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ABSTRACT 

The Finite Impulse Response (FIR) filter is a digital filter widely used in Digital 

Signal Processing applications in various fields like imaging, instrumentation, 

communications, etc. Programmable digital signal processors (PDSPs) can be used 

in implementing the FIR filter. However, in realizing a large-order filter many 

complex computations are needed which affects the performance of the common 

digital signal processors in terms of speed, cost, flexibility, etc. 

Field-Programmable gate Array (FPGA) has become an extremely cost-effective 

means of off-loading computationally intensive digital signal processing 

algorithms to improve overall system performance. The FIR filter implementation 

in FPGA, utilizing the dedicated hardware resources can effectively achieve 

application-specific integrated circuit (ASIC)-like performance while reducing 

development time, cost and risks. 

In this thesis, an Eight-order low-pass FIR filter is implemented in FPGA. Two 

different known approaches in the filter theory are used in this implementation. 

Firstly,. Cascade Decomposition is considered which overcomes the coefficient-

sensitivity problem prevalent in FIR Direct Structures. However, this approach 

requires more number of complex multiplications than the FIR Direct structures 

that limits the speed of operation in real-time. Secondly, Distributed Arithmetic 

approach in realizing a digital filter is considered. This approach gives a better 

performance than the common filter structures in terms of speed of operation, cost 

and power consumption in real-time. It replaces the uses of - complex 

multiplications by using Adders, Shift Registers and Look-Up Tables. The FIR 

filter is implemented in Virtex-2-Pro FPGA and simulated with the help of Xilinx 

ISE (Integrated Software Environment).. 
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Chapter 1: INTRODUCTION TO FIR FILTER 

Digital Filter as a system can be represented in the form, of a block diagram as 

shown in Figure 1.1 The input x(nT) _ to the Digital Filter is the sampled input 

coming from the Analog-Digital converter. The output y(nT) ' which is the 

response of the system is again the digital data going as input to the. Digital--

Analog converter. 

x(nT 	Digital Filter 	 y(nT) 

Figure 1.1: Digital Filter as a system 

The output or response of such a system is related to the input by some function in 

accordance with the required specifications. The response can be given as 

y(n7) =Rx(nT) 	 _ 	..(1.1) 
where R is an operator performing desired operation: 

Some. of the important properties in analyzing any system are Time-Invariance, 

Causality and Linearity which are mentioned below: 

A Digital Filter is said to be time-invariant if the internal parameters do not 

change with time, which means for a specific input or excitation the response will 

be the same independent of the time of application of the input. 

A Digital Filter is said to be Causal if its response at a specific instant is 

independent of subsequent values of the excitation, which means the response is 

-dependent on the current and past values of the input samples. 

A Digital Filter is said to be Linear if it possesses the property of Superposition 

which says that if an input consists of weighted sum of several signals, then the 
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output is the superposition or the weighted sum of the responses of the system to 

each of the signals. 

A Digital Filter is characterized in terms of Difference equations. There are two 

types of Digital Filters, they are Non-Recursive and Recursive filters which are 

characterized based on their responses. 

The response of a non-recursive filter at any instant depends on the present, past 

and future values of the input. At any specific instant nT. the response is of the 

form 

y(nT) = f(....,x (nT—T), x (nT), x (nT+T),....) 
Assuming Linearity and Time-invariance y(nT) can be expressed as 

00  
y(nT) = 	a i x(nT — iT ) 

•.(1.2) 

..(1.3) 

where 'a1  's represents constants. 

Now assuming causality for the filter we have 

a_1  = a_2  = ... = 0 

In addition, assuming a _ 0 for i > N the response can be written as Nth-order 

Linear Difference equation given as: 

N 
y(nT) _ 	ai  x (nT — iT) 

=o 
..(1.4) 

Such a linear, time-invariant, causal, non-recursive filter represented as Nth-order 

linear difference equation is called the Finite Impulse Response (FIR) filter. 
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In contrast to this filter, the response of a causal recursive filter is a function of 

elements consisting of past, present inputs and past outputs. It is expressed in Nth-

order linear difference equation as 

N 	 N 

y(n7) =a x(nT—iT) —L b y(nT—iT) 

When a unit impulse defined as 

S(n7) _ {0 for n=0 
for n ~ 0 

is applied to the system described by Equation (1.4), then the response, which is 

nothing but the impulse response h(nT) is given as 
N 

h(nT) = 
=o 

ai15(nT — iT) ..(1.6) 

From the above equation it can be inferred that the impulse response is finite and 

also from the property of the impulse function we can see that the constants 'a• 'S 

are nothing but the samples of the impulse response. That means 

h (0) = ao , 

 

h(T)=a1 ............ h (nT) = an 	..(1.7) 
These constants are called the filter coefficients. They determine the type of the 

filter, whether it is Low-pass, or High-pass, etc. Thus in filter design it is always 

important to find the filter coefficients which mostly approximates the desired 
response. 

In general, one can view Equation (1.4) as a computational procedure (an 

algorithm) to determine the output sequence y(nT) from the input sequence x(nT). 
Also, in various ways, the computations in Equation (1.4) can be arranged into 

equivalent sets of difference equations. Normally such a kind of re-arrangement of 

the basic difference equation is done, so as to gain benefits in-terms of memory, 
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time-delays, computational complexity, etc. before implementing the system in the 

computer. Each set of equations defines a computational procedure or an 

algorithm for implementing it in a digital computer system. 

From these set of difference equations we can construct a block diagram 

consisting of an interconnection including delay elements, multipliers, and adders. 

Such a block diagram can be further analyzed in terms of signal flow diagrams. 

Such a block diagram can be referred as a realization of the system or in other 

words as a structure for realizing the system. These structures are nothing but the 

Filter structures. 

One of the limitations of the FIR filter is that the order of the filter is generally 

large in order to meet the desired specifications of the filter. As the filter order is 

increased the computational complexity is more which may limit the frequency of 

operation. 

Traditionally, Digital Signal Processing algorithms (DSP) are implemented either 

using 	general 	purpose 	DSP 	processors 	purpose 	DSP 

processors (low speed, less expensive, flexible) or using Application Specific 

Integrated Circuits (ASIC) which offer high speed but are expensive• and -less 
flexible. 

An alternate approach is to use Field Programmable Gate Arrays (FPGA) as they 

provide solutions that maintain both the advantages of the approach based on DSP 

processors and the approach based on ASICs. 
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Since many current FPGA architectures are in-system programmable, the 
configuration of the device may be changed to implement different functionality if 

required. 

1.1 Scope of the Report 

The report is mainly concentrated on implementing a Low-pass FIR filter. An 
Eight-order filter is taken as an example for the implementation. There are many 
realizations of FIR filters. Two such realizations, Cascade decomposition and 
Distributed Arithmetic approach are simulated in the thesis. The first part of the 
report describes the theory behind the FIR filters. In the first part, a brief 
explanation of few of the filter structures and the design of the filter is discussed. 
The second part mainly concentrates' on implementing filter in FPGA. The data 
storage u. 	= - 	-~ _ °- _ ` . 	-; f is)also described in this section. 

