 Virtex2Pro Board 50

Chapter 1: INTRODUCTION TO FIR FILTER

Digital Filter as a system can be represented in the form, of a block diagram as

shown in Figure 1.1 The input x(nT) _ to the Digital Filter is the sampled input

coming from the Analog-Digital converter. The output y(nT) ' which is the

response of the system is again the digital data going as input to the. Digital--

Analog converter.

x(nT 	Digital Filter 	 y(nT)

Figure 1.1: Digital Filter as a system

The output or response of such a system is related to the input by some function in

accordance with the required specifications. The response can be given as

y(n7) =Rx(nT) 	 _ 	..(1.1)
where R is an operator performing desired operation:

Some. of the important properties in analyzing any system are Time-Invariance,

Causality and Linearity which are mentioned below:

A Digital Filter is said to be time-invariant if the internal parameters do not

change with time, which means for a specific input or excitation the response will

be the same independent of the time of application of the input.

A Digital Filter is said to be Causal if its response at a specific instant is

independent of subsequent values of the excitation, which means the response is

-dependent on the current and past values of the input samples.

A Digital Filter is said to be Linear if it possesses the property of Superposition

which says that if an input consists of weighted sum of several signals, then the

I

output is the superposition or the weighted sum of the responses of the system to

each of the signals.

A Digital Filter is characterized in terms of Difference equations. There are two

types of Digital Filters, they are Non-Recursive and Recursive filters which are

characterized based on their responses.

The response of a non-recursive filter at any instant depends on the present, past

and future values of the input. At any specific instant nT. the response is of the

form

y(nT) = f(....,x (nT—T), x (nT), x (nT+T),....)
Assuming Linearity and Time-invariance y(nT) can be expressed as

00
y(nT) = 	a i x(nT — iT)

•.(1.2)

..(1.3)

where 'a1 's represents constants.

Now assuming causality for the filter we have

a_1 = a_2 = ... = 0

In addition, assuming a _ 0 for i > N the response can be written as Nth-order

Linear Difference equation given as:

N
y(nT) _ 	ai x (nT — iT)

=o
..(1.4)

Such a linear, time-invariant, causal, non-recursive filter represented as Nth-order

linear difference equation is called the Finite Impulse Response (FIR) filter.

2

In contrast to this filter, the response of a causal recursive filter is a function of

elements consisting of past, present inputs and past outputs. It is expressed in Nth-

order linear difference equation as

N 	 N

y(n7) =a x(nT—iT) —L b y(nT—iT)

When a unit impulse defined as

S(n7) _ {0 for n=0
for n ~ 0

is applied to the system described by Equation (1.4), then the response, which is

nothing but the impulse response h(nT) is given as
N

h(nT) =
=o

ai15(nT — iT) ..(1.6)

From the above equation it can be inferred that the impulse response is finite and

also from the property of the impulse function we can see that the constants 'a• 'S

are nothing but the samples of the impulse response. That means

h (0) = ao ,

h(T)=a1 h (nT) = an 	..(1.7)
These constants are called the filter coefficients. They determine the type of the

filter, whether it is Low-pass, or High-pass, etc. Thus in filter design it is always

important to find the filter coefficients which mostly approximates the desired
response.

In general, one can view Equation (1.4) as a computational procedure (an

algorithm) to determine the output sequence y(nT) from the input sequence x(nT).
Also, in various ways, the computations in Equation (1.4) can be arranged into

equivalent sets of difference equations. Normally such a kind of re-arrangement of

the basic difference equation is done, so as to gain benefits in-terms of memory,

3

time-delays, computational complexity, etc. before implementing the system in the

computer. Each set of equations defines a computational procedure or an

algorithm for implementing it in a digital computer system.

From these set of difference equations we can construct a block diagram

consisting of an interconnection including delay elements, multipliers, and adders.

Such a block diagram can be further analyzed in terms of signal flow diagrams.

Such a block diagram can be referred as a realization of the system or in other

words as a structure for realizing the system. These structures are nothing but the

Filter structures.

One of the limitations of the FIR filter is that the order of the filter is generally

large in order to meet the desired specifications of the filter. As the filter order is

increased the computational complexity is more which may limit the frequency of

operation.

Traditionally, Digital Signal Processing algorithms (DSP) are implemented either

using 	general 	purpose 	DSP 	processors 	purpose 	DSP

processors (low speed, less expensive, flexible) or using Application Specific

Integrated Circuits (ASIC) which offer high speed but are expensive• and -less
flexible.

An alternate approach is to use Field Programmable Gate Arrays (FPGA) as they

provide solutions that maintain both the advantages of the approach based on DSP

processors and the approach based on ASICs.

M

Since many current FPGA architectures are in-system programmable, the
configuration of the device may be changed to implement different functionality if

required.

1.1 Scope of the Report

The report is mainly concentrated on implementing a Low-pass FIR filter. An
Eight-order filter is taken as an example for the implementation. There are many
realizations of FIR filters. Two such realizations, Cascade decomposition and
Distributed Arithmetic approach are simulated in the thesis. The first part of the
report describes the theory behind the FIR filters. In the first part, a brief
explanation of few of the filter structures and the design of the filter is discussed.
The second part mainly concentrates' on implementing filter in FPGA. The data
storage u. 	= - 	-~ _ °- _ ` . 	-; f is)also described in this section.

1.2 Organization of the Thesis

Chapter 2 	discusses the 'some of the filter structures like Direct structures,
cascaded and parallel decomposition and an alternative approach Distributed
Arithmetic approach for the implementation of the filter in FPGA.

Chapter 3 discusses, which filter structure to choose, the data storage of input
samples and the coefficients, how the truncation operation is done. Two filter
structures, cascade decomposition and using Distributed Arithmetic approach are
considered in the thesis, and how they are implemented in FPGA is discussed.

Chapter 4 shows the simulation results
Chapter 5 discusses about Virtex 2 Pro FPGA and the kit used.

5

Chapter 2: FIR Filter Structures and Design

Introduction
The analysis of linear, time-invariant digital filter is generally carried out by using

the Z-transforms. A brief review of the Z-transform is presented. The filter

structures characterizing the difference equations are represented using basic

elements such as multipliers, time-delays and adders. The characteristics of an

ideal digital filter and the design using windowing techniques are given. Finally,

the four different cases where an FIR filter presents linear-phase is included in this

chapter.

2.1 Z. Transform

The Z-transform is very useful role in the analysis and characterization of the

linear time-invariant systems. This is because the difference equations

characterizing the discrete system are transformed into algebraic equations which

are much easier to manipulate.

