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ABSTRACT 

Pulmonary disease is a major cause of ill-health throughout the world. The 
diagnosis of these common chest diseases is facilitated by pulmonary auscultation using a 
stethoscope. Auscultation with a stethoscope has many limitations. It is a subjective 
process that depends on the individual's own hearing, experience and ability to 
differentiate between different sound patterns. It is not easy to produce quantitative 

measurements or make a permanent record of an examination in documentary form. Here 

in this work we developed instrumentation for recording lung sounds, it consists of 

hardware - for acquiring the. signal, amplification and filtering. This filtered signal is 
digitized and recorded. 

Respiratory sounds contain significant information on physiology and pathology 
of the lungs and the airways. The frequency spectrum and the amplitude of sounds, 

without adventitious sound components (crackles or wheezes), may reflect airway 
dimension and their pathologic changes (airway obstruction) or pathologic changes in the 

pulmonary tissue. These crackles sounds are of non stationary in nature so here we 

implemented Stationary-Non stationary separating filter whose coefficients are solved by 

LMS (least mean square) algorithm. Wheezes are musical sounds which are sinusoidal in 

nature are separated by using Discrete Wavelet Transform. Interference of heart sounds 

in lung sounds are reduced by spectrogram method with help of RLS (recursive least 
square) filter. 
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CHAPTER-1 

INRODUCTION 

This chapter discusses about the structure of respiratory system and functions of 

various organs involved in this system and explain the process how gases are exchanged 

to supply the oxygen to tissue cells allover the body. Phenomenon of inspiration and 

expiration are also explained. And explains about different types of breath sounds with 

waveforms and mentioning the conditions where these occur generally. 

1.1. Anatomy of Respiratory System 

The exchange of gases in any biological process is termed respiration. The 

respiratory system is - situated in the thorax, and is responsible for gaseous exchange 

between the circulatory system and, the outside world. Air is taken in via the upper 

airways (the nasal cavity, pharynx and larynx) through the 'lower airways (trachea, 

primary bronchi and bronchial tree) and into the small bronchioles and alveoli within the 

lung tissue. Upper airways and lower airways are as shown in Fig. 1.1. 

Nasal passages 

Pharynx 
(Throat) 

Larynx — 

Right middle 
lobe 

Right lower 
lobe 

. ' 	 Mouth 

Epiglottis 

Trachea 

Pulmonary vein 
Left bronchus 
Left upper lobe 
'Pulmonary arteries c 

 ; L

nchioles 

 Pleura 
Alveoli 
eft lower lobe 

oxygen-rich blood 
® oxygen-poor blood 

Fig.1.1 Anatomy of respiratory system 
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The lungs are elastic bags located in closed cavity, called the thorax or thoracic 

cavity. The right lung consists of three lobes (upper, middle, and lower), and the left lung 

has two lobes (upper and lower): The larynx, sometimes called the "voice box" (because 

it contains vocal cords), is connected to the bronchi through the trachea, sometimes called 

the "windpipe". Above the larynx is the epiglottis, a valve that closes whenever a person 

swallows, so that food and liquids are directed to the esophagus (tube leading to the 

stomach) and into the stomach rather than into the larynx and trachea. The trachea is 

extending from the larynx to the right and left main stem bronchi. 

Functionally the respiratory system structures are separated into conducting zone and 

respiratory zone. 

The Conducting Zone consists of the nose, pharynx, larynx, trachea, bronchi, and 

bronchioles: These structures form a continuous passageway that allows air to move in 

and out of the lungs. As the air flow through the conducting zone. it is also warmed,. 

moistened and cleaned. 

The second functional division of respiratory is found deep inside the lungs and is 

called the Respiratory Zone. It is made up of respiratory bronchioles, alveolar ducts, and 

alveoli. These thin walled structures form a region where gases can be exchanged with 

nearby capillaries. 

Automatically, these same structures are often divided into the Upper and Lower 

Respiratory Tracts. 

Fig.1.2 Respiratory tract 
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The Upper Respiratory Tract formed by nose, pharynx, and larynx, which are 
located in the head and neck. Lower Respiratory Tract formed by the trachea, bronchi, 
and lungs (bronchioles, alveoli ducts and alveoli), which are located in thorax (chest). 

As the passes through the respiratory tract it came to lower respiratory tract it 
enters into Bronchus. Each bronchus enters into the corresponding lung and divides like 
the limbs of a tree into smaller branches. Farther along these branchings, where the 

diameter is reduced to about 0.lcm, the air-conducting tubes are called bronchioles. As 
they continue to decrease in. size to about 0.05 cm in diameter, they form the terminal 

bronchioles, which branch again into the respiratory bronchioles, where some alveoli are 

attached as small air sacs in the walls of the lung. After some additional branching, these 

air sacs increase in number, becoming the pulmonary alveoli. The alveoli are each about 
0.02 cm in diameter. It is estimated that some 300 million alveoli are found in the lungs. 

Figure.1.3 Alveoli and capillary network 
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1.2. Mechanics of Breathing 

To take a breath in, the external intercostal muscles contract, moving the ribcage 

up and out. The diaphragm moves down at the same time, creating negative pressure 

within the thorax. The lungs are held to the thoracic wall by the pleural membranes, and 

so expand outwards as well. This creates negative pressure within the lungs, and so air 

rushes in through the upper and lower ,airways. 

Expiration is mainly due to the natural elasticity of the lungs, which tend to 

collapse if they are not held against the thoracic wall. This is the mechanism behind lung 

collapse if there is air in the pleural space (pneumothorax). 

Each branch of the bronchial tree eventually sub-divides to form very narrow 

terminal bronchioles, which terminate in the alveoli. There are many millions of alveoli 

in each lung, and these are the areas responsible for gaseous exchange, presenting a 

massive surface area for exchange to occur over. 

Fig.1.4 Physiology of gas exchange 
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Each alveolus is very closely associated with a network of capillaries containing 
deoxygenated blood from the pulmonary artery. The capillary and alveolar walls are very 
thin, allowing rapid exchange of gases by passive diffusion along concentration 
gradients. 

CO2 moves into the alveolus as the concentration is much lower in the alveolus 
than in the blood, and 02 moves t of the alveolus as the continuous flow of blood through 
the capillaries prevents saturation of the blood with 02 and allows maximal transfer 
across the membrane. 

1.3. Breath Sounds 

Breath sounds can be divided and subdivided into the following categories: 

Normal 

tracheal 

vesicular 

bronchial 

bronchovesicular 

Abnormal 

absent/decreased 

bronchial 

Adventitious 

crackles (rales) 

wheeze 

rhonchi 

stridor 

pleural rub 

mediastinal crunch 

TabNe.1.1 Breath sounds 

1.3.1. Normal Breath Sounds 

These are traditionally organized into categories based on their intensity, pitch, 
location, and inspiratory to expiratory ratio. Breath sounds are created by turbulent air 

flow. In inspiration, air moves into progressively smaller airways with the alveoli as its 
final location. As air hits the walls of these airways, turbulence is created and produces 

sound. In expiration, air is moving in the opposite direction towards progressively larger 
airways. Less turbulence is created, thus normal expiratory breath sounds are quieter than 
inspiratory breath sounds. 
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Tracheal Breath Sound 

Tracheal breath sounds are very loud and relatively high-pitched. The inspiratory 

and expiratory sounds are more or less equal in length. They can be heard over the 

trachea which is not routinely auscultated. 

Vesicular Breath Sound 
The vesicular breath sound is the major normal breath sound and is heard over 

most of the lungs. They sound soft and low-pitched. The inspiratory sounds are longer 

than the expiratory sounds. Vesicular breath sounds may be harsher and slightly longer if 

there is rapid deep ventilation (e.g. post-exercise) or in children who have thinner chest 

walls. As well, vesicular breath sounds may be softer if the patient is frail, elderly, obese, 

or very muscular. 

Bronchial Breath Sound 

Bronchial breath sounds are very loud, high-pitched and sound close to the 

stethoscope. There is a gap between the inspiratory and expiratory phases of respiration, 

and the expiratory sounds are longer than the inspiratory sounds. If these sounds are 

heard anywhere other than over the manubrium, it is usually an indication that an area of 

consolidation exists (i.e. space that usually contains air now contains fluid or solid lung 

tissue). 
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Bronchovesicular Breath Sound 
These are breath sounds of intermediate intensity and pitch. The inspiratory and 

expiratory sounds are equal in length. They are best heard in the 1St and 2nd ICS 
(anterior chest) and between the scapulae (posterior chest) - i.e. over the mainstem 
bronchi. As with bronchial sounds, when these are heard anywhere other than over the 

mainstem bronchi, they usually indicate an area of consolidation. 

7 	 4 	 6 	 H 	 10 	 12 

Fig. 1.7 Bronchovesicular breath sounds 
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1.3.2. Abnormal Breath Sounds 
Absent or Decreased Breath Sounds 

There are a number of common causes for abnormal breath sounds, including: 

• Asthma: decreased breath sounds 

• Atelectasis: _ If the bronchial obstruction persists, breath sounds are absent 

unless the atelectasis occurs in the RUL in which case adjacent tracheal 

sounds may be audible. 

• Emphysema: decreased breath sounds 

• Pleural Effusion: decreased or absent breath sounds. If the effusion is large, 

bronchial sounds may be heard. 

• Pneumothorax: decreased or absent breath sounds 

Bronchial Breath Sounds in Abnormal Locations 
_ 	Bronchial breath sounds occur over consolidated areas. Tests like egophony and 

whispered petroliloquy may confirm the suspicions. 

1.3.3. Adventitious Breath Sounds 

Crackles (Rales) 

Crackles are discontinuous, nonmusical, brief sounds heard more commonly on 

inspiration. They can be classified as fine (high pitched, soft, very brief) or coarse (low 

pitched, louder, less brief). Crackles may sometimes be normally heard at the anterior 

lung bases after a maximal expiration or after prolonged recumbency. 