1.2 Organization of the Thesis 

Chapter 2 	discusses the 'some of the filter structures like Direct structures, 
cascaded and parallel decomposition and an alternative approach Distributed 
Arithmetic approach for the implementation of the filter in FPGA. 

Chapter 3 discusses, which filter structure to choose, the data storage of input 
samples and the coefficients, how the truncation operation is done. Two filter 
structures, cascade decomposition and using Distributed Arithmetic approach are 
considered in the thesis, and how they are implemented in FPGA is discussed. 

Chapter 4 shows the simulation results 
Chapter 5 discusses about Virtex 2 Pro FPGA and the kit used. 
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Chapter 2: FIR Filter Structures and Design 

Introduction 
The analysis of linear, time-invariant digital filter is generally carried out by using 

the Z-transforms. A brief review of the Z-transform is presented. The filter 

structures characterizing the difference equations are represented using basic 

elements such as multipliers, time-delays and adders. The characteristics of an 

ideal digital filter and the design using windowing techniques are given. Finally, 

the four different cases where an FIR filter presents linear-phase is included in this 

chapter. 

2.1 Z. Transform 

The Z-transform is very useful role in the analysis and characterization of the 

linear time-invariant systems. This is because the difference equations 

characterizing the discrete system are transformed into algebraic equations which 

are much easier to manipulate. 

The two sided Z-transform of discrete-time function f(nT) is given as 
00 

F (Z) = I 	 .- f (nT ) Z. 	 .... Equation (2.1) 

for all z for which F(z) converges. Here the argument z is a complex variable. 

Some important properties of the Z-transform such as Linearity, Translation and 

Convolution are given as below: 

If a and b are arbitrary constants and f(nT) and g(nT) are arbitrary functions such 

that 

Z f(n T) = F(z) and Z g(n 7) = G(z) then for 

on 



Linearity: 

Z[af(nT)+bg(nT)] = aF(z)+bG(z) 	..... Equation (2.2 

Translation: 

Zf(nT+mT)=zm F(z) 	 ....Equation (2.3) 

Convolution: 

)g (nT kT)= F(z) G(z) ... Equation (2.4) 
k=—m 

The above properties are useful in deriving the transfer function of the filter. 
Now, evaluating the Z-transform on Equation (1.4) we obtain, 

N 
Z jy(nT)j = Z L ai x (nT — iT ) 

i=o 

By using the time translation property and the convolution property of Z-
transform, Equation (1.4) can be re-arranged as 

N 
Y(z) _ X(Z)~ alz -Z 

=o 

Or, Y(z) = H(z) . X (z) where 	 ...Equation (2.5) 
N 

—i a.z 
i = o 

...Equation (2.6) 

where H (z), X (z), Y (z) are the Z-transforms of Impulse Response, Input 
samples and Output samples. 
H(z) is called the transfer function of the filter and the time-domain samples of this 
transfer function, which are the filter coefficients are approximated according to 
the desired response. 

VA 



BASIC ELEMENTS 	BLOCK REPRESESENTATION 
	SIGNAL FLOW DIAGRAM 

xi  nT) 	 x►(nfl 

ADDER x2  (n 

,c 	• + 	y(nT)  

N 

.y (nT ) _ 	X k (nT ) 

TIME-DELAY x(nT) 	 x(nT-1) 	x(nT) 	x(nT -1) 

m 

MULTIPLIER x(nT) 	 m * x(nT) 	x(nT) 	m 	m.x(nT) 

Figure (2.1): Basic Block elements 

2.2 Filter Structures 

The computational algorithm implementing Equation (1.4) of an FIR filter can be 

conveniently represented in block diagram. It is done using the basic building 

blocks elements such as Multipliers, Adders and Unit Delays. These basic block 

elements and their equivalent Signal Flow Diagrams are as shown in*Figure (2.1). 



—/ .?'1 

z-" 

This way of presenting the difference equations in the form of block diagram and 

signal flow diagram makes us easy to write an algorithm which can be 

implemented in the digital computer 

2.2.1 Direct Structures 

Direct structures for the Digital filter are those in which the real filter coefficients, 

appear as multipliers in the block diagram representation. If X(z) is the filter input 

and Y(z) is the filter output then the transfer function H(z)is given as 

H z =  x(Z) 	aiz 	 ...Equation (2.7) 
l=o 

There are four Direct structures which are different realizations of Equation (2.7). 

The first Direct structure only is presented here and is as shown in Figure (2.2) 

Figure 2.2: Direct Structures 

The 1-D structure is also called canonical because it possesses n-time delay 

elements. The signalflow diagram of this structure is as shown below in 

Figure (2:3). 



	

x(nT) Z -1 	Z -2 	 Z —(n — I) 	z —n 

a 	al 
 

Figure 2.3: Signal Flow Diagram of Direct Structures 

As seen from the Signal Flow Diagram the above representation requires "n" 

Delay elements, "n + 1" multipliers and "n" adders to implement in the digital 

computer. 

The above structure suffers extreme coefficient sensitivity as the value of grows 

large. That is a small change in a coefficient for large value of n causes large 

changes in the zeroes of H(z). 

2.2.2 Cascade Decomposition: 

A Cascade realization is done by cascading Second order modules. A second-order 

module is given as: 

H0 ( z)_
a01

+a01Z  1+a01z  2 

For realization of this structure Equation (2.7) is factorized and the obtained 

factorized terms which are nothing but the second order modules are cascaded, such 

decomposition is called the cascade decomposition. 

Representing Equation (2.7) in terms-  of Second-order modules an n-order filter can 

represented as: 

R(Z ) 	(a1O +a11Z 1  +ai2Z 2 ) m  `A(Z )/ ... Equation (2.8) 

	

i=1 	 i=1 

Here, m is the least integer greater than or equal to n/ 2. 

10 



The cascaded block structure, block representation using basic elements and the 

signal-flow diagram is as shown in Figure (2.4). 

X(z) 	 A (Z)  A1(z) 	A2(z) 	.............  

Figure (2.4.1): Block Representation of Cascade Decomposition 

X(z) 	a 10 	 a 20 	 a Mo 	Y (z) 

Figure (2.4.2): Block Representation of Cascade Decomposition 

X(z) 	a10 	1 	a20 

z' 	 All z-' 

cP 11 	 a 21 

Z-1 	 Z-1 

a  12 
	 a  22 

1 	a mo 	Y (z) 

z- 	1 

a  ml 

Z-1 

a  m2 

Figure (2.4.3) Signal Flow Representation of Cascade Decomposition 

As seen from the signal flow diagram, an n-order system requires 3m multipliers, 

2m delay elements, and 2m adders to implement in the digital system. We shall see 

such implementation in the next chapter by considering an Eighth-order system and 

there by writing an algorithm or a computational procedure for implementing it in 

FPGA. 
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V 

2.2.3 Parallel Decomposition 

In this method the transfer function for an m-order digital filter is represented of 

the form: 
m 

H(z) 8 +I B1(z) 	... Equation (2.9) 
i=O 

_ /~ 
Where B i(Z)— Nil Z

-1 
+ f i2 Z

-2 
 

Such representation has an advantage of avoiding coefficient — sensitivity problems. 