The two sided Z-transform of discrete-time function f(nT) is given as
00

F (Z) = I 	 .- f (nT) Z. 	 Equation (2.1)

for all z for which F(z) converges. Here the argument z is a complex variable.

Some important properties of the Z-transform such as Linearity, Translation and

Convolution are given as below:

If a and b are arbitrary constants and f(nT) and g(nT) are arbitrary functions such

that

Z f(n T) = F(z) and Z g(n 7) = G(z) then for

on

Linearity:

Z[af(nT)+bg(nT)] = aF(z)+bG(z) Equation (2.2

Translation:

Zf(nT+mT)=zm F(z) 	Equation (2.3)

Convolution:

)g (nT kT)= F(z) G(z) ... Equation (2.4)
k=—m

The above properties are useful in deriving the transfer function of the filter.
Now, evaluating the Z-transform on Equation (1.4) we obtain,

N
Z jy(nT)j = Z L ai x (nT — iT)

i=o

By using the time translation property and the convolution property of Z-
transform, Equation (1.4) can be re-arranged as

N
Y(z) _ X(Z)~ alz -Z

=o

Or, Y(z) = H(z) . X (z) where 	 ...Equation (2.5)
N

—i a.z
i = o

...Equation (2.6)

where H (z), X (z), Y (z) are the Z-transforms of Impulse Response, Input
samples and Output samples.
H(z) is called the transfer function of the filter and the time-domain samples of this
transfer function, which are the filter coefficients are approximated according to
the desired response.

VA

BASIC ELEMENTS 	BLOCK REPRESESENTATION
	SIGNAL FLOW DIAGRAM

xi nT) 	 x►(nfl

ADDER x2 (n

,c 	• + 	y(nT)

N

.y (nT) _ 	X k (nT)

TIME-DELAY x(nT) 	 x(nT-1) 	x(nT) 	x(nT -1)

m

MULTIPLIER x(nT) 	 m * x(nT) 	x(nT) 	m 	m.x(nT)

Figure (2.1): Basic Block elements

2.2 Filter Structures

The computational algorithm implementing Equation (1.4) of an FIR filter can be

conveniently represented in block diagram. It is done using the basic building

blocks elements such as Multipliers, Adders and Unit Delays. These basic block

elements and their equivalent Signal Flow Diagrams are as shown in*Figure (2.1).

—/ .?'1

z-"

This way of presenting the difference equations in the form of block diagram and

signal flow diagram makes us easy to write an algorithm which can be

implemented in the digital computer

2.2.1 Direct Structures

Direct structures for the Digital filter are those in which the real filter coefficients,

appear as multipliers in the block diagram representation. If X(z) is the filter input

and Y(z) is the filter output then the transfer function H(z)is given as

H z = x(Z) 	aiz 	 ...Equation (2.7)
l=o

There are four Direct structures which are different realizations of Equation (2.7).

The first Direct structure only is presented here and is as shown in Figure (2.2)

Figure 2.2: Direct Structures

The 1-D structure is also called canonical because it possesses n-time delay

elements. The signalflow diagram of this structure is as shown below in

Figure (2:3).

	

x(nT) Z -1 	Z -2 	 Z —(n — I) 	z —n

a 	al

Figure 2.3: Signal Flow Diagram of Direct Structures

As seen from the Signal Flow Diagram the above representation requires "n"

Delay elements, "n + 1" multipliers and "n" adders to implement in the digital

computer.

The above structure suffers extreme coefficient sensitivity as the value of grows

large. That is a small change in a coefficient for large value of n causes large

changes in the zeroes of H(z).

2.2.2 Cascade Decomposition:

A Cascade realization is done by cascading Second order modules. A second-order

module is given as:

H0 (z)_
a01

+a01Z 1+a01z 2

For realization of this structure Equation (2.7) is factorized and the obtained

factorized terms which are nothing but the second order modules are cascaded, such

decomposition is called the cascade decomposition.

Representing Equation (2.7) in terms- of Second-order modules an n-order filter can

represented as:

R(Z) 	(a1O +a11Z 1 +ai2Z 2) m `A(Z)/ ... Equation (2.8)

	

i=1 	 i=1

Here, m is the least integer greater than or equal to n/ 2.

10

The cascaded block structure, block representation using basic elements and the

signal-flow diagram is as shown in Figure (2.4).

X(z) 	 A (Z) A1(z) 	A2(z)

Figure (2.4.1): Block Representation of Cascade Decomposition

X(z) 	a 10 	 a 20 	 a Mo 	Y (z)

Figure (2.4.2): Block Representation of Cascade Decomposition

X(z) 	a10 	1 	a20

z' 	 All z-'

cP 11 	 a 21

Z-1 	 Z-1

a 12
	 a 22

1 	a mo 	Y (z)

z- 	1

a ml

Z-1

a m2

Figure (2.4.3) Signal Flow Representation of Cascade Decomposition

As seen from the signal flow diagram, an n-order system requires 3m multipliers,

2m delay elements, and 2m adders to implement in the digital system. We shall see

such implementation in the next chapter by considering an Eighth-order system and

there by writing an algorithm or a computational procedure for implementing it in

FPGA.

11

V

2.2.3 Parallel Decomposition

In this method the transfer function for an m-order digital filter is represented of

the form:
m

H(z) 8 +I B1(z) 	... Equation (2.9)
i=O

_ /~
Where B i(Z)— Nil Z

-1
+ f i2 Z

-2

Such representation has an advantage of avoiding coefficient — sensitivity problems.

The parallel block structure, block representation using basic elements and the

signal-flow diagram is as shown in Figure (2.5).
ISO

Figure 2.5.1 Block Representation of Parallel Decomposition

12

fib

Figure 2.5.2: Signal Flow Diagram for parallel Decomposition

As seen from the Signal flow diagram for an n-order filter, 2m adders, 2m time-

delays and (2m + 1) multipliers are needed to implement in digital computer. Here

m is the least integer greater than n/2, where n is the order of the filter.

2.2.4 Distributed Arithmetic Approach

In the above filter structures, multipliers are used. As the multiplier operation takes

more time to compute as compared to adders and time-shifters, more number of

multiplications often increases the complexity and affects the performance of the

system.

The basic idea in Distributed Arithmetic approach is to remove the multipliers, i.e.,

to perform the summation of the products between filter coefficients and internal

signals without using multipliers.