Fig.1.8 Fine crackles 
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The mechanical basis of crackles: Small airways open during inspiration and collapse 
during expiration causing the crackling sounds. Another explanation for crackles is that 
air bubbles through secretions or incompletely closed airways during expiration. 
Conditions: asthma, bronchiectasis, chronic bronchitis, consolidation, interstitial lung 
disease, pulmonary edema 

Wheezes 
Wheezes are continuous, high pitched, hissing sounds heard normally on 

expiration but also sometimes on inspiration. They are produced when air flows through 

airways narrowed by secretions, foreign bodies, or obstructive lesions. When the wheezes 

occur and there is a change after a deep breath or cough. 
Conditions: asthma, chronic bronchitis, pulmonary edema. 

Rhonchi 

Rhonchi are low pitched, continuous, musical sounds that are similar to wheezes. 
They usually imply obstruction of a larger airway by secretions. 
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Stridor 
Stridor is an inspiratory musical wheeze heard loudest over the trachea during 

inspiration. Stridor suggests an obstructed trachea or larynx and therefore constitutes a 

medical emergency that requires immediate attention. 

Pleural Rub 

Pleural rubs are creaking or brushing sounds produced when the pleural surfaces 

are inflamed or roughened and rub against each other. They may be discontinuous or 

continuous sounds. They can usually be localized a particular place on the chest wall and 

are heard during both the inspiratory and expiratory phases. 

Conditions: pleural effusion, pneumothorax. 

Mediastinal Crunch 

Mediastinal crunches are crackles that are synchronized with the heart beat and not 

respiration. They are heard best with the patient in the left lateral decubitus position. As 

with stridor, mediastinal crunches should be treated as medical emergencies. 

Conditions: pneumomediastinum. 
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1.4. Literature Review 

Developing a harddisk-  recording system with high sampling rates of three 
channels to examine the possibility for a sound pattern detection system and applied it in 
patients and healthy volunteers was proposed in [1]. Kahya.Y.P etc in[2] and [3] 
proposed multi channel recording with DSP processor and processed those signals in real 
time and classification is also done. 

B. Widraw, I. M. McCool, in [4] described the performance characteristics of the 

LMS adaptive filter, a digital filter composed of a tapped delay line and adjustable 

weights, whose impulse response is controlled by an adaptive algorithm. Benedetto.G, 
Dalmasso.F,[7] expains the characterstic of crackles and diagnostic importance. 

The timing, repeatability, and shape of crackles are important parameters for 
diagnosis. Therefore, automatic detection of crackles and their classification as fine and 

coarse crackles have important clinical value. Since the multiresolution decomposition 
technique can give high resolution in both time and frequency, it can be exploited to 
detect crackles and classify them according to the information in each scales. F.K. Lam, 

F.H.Y. Chan [8] present new methods for crackle detection based on continuous wavelet 
transform. In [9], proposed a new method for crackle detection which is based on 
`matched' wavelet transform. 

In order to separate the crackles from vesicular sounds automatically, Mariko.O, 

Kaoru Arakawa[10] proposed a nonlinear digital filter which was designed to separate . 

nonstationary from stationary signals, and this filter coefficients were derived by LMS 
algorithm. 

An algorithm has been designed to achieve a high sensitivity to wheezing sound 

detection [11] and [12].  Wheezes detection was also desired to be independent from 
respiratory sound power. 
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The identification of continuous abnormal lung sounds, like wheezes, in the total 

breathing cycle is of great importance in the diagnosis of obstructive airways pathologies. 

To this vein, the Taplidou.S.A, Hadjileontiadis.L.J, [13] introduced an efficient method 

for the detection of wheezes, based on the time-scale representation of breath sound 

recordings. The employed Continuous Wavelet Transform is proven to be a valuable tool 

at this direction, when combined with scale-dependent thresholding. Analysis of lung 

sound recordings from .wheezing. patients shows promising performance in the detection 

and extraction of wheezes from the background noise and reveals its potentiality for data-

volume reduction in long-term wheezing screening, such as in sleep-laboratories. 

Depending on pulmonary airflow, sensor location, and individual physiology, 

heart sounds may obscure lung sounds in both time and frequency domains, and thus 

pose a challenge for development of semi-automated diagnostic techniques. Gnitecki.J, 

Moussavi.Z,[15] proposed a recursive least . squares (RLS) adaptive noise cancellation 

(ANC) filtering which had applied for heart sounds reduction in lung sounds. This 

algorithm in [16] uses an image processing technique to detect HN 'segments in the 

spectrogram of the recorded lung sound signal. Afterwards the algorithm removes those 

segments and estimates the missing data employing a 2D interpolation in the time-

frequency domain and finally reconstructs the signal in the time domain. 

Adaptive Filtering is an accepted method to intelligently remove the heart sound 

from the lung sounds. However the drawback of the adaptive noise canceling scheme is 

the need of a reference signal that is exactly in the same time alignment as the 

interference signal in the primary signal. E. Saatci, A.Akan proposed in[16] a effective 

and easy method based on Spectrogram is presented to automatically generate a reference 

signal from the lung sound signal. Adaptive Noise Cancelation with Recursive Least 

Square (RLS-ANC) method is used to filter out the heart sound from lung sound. 
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1.5. Organization of Thesis 
- This Thesis is organized in the following way: 

In Chapter-2, I have explained the Hardware Setup used for the acquisition of 

Lung sounds with help of block diagram. Each component of setup was explained with 

its specifications and recorded wave forms of lung sounds are also shown. 

Chapter-3 explains various signal processing techniques with their limitations. 

These techniques are going to be used in the analysis of lung sounds. , 

Chapter-4 presents various adaptive filter techniques _ and other processing 

techniques to remove the adventitious sounds like crackles and wheezes. Another 

technique was presented to reduce the interference of heart sounds in lung sounds. Every 

method was explained with help of results. 

Chapter-5, conclusions and scope for future work are given. 
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CHAPTER-2 

LUNG SOUND MEASUEMENT 

Measurement of lung sounds widely used in the analysis of pulmonary diseases. 
Stethoscope is widely used for this purpose but as per diagnostic requirements due to so 
many reasons it is not suitable. This chapter discusses about development of equipment 
and explains various components used in this equipment. 

2.1. Auscultation 
- Auscultation is one of the widely used techniques for listening Breath Sounds. 

These sounds can be heard either on the chest or at the posterior of the chest. These are 
the certain precautions that should be followed for auscultation: 

a) It is important to create a quiet environment as much as possible. Eliminate noise 
by closing the door and turning off any radios or televisions in the room. 

b) The patient should be in the proper position for auscultation, i.e. sitting up in bed 
or on the examining table, ensuring that his or her chest is not leaning against 
anything. 

c) Stethoscope should be touching the patient's bare skin whenever possible or we 
may hear rubbing of the patient's clothes against the stethoscope and misinterpret-

them as abnormal sounds.. We can wet the patient's chest hair with a little warm 

water to decrease the sounds caused by friction of hair against the stethoscope. 
d) Be considerate and warm the diaphragm of our stethoscope with our hand before 

auscultation. 

It is important that we always compare what we hear, with the opposite side. 

Example if we are listening to the left apex, we should follow through by comparing what 
we heard with what we hear at the right apex. 
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Fig.2.1 Locations on anterior of chest Fig.2.2 Locations on posterior of Chest 

There are 12 and 14 locations for auscultation on the anterior and posterior chest 

respectively. Generally, we should listen to at least 6 locations on both the anterior and 
posterior chest. Begin by ausculting the apices of the lungs, moving from side to side and 
comparing as we approach the bases. Making the -order of the numbers in the Fig.2.1 and 

Fig.2.2 a ritual part of our pulmonary exam is a way of ensuring that we compare both 

sides every time and well begin to know what each area should sound like under normal 
circumstances. If we hear a suspicious breath sound, listen to a few other nearby locations 
and try to delineate its extent and character. 

However, traditional auscultation with a stethoscope does not meet the 
requirements for a diagnostic test due to, primarily, limitations of human ear auditory 

_. system.. 

• The ears are sensitive to deterministic sounds in the time or frequency domains, 

but are substantially less accurate in identifying, analyzing, and classifying the 
noise. 

• Another reason for human deficiency in the analysis of lung sounds is their low 
signal-to-noise ratio. Thoracic lung sounds have relatively low amplitude 
compared with background noise of heart and muscle sounds. Because of the lack 

of objectivity, and the qualitative nature of lung sounds, many physicians no 
longer rely on auscultation as a diagnostic tool. 
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The application of computer technology has provided new insights into acoustic 

mechanisms and new measurements of clinical relevance on lung sounds. The use of 
digital signal processing techniques to extract information on average sounds were major 
steps that have advanced the utility of lung sounds beyond the stethoscope. The breathing 
associated sound heard on the chest of a healthy person is called the normal lung sound. 
The normal lung sound is characterized by larger, louder sounds during inspiration than 
during expiration. 

Although lung sounds provide important information about the respiratory system, 

the analysis of lung sounds has not been widely used in clinical practice because of the 
complicated procedure involved. However, computer technology has made impressive 

advancements in recent years. Today, practically all personal computer models are 

equipped with the capacity for audio-signal input and output. In this study, we developed 
a computer-based system for lung sounds acquisition. 

2.2. Instrumentation for Acquisition of Lung Sound 
A block diagram representation of the measurement system is shown as under [1]. 

microphone 
Amplifier & 	 Data Acquistion Cai 

Lung sound Low-pass filter 	 (With ADC & Sampling) 

Fig.2.3 Block diagram representation of measurement system 

Equipments Used and Their Specifications: 
1. Stethoscope 

2. Electret Condenser Microphone 
3. Electronic Components. (OP-AMPs, Resistors, Capacitors) 
4. Data Acquisition Card (PCL-206) 
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2.2.1. Stethoscope 

Stethoscopes are not only useful for doctors, but home mechanics, exterminators, 

spying and many numbers of other uses. A standard stethoscope meant for clinical 

interest is used to detect the lung's sound signals of a human body. Standard stethoscopes 

provide no amplification which limits their use. Amplification of the signals is needed so 

that they can be used according to the desired purpose, which can be done by an amplifier 

of suitable gain. The sound signals detected by stethoscope can be converted into analog 

form using an electret's microphone. The head of the stethoscope is cut off and a small 

piece of rubber tube is used to join the nipple on the head to the microphone. 