The parallel block structure, block representation using basic elements and the 

signal-flow diagram is as shown in Figure (2.5). 
ISO 

Figure 2.5.1 Block Representation of Parallel Decomposition 
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fib 

Figure 2.5.2: Signal Flow Diagram for parallel Decomposition 

As seen from the Signal flow diagram for an n-order filter, 2m adders, 2m time-

delays and (2m + 1) multipliers are needed to implement in digital computer. Here 

m is the least integer greater than n/2, where n is the order of the filter. 

2.2.4 Distributed Arithmetic Approach 

In the above filter structures, multipliers are used. As the multiplier operation takes 

more time to compute as compared to adders and time-shifters, more number of 

multiplications often increases the complexity and affects the performance of the 

system. 

The basic idea in Distributed Arithmetic approach is to remove the multipliers, i.e., 

to perform the summation of the products between filter coefficients and internal 

signals without using multipliers. 

13 



Rewriting Equation (1.4), we have 
N 

y(nT) =L 
i=a 

a,x(nT — iT) 

Let x(nT)=x (k) and y(nT)=y(k) then 

x(nT -T)= x(k --1), x (nT - 2T) = x(k-2)......x(nT -- NT)=x(k -N) ...Equation (2.10) 

Thus on substituting above equation, Equation (1.4) can be written as 
N 

i=o 
a,x(k-i) 	 .. Equation (2.11) 

Assuming that the Input samples are represented in 2's complement format with 
(b+l) bits, also if the input samples are properly scaled such that their magnitude is 
less than 1. 
Then the input sample x(k) is given as, 

b 

x(k)=-x(k)0   +.L x (k)j 2 -j 	 ... Equation (2.12) 
j=1 

where x(k) j  is the j `" bit of x (k) and x(k)0  is the most-significant bit of 

x(k) 

Substituting Equation (2.12) in Equation (2.11) we obtain, 

	

N 	 b 	N 

y(k) -  

	

i=0 	 j=1 	a=0 
... Equation (2.13) 

Now defining a binary function F such that 
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N 
F1 =jai x(k) j wherej=O for i=0 

i=o 	 ...Equation (2. 14) 
and 0 < j <_ b for 0< i 

Then Equation (2.14) can be written as 
b y(k)_ -F0 + L 2F 	 ...Equation (2. 15) 
j=1 

If the filter coefficients are pre-known then the values of F; in Equation (2.14) can 

be evaluated and these values can be stored in a Read-only-Memory (ROM). This 

ROM is nothing but a 2 N Look-up-Table (LUT) containing all the possible 

combinations of the filter coefficients evaluated in Equation (2.14). 

The distributed arithmetic implementation of Equation (2.15) is as shown in 
Figure (2.6). In this implementation the Shift Registers (SR) are used to store the 
previous samples of input x(k), i.e. storing x(k-1), x(k-2) and so on in SRI, SR2 and 
so on. Each Shift Register has (b+l) bits. The N-outputs which are binary digits of 
the Shift Registers are used to address- the ROM unit. Thus, after the j-th right shift 
the ROM address will be x(k) J , x(k-1) j x(k— 2 ) j and so on. The corresponding 

evaluated output from the Look-up-Table or the ROM is loaded into register A and 
is added with a partial register B, where B is acting liking an accumulator having 
the pre-computed accumulated value. 

The result after each addition is divided by 2~till all the b bits are shifted from the 
shift registers. The final result is then subtracted with F0 and this result is stored in 

partial register -C from which the output y(k) is taken. After every y(k) the partial 
registers A, B and C are set to zero. 



Figure 2.6: Basic Block diagram of Distributed Arithmetic approach 

This approach is implemented by considering an Eight-order filter in the next 

chapter. 

2.3 Approximating the Filter Coefficients: 

In designing a filter, the filter coefficients are determined by using various 

techniques like frequency sampling, using window functions, by optimization 



methods, etc. To explain all these techniques is beyond. the scope of this chapter, 

however, we shall consider the ideal characteristics standard filters and then discuss 

some of the standard window techniques used in approximating the FIR filter. 

,!irstly, considering the Z-transform of Equation (1.3), we can write it as, 

y (z) = x(z)a z 

Or, 	y(z)=x(z).H(z) 
00 

H(z)= ~a,z 
where 

i=—oo 

is the impulse response of the filter. 

... Equation (2.16) 

... Equation (2.17) 

.. Equation (2.18) 

The frequency response of the impulse response is obtained by substituting 

w Z = e 	. Then, the frequency response and its time-domain representation are 

given as follows: 

00 

H(e"')= 
i=—oo 

ai e — j coi 	
... Equation (2.18) - 

Taking the inverse Fourier-transform, and letting h(nT) as h(n) we have, 

1 	 j~v 	— jwi h(n) = 	H(e )e 	dcv 
2 	 .. Equation (2.19) 

—rI 



The ideal magnitude response of standard Low-Pass -filter is as shown in Figure 2.7. 

H(e30 ) 
1 

coc 	rT 
	

2111 

Figure 2.7: Ideal magnitude response of Low-Pass filter 

The ideal characteristics are given by, 

J1 forw l cco 
0, fora < Cc~ I < II 	 ...Equation (2. 20) 

Substituting Equation (2.20) in Equation (2.19) we obtain 

w e 
1 w ~ 	 for n= 0 

h(n)— 	fe 1'° dcv = 2H _.0 	sin (cv c n) for n~0 
II n 

... Equation (2.21) 

As can be seen from Equation (2.21) the impulse. response corresponding to the 

ideal low-pass filter is not realizable, as it has infinite duration and also it is not a 

causal. The above problem is dealt by realizing a digital filter with finite-duration 

impulse response. Hence, in general FIR filter coefficients are determined by 

considering a finite-length impulse response h(n) whose frequency response 

approximates the desired frequency response. 
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2.4 Windowing Techniques: 

The ideal infinite impulse response is truncated by using various windows. Here 

we multiply the ideal frequency response with a window function. When this 

window is multiplied by the ideal transfer function then all the coefficients with in 

the window are retained and all that are outside the window are discarded. . 

The truncated filter has coefficients h' (n) , given as 

h' (n) = a h (n) 	 ... Equation (2.22) 

where (I are the window coefficients. 