13

Rewriting Equation (1.4), we have
N

y(nT) =L
i=a

a,x(nT — iT)

Let x(nT)=x (k) and y(nT)=y(k) then

x(nT -T)= x(k --1), x (nT - 2T) = x(k-2)......x(nT -- NT)=x(k -N) ...Equation (2.10)

Thus on substituting above equation, Equation (1.4) can be written as
N

i=o
a,x(k-i) 	 .. Equation (2.11)

Assuming that the Input samples are represented in 2's complement format with
(b+l) bits, also if the input samples are properly scaled such that their magnitude is
less than 1.
Then the input sample x(k) is given as,

b

x(k)=-x(k)0 +.L x (k)j 2 -j 	 ... Equation (2.12)
j=1

where x(k) j is the j `" bit of x (k) and x(k)0 is the most-significant bit of

x(k)

Substituting Equation (2.12) in Equation (2.11) we obtain,

	

N 	 b 	N

y(k) -

	

i=0 	 j=1 	a=0
... Equation (2.13)

Now defining a binary function F such that

14

N
F1 =jai x(k) j wherej=O for i=0

i=o 	 ...Equation (2. 14)
and 0 < j <_ b for 0< i

Then Equation (2.14) can be written as
b y(k)_ -F0 + L 2F 	 ...Equation (2. 15)
j=1

If the filter coefficients are pre-known then the values of F; in Equation (2.14) can

be evaluated and these values can be stored in a Read-only-Memory (ROM). This

ROM is nothing but a 2 N Look-up-Table (LUT) containing all the possible

combinations of the filter coefficients evaluated in Equation (2.14).

The distributed arithmetic implementation of Equation (2.15) is as shown in
Figure (2.6). In this implementation the Shift Registers (SR) are used to store the
previous samples of input x(k), i.e. storing x(k-1), x(k-2) and so on in SRI, SR2 and
so on. Each Shift Register has (b+l) bits. The N-outputs which are binary digits of
the Shift Registers are used to address- the ROM unit. Thus, after the j-th right shift
the ROM address will be x(k) J , x(k-1) j x(k— 2) j and so on. The corresponding

evaluated output from the Look-up-Table or the ROM is loaded into register A and
is added with a partial register B, where B is acting liking an accumulator having
the pre-computed accumulated value.

The result after each addition is divided by 2~till all the b bits are shifted from the
shift registers. The final result is then subtracted with F0 and this result is stored in

partial register -C from which the output y(k) is taken. After every y(k) the partial
registers A, B and C are set to zero.

Figure 2.6: Basic Block diagram of Distributed Arithmetic approach

This approach is implemented by considering an Eight-order filter in the next

chapter.

2.3 Approximating the Filter Coefficients:

In designing a filter, the filter coefficients are determined by using various

techniques like frequency sampling, using window functions, by optimization

methods, etc. To explain all these techniques is beyond. the scope of this chapter,

however, we shall consider the ideal characteristics standard filters and then discuss

some of the standard window techniques used in approximating the FIR filter.

,!irstly, considering the Z-transform of Equation (1.3), we can write it as,

y (z) = x(z)a z

Or, 	y(z)=x(z).H(z)
00

H(z)= ~a,z
where

i=—oo

is the impulse response of the filter.

... Equation (2.16)

... Equation (2.17)

.. Equation (2.18)

The frequency response of the impulse response is obtained by substituting

w Z = e 	. Then, the frequency response and its time-domain representation are

given as follows:

00

H(e"')=
i=—oo

ai e — j coi 	
... Equation (2.18) -

Taking the inverse Fourier-transform, and letting h(nT) as h(n) we have,

1 	 j~v 	— jwi h(n) = 	H(e)e 	dcv
2 	 .. Equation (2.19)

—rI

The ideal magnitude response of standard Low-Pass -filter is as shown in Figure 2.7.

H(e30)
1

coc 	rT
	

2111

Figure 2.7: Ideal magnitude response of Low-Pass filter

The ideal characteristics are given by,

J1 forw l cco
0, fora < Cc~ I < II 	 ...Equation (2. 20)

Substituting Equation (2.20) in Equation (2.19) we obtain

w e
1 w ~ 	 for n= 0

h(n)— 	fe 1'° dcv = 2H _.0 	sin (cv c n) for n~0
II n

... Equation (2.21)

As can be seen from Equation (2.21) the impulse. response corresponding to the

ideal low-pass filter is not realizable, as it has infinite duration and also it is not a

causal. The above problem is dealt by realizing a digital filter with finite-duration

impulse response. Hence, in general FIR filter coefficients are determined by

considering a finite-length impulse response h(n) whose frequency response

approximates the desired frequency response.

F

2.4 Windowing Techniques:

The ideal infinite impulse response is truncated by using various windows. Here

we multiply the ideal frequency response with a window function. When this

window is multiplied by the ideal transfer function then all the coefficients with in

the window are retained and all that are outside the window are discarded. .

The truncated filter has coefficients h' (n) , given as

h' (n) = a h (n) 	 ... Equation (2.22)

where (I are the window coefficients.

In the frequency domain, such a multiplication corresponds to a periodic

convolution operation between the frequency response of the ideal filter, H(e p') ,

and of the window function, W (e'°') , that is

H' (e 	1 	H(ei ')W (e j(w-w'))dcv' ... Equation (2.23) 2zr

For a Rectangular window the window coefficients are defined as

cvl
2 ifIiI<m

l.0 ifIiI>m ... Equation (2.24)

For von Hann Window the window coefficients is generated by a raised cosine(

sometimes it is called the "raised cosine" window) and is given as,.

1 1

O)i —2 	. m + 1 	~ + 	 l I m

	

2cos 	 f ... Equation (2.25)

	

0 	otherwise

For Hamming Window: the window is a mixture of the uniform and the von Hann

windows. It is a function of parameters a and b.

2a cos 	+ b if j i j<_ m c0,.= 	 ... Equation (2.26)
0 	otherwise

(3.7)

where 2a+b = 1.

In Kaiser Window: J.F. Kaiser used prolate spheroidal function, Io(x), for a

window by making the function's argument depend on the window coefficient, i.
Z

Io a 1— Z

	

a)= 	m 	i f I i I< m 	... Equation (2.26)
Io

• 0 	otherwise
(3.8)

Of the four windows discussed above, the uniform window generates the

narrowest transition regions, the Hamming is the most widely used window and

the Kaiser is the most versatile.

AIJ

Chapter 3: Implementing the filter in FPGA

3.1 Choosing the Filter structure

Different filter structures are discussed in Chapter 2. It is often important to choose

a particular filter structure for a given transfer function H(z). In the design of fixed

point digital filters the choice is usually based on minimizing the effects of finite

register lengths. These effects include round-off noise, coefficient sensitivity,

overflow oscillations, and zero input limit cycles.