2.2.2. Electret Condenser Microphone 

Introduction 

Electret's Condenser Microphones (ECM) are used in almost every consumer and 

communication audio application. The most commonly used ECM's consist of a JFET 

inside an electret microphone canister, which acts as a buffer between the capacitive 

sensor and the output. JFET's are small, three-terminal devices that have been improved 

toward very small, low cost plastic packages. This enabled the main innovation of ECM, 

their increasingly smaller sizes. ECM's as small as 2mm in height are common. With a 

stack of condenser microphone plates and spacers, this requires packaged JFET's as small 

as 0.5mm in thickness. A cross sectional view of a typical ECM is shown in Fig 2.5. 

(Refer Appendix 1 for specifications of Microphone). 

DIAPHRAGM 

Al RGAP 
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CONNECTOR 
	 V+ 

OUT 

Fig.2.4 Schematic diagram of an electret microphone 
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Fig.2.5 Microphone Used- Abuja ATP-20M 

Biasing and Interfacing the ECM 
An Electret's microphone consists of a pre-charged, non-conductive membrane 

between 2 plates that form a capacitor. One of the plates is fixed and the other plate 

moves with sound pressure. Movement of the plate results in a capacitance change, which 

in turn results in a change in output voltage due to the non-conductive, pre-charged 

membrane. An electrical representation of such an acoustic sensor consists of a signal 
voltage source in series with a source capacitor. The most common method of interfacing 
this sensor has been a high impedance buffer/amplifier. A single JFET with its gate 

connected to the sensor plate and biased as shown in Fig. provides the following 
properties: 

• Signal buffering 

• High pass filtering 

• Self biasing of active components 

• External phantom biasing 

The main benefits of this type of ECM are its small size, low cost and relatively low 

noise. However, the combination of a single JFET and low .load resistor results in a low 

gain (typically -3 dB) and therefore low sensitivity of the ECM. A low sensitivity of the 

ECM results in small output voltages of the sensor (on the order of 0.1-10mV average, 

100mV peak). To make such a microphone work in a system (such as a mobile phone) 
requires careful board design, along with additional filtering components, to keep a 
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reasonable signal-to-interference ratio. Also, to supply the signal to an Analog-to-Digital 
(ADC) converter, significant. pre-amplification is necessary. The microphone (Abuja 
ATP-20M) was attached to stethoscope chest piece (Microtone) via 5-cm-long rubber 
tubing. Signals from the microphone-stethoscope chest piece amplified by an OP-AMP 
and filtered by a Second Order Low Pass Butterworth Filter. 

Fig.2.6 Sensing unit. 

2.2.3. Amplification and Filtering 

The output obtained by the microphone is amplified and filtered by using the 
following circuit. 



Electronic Components Used 

• 741 op-amps (two). 

• Resistors ---- 1 OK(four), 2.2K(two), 47K(one), 33K(three) 

• Capacitors-----470 µf(one), 0.047µf(three), 0.01 µf(one) 

Table.2.1 Ratings of different components used 

R1 1 IOK 1/4W Resistor 
R2, R3 2 2.2K 1/4W Resistor 

R4 1 47K 1/4W Resistor 
R5, R6, R7 3 33K 1/4W Resistor 

R8 1 56K 1/4W Resistor 
Cl 1 470uF Electrolytic Capacitor 

C2, C3, C4 3 0.047uF Capacitor 
U1, U2 2 741 Op-Amp 
MIC 1 1 Electret Mic 

MISC 1 Board, Wire, Sockets for ICs, Stethoscope, 
Rubber tube 

The output of the microphone is given to amplifier whose gain is 21.4. The signals are 

then send to a second order low pass filter having higher cutoff frequency 102 Hz below 

which all the important frequency components of respiratory sounds exist. The output of 

the filter was given to the Data Acquisition Card (PCL-206). 

2.2.4. Data Acquisition Card 
New developing fields like image processing, transient analysis and biomedical 

observations started demanding fast A/D and D/A conversions. As IBM-PC is being used 

for such applications, high speed multifunction A/D and D/A cards became much sought 

after commodities. Such Add-On cards with fast, high precision A/D converter turns 

IBM-PC into data acquisition and signal analysis instrument.PCL-206 is an IBM-

PC/XT/AT compatible multifunction analog input card, which has many desirable 

advanced features for sophisticated measurements. Specifications of PCL-206 ADC are 

clearly explained in Appendix-1. 	 I 
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Fig.2.8 PCL-206 

2.2.5. Acquired Lung Sounds 
A software program was written in Turbo C++ compiler to interface the card. The 

program gave necessary command words to the hardware ports of PCL-206 and obtained 

the digital values from the card. The samples taken from two different subjects are shown 
as under: 

.' 	 Fig.2.9 Sample 1 of recorded signals 

From the above sample we can infer that the magnitude during inspiration is higher than 
that during expiration 

Fig.2.10 Time expanded analysis of sample 1 (inspiration) 
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Fig.2.11 Time expanded analysis of sample 1 (expiration) 

Fig.2.12 Sample 2 of recorded signals 

Fig.2.13 Time expanded analysis of sample 2 (inspiration) 
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Fig.2.14 Time expanded analysis of sample 2 (expiration) 
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CATER-3 

MATHEMATICAL BACKGROUND FOR ANALYSIS OF 
. LUNG SOUNDS 

This chapter discusses various signal processing techniques which are used for 
analysis of lung sounds. Initially frequency analysis techniques are discussed and after 

discussing limitations of these methods it will discuss various time frequency analysis 
techniques. 

3.1. Fourier Transform 
The Fourier Transform fords itself ubiquitously prevalent in many applications 

involving the analysis of the frequency content of the signal. Its evolution can be dated 

back to the 19t" century when a French Mathematician J. Fourier showed that any 

periodic function could be expressed as an infinite sum of periodic complex exponential 

functions. This was later generalized to both periodic and non-periodic signals and was 
known as Fourier Transform. 

Fourier transforms can be used to translate time domain signals into the 
frequency domain. It acts as a mathematical prism, breaking up the time signal into 

frequencies, as a prism breaks light into different colors. Fourier transform decomposes a 
signal in to complex exponential functions of different frequencies. Thus, it gives a 

complete picture of the frequency components of the signal under consideration. 

The following equations can be used to calculate the Fourier transform of a time-
domain signal and the inverse Fourier Transform: 

X(f) = f x(t). e 2i dt 	 (3.1) 

x(t) = f X (f)• e 2 	df 	 (3.2) 

Where, x is the original signal, t is time,f is frequency, X is the Fourier transform. 
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3.1.1. Limitations of FT 
Fourier transforms are very useful at providing frequency information that cannot 

be seen easily in the time domain. However they do not suit brief signals, signals that 

change suddenly or in fact any non-stationary signals. The reason is that they show only 

-what frequencies occur, not when these frequencies occur, so they are not much help 

when both time and frequency information is required simultaneously. In stationary 

signals, all frequency components occur at all times. 

3.2. Short time Fourier Transform (STFT) 
As explained in section 3.1, the Fourier transform can be used for stationary 

signals. Hence, in order to analyze the non-stationary signals, small portions of these 

signals are considered, where they behave as essentially stationary. The same Fourier 

transform concept is applied to these segmented portions, to analyze the signal in both 

time and frequency domains simultaneously. Therefore through this technique analysis of 

frequency components and the positions of occurrence of these frequency components 

can be accomplished. This analysis can be done using windowing techniques: 

3.2.1. Window Function 
The STFT looks at a signal through a small window, using the idea that a 

sufficiently small section of the wave will be approximately a stationary wave and so 

Fourier analysis can be used. The window is moved over the entire wave, providing some 

information about what frequencies appear at what time. 

A desired portion of a signal can be removed from the main signal by multiplying 

the original signal by another function, which is zero outside the interval desired. Such a 

function which helps in extracting the desired portion is called windowing function. 
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Fig.3.1 Example of a window used for STFT 

The following equation can be used to compute a STFT. It is different to the FT 
as it is computed for particular windows in time individually, rather than -computing 

overall time (which can be alternatively thought of as an infinitely large window). x is the 

signal, and w is the window. 

STFT (t,  f) = f [x(t). i (t - I)] .' 2  'dt 	(3.3) 

Some of the common window functions are rectangular window, gabber window, 

Kiser -window, cosine window etc. the configuration of rectangular window is specified 

in equation 

WL  (t) = W (t) t E [b — t' , b + t' ] 

= 0 otherwise 	 (3.4) 

These windows are pictorially represented in figure 

-t' 	b 	t' 
Fig.3.2 Rectangular window 
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By changing the parameter b, the window function can be sliced to analyze the 

local behavior of the analyzing signal. Also, the window width can be varied by changing 

t'.  

3.2.2. Limitations of STFT 

There is an improvement, as a time domain signal can be mapped onto a function 

of time and frequency, providing some information about what frequencies occurs when. 

However using windows, introduces a new problem; it is impossible to know exactly 

what frequencies occur at what time, only a range of frequencies can be found. This 

means that trying to gain more detailed frequency information causes the time 

information to become less specific and visa versa. Therefore when using the STFT, there 

has to be a sacrifice of either time or frequency information. Having a big window gives 

good frequency resolution but poor time resolution; small windows provide better time 

information, but poorer frequency information. 

3.3. Wavelet Transform 

The beginning of the wavelet transform as a specialized field can be traced to the 

work of Grossman and Monet. Their motivation in studying wavelet transforms was 

provided by the fact that certain seismic signals can be modeled suitably by combining 

translations and dilations of simple oscillatory function of finite duration known as 

wavelet. 

Wavelet transform is inheritable linear transformation technique, capable of 
providing the time and frequency information simultaneously, hence giving a time 
frequency representation of the signal. The wavelet transform was developed as an 

alternative to the short time Fourier transform to overcome the resolution problem. 