In the frequency domain, such a multiplication corresponds to a periodic 

convolution operation between the frequency response of the ideal filter, H(e p') , 

and of the window function, W (e'°') , that is 

H' (e 	1 	H(ei ')W (e j(w-w' ) )dcv'  ... Equation (2.23) 2zr 

For a Rectangular window the window coefficients are defined as 

cvl 
2 ifIiI<m 

l.0 ifIiI>m ... Equation (2.24) 

For von Hann Window the window coefficients is generated by a raised cosine( 

sometimes it is called the "raised cosine" window) and is given as,. 

1 1 

O)i —2 	. m + 1 	~ + 	 l I m 

	

2cos 	 f ... Equation (2.25) 

	

0 	otherwise 

For Hamming Window: the window is a mixture of the uniform and the von Hann 

windows. It is a function of parameters a and b. 



2a cos 	+ b if j i j<_ m c0,.= 	 ... Equation (2.26) 
0 	otherwise 

(3.7) 

where 2a+b = 1. 

In Kaiser Window: J.F. Kaiser used prolate spheroidal function, Io(x), for a 

window by making the function's argument depend on the window coefficient, i. 
Z  

Io a 1— Z 

	

a)= 	m 	i f I i I< m 	... Equation (2.26) 
Io  

• 0 	otherwise 
(3.8) 

Of the four windows discussed above, the uniform window generates the 

narrowest transition regions, the Hamming  is the most widely used window and 

the Kaiser is the most versatile. 
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Chapter 3: Implementing the filter in FPGA 

3.1 Choosing the Filter structure 

Different filter structures are discussed in Chapter 2. It is often important to choose 

a particular filter structure for a given transfer function H(z). In the design of fixed 

point digital filters the choice is usually based on minimizing the effects of finite 

register lengths. These effects include round-off noise, coefficient sensitivity, 

overflow oscillations, and zero input limit cycles. 

There are four Direct structures of Equatio2.7,we have considered only 1-D 

structure. These Direct structures are effected by coefficient sensitivity problems, 

which means, for large value of the order of filter the poles (in cage of recursive 

filters) and zeroes locations could be changed. However, in cascade decomposition, 

these coefficient sensitivity problems are minimized as we have large number of 

poles (in case of recursive filter) and zeroes. 

In the thesis, an Eighth-order low pass filter is implemented using a cascade 

decomposition of second-order modules in FPGA. 

It is known that the multiplication operation takes more cycles than an adder or shift 

register operation. If the number of multiplications in the structure is more, then 

more time is needed to perform the filtering operation. Thus the speed of operation 

will be affected. In Distributed.  Arithmetic the multipliers are replaced by adders 

and time-shifters, there by increasing the speed of operation as compared to 

traditional filter structures in which multipliers were present. 

An Eighth-order low-pass filter is implemented using the Distributed Arithmetic 

approach in the thesis. 
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3.2 Data Representation 

In the thesis work, the procedure of representing the filter coefficients and input 

samples is given as below: 

In general, there are two kinds of Data representation, one is fixed-point 

representation and the other is IEEE floating-point representation. In the thesis the 

data is represented in fixed-point notation. In the fixed-point format, the numbers 

are usually assumed to be proper fraction. A binary point is usually set between the 

first and second bit positions of the register as shown in Figure 3.1 is as given 

below 

Sign-bit Magnitude 

1 

binary 
Point 

Figure 3.1: Fixed-Point Representation 

The numbers are represented in two's-complement format, as this notation is 

convenient in Digital Signal Processing (DSP) algorithms, because numbers can be 

added, subtracted, multiplied or divided in straight binary fashion while preserving 

the sign of the result. The addition or subtraction of two fixed-point numbers falling 

in the given range may produce a result outside that range, though. Such a result, 

called overflow, it must be either avoided or corrected during DSP calculations. 
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In the implementation, the two's-complement numbers are represented in the same 

way as they are represented in Intel 8086. Such implementation is described as 

follows: 

The two's-complement of a 16 bit number N is represented by 

N = (SM14 M13 .....Mi Mo) 	 ... Equation 3.1 

Where —2'5 <_N<_ 215 -1 

If we consider all numbers to be scaled then, we have 

—1<N<i-2-15 	 ... Equation3.2 

In Intel 8086 machine, the coefficients are stored as half of their actual values. That 

is, the VALUE_STORED'= [Value * 2 14  + 0.5] and a left shift operation (multiply 

by 2) is performed in each routine to compensate for this change. 

Note that, here the symbol [x] means largest integer less than x. 

However the scaled input samples are multiplied by 215  and then stored in the 

register removing the fractional part. 

The multiplication is the basic operation in computation of output y(k). Considering 
the multiplication of two n-bit numbers, we have the product of 2n bits. This 

product is often used as another multiplicand in a later multiplication. As the width 

of product will increases after each such multiplication, it is impractical to represent 

such large products in the computer using fixed point arithmetic. 

Hence we quantize or truncate the product back to n-bits before multiplying it with 

the other number. This way of multiplication is implemented in thesis work while 

multiplying the coefficients and the input samples. The following steps are 

considered while multiplication: 
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1) Load the coefficient a i  and the sample X  (k) into registers say AX and DX, 

where AX and DX are given by 

	

AX= a i x 2n-2  and DX= x(k)x 2n -1 	 ... Equation 3.3 

2) Multiply the sample x(k) and the coefficient, stored result in DX, AX register 

DX,AX= a i  x 2122* x (k)x 2n-; - 	 ... Equation 3.4 

= a 1  x k /4x 22n-1  
... Equation 3.5 

3) In order to quantize the product back to n-bits perform double left shift operation 

of the combined double register DX, AX register then truncate the result back to 

212 bits. That is, 

(DX, AX)T = Single Register (R) = a i  x (k )x 2212-1 /2 

= ax(k)x2'1  

... Equation 3.6 

The above mentioned steps are repeated for every multiplication operation used in 

the cascaded decomposition structure. 

