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ABSTRACT 

The simulation of ultrasound imaging using linear acoustics has been extensively used for 

studying focusing, image formation, and flow estimation, and it has become a standard tool 

in ultrasound research. It is possible to simulate the whole imaging process with time varying 

focusing and apodization. This has paved the way for doing realistic simulated imaging with 

multiple focal zones for transmission and reception and for using dynamic apodization. It is 

hereby possible to simulate ultrasound imaging for all image types including flow images, 

and the purpose of this dissertation work is to present some standard simulation phantoms 

that can be used in designing and evaluating ultrasound transducers, beamformers and 

systems. 

Artificial human phantoms of a fetus in the third month of development and an artificial 

kidney are shown. The simulation of flow and the associated phantoms is also discussed. All 

the phantoms can be used with any arbitrary transducer configuration like single element, 

linear, convex, or phased array transducers, with any apodization and focusing scheme. A 

fast program for the simulation of 'ultrasound imaging has been made. It can realistically 

simulate all kinds of ultrasound systems including color flow mapping. 
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CHAPTER-1 

INRODUCTION 

I see... (an) important application of vision by ultrasound in medical diagnostics where it 

could not only replace X rays, but score above them by making visible fetuses, clogged 

veins and arteries, and incipient tumors. 	 Dennis Gabor, 1970 

1.1 What is Ultrasonics? 
Ultrasound is a sound wave having frequency greater than 20 kHz which is the upper limit 

for human audible range. The potential of ultrasound as an imaging modality was realized 

in the late 1940s. From early 1970s, it established itself as a useful diagnostic tool when 

gray-scale ultrasound was introduced. Now it is one of the most utilized diagnostic 

modality in medicine. The development of the medical ultrasound imaging techniques is 

described in many literatures. 

The diagnostic use of ultrasound in medicine is also based on the pulse-echo technique, 

much like sonar. A high-frequency sound pulse is directed into the body, and its reflections 

from boundaries or interfaces between organs and other structures and lesions in the body 

are then detected. By using this technique, tumours and other abnormal growths, or pockets 

of fluid, can be distinguished, the action of heart valves and the development of a foetus 

can be examined, and information about various organs of the body, such as the brain, 

heart, liver and kidneys, can be obtained. Although ultrasound does not replace X-rays, for 

certain kinds of diagnosis it is more helpful. Some kinds of tissue or fluid are not detected 

in X-ray photographs, but ultrasound waves are reflected from their boundaries 

1.2 Ultrasound Imaging 
Ultrasound is used with great success in the diagnosis of abnormalities in soft tissue 

structures in the human body. A pulse is emitted into the body and is scattered and reflected 

by density and propagation velocity perturbations. Cross-sectional pictures are made in real 
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time with the B-mode scan technique by current scanners. A high picture quality is 

obtained by employing linear and phased array transducers, and by post-processing the 

envelope detected signal from the transducer. But the ultrasound pictures still lack contrast 

and resolution compared to X-ray and NMR (nuclear magnetic resonance) pictures. It does 

not seem possible to cure this deficiency' with the current techniques based on analog 

electronics, and it therefore seems plausible that future scanners will use high-frequency 
sampling of the transducer signal in order to employ digital signal processing. Developing 

algorithms that take advantage of this sampling necessitates quantitative knowledge of the 

received pulse-echo pressure field. The object of this dissertation work is to simulate such a 

model for the received pressure field. 

The received field can be found by solving an appropriate wave equation. No restrictions 
are enforced on the transducer geometry or its excitation, and analytic expressions for a 

number of geometries can be incorporated into the model. The B-mode images can be 

generated by specifying a number of independent scatterers in a file that defines their 

position and amplitude. Adjusting the number of scatterers and their relative amplitude 

yields the proper image. Transducer designs can be optimized, to generate realistic 
simulated ultrasound images. 

One of the first steps in designing an ultrasound system is selecting the appropriate number 

of elements for the array transducers and the number of channels for the beamformer. The 

focusing strategy in terms of number of focal zones and apodization must also be 

determined. These choices are often not easy, since it is difficult to determine the effect in 

the resulting images. It would therefore be beneficial to have programs that can quantify 

the image quality. So there is need to make simulation programs that can calculate the 

ultrasound fields and the point spread function for the imaging system. 

The anatomic phantoms are attempts to generate images as they will be seen from real 

human subjects. The B-mode images are generated by specifying a number of independent 

scatterers in a file that defines their position and amplitude. Adjusting the number of 

scatterers and their relative amplitude yields the proper image. This is done by drawing a 
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bitmap image of scattering strength of the region of interest. This map then determines the 

factor multiplied onto the scattering amplitude generated from the Gaussian distribution, 

and models the difference in the density and speed of sound perturbations in the tissue. A 

single RF line in an image can be calculated by summing the response from a collection of 

scatterers. Homogeneous tissue can thus be made from a collection of randomly placed 

scatterers with a scattering strength with a Gaussian distribution. The phantoms typically 

consist of 100,000 or more scatterers, and simulating 50 to 128 RF lines can take several 

hours depending on the computer used. It is therefore beneficial to split the simulation into 

concurrently run sessions. This can easily be done by first generating the scatterer's 

position and amplitude and then storing them in a file. 

1.3 Literature Review 
This dissertation work presents a new fast simulation method based on the Field II 

program. Field II program runs entirely under the Matlab program [33]. It consist of a ,Mex 
file for performing the operations and a set of M-files for calling the different parts of the 

program. Hereby it is possible to simulate ultrasound systems with advanced dynamic 

focusing and apodization, e.g. phased and linear array imaging and flow imaging. The 

program has advanced features for dynamic focusing and apodization. The program is 

fairly new (developed in 2002), and new features are continuously added. It can currently 

handle round piston, concave, linear and phased arrays, and two-dimensional arrays. 

The Field program system uses the concept of spatial impulse responses as developed by 

Tupholme and Stepanishen in a series of papers [26, 27, 29]. The approach relies on linear 

systems theory to find the ultrasound field for both the pulsed and continuous wave case. 

This is done through the spatial impulse response. This response gives the emitted 

ultrasound field at a specific point in space as function of time, when the transducer is 

excitated by a Dirac delta function. The field for any kind of excitation can then be found 

by just convolving the spatial impulse response with the excitation function. The impulse 

response will vary as a function of position relative to the transducer, hence the name 

spatial impulse response. 



The received response from a small oscillating sphere can be found by acoustic reciprocity. 

The spatial impulse response equals the received response for a spherical wave emitted by 

a point. The total received response in pulse-echo can, thus, be found by convolving the 

transducer excitation function with the spatial impulse response of the emitting aperture, 

with the spatial impulse response of the receiving aperture. 

The received signal can be found by solving an appropriate wave equation. This has been 

done in a number of papers (e.g. [22], [23]). Gore and Leeman [22] considered a wave 

equation where the scattering term was a function of the adiabatic compressibility and the 

density. The transducer was modeled by axial and lateral pulses that were separable. Fatemi 

and Kak [23] used a wave equation where scattering originated only from velocity 

fluctuations. The scattering term for the wave equation used here is a function of density 

and propagation velocity perturbations, and the wave equation is equivalent to the one used 

by Gore and Leeman [22]. No restrictions are enforced on the transducer geometry or its 

excitation, and analytic expressions for a number of geometries can be incorporated into 

the model. 

In imaging, the spatial impulse response is calculated for each of the image lines, and 

making 128 lines, thus, gives 128 calculations of the same impulse response delayed 

differently for the different lines. Doing the focusing after this point in the simulation can 

make the calculation faster. This corresponds to full synthetic aperture imaging. The 

received response from each element is calculated, when emitting with each of the 

elements in the aperture, and then the responses are subsequently focused. The program 

simulates the signals received by all 128 transducer elements, and a matrix with signals 

results for each pulse-echo simulation. The separation of the received signal from each of 

the virtual sources is done by applying a matched filter for each band on all the received 

signals. The result is the received signal on a specific element for one of the bands. The 

matched filter also equalizes the phase of the signals, so they all become zero phase signals. 

The signals are then focused by adding them for all elements, all bands and both emissions 

with a compensation for the travel time from the virtual source to the receiving element. 

The flow is simulated for a random collection of point scatterers in a tube with a laminar, 
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parabolic flow. This is the approach taken in this dissertation work using a modified 

version of the Field II program. 

1.4 Organization of Thesis 
This Thesis is organized in the following way: 

In Chapter-2, Ultrasound physics is discussed. Wave propagation, Beam formation, Point 

Spread Function and the Scattering properties of Ultrasound waves is explained. 

Chapter-3 gives a linear description of acoustic fields using spatial impulse responses. It is 

shown how both the pulsed emitted and scattered fields can be accurately derived using 

spatial impulse responses. The chapter goes into some detail of deriving the different 

results and explaining their consequence. Different examples for both simulated and 

measured fields are given. 

Chapter-4 chapter gives a short introduction to modern ultrasound imaging using array 

transducers. Received response for different kinds of transducers geometry is simulated 

using Field II software. 

In Chapter-5 simulation of ultrasound images of body tissues is presented. Two different 

phantoms have been made; a fetus in the third month of development and a left kidney in a 

longitudinal scan. 

Chapter 6 gives a brief description of the main features of flow imaging. The chapter starts 

by deriving a basic model for ultrasound's interaction with a point scatterer, which shows 

that the frequency of the received sampled signal is proportional to velocity. Systems for 

finding the velocity distribution in a vessel are then described and finally a phantom is 

developed for evaluating color flow. 

Finally in Chapter7 conclusions and scope for future work are given. 
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CHAPTER-2 

PHYSICAL FOUNDATIONS 

2.1. Wave Propagation 
Ultrasound waves are mechanical waves i.e. acoustic energy is transferred between two 

points in the medium while leaving the intervening medium essentially unchanged after 

transfer. Mechanical waves are of two fundamental types: 

Longitudinal: the oscillating particles of the medium are displaced parallel to the direction 

of motion (direction of energy transfer). 

Transverse: the oscillating particles of the medium are displaced in a direction 

perpendicular to the motion of the wave. 

When the elasticity of the medium causes neighboring particles to display a similar 

oscillation, a wave is set up, and the oscillation appears to move through the medium with 

some velocity of propagation. A single oscillation may set up a pulse or a series of 

oscillations can set up a wave train. 

The most general form for a one-dimensional wave, without dispersion, is given by the 

superposition of two rigid waveforms moving in opposite directions i.e. 

u(x, t) = f4 (x — ct) + f (x + ct), 	 (2.1) 

It can be shown that any general function u(x, t) satisfies (in one-dimension) the wave 
equation 
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a 2 u _ 1 a 2 u 
a I X 	c 2  at2 ' (2.2) 

where u is the particle displacement amplitude, x is the position in space along the direction 

of propagation, t is the time and c is the propagation speed. Such an equation applies 

generally to all forms of wave motion. 

The speed is related to the elasticity K and the density p of the medium in which the wave 

is traveling, according to the equation: 

(2.3) 

At a plane boundary between two media with speeds c 1 and c2 respectively, 

8 1  = B t 	 (2.4) 

sin 0, 	= cl 	 (2.5) sin 0 	/c2 

where 8i, Or and 8t are respectively the angles of incidence, reflection and refraction. At 

normal incidence, 

I r  I = [(Z2 -z1)/(z2   +Z1)]2, 
t 

(2.6) 

where Ii and Jr are respectively the intensities of the incident and reflected waves and Zl  

and Z2  are the characteristic impedances of the two media. The characteristic impedance of 

a medium is given by: 

z = ac 	 (2.7) 

The situation to which equation (2.7) applies is called specular reflection (refer section 2.4) 

and it implies that the reflecting boundary is both smooth and extensive in relation to the 

wavelength A. By defining a quantity related to the size of an obstacle, two situations can 

be' distinguished, each with a corresponding value of scattering cross section S 

S=1 	when i'<<2 
	

(2.8) 

S k ° yr 6 	when V/ << A 	 (2.9) 

where k=2rf, frequency f =cA and ut is radius of the scatterer. Thus, specular reflection is 

described by equation (2.8) and Rayleigh scattering, by equation (2.9).With obstacles of 

intermediate size (or with rough surfaces), directional scattering occurs. 
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2.2 The Ultrasound Transducer 
A transducer is a device capable of changing one form of energy into another. For 

ultrasound purposes, the transducer is the sender and a receiver .of ultrasonic pulses and 

echoes. This transducer can change electrical impulses into mechanical waves and vice 

versa. As a transmitter, the transducer employs a piezoelectric crystal to create the 

ultrasound waves by applying electrical pulse to it; these waves are then direct towards 

body tissues. As the receiver, the transducer receives the reflected waves from the tissues 

interface and converts it into electrical signal. At the receiver various functions are also 

performed including amplification, compensation, demodulation, compression and 

rejection. 

2.2.1 Piezoelectric Effect 
Man-made lead zirconate and lead titanate are used as crystals within most modem 

ultrasound transducers. These crystals are referred to as the piezoelectric (pressure-electric) 

crystals because they have the properties necessary for conversion of electrical stimulus to 

vibrations which produce pressure (sound) waves and vice versa. This unique quality 

enables transmission and receipt of the ultrasound signal by a single transducer. 

2.2.2 Pulse Principles 
Electricity is applied to the piezoelectric crystals at a specific pulse rate. This allows for 

transmission of the wave as well as listening for echoes. Generally, the transducer sends 

pulses of 1 microsecond duration with a repetition period of 999 micro seconds. Therefore, 

most of the time, the ultrasound scanhead is in "listening" mode. Pulse rate may also be 

controlled by the rate of oscillation of a mechanical scan head. 

2.2.3 Transducer Selection 
The correct transducer must be chosen from a wide range of possibilities. Variables 

specific to each transducer must be carefully examined so as to choose the optimal 

transducer for the particular task at hand. Variables include frequency, image shape and 

inherent technology. 
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2.2.4 Frequency 
Most manufacturers offer a variety of transducers with frequencies ranging from 2-10 

MHz. Some even possess the ability to vary the frequency within a single transducer. The 

operating frequency of a transducer is generally determined by the size of the piezoelectric 

crystals employed within. 

As a rule, lower frequencies allow better penetration than those at upper frequencies. For 

this increase in penetration, there is a decrease in resolution, however. Lower frequency (2-

3.5 MHz) should be used for third trimester examinations, and when you need additional 

penetration ability (as for obese patients). A 3.5 MHz transducer is standard equipment on 

most commercially available ultrasound systems. Medium frequency transducers (5.0 

MHz) are the best compromise between penetration and resolution. They can be used for 

all GYN and OB scans of patients with normal habitus. High frequency transducers have 

greater ability to resolve minute structures, but the user is limited by decreased depth of 

penetration. High frequency transducers (7.5-10 MHz) are employed for examination of 

small parts such as thyroid, breast and testicles. This may also be quite useful during the 

examination/localization of a superficial ovary, or for a very thin patient. 