Wavelet analysis is next logical „step to a windowing technique with variable-sized 

regions. Wavelet analysis allows the use of long time intervals where more precise low 

frequency information is required and shorter regions where high frequency information 
is required. 
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3.3.1. Wavelets 
The signals such as seismic signal can be modeled suitably by combining 

translations and dilations of a simple, oscillatory function of finite duration called a 

wavelet. 

A functionP(t) is a mother wavelet, if it satisfies the following two properties. 

1. The function integrates to zero: . 

JP(t)dt =, 0 

2. The signal has finite energy: 

fP'(t)dt  is finite. 

There are many types of wavelets used for to compute the wavelet transform of a 

signal. Different applications dictate the choice of wavelet for the particular application. 

Some of the most common of these are cubic B-Spline wavelet, Monet wavelet, Haar 

wavelet etc. 

3.3.2. Continuous wavelet transform (CWT) 
In continuous wavelet transform, analysis is done similar to the short time Fourier 

transform. The signal is multiplied with a function similar to the window function in• 
•STFT and transform is computed separately for different segment of time domain signals. 

The basic differences between continuous wavelet transform and short time 

Fourier transform are listed below. 

• The Fourier transform of window signals are not taken, therefore signal 

peak will be seen corresponding to a sinusoid i.e., negative frequencies are 

not computed. 

• The width of the windows is changed as the transform is computed for 

every single spectral component, which is probably the most significant 

characteristic of wavelet transform. 
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The continuous wavelet transform is the sum over all time of scaled and shifted 

versions of the mother wavelet V. Calculating the CWT results in many coefficients C, 

which are functions of scale and translation. 

	

CWT' (z, s) =1 x(t)I//: sdt 
	

(3.5) 

The basis wavelet functions are derived from a single prototype Mother Wavelet as 

follows 

I' Ts = 	1 u( t s ~) 	(3.6) 

The translation r is proportional to time information and the scale s is 

proportional to the inverse of the frequency information. To find the constituent wavelets 

of the signal, the coefficients should be multiplied by the relevant version of the mother 

wavelet. 

The scale of a wavelet simply means how stretched it is along the x-axis, larger 

scales are more stretched. The term ` XF—' in equation (3.6) serves the purpose of 
s 

energy normalization of the wavelet across various scales. 

3.3.3. Reconstruction of original time-domain signal from its CWT: Admissibility 
Condition 
The continuous wavelet transform is a reversible transform, provided that the 

admissibility condition is satisfied. The reconstruction is possible by using the following 

reconstruction formula (Inverse Wavelet Transform): 

x(t) = 12 !f CWT x(z>s) 
1 
2
c t—z 

drds 	(3.7) 
C~  

xr 
s  s 

Where, C is a constant that depends on the wavelet used. The success of the 

reconstruction depends on this constant called, the admissibility constant, to satisfy the 
following admissibility condition: 
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= 
	
I( )I 

d 112 < oo 
	 (3.8) 

- 	
} 

Where, yr(~) is the FT of yi (t) .Equation (3.8) implies that, (0) = 0, which is 

J v(t)dt =0 
	

(3.9) 

Equation (3.9) is not a very restrictive requirement since many wavelet functions can be 
found whose integral is zero. For equation - (3.8) to be satisfied, the wavelet must be 
oscillatory [18]. 

3.3.4. Multi- Resolutional Approach (MRA) 
Unlike STFT which has a constant resolution at all times and frequencies, WT 

uses a Multi-Resolutional Approach (MRA), i.e. varying temporal resolution for different 

spectral components, which can be clarified as follows. A lower or narrower scale (higher 
frequencies) means lesser ambiguity in time, i.e. good time resolution. Higher scales 

(lower frequencies) have wider support, leading to more ambiguity in time, or in other 
words, poor temporal resolution. The following figure compares the resolution for four 

different representations of the same signal. 

CD 

CD 

CD 
n 
Iq 

  

Amplitude 

Frequency domain 

 

'l ime 
Time domain 

 

CD 

c~ 

CD 

Time Time 
Wavelet analysis 

Fig.3.3. Time-Frequency resolution at different signal representations 
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The original time-domain signal has got no time resolution problem, since we 

know the value of the signal at every instant of time. In the Fourier transformed version, 

there is no resolution problem in the frequency domain, i.e. we know precisely what 

frequencies exist. Conversely, the frequency resolution in time domain and time 

resolution in Fourier domain are zero, since we have no information about them. For the 

two bottom diagrams, each box represents an equal area of the time-frequency plane, but 

different sized boxes giving different proportion to time and frequency. 

All the boxes are of same size for STFT, i.e. the time and frequency resolutions are 

constant all over the time-frequency plane. For wavelet transform, at low frequencies 

(high scales), the height of the boxes are shorter (which corresponds to better frequency 

resolution, since there is less ambiguity regarding the value of the exact frequency), but 

their widths are longer (which correspond to poor time resolution, since there is more 

ambiguity regarding the value of the exact time). At higher frequencies (low scales), 

width of the boxes decreases, i.e. the time resolution gets better, and height of the boxes 

increases, i.e. the frequency resolution gets poorer. 

3.3.5. Sampling and the Discrete Wavelet Series 

In order for the Wavelet transforms to be calculated using computers the data 

must be discretised. A continuous signal can be sampled so that a value is recorded after 

a discrete time interval, if the Nyquist sampling rate is used then no information should 

be lost. With Fourier Transforms and STFT's the sampling rate is , uniform but with 

wavelets the sampling rate can be changed when the scale changes. Higher scales, will 

have a smaller sampling rate. According to Nyquist Sampling theory, the new sampling 

rate N2  can be calculated from the original rate Nl  using the following: 

S1  
NZ=SN 	 (3.10) 

z 
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Where sl  and s2  are the scales. So every scale has a different sampling rate. 

After sampling the Discrete Wavelet Series can be used, however this can still be 
very slow to compute. The reason is that the information calculated by the wavelet series 
is still highly redundant, which requires a large amount of computation time. To reduce 
computation a different strategy was discovered and Discrete Wavelet Transform (DWT) 
method was born. 

3.3.6. Discrete Wavelet Transform (DWT) 
Basically, the discrete wavelet transform is meant to handle discrete-time signals. 

The DWT is considerably easier to implement when compared to the CWT. The DWT 
provides sufficient information both for analysis and synthesis of the original signal, with 
a significant reduction in the computation time. 

The foundations of DWT go back to 1976 when techniques to decompose discrete 

time signals were devised. In the case of DWT, time-scale representation of a digital 
signal is obtained using digital filtering techniques. The signal to be analysed is passed 

through filters with different cut-off frequencies at different scales. Wavelets can be 
realized by iteration of filters with rescaling. The resolution of the signal, which is a 
measure of the amount of detail information in the signal, is changed by the filtering 
operations, and the scale is changed by up-sampling and down-sampling (sub-sampling) 
operations. 

The DWT is computed by successive: low-pass and high-pass filtering of the 
discrete time-domain signal as shown in the following figure. This is called-  the Mallat 
Algorithm or Mallat-tree decomposition. Its significance is in the manner it connects 

the continuous time multiresolution to discrete time filters. The signal is denoted by 

the sequence x[n], integer `n' denoting the sample number. Go  and Ho  are the low and 

high pass Analysis filters (filters used for decomposition) respectively. At each level, the 
high pass filter produces detail information d[n], whereas, the low pass filter associated 
with scaling function produces coarse approximations, a[n]. 
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A r_1 

X[n] 

Fig.3.4 Three Level wavelet decomposition tree 

At each decomposition level, the half band filters produce signals spanning only 
half the frequency band. This doubles the frequency resolution, as the uncertainty in 

frequency is reduced by half. According to Nyquist's rule, the sampling frequency of a 

signal needs to be at least double of its maximum frequency content in order to have a 

successful reconstruction. However, after each level of decomposition, the maximum 
frequency itself gets halved, and hence now its sampling frequency can also be reduced 
proportionally without any loss of information. This decimation by 2 halves the time 
resolution as the entire signal is now represented by only half the number of samples. 
This also doubles the scale. 

The filtering. and decimation process is continued until the desired level is reached. 

The maximum number of levels depends on the length of the signal. The DWT of the 

original signal is then obtained by concatenating all the coefficients, a[n] and d[n], 

starting from the last level of decomposition 

3.3. Z Reconstruction of original time-domain signal from its DWT 
The reconstruction is basically the reverse process of decomposition. The 

approximation and detail coefficients at every level are up-sampled by two, passed 

through the low pass and high pass synthesis filters (Gl  and Hi) and then added. This 

process is continued through the same number of levels as in the decomposition process 

to obtain the original signal. The Mallat Algorithm works equally well if the analysis 

filters, G and H0, are exchanged with the synthesis filters, Gl  and Hl. 
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X3[n] 

X[n] 

Fig.3.5. Three level wavelet reconstruction tree 
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CHAPTER-4 

LUNG SOUND ANALYSIS 

Over the last 30 yrs, computerized methods for the recording and analysis 

of respiratory sounds have overcome, many limitations of simple auscultation. 

Respiratory acoustic analysis can now quantify changes in lung sounds, make permanent 

records of the measurements made and produce graphical representations that help with 

the diagnosis and management of patients suffering from chest diseases. 

Respiratory sounds contain significant information on physiology and pathology 

of the lungs and the airways. The frequency spectrum and the amplitude of sounds, i.e. 

tracheal or lung sounds without adventitious sound components (crackles or wheezes), 

may reflect airway dimension and their pathologic changes (e.g. airway obstruction) or 

pathologic changes in the pulmonary tissue. 

Sounds generated in healthy lungs and airways by normal breathing, differ 

according to the location where they are recorded and vary with the ventilatory cycle. 

The origin of sounds generated by ventilation is not completely clear. The lung itself 

cannot generate sound if there is no airflow; pressure differences between structures 

within the thorax or different lung volume levels cannot by themselves induce sounds in 

the absence of airflow. Breath sounds are probably induced by turbulence of the air at the 

level of lobar or segmental bronchi. In smaller bronchi, the gas velocity decreases and 

becomes less than the critical velocity needed to induce turbulence. Therefore, the air-

flow in smaller airways is believed to be laminar and silent. 