3.3 Implementing Cascade Decomposition 

An Eight-order system can be represented from Equation (2.8) by substituting m as 

4, then it can be written as, 
4 	 4 

	

11(z) —I[J(azo +az1Z 1 +ai2Z  2) = J(Ai (z)) 	... Equation (3.7) 
i=1 	 i 1 

The cascaded block structure and the signal-flow diagram for an Eight-order filter is 

as shown in Figure (3.2). 
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x(Z) AIIZ) 	A2(Z ) 	A3(Z ) 	A4(Z) Y(z) 

Figure 3.2.1 Block structure of Eight-order Cascade Decomposition 

x(z) 	Yi(z) 	Y2(z) 	 Y3(z) 	 . Y(z) 
a 10  1 	a  20 1 1 	a30 1 	a40 1  

a 12 

 

a 22 	 a 32 	 a42 

Figure 3.2.2) Signal Flow Diagram of Eight-order Cascade Decomposition 

3.3.1 Algorithm for cascaded decomposition structure: 

1. Finding the necessary variables from the Signal flow diagram: 

x(z) - x(k) = Xk 

y(z) 4 y(k) = Yk 

Y1(z) 3 Y(k) = Ylk 

Y2(z) 3 Y2(k) = Y2k 

Y3(Z) 3 Y3(k) = Y3k 

Z 1  Yi(z) 3 Yl(k-1) = YiKmi 

Z 2  Yi(z) 4 Y1(k -2) = Y1KM2 

Z 1  Y2(z) 3 Y2(k -1) = Y2Kmi 

z 2  Y2(z) 3 Y2(k -2) = Y2K1v12 

Z 1  Y3(Z) 4 Y3(k -1) = Y3KM1 

Z 2  Y3 (z) 3 Y3(k -2) = Y3KM2 

Z 1  X(z) 3 X(k -1) = XKMI 

Z 2  X(z) 3 X(k -2) = XKM2 

z-1  

z-1  
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z 1  Y(z) - Y(k -1) = YxM1 

z 2 

 

Y(z)-) Y(k -2) = YI 2 

In the above equations, "- " operation indicates- Inverse Z-transform and "=" 
operation indicates that the Left-Hand-Side term (LHS) is assigned to the variable 
at the Right-Hand-Side term (RHS). 

2. Initialize all the necessary variables to Zero. 
3. Evaluation 

a) Read the current input from Analog-Digital Converter and assign it_to Xk 
b) Determine the following variables: 

Ylk = a 10  .Xk + a ll  Xiu ii + a12  .XKM2 	 ... Equation (3.8) 

Y2k= a 20  Ylk + a 21.'Y1KM1 + a 22  . Yii r2 	... Equation (3.9) 

Yak= a 30 .  Y2k + a 31 .  Y2KM1 + a 32 .  Y2K1v12 	... Equation (3.10) 

Yk = a 40 .  Y3k + . a 41 . Y31M I + a 42 .  Y31M2 	... Equation (3.11) 

All the above calculated results in each step should be truncated back 
to input sample bit width before using the result in the next step. 

c) Output Yk to Digital-Analog Converter. 
4. Updating the necessary variables sequentially. 

XKM2 = XKML ... Equation (3.12) 
XKMI .= Xk ... Equation (3.13) 
Y1I2 = Yi 	i ... Equation (3.14) 
Yiicvn = Yak ... Equation (3.15) 
Y2J2 = Y21Mi ... Equation (3.16) 
Y2IM1 = Y2k ... Equation (3.17) 

Y3IM2 = Y3KMi ... Equation (3.18) 
Y3k 	= Y3 	1 ... Equation (3.19) 
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Y1M2 = Yicrn 	 ... Equation (3.20) 

YKMI = Yk 	 ... Equation (3.21-) 

5. Repeat the steps 3 to 5 sequentially for the filtering action. 

The above algorithm for cascade decomposition is implemented using VHDL 

language in FPGA. 

3.4 Implementing the Distributed Arithmetic approach in FPGA 

Using the approach an Eight-order filter is implemented in FPGA. The basic idea of 

this approach was discussed in Chapter 2. There can be different ways of 

implementing this approach. One such way is implemented and is discussed as 

follows: 

Rewriting Equation (2.11) as follows: 

N 

a1  x (k-i ) 
=o 

For an Eight-order filter, substituting N = 8 we have, 
s 

Y(k) = L =o 
a i  x (k-i ) ... Equation (3.22) 

Consider the input sample width of (b+1) bits where (b+1)th bit is the sign bit and 

the other b. bits represent the magnitude of the sample. 

In order to implement the above inner product in Equation (3.22) one can consider 

an Look-Up-Table N address bits, where N is the order of the filter. Then we can 
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have 2 N  different combinations of the input coefficients. Thus we need to have 2 N  

locations in order to store the coefficients in the memory. As N is 8 here, we need to 

have 256 locations allocated for storing the coefficients in the memory. 

One alternative way to implement the Equation (2.11) is to break down the 

summation of (N+1) terms into several smaller sums. Lets say that there are k sums 

of Mp terms each. That is, 
k 

N+1 = Z Mp 	where p = 1, 2.......k 
p=1 

... Equation (3.23) 

In this case, we need to have k Look-Up-Tables and in each Look-Up-Table 

requires 2 M  terms. Thus the memory is reduced it requires k x2 m  locations. 

In the thesis, the above mentioned alternative approach is implemented.-  Here as N 

is 8, the value of k is taken as 3 and M p  is taken as 3. 

Figure 3.3 shows the way the Eighth-order filter is implemented in FPGA. Here 

x(k) is the current input stored in Shift Register (SRO), all the past inputs are stored 

in the Shift Registers SR1, SR2, ..., SR8. That is, x(k-1) is stored in SR1, x(k-2) in 

SR2 and so on. 

ROM1, ROM2, ROM3 are the three Look-Up-Tables storing the filter coefficients. 

These Look-Up-Tables are as shown in Figure 3.4. 

R1, R2 and R3 are the partial registers storing the data coming from the Look-Up-

Tables. 



Figure 3.3 Block Diagram for an Eight-order filter using DA approach 

ADDRESS DATA ADDRESS DATA ADDRESS DATA 

000 0 000 0 000 0 
-001 ac 001 ai 001 a6 

010 ax 010 a4 010 a7 

011 al+ ao 011 a4+ a3 011 a7+ a6 

100 az 100 as 100 as 
101 az+ ao 101 a5+ a3 101 a8+ a6 

110 az+ ar 110 as+ a4 110 a8-a7 

111 az+ al+ao 111 as+ a4+a3 111 a8+ a7+a6 

ROM1 
	

ROM2 
	

ROM3 

Figure 3.4: Contents of three Look-Up-Tables 
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3.4.1 Algorithm implementing the Distributed Arithmetic approach: 

1) Initialize all the Shift registers, Partial registers and the Accumulator to zero. 

2) Read the current input sample x(k) from A/D converter and store it in SRO. 

3) Generate the Address to ROM 1, ROM2, ROM3 Look-Up-Tables from the 

Shift Registers by shifting the register contents one bit at a time. 

4) Store the data from the Look-Up-Tables into the partial registers. 

5) Add the contents of the partial registers ADDER1, ADDER2 adders by taking 

care of the overflow. 

6) Shift the contents of Accumulator to Right and then add it with the result 

evaluated in step 5. 

7) Repeat steps 3 to 6 till the Most-Significant Bit (sign-bit) is reached. 

8) When the sign bit is reached, subtract the result from obtained from step 5 with 

the contents of the accumulator. 

9) Quantize the final accumulated value in the accumulator back to the input 

sample width and then output this value which is y(k) to D/A converter 

10) Update the Shift Registers such that the contents of SR7 go to SR8, SR6 to 

SR7, SR5 to SR6 and so on. 