2.3. Beam formation, Resolution and the Point Spread Function 
The aperture of the ultrasonic transducer used in medical imaging is usually in the form of 

a circle or a rectangle. As illustrated in figure 2.1, the ultrasonic beam can be considered to 

consist of a near field and a far field. 

24 

NEAR IELO  

FAR FIELD  

Fig. 2.1: A Simple representation of ultrasonic beam produced by a disc transducer in a 
homogeneous medium. 
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With continuous wave excitation of .. disc transducer, 

'4'  I  = sin e  (/)[(a 2 +z 2   y_ Z 2 ]},  	 (2.10) 
0 

where Io is the intensity at the surface of the transducer, Iz is the intensity at a distance z 

from the transducer along the central axis of the beam and a is the radius of the transducer. 

In the far field, beyond the last axial maximum (at z = a2  /A,, provided that a2 >> A,2' the 

directivity function is 

Ds = 2J 1 (ka sin 0) 	 (2.11) 
 sin 0 	 ( 	) 

where 0 is the angle between Ds and the central axis of the beam and J1  is the first-order 

Bessel function. In the near field, the beam is roughly cylindrical with a series of axial 

maxima and minima of decreasing complexity moving away from the transducer. Also, in 

the near field, the beam can be focused by a lens or other means. If the transducer is excited 

to produce a transient disturbance, the ultrasonic pulse has its energy spread over ,a 

spectrum of frequency, corresponding to its bandwidth. This means that single values 

cannot be assigned to A or k in equations (2.10) and (2.11). Physically, the beam diffraction 

pattern is smeared to an extent which changes during the passage of the pulse. 

A typical transducer uses an array of piezoelectric elements to transmit a sound pulse into 

the body and to receive the echoes that return from scattering structures within. This array 

is often referred to as the imaging system's aperture. The transmit signals passing to, and 

the received signals passing from the array elements can be individually delayed in time, 

hence the term phased array. This is done to electronically steer and focus each of a 

sequence of acoustic pulses through the plane or volume to be imaged in the body. This 

produces a 2- or 3-D map of the scattered echoes. The process of steering and focusing 

these acoustic pulses is known as beamforming. This process is shown schematically in 

Figure 2.2. 
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Fig. 2.2 A conceptual diagram of phased array beamforming. (Top) Appropriately delayed 

pulses are transmitted from an array of piezoelectric elements to achieve steering and 

focusing at the point of interest. (Bottom) The echoes returning are likewise delayed before 

they are summed together to form a strong echo signal from the region of interest. 

The ability of a particular ultrasound system to discriminate closely spaced scatterers is 

specified by its spatial resolution, which is typically defined as the minimum scatterer 

spacing at which this discrimination is possible. The system resolution has three 

components in Cartesian space, reflecting the spatial extent of the ultrasound pulse at the 

focus. The coordinates of this space are in the axial, lateral, and elevation dimensions. The 

axial, or range, dimension indicates the predominant direction of sound propagation, 

extending from the transducer into the body. The axial and the lateral dimension together 

define the tomographic plane, or slice, of the displayed image. These dimensions relative to 

the face of a linear array transducer are shown in Figure 2.3. The elevation dimension 

contains the slice thickness. 
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Fig. 2.3: A diagram of the spatial coordinate system used to describe the field and 

resolution of an ultrasound transducer array. Here the transducer is a 1-D array, subdivided 

into elements in the lateral dimension. The transmitted sound pulse travels out in the axial 
dimension. 

A modern ultrasound scanner operating in brightness mode, or B-mode (refer section 4.3), 

presents the viewer with a gray-scale image that represents a map of echo amplitude, or 

brightness, as a function of position in the region being scanned (refer section 4.3). In B-

mode the ultrasound system interrogates the region of interest with wide bandwidth sound 

pulses. Such a pulse from a typical array is shown in Figure 2.4. The acoustic pulse in 

Figure 2.4 is shown as a function of acoustic pressure over the lateral and axial dimensions. 

In fact the pulse is a three-dimensional function, with extent in elevation as well. In"the 

terminology of linear systems theory it is the impulse response of the system, and the 

response of the ultrasound system at the focus is fully characterized by this function. As it 

represents the output of the ultrasound system during interrogation of an ideal point target, 

it is also known as the system's point spread function (PSF). The character of the PSF in the 

axial dimension is determined predominantly by the center frequency and bandwidth of the 

acoustic signal generated at each transducer element, while its character in the lateral and 

elevation dimensions is determined predominantly by the aperture and element geometries 

and the beamforming applied. The term PSF is often used to refer to two-dimensional 

representations of the system response in pressure amplitude versus space, such as that 

shown in Figure 2.4, with the implicit understanding that the actual response has three-

dimensional extent. 
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Fig. 2.4: The acoustic pulse from a typical array (7.5 MHz, 60% bandwidth, 128 elements 

of width equal to the wavelength), shown at the acoustic focus. The pulse is displayed as a 

map of pressure amplitude and is traveling in the positive direction along axial dimension. 

The spatial impulse response is the hypothetical pressure pattern created upon excitation of 

the array with a perfect impulse. The spatial impulse response is not a physically realizable, 

but serves as a useful calculation tool in' this context: This method can accommodate 

arbitrary geometries by division of the aperture into smaller, rectangular elements. The 

spatial impulse response for each element is calculated separately, and then these solutions 

are combined by superposition to produce that for the entire aperture. 

The three components of spatial resolution define what is called the resolution volume. A 

modern, high frequency ultrasound transducer has a resolution volume at the focus that is 

on the order of 300 x 300 x 1000 µm axially, laterally, and in elevation, respectively. The 

evolution of the dimensions of the acoustic pulse from a typical array (7.5 MHz, 60% 

bandwidth, 128 elements of width equal to the wavelength, or ?-pitch) as it passes through 

the focal plane with fixed transmit and receive focus is shown in Figure 2.5. This figure 

plots the -6 dB amplitude contour of the PSF in a sequence of slices. Each slice defines a 

plane in the lateral-elevational dimensions, and the slices are spaced in the axial dimension. 

These contours demonstrate how the PSF is most compact at the focus, and also show the 
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resolution mismatch between the lateral and elevation dimensions that is typical of a 1-D 

array. The axial dimension of the resolution volume is not displayed in this plot. 
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Fig. 2.5: This diagram shows how the spatial resolution of the acoustic pulse in the lateral 

and elevation dimensions changes as it travels in the axial dimension through the focal 

plane. These acoustic pressure amplitude contours are -6 dB relative to the peak amplitude 

within each slice of the point-spread function (PSF) as it propagates. Dimensions are 

relative to the focal point. 

2.4. The Scattering and Reflection of Sound 

Medical ultrasound imaging relies utterly on the fact that biological tissues scatter or reflect 

incident sound. Although the phenomenon are closely related, in this text scattering refers 

to the interaction between sound waves and particles that are much smaller than the sound's 

wavelength X, while reflection refers to such interaction with particles or objects larger 

than X. 

The scattering or reflection of acoustic waves arises from inhomogeneities in the medium's 

density and/or compressibility. Sound is primarily scattered or reflected by a discontinuity 

in the medium's mechanical properties, to a degree proportional to the discontinuity. (By 

contrast, continuous changes in a medium's material properties cause the direction of 

propagation to change gradually.) The elasticity and density of a material are related to its 
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sound speed, and thus sound is scattered or reflected most strongly by significant 

discontinuities in the density and/or sound speed of the medium. 

Figure 2.6 shows two types of echoes that can result in ultrasound imaging. 

SPECULAR ECHOES 

!!TIi 	ce.. 

SCi*1 TERED ECHOES 

Fig. 2.6: Illustration of specular and scattered echoes 

The first, specular echoes, originate from relatively large, strongly reflective, regularly 

shaped objects with smooth surfaces. These reflections are angle dependent, and are given 

by equation 2.13. These reflections are called specular reflection. 

The second type of echoes are scattered that originate from small, weakly reflective, 

irregularly shaped objects, and are less angle-dependent and less intense. Unfortunately, the 

mathematical treatment of non-specular reflection (sometimes called "speckle") is a bit 

more complicated, and involves the Rayleigh probability density function. This type of 

reflection, however, sometimes dominates medical image. 

2.4.1. Scatterer Sizes Less than and Equal to the Wavelength 

Consider a medium subjected to acoustic insonification, and a particle in this medium that 

is much smaller than the wavelength of the sound. If this particle is of the same density and 

compressibility as the medium, it scatters no sound at all. If its density is the same but its 

compressibility is different, it will react to the surrounding pressure variation by radially 

expanding and contracting differently than the surrounding medium. This type of scatterer 
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gives off monopole radiation, shown in Figure 2.7 If these conditions are reversed, i.e. the 

particle's compressibility is the same as the surrounding medium but its density is different, 

the particle's motion in response to the incident wave will not equal that of the medium, 

and it will move back and forth in relation to the medium. This type of scattering gives off 

dipole radiation, also shown in Figure 2.7. Most real sub-wavelength scatterers emit some 

combination of monopole and dipole radiation, although one may dominate significantly 

over the other. 

incideMt Wave 

Fig. 2.7: (Left) The pressure amplitude pattern of monopole radiation from a 

"compressibility" scatterer is isotropic. (Right) The corresponding pattern of a "density" 

scatterer is highly directional, corresponding to two closely-spaced monopoles operating 

out of phase. The pattern exhibits a 1800  phase shift along the axis of sound propagation, 

and a null surrounding the scatterer and normal to this axis. 

The radiation pattern becomes more complex as the scatterer size approaches"' the 

wavelength of the incident sound. The analytic solution for the radiation pattern from a 

spherical elastic scatterer in a fluid was first described by Faran. The radiation pattern of 

such a scatterer is dependent on the material properties of the sphere and the medium and 

on the sphere's radius. Also, the result depends on whether one includes the effects of 

sound penetrating into the sphere and reverberating, which distinguishes the "elastic" from 

the "inelastic" solution. Faran solutions for radiation magnitude vs. scattering angle are 

shown in Figures 2.8 and 2.9 for a range of sphere radii, parameterized by the sphere 

radius a and the wavenumber of insonification k = 2n/X,, and using the material properties 

of crown glass (c = 5100 m/s, p= 2.4 gm/em3, a = 0.24) in 20°  water[9]. Faran defines the 

scattering angle such that the sound source is at 1800. These figures show that as the 
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scatterer radius is increased up to and beyond the wavelength of the sound, the radiation 

pattern becomes progressively more directional. 
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Fig. 2.8: Angular scattering from elastic (solid) and inelastic (dashed) spheres of 

circumference <_ 2. The insonification source is located at 180°. 
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Fig. 2.9: Angular scattering from elastic (solid) and inelastic (dashed) spheres of 

circumference >2.  The insonification source is located at 1800 . 

We can make several other observations using the Faran model. In Figure 2.10 we consider 

the magnitude of the sphere's echo back at the source as a function of ka, the product of the 

frequency and the sphere's radius. In the left half of the figure, we consider ka < 1, and 

observe that the echo magnitude for this condition (solid line) is roughly comparable to 

(ka) 2  (dashed line). In other words, the echo magnitude of scatterers significantly smaller 
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than the wavelength has a f 2  dependence. When echo magnitude +AI is converted to 

intensity IA I 2  this dependence is approximately f 4 . Scatterers that are much smaller than 

the wavelength are known as Rayleigh scatterers, and are generally considered to have a 

f 4  intensity dependence. 

0.5 

0.5 	t 

 

IC  
ka 

Fig. 2.10: The backscatter amplitude for a sphere as a function of frequency 

In Figure 2.10 (Left) The backscatter amplitude for a sphere for ka <1 (solid) is compared 

to (ka) 2  (dashed), showing that for scatterers smaller than the wavelength, echo amplitude 

as a f 2  dependence, corresponding. to an intensity dependence of f 4  , a characteristic of 

Rayleigh scattering. (Right) The backscatter amplitude for a sphere as a function of 

frequency is compared for the elastic (dashed) and inelastic (solid) cases, showing how 

internal reverberation of sound within a scatterer can create peaks and nulls in the 

scattering spectrum 

Also shown in Figure 2.10 is a graph of the backscatter echo magnitude (i.e. scattering 

angle = 180°)  for 0 < ka < 10. The elastic (solid) and the inelastic (dashed) solutions are 

contrasted. For a fixed diameter a, this Faran solution corresponds to a scatterer "frequency 

response". It is seen that when the solution includes the effects of sound penetrating into the 

sphere and reverberation within the sphere, this spectrum develops complex nulls and 

peaks. Thus reverberation of sound within a scatterer results in a echo response that can be 

highly frequency dependent, and markedly different from the response predicted without 

accounting for these effects. One the other hand, the inelastic response is adequate for 

materials with density and/or sound speed much greater than those of the surrounding fluid. 
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2.4.2. Reflecting Structures Larger than the Wavelength 

Tissue structures within the body feature boundaries on a scale much larger than the 

wavelength. Prominent specular echoes arise from these boundaries. The acoustic 

properties of tissues are often characterized using the concept of acoustic impedance Z.

• Z = po c = po ceas , where po is the density of the tissue, c is the sound speed, and 

c etas is the tissue elasticity. When a wave is directly incident on a boundary between two 

media with acoustic impedances Z , and Z 2 ,  the ratio of incident to reflected pressure is 

predicted by the reflection coefficient R, defined as: 

R— ZZ —Z, 
ZZ +Z, 

(2.12) 

It is important to note that in ultrasound, as in optics, tissue boundaries can also give rise to 

refraction that can produce image artifacts, steering errors, and aberration of the beam. A 

more general form of Equation (2.11) describes reflection and refraction as a function of 

incident angle, where the incident and transmitted angles 9; and 0, , shown in Figure 2.10, 

are related by Snell's Law: 

R = (Z2 /cos9,)—(z1 /cos B; ) 
(Z2 /cos6r )+(z1 /cos&;) 	

(2.13) 

where, sin B = ~1,, — c, 
sin6t ,% c2 

at 

Fig. 2.11: The geometry of reflection and refraction at a boundary between media with 

different sound speeds. 
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2.5. The Doppler Effect 
When an ultrasonic wave is scattered by a target that has a component of velocity along the 

direction of beam propagation, the frequency of the scattered ultrasound is shifted by the 

Doppler effect. If B is the angle between the direction of target motion and that of the 

ultrasonic beam, 

v=-f D c/(2fcos0), 	 (2.14) 

where v is the speed of the target and fD is the difference between the frequencies of the 

ultrasound transmitted from the transducer and backscattered along the ultrasonic beam, 

provided that v << c. The negative sign means that the frequency is shifted downwards if 

the target is moving away from the transducer. 
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CHAPTER-3 

DESCRIPTION OF ULTRASOUND FIELDS 

This chapter gives a linear description of acoustic fields using spatial impulse responses. It 

is shown how both the pulsed emitted and scattered fields can be accurately derived using 

spatial impulse responses. The chapter goes into some detail of deriving the different 

results and explaining their consequence. Different examples for both simulated and 

measured fields are given. The chapter is based on the papers [1], [2] and [3] and on the 

book [4]. 