The resulting noise, coming from the larger airways, has a wide frequency 

spectrum. It is transmitted to the skin, after filtering by the lungs and the chest wall, 

which act acoustically as a low-pass filter. Therefore, the nominal breath sounds recorded 

over the lungs have their main frequency band up to 200-350 Hz. Unfortunately this 

frequency band also contains components from respiratory muscles and the heart. 
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When recorded over the trachea, the sound is not (or less) filtered. Therefore, and 

also due to resonance phenomena, the frequency spectrum contains higher frequency 

components as high as 1200 Hz [19]. 

4.1. Frequency Domain Analysis 

4.1.1. Analysis with Fourier Transform 
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4.1.2. Analysis with STFT 
Similar to Fourier Transform, the short time Fourier transform is invertible. The 

short time Fourier transform satisfies the linearity, time shift, frequency shift properties 
on similar lines with the Fourier transform. 

Raw Signal. of crackles at Fs= 1©25Hz 

Above raw signal is having nonstationary characteristics so this signal is better 

analyzed using any Time-Frequency analysis technique. Here i used a Hanning window 
of 256 samples. 

Hanning Window 

The coefficients of a Hann window are computed from the following equation 

w[k+l] = 0.5 1—cos 2,r  k 	k=0.......,n-1; 	(4.1) n-1 

Fig.4.4..shows a hann window of 256 samples with its frequency response. 
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Fig.4.4 Hanning window of 256 samples. 

Using this window STFT was done on crackles and resulting frequency information with 

its time and amplitudes were represented in 3D plot as shown in Fig.4.5. 

 

100 , 

Frequencyin Hz 50  
0:  

600 

Fig.4.5 Spectrogram of crackles. 
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4.1.3. Analysis With Wavelet Transform 

Here in the analysis using wavelets i used daubechies (dblO) and biorthoganal 
(bior3.7) as mother wavelets, they were taken by considering the shape of crackles, 
wheezes and other adventitious sounds. In the following figures Normal and other 

adventitious sounds are detected by decomposing the raw signals which are recorded at 
sampling frequency Fs=11025 Hz to a level where these sounds are clearly visible (where 

more energy is concentrated). Required signal components are present in the frequency 

range 650 to 150 Hz for the most of signals [8]. 

Normal Vesicular Sounds 

Raw Signal of Normal Vesicular Sounds at Fs=11025Hz 

Time(sec)  

Fig.4.6 Raw signal of sampling frequency (Fs):11025Hz 

This raw signal is decomposed using wavelet dblO. At the 5th  level in the 
frequency range 625-312 Hz normal inspiration and expiration periods are identified. 
Inspiratory period is longer than the expiratory period. Fig 4.7 shows these periods. 
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Lung Sounds with Crackles 

By considering the shape of crackles as shown in f g.4.9 i selected biorthogonal 

wavelet-3.7.After decomposing up to 5th  level (625-312Hz) required crackles are 

identified as shown in Fig.4.10 [7]. 



C1~ 
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Fig.4.9 An ideal crackle 
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Lung sounds with Wheezes 

After decomposing to 5th  level the identified wheezes [11] are as shown in Fig.4.12. 

Tme(sec) 	._ 

Fig.4.12 Identified wheezes 
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4.2. Separation of Fine Crackles from Vesicular Sounds By 

Nonlinear Digital Filter 

Crackles are discontinuous adventitious lung sounds explosive and transient in 

character, and occur frequently in cardio respiratory diseases. Their duration is less than 

20 ms, and their frequency content typically is wide, ranging from 100 to 2000 Hz or 

even higher. Two types of crackles may be distinguished: coarse and fine.Crackles are 

assumed to originate from the acoustic energy generated by pressure equalization or a 

change in elastic stress after a sudden opening of abnormally closed airways [10]. 

These crackles present in lung sounds in various diseases and reason for 

generation of these sounds is different in these diseases: 

• In cardiorespiratory disorders where crackles are frequently found, 

abnormal closure of the small airways may result from increased elastic 
recoil pressure (e.g. in pulmonary fibrosis) or from a stiffening of small 

airways caused by accumulation of exudated fluid (e.g. in heart failure) or 
infiltrative cells (e.g. pneumonitis,. alveolitis). 

• The mechanisms of generation of the crackling sounds in chronic 

bronchitis and emphysema are incompletely understood, but, bubbling of 

air through secretions is one possible mechanism but does not account for 

all the crackling phenomena in these patients. 

• When present, crackling sounds in patients with lung fibrosis are typically 

fine, repetitive, and end inspiratory, whereas those associated with chronic 

airways obstruction (e.g. emphysema or bronchiectasis) are coarse, less 

repeatable, and occur early in inspiration. 

• Patients with airways obstruction may also have expiratory crackles, and, 

unlike in patients with pulmonary fibrosis, the crackles may be audible at 

the mouth; in addition, these crackles may change or • disappear after 

coughing. In heart failure, the crackles tend to occur from the mid to late 

inspiratory cycle, and they are coarse in character. 
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Mathematical models and experiments predict that crackles originating from 

smaller airways are shorter in duration (fine in character), and those originating from 

larger airways are more coarse. 

Crackles are one of the most important physical signs in clinical medicine. Since 

crackles are discontinuous and nonstationary signals, time-domain analysis is mandatory 

where detection and/or separation of the individual crackle signal is the most fundamental 

process. High-pass filters have been used but the separation is incomplete and the 

waveforms are distorted by this method. The application of a level slicer is limited 

because the amplitude of fine crackles is often small. 

So far, the most accurate method is a visual approach using the time-expanded 

waveform analysis. It is, however, time consuming and the interobserver variability is 
inevitable. Therefore, it is desirable to establish a more efficient and objective method. 

With this in mind we applied a nonlinear 

digital filter to the separation of crackles from vesicular sounds 

4.2.1. The Stationary-Nonstationary Separating Filter 

The nonlinear digital filter we used was designed for, separating nonstationary 

from stationary signals, and is called stationary-nonstationary separating filter (ST-NST 

filter). Suppose that the input signal (Xn) is a summation of two types of signals: the 

stationary signal which can be expressed by an autoregressive model and the 

nonstationary signal composed of random impulsive waves whose occurrence rate is low. 



Under these circumstances we can separate nonstationary from stationary signals 

using the stationary-nonstationary separating filter which is constructed as shown in 

Fig.4.14. 

I 

Zn 
onary 
it 

Yn 

ionary 
xtput 

Fig.4.13 Schematic diagram of ST-NST filter 

Where Xn, is the input, Zn is the nonstationary output, and Yn is the stationary output. 

The prediction filter performs autoregressive prediction using the estimated stationary 

waves yn as follows: 

M 
Yn = E akyn - k 	 (4.2) 

k=1 

Here ak represents the coefficients of the autoregressive model, and M the order of it. In 

this work, the coefficients are set adaptively by an LMS algorithm. The prediction error 

(en) for the input X is obtained, and is processed by FO for determining Un which is the 

part included in the stationary component, as follows: 

en  =X„—y„ 	 (4.3) 

U, = F(en) 	 (4.4) 
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Here F() is a nonlinear function defined as in Fig.4.14 where 6 is determined so that 

the probability of detection of nonstationary waves is given by certain value y where 

+E 

f p(x)dx=1-y 	(4.5) 

F (x) 

X 

Fig.4.14 Definition of non linear function. 

Values of M, k are taken as 15 and 2 and value of E depend up on prediction error. Here 

p(x) is the probability density function of the prediction error of the original signal and is 

assumed here to be nearly Gaussian. Finally, Zn (the nonstationary output) and Yn, (the 

stationary output) are obtained as follows: 

Y" = yn + V n 	 (4.6) 

Z = en — Un 	 (4.7 ) 

E i 



4.2.2. Least Mean Square Algorithm 

LMS algorithm was implemented to get the prediction filter coefficients (ak) in 

Fig.6.1.Many adaptive algorithms can be viewed as approximations of these discrete 

filter as shown in Fig.4.16 

yk tput) 

Fig.4.15 The basic wiener filter 

The wiener filter produces an optimal estimate of part of yk that is correlated with 	. 

Xk -which is then subtracted from.yk to yield ek . Assuming FIR structure with N 

coefficients (weights) the error, ek, between the wiener filter output and the primary 

signal, yk , is given by [18] 

N-1 
ek = yk — nk = yk —W T Xk = yk -' I W(i)xk -i 	(4.8) 

1=0 

Where 11 'k and W, the input signal vector and weight vector, respectively, are given 
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XK 

Xk- I 

Xk - ( N - 2) 

Xk - ( N - 1) 

 

u(N-2) 
w(N-1) 

(4.9) 

square.of error is given as: 
2 	2 	 2 	 T ek  = yk  — 2yk X k w+ W T X k X,W 

MSE (J) is obtained by expectations of both sides of equation.4. 10. 

J=E[ek] =E[yk] -2E[ykXkW]+E'[W T -XkXkW} 

(4.10) 

(4.11) 

and V = _ —2P + 2RW 
dW 

(4.12) 

Where P = E[yk X k ] and R = E[Xk Xk ] 
Wopa  = R-1P 
	

(4.13) 

In LMS the coefficients are adjusted from sample to sample in such a way as to 

minimize the MSE (mean square error):The LMS is based on the steepest descent 

algorithm where the weight vector is updated from sample to sample as follows: 

	

Wk+1 =YYk —  pVk 	 (4.14) 

The widrow-Hopf LMS algorithm for updating the weights from sample to 
sampl is given by 

	

Wk + I = YY k + 2 pekllk 	 (4.15). 



