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Abstract 

ABSTRACT 

In the present scenario, it has become a characteristic feature to use fast and reliable 

computations in almost all branches of science and engineering by the evolution of 

modeling and simulation techniques. Various systems, processes, scientific and 

engineering principles, theories are being constantly modeled to carry out design, 

research and application oriented works. Coming to engineering field, these model 

equations provide a platform for a detailed analysis of the system to provide for safe and 

efficient operations and devising a control theory employing the system parameters. 

Convection Diffusion equations are one such type of the equations that are frequently 

used in describing a variety of chemical engineering systems such as reactors, heat 

exchangers etc. 

The solutions to these partial differential equations many a times are not possible using 

the regular analytical techniques and imply the use of numerical methods in finding out 

the solution. The development of the numerical methods which can capably represent the 

system is a major area of research. 

Presently in literature, the method of finite differences and method of finite elements are 

mostly used to simulate these types of equations. 

In this dissertation work, a detailed study on developing finite difference equations for 

the so termed Convection Diffusion equations (Linear or non linear partial differential 

equations) is carried out. 

Computer programs are developed in the MATLAB 7.0 software for the drafted 

difference schemes. The programs written are quite user friendly and hold a capability to 

give error free results with minute tolerances. These programs are constantly checked 

and compared with the PDEPE toolbox in MATLAB software for their efficiency in 

calculations and convergence towards the exact solutions. 

Finally it is concluded that the formulated difference schemes along with the computer 

program codes can be used effectively to carry out the simulation of a large number of 

Convection Diffusion equations from the fields of chemical engineering. 

A brief reference is given to the future research and advancements that can be carried 

out in the present work to simulate even complex systems for higher dimensions. 
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Introduction 

CHAPTER-1 

INTRODUCTION 

Various engineering and physical systems are characterized by the flow of mass, 

momentum and energy. Thus we require considering these flows in a detailed manner 
while modeling these systems. The detailed modelling often needs to consider both the 

spatial and transient nature of the system. This is very important in Dynamic Modeling. 

Further; Dynamic simulation plays an important role in analyzing and predicting the 

spatial and transient behavior of chemical and biochemical processes and is therefore 

very used, especially in the last decade. But, as mentioned long time ago by Heydweiller 

and al. (1977) and confirmed more recently, most existing dynamic modelling and 
simulation tools are primarily suited to lumped parameter systems [19]. 

In fact, in the reality, a large number of unit operations in Chemical Engineering 

such as catalytic reactors, absorption column, and extraction column based on mass 

transfer approach and in Biochemical Engineering are intrinsically distributed in 

nature. It means that their properties exhibit spatial as well as temporal variations. 

The resulting set of equations for these types of models may be viewed as a 

combination of lumped and distributed parameter systems, namely described by 

Partial Differential Algebraic Equations (PDAE) submitted to initial conditions and 
boundary conditions 1191. 

And thus, Partial Differential equations (PDE), PDAEs arise in an enormous number of 
modelling applications. 

In this report we study one such form of the partial differential equations namely 
Convection Diffusion equations. These are basically the equations that describe the flow 

(both molecular and bulk flow) of fundamental property (mass, momentum and enthalpy) 
and are used in a large number of systems/processes. 

During the course of this report, we shall discuss in briefly about the basic derivations 

and models that use the Convection Diffusion equations. A discussion about modeling 

and simulation of a number of chemical engineering systems based on such equations is 
carried out. 
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Introduction 

1.1 Objectives: 

We set the following objectives for the present work 

▪ To derive the basic important models that use Convection Diffusion equations. 

▪ To prepare finite difference analogues of these model equations. 
• To develop the algorithm to solve descretized model equations. 
• To develop computer programs in MATLAB and analyze their results. 

1.2 Organisation of Thesis: 

Here in the next section, we mention the classification of partial differential equations 

first and thereafter we shall study the definition of Convection Diffusion equation, its 
general forms and the engineering implications of the equations. 

In chapter 2, we study the application of the Convection Diffusion equations to some of 

the chemical engineering systems and develop their respective model equations. A 

literature study on the recently used numerical techniques to handle these Convection 

Diffusion equations and their limitations is mentioned. 

Further a special focus is given to the 'METHOD OF FINITE DIFFERENCES' as a 

numerical tool for simulation. 

In the chapter 3 the very basic fundamentals, nomenclature about finite differences 

method and their use in tackling a number of different situations for steady state and 

dynamic conditions are covered. 

Thereafter in the chapter 4 the difference equations for some of the chemical engineering 

applications are developed with due consideration given to the system constraints and 

boundary conditions. 

In the chapter 5 the results obtained as a result of application of the finite differences 

schemes developed in previous chapters through the implementation by MATLAB 

software codes are mentioned. 