3.1 Fields in Linear Acoustic Systems 
It is a well known fact in electrical engineering that a linear electrical system is fully 

characterized by its impulse response as shown in Fig. 3.1. Applying a delta function to the 

input of the circuit and measuring its output characterizes the system. The output y(t) to any 

kind of input signal x(t) is then given by 

y(t) = h(t) * x(t) = f h(0)x(t — O)dO 	 (3.1) 
-00  

where h(t) is the impulse response of the linear system and * denotes time convolution. 

The transfer function of the system is given by the Fourier transform of the impulse 

response and characterizes the systems amplification of a time-harmonic input signal. 

The same approach can be taken to characterize a linear acoustic system. The basic set-up 

is shown in Fig. 3.2. The acoustic radiator (transducer) on the left is mounted in a infinite 

rigid, baffle and its position is denoted by Yz  It radiates into a homogeneous medium with a 

constant speed of sound c and density p o  throughout the medium. The point denoted by r 
is where the acoustic pressure from the transducer is measured by a small point 

hydrophone. A voltage excitation of the transducer with a delta function will give rise to a 

pressure field that is measured by the hydrophone. The measured response is the acoustic 

impulse response for this particular system with the given set-up. Moving the transducer or 
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the hydrophone to a new position will give a different response. Moving the hydrophone 

closer to the transducer surface will often increase the signal, and moving it away from the 

center axis of the transducer will often diminish it. Thus, the impulse response depends on 

the relative position of both the transmitter and receiver ( Z  - i~-,) and hence it is called a 

spatial impulse response. 

Fig. 3.1: Measurement of impulse response for a linear electric system. 

Fig. 3.2: A linear acoustic system. 
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Fig. 3.3: Illustration of Huygens' Principle for a fixed time instance. A spherical wave with 

a radius of I r = ct is radiated from each point on the aperture. 

A perception of the sound field for a fixed time instance can be obtained by employing 

Huygen's Principle in which every point on the radiating surface is the origin of an 

outgoing spherical wave. This is illustrated in Fig. 3.3. Each of the outgoing spherical 

waves are given by: 

1r2-rl l 	I r l P.,(r, - t) =5t- 	=S t--I 	 (3.2) 
c 
 J 	

c 

where rl  indicates the point in space, r2  is the point on the transducer surface, and t is the 

time for the snapshot of the spatial distribution of the pressure. The spatial impulse 

response is then found by observing the pressure waves at a fixed position in space over 

time by having all the spherical waves pass the point of observation and summing them. 

Being on the acoustical axis of the transducer gives a short response whereas an off-axis 

point yields a longer impulse response as shown in Fig. 3.3. 
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Fig 3.4: Position of transducer, field point, and coordinate system. 

3.2 Basic Theory 
In this section the exact expression for the spatial impulse response will more formally be 

derived. The basic setup is shown in Fig. 3.4. The triangularly shaped aperture is placed in 

an infinite, rigid baffle on which the velocity normal to the plane is zero, except at the 

aperture. The field point is denoted by r, and the aperture by r2 . The pressure field 

generated by the aperture is then found by the Rayleigh integral [5] 

Po f
S aV., 2~t I rl C r2 I )  

at 	ds' 	 (3.3) 

Y —rz 

where V,, is the velocity normal to the transducer surface. The integral is a statement of 

Huygens' Principle that the field is found by integrating the contributions from all the 

infinitesimally small area elements that make up the aperture. This integral formulation 

assumes linearity and propagation in a homogeneous medium without attenuation. Further, 

the radiating aperture is assumed flat, so no re-radiation from scattering and reflection takes 

place. Exchanging the integration and the partial derivative, the integral can be written as 
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v (Fz,
1 	 '2I) 

a f 	C dS 
Xi,0 = po s vi — r21 

	

Ir 	1 	 (3.4) 
2,r 	at 

It is convenient to introduce the velocity potential V. that satisfies the equations [6] 

—VT (F,t) 

St 
	 (3.5) 

Then only a scalar quantity needs to be calculated and all field quantities can be derived 

from it. The surface integral is then equal to the velocity potential: 

fS Vn(r2t Irl ~ r21) 
dS 	 (3.6) 

21r -F2 j 

The excitation pulse can be separated from the transducer geometry by introducing a time 

convolution with a delta function as 

F_FI)
Vn (Y21 t2 )ö t — t2 -  

P(r ,t)` fS£ 	2 	
c 
	dt2dS, 	(3.7) 

~1~ -1 rZ 

where 8 is the Dirac delta function. 

Assume now that the surface velocity is uniform over the aperture making it independent of 

r2 , then 

c 	dS 	 (3.8) 
— 2TC 	rz 1 

where * denotes convolution in time. The integral in this equation 
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2 
C aS 	 (3.9) 

~'I'i —r2~ 

is called the spatial impulse response and characterizes the three-dimensional extent of the 

field for a particular transducer geometry. Note that this is a function of the relative 

position between the aperture and the field. 

Using the spatial impulse response the pressure is written as 

p0 w(t) 	 (3.10) 
at 

which equals the emitted pulsed pressure for any kind of surface vibration V(t). The 

continuous wave field can be found from the Fourier transform of (3.10). The received 

response for a collection of scatterers can also be found from the spatial impulse response 

[7], [1]. This is derived in Section 3.6. Thus, the calculation of the spatial impulse response 

makes it possible to find all ultrasound fields of interest. 

3.2.1 Geometric Considerations 
The calculation of the spatial impulse response assumes linearity and any complex-shaped 

transducer can therefore be divided into smaller apertures and the response can be found by 

adding the responses from the sub-apertures. The integral is, as mentioned before, a 

statement of Huygens' principle of summing contributions from all areas of the aperture. 

An alternative interpretation is found by using the acoustic reciprocity theorem [8]. This 

states that: "If in an unchanging environment the locations of a small source and a small 

receiver are interchanged, the received signal will remain the same." Thus, the source and 

receiver can be interchanged. Emitting a spherical wave from the field point and finding the 

wave's intersection with the aperture also yields the spatial impulse response. The situation 

is depicted in Fig. 3.5, where an outgoing spherical wave is emitted from the origin of the 



coordinate system. The dashed curves indicate the circles from the projected spherical 

wave. 

The calculation of the impulse response is then facilitated by projecting the field point onto 

the plane of the aperture. The task is thereby reduced to a two-dimensional problem and the 

field point is given as a (x,y) coordinate set and a height z above the plane. The three-

dimensional spherical waves are then reduced to circles in the x / y plane with the origin at 

the position of the projected field point as shown in Fig. 3.6. 

The spatial impulse response is, thus, determined by the relative length of the part of the 

arc that intersects the aperture. Thereby it is the crossing of the projected spherical waves 

with the edges of the aperture that determines the spatial impulse, responses. This fact is 

used for deriving equations for the spatial impulse responses in the next section. 

Fig. 3.5: Emission of a spherical wave from the field point and its intersection of the 
aperture. 
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Fig. 3.6: Intersection of spherical waves from the field point by the aperture, when the field 

point is projected onto the plane of the aperture. 

Fig. 3.7: Definition of distances and angles in the aperture plan for evaluating the Rayleigh 

integral. 

3.3 Calculation of Spatial Impulse Responses 
The spatial impulse response is found from the Rayleigh integral derived earlier 

S(t - Ir -' 1) 

2 	
C 
	dS 	 (3.11) 

)rIr "F21 



The task is to project the field point onto the plane coinciding with the aperture, and then 

find the intersection of the projected spherical wave (the circle) with the active aperture as 
shown in Fig. 3.6. 

Rewriting the integral into polar coordinates gives: 
R 

h(r„t)= rZ Z S(t— ̀  rdrdO 	 (3.12) 
d1 2~cR 

where r is the radius of the projected circle and R is the distance from the field point to the 
aperture given by R2 = r2+zp2. Here zp is the field point height above the x-y plane of the 

aperture. The projected distances dl, d2 are determined by the aperture and are the distance 

closest to and furthest away from the aperture, and O1, 02 are the corresponding angles for 

a given time (see Fig. 3.7). 

Introducing the substitution 2RdR = 2rdr gives 

	

h(i~„t) = 	r2 JR2 S(t — R)dRdO 	 (3.13) 
2TC 	Rt 

The variables R1 and R2 denote the edges closest to and furthest away from the field point. 

Finally using the substitution t' = R/c gives 

	

h(ri ,t) 	r2 f2s(ttI)dttd® 	 (3.14) 

For a given time instance the contribution along the arc is constant and the integral gives 

h(r't) 02 —0' c 	 (3.15) 
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when assuming the circle are is only intersected once by the aperture. The angles O1 and ®2 

are determined by the intersection of the aperture and the projected spherical wave, and the 

spatial impulse response is, thus, solely determined by these intersections, when no 

apodization of the aperture is used. The response can therefore be evaluated by keeping 

track of the intersections as a function of time. 

3.4 Examples of Spatial Impulse Responses 
The first example shows the spatial impulse responses from a 3x5 mm rectangle for 

different spatial positions 5 mm from the front face of the transducer. The responses are 

found from the center of the rectangle (y = 0) and out in steps of 2 mm in the x direction to 

6 mm away from the center of the rectangle. A schematic diagram of the situation is shown 

in Fig. 3.8 For the on-axis response. The impulse response is zero before the first spherical 

wave reaches the aperture. Then the response stays constant at a value of c. The first edge 

of the aperture is met, and the response drops of. The decrease with time in increased when 

the next edge of the aperture is reached and the response becomes zero when the projected 

spherical waves all are outside the area of the aperture. 

• 

~D~?ILfY 

Fig. 3.8: Schematic diagram of field from rectangular element. 

A plot of the results for the different lateral field positions is shown in Fig. 3.9. It can be 

seen how the spatial impulse response changes as a function of relative position to the 

aperture. 

The second example shows the response from a circular, flat transducer. Two different 

cases are shown in Fig. 3.10. The top graph shows the traditional spatial impulse response 
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when no apodization is used, so that, the aperture vibrates as a piston. The field is calculated 

10 mm from the front face of the transducer starting at the center axis of the aperture. 

Twenty-one responses for lateral distance of 0 to 20 mm off axis are then shown. The same 

calculation is repeated in the bottom graph, when a Gaussian apodization has been imposed 

on the aperture. 

The vibration amplitude is a factor of 1/exp(4) less at the edges of the aperture than at the 

center. It is seen how the apodization reduces some of the sharp discontinuities in the 

spatial impulse response, which can reduce the sidelobes of the field. 

12G+D' 

161C+9' 

4.5 

Tne i r 

Fig. 3.9: Spatial impulse response from a rectangular aperture of 4X5 mm at for different 

lateral positions 
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Fig 3.10: Spatial impulse response from a circular aperture. Graphs are shown without 

apodization of the aperture (top) and with a Gaussian apodization function (bottom). The 

radius of the aperture is 5 mm and the field is calculated 10 mm from the transducer 

surface. 

3.5 Calculation of the scattered signal 
In medical ultrasound, a pulsed field is emitted into the body and is scattered and reflected 

by density and propagation velocity perturbations. The scattered field then propagates back 

34 



through the tissue and is received by the transducer. The field is converted to a voltage 

signal and used for the display of the ultrasound image. A full description of a typical 

imaging system, using the concept of spatial impulse response, is the purpose of the 

section. 

The received signal can be found by solving an appropriate wave equation. This has been 

done in a number of papers (e.g. [22], [23]). Gore and Leeman [22] considered a wave 

equation where the scattering term was a function of the adiabatic compressibility and the 

density. The transducer was modeled by axial and lateral pulses that were separable. Fatemi 

and Kak [23] used a wave equation where scattering originated only from velocity 

fluctuations, and the transducer was restricted to be circularly symmetric and unfocused 

(flat). 

The scattering term for the wave equation used here is a function of density and 

propagation velocity perturbations, and the wave equation is equivalent to the one used by 

Gore and Leeman [22]. No restrictions are enforced on the transducer geometry or its 

excitation, and analytic expressions for a number of geometries can be incorporated into 

the model 	 ~. 

The model includes attenuation due to propagation and scattering, but not the dispersive 

attenuation observed for propagation in tissue. 

The derivation is organized as follows. The following section derives the wave equation 

and describes the different linearity assumptions made. Section 3.5.2 calculates, the 

scattered field and section 3.5.3 introduces the spatial impulse response model for the 

incident field. Section 3.5.4 combines the wave equation solution and the transducer model 

to give the final equation for the received pressure field. 
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3.5.1 Derivation of the Wave Equation 
This section derives the wave equation. The section has been included in order to explain in 

detail the different linearity assumptions and approximations made to obtain a solvable 

wave equation. The derivation closely follows that developed by Chernov (1960). 

The first approximation states that the instantaneous acoustic pressure and density can be 

written 

P.ns (i,t)= P+p,(r,t) 	 (3.16) 

A. (F,t) — p(F)+ p, (r,t) 	 (3.17) 

in which P is the mean pressure of the medium and p is the density of the undisturbed 

medium. Here p1 is the pressure variation caused by the ultrasound wave and is considered 

small compared to P and pl is the density dhange caused by the wave. Both pl and pl are 

small quantities of first order. 

Our second assumption is that no heat conduction or conversion of ultrasound to thermal 

energy takes place. Thus, the entropy is constant for the process, so that the acoustic 

pressure and density satisfy the adiabatic equation [24]: 

dP,,,,  = c2  d p;»s 

dt 	dt (3.18) 

The equation contains total derivatives, as the relation is satisfied for a given particle of the 

tissue rather than at a given point in space. This is the Lagrange description of the motion 

[6]. For our purpose the Euler description is more appropriate. Here the coordinate system 

is fixed in space and the equation describes the properties of whatever particle of fluid there 

is at a given point at a given time. Converting to an Eulerian description results in the 

following constitutive equation [24], [6]: 
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2 L = ap' +u.Vp 
at 	at 

(3.19) 

using that P and p do not depend on time and that p1 is small compared to p. Here u is the 

particle velocity, V is the gradient operator, and • symbolizes the scalar product. 