4.2.3. Implementation of basic LMS algorithm 
The computation procedure of the LMS algorithm is summarized as follows: 

1. Initially, set each weight wk  (i) , i=0, 1... N-1, to an arbitrary fixed value, such as 0 

For each subsequent sampling instant, k=1 ,2,. . . ,carry out steps (2) to (4) below. 
N-1 

2. Compute filter output 12x = yk — 	W(i)x - 
1=0 

3. Compute the error estimate 

2k  — Yk  —nk  

4. Update the next filter weights 

Wk+1( i ) = wk(i) + 2luek xk-i 

By training I found filter coefficients (N=1 5) and by using these coefficients in 

Fig.6. 1.1 got the stationary output (with out crackles) and nonstaionary output (crackles) 

for different samples of lung sounds [5]. 

4.2.4. Results 

Sample 1 

Time(sec) 

Fig.4.16 Raw crackles with separation of crackles. 

ZM 
W 
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4.3. Wheeze Episode Detector Using DWT 

Wheezes are continuous adventitious lung sounds, which are superimposed on the 

normal breath sounds. The waveform of a wheezing sound resembles that of a sinusoidal 

sound. According to the earlier definition of the American Thoracic Society (ATS), the 

word "continuous" means that the duration of a wheeze is longer than 250ms. Wheeze 

contains a dominant frequency of 400 Hz or more. According to the new definitions of 

the present CORSA (Computerized Respiratory Sound Analysis) guidelines, the 

dominant frequency of a wheeze is usually >100 Hz and the duration >100 ms. Wheezes, 

which are louder than the underlying breath sounds, are often audible at the patient's open 

mouth or by auscultation by the larynx. 

The transmission of wheezing sound through the airways is better than 

transmission through the lung to the surface of the chest wall. The higher-frequency 

sounds are more clearly detected over the trachea than at the chest. The high-frequency 

components of breath sounds are absorbed mainly by the lung tissue. 

Wheezes can be heard in several diseases, not only in asthma. They are common 

clinical signs in patients with obstructive airways diseases, and particularly during acute 

episodes of asthma. There is no relationship • between the pitch of wheezes and the 

pulmonary function. The appearance and quantification of wheezes have also been used 

for the assessment of bronchial hyper responsiveness in bronchial-challenge tests. 

Wheezes are very often reported by patients who wake up at night with nocturnal asthma 

symptoms. Thus, a non-invasive monitoring of wheezes has been proposed to assess 

changes in airways obstruction during sleep, without disturbing the patient. 
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4.3.1 Wheeze Episode Detector 
The most straightforward methods for automatic wheezing detection are based on 

searching for peaks in successive spectra. The algorithms that are used in these studies 
are quite simple and fast, however, they are not very reliable, since they exhibit quite low 
sensitivity. Recent attempts for achieving higher sensitivity accompanied with efficient 
detection performance include a set of criteria in the time-frequency domain. These 
criteria refer to time duration, pitch range and magnitude of wheezes in their time-
frequency representation by means of their spectrogram analysis. 

Discrete Wavelet Transform (DWT) is used to form a DWT-based Wheezing-

Episode Detector (DWT-WED). In this way, the DWT-WED takes into account the 

beneficial properties of the DWT representation over the Fourier one, since, unlike the 

latter, the DWT provides useful information regarding the coherent nature of the 

localized features within the signal, such as wheezing episodes. 

This method is structured twofold. In particular, it not only focuses in identifying 
the true location of the wheezes within the breathing cycle, but it also aims at separating 

the wheeze signal from the acquired lung sound. In this way, the diagnostic character of 

the wheeze is unveiled, since its contamination due to the superimposition of the 

breathing sound is circumvented. As -a result, the CWT-WED acts both as an 
identification and denoising tool. 

4.3.2. Wheeze Identification 
In particular, the N- sample acquired lung sound signal, x(k), can be considered as 

the sum of an envelop confined sinusoidal signal of interest, s(t), i.e., wheezes, and the 

breathing sound, n(k), (seen here as a kind of background noise) hence, it can be written 
as: 

x(k) = s(k) + n(k), k=1... N 	 (4.16) 

By using DWT raw lung sound signal with wheezes is decomposed and in the range 

of 625-312Hz frequency these wheezes are detected. For' some of signals these are 
identified in the range of 312-150Hz frequencies. For decomposing i used Daubechies- 
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10(db10) as mother wavelet. Explanation about the wavelet analysis (CWT and DWT) 

was already discussed in earlier of this chapter [13]. 

Fme(sec) 

Fig.4.19 Raw signal of wheezes 

Frequency range is (153Hz-3OSHz) 
0.8 

0:6 

0.4 

L. : 0.2 ___ 

a 0 

-0.2 

12 
Time(sec) 

Fig.4.20 Identified wheezes 
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4.3.3. Wheeze Denoising 

The denoising performance of the DWT-WED is achieved by applying frequency-

dependent thresholding. This helps to the reduction of the high and low frequency noise 

components in the reconstructed signal. Due to the localization of the DWT both in time 

and frequency, the reconstructed signal resembles the output of an adaptive filtering, 

retaining the desired structural characteristics only at the true locations of the signal of 

interest s(t)[13]. 

Fig.4.21.Simplified block diagram of DWT-WED scheme 
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Raw. Signal With Wheezes 
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4.3.4. Results 
Sample 1 results are discussed earlier with analysis. 

Sample2 

Raw Signal of Whi a es 
Q.15

Lo., 	 h 	 f 	i i, L 
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Fig.4.26 Separated wheezes from breath sounds 

Raw Signal With Wheezes: 
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Fig.4.27 Raw signal and reconstructed signal (without wheezes) 
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Sample3 
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4.4. Heart Sound Reduction in Lung Sounds by Spectrogram 

It is rarely possible to obtain recordings of lung sounds that are 100% free of 

contaminating sounds from nonrespiratory sources, such as the heart. Depending on 

pulmonary airflow, sensor location, and individual physiology, heart sounds may obscure 

lung sounds in both time and frequency domains, and thus pose a challenge for 

development of semi-automated diagnostic techniques. 

The turbulence involved with the movement of air through the respiratory airways 

is the predominant mechanism responsible for the generation of basic lung sounds. Chest-

surface lung sounds have been used for the indication and diagnosis of underlying 

physiological conditions since the invention of the stethoscope. It has been shown that the 

intensity of breath sounds increases with increasing airflow; however, the time and 

frequency domain combination of sounds originating from pulmonary airflow with 

sounds from heart and muscle in signals acquired on the chest wall, complicates the 

definition of flow-specific lung sounds as a function of underlying airway conditions for 

diagnostic purposes. 

A few researchers have employed adaptive filtering schemes for reducing heart 

sounds in lung sounds recordings using recursive least squares (RLS) filtering, as well as 

least mean squares (LMS) filtering,. Reduced order kalman filtering (ROKF), and a fourth 

order statistics filtering technique. However, a preferred signal processing method for this 

purpose has not been established. 

The signal was filtered to remove DC with 8th  order Butterworth band-pass filter 

with pass band 7.5Hz - 2500Hz then The original sampling rate was 11025Hz. 



4.4.1. Heart Sound Localization by Spectrogram 
Time-frequency (TF) representations such as the spectrogram are specifically 

designed to process non-stationary signals as they jointly display time and frequency 

information demonstrating which frequencies occur at a certain time, or, at which times a 

certain frequency occurs. Spectrogram is computed by the windowed discrete-time 

Fourier transform of a signal using a sliding window and therefore sometimes called 

Short Time Fourier Transform (STFT). The function of the window is to extract a portion 

of the signal by ensuring that the extracted section is approximately stationary. The 

decrease of the window length increases the time resolution property of the spectrogram 

(wideband spectrogram) whereas the frequency resolution increases with an increase in 

window length (narrowband spectrogram). In this work i used a short window length 

(25ms-256 sample Hanning window) with 50 % overlap was used to calculate the 

Spectrogram. The reason of using short time period for spectral analysis is that high time 

resolution is beneficial to detect the heart sounds in the spectrogram [17]. Spectrogram of 

signal recorded at trachea of Fs=11.025 KHz is as shown in figure.4.3 1. 

Spectrogram 
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From the figure.4.32. It's clearly visible that in the low frequency range around 

40-60Hz there large peaks. These peaks resemble heart sounds which are dominant 

compared to other components of lung sounds. High energy spikes of the heart sound 

signals can be localized by applying a threshold. Here threshold was chosen to be 20 after 

the examining the spectrum of the signal at 40-60Hz. Reference signal for heart sounds is 

formed by making samples as .zeros which not up to the threshold and reconstruct the 

signal by using IFFT(IFFT is explained in earlier of this chapter). 

Reconstructed RefrenceiSignal for Heart Sounds 

Timee) .r 

Fig.4.33 Reference signal for heart sounds 

4.4.2. Heart Sound Filtering by RLS-ANC Adaptive Filter 

The standard RLS adaptive filtering scheme consists of a transversal filter with 

finite-duration impulse response (FIR) and an RLS adaptation algorithm, which updates 

the tap, weights Wk  of the transversal filter so that the mean square error (MSE) is 

minimized and an estimate of the desired output results. The RLS scheme was 

implemented in software, employing the method of least squares in a recursive manner. 
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Fig.4.34. depicts the specific configuration in which the general RLS filter was 

used in this work for ANC (Adaptive Noise Canceller). As shown in Fig.4.34. The 

algorithm accepts two input vectors: a reference and a primary input. The primary 

signal,x(n),contains an interference, m(n), alongside an information bearing signal 

component, b(n), and the reference signal, r(n), represents a version of the primary input 

with a weakor essentially undetectable information-bearing component. Reference data is 

arranged in an M-by-N rectangular matrix U(n) using the covariance method of data 

windowing, where M is the filter order(here it is 15) , and N is the length of each input 

vector: 

r(M) r(M + 1) . 	r(N) 
r(M —1) 	r(m) 	r(N —1) 

U(n) =t 
	

(4.17) 

r(l) 	r(2) 	. r(N - M +1) 

Primary Input 
	 Output 

x(n)=b(n)+m(n) 	 _ 	 e(n) 

RLS-Adaptive 
r(n ) 	 Filter 	 y(n)  