Finally in the concluding section, a brief mention of the various works carried out in this 

dissertation work is done along with the conclusions drawn from the simulation work. 

A reference for the scope of future work that can be carried out in this field is given at the 

end. 
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Introduction 

A detailed Appendix covering the various MATLAB codes written for this dissertation 

work is attached to the report. 

1.3 Classification of Partial Differential Equations 

When considering the partial differential equations we can classify them by considering a 

general form given as [19, 16]; 
a 20  

A 	+ 2B a2   
+C 

a 2  cl? 
 +D 

acl) 
 +E 	1.3-1 ax  2 	ax  ay 	ay  2 	

aX 	ay 

We define a variable d as d := AC — B 2  

One defines the differential equation as parabolic, hyperbolic or elliptic depending on the 

values taken by'd'. 

The equation is: 

Parabolic Differential equation: d = 0 (one parameter characteristics) 

Hyperbolic differential equation: d < 0 (two parameter characteristics) 

Elliptic Differential equation: d > 0 (no real characteristics) 

This classification of the differential equation is oriented to the equations for parabolas, 

hyperbolas and ellipses of the plane geometry in which the equation 

ax 2  + 2bxy + cy 2  dx + ey + f = 0 	 1.3-2 

describes parabolas (ac-b2  = 0), hyperbolas (ac-b2  < 0), and ellipse (ac-b2  > 0). 

Accordingly for the differential equations discussed in the text we have; 

2 
at 

Diffusion equation: 	= v au  i.e. it holds A= v ,B = C = 0 and thus D = O. The 
ax 2  

Wave equation: 

Diffusion equation has parabolic properties. 

a 2  u 	2 a2 	i .e. i 	= c 	 .e. t holds A = C2, B =0, C = -1 and thus d = -c2  < 0. at e 	ax 2  
The Wave equation is hyperbolic. 

Potential equation: 
a 2a, a 20  
	= 0 i.e. A = C = 1, B = 0 and thus d > 0. The potential 

ax 2 	ay 2  

equation shows elliptic behavior. 
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Introduction 

For parabolic equations, they have a property which is important for the numerical 

solution. The solution of the differential equation determined at a certain point of flow 

does not depend upon the boundary conditions that lie downstream. This makes it 

possible to find the solution for the entire flow field via forward integration. i.e the 

solution can be computed in a certain level alone from the values of the preceding level. 

This characteristic behavior is not found in the elliptic equations [19]. 

Further the equations which we are going to consider are called Convection 

Diffusion equations which are basically Diffusion equations. But they contain an 

additional term to account for the convective process in the equation which 

entertains some hyperbolic characteristics to the parabolic nature of the Diffusion 

equation. Thus the numerical solution of such an equation is a considerable part of 
study and research 116,151. 

In the subsequent chapters of this work we study the various details of the 

"CONVECTION DIFFUSION" Equations along with a comparative study of the recent 

methods used to solve them. We start here with the basic definition and derivation of the 
equation. 

1.4 Definition & Theory: 

CONVECTION DIFFUSION EQUATIONS: 

Convection Diffusion Equations can be defined as the partial differential equations 

resulting from basic conservation laws of mass, momentum & energy transfer 

considering both molecular (Diffusive) and bulk (Convective) flows [2]. 

A general form of Convection Diffusion equation (for mass flow) is shown below [1, 2]; 

Where; 

ac +v 	v ac 	ac + v 	.Dra2c  a2c  
at 

,  

	

8Y z  aZ 	 aZ2 aY2  ax e  
1.4-i 

C- Concentration of the component species in flow 

Vx, Vy, Vz are the components of velocity in the spatial directions X, /7, & Z 
In a similar fashion we can represent the momentum and energy balances. 
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Introduction 

The above equation (1.4-1) considers both spatial and temporal variation of the 

concentration. A detailed method of deriving the above Convection Diffusion equation is 

given in Appendix Al. 

The above equation can be written in a compact form as; 

DV 2  C - V.VC = aC 	 1.4-2 
— at 

Equation (1.4-2) represents the general form of Convection Diffusion equation for mass 

transfer. 

Further if there is a volume source of solute within volume ' V' of strength Qo 
(mass/volume/time) then Qo  is added to the LHS of above equation. 

For small V , diffusion is dominant & the convection term may be neglected. 

If D is small then Convection dominates almost everywhere. However the term cannot be 

neglected or omitted as a first approximation unless a boundary condition is also omitted. 

This is the phenomena of boundary layer. 

Next, we study the engineering implications of the Convection Diffusion equations. 