The pressure, density, and particle velocity must also satisfy the hydrodynamic equations 

[24]: 

 

du  ( ) 
Pins dt = —V1 	 (3.20)  

ap`"S 	 ~p~°S .V 

	

= 	u) 	 (3.21) 
at -  

which are the dynamic equation and the equation of continuity. Using (3.16) and (3.17) and 

discarding higher order terms we can write 

 

du  t
3.22 

) 
 

(3.23) 
at 

Differentiating (3.23) with respect to t and inserting (3.22) gives 

	

al p' _ —o. p au 	—O.(—ohs) = Ozp
i 
	 (3.24) 

a t 	at 

Differentiating (3.19) with respect to t 

1 az p, = a2p, + 5ü
.V p 	 (3.25) 

C at 	at at 

and inserting (3.24) and (3.22) leads to 
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l a2 	1 	 ( 	) = Vp.Vp, 	 3.26 

Assuming that the propagation velocity and the density only vary slightly from their mean 

values yields 

p()= p0 +Ap(r) 

C(Y)=C0 +AC(7) 
	

(3.27) 

where po >> Ap and ca» Ac. 

z 

O2P1 — 	1 z 
3p1_ 

 - 	1 	V (Po + Ap)•Vp1 	(3.28) 
(co + Ac) a2 t 	(Po + AP) 

Ignoring small quantities of second order and using the approximation (A«1): 

gives 

1 ~1—A 
1+A, 

(3.29) 

O2p1 _(I 2 — 2Ac 82p1 _ 1 V(Ap)_Y-  V (AP) .p
pi 	(3.30) 

co c0 82t 1p 	p02  

Neglecting the second order term Lp V (Ap) . Op, yields the wave equation: 
Po 

z 	 z 

OZA— 1
2 a p, — — 20c a p, + 

1 V(Ap).Vp1 	 (3.31) 
CO at2 	 CO at2 p0 

The two terms on the right side of the equation are the scattering terms which vanish for a 

homogeneous medium. The wave equation'was derived by Chernov [24]. It has also been 

considered in Gore & Leeman [22] and Morse & Ingard [6] in a slightly different form, 

where the scattering terms were a function of the adiabatic compressibility x and the 

density. 



3.5.2 Calculation of the Scattered Field 
Having derived a suitable wave equation, we now calculate the scattered field from a small 

inhomogeneity embedded in a homogeneous surrounding. The scene is depicted in Fig. 

3.11. The inhomogeneity is identified by Y, and enclosed in the volume V0. The scattered 

field is calculated at the point indicated by i integrating all the spherical waves emanating 

from the scattering region V' using the time dependent Green's function for unbounded 

space. Thus, the scattered field is [6], [22]: 
z 

P. ( 	L[±v,t~ — , (Ap(r})•VP, (Y,t,}— 2~cc3 a pat2,,t G(i ,t j /i2 ,t)dt,d3r 
Po 	 0 

(3.32) 

where G is the free space Green's function: 

S(t—t, 	I - I \ 
G(r,t,li"2 ,0_ 	 (3.33) 4,r 

d3 r~ means integrating w.r.t. rz over the volume V0, and T denotes integration, over time. 

L 

'rk 3l 

Fig. 3.11.: Coordinate system for calculating the scattered field 
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We denote by 

Fop 	
1 

0(OP(~"i }).0 —
2~c 	

- co3 at2 

the scattering operator. 

The pressure field inside the scattering region is: 

Pi (F , t) = P1 ('I t) + Pz (F, t) 	 (3.35) 

where p; is the incident pressure field. As can be seen, the integral can not be solved 

directly. To solve it we apply the Born-Neumann expansion [25]. If G; symbolizes the 

integral operator representing Green's function and the integration and Fop the scattering 

operator, then the first order Born approximation can be written: 

(3.36) 

Here ps has been set to zero in (3.35). Inserting psi in (3.35) and then in (3.32) we arrive at 

PZ, (r2 ,t) = G;Fap [p (r ,t1)+G,F p (ri ,t1 )] 

=G,FoPP;~ 1,tj}+[G;Fop]zP,('lit,} 	 (3.37) 

It is emphasized here that Gi indicates an integral over i,, and ti, and not the pressure at 

point i and time t1 but over the volume of Vo and time T indicated by r, and t,. 

The general expression for the scattered field then is: 



A, (,t)= G,Foy pi (Fl ,t, )+ 

L
G,Fop I z p,.(r,,ti )+ 

3 	 (3.38) 
[G1Fop1 pr(Y ,ti)+ 

[G1i ]a p;(,t,)+.......... 

Homo9ertcus 
r +Tl edru 

Fig. 3.12: Coordinate' system for calculating the incident field. 

Terms involving [G~FoP]N pi(, t1), where N> 1, describe multiple scattering of order N. 

Usually the scattering from small obstacles is considered weak so higher order terms can be 

neglected. Thus, a useful approximation is to employ only the first term in the expansion. 

This corresponds to the first order Born-approximation. 

Using this (3.32) can be approximated by (note the replacement of pl(r, , tj) with p1(r, ,ti)) 

r 	z 
PZ (rz ,t) ~ 	£LLV(Ap()).Vp1  ('i,t1)— 2A 

3 r a pate t 
]G(Fj,tj ji:2,t)dtjd'Fj   (3.39) 

C0 Po  

So in order to calculate the scattered field, the incident field for the homogeneous medium 

must be calculated. 
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3.5.3 Calculation of the Incident Field 

The incident field is generated by the ultrasound transducer assuming no other sources exist 

in the tissue. The field is conveniently calculated by employing the velocity potential yr(i , 

t), and enforcing appropriate boundary conditions [26], [27]. The velocity potential satisfies 

the following wave equation for the homogeneous medium: 
2 

1  aa  =:0 	 (3.40) 
cot  & 2  

and the pressure is calculated from: 

P(r,t) = Po aT(F,t)  (3.41) 
at 

The coordinate system shown in Fig. 3.1.2 is used in the calculation. The particle velocity 

normal to the transducer surface is denoted by v( r3  + F4  ,t), where r3  identifies the position of 

the transducer and r4  a point on the transducer surface relative to r3  . 

The solution to the homogeneous wave equation is [27]: 

1P(Y +Y3 ,t) = J 5v(Y3 +Y4 +t3)g(i ,,t I r3 +i4 ,t3)dt3d2F4 
	 (3.42) 

ST 

Fig. 3.13: Coordinate system for calculating the received signal. 
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when the transducer is mounted in a rigid infinite planar baffle. S denotes the transducer 

surface. 

g is the Green's function for a bounded medium and is 

0(t-13 - I F1 - y3 - i4 I) 

9(F1 t 1 Y3 ,t3) = 	 '0  
2ir I rl- r3 -r4I 

(3.43) 

F1 - Y3 - F4 I is the distance from S to the point where the field is calculated and co the mean 

propagation velocity. The field is calculated under the assumption of radiation into an 

isotropic, homogeneous, non-dissipative medium. 

If a slightly curved transducer is used, an additional term is introduced as shown in Morse 

& Feshbach [28]. This term is called the second order diffraction term in Penttinen & 

Luukkala [13]. It can be shown to vanish for a planar transducer, and as long as the 

transducer is only slightly curved and large compared to the wavelength of the ultrasound, 

the resulting expression is a good approximation to the pressure field [13]. 

If the particle velocity is assumed to be uniform over the surface of the transducer, (3.42) 

can be reduced to [29]: 

T(r +i 3̂ ,t) _• f v(t3 )g(r„t I r3  +74 ,t3 )d Zr4dt3 	 (3.44) 
T 

This is the spatial impulse response previously derived, and the sound pressure for the 

incident field then is: 

r r t 	a (i'' r3' t)  = v t t  ah(r' r3' t) 	 3.45 P(i, 3 , ) = Po 	at 	Po O 	at ( 	) 

or 

P(r 1 Y3 1 t) = po  a  t)  t h( , r3 , t) 	 (3.46) 
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3.5.4 Calculation of the Received Signal 
The received signal is the scattered pressure field integrated over the transducer surface, 

convolved with the electromechanical impulse response, Em(t), of the transducer. To 

calculate this we introduce the coordinate system shown in Fig.3.13. i6 +YS indicates a 

receiving element on the surface of the transducer that is located at r5. The received signal 

is: 

Pr(YS,t) = Em(t)t fA (F6  +'"S,t)d2F6 	 (3.47) 
s 

The scattered field is: 

t-i1 _( 1 ~6+r5 - rf) 
C 

	

2 + or 	dt,d3r~ (3.48) 
6 	5 	11 

Combining this with (3.47) and comparing with (3.9) we see that pr includes Green's 

diction for bounded space integrated over the transducer surface, which is equal to the 

spatial impulse response. Inserting the expression for pi and performing the integration 

over the transducer surface and over time, results in: 

Pr(i;s ,t)=E.(t) 1 f ,FoP po 	*,t} * h(rS ,r,t)d3r 	(3.49) 
2 	at 

If the position of the transmitting and the receiving transducer is the same (r3 = i;5 ), then a 

simple rearrangement of (3.49) yields: 

Pr (75 ,t) — 20 E. (t}* ~ * , Fophpe (~"S,F,,t}d3 F; 	(3.50) 

where 

hpe (Y5 ,F,t)=h(F5 ,i;,t)*h(r,i ,t) 	 (3.51) 

is the pulse-echo spatial impulse response. 



-E.. 

The calculated signal is the response measured for one given position of the transducer. For 

a B-mode scan picture a number of scan-lines is measured and combined to a picture. To 

analyze this situation, the last factor in (3.50) is explicitly written out 

z 

,~ 1 O(Ap(r)).Ohpe('Ir5,t)-
20c ( 11 ) (~ 12Pea2,Y5 ,t 	

gr 	(3.52) 

	

po 	 0 

From section 3.5.3 it is know that Hpe is a function of the distance between F1 and r5 , while 

Ap, Ac only are functions of F1. So when F is varied over the volume of interest, the 

resulting image is a spatial non-stationary convolution between Ap, Ac and a modified form 

of the pulse-echo spatial impulse response. 

If we assume that the pulse-echo spatial impulse is slowly varying so that the spatial 

frequency content is constant over a 'finite volume, then (3.52) can be rewritten 

	

1 	 _ _ 	2Ac(r) a2h (r r t) 	 ft 
Po gyp( I ).V2hP' (i'F1 ,t ) — 	CO3 1 	peat2' S' 	3

r1 	 (3.53) 

hpe is a function of the distance between the transducer and the scatterer or equivalently of 

the corresponding time given by 

(3.54) 
CO 

The Laplace operator is the second derivative w.r.t. the distance, which can be 

approximated with the second derivative w.r.t. time. So 

2 	 l O2hpe 	YS \Y'' t/ (3.55) 

assuming only small deviations from the mean propagation velocity. 



Using these approximations, (3.50) can be rewritten: 

P"(,5,t ) = poz Em (t) aV 3 (t) 
L 

~p(r) _ 20c(r) pe 
(Y, YS ,1)d'i, 	(3.56) 

2c0 	at 	p0 	c0 

Symbolically this is written 

P, (r5,t) =Vpe *✓m(Y)*hpe(Y,YS ,t) 	 (3.57)t 

* denotes spatial convolution. V pe is the pulse-echo wavelet which includes the transducer r 
excitation and the electro-mechanical impulse response during emission and reception of 

the pulse. fm accounts for the inhomogeneities in the tissue due to density and propagation 

velocity perturbations which give rise to the scattered signal. hpe is the modified pulse-echo 

spatial impulse response that relates the transducer geometry to the spatial extent of the 

scattered field. Explicitly written out these terms are: 

PO 	* ayIt __ 
V pe (t~ 2C 2 

Em (t)*__ 
 at3 0 

(3.58) 

p() 2Ac (r,) ./' 
Jm ( 	

_ 	 (3.59) 
p0 

= 
p0 	CO 

h, (r , Y5, t) = h(YI , YS , t) * h(rs , F;, t) 	 (3.60) 

Expression (3.57) consists of three distinct terms. The interesting signal, and the one that 

should be displayed in medical ultrasound, is fm( i ). We, however, measure a time and 

spatially smoothed version of this, which obscures the finer details in the picture. The 

smoothing consists of a convolution in time with a fixed wavelet vpe(t) and a spatial 

convolution with a spatially varying hpe( r, , rs , t). 



CHAPTER 4 

ULTRASOUND IMAGING 

Modem medical ultrasound scanners are used for imaging nearly all soft tissue structures in 

the body. The anatomy can be Studied from gray-scale B-mode images, where the 

reflectivity and scattering strength of the tissues are displayed. The imaging is performed in 

real time with 20 to 100 images per second. The technique is widely used since it does not 

use ionizing radiation and is safe and painless for the patient. 

This chapter gives a short introduction to modem ultrasound imaging using array 

transducers. Part of the chapter is based on [4] and [32].  

4.1 Fourier Relation 
This section derives a simple relation between the oscillation of the transducer surface and 

the ultrasound field. It is shown that field in the far-field can be found by a simple one-

dimensional Fourier transform of the one-dimensional aperture pattern. This might seem 

far from the actual imaging situation in the near field using pulsed excitation, but the 

approach is very convenient in introducing all the major concepts like main and side lobes, 

grating lobes, etc. It also very clearly reveals information about the relation between 

aperture properties and field properties. 

4.1.1 Derivation of Fourier Relation 
ti 

Consider a simple line source as shown in Fig. 4.1 with a harmonic particle speed of Uo 
exp(icct). Here Uo is the vibration amplitude and cc. is its angular frequency. The line 

element of length dx generates an increment in pressure of [8] 

dp -  P0Ck  U a (x)eu-kr'>dx 	 (4.1) 
4ztr' . 
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where po is density, c is speed of sound, k = cep/c is the wave number, and ap(x) is an 

amplitude scaling of the individual parts of the aperture. In the far-field (r<<L) the 

distance from the radiator to the field points is (see Fig. 4.1) 

r'=r-xsin0 
	

(4.2) 

r U, .r,) 

Fig. 4.1: Geometry for line aperture. 

The emitted pressure is found by integrating over all the small elements of the aperture 

p(r, B, t) = 	04,C 	
a (x) r 	dx 	 (4.3) 

Notice that ap(x) = 0 if JxI > L2. Here r' can be replaced with r, if the extent of the array is 

small compared to the distance to the field point (r << L). Using this approximation and 

inserting (4.2) in (4.3) gives 

= .~ p0CU0k +1 
a (x)e t-kr+kxsin 0)dX = poCU0k el((ot-kr) r a (x)ejkrsinBdx 	(4.4) 

42i. _0 p 	 4 	 _J0 P 



since wt and kr are independent of x. Hereby the pressure amplitude of the field for a given 

frequency can be split into two factors: 

pcUkL 
4/7 

1 +a (x)e°dx 
H(B)=L~ p 	 (4.5) 

_' 

P(r, B) = P. (r)H(0) 

The first factor P(r) characterizes how the field drops off in the axial direction as a factor 

of distance, and H(0) gives the variation of the field as a function of angle. The first term 

drops off with 1/r as for a simple point source and H(0) is found from the aperture function 

ap(x). A slight rearrangement gives 

+oo 	j2rzrfsinB 
	+~ 	j2nxf 

H(0) = L J an ( x )e 	C dx = L f a~'(x)ex 	(4.6) 
_„  _00 

This very closely resembles the standard Fourier integral given by 

G(f) = Jg(t)e- jz,dfdt 
-00 	

(4.7) 

g(t) = f G(.f)e j23dt 

There is, thus, a Fourier relation between the radial beam pattern and the aperture function, 

and the normal Fourier relations can be used for understanding the beam patterns for 

typical apertures. 