11) Clear the accumulator content and the partial registers contents to zero. 

12) Repeat steps 2 to 10 for the filtering action. 

The above algorithm is implemented in FPGA. 
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CHAPTER 4: Simulation Results AND Discussions 

Considering an Eight-order low-pass filter defined by the following transfer 

function: 
N 

H ( z ) 

• i = 0 

Where N = 8, and the values of the filter coefficients corresponding to 

cut-off frequency c, =05 rads are given by: 

a0  =-0.0202779 

a1  = 0.0542924 

a2  = 0.05275543 

a3  = - 0.29463011 

a 4  = - 0.564509 

a5  = - 0.29463011 

a6  = 0.05275543 

a7  = 0- .05429246 

a8  = -0.0202779 

Factorizing H(z) and writing in the form of 

m 

H(Z) — f (ai0 +aa1z 1 +aj2z 2  ) 
1=1 

Where 

m=4 

a10  = 0.0711508 

a11  =-0.4002231  

a12  = 0.76335878 

a20  = 	0.4941662 

a21  = 0.76335878 

a22 - = 0.4941662 

a30  = 0.39611047 

a31  = 0.7633587 

a32  = 0.39611047 

a40  =-1.4559792 

a41  = 0.76335878 

a42  =-0.13570834 
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x(12) _ -0.4 

x(13)= -0.6 

x(14)= -0.8 

x(15) _ -0.98 

x(16)= -0.8 

x(17)= -0.6 

x(18)= -0.4 

x(19)= -0.2 
x(20)= 0.0 

Taking the input samples.  as follows 

x(0)=0.0 ,  x(6)= 0.8 

x(1) = 0.2 x(7) = 0.6 

x(2) 	0.4 x(8) 0.4 

x(3)=0.6 x(9)=0.2 

x(4) =0.8 x(10) = 0 
x(5) = 0.98 x(11)-0.2 

The above input samples are given to the filter implemented in FPGA, 

These samples are stored as 

x(0)=0 
x(1) = 1638 

x(2) _= 3276 

x(3)=4915 

x(4) = 6553 

x(5) = 8028 

x(6) = 6553 

x(7) =,4915 

x(8) = 3276 

x(9) = 1638 

x(10) = 0 

x(11) =14746 

x(12)=13108 

x(13)=1 1469 

x(14)= 9831 

x(15)= 8356 

x(16)= 9831 

x(17)= 11469 

x(18)=131080 

x(19)=14746 

x(20)= 0 

The following sampled outputs are obtained for the given above input samples 

after simulation: 

y(0) = 0 y(6) = 1665 y(12) = 1556 	y(18)=1-3747 

y(1) = 31 y(7) = 2238 y(13) = 808 	y(19)=13584 

y(2)= 108 y(8) = 2634 y(14) = 16382 	y(20)=13477 

y(3)=300 y(9) = 2797 y(15) = 15572 

y(4) = 623 y(10)= 2634 y(16) =l4.825 

y(5) = 1109 y(11) =2206 y(17)= 14174 
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The simulation results in Xilinx ISE test-bench waveform as follows: 
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The Device utilization information for cascade decomposition is given as 

follows: 
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The Device utilization information for Distributed Arithmetic approach is 
given as follows: 
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The user constraints file is given as: 

NET "elk" TNM NET = "elk"; 
TIMESPEC "TS_clk" = PERIOD "elk" 100 ns HIGH 50 %; 
OFFSET = IN 95 ns BEFORE "elk" ; 
#PACE: Start of Constraints generated by PACE 

#PACE: Start of PACE I/O Pin Assignments 
NET "BLANK DAC1" LOC = "AH33" 
NET "elk" LOC = "D18" 
NET "clk_adc" LOC = "AA30" 
NET "cik dac" LOC = "AK34" 
NET "inp<O>" LOC = "AA27" 
NET "inp<10>" LOC = "W31" 
NET "inp<l 1>" LOC = "W32" 
NET "inp<12>" LOC = "W33" 
NET "inp<13>" LOC = "Y33" 
NET "inp<l>" LOC = "AA28" 
NET "inp<2>" LOC = "AA25" 
NET "inp<3>" LOC = "AA26" 
NET "inp<4>" LOC = "Y31" ; 
NET "inp<5>" LOC = "Y32" ; 
NET "inp<6>" LOC = "Y29" 
NET "inp<7>" LOC = "Y28" ; 
NET "inp<8>" LOC = "Y25" ; 
NET "inp<9>" LOC = "Y26" 
NET "MODE1_DAC1" LOC = "AK31" ; 
NET "MODE2_DAC1" LOC = "AK32" 
NET "outp<O>" LOC = "AJ30" 
NET "outp<l>" LOC = "AJ31" 



NET "outp <2>" LOC = "AH29" ; 
NET 11outp <3>". LOC = "AH30" ; 
NET "outp <4>" LOC = "AG29" ; 
NET "outp <5>" LOC = "AG30" ; 
NET "outp <6>" LOC = "AG28" 
NET "outp <7>" LOC = "AL33" 
NET "outp <8>" LOC = "AL34" 
NET "outp <9>" LOC = "AK33" 
NET "SYNC_DAC1" LOC = "AJ34" 
NET "SYNC T DAC1" LOC = "AJ33" 
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Chapter 5: Overview of Virtex-2Pro and kit 

5.1 Virtex 2 Pro FPGA 

The Virtex-II Pro Platform FPGA solution is the most -technically sophisticated 

silicon and software product development in the history of the programmable 

logic industry. The Virtex-II Pro family marks the first paradigm change from 

programmable logic to programmable systems, with profound implications for 

leading-edge system architectures in networking applications, deeply embedded 

systems, and digital signal processing systems. It allows custom user-defined 

system architectures to be synthesized, next-generation connectivity standards to 

be seamlessly bridged, and complex hardware and software systems to be co-

developed rapidly with in-system debug at system speeds. 

The Virtex-2 Pro ordering information is given in Figure 5.1 as follows 

XC2VP30 -5 

Device Type 

Speed Grade 

1152 C 

Temperature Range C (commercial) 

Number of Pins 

Package Type 

Figure 5.1: Virtex-2Pro ordering information 

Virtex-2 Pro are user programmable gate arrays with configurable elements and 

embedded blocks optimized for high density and high -performance system 

designs. A brief overview of the components Virtex-2 Pro is given as follows: 



1. Embedded High-Speed Serial Transceiver 

These devices have Rocket IO Multi-Giga bits. The RocketlO Multi-Gigabit 

Transceiver, based on Mindspeed's SkyRail technology, is a flexible parallel-to-

serial and serial-to-parallel embedded transceiver used for high-bandwidth 

interconnection between buses, backplanes, or other subsystems. Multiple user 

instantiations in an FPGA are possible, providing up to 120 Gb/s of full-duplex 

raw data transfer. Each channel can be operated at a maximum data transfer rate of 

3.125 Gb/s. 

2. Power PC 

The Power PC is the hard processor core that is embedded into FPGA fabric. The 

PPC405 RISC CPU can execute instructions at a sustained rate of one instruction 

per cycle. On-chip instruction and data cache reduce design complexity and 

improve system throughput. 