The concentration satisfies the Convection Diffusion equation at steady state as; 

DV 2 C — V.VC = 0 	 1.4-3 

Further let; L is the characteristic Length 

& U0 is the initial fluid velocity. 

Then the above Convection Diffusion equation can be efficiently written as; 

1 V 2C—V.VC =0 	 1.4-4 
Pe 

Where Peclet number, Pe = U o L / D 

Since D is usually small; Pe is nearly always large; which means that mass transport 

is dominated by Convection except in boundary layers [2]. 

As can be seen from the basic Convection Diffusion equation we require knowledge of 

the velocity field. The governing equation for velocity distribution is also a Convection 

Diffusion equation which is derived same as shown above considering the momentum 

fluxes instead of the mass fluxes. 
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Introduction 

These governing equations are also called as Navier-Stokes equations [2]. 

For an incompressible, Newtonian fluid with a density p and subject to a body force F, 

the velocity field V and the pressure field P satisfy the following equation; 

atT-t +(V.DE.--1 VP + F + vV 2  V 	 1.4-5 

where; 

v = Kinematic Viscosity 

and the Continuity Equation =V.V = 0 

Also, Reynolds number =Re = 	°
L . This determines the relative importance of the 

Convection & Diffusion fluxes. 

For the steady flow with zero body force ( F = 0) the Navier Stokes equation becomes; 

at 
	+ (V.v)v,--vp+vv2v t 

this can be easily written as; 

1  

2  
V 2  V— (L.V)V = 	 .vi 

Re — pU 0  — 

1.4-6 

1.4-7 

For small Reynolds number: Viscous (Diffusive) forces dominate 

For large Reynolds number: Inertial (Convective) forces dominate 

Thus the Reynolds number indicates the relative importance of the momentum 

convection over momentum diffusion in a fluid. While the, Peclet number indicates 
the importance of the mass convection over mass diffusion. 

As we have seen till now, the Convection Diffusion equations for mass and momentum 

balances, similar way we can derive for the energy balances considering energy fluxes. 

However in the energy equation we need to consider one more term to account for the 

conduction occurring along the boundaries of the system. 
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1.5 Generalized forms of the Convection Diffusion equation [2, 6]: 

The Convection Diffusion equation in its very basic form as derived in Appendix Al is 

given as; 

DV 2  C — V.vc 	 
— 	at 

writing in a more precise manner we have; 

OC -Hv  ac 	ac 	ac 	(a2c  + a 2c + a 2c)  = D 	 
at 	OY Y  OY z  az 	az 2  aye  ax e  

1.5-1 

1.5-2 

This equation can be taken as the most general form of the "Convection Diffusion" 

equation in terms of rectangular co-ordinates. Here we have not considered the source or 

sink term which can be added or subtracted from the above generalized form. 

The equations are supplemented with some initial and boundary conditions to solve 

analytically or numerically and determine the distribution of the dependant variable(C, V 
and 7) spatially and temporally.These set of conditions work out many times for a 

preliminary solution of the system. 

It is generally found that the systems evaluated are not essentially easily described by the 

rectangular co-ordinate system. Further the systems many a times do have complex 

geometries. For such cases we find it easy to describe the system in terms of spherical 

and cylindrical co-ordinates. 

Here in this section we present the general forms of the Convection Diffusion equation in 

these co-ordinate systems. 

Once again we recall the Convection Diffusion equation in terms of the dimensionless 

form as; 

ac at + Pe(V.V)C = AC 

In terms of Spherical Co-ordinates: 

ac ac ac  (v.v)c = 	 and ; 
act) 	- az 	way, 

1.5-3 

1.5-4 

7 
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a AC  = 1 ac )+ 5 2C 	1 	a 2c ± where,  1.5-5 
CO a co ao) 	aZ 2 	CO 2  a 	2  

CO = VX 2 + y 2 

In terms of cylindrical co-ordinates; 

ac v ac 	ac  (v .v)c = v — + 	+   and; r ae r.sin0 
1.5-6 

1  a  

	

2  ac 	1 	a' sine ac j 	 1 	a2c) 
AC = 	( 	 n 	+   where, 

r 2  ar 	ar 	r 2  sine ae 	ae 	r 2  sin 2 	.3y/ 2  

1.5-7 

r= x2 ± yz + z 2 

Any of these general forms of the Convection Diffusion equations can be used to describe 

the system; however the boundary and the initial conditions are essentially required to be 

considered in the same co-ordinate system. 

8 



Literature Review 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Applications of Convection Diffusion Equations: 

Convection Diffusion Equations have a wide range of applications in various fields of 

engineering, physical sciences and financial analysis [8]. 

Recently the equations are also applied to various biological processes to describe the 

fluid phenomena in cellular reactions.As the equations represent the spatial and transient 

characteristics of the basic laws of conservation of energy, we can use them describing 

various unit operations that are carried out in the branch of chemical engineering. 