There are four Direct structures of Equatio2.7,we have considered only 1-D

structure. These Direct structures are effected by coefficient sensitivity problems,

which means, for large value of the order of filter the poles (in cage of recursive

filters) and zeroes locations could be changed. However, in cascade decomposition,

these coefficient sensitivity problems are minimized as we have large number of

poles (in case of recursive filter) and zeroes.

In the thesis, an Eighth-order low pass filter is implemented using a cascade

decomposition of second-order modules in FPGA.

It is known that the multiplication operation takes more cycles than an adder or shift

register operation. If the number of multiplications in the structure is more, then

more time is needed to perform the filtering operation. Thus the speed of operation

will be affected. In Distributed. Arithmetic the multipliers are replaced by adders

and time-shifters, there by increasing the speed of operation as compared to

traditional filter structures in which multipliers were present.

An Eighth-order low-pass filter is implemented using the Distributed Arithmetic

approach in the thesis.

21

3.2 Data Representation

In the thesis work, the procedure of representing the filter coefficients and input

samples is given as below:

In general, there are two kinds of Data representation, one is fixed-point

representation and the other is IEEE floating-point representation. In the thesis the

data is represented in fixed-point notation. In the fixed-point format, the numbers

are usually assumed to be proper fraction. A binary point is usually set between the

first and second bit positions of the register as shown in Figure 3.1 is as given

below

Sign-bit Magnitude

1

binary
Point

Figure 3.1: Fixed-Point Representation

The numbers are represented in two's-complement format, as this notation is

convenient in Digital Signal Processing (DSP) algorithms, because numbers can be

added, subtracted, multiplied or divided in straight binary fashion while preserving

the sign of the result. The addition or subtraction of two fixed-point numbers falling

in the given range may produce a result outside that range, though. Such a result,

called overflow, it must be either avoided or corrected during DSP calculations.

22

In the implementation, the two's-complement numbers are represented in the same

way as they are represented in Intel 8086. Such implementation is described as

follows:

The two's-complement of a 16 bit number N is represented by

N = (SM14 M13Mi Mo) 	 ... Equation 3.1

Where —2'5 <_N<_ 215 -1

If we consider all numbers to be scaled then, we have

—1<N<i-2-15 	 ... Equation3.2

In Intel 8086 machine, the coefficients are stored as half of their actual values. That

is, the VALUE_STORED'= [Value * 2 14 + 0.5] and a left shift operation (multiply

by 2) is performed in each routine to compensate for this change.

Note that, here the symbol [x] means largest integer less than x.

However the scaled input samples are multiplied by 215 and then stored in the

register removing the fractional part.

The multiplication is the basic operation in computation of output y(k). Considering
the multiplication of two n-bit numbers, we have the product of 2n bits. This

product is often used as another multiplicand in a later multiplication. As the width

of product will increases after each such multiplication, it is impractical to represent

such large products in the computer using fixed point arithmetic.

Hence we quantize or truncate the product back to n-bits before multiplying it with

the other number. This way of multiplication is implemented in thesis work while

multiplying the coefficients and the input samples. The following steps are

considered while multiplication:

23

1) Load the coefficient a i and the sample X (k) into registers say AX and DX,

where AX and DX are given by

	

AX= a i x 2n-2 and DX= x(k)x 2n -1 	 ... Equation 3.3

2) Multiply the sample x(k) and the coefficient, stored result in DX, AX register

DX,AX= a i x 2122* x (k)x 2n-; - 	 ... Equation 3.4

= a 1 x k /4x 22n-1
... Equation 3.5

3) In order to quantize the product back to n-bits perform double left shift operation

of the combined double register DX, AX register then truncate the result back to

212 bits. That is,

(DX, AX)T = Single Register (R) = a i x (k)x 2212-1 /2

= ax(k)x2'1

... Equation 3.6

The above mentioned steps are repeated for every multiplication operation used in

the cascaded decomposition structure.

3.3 Implementing Cascade Decomposition

An Eight-order system can be represented from Equation (2.8) by substituting m as

4, then it can be written as,
4 	 4

	

11(z) —I[J(azo +az1Z 1 +ai2Z 2) = J(Ai (z)) 	... Equation (3.7)
i=1 	 i 1

The cascaded block structure and the signal-flow diagram for an Eight-order filter is

as shown in Figure (3.2).

24

x(Z) AIIZ) 	A2(Z) 	A3(Z) 	A4(Z) Y(z)

Figure 3.2.1 Block structure of Eight-order Cascade Decomposition

x(z) 	Yi(z) 	Y2(z) 	 Y3(z) 	 . Y(z)
a 10 1 	a 20 1 1 	a30 1 	a40 1

a 12

a 22 	 a 32 	 a42

Figure 3.2.2) Signal Flow Diagram of Eight-order Cascade Decomposition

3.3.1 Algorithm for cascaded decomposition structure:

1. Finding the necessary variables from the Signal flow diagram:

x(z) - x(k) = Xk

y(z) 4 y(k) = Yk

Y1(z) 3 Y(k) = Ylk

Y2(z) 3 Y2(k) = Y2k

Y3(Z) 3 Y3(k) = Y3k

Z 1 Yi(z) 3 Yl(k-1) = YiKmi

Z 2 Yi(z) 4 Y1(k -2) = Y1KM2

Z 1 Y2(z) 3 Y2(k -1) = Y2Kmi

z 2 Y2(z) 3 Y2(k -2) = Y2K1v12

Z 1 Y3(Z) 4 Y3(k -1) = Y3KM1

Z 2 Y3 (z) 3 Y3(k -2) = Y3KM2

Z 1 X(z) 3 X(k -1) = XKMI

Z 2 X(z) 3 X(k -2) = XKM2

z-1

z-1

25

z 1 Y(z) - Y(k -1) = YxM1

z 2

Y(z)-) Y(k -2) = YI 2

In the above equations, "- " operation indicates- Inverse Z-transform and "="
operation indicates that the Left-Hand-Side term (LHS) is assigned to the variable
at the Right-Hand-Side term (RHS).

2. Initialize all the necessary variables to Zero.
3. Evaluation

a) Read the current input from Analog-Digital Converter and assign it_to Xk
b) Determine the following variables:

Ylk = a 10 .Xk + a ll Xiu ii + a12 .XKM2 	 ... Equation (3.8)

Y2k= a 20 Ylk + a 21.'Y1KM1 + a 22 . Yii r2 	... Equation (3.9)

Yak= a 30 . Y2k + a 31 . Y2KM1 + a 32 . Y2K1v12 	... Equation (3.10)

Yk = a 40 . Y3k + . a 41 . Y31M I + a 42 . Y31M2 	... Equation (3.11)

All the above calculated results in each step should be truncated back
to input sample bit width before using the result in the next step.

c) Output Yk to Digital-Analog Converter.
4. Updating the necessary variables sequentially.