Fig. 4.2: Angular beam pattern for a line aperture with a uniform aperture function as a 

function of angle (top) and as a function of k sin(0) (bottom). 

4.1.2 Beam Patterns 
The first example is for a simple line source, where the aperture function is constant such 

that 

1,1 x <_ L/2 
a p 

 (x) =jO,else 
(4.8) 

The angular factor is then 

sin(7rLf sin B)  sin(! L sin B) 
H(0) = ,zL f sin B = k L sin B 	

(4.9) 

C 2 

A plot of the sinc function is shown in Fig. 4.2. A single main lobe can be seen with a 

number of side lobe peaks. The peaks fall off proportionally to k or f. The angle of the first 

zero in the function is found at 

c A sin 0=—=- 
Lf L 

(4.10) 

The angle is, thus, dependent on the frequency and the size of the array. A large array or a 

high emitted frequency, therefore, gives a narrow main lobe. The magnitude of the first 

sidelobe relative to the mainlobe is aiv 
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H(aresin(- ,)) 	sin(32 ) 

H(0) 
	— 

— 
L 3'r 	 (4.11) 

2 

The relative sidelobe level is, thus, independent of the size of the array and of the 

frequency, and is solely determined by the aperture function ap(x) through the Fourier 

relation. The large discontinuities of ap(x), thus, give rise to the high side lobe level, and 

they can be reduced by 'selecting an aperture function that is smoother like a Hanning 

window or a Gaussian shape. 
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Fig 4.3: Grating lobes for array transducer consisting of 8 point elements (top) and',of 8 

elements with a size of 1.5 ? (bottom). The pitch (or distance between the elements) is 2 ? 

Modern ultrasound transducers consist of a number of elements each radiating ultrasound 

energy. Neglecting the phasing of the element (see Section 4.2) due to the far-field 

assumption, the aperture function can be described by 
N/2 

ap(x)=aps(x)* I 5(x —din) 	 (4.12) 
n�  N12 

where aps(x) is the aperture function for the individual elements, dx is the spacing (pitch) 

between the centers of the individual elements, and N is the number of elements in the 

array. Using the Fourier relationship the angular beam pattern can be described by 

	

Hr (8) = H ps (0 )Hper (B) 	 (4.13) 
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where 
N/2 	 N12 

Z acx—d n) H Hp r (8) = 	e""° = 
n=—N/2 	 n=—N/2 

N12 — fsin- 
j2

,, 	ndc E e 	C 	(4.14) 
n=—N/2 

Summing the geometric series gives 

sin((N + 1) k dX sin B) 
per (8 ) 

	

	
(4.15) 

sin(2 dX sin B) 

is the Fourier transform of series of delta functions. This function repeats itself with a 

period that is a multiple of 

ir Tc= 2dd sin0 

2 (4.16) 
sin 0= 	_- 

kdX dx 

This repetitive function gives rise to the grating lobes in the field. An example is shown in 

Fig. 4.3. The grating lobes are due to the periodic nature of the array, and correspond to 

sampling of a continuous time signal. The grating lobes will be outside a +90 deg. imaging 

area if 

~ =1 
dx 	 (4.17) 

dx =2 

Often the beam is steered in a direction and in order to ensure that grating lobes do not 

appear in the image, the spacing or pitch of the elements is selected to be d,, = A 2. This 

also includes ample margin for the modem transducers that often have a very broad 

bandwidth. An array beam can be steered in a direction by applying a time delay on the 

individual elements. The difference in arrival time for a given direction 0o is 

z = dx sin 0o 	
(4.18) 

C 

Steering in a direction 0o can, therefore, be accomplished by using 

sin Bo =— 	(4.19) 
x 
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where z is the delay to apply to the signal on the element closest to the center of the array. 

A delay of 2 z is then applied on the second element and so forth. The beam pattern for the 

grating lobe is then replaced by 

sin((N + 1) 2 d x  sin 9 — d ) 
Hper (e) = 	k 	ct x 	

(4.20) 
sin( dx  sin 8 — " ) 

z 

Notice that the delay is independent of frequency, since it is essentially only determined by 

the speed of sound. 

4.2 Focusing 
The essence of focusing an ultrasound beam is to align the pressure fields from all parts of 

the aperture to arrive at the field point at the same time. This can be done through a 

physically curved aperture, through a lens in front of the aperture, or by the use of 

electronic delays for multi-element arrays. All seek to align the arrival of the waves at a 

given point through delaying or advancing the fields from the individual elements. The 

delay (positive or negative) is determined using ray acoustics. The path length from the 

aperture to the point gives the propagation time and this is adjusted relative to some 

reference point. The propagation from the center of the aperture element to the- field point 

is 

t1 =! (x' -x1)2 +(y1 -y1)2 +(z; — z f ) 2 	 (4.21) 

where (xf,yf,zf) is the position of the focal point, (x;,y;,z;) is the center for the physical 

element number i, c is the speed of sound, and ti is the calculated propagation time. 

A point is selected on the whole aperture as a reference for the imaging process. The 

propagation time for this is 

	

t =1  (xx —x f )2 +(y'-yf )2 +(z'— z f )2 	 (4.22) 
C 

where (xc, yc; zc) is the reference center point on the aperture. The delay to use on each 

element of the array is then 
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At 1 =c  (xx`xf)2+(YcYf)2+(z,—zf )2  - (x1—xf)2+(Y1—Yf)2+(z1—zf)2 	(4.23) 

Notice that there is no limit on the selection of the different points, and the beam can, thus, 

be steered in a preferred direction. 

The arguments here have been given for emission from an array, but they are equally valid 

during reception of the ultrasound waves due to acoustic reciprocity. At reception it is also 

possible to change the focus as a function of time and thereby obtain a dynamic tracking 

focus. This is used by all modem ultrasound scanners, Beamformers based on analog 

technology makes it possible to. create several receive foci and the newer digital scanners 

change the focusing continuously for every depth in receive. A single focus is only possible 

in transmit and composite imaging is therefore often used in modem imaging. Here several 

pulse emissions with focusing at different depths in the same direction are used and the 

received signals are combined to form one image focused in both transmit and receive at 

different depths (composit imaging). 

The focusing can, thus, be defined through time lines as: 

From time 	 Focus at 

0 	 x1 , y i , Zi 

ti 	 xi, Yi, Zi 

t2 	 X2, Y2,  Z2 

For each focal zone there is an associated focal point and the time from which this focus is 

used. The arrival time from the field point to the physical transducer element is used for 

deciding which focus is used. Another possibility is to set the focusing to be dynamic, so 

that the focus is changed as a function of time and thereby depth. The focusing is then set 

as a direction defined by two angles and a starting point on the aperture. 
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Section 4.1 showed that the side and grating lobes of the array can be reduced by 

employing apodization of the elements. Again a fixed function can be used in transmit and 

a dynamic function in receive defined by 

From time 	 Apodize with 

0 a1,1, al,2 , a1,3. • -al,Ne 
ti al,l, al,2 , al,3...al,Ne 
t2 a2,1, a2,2, a2,3. . . a2,Ne 

t3 a3,1, a3,2 , a3,3.. . a3,Ne 

Here al,l is the amplitude scaling value multiplied onto element 1 after time instance ti. 

Typically a Hamming or Gaussian shaped function is used for the apodization. In receive 

the width of the function is often increased to compensate for attenuation effects and for 

keeping the point spread function roughly constant. The F-number defined by 

F_ D 
L 

(4.25) 

where L is the total width of the active aperture and D is the distance to the focus, is often 

kept constant. More of the aperture is often used for larger depths and a compensation for 

the attenuation is thereby partly made. An example of the use of dynamic apodization is 

given in Section 4.6. 

4.3 Fields from Array Transducers 
Most modern scanners use arrays for generating and receiving the ultrasound fields. These 

fields are quite simple to calculate, when the spatial impulse response for a single element 

is known. This is the approach used in the Field II program, and this section will extend the 

spatial impulse response to multi element transducers and will elaborate on some of the 

features derived for the fields in Section 4.1. 	 - 

Since the ultrasound propagation is assumed to be linear, the individual spatial impulse 

responses can simply be added. If he  (rP , t) denotes the spatial impulse response for the 

element at position r and the field point Fp  , then the spatial impulse response for the array 

is 
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N-1 

	

ha(rp ,t) = I he(Y,YP ,t) 
	

(4.25) 
i=o 

assuming all N elements to be identical. 

	

A,, Nemer:4c 	 may,„^ 

Fig. 4.4: Geometry of linear array 

Let us assume that the elements are very small and the field point is far away from the 

array, so it is a Dirac function. Then 

	

N-1 	
P 

	

hG (i , , t) = k 	a(t 	- - r.  r ) 	
(4.26) 

	

R10 	C 

when R =1 r; - - 1, k is a constant of proportionality, and Q is the position of the array. 

Thus, ha is a train of Dirac pulses. If the spacing between the elements is D, then 

N-1 
 (4.27) 

where re is a unit vector pointing in the direction along the elements. The geometry is 

shown in Fig. 4.4. The difference in arrival time between elements far from the transducer 

is 

D sin O 
Ot = 	 (4.28) 

C 

The spatial impulse response is, thus, a series of Dirac pulses separated by 0 t. 

k N-~ 	R 
ha (i , t) — a(t - p - iAt) 	 (4.29) 

C 
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The time between the Dirac pulses and the shape of the excitation determines whether 

signals from individual elements add or cancel out. If the separation in arrival times 

corresponds to exactly one or more periods of a sine wave, then they are in phase and add 

constructively. Thus, peaks in the response are found for 

n 

 

I _ D sin O 	 (4.30) 
f C 

The main lobe is found for Q = 0 and the next maximum in the response is found for 

O = aresin( ) = aresin(A) 	 (4.31) 

4.4 Imaging with Arrays 
Basically there are three different kinds of images acquired by multi-element ., array 

transducers, i.e. linear, convex, and phased as shown in Figures 4.5, 4.7, and 4.8. The linear 

array transducer is shown in Fig. 4.5. It selects the region of investigation by firing a set of 

elements situated over the region. The beam is moved over the imaging region by firing 

sets of contiguous elements. Focusing in transmit is achieved by delaying the excitation of 

the individual elements, so an initially concave beam shape is emitted, as shown in Fig. 4.6. 

The beam can also be focused during reception by delaying and adding responses from the 

different elements. A continuous focus or several focal zones can be maintained as 

explained in Section 4.2. Only one focal zone is possible in transmit, but a composite 

image using a set of foci from several transmissions can be made. Often 4 to 8 zones can be 

individually placed at selected depths in modern scanners. The frame rate is then lowered 

by the number of transmit foci. 
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Linear array -imaging 

Fig. 4.5: Linear array transducer for obtaining a rectangular cross-sectional image. 
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Fig. 4.6: Electronic focusing and steering of an ultrasound beam. 
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Fig. 4.7: Convex array transducer for obtaining a polar cross-sectional image 



The linear arrays acquire a rectangular image, and the arrays can be quite large to cover a 

sufficient region of interest (ROI). A larger area can be scanned with a smaller array, if the 

elements are placed on a convex surface as shown in Fig. 4.5. A sector scan is then 

obtained. The method of focusing and beam sweeping during transmit and receive is the 

same as for the linear array, and a substantial number of elements (often 128 or 256) is 

employed. 

The convex and linear arrays are often too large to image the heart when probing between 

the ribs. A small array size can be used and a large field of view attained by using a phased 

array as shown in Fig. 4.8. All array elements are used here both during transmit and 

receive. The direction of the beam is steered by electrically delaying the signals to or from 

the elements, as shown in Fig. 4.6(b). Images can be acquired through a small window and 

the beam rapidly sweeped over the ROI. The rapid steering of the beam compared to 

mechanical transducers is of especial importance in flow imaging. This has made the 

phased array the choice for cardiological investigations through the ribs. More advanced 

arrays are even being introduced these years with the increase in number of elements and 

digital beamforming. Especially elevation focusing (out of the imaging plane) is important. 

A curved surface is used for obtaining the elevation focusing essential for an improved 

image quality. Electronic beamforming can also be used in the elevation direction by 

dividing the elements in the elevation direction. The elevation focusing in receive can then 

be dynamically controlled. 
iP a Mr array ri ac ng 

Fig. 4.8. Phased array transducer for obtaining a polar cross-sectional image. 
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Fig. 4.9: Elevation focused convex array transducer for obtaining a rectangular cross-

sectional image, which is focused in the out-of-plane direction. The curvature in the 

elevation direction is exaggerated in the figure for illustration purposes. 
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Fig 4.10: Elevation focused convex array transducer with element division in the elevation 

direction. The curvature in the elevation direction is exaggerated in the figure for 

illustration purposes 
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4.5 Simulation of Ultrasound Imaging 

One of the first steps in designing an ultrasound system is the selection of the appropriate 

number of elements for the array transducers and the number . of channels for the 

beamformer. The focusing strategy in terms of number of focal zones and apodization must 

also be determined. These choices are often not easy, since it is difficult to determine the 
effect in the resulting images of increasing the number of channels and selecting more or 

less advanced focusing schemes. It is therefore beneficial to simulate the whole imaging 

system in order to quantify the image quality. 

The simulation is done using Field II program. It runs entirely under the Matlab program. It 

consist of a Mex file for performing the operations and a set of M-files for calling the 

different parts of the program. Hereby it is possible to simulate ultrasound systems with 

advanced dynamic focusing and apodization, e.g. phased and linear array imaging and flow 
imaging. The program has advanced features for dynamic focusing and apodization. The 

program is fairly new (developed in 2002), and new features are continuously added. It can 

currently handle round piston, concave, linear and phased arrays, and two-dimensional 
arrays. 

The Field program system uses the concept of spatial impulse responses as developed by 

Tupholme and Stepanishen in a series of papers [26, 27, 29]. The approach relies on linear 

systems theory to find the ultrasound field for both the pulsed and continuous wave case. 

This is done through the spatial impulse response. This response gives the emitted 

ultrasound field at a specific point in space as function of time, when the transducer is 

excitated by a Dirac delta function. The field for any kind of excitation can then be found 
by just convolving the spatial impulse response with the excitation function. The impulse 

response will vary as a function of position relative to the transducer, hence the name 

spatial impulse response. 

The received response from a small oscillating sphere can be found by acoustic reciprocity. 