3. Input / Output Blocks 

I / 0 blocks provide the interface between package pins and the internal 

configuration logic. Most popular and leading-edge I/O standards are supported by 

the programmable IOBs. 

4. Configuration Logic Blocks (CLBs) 

Configurable Logic Blocks (CLBs) provide functional elements for combinatorial 

and synchronous logic, including basic storage elements. CLB resources include 

four slices and two 3- state buffers. 

Each slice is equivalent and contains: 

39 



• Two function generators (F & G) 

• Two storage elements 

• Arithmetic logic gates 

• Large multiplexers 

• Wide function capability 

• Fast carry look-ahead chain 

• Horizontal cascade chain (OR gate) 

The function generators F & G are configurable as 4-input look-up tables (LUTs), 

as 16-bit shift registers, or as 16-bit distributed SelectRAM+ memory. In addition, 

the two storage elements are either edge-triggered D-type flip-flops or level-

sensitive latches. Each CLB has internal fast interconnect and connects to a 

switch matrix to access general routing resources. 

5. Block Select RAM + Memory 

The block SelectRAM+ memory resources are 18 Kb of True Dual-Port RAM, 

programmable from 16K x 1 bit to 512 x 36 bit, in various depth and width 

configurations. Each port is totally synchronous and independent, offering three 

"read-during-write" modes. Block SelectRAM+ memory is cascadable to 

implement large embedded storage blocks. 

6. Embedded 18-bit x 18-bit dedicated multiplier blocks: 

These are 18x18 multipliers. A multiplier block is associated with each Select 

RAM+ memory block. The multiplier block is a dedicated 18 x 18-bit 2s 

complement signed multiplier, and is optimized for operations based on the block 

Select RAM+ content on one port. The 18 x 18 multiplier can be used 

independently of the block Select RAM+ resource. These make 



Read/multiply/accumulate operations and DSP filter structures are extremely 

efficient. 

7. Digital Clock Manager 

The DCM and global clock multiplexer buffers provide a complete solution for 

designing high-speed clock schemes. Up to eight DCM blocks are available. To 

generate de-skewed internal or external clocks, each DCM can be used - to 

eliminate clock distribution delay. The DCM also provides 90-, 180-, and 270-

degree phase-shifted versions of its output clocks. Fine-grained phase shifting 

offers high-resolution phase adjustments in increments of 1/256 of the clock 

period. Very flexible frequency synthesis provides a clock output frequency equal 

to a fractional or integer multiple of the input clock frequency. Virtex-II Pro 

devices have 16 global clock MUX buffers, with up to eight clock nets per 

quadrant. Each clock MUX buffer can select one of the two clock inputs and 

switch glitch-free from one clock to the other. Each DCM can send up to four of 

its clock outputs to global clock buffers on the same edge. Any global clock pin 

can drive any DCM on the same edge. 

8. Routing Resources 

The IOB, CLB, block SelectRAM+, multiplier, and DCM elements all use the 

same interconnect scheme and the same access to the global routing matrix. 

Timing models are shared, greatly improving the predictability of the performance 

of high-speed designs. There are a total of 16 global clock lines, with eight 

available per quadrant. In addition, 24 vertical and horizontal long lines per row or 

column, as well as massive secondary and local routing resources, . provide fast 
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interconnect. Virtex-II Pro buffered interconnects are relatively unaffected by net 

fanout, and the interconnect layout is designed to minimize crosstalk. 

9. Configuration 

Virtex-II Pro devices are configured by loading the bitstream into internal 

configuration memory using one of the following modes: 

• Slave-serial mode 

• Master-serial mode 

• Slave Select-MAP mode 

• Master Select-MAP mode 

• Boundary-Scan mode (IEEE 1532) 

Virtex-2Pro has 10 members. In the dissertation XC2VP30 device is used which 

has the following resources: 

Number of Rocket IO Transceivers Blocks: 10 

Power PC Processor Blocks: 2 

Logic Cells: 30816 

Slices: 13696 

18 x 18 Multipliers Blocks: 136 

Block Select RAM + (18 Kb blocks): 136 

Block RAM (kb): 2448 

DCM: 8 

Maximum User I/O pads: 644 
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5.2 Virtex-2 Pro Video Processing Board 

This board is used in implementing the filter. A brief overview about this board is 

as given below: 

Virtex-II Pro based video processing card with PCI interface offers a cost-

effective platform for developing video and multimedia based applications. With 

on board high speed video ADC, DAC the board supports real time video 

processing of component video signals of NTSC or PAL standards. The on board 

SRAM and Flash memories may be used as data/code store for PowerPC or as 

video coefficient/data buffer(s). 

The board supports three different modes of FPGA configuration. Configuration 

through PROM, JTAG Port and PCI. Flash PROM memory can be programmed 

with code for PowerPC through PCI interface. 

This board can also be used as standalone video processing board. In that case 

RS232 port provided on board will be used to program flash PROM. Further this 

platform is optimised for experimentation with 32-bit IBM PowerPCTM RISC 

processor core integrated into the FPGA fabric. 

This board contains the following: 

FPGA 

Xilinx Virtex-II Pro XC2VP30 device in FF1152 package. 

These are platform FPGA's that are based on IP cores and customized modules, 

optimized for high density and high performance system design. They empower 
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complete solutions for telecommunication, wireless, networking, and Video and 

DSP applications. 

PowerPC 405 Processor 

The PPC405 RISC CPU can execute instructions at a sustained rate of one 

instruction per cycle. On-chip instruction and data cache reduce design complexity 

and improve system throughput. 

Clocks 

User has option of using 2 different clock sources on board which 	provide all 

necessary clocks for User logic and PowerPC The clock sources -provided on 

board are as follows 

Clock Source1: 32 MHz clock oscillator — supplied as standard and can be used as 

system clock for PPC. 

Clock Source2: Socket for user clock source (foot print compatible with clock 

sources from 40 to 300 MHz. the clock sources are connected to the global clock 

inputs. Thus user can use these external clocks as input to the on-chip DCM's. 

Flash PROM 

1.5 MB of Flash PROM is provided as standard, using three 512K X 16 PROMs. 

Can be upgraded to 3 MB, as these proms are footprint compatible with 1M X 16 
PROMs. 



M.51521K 

6 

 

FPGA 
512K 

Figure 5.2 Virtex2Pro Flash PROM 

Five 1M X 16 SRAM devices are independently interfaced to the on board FPGA. 