XKM2 = XKML ... Equation (3.12)
XKMI .= Xk ... Equation (3.13)
Y1I2 = Yi 	i ... Equation (3.14)
Yiicvn = Yak ... Equation (3.15)
Y2J2 = Y21Mi ... Equation (3.16)
Y2IM1 = Y2k ... Equation (3.17)

Y3IM2 = Y3KMi ... Equation (3.18)
Y3k 	= Y3 	1 ... Equation (3.19)

26

Y1M2 = Yicrn 	 ... Equation (3.20)

YKMI = Yk 	 ... Equation (3.21-)

5. Repeat the steps 3 to 5 sequentially for the filtering action.

The above algorithm for cascade decomposition is implemented using VHDL

language in FPGA.

3.4 Implementing the Distributed Arithmetic approach in FPGA

Using the approach an Eight-order filter is implemented in FPGA. The basic idea of

this approach was discussed in Chapter 2. There can be different ways of

implementing this approach. One such way is implemented and is discussed as

follows:

Rewriting Equation (2.11) as follows:

N

a1 x (k-i)
=o

For an Eight-order filter, substituting N = 8 we have,
s

Y(k) = L =o
a i x (k-i) ... Equation (3.22)

Consider the input sample width of (b+1) bits where (b+1)th bit is the sign bit and

the other b. bits represent the magnitude of the sample.

In order to implement the above inner product in Equation (3.22) one can consider

an Look-Up-Table N address bits, where N is the order of the filter. Then we can

27

have 2 N different combinations of the input coefficients. Thus we need to have 2 N

locations in order to store the coefficients in the memory. As N is 8 here, we need to

have 256 locations allocated for storing the coefficients in the memory.

One alternative way to implement the Equation (2.11) is to break down the

summation of (N+1) terms into several smaller sums. Lets say that there are k sums

of Mp terms each. That is,
k

N+1 = Z Mp 	where p = 1, 2.......k
p=1

... Equation (3.23)

In this case, we need to have k Look-Up-Tables and in each Look-Up-Table

requires 2 M terms. Thus the memory is reduced it requires k x2 m locations.

In the thesis, the above mentioned alternative approach is implemented.- Here as N

is 8, the value of k is taken as 3 and M p is taken as 3.

Figure 3.3 shows the way the Eighth-order filter is implemented in FPGA. Here

x(k) is the current input stored in Shift Register (SRO), all the past inputs are stored

in the Shift Registers SR1, SR2, ..., SR8. That is, x(k-1) is stored in SR1, x(k-2) in

SR2 and so on.

ROM1, ROM2, ROM3 are the three Look-Up-Tables storing the filter coefficients.

These Look-Up-Tables are as shown in Figure 3.4.

R1, R2 and R3 are the partial registers storing the data coming from the Look-Up-

Tables.

Figure 3.3 Block Diagram for an Eight-order filter using DA approach

ADDRESS DATA ADDRESS DATA ADDRESS DATA

000 0 000 0 000 0
-001 ac 001 ai 001 a6

010 ax 010 a4 010 a7

011 al+ ao 011 a4+ a3 011 a7+ a6

100 az 100 as 100 as
101 az+ ao 101 a5+ a3 101 a8+ a6

110 az+ ar 110 as+ a4 110 a8-a7

111 az+ al+ao 111 as+ a4+a3 111 a8+ a7+a6

ROM1
	

ROM2
	

ROM3

Figure 3.4: Contents of three Look-Up-Tables

29

3.4.1 Algorithm implementing the Distributed Arithmetic approach:

1) Initialize all the Shift registers, Partial registers and the Accumulator to zero.

2) Read the current input sample x(k) from A/D converter and store it in SRO.

3) Generate the Address to ROM 1, ROM2, ROM3 Look-Up-Tables from the

Shift Registers by shifting the register contents one bit at a time.

4) Store the data from the Look-Up-Tables into the partial registers.

5) Add the contents of the partial registers ADDER1, ADDER2 adders by taking

care of the overflow.

6) Shift the contents of Accumulator to Right and then add it with the result

evaluated in step 5.

7) Repeat steps 3 to 6 till the Most-Significant Bit (sign-bit) is reached.

8) When the sign bit is reached, subtract the result from obtained from step 5 with

the contents of the accumulator.

9) Quantize the final accumulated value in the accumulator back to the input

sample width and then output this value which is y(k) to D/A converter

10) Update the Shift Registers such that the contents of SR7 go to SR8, SR6 to

SR7, SR5 to SR6 and so on.

11) Clear the accumulator content and the partial registers contents to zero.

12) Repeat steps 2 to 10 for the filtering action.

The above algorithm is implemented in FPGA.

30

CHAPTER 4: Simulation Results AND Discussions

Considering an Eight-order low-pass filter defined by the following transfer

function:
N

H (z)

• i = 0

Where N = 8, and the values of the filter coefficients corresponding to

cut-off frequency c, =05 rads are given by:

a0 =-0.0202779

a1 = 0.0542924

a2 = 0.05275543

a3 = - 0.29463011

a 4 = - 0.564509

a5 = - 0.29463011

a6 = 0.05275543

a7 = 0- .05429246

a8 = -0.0202779

Factorizing H(z) and writing in the form of

m

H(Z) — f (ai0 +aa1z 1 +aj2z 2)
1=1

Where

m=4

a10 = 0.0711508

a11 =-0.4002231

a12 = 0.76335878

a20 = 	0.4941662

a21 = 0.76335878

a22 - = 0.4941662

a30 = 0.39611047

a31 = 0.7633587

a32 = 0.39611047

a40 =-1.4559792

a41 = 0.76335878

a42 =-0.13570834

31

x(12) _ -0.4

x(13)= -0.6

x(14)= -0.8

x(15) _ -0.98

x(16)= -0.8

x(17)= -0.6

x(18)= -0.4

x(19)= -0.2
x(20)= 0.0

Taking the input samples. as follows

x(0)=0.0 , x(6)= 0.8

x(1) = 0.2 x(7) = 0.6

x(2) 	0.4 x(8) 0.4

x(3)=0.6 x(9)=0.2

x(4) =0.8 x(10) = 0
x(5) = 0.98 x(11)-0.2

The above input samples are given to the filter implemented in FPGA,

These samples are stored as

x(0)=0
x(1) = 1638

x(2) _= 3276

x(3)=4915

x(4) = 6553

x(5) = 8028

x(6) = 6553

x(7) =,4915

x(8) = 3276

x(9) = 1638

x(10) = 0

x(11) =14746

x(12)=13108

x(13)=1 1469

x(14)= 9831

x(15)= 8356

x(16)= 9831

x(17)= 11469

x(18)=131080

x(19)=14746

x(20)= 0

The following sampled outputs are obtained for the given above input samples

after simulation:

y(0) = 0 y(6) = 1665 y(12) = 1556 	y(18)=1-3747

y(1) = 31 y(7) = 2238 y(13) = 808 	y(19)=13584

y(2)= 108 y(8) = 2634 y(14) = 16382 	y(20)=13477

y(3)=300 y(9) = 2797 y(15) = 15572

y(4) = 623 y(10)= 2634 y(16) =l4.825

y(5) = 1109 y(11) =2206 y(17)= 14174

32

The simulation results in Xilinx ISE test-bench waveform as follows:

33

The Device utilization information for cascade decomposition is given as

follows:

34

The Device utilization information for Distributed Arithmetic approach is
given as follows:

35

The user constraints file is given as:

NET "elk" TNM NET = "elk";
TIMESPEC "TS_clk" = PERIOD "elk" 100 ns HIGH 50 %;
OFFSET = IN 95 ns BEFORE "elk" ;
#PACE: Start of Constraints generated by PACE

#PACE: Start of PACE I/O Pin Assignments
NET "BLANK DAC1" LOC = "AH33"
NET "elk" LOC = "D18"
NET "clk_adc" LOC = "AA30"
NET "cik dac" LOC = "AK34"
NET "inp<O>" LOC = "AA27"
NET "inp<10>" LOC = "W31"
NET "inp<l 1>" LOC = "W32"
NET "inp<12>" LOC = "W33"
NET "inp<13>" LOC = "Y33"
NET "inp<l>" LOC = "AA28"
NET "inp<2>" LOC = "AA25"
NET "inp<3>" LOC = "AA26"
NET "inp<4>" LOC = "Y31" ;
NET "inp<5>" LOC = "Y32" ;
NET "inp<6>" LOC = "Y29"
NET "inp<7>" LOC = "Y28" ;
NET "inp<8>" LOC = "Y25" ;
NET "inp<9>" LOC = "Y26"
NET "MODE1_DAC1" LOC = "AK31" ;
NET "MODE2_DAC1" LOC = "AK32"
NET "outp<O>" LOC = "AJ30"
NET "outp<l>" LOC = "AJ31"

NET "outp <2>" LOC = "AH29" ;
NET 11outp <3>". LOC = "AH30" ;
NET "outp <4>" LOC = "AG29" ;
NET "outp <5>" LOC = "AG30" ;
NET "outp <6>" LOC = "AG28"
NET "outp <7>" LOC = "AL33"
NET "outp <8>" LOC = "AL34"
NET "outp <9>" LOC = "AK33"
NET "SYNC_DAC1" LOC = "AJ34"
NET "SYNC T DAC1" LOC = "AJ33"

37

Chapter 5: Overview of Virtex-2Pro and kit

5.1 Virtex 2 Pro FPGA

The Virtex-II Pro Platform FPGA solution is the most -technically sophisticated

silicon and software product development in the history of the programmable

logic industry. The Virtex-II Pro family marks the first paradigm change from

programmable logic to programmable systems, with profound implications for

leading-edge system architectures in networking applications, deeply embedded

systems, and digital signal processing systems. It allows custom user-defined

system architectures to be synthesized, next-generation connectivity standards to

be seamlessly bridged, and complex hardware and software systems to be co-

developed rapidly with in-system debug at system speeds.

The Virtex-2 Pro ordering information is given in Figure 5.1 as follows

XC2VP30 -5

Device Type

Speed Grade

1152 C

Temperature Range C (commercial)

Number of Pins

Package Type

Figure 5.1: Virtex-2Pro ordering information

Virtex-2 Pro are user programmable gate arrays with configurable elements and

embedded blocks optimized for high density and high -performance system

designs. A brief overview of the components Virtex-2 Pro is given as follows:

1. Embedded High-Speed Serial Transceiver

These devices have Rocket IO Multi-Giga bits. The RocketlO Multi-Gigabit

Transceiver, based on Mindspeed's SkyRail technology, is a flexible parallel-to-

serial and serial-to-parallel embedded transceiver used for high-bandwidth

interconnection between buses, backplanes, or other subsystems. Multiple user

instantiations in an FPGA are possible, providing up to 120 Gb/s of full-duplex

raw data transfer. Each channel can be operated at a maximum data transfer rate of

3.125 Gb/s.

2. Power PC

The Power PC is the hard processor core that is embedded into FPGA fabric. The

PPC405 RISC CPU can execute instructions at a sustained rate of one instruction

per cycle. On-chip instruction and data cache reduce design complexity and

improve system throughput.

3. Input / Output Blocks

I / 0 blocks provide the interface between package pins and the internal

configuration logic. Most popular and leading-edge I/O standards are supported by

the programmable IOBs.

4. Configuration Logic Blocks (CLBs)

Configurable Logic Blocks (CLBs) provide functional elements for combinatorial

and synchronous logic, including basic storage elements. CLB resources include

four slices and two 3- state buffers.

Each slice is equivalent and contains:

39

• Two function generators (F & G)

• Two storage elements

• Arithmetic logic gates

• Large multiplexers

• Wide function capability

• Fast carry look-ahead chain

• Horizontal cascade chain (OR gate)

The function generators F & G are configurable as 4-input look-up tables (LUTs),

as 16-bit shift registers, or as 16-bit distributed SelectRAM+ memory. In addition,

the two storage elements are either edge-triggered D-type flip-flops or level-

sensitive latches. Each CLB has internal fast interconnect and connects to a

switch matrix to access general routing resources.

5. Block Select RAM + Memory

The block SelectRAM+ memory resources are 18 Kb of True Dual-Port RAM,

programmable from 16K x 1 bit to 512 x 36 bit, in various depth and width

configurations. Each port is totally synchronous and independent, offering three

"read-during-write" modes. Block SelectRAM+ memory is cascadable to

implement large embedded storage blocks.