The spatial impulse response equals the received response for a spherical wave emitted by 
a point. The total received response in pulse-echo can, thus, be found by convolving the 
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transducer excitation function with the spatial impulse response of the emitting aperture, 

with the spatial impulse response of the receiving aperture, and then taking into account the 

electro-mechanical transfer function of the transducer to yield the received voltage trace. 

Features of Field 11 

• Transducer modeled by dividing it into rectangles or triangles. 

• C program interfaced to Matlab. 

• Matlab used as front-end. 

• Can handle any transducer geometry. 

• Physical understanding of transducer. 

• Pre-defined types: linear and phased arrays, single element concave and flat 

transducers, and two-dimensional arrays. 

• Any focusing, apodization, and excitation pulse. 

• Multiple time dependent focusing and apodization. 

• Can calculate all types of fields (emitted, received, pulsed, CW) 

• Attenuation can be included in the simulation 

• Can generate artificial ultrasound images (phased and linear array images with 

multiple receive and transmit foci). 

• Post processing in Matlab 

4.5.1 General Algorithm 
Step]: The receive and transmit apertures are defined 

Transducer parameters are defined to describe the physical dimensions of the transducer. 

See the figure 4.11 for clarification. 

Set initial parameters: 

Center frequency (1): Center frequency of the transmitted pulse given in MHz. 

Sampling frequency (fs): [MHz] 

Speed of sound: c= 1540 [m/s] 

Wavelength: (lambda) =c/fly [m] 

Height: The height of an individual element, [mm] 

Width: The width of an individual element [mm] 
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Kerf: The spacing between transducer elements [mm] 

N elements: Number of transducer elements 

no—sub—x: Number of sub-divisions in x-direction of elements. 

no_sub_y: Number of sub-divisions in y-direction of elements. 

Focus: Initial electronic focus, the point in space in front of the transducer face at which 

the sound field constructively converges. The axes are (lateral, elevation, axial). The 

center of the transducer face is defined as (0, 0, 0). The axial location is referred to as the 

focal depth. 

Transducers are specified by passing it parameters to a subroutine for the particular 

aperture. The M-function the returns a handle to this particular aperture. Its properties as 

focusing and apodization is then manipulated through this handle. 

Fig 4.11 Physical dimensions of the transducer 

Step2: Setting the excitation waveform 

Commands are given for setting the excitation waveform of the transducer and impulse 

responses are set 

Step3: Field calculation 

A set of routines is supplied for calculating the different field types. The routines are called 

with a handle to the apertures involved and the different field points. The spatial impulse 

responses and their starting times are returned after completion. Thereby different 
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transducers can be used on the same scatterers and the effect of different choices can 

readily be evaluated. 

Step4: Define a small phantom with scatterers and calculate scattered signal 

The computer phantom is generated and a loop is performed for doing the imaging. In this 

the focus points are set and the apodization is set to use only the elements above the focal 

point. A linear scan is done by moving the focal point laterally. Then the scattered signal is 

calculated and stored. 

Steps: Plot the Response 

Plot the individual element response and summed response of all the transducer elements. 

Thereby the transducers can be evaluated and images for computer phantoms can be found. 

A simple target with point scatterers has been defined, and can be used in imaging. A 

simple example of linear array imaging is shown. Other configurations can easily be 

defined and it is also possible to simulate flow imaging. 

4.5.2. Examples of Transducer Definition 
1. A 16 elements linear array, physical elements are divided into 2 by 3 mathematical 

elements to increase the accuracy of the simulation. 

Height of element=5/1000 [m] 

Width of element =1/1000 [m] 

Distance between transducer elements (kerf)=width/4 [m] 

Number of elements= 16 

Initial electronic focus= [0 0 40]/1000 

2. A 16 by 5 elements multirow array, the physical elements are divided into 2 by 3 

mathematical elements to increase the accuracy of the simulation. 

Height of element = [1 2 3 2 1]/1000 [m] 

Width of element = 1.9/1000 [m] 



Distance between transducer elements (kerf) = width/5 [m] 

Number of elements in x-direction = 16 

Number of elements in y-direction =length(heights) 

Initial electronic focus = [0 0 70]/1000 
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Fig. 4.12(b): Linear array multi-row transducer. Fig. 4.12(a): Linear array transducer. 

3. A 20 element elevation focused, linear array with an elevation focus at 15 mm: 
ly 

Height of element = 15/1000 [m] 

Width of element = 1.9/1000 [m] 

Distance between transducer elements kerf=width/3 [m] 

Number of elements = 20 

Elevation focus = 15/1000 [m] 

Initial electronic focus = [0 0 70]/1000 

4. A concave, round transducer with.an 8 mm radius and a focal radius of 20 mm and 

divided into 1 mm mathematical elements. 

Radius of transducer = 8/1000' 

Focal radius of transducer = 20/1000 

Size of mathematical elements = 1/1000 
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Fig. 4.12(c): Linear array multi-row transducer for elevation focused. 

5. A 16 element convex array with a convex radius of 20 mm: 

Height of element =5/1000; [m] 
Width of element = 1/1000 [m] 

Distance between transducer elements kerf=width!4 [m] 

Number of elements = 16 

Convex radius = 20/1000 [m] 

Initial electronic focus = [0 0 40]/1000 

Fig 4.12(d) Concave, round transducer 	Fig 4.12(e) Rectangles for a convex array 
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6. A 20 element elevation focused, convex array with 5 rows. The elevation focus is at 10 

mm and the convex radius is 30 mm: 

Height of element = [1 2 3 2 1]/1000 [m] 

Width of element = 3/1000 [m] 

Distance between transducer elements = width/3 [m] 

Distance between transducer elements = 1/1000 [m] 

Number of elements in x-direction = 20 

Convex radius = 30/1000 [m] 

Elevation focus = 7/1000 [m] 

Initial electronic focus = [0 0 70]/1000 [m] 
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Fig 4.12(1) Rectangles for an elevation focused multi row convex array 

7. A fully populated two-dimensional array with 11 by 13 elements: 

Height of element = 1.5/1000 [m] 

Width of element = 1/1000 [m] 

Distance between transducer elements = width/5 [m] 

Distance between transducer elements = height/2 [m] 
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Number of elements in x-direction = 11 

Number of elements in y-direction = 13 

Initial electronic focus [m] = [0 0 60]/1000 

8. A sparsely populated two-dimensional array arranged in the form of a cross: 

Find which elements to use 

enabled(:,7)=ones(no_ele x,1); 

enabled(6,:)=ones(l ,no_ele_y); 

Fig 4.12(g) Fully populated 2D array 	Fig 4.12(h)) Partially populated 2D array 



4.5.3 Simulated Results for the Received Response 

Fig. 4.13 (a): Received response from the 16 elements transducer defined in Fig. 4.1.2 (a): 

with target scatterers placed at [0,0,40] 

Fig. 4.13 (b): Received response from the 32 elements transducer defined in Fig. 4.12 (a): 

with target scatterers placed at [0,0,20] 

Fig. 4.13 (c): Received response from the 16 elements transducer defined in Fig. 4.12 (c): 

with target scatterers placed at [0,0,40] 

Fig. 4.13 (d): Received response from the 32 elements transducer similar to 16 element 

transducer defined in Fig. 4.12 (c): with target scatterers placed at.[0,0,20] 

Fig. 4.13 (e): Received response from the 16 elements transducer defined in Fig. 4.12 (f): 

with target scatterers placed at [0,0,40] 

Fig. 4.13 (f): Received response from the transducer defined in Fig. 4.12 (h): with target 

scatterers placed at [0,0,20] 

Results 

Received voltage traces from the individual elements of array transducer . , 

Fig. 4.13 (a) 	 Fig. 4.13 (b) 
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Fig. 4.13 (c) 	 Figure 4.13 (d) 
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Fig 4.13(g) Simulated results for received response from all elements of a linear array with 

3 transmitting and 16 receiving elements and plot the responses and the summed response 

Fig. 4.13 (g) Received voltage traces from the individual elements of a 16 elements linear 

array transducer, when transmitting with three different elements. 

The program Field II makes it possible to simulate the whole imaging process with time 

varying focusing and apodization as described in [33] and [1.6]. This has paved the way for 

doing realistic simulated imaging with multiple focal zones for transmission and reception 

and for using dynamic apodization. It is hereby possible to simulate ultrasound imaging for 

all image types including flow images. 
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CHAPTER 5 

SIMULATION OF ULTRASOUND IMAGES OF 

BIOLOGICAL TISSUES 

5.1 Simulation Model 
The first simple treatment of ultrasound is often based on the reflection and transmission of 

plane waves. It is assumed that the propagating wave impinges on plane boundaries 

between tissues with different mean acoustic properties. Such boundaries are rarely found 

in the human body, and seldom show on ultrasound images. This is demonstrated by the 

image shown in Fig. 5.1. Here the skull of the fetus is not clearly marked. It is quite 

obvious that there is a clear boundary between the fetus and the surrounding amniotic fluid. 

The skull boundary is not visible in the image, because the angle between the beam and the 

boundary has a value such that the sound bounces off in another direction, and, therefore, 

does not reach the transducer. Despite this, the extent of the head can still be seen. This is 

due to the scattering of the ultrasound wave. Small changes in density, compressibility, and 

absorption give rise to a scattered wave radiating in all directions. The backscattered field 

is received by the transducer and displayed on the screen. One might well argue that 

scattering is what makes ultrasound images useful for diagnostic purposes, and it is, as will 

be seen later, the physical phenomena that makes detection of blood velocities possible. 

Ultrasound scanners are, in fact, optimized to show the backscattered signal, which is 

considerably weaker than that found from reflecting boundaries. Such reflections will 

usually be displayed as bright white on the screen, and can potentially saturate the 

receiving circuits in the scanner. An example can be seen at the neck of the fetus, where a 

structure is perpendicular to the beam. This strong reflection saturates the input amplifier of 

this scanner. Typical boundary reflections are encountered from the diaphragm, . blood 

vessel walls, and organ boundaries. 

73 



Haad 

Amrm 
flu e 

roof 

Fig. 5.1: Ultrasound image of a 13th week fetus. The markers at the border of the image 

indicate one centimeter 

Fig. 5.2: 4 X 4 cm image of a human liver from a healthy 28-year-old man. The completely 

dark areas are blood vessels 

An enlarged view of an image of a liver is seen in Fig 5.2. The image has a grainy 

appearance, and not a homogeneous gray or black level as might be expected from 

homogeneous liver tissue. This type of pattern is called speckle. The displayed signals are 

the backscatter from the liver tissue, and are due to connective tissue, cells, and fibrous 

tissue in the liver. These structures are much smaller than one wavelength of the 
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ultrasound, and the speckle pattern displayed does not directly reveal physical structure.. It 

is rather the constructive and destructive interference of scattered signals from all the small 

structures. So it is not possible to visualize and diagnose microstructure, but the strength of 

the signal is an indication of pathology. A strong signal from liver tissue, making a bright 

image, is, e.g., an indication of a fatty or cirrhotic liver. 

As the scattered wave emanates from numerous contributors, it is appropriate to 

characterize it in statistical terms. The amplitude distribution follows a Gaussian 

distribution [34], and is, thus, fully characterized by its mean and variance. The mean value 

is zero since the scattered signal is generated by differences in the tissue from the mean 

acoustic properties. 

Although the backscattered signal is characterized in statistical terms, one should be careful 

not to interpret the signal as random in the sense that a new set of values is generated for 

each measurement. The same signal will result, when a transducer is probing the same 

structure, if the structure is stationary. Even a slight shift in position will yield a 

backscattered signal correlated with that from the adjacent position. The shift over which 

the signals are correlated is essentially dependent on the extent of the ultrasound field. This 

can also be seen from the image in ]Fig. 5.2, as the laterally elongated white speckles in the 

image indicate transverse correlation. The extent of these speckle spots is a - rough 

indication of the point spread function of the system. 

The correlation between different measurements is what makes it possible to estimate 

blood velocities with ultrasound. As there is a strong correlation for small movements, it is 

possible to detect shifts in position by comparing or, more strictly, correlating successive 

measurements of moving structure, e.g., blood cells. 

Since the backscattered signal depends on the constructive and destructive interference of 

waves from numerous small tissue structures, it is not meaningful to talk about the 

reflection strength of the individual structures. Rather, it is the deviations within the tissue 

and the composition of the tissue that determine the strength of the returned signal. The 
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magnitude of the returned signal is, therefore, described in terms of the power of the 

scattered signal. Since the small structures reradiate waves in all directions and the 

scattering structures might be ordered in some direction, the returned power will, in 

general, be dependent on the relative position between the ultrasound emitter and receiver. 

Such a medium is called anisotropic, examples of which are muscle and kidney tissue. By 

comparison, liver tissue is a fairly isotropic scattering medium, when its major vessels are 

excluded, and so is blood. It is, thus, important that the simulation approach models the 

scattering mechanisms in the tissue. This is essentially what the model derived in Chapter 3 

does. Here the received signal from the transducer is: 

Pr ( r,t ) = V pe *f(Y)* hpe( ,t) 
	

(5.1) 

where *denotes spatial convolution. Vpe is the pulse-echo impulse, which includes the 
r 

transducer excitation and the electro-mechanical impulse response during emission and 

reception of the pulse. f,,, accounts for the inhomogeneities in the tissue due to density and 

propagation velocity perturbations which give rise to the scattered signal. hpe is the pulse-

echo spatial impulse response that relates the transducer geometry to the spatial extent of 

the scattered field. Explicitly written out these terms are: 

3
P 

V pe (t ) = 	Z Em ( t )-* 3t 
	

(5.2) 

f„~(F)_Ap
(r)_20c(r) 	

(5.3) 
p  C 

/ape(Y,t) =hp(Y,t)*he(Y,t) 	 (5.4) 

So the received response can be calculated by finding the spatial impulse response for the 

transmitting and receiving transducer and then convolving with the impulse response of the 

transducer. A single RF line in an image can be calculated by summing the response from a 

collection of scatterers in which the scattering strength is determined by the density and 

speed of sound perturbations in the tissue. 'Homogeneous tissue can thus be made from a 

collection of randomly placed scatterers with a scattering strength with a Gaussian 
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distribution, where the variance of the distribution is determined by the backscattering 

cross-section of the particular tissue. This is the approach taken in this dissertation work. 

The simulation of ultrasound imaging using linear acoustics has been extensively used for 

studying focusing, image formation, and flow estimation, and it has become a standard tool 

in ultrasound research. 