SRAM 
1 M X16 

RAM 
MX16 

WSRAM 
AM X16 

FPGA  
16 

SRAM 
1MX16 

Figure 5.3: Virtex-2 Pro SRAM 

RS 232 Port 

RS232C compatible connectivity is provided using device MAX3223. Signals 

provided are Rx, Tx, RTS and CTS. These signals are terminated on a 10 pin FRC 

connector on board and a 10 pin FRC to 9-pin D connector interface cable is 

1 16 bit data bus 

2  20 bit address 
bus 

3 control bus 
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provided as standard accessory with the board. Is compatible with the UART core 

provided by the Xilinx EDK. 

PCI Interface 

A 32-bit, 33 MHz PCI interface, using PLX-9054 master interface with DMA 

capability. 

Analog Input : AD9240. 

AD9240 •is the Analog — Digital Converter. On the board one analog input 

channel is available with the following specifications. 

• Resolution — 14 bits 

■ Max Sampling rate — 10 MSPS 

• Input range - 0 to 5 Volts, single ended 

• Input buffer — using AD8052 op-amp. 

• Connector type — SMA. 

AD9240 is useful in various applications such as imaging, communications, and 

medical and data acquisition systems. 

In the Dissertation this A./ D converter is used to supply the input. 

Video Input 

One video input channel is available with the following specifications. 

■ Video ADC - TLV5734 

■ Video signal format — NTSC / PAL compliant RGB /YUV component 
video signal. 

■ Resolution-8 bit 



■ Sampling rate —30 MSPS maximum. 

■ Input range - 1 Vp-p. 

■ Input buffer — using AD8052 op-amp. 

■ Connector type — SMA 

■ Selectable clamping function for RGBIYUV applications. 

■ Selectable Output Data Format for 4:4:4 (RGB,. YUV), 4:2:2 and 4:1:1 

(YUV) Format. 

Video Output 

Two video output channels are provided on board with the following 

specifications 

■ Video DAC - THS8133 

■ Video signal format — NTSC / PAL compliant RGB /YUV component 

video signal. 

■ Resolution — 10 bit 

■ Sampling rate —80 MSPS maximum. 

■ Connector type — SMA 

THS8133 provides current output; these current outputs can be converted into 

NTSC/PAL standard voltage levels by connecting a double terminated 75 ohms 

load. 

Sync Generation 

Using sync, sync_t control signals, video sync signals can be added either on AGY 

(G/Y) channel or on all three channels with 7:3 video/sync ratios. Depending on 
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the timing control of these signals both horizontal and vertical sync signals can be 

generated as well as either hi-level negative going or tri level pulses can be 

generated. 

Blanking Generation 

An additional control input BLANK is provided that will fix the output amplitude 

on all channels to the blanking level. The absolute amplitude of the blanking level 

with respect to active video is determined by the GBR or YPbPr operation mode 

of the device. 

Histogram Equalizer 

The on board histogrammer LF48410 is capable of generating histograms and 

cumulative distribution functions of video images. It provides following features: 

■ 40 MHz data input and computation rate. 

■ 1024 X 24 bit memory array 

■ Histograms of images up to 4k X 4k with 10-bit pixel resolution. 

■ User programmable modes — Histogram, histogram accumulate mode,. 

look-up table mode, Delay memory, single port memory. 

Sync Separator 

Sync separator EL4583 used on board extracts timing from video sync in NTSC, 

PAL, and SECAM systems. 

■ Sync Separator — EL4583 

■ Input voltage range — 0.5 V to 2 Vp-p. 

■ Output signals —composite sync signal, vertical sync signal, horizontal sync 

signal, burst signal, odd/even signal, no signal detect output. 



■ Connector type — SMA 

Digital I/Os 

Maximum of 16 true bi-directional IOs are available when using XC2VP30 

device. (32 with XC2VP40 and XC2VP50). 

Power Supply 

When Board is to be used as PCI add on card then Board can be powered from 

PC's SMPS. While using the board in standalone mode an external power supply 

will power the board. 

User LEDs 

8 LEDs are provided on board, which can be used by user to monitor signals from 

his design. 

Reset Switch 

Can be used by user as a manual Reset input while verifying his designs. 

The above board is as shown in Figure 5.1 



k 	Flash Prom 

I 
SRAM IM RAMIMX 16 

I E 

6 user 10s4 

la 

L5 user tcEs cc 
U-. 

FPGA 

Virtexll Pro 
Xc2VP4O 

Package FF1152 

Virtex 11 Pro based video processing board with PCI Interface 
Olt 3;d 	36 

Video DAC 	*:4 444 Flash Prom 
C) 5112KX 16 

Ot Video DAC 	-4? *;7 
Flash Prom' 

Gly 	 24 
Video AVC *PL

* 

Pe.scahng 
SRAM 1MX1S 

CL ADC SRAM -1 M X -16 < E -31-~ - 
SRAM •1 M X 16 

Sync Seperator 

si 
75 cr 	 Sync Seperator 

us 
Sync Seperator 

• Histogram 
Equalizer 

E fl 4 	2 Channel 
g I 

	
Fun Duplex 

1 

Cp U 	RS232 Interface 

LE' 	
' 	2 Channel 

MIL-STD-150 
Interface Ei 

U) 

1 40 MHz Crystat 
Oscillator 

U) 	I uYstal 
Oscillator Socket 

(optional) 

External Supply 
Connector 	 5 VA 

+12 VA 	on board 	3.3 VA 

11H  

+ S VD 	Power 	ip 3.3V 
fjnd 	Supplies 	2SV 

I 	1.5v 

Configuration 

JTAG I PROM I PCI 

Local Bus 

PCI Bus Master 
Interface using PLX 

6054 

PCLSus 
cft 

Figure 5.4: Virtex2Pro Board 
•" 

V 	 (Ao \ 

50 

ROO 



Conclusion and Future Scope of Work 

7.1 Conclusion 

An Eight- order low-pass filter Finite Impulse Response (FIR) Filter has been 

implemented in Virtex-2Pro FPGA. Some of the common filter structures were 

discussed. And two realizations Cascaded Decomposition and Distributed 

Arithmetic approach were implemented. A cascade decomposition consisting of 

four second order modules is realized. In the Distributed Arithmetic Approach 

three Look-Up-Tables, Eight Shift Registers and Adder/ Subtractor are used to 

realize the Eight-order filter. Attempts have been made to implement the above 

filter in real-time. 

7.2 Future-  Scope of Work 

• The low-pass FIR filter implemented is of order Eight. A higher order filter 

can be realized and can be extended to band-pass, band-stop and 

differentiators 

• On the board there is no Digital — Analog converter, one can interface an 

external D/A converter to the board to view the output signal in Cathode 

Ray Oscilloscope (CRO). 

• The implemented filter uses more logic blocks, one can optimize the design 

in terms of area occupied. 

• The Look-Up-Tables were stored in FPGA internal memory. However 

these Look-Up-Tables can be implemented in SRAMs and the coefficients 

can be directly accessed from the external memory, of the board. 
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