Fig.4.34 Block diagram of RLS-ANC filter 



The algorithm serves to process the reference data U(n) column-by-column and 

the primary signal x(n) sample-by -sample, in order to estimate the tap weights Wk  of the 

transversal filter such that the actual output of the RLS adaptive filter, y(n), is as close to 

the interference component of the primary input as possible in the MSE sense. Likewise, 

the output of the ANC filter, e(n), is the minimum MSE (MMSE) estimate, g(n) , of the 

information bearing component of the primary signal [15]: 

g(n) = e(n) = x(n) — y(n) = ([b(n) + m(n)]) -- y(n) 	(4.18) 

where 
M-1 

y(n) = wkr(n — k) = W H  (n)u(n) 	 (4.19) 
k=0 

and 	w(n) = w(n —1) + k(n)([x(n) — W'' (n —1)u(n)]) 	(4.20) 

in which, wH  (n) is the Hermitian transposition of the tap weight vector calculated for 

the current iteration n, u(n) is the n h̀  column of U(n). Using 4.18, the MSE is determined 

as: 

E[e2  (n)] = E[b2  (n)] + E[{m(n) — y9n)}2  ] + 2E[b(n){m(n) — y(n)}] (4.21) 

Since all signals in the third term of (4.21) have been filtered to remove DC and hence 

have zero mean, this term vanishes. Minimizing the remaining terms, the MMSE is 

shown as: 

minE[e2(n)] = minE[b2(n)] + minE[{m(n) -= y(n)}2 ] 	(4.22) 

Rearranging-(4.18) as e(n)-b(n)=m(n)-y(n), it is clear that both the RLS filter output y(n) 

and the ANC output e(n) are MMSE estimates of the interference m(n) and the 

information-bearing component b(n) of the primary input, respectively. 



Elaborating on the operation of the RLS algorithm, for every u(n), the Kalman gain, k, is 

determined 

as: 
k(n) = 

	
P(n -1)2-~u(n) 	

(4.23) 
(1+ u(n)H P(n -1)2-'u(n)) 

The matrix P is initialized as P(0)=I 5, where I is the identity matrix, and S is a 

regularization parameter, chosen as less than 0.01 times the variance of the primary input 

The "forgetting factor", 2 represents the memory of the algorithm, and for this 

study A = 1, which implies infinite memory. The rest of the algorithm serves to update 

the P matrix, tap weights (initialized to zeros), and outputs y(n) and e(n) based on these 

values. 

After using this RLS-ANC filter this estimated and desired output signal which is 

of having reduced heart sounds is as shown in figure 4.35. 

Spectrogram, after reduction of heart sounds 

Fig.4.35 Spectrogram after reduction heart sounds 

65 



Sample2 

Fig.4.36 Spectrogram of lung sounds with heart sounds 

Reconstructed Refrence Signal for Heart Sounds 



Spectrograms  afar  

eduction (sounds 

L 

67 



CHAPTER-5 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

In this work we used adaptive filters to remove adventitious sounds from normal 
)reath sounds and by using time frequency analysis techniques some of the adventitious 
sounds are removed and original signal is reconstructed with out these adventitious 
sounds. 
Conclusions: 

• Hard ware Instrumentation is developed for acquiring Lung Sounds. This consists 
of sensing unit, amplifier and filter circuit .Output of this hard Ware given to A/D 
converter and some low level I/O programming is done to record signal. 

• Crackles (Rales) are adventitious sounds which non stationary in nature are 
removed from the lung sounds by using LMS (least mean square) adaptive filter 
which separates stationary signal from nonstationary signal. Initially coefficients 

of this filter are obtained by training the filter and after getting the coefficients 

this filter implemented over our desired signal. 

• Wheezes are also nonstationary musical sounds which are of sinusoidal in shape. 
These generally occur at the time of expiration. We separated these wheeze 
episodes by decomposing original signal to frequency signal where these wheezes 

are dominant and there by applying threshold criteria. By using IDWT waveform 

is reconstructed. 

• Lung sounds consists of various unwanted signals like heart sounds and 
respiratory muscle sounds. These heart sounds are of very low frequency 
compared to these lung sounds. In this work we localized these heart sounds by 
using spectrogram and reference signal for heart sounds is constructed. By using 
RLS (Recursive Least Square) adaptive filter and with help of this reference 

signal heart sounds are removed from original signal. 



Scope for Future Work: 

In this work we recorded signal form one channel but in case of lung sounds 

these are having various intensity levels at various locations on anterior and posterior of 

the chest so this work can be extended by multiple channels recording with very high 

sensitivity microphone with help of belt. 

In case of wheeze removal one important factor to be mentioned is that these 

wheezes dominated in very high frequency range so we have to remove these wheezes in 

multiple levels when we are decomposing but at that time we are going to loose desired 

information. So this work is extended to remove complete wheeze episodes. 
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APPENDIX —1 

1. Specifications of Microphone Used: 

Frequency Response 50-16,000Hz 
Sensitivity 3.5mV/Pa 
Impedance 1000Q 

Operates on 1 x 1.5 V (LR.44) Button Cell 

2. ADC PCL-206: 

2.1 Main Features of PCL-206: 

Main features of PCL-206 high performance multifunction card are listed below for quick 

reference. 

• 12 bit, 7 micro sec conversion time with MAX 162. 

• 16 single ended or 8 differential channels selection. 

• Fast and low drift instrumentation amplifier and sample/hold. 

• Software, periodic and external, start conversion modes. 

• DMA, interrupt and polling modes for data transfer. 

• Higher and lower limits of the channels to be scanned can be programmed. 

• 8 TTL inputand8 TTL output lines. 

'o 8254 timer/counter chip offering three channels. 

• One counter/ timer channel available to user. 

• Two channels cascaded for periodic AID conversion generation. It has 8 MHz or 
1 MHz clock or external clock as input. 
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2.2 Specifications of PCL 206: 

• Analog Input 
Primary Channels : 	8 differential or 16 single ended. (jumper selectable). 

Resolution 	: 	l2bits. 

Input range 	 +/-5V, +/-10V and user available (jumper selectable) 

Accuracy 	: 	0.01 % of reading +/- 1 bit 

Over Voltage 	: 	Continuous 30 V max. 

Conversion time : 	7 Microseconds. 

• TTL Output 

Channels 	: 	8 bits 

Output 

• Low voltage 	0.5V maximum at Sink = 8mA. 

High voltage 	2.4V minimum at source = 4mA 

• TTL Input 

Channels 	: 	8 bits. 

Input 

Low voltage 	: 0.8V maximum 

High voltage 	: 2.4V minimum 

Low current 	: 0.4 mA maximum 

High current 	: 20 microamperes maximum at 2.7 V 

• Programmable Counter/ Timer 
Device : 8254 

Time base 	0.8 MHz or 1 MHz jumper selectable. 
Pacer output : 	71 minutes/pulse to 2 MHz 
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Counters 

Time base 
Pacer output 

• Interrupt Channel 
Level 

Enable 

3 channels! 16 bit 2 channels permanently connected to 
8 MHz! 1 MHz clock as programmable pacer, 1 channel is 
free for user applications. 

8 MHz On MHz jumper selectable. 
71 minutes/ pulse to 2 MHz 

IRQ 2 to 7, software selectable. 

Via control register. 

• DMA Channel 
Levels 	: 	3 (Switch selectable). 
Enable 	: 	Via control register. 

User should initialize the appropriate 8237 DMA Channel. Each conversion raises 
DMA request two times. First lower byte is transferred and later higher byte with the 

channel number in MS nibble is supplied. This mode has to be enabled in the control 
register. 

• Power Consumption 
+5V 
	

1.35 Amp. (typical) 

• Mechanical Details 
Main connector: 	20 pin FRC connector. 

2.3 Base I/O Address Selection 
PCL-206 occupies 16 consecutive I/O address locations. When selecting the 1/0 

base address care should be taken that address do not overlap with other add-on cards. 

DIP switch (SW 1) on PC1-206 allows the user to select appropriate. address. This also 

facilitates putting more than one PC1-206 card in the system. 
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The IBM-PC decodes VO addresses only upto 3FF hex. Hence I/O addresses from 
400 hex to 7FF hex appear to overlap with 000 to 3FF hex addresses. This process is 
repeated for every 1K I/O address space. Therefore care should be taken while selecting 
Base Address of the add-on cards. 

Following are the valid and typically free I/O addresses in the IBM-PC I/O address map. 
SWITCH 	ON=O 	OFF = 1 
SWITCHES SW 1-7, 1-8 UNUSED 

Address Range 1-6 

A9 

1-5 

A8 

1-4 

A7 

1-3 

A6 

1-2 

A5 

1-1 

A4 From To 

200H 2OFH 1 0 0 0 0 0 

220H 22FH 1 0 0 1 0 0 

300H 30FH 1 1 0 0 0 0 

320H 32FH 1 1 0 0 1 0 

2.4 Connector Pin Assignment 
Analog Input (single ended channel) 

A/D SO 

A/D Si 

A/D S2 

A/D S3 

A/D S4 

A/D S5 

A/D S6 

A/D S7 

A.GND 

A.GND 

1 2 

3 4 

5 6 

7 8 

9 10 

11 12 

13 14 

15 16 

17 18 

19 20 

A/D S8 

A/D S9 

A/D S10 

A/D S11 

A/D S12 

A/D S13 

A/D S14 

A/D S15 

A.GND 

A.GND 
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2.5 DMA Channel Selection 
IBM-PC system devices and other special purpose cards in the system use certain 
interrupter DMA channels. DIP switch SW2 is used to select DMA channels in PCL-206 
card. Select only those channels that are not used by the system. 
JP4: Select Input Configuration 

Select single ended inputs. (Refer JP6 - JPS) 

Select differential inputs (Refer JP6 - JP8) 

JP6 - JP8: Select Input Configuration 
Select single ended inputs (ReferJP4) 

JP5: External Trigger Source Selection 
Select external trigger pulses 
Through Dl 0  input. 