The main part of an ultrasound image consists of a speckle pattern, which emanates from 

the signal generated by tissue cells, connective tissue, and in general all small perturbations 

in speed of sound, density, and attenuation. The generation of this can be modeled as the 

signal from a large collection of randomly placed point scatterers with a Gaussian 

amplitude. Larger structures as vessel or organ boundaries can be modeled as a 

deterministically placed set of point scatterers with a deterministic amplitude. The relative 

amplitude between the different scatterers is then determined by a scatterer map of the 

structures to be scanned. Such maps can be based on either optical, CT or MR images, or 

on parametric models of the organs. Currently the most realistic images are based on 

optical images of the anatomy. Blood flow can also be modeled by this method. The red 

blood cells, mainly responsible for the scattering, can be modeled as point scatterers and 

the flow of the blood can be simulated using either a parametric flow model or through 

finite element modeling. The received signal is then calculated, and the scatterers are 

propagated between flow emissions. The simulation of all linear ultrasound systems can, 

thus, be done by finding the summed signal from a collection of point scatterers. The 

random selection of point scatterers should consist of atleast 10 scatterers per resolution 

cell to generate fully developed speckle, and for a normal ultrasound image this results in 

200,000 to 1 million scatterers. 

In imaging the same spatial impulse response is calculated for each of the image lines, and 

making 128 lines, thus, gives 128 calculations of the same impulse response delayed 

differently for the different lines. Doing the focusing after this point in the simulation can 

make the calculation faster. This corresponds to full synthetic aperture imaging. The 

received response from each element is calculated, when emitting with each of the 
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elements in the aperture, and then the responses are subsequently focused. This is the 

approach taken in this dissertation work using a modified version of the Field II program. 

The computer phantoms typically consist of 100,000 or more discrete scatterers, and 

simulating 50 to 128 RF lines can take few hours depending on the computer used. It is 

therefore beneficial to split the simulation into concurrently run sessions. This can easily be 

done by first generating the scatterer's position and amplitude and then storing them in a 

file. This file can then the be used by a number of workstations to find the RF signal for 

different imaging directions, which are then stored in separate files; one for each RF line. 

These files are then used to assemble an image. This is the approach used for the 

simulations shown here in which Pentium 4; 2.5 MHz PC can generate one phantom image 

using Matlab 7 and the Field II program. 

5.2 Anatomic phantoms 
The anatomic phantoms are attempts to generate images as they will be seen from real 

human subjects. This is done by drawing a bitmap image of scattering strength of the 

region of interest. This map then determines the factor multiplied onto the scattering 

amplitude generated from the Gaussian distribution, and models the difference in the 

density and speed of sound perturbations in the tissue. Simulated boundaries were 

introduced by making lines in the scatterer map along which the strong scatterers were 

placed. This is marked by completely white lines shown in the scatterer maps. The model is 

currently two-dimensional, but can readily be expanded to three dimensions. 

In this dissertation work two different phantoms have been made; afetus in the third month 

of development and a left kidney in a longitudinal scan. 
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Fig. 5.3: Computer phantom with point targets, cyst regions, and strongly reflecting 
regions. 

5.3 General Algorithm for generation of Images 
1. Start up the Field simulation system. 
2. Create the phantom for a fetus. 

I. Define image coordinates. 

II. Load input baby map. 
III. Find the white structures and generate data for them. 

IV. Calculate position data. 
V. Amplitudes with different variance are generated according to the input map. The 

amplitude of the fetus image is used to scale the variance. 
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VI. Include the strong scatterers. 

3. Perform Simulation and store the data in mat files; one for each rf-line. 

4. Make an image from simulated data 

I. Read the data for the scatteres from the mat file. 

II. Adjust the data in time and display it as a gray scale image. 

5.4 Calculation of B-mode image of synthetic fetus 
A phantom for a 3 month old fetus has been made. 200,000 scatterers were randomly 

distributed within the phantom, and with a Gaussian distributed scatter amplitude with a 

standard deviation determined by the scatter map. The phantom was scanned with a 5 MHz 

64 element phased array transducer with lambda/2 spacing and Fanning apodization. A 

single transmit focus 70 mm from the transducer was used, and focusing during reception is 

at 40 to 140 mm in 10 mm increments. The images consists of 128 lines with 0.7 degrees 

between lines. 

The fetus image is shown below. Note how the anatomy can be clearly seen at the level of 

detail of the scatterer map. 

Fig 5.4 (a) Fetus Scatter Map 
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Fig 5.4(b) Simulated Fetus Image 

The images have many of the features from real scan images, but still lack details. This can 

be ascribed to the low level of details in the bitmap images, and that only a 2D model, is 

used. But the images do show great potential for making powerful fully synthetic phantoms 

that can be used for image quality evaluation. 

5.5 Calculation of B-mode image of synthetic kidney 
A phantom for a left kidney in a longitudinal scan has been made. 200,000 scatterers were 

randomly distributed within the phantom, and with a Gaussian distributed scatter amplitude 

with a standard deviation determined by the scatter map. The phantom was scanned witli'a 

5 MHz 64 element phased array transducer with lambda/2 spacing and Hanning 

apodization. A single transmit focus 70 mm from the transducer was used, and focusing 

during reception is at 40 to 140 mm in 10 mm increments. The image consists of 128 lines 

with 0.7 degrees between lines. 

Below is shown the artificial kidney 'scatterer map 
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Fig 5.5 (a) Kidney Scatter Map 

The simulated resulting image is shown below. Note the bright regions where the boundary 

of the kidney is orthogonal to the ultrasound, and thus a large signal is received. Note also 

the fuzziness of the boundary, where they are parallel with the ultrasound beam, which is 

also seen on actual ultrasound scans. 

Results 
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Fig 5.4(b) Simulated Kidney's Image 



CHAPTER 6 

ULTRASOUND SIMULATION FOR FLOW ESTIMATION 

Medical ultrasound scanners can be used for both displaying gray-scale images of the 

anatomy and for visualizing the blood flow dynamically in the body. The systems can 

interrogate the flow at a single position in the body and there find the velocity distribution 

over time. They can also show a dynamic color image of velocity at up to 20 to 60 frames a 

second. Both measurements are performed by repeatedly pulsing in the same direction and 

then use the correlation from pulse to pulse to determine the velocity. This chapter gives a 

simple model for the interaction between the ultrasound and the moving blood. The 

calculation of the velocity distribution is then explained along with the different physical 

effects influencing the estimation. The estimation of mean velocities using auto- and cross-

correlation for color flow mapping is also described. Finally the simulations of these flow 

systems using spatial impulse responses are described. 

6.1 Introduction 
It is possible with modem ultrasound scanners to visualize the blood flow at either one 

sample volume in the body or over a cross-sectional region. The first approach gives a 

display of the velocity distribution at the point as a function of time. The second method 

gives a color flow image superimposed on the gray-scale anatomic image. The color coding 

shows the velocity towards or away from the transducer, and this can be shown with up to 

20 images a second. Thus, the dynamics of the blood flow in e.g. the vessel and heart and 

across heart valves can be diagnosed. 

The history of ultrasound velocity measurement dates back to the mid 19S0ties, where 

experiments by Satomura [36], [37] in Japan demonstrated that continuous wave (CW) 

ultrasound was capable of detecting motion. CW ultrasound cannot locate the depth of the 

motion and several pulsed wave solutions where therefore made by Baker [38], Peronneau 
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and Leger [39], and Wells [40] around 1970. These systems could detect the motion at a 

specific location. The Baker system could show the velocity distribution over time and 

across the vessel lumen. This was later extended by Kasai and co-workers [41], [42] to 

generate actual cross-sectional images of velocity in real time. They used an 

autocorrelation velocity estimator adapted from radar to find the mean velocity from only 8 

to 16 pulse-echo lines. Color flow mapping systems using a cross-correlation estimator was 

also suggested by Bonnefous and co-workers [43]. From these early experimental systems 

the scanners have now evolved into systems for routine use in nearly all hospitals, and 
ultrasound is one of the most common means of diagnosing hemodynamic problems today. 

This chapter will give a brief description of the main features of all these systems. The 

chapter starts by deriving a basic model for ultrasound's interaction with a point scatterer, 

which shows that the frequency of the received sampled signal is proportional to velocity. 

Systems for finding the velocity distribution in a vessel are then described and finally the 

newest color flow mapping method are explained. A more comprehensive treatment of the 

systems can be found in [4]. 

Fig. 6.1: Coordinate system for finding the movement of blood particles 



6.2 Measurement of Flow Signals 

The data for the velocity measurement is obtained by emitting a short ultrasound pulse with 

4 to 8 cycles at a frequency of 2 to 10 MHz. The ultrasound is then scattered in all 

directions by the blood particles and part of the scattered signal is received by the 

transducer and converted to a voltage signal. The blood velocity is found through the 

repeated measurement at a particular location. The blood particles will then pass through 

the measurement gate and give rise to a signal with a frequency proportional to velocity. 

A coordinate system for the measurement is show in Fig. 6.1 The vector rl indicates the 

position for one scatterer, when the first ultrasound pulse interacts with the scatterer. The 

vector rZ indicates the position for interaction with the next ultrasound pulse emitted Tprf 

seconds later. The movement of the scatterer in the z-direction away from the transducer in 

the time interval between the two pulses is 

D. =Ir2 —rlcos(0)=Ivlcos(0)Tprr 	 (6.1) 

where 0 is the angle between the ultrasound beam and the particle's velocity vector v. The 

traveled distance gives rise to a delay in the second signal compared to the first. Denoting 

the first received signal as r, (t) and the second as YZ (t) gives 

_ 2DZ = 2iv~cos8 T = 2v. T 
C 	C 	prj C prj (6.2) 

where c is the speed of sound. Emitting a sinusoidal pulse p(t) with a frequency of fo gives 

a received signal of 

p(t)=g(t)sin(2)r t) 

r (t)= p(t—to ) 

2d (6.3) (6.3) 
C 



where d is the depth of interrogation, and g(t) is the envelope of the pulse. Repeating the 

measurement a number of times gives a received, sampled signal for a fixed depth of 

r,.(t)=p(t—to —its ) 

= g(t —to —itjsin(21rfot—to —its ) 	(6.4) 
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Fig. 6.2: RF sampling of simulated signal from blood vessel. The left graph shows the 

different received RF lines, and the right graph is the sampled signal. The dotted line 

indicates the time when samples are acquired 

Here t is time relative to the pulse emission. Taking the measurement at the same time tx 

relative to the pulse emission corresponding to a fixed depth in tissue gives 

Y(tx )=g(tx — to — its) sin (27rfo (tx — t0 —it5 )) 

= asin(-2Trfoits +Ox ) 

Ox = 2~fo (tX —to ) 	 (6.5) 



assuming the measurement is taken at times when the envelope g(t) of the pulse is constant. 

Such a measurement will yield one sample for each pulse-echo RF line, and thus samples 

the slow movement of the blood scatterers past the measurement position or range gate as 

shown in Fig.6.2 The sampled signal r(t) can be written as: 

r(i) =sin(-2Tr 2V foiTp . +Ox 	 (6.6) 
c 

showing that the frequency of this signal is: 

f — 2LZ f p 	0 
C 

(6.7) 

which is proportional to the projected velocity of the blood in the direction of the 
ultrasound beam. 

The received signal will not only consist of a single frequency, since an ultrasound pulse is 

emitted and received. This pulse will be sampled, when it moves past the range gate, and 

the corresponding digital signal will thus have a spectrum determined by the pulse shape. 

The frequency axis of the pulse spectrum will also be multiplied by the 2vz/c factor due to 

the sampling operation. An example is shown in Fig. 6.3. The spectrum of the RF pulse is 

shown on the top, and the resulting frequency axis for the received digital signal is shown 

on the bottom. 

This simple model can also be used for determining the effect of velocity aliasing, limited 

observation time, attenuation, and non-linear propagation. The signal must be sampled 

according to the Nyquist limit, so that frequency components in the spectrum are below 

half the sampling frequency. Here it is ffrf= 1/TP1f, and the maximum velocity, that can be 

measured, is determined by: 

fpr f /2 > 2 "~ X fa 	 (6.8) 
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Fig. 6.3: Frequency scaling of the received RF signal from the sampling for a number of 

pulse-echo lines 

Note here that the sampling frequency is in the kilohertz range, and that the ultrasound 

frequency is in the mega-hertz range, which does no seem to make sense. It should, 

however, be kept in mind, that it is not the RF information that is sampled, but rather the 

slow movement of the blood scatterers past the range gate. 

Obtaining only a limited number of pulse-echo lines will truncate the digital version of the 

measurement pulse. This corresponds to multiplication with a rectangular window, and the 

resulting spectrum is convolved with the Fourier transform of the window leading to a 

broadening of the spectrum. 

Ultrasound propagating in tissue is attenuated due to scattering and absorption. The 

attenuation is proportional to depth and frequency and is typically in the range from 0.5 to 

1 dB/[MHz cm]. This will for a pulsed system lead to a loss of signal energy and to a 

decrease in center frequency of the pulse field. Often a shift in frequency of 100 - 200 kHz 

can be experienced on a 5 MHz pulse. The shift is relative to the pulse center frequency, 

and is, thus, multiplied with the scaling factor 2vZ/c giving rise to only a minor shift in the 

measured frequency for the sampled signal. This is also the case for non-linear propagation 

and scattering effects, which then also scale proportionally to the velocity. The multi pulse 

88 	 1 



measurement technique is, thus, very robust to the different physical effects encountered in 

medical ultrasound, and is therefore preferred to finding the Doppler shift of the pulse 

spectrum during the interaction with the moving scatterer. 

The velocity can be both towards and away from the transducer, and this should also be 

included in the estimation of velocity. The sign can be found by using a pulse with a one-

sided spectrum corresponding to a complex signal with a Hilbert transform relation 

between the imaginary and real part of the signal. The one sided spectrum is then scaled by 

2vZ/c and has a unique peak in the spectrum from which the velocity can be found. The 

complex signal can be made by Hilbert transforming the received signal and using this for 

the imaginary part of the signal. 

A Hilbert transform is difficult to make with analog electronics and two other 

implementations are shown in Fig. 6.4. The top graphs makes the demodulation by a 

complex multiplication with exp( j2iufmt) and then lowpass filtration for removing the peak 

in the spectrum at 2fD. Matching the bandwidth of the low-pass filters to the bandwidth of 

the pulse also gives an improvement in signal-to-noise ratio. The second solution obtains 

the signal by quadrature sampling with a quarter wave delay between the two channels. 

Both implementations gives complex signals that can readily be used in the estimators for 

determining the velocity with a correct sign [4]. 
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Figure 6.4: Demodulation schemes for obtaining a complex signal for determining the sign 

of the velocity 



6.3 Calculation and Display of the Velocity Distribution 
Using a number of pulse-echo lines and sampling at the depth of interest, thus, gives a 

digital signal with a frequency proportional to velocity. Having a movement of a collection 

of scatterers with different velocities then gives a superposition of the contribution from the 

individual scatterers and gives rise to a spectral density of the signal equal to the density of 

the velocities. 