6. Embedded 18-bit x 18-bit dedicated multiplier blocks:

These are 18x18 multipliers. A multiplier block is associated with each Select

RAM+ memory block. The multiplier block is a dedicated 18 x 18-bit 2s

complement signed multiplier, and is optimized for operations based on the block

Select RAM+ content on one port. The 18 x 18 multiplier can be used

independently of the block Select RAM+ resource. These make

Read/multiply/accumulate operations and DSP filter structures are extremely

efficient.

7. Digital Clock Manager

The DCM and global clock multiplexer buffers provide a complete solution for

designing high-speed clock schemes. Up to eight DCM blocks are available. To

generate de-skewed internal or external clocks, each DCM can be used - to

eliminate clock distribution delay. The DCM also provides 90-, 180-, and 270-

degree phase-shifted versions of its output clocks. Fine-grained phase shifting

offers high-resolution phase adjustments in increments of 1/256 of the clock

period. Very flexible frequency synthesis provides a clock output frequency equal

to a fractional or integer multiple of the input clock frequency. Virtex-II Pro

devices have 16 global clock MUX buffers, with up to eight clock nets per

quadrant. Each clock MUX buffer can select one of the two clock inputs and

switch glitch-free from one clock to the other. Each DCM can send up to four of

its clock outputs to global clock buffers on the same edge. Any global clock pin

can drive any DCM on the same edge.

8. Routing Resources

The IOB, CLB, block SelectRAM+, multiplier, and DCM elements all use the

same interconnect scheme and the same access to the global routing matrix.

Timing models are shared, greatly improving the predictability of the performance

of high-speed designs. There are a total of 16 global clock lines, with eight

available per quadrant. In addition, 24 vertical and horizontal long lines per row or

column, as well as massive secondary and local routing resources, . provide fast

41

interconnect. Virtex-II Pro buffered interconnects are relatively unaffected by net

fanout, and the interconnect layout is designed to minimize crosstalk.

9. Configuration

Virtex-II Pro devices are configured by loading the bitstream into internal

configuration memory using one of the following modes:

• Slave-serial mode

• Master-serial mode

• Slave Select-MAP mode

• Master Select-MAP mode

• Boundary-Scan mode (IEEE 1532)

Virtex-2Pro has 10 members. In the dissertation XC2VP30 device is used which

has the following resources:

Number of Rocket IO Transceivers Blocks: 10

Power PC Processor Blocks: 2

Logic Cells: 30816

Slices: 13696

18 x 18 Multipliers Blocks: 136

Block Select RAM + (18 Kb blocks): 136

Block RAM (kb): 2448

DCM: 8

Maximum User I/O pads: 644

42

5.2 Virtex-2 Pro Video Processing Board

This board is used in implementing the filter. A brief overview about this board is

as given below:

Virtex-II Pro based video processing card with PCI interface offers a cost-

effective platform for developing video and multimedia based applications. With

on board high speed video ADC, DAC the board supports real time video

processing of component video signals of NTSC or PAL standards. The on board

SRAM and Flash memories may be used as data/code store for PowerPC or as

video coefficient/data buffer(s).

The board supports three different modes of FPGA configuration. Configuration

through PROM, JTAG Port and PCI. Flash PROM memory can be programmed

with code for PowerPC through PCI interface.

This board can also be used as standalone video processing board. In that case

RS232 port provided on board will be used to program flash PROM. Further this

platform is optimised for experimentation with 32-bit IBM PowerPCTM RISC

processor core integrated into the FPGA fabric.

This board contains the following:

FPGA

Xilinx Virtex-II Pro XC2VP30 device in FF1152 package.

These are platform FPGA's that are based on IP cores and customized modules,

optimized for high density and high performance system design. They empower

43

complete solutions for telecommunication, wireless, networking, and Video and

DSP applications.

PowerPC 405 Processor

The PPC405 RISC CPU can execute instructions at a sustained rate of one

instruction per cycle. On-chip instruction and data cache reduce design complexity

and improve system throughput.

Clocks

User has option of using 2 different clock sources on board which 	provide all

necessary clocks for User logic and PowerPC The clock sources -provided on

board are as follows

Clock Source1: 32 MHz clock oscillator — supplied as standard and can be used as

system clock for PPC.

Clock Source2: Socket for user clock source (foot print compatible with clock

sources from 40 to 300 MHz. the clock sources are connected to the global clock

inputs. Thus user can use these external clocks as input to the on-chip DCM's.

Flash PROM

1.5 MB of Flash PROM is provided as standard, using three 512K X 16 PROMs.

Can be upgraded to 3 MB, as these proms are footprint compatible with 1M X 16
PROMs.

M.51521K

6

FPGA
512K

Figure 5.2 Virtex2Pro Flash PROM

Five 1M X 16 SRAM devices are independently interfaced to the on board FPGA.

SRAM
1 M X16

RAM
MX16

WSRAM
AM X16

FPGA
16

SRAM
1MX16

Figure 5.3: Virtex-2 Pro SRAM

RS 232 Port

RS232C compatible connectivity is provided using device MAX3223. Signals

provided are Rx, Tx, RTS and CTS. These signals are terminated on a 10 pin FRC

connector on board and a 10 pin FRC to 9-pin D connector interface cable is

1 16 bit data bus

2 20 bit address
bus

3 control bus

45

provided as standard accessory with the board. Is compatible with the UART core

provided by the Xilinx EDK.

PCI Interface

A 32-bit, 33 MHz PCI interface, using PLX-9054 master interface with DMA

capability.

Analog Input : AD9240.

AD9240 •is the Analog — Digital Converter. On the board one analog input

channel is available with the following specifications.

• Resolution — 14 bits

■ Max Sampling rate — 10 MSPS

• Input range - 0 to 5 Volts, single ended

• Input buffer — using AD8052 op-amp.

• Connector type — SMA.

AD9240 is useful in various applications such as imaging, communications, and

medical and data acquisition systems.

In the Dissertation this A./ D converter is used to supply the input.

Video Input

One video input channel is available with the following specifications.

■ Video ADC - TLV5734

■ Video signal format — NTSC / PAL compliant RGB /YUV component
video signal.

■ Resolution-8 bit

■ Sampling rate —30 MSPS maximum.

■ Input range - 1 Vp-p.

■ Input buffer — using AD8052 op-amp.

■ Connector type — SMA

■ Selectable clamping function for RGBIYUV applications.

■ Selectable Output Data Format for 4:4:4 (RGB,. YUV), 4:2:2 and 4:1:1

(YUV) Format.

Video Output

Two video output channels are provided on board with the following

specifications

■ Video DAC - THS8133

■ Video signal format — NTSC / PAL compliant RGB /YUV component

video signal.