Select external trigger pulses 

Through TRIGO input 

00 	JPF 
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JP9: Pacer Trigger Source Selection 
Select 8 MHz source. 

Select 1MHz source. 

JP10: Counter 0 Gate Control Source 
Counter 0 gate control through GATE 0 pin 

Counter 0 gate control through DI2 pin. 

JPICJ 

2.6 Register Details for Software 
2.6.1 General Register Format 

.PCL-206 occupies 16 consecutive I/O. addresses as given below (RD=Read, 
WR=Write). 

[BASE+ 0] 	RD 	A/D Low Byte & Channel number. 

WR 	Software A/D trigger. 

[BASE+1] 	RD 	A/D High Byte. 

WR 	N/A 

[BASE+ 2] 	RD 	MUX scan channel. 
WR 	MUX scan channel. 

[BASE+ 3] 	RD 	Digital input. 
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WR Digital output. 

[BASE+ 8] RD PCL-206status register. 

WR Clear interrupt request. 

[BASE+ 9] RD PCL-206control register 
WR PCL-206control register 

[BASE+10] RD N/A 

WR Counter enable. 

[BASE+ 12] RD Counter 0 

WR Counter 0 

[BASE+13] RD Counter I 

WR Counter 1 

[BASE+14] RD Counter 2 

WR Counter 2 

[BASE+ 15 ] 	RD 	N/A 

WR 	Counter control register 

2.6.2 A/D Data Registers 

The A/D data registers are read only registers with address BASE+O and BASE+1. 

The AID channel number from which the conversion data was derived is available at 

BASE+ 0 lower nibble. The format in which the converted data and the channel number 

are available is given below. 
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[BASE + 0] 	Read Only. 
D7 D6 D5 D4 D3 D2 D1 DO 

AD3 AD2 ADI ADO CH3 CH2 CH1 CHO 

[BASE +11 	Read Only. 

D7 D6 D5 D4 D3 D2 Dl DO 

AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 

2.6.3 MUX Channel Select 

This register allows the user to specify the lower and the upper limits of channels to 

be scanned for A/D conversion. These can be either differential or single ended channels. 

Maximum channel number has to be according to the hardware jumper selection. (8 

differential or 16 single ended). By performing write operation on this register, "data" of 

LOW CHANNEL LIMIT becomes the current channel. When the current channel 

becomes greater than the HI CHANNEL LIMIT, LOW CHANNEL LIMIT automatically 

gets loaded. 

[BASE + 2] 
	

Read / Write. 

D7 D6 D5 D4 D3 D2 D1 DO 

CU3 CU2 CU1 CUO •CL3 CL2 CL1 CLO 

Here "CU" stands for upper channel limit while "CL" stands for lower channel limit. 

This register can also be read back to check the channel limits. 



2.6.4 Digital Output 
Digital-  output section on this card consists of one independent 8 bit hardware port. 

[BASE+3] 	Write only. 

D7 D6 D5 D4 D3 D2 D1 DO 

D07 D06 D05 D04 D03 D02 DO1 DOO 

2.6.5 Digital Input 
Digital input consists of one independent 8 bit hardware port. The input lines are 

scanned once during read operation. 
Input 10 has capability of initiating A/D conversion, besides its role as simple input port 

line. To use it for triggering the A/D -conversion jumper JP5 should be inserted and it 

needs low to high going edge. I2input can be used to control the operation of counter 0, 
besides its function as digital input. To connect I2 input to GATE of timer 0 jumper JP 10 

0 should be inserted in position 2-3. i.e. 

[BASE+3J 	Read only. 

D7 D6 D5 D4 D3 D2 D1 DO 

DI7 D16 DI5 DI4 DI3 DI2 DI1 DIO 

Rest of the lines simply functions as digital input port lines. 



2,6.6 A/D Status Register 
This register provided on the board is very important since when read it gives 

feedback on the modes in which the card is presently being used. The format and the 

details are as follows. 

[BASE+3] 	Read only. 

D7 D6 D5 D4 D3 D2 D1 DO 

BUSY X S/D INT CN3 CN2 CNl CNO 

BUSY: 	This bit gives the status of the A/D conversion. 

BUSY=O Conversion Over. 

BUSY=l ADC is busy. 

X 	: 	This bit is always zero. 

S/D : 	This bit indicates the single ended or differential mode of 

operation of the card. 

S/D =0 8 Differential channels. 

S/D =116 Single ended channels. 

INT . 	Provides interrupt status. 

INT=O Interrupt disabled. 

INT=1 Interrupt enabled. 

CN3 to CNO: 	Next channel number waiting for conversion. 

If BUSY=O, and ADC is triggered this channel would be 

immediately converted. 
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2.6.7 PCL206 Control Register 
This register enables user to select different modes and features of PCL-206 under 

program control. The modes can be set by writing this register. The modes set can also be 
read back by reading this register. The structure of this register is as follows. 

[BASE+3] 	Read / Write. 	DON'T CARE = "X" 

D7 D6 D5 D4 D3 D2 D1 DO 

INTE IL2 
	

IL1 ILO 	X 	DMAE TR1 TRO 

INTE 
	

This particular bit controls the generation of interrupt. 

If this bit is set to "0" then interrupts are disable. 

IL2to ILO : 

IL2 
0 
0 
0 
0 
1 
1 
1 

When this bit is set to "1" while setting DMAE=O, interrupt is 
generated following the End of Conversion. 

When this bit is set to -1" with DMAE also set to "1", interrupt 

is generated. This interrupt is generated. when TIC is received 

from DMA controller signifying that the DMA transfer is 
over. 

Interrupt Level Selection. 

By setting these three bits Interrupt level can be selected. 
ILl 	ILO 	InterruptLevel 
0 	 0 	 N/A 
0 	1 	 N/A 
1 	0 	 IR02 
1 	1 	 IR03 
0 	0 	 IR04 
0 	1 	 IR05 
1 	0 	 IR06 
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1 

DMAE 

TR 1 and TRO : 

1 	1 	 IR07 

This bit controls the DMA operation. 

When DMAE = 0 DMA is disabled. 

DMAE = 1 DMA is enabled.' 

Trigger Source Selection. 

By setting these bits ND conversion trigger source can be selected. 

	

TRI 	TRO 	Trigger Source 

0 	 X 	Software trigger 

1 	 0 	 External trigger 

1 	 1 	 Pacer trigger 

2.6.8 Timer Enable Register 
Two bits in this register control timer operation. 

	

[BASE+10] 	Write only. 

D7 D6 D5 D4 D3 D2 

X x x x x x 

D1 	DO 

TC1 TCO 

TCO : 

TC1 : 

Control of ADC triggering using timer. 

TCO =0 Pacer triggered enabled 

TCO =1 Pacer triggered disabled, until TRIGO goes HIGH 

Counter 0 clock source selection. 

TC 1 =0 Configured to accept external clock pulses. 

TC1 =1 Connects 100 KHz clock source internally. 

2.6.9 Timer-Counter Control Register 

PCL-206 uses 8254 timer-counter mainly for periodic triggering of A/D converter. 

The 8254 device is organized as independent counters.. Counter 0 is totally user 

configurable. This counter can be used as a waveform generator. Counter 1 accepts either 



8MHz or 1MHz clock input or output of Counter 1 forms input clock of Counter 2. 

Output of Counter 2 actually provides the triggering signal for AID. 

[BASE+12] Counter 0 register 	Read/ Write 

[BASE+13] Counter 1 register 	Read/ Write 

[BASE+14] Counter 2 register 	Read! Write 

[BASE+15] 8254 Control register 	Read/ Write 

2.7 Programmable Interval Timer/Counter 

2.7.1 The 8254 
PCL-206 uses the INTEL programmable interval timer / counter. The 8254 is a very 

popular timer / counter device consisting of three independent 16 bit down counters. Each 

counter has a clock input, control gate and an output. It can be programmed to have a 

count from 2 upto 65535. 

The maximum clock input frequency is 10 MHz for the version 2 of 8254. PCL-206 

provides 1 MHz and 8 MHz input frequency through an on-board crystal. The timer clock 

jumper JP9 is used for clock input rate selection. 

The counter 1 and 2 are cascaded and operated in fixed divider configuration. 

Counter 1 input is connected to the 1 MHz or 8MHz input frequency and the output of 

the counter 1 is connected to the input of the Counter 2. The output of the Counter 2 is 

internally configured to provide trigger pulses to ND converter, but is also available for 

the PCL-206 for any internal use. User may access the counter 0 through Connector 5. 

2.7.2 Counter Read/ Write and Control Registers 

The 8254 programmable interval timer uses four registers at address BASE +12, 13, 

14 and 15. The function of each register is: 

BASE+12 Counter 0 Read/Write' 

BASE+13 Counter 1 Read/Write 

BASE+14 ' Counter 2 Read/Write 

BASE+15 Counter Control Word 
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The data format of the control register is: 

[BASE+15] 

D7 D6 D5 D4 D3 D2 

SCI SCO RW1 RWO M2 M1 

SCI & SCO : Select Counter. 

SC1 	SCO 	Counter 

0 	 0 	 0 

0 	 1 	 1 

1 	 0 	 2 

1 	 1 	Read-back command 

Dl DO 

MO BCD 

RW1 & RWO 

RW1 

0 

0 

1 

1 

Select the Read/ Write operation 

RWO Operation 

0 Counter latch 

1 Read/ Write LSB 

0 Read/ Write MSB 

0 Read/ Write LSB first, then MSB 

M2, Mland MO 

M2 M1 

0 0 

0 0 

X 1 

X 1 

1 0 

1 0 

Select the Operating Mode. 

MO 	MODE 

0 	0 —Interrupt  on terminal count 

1 	1 — Programmable one shot 

0 	2 -Rate generator 

1 	3 - Square wave rate generator 

0 	4 —Software triggered strobe 

1 	5 — Hardware triggered strobe IR05 

BCD -Select Binary or BCD Counting 

BCD 	 Type 
0 	Binary Counter 16-Bits 

1 	Binary Coded Decimal (BCD) Counter (4 Decades) 
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