Typical profiles for a stationary laminar flow are given by: 

r  Fn 

yr =vo  I 1— R (6.9) 

where r is radial distance, R is the radius of the vessel, vo  is the maximum velocity at the 

center of the vessel and po  is an integer: Under uniform insonation of the vessel, the 

frequencies received are: 
Po fd (r)  _ 2v0  f0 

 l-1-- 	cos(e) 	 (6.10) 
c R)]  

and the normalized power density spectrum is [4]: 

G(./d) = 	2  
f

Po 
P0'J max 1 — d 

✓max 

max  2vofo COs (e) 
C 

(6..11) 

The profiles given in (6.9) are for a stationary flow in a rigid tube. More complicated flow 

patterns are found in the human body since the flow is pulsatile and the vessels curve and 

branch (see Section 6.5). The power density spectrum however still corresponds to the 

velocity distribution, and ultrasound measurements can be used for revealing the velocity 

distribution over time. 



An example for the carotid artery supplying the brain is shown in Fig. 6.5. The left part 

shows the anatomic gray scale image of the artery with the placement of the range gate. 

The right side shows the spectrogram, which gives the velocity distribution over time. The 

spectrogram is found from the Fourier transform of the measured sampled signal. Usually a 

new spectral estimate is calculated every 5 to 10 ms and the estimates are presented in a 

rolling display with the gray level corresponding to the number of scatterers with the 

particular velocity. The non-stationary nature of the distribution is clearly seen as is the 

periodicity with the heart cycle. 

Fig. 6.5: Duplex scan showing both B-mode image and spectrogram of the carotid artery. 

The range gate is shown as the broken line in the gray-tone image. The square brackets 

indicate position and size of the range gate [4] 

6.4 Making Images of Velocity 
Images of velocity can also be made using ultrasound. This is done by acquiring 8 to 16 

lines of data in one direction and then estimates the velocities along that direction. The 
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beam is then moved to another direction and the measurement is repeated. Doing this for 

all directions in an image gives a mapping of the velocity and that is displayed in color 

flow mapping (CFM) systems. 

A system diagram for a CFM system is shown in Fig. 6.6. The RF signal from the 

transducer is demodulated to yield a complex signal, which is sampled by the ADC's at all 

the positions along the direction where the velocity must be found. The demodulation step 

also serves as a matched filter to suppress noise. The digital signal is then passed on to the 

filter for removing stationary signals. The delay line canceller (DLC) subtracts the samples 

from the previous line from the current line to remove the stationary signal. The tissue 

surrounding the vessels often generates a scattered signal that is 40 dB larger than the blood 

signals, and this will seriously deteriorate the velocity estimates. The tissue signal is, 

however, stationary and can therefore be removed by subtracting samples at the same depth 

in tissue for consecutive pulse-echo lines. 

The sampled data for one direction is then divided into a number of segment, one for each 

pixel in the velocity image. Each segment holds 8 to 16 complex samples from which the 

velocity must be estimated. The mean velocity can be found from mean angular frequency 

determined by: 

coP(co)dco 
CO = 	 (6.12) 

P(co)dw 

Depth 

Trap sducer 	 Esti° r11ator 	V 

'UPI, 	 TGC 	 ~H 	ACC 	QL+ 
ai°nplifier 

Falser 
sin(i f, t) 

Fig. 6.6: Block diagram of color flow mapping system 
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P(w) is the power density spectrum of the received, complex signal. The velocity is then 

given by: 

CO 
vZ = 4~fo c (6.13) 

The velocity can also be calculated from the phase shift between the pulse emissions. The 

complex digital signal can be written 

r(i) = x(i)+ jy(i) 
	

(6.14) 

where x is the real signal and y the imaginary signal. Using an autocorrelation estimator the 

velocity estimate is [42] 

c 	 (i)x(i-1)—x(i)y(i-1) 
v = — 	arctan 6 	N` 	 (6.15) Z 

4~foT prf 	~7 x(i)x(i-l)+y(i)y(i—l) 

where N is the number of samples. This implementation is very efficient, since only few 

calculations are performed for each estimate, and this is the approach preferred in most 

scanners. The method is also robust in terms of noise, which is critical since the scattering 

from blood is quite weak compared to the surrounding tissue. 

An example of a color flow image of the artery supplying the brain is shown in Fig. 6.7. 

Both positive and negative velocities can be seen. The jugular vein on the top has a blue 

color coding showing that the movement is towards the transducer, whereas the carotid 

artery below contains red colors for movement away from the transducer and to the brain. 

6.4.1 Color Flow Mapping using Cross-Correlation 
The estimation of velocity can also be done by finding the time-shift between two 

consecutive RF signals directly [43], [44], [45]. This is the approach taken in the cross-

correlation system shown in Fig. 6.8. 
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The received RF signal is amplified and filtered with a matched filter to remove noise. An 

RF sampling at 20 to 30 MHz for a 5 MHz transducer is then performed and the removal of 

stationary signals is done by subtracting' two consecutive RF lines. 

The data is divided into segments as shown in Fig. 6.9. The velocity is found in each 

segment by cross-correlation with data from the previous pulse-echo line. The received 

signal can be written as: 

r(t'j = p(t)*s(t) 
	

(6.16) 

Fig. 6.7: Color flow mapping image of the carotid artery and jugular vein. Blue colors (top 

of the color bar) indicates velocities towards and red away from the transducer 
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Fig. 6.9: Segmentation of RF data prior to cross-correlation 

where p(t) is the emitted pulse and s(t) is the scattering signal from the blood. Cross-
correlation two received signals then gives: 

R12 (z)-E{ (t)i (t+z)}=E {(p (t) *s(t))(p(t)*s(t—is +z)) 

-RPP fz)*Rss(z—t) 	 (6.17) 

where Rpp is the autocorrelation of the pulse and Rss is the autocorrelation of the blood 

scattering signal. s(t) can be assumed to be a white, Gaussian stochastic process, so that the 

cross-correlation can be written as: 

R12 (r)652RpP (z—t5 ) 	 (6.18) 
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where s2s is the power of the blood signal_ The autocorrelation of the pulse has a unique 

maximum at Rpp(0), and the time-shift can thus be found from the unique maximum in the 

cross-correlation function. The velocity is then given by: 

c  i 
=-  

s  vZ  2T. (6.19) 

The velocity estimates are then presented by the same method as mentioned for the 

autocorrelation approach. 

The cross-correlation approach is optimized by sending out a narrow pulse, which also 

makes is easier to obtain a higher resolution in the color flow mapping images. The price 

is, however, that the peak intensities must be limited due to the safety limits imposed on the 

scanners. Therefore cross-correlation scanners can send out less energy and are often less 

sensitive than the scanners using the autocorrelation approach. 

An other disadvantage of the cross=  correlation approach is the large amount of calculations 

that must be performed per second. For a real time system it can approach one billion 

calculations per second making it necessary to use only the sign of the signals in the 

calculation of the cross-correlation [46]. 

6.5 Simulation of Flow Imaging Systems 
The derivation given in this chapter generally assumes that the single scatterer stays within 

a region of uniform insonation. This is quite a crude assumption for realistic beams, as 

shown in Chapter 3. Both continuous and pulsed fields vary with position and this needs to 

be taken into account using the Tupholme—Stepanishen field model. 

The received voltage trace was stated in Section 3.6.4 to be 

P,( ' T ,  ,t)=vpe(t)*Jmhpe('iIIt) 	 ( 6.20) 

where fm  accounts for the scattering by the medium, hpe  describes the spatial distribution of 

the ultrasound field, and vpe  is the one-dimensional pulse emanating from the pulse 



excitation and conversion from voltage to pressure and back again. The model in Section 
6.2 states that the scatterer will move during the interaction with the ultrasound giving rise 
to a Doppler shift. The most important feature is, however, the interpulse movement, 
because this is used by the pulsed scanners for detecting velocity. The approximation is 
then to include the small Doppler shift into the one-dimensional pulse Vpe, shifting its 
frequency content to f `_ (1 +2v,/c)f, and assuming that the field interacting with the 
scatterer stays constant. Usually the pulse duration is a few microseconds, so that the 
scatterers only move a fraction of a millimeter, even for high blood velocities, during the 
interaction, and the field can safely be assumed to be constant over this distance. The 

received voltage trace is then found directly from (6.20) with r indicating the position of 

the scatterers. Note that a spatial convolution takes place and that the received response is a 
summation of contributions from numerous scatterers. The scatterers move to the position 

r2 (i +1) = r2 (i)+T( r2 (i),t) 	 (6.21) 

when the next field from the subsequent pulse emission impinges on the scatterers. Here i 

denotes the pulse or line number and v (r~ (i), t) is the velocity of the scatterer at the 

position indicated by r~ (i) at time t. This assumes that the scatterers do not accelerate 

during the interaction. The movement between pulses, is T.fl (i (i),t) and the new 

position of the scatterers, F2 (i +1) can then be inserted in (6.20) and used for calculating the 

next voltage trace. The received signals for multiple pulse emissions can, thus, be found by 
these two equations. The actual calculation is rather complicated in three dimensions, but is 
easy to handle by a computer. The different velocities for the scatterers necessitate that 
separate Doppler shifts are included in Vpe for each scatterer. This can be done in a 
computer simulation of each scatterer before the contributions for all scatterers are 
summed, or a mean Doppler shift can be used. The effect of this Doppler shift is minor in 
pulsed systems and can, at least to a first approximation, be neglected. A fairly realistic 
simulation should, thus, be possible with this approach 
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6.7.1 Example of Flow Simulations 
A Phantom is developed for evaluating color flow imaging. It generates data for flow in 

vessels with properties like the carotid artery, The velocity profile is close to parabolic, 

which is a fairly good approximation during most of the cardiac cycle [4] for a carotid 

artery. The phantom generates 10 files with positions of the scatterers at the corresponding 

time step. From file to file the scatterers are then propagated to the next position as a 

function of their velocity and the time between pulses. The ten files are then used for 

generating the RF lines for the different imaging directions and for ten different times. A 

linear scan of the phantom was made with a 192 element transducer using 64 active 

elements with a Harming apodization in transmit and receive. The element height was 5 

mm, the width was a wavelength and the kerf 0.05 mm. The pulses where the same as used 

for the point phantom mentioned Section 4.6. A single transmit focus was placed at 70 mm, 

and receive focusing was done at 20 mm intervals from 30 mm from the transducer surface. 

The resulting signals have then been used in a standard autocorrelation estimator [4] for 

finding the velocity image. The resulting color flow image is shown in Fig. 6.10. Note how 

the vessel is larger at the bottom than the top. 

The simulation is made so multiple workstations can simultaneously work on the problem, 

as long as they have access to the same directory. This is done by looking at which RF files 

that have been generated. The first one not simulated is reserved by the program by writing 

a dummy file, and then doing the simulation. Multiple workstations can then work 

simultaneously on the problem and generate a result quickly. 
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Fig. 6.10: Color flow image of vessel with a parabolic flow profile. 



CHAPTER 7 

CONCLUSIONS AND FUTURE SCOPE 

7.1 Conclusions 
The simulation of ultrasound imaging using linear acoustics has been extensively used for 

studying focusing, image formation, and flow estimation, and it has become a standard tool 

in ultrasound research. The whole imaging process is simulated with time varying focusing 

and apodization. This has paved the way for doing realistic simulated imaging with 

multiple focal zones for transmission and reception and for using dynamic apodization. In 

this dissertation work, ultrasound imaging for different image types including flow images 

are simulated and some standard simulation phantoms are presented that can be used in 

designing and evaluating ultrasound transducers, beamformers and systems. 

Artificial human phantoms of a fetus in the third month of development and an artificial 

kidney are shown. The simulation of flow and the associated phantoms is also discussed. 

All the phantoms can be used with any arbitrary transducer configuration like single 

element, linear, convex, or phased array transducers, with any apodization and focusing 

scheme. 

This dissertation work presents a new fast simulation method based on the Field II 

program. In imaging the same spatial impulse response is calculated for each of the image 

lines, and making 128 lines, thus, gives 128 calculations of the same impulse response 

delayed differently for the different lines. Doing the focusing after this point in the 

simulation can make the calculation faster. This corresponds to full synthetic  aperture 

imaging. The received response from each element is calculated, when emitting with each 

of the elements in the aperture, and then the responses are subsequently focused. The 

program simulates the signals received by all 128 transducer elements, and a matrix with 

signals results for each pulse-echo simulation. The separation of the received signal from 
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each of the virtual sources is done by applying a matched filter for each band on all the 

received signals. The result is the received signal on a specific element for one of the 

bands. The matched filter also equalizes the phase of the signals, so they all become zero 

phase signals. The signals are then focused by adding them for all elements, all bands and 

both emissions with a compensation for the travel time from the virtual source to the 

receiving element. The flow is simulated for a random collection of point scatterers in a 

tube with a laminar, parabolic flow. This is the approach taken in this dissertation work 

using a modified version of the Field II program. 

The background for the doing ultrasound imaging simulation has been described along with 

advanced examples of its use. A fast program for the simulation of ultrasound imaging has 

been made. It can realistically simulate all kinds of ultrasound systems including color flow 

mapping. A full simulation can be performed in few hours on a Pentium PC, and fast 

prototyping is, thus, possible in software. 

7.2 Future Scope 

Many fruitful areas exist in ultrasonic imaging for further mathematical and physics 
research. The following is a list of areas of research that could produce a large impact on 
the field. 

➢ Development of effective wideband models that include the physical acoustical 
properties of the tissues in which the beam is propagating, such as absorption and 
aberration-inducing effects. This is effectively the forward wave propagation 
problem. 

➢ Development of 3Dand 4D finite-element models of single transducer elements and 
multi-element arrays. 

➢ Development of super broadband transducers, array modeling, and effective 
modeling for multimode vibrations of transducer elements. 

➢ Investigation of theories and development of faster beam-forming algorithms that 
will be flexible enough to allow adaptive corrections for phase and amplitude 
distortions attributable to both tissue and system effects. 

➢ Development of algorithms that ensure that diagnostic information can be obtained 
from any one patient regardless of intervening tissue components. 
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Although the primary contemporary role of ultrasonic imaging is in diagnosis, the method 

also has important applications in monitoring the progression and regression of disease, in 

some areas of screening, and in interventional procedures, both for localization and for 

guidance. Ultrasonic imaging is likely to become one of the preferred visualization 

techniques in minimally invasive surgery, because of its high speed and ease of use. The 

safety . record of ultrasonic imaging is impeccable. There is no reason to suppose that 

contemporary techniques employ levels of exposure that could cause biological damage, 

but it is prudent to be cautious and further research is justified. 

The future of ultrasound in medicine depends upon talented people from medicine and the 

physical sciences working in close collaboration and upon the emergence of a new breed of 

research scientist trained in both medicine and engineering and dedicated not to the 

technology of destruction but rather to the preservation of life and humanity so that "man 
will not merely endure; he will prevail." 
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