■ Resolution — 10 bit

■ Sampling rate —80 MSPS maximum.

■ Connector type — SMA

THS8133 provides current output; these current outputs can be converted into

NTSC/PAL standard voltage levels by connecting a double terminated 75 ohms

load.

Sync Generation

Using sync, sync_t control signals, video sync signals can be added either on AGY

(G/Y) channel or on all three channels with 7:3 video/sync ratios. Depending on

47

the timing control of these signals both horizontal and vertical sync signals can be

generated as well as either hi-level negative going or tri level pulses can be

generated.

Blanking Generation

An additional control input BLANK is provided that will fix the output amplitude

on all channels to the blanking level. The absolute amplitude of the blanking level

with respect to active video is determined by the GBR or YPbPr operation mode

of the device.

Histogram Equalizer

The on board histogrammer LF48410 is capable of generating histograms and

cumulative distribution functions of video images. It provides following features:

■ 40 MHz data input and computation rate.

■ 1024 X 24 bit memory array

■ Histograms of images up to 4k X 4k with 10-bit pixel resolution.

■ User programmable modes — Histogram, histogram accumulate mode,.

look-up table mode, Delay memory, single port memory.

Sync Separator

Sync separator EL4583 used on board extracts timing from video sync in NTSC,

PAL, and SECAM systems.

■ Sync Separator — EL4583

■ Input voltage range — 0.5 V to 2 Vp-p.

■ Output signals —composite sync signal, vertical sync signal, horizontal sync

signal, burst signal, odd/even signal, no signal detect output.

■ Connector type — SMA

Digital I/Os

Maximum of 16 true bi-directional IOs are available when using XC2VP30

device. (32 with XC2VP40 and XC2VP50).

Power Supply

When Board is to be used as PCI add on card then Board can be powered from

PC's SMPS. While using the board in standalone mode an external power supply

will power the board.

User LEDs

8 LEDs are provided on board, which can be used by user to monitor signals from

his design.

Reset Switch

Can be used by user as a manual Reset input while verifying his designs.

The above board is as shown in Figure 5.1

k 	Flash Prom

I
SRAM IM RAMIMX 16

I E

6 user 10s4

la

L5 user tcEs cc
U-.

FPGA

Virtexll Pro
Xc2VP4O

Package FF1152

Virtex 11 Pro based video processing board with PCI Interface
Olt 3;d 	36

Video DAC 	*:4 444 Flash Prom
C) 5112KX 16

Ot Video DAC 	-4? *;7
Flash Prom'

Gly 	 24
Video AVC *PL

*

Pe.scahng
SRAM 1MX1S

CL ADC SRAM -1 M X -16 < E -31-~ -
SRAM •1 M X 16

Sync Seperator

si
75 cr 	 Sync Seperator

us
Sync Seperator

• Histogram
Equalizer

E fl 4 	2 Channel
g I

	
Fun Duplex

1

Cp U 	RS232 Interface

LE' 	
' 	2 Channel

MIL-STD-150
Interface Ei

U)

1 40 MHz Crystat
Oscillator

U) 	I uYstal
Oscillator Socket

(optional)

External Supply
Connector 	 5 VA

+12 VA 	on board 	3.3 VA

11H

+ S VD 	Power 	ip 3.3V
fjnd 	Supplies 	2SV

I 	1.5v

Configuration

JTAG I PROM I PCI

Local Bus

PCI Bus Master
Interface using PLX

6054

PCLSus
cft

Figure 5.4: Virtex2Pro Board
•"

V 	 (Ao \

50

ROO

Conclusion and Future Scope of Work

7.1 Conclusion

An Eight- order low-pass filter Finite Impulse Response (FIR) Filter has been

implemented in Virtex-2Pro FPGA. Some of the common filter structures were

discussed. And two realizations Cascaded Decomposition and Distributed

Arithmetic approach were implemented. A cascade decomposition consisting of

four second order modules is realized. In the Distributed Arithmetic Approach

three Look-Up-Tables, Eight Shift Registers and Adder/ Subtractor are used to

realize the Eight-order filter. Attempts have been made to implement the above

filter in real-time.

7.2 Future- Scope of Work

• The low-pass FIR filter implemented is of order Eight. A higher order filter

can be realized and can be extended to band-pass, band-stop and

differentiators

• On the board there is no Digital — Analog converter, one can interface an

external D/A converter to the board to view the output signal in Cathode

Ray Oscilloscope (CRO).

• The implemented filter uses more logic blocks, one can optimize the design

in terms of area occupied.

• The Look-Up-Tables were stored in FPGA internal memory. However

these Look-Up-Tables can be implemented in SRAMs and the coefficients

can be directly accessed from the external memory, of the board.

51

References

1. Kaiser J.F. Digital Filters, System Analysis by Digital Computer, F.F. 'Kuo

and J.F.Kaiser, eds. John Wiley & Sons, Inc., 1966, p.p. 218-285

2. Peled, A., and B. Liu: A new approach to the realization of non-recursive

Digital filters, IEEE Trans. Audio Electrostatics, AU-21(6), 477-484 (1973).

3. C Sidney Burrus: Digital Filters Structures described by Distributed

Arithmetic, IEEE Trans. On Circuits and Systems, vol. CAS-24, NO. 12,

December, 1977.

4. Abraham Peled, and Bede Liu: A new hardware realization of Digital Fitlers,

IEEE Transactions on Accoustics, Speech, and Signal Processing, vol.

ASSP-22, No.6, December 1974.

5. Charles L.. Philips, H.Troy Nagle: Digital Control System Analysis and

Design, 3rd Edition, Prentice Hall Publications.

6. Andreas Antoniou: Digital Filters Analysis and Design, TMH Edition 1980,

Tata McGraw-Hill Publications.

7. Paulo S.R. Diniz, Eduardo A.B. da Silva, and Sergio L. Netto: Digital Signal

Processing, System Analysis and Design, l't Edition,2002, Cambridge•

University Press.

8. Uwe Meyer-Baese: Digital Signal Processing with Field-Programmable Gate

Arrays, 1st Edition, 2001, Springer-Verlag.

9. Douglas Perry: VHDL, 3" Edition. Tata Mc. Graw Hill Publications.

10. Virtex-2Pro Handbook.

11. Les Thede: Practical Analog Filter and Design, 1st Edition, 2005, Artech
House Inc.

12. Chi-Jui Chou, Satish , Joseph B. Evans: FPGA Implementation of Digital

Filters, Telecommunications & Information Sciences Lab, Department of

Electrical& Computer Engg, University of Kanvas.

52

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	References