Various operations such as catalytic reactors, absorption column, extraction 

column, adsorption column, fluidized bed reactors, packed bed reactors etc... 

involves these equations as model equations in different forms. 

Further the equations are also used to model the processes such as flow in porous media. 

The dusty gas model based on Convection Diffusion equations is used to describe this 

particular flow. 

In the field of physics, we use the equations in the problems of non linear heat transfer 

problems, transport of charged species in semiconductor and plasmas. Recently the water 

transport through a polymer electrolyte membranes (PEM) cell has been proved to obey 

the equation. This problem is of large interest since PEM is a key component to of fuel 

cells, which are expected to perform revolution in mobile power sources including 

vehicles [13]. 

Next, in the field of hydrology, the equations are used to describe the flood waves after 

an approximation using the kinematical wave equation. 

In the following discussion we list out some of the chemical engineering applications of 

the Convection Diffusion equations. 
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2.IA Isothermal & Adiabatic Fixed Bed Reactors [4, 17]: 
The plug flow model may be employed to the fixed bed catalytic reactor; provided plug 
flow behavior is a valid assumption. 

Here we consider a small volume element of radius 'r' width Ar and height A z, through 
which reaction mixture flows isothermally. 

Suppose that radial & axial mass transfer can be expressed by Fick's law, with Der  and 
Del as effective diffusivities, based on the total (void and non void) area perpendicular to 
the direction of diffusion. 

The volume of the element = 217rArAz 

Concentration in the fluid phase is constant within element. 

Fig. 2.1 Volume element of reaction mixture 

Mass Balance equation: 

The steady state differential equation for mass balance is given as; 

0 1  r(D, --j+ ) ac  r — ac  
D 	 0 2.1-1 ar az 

—uC + 	eL 	j -  r p  p B .r =-- 
az 

Where; 

rp  = Global rate of disappearance of reactant per unit mass of catalyst. 

pB  = density of catalyst in the bed. 

u= Superficial velocity in the axial direction. 
Further; if the diffusivities are not sensitive to r; or to z, the velocity is not a function of z 
then we write above equation as; 

10 
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(De )r 
2  

	

1 ac  + 
 ar  
5 21  u 

az 	e  aZ 2

ac 	a 2 c 
r ar 

 	 rp p, = 0 2.1-2 

  

If the velocities varies with z ;( due to changes in temperature or number of moles in a 
gaseous reaction), then the previous equation is to be used. 
Assumptions: 
Concentration entering the reactor = Co 

& there is no axial dispersion in the feed line; the boundary conditions are; 

–(De ),,( aacz ),o +u(c),0  

and; 
Sc = 0 for r = ro and r = 0 at all z 
ar 

Next using dimensionless variables; 

x= 	 r = 	 ; z = — 
Co 	 d p 	d p  

The above equation reduces to; 

1 	1 ax 52 X 	ax 	1 52 x rp p Bd 

Per  r* Sr* ar*2 	az* PeL  az *2 	CoU 

[ 
	 =0 

ac _ 0.  
az 

Co  –C 

at z = 0 for all 'r' 

2. 1 -3 

2.1-4 

2.1-5 

2.1-6 

where; Per  = 	 
(De r  We), 

(De )L 
Above differential equation shows that conversion depends upon the dimensionless 

reaction rate group; r p pB d p lCou and the radial & axial Peclet numbers. 

The typical profile is flat in the center of tube, increases slowly until a maximum velocity 
is reached about one pellet diameter from the wall & then decreases sharply to zero at the 
wall_ 

The numerical solutions of this model are developed in the subsequent chapters of 
the report assuming a one dimensional dynamic equation where the radial terms are 
neglected. 

and Pe L  = ud  

11 
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2.1B Catalytic micro reactor [5]: 
A model for the analysis of the fluid dynamics and heat transfer in catalytic micro reactor 

systems for the decomposition of the ammonia over a monolayer Ni non porous catalyst 

are discussed in literature (Ammonia being a potential source of Hydrogen for a number 

of fuel cell applications for small scale power generation). 

The overall model consists of a flow model, mass transport model, an energy 

conservation model & a reaction kinetics model for ammonia decomposition. 

The chemical reaction occurring is; 

2NH3 	 N2  + 3H2  OH =11 kcal/mol. 	2.1.-7 

The small scale micro reactor devices generally have high heat transfer coefficients 

and mass transfer coefficients, enhanced surface to volume ratios for reactions & 

smallest occupied volumes for convenient end use in small scale application. 

• 

The small dimensions of the micro reactor systems reveal that the transport 

processes are strongly dominated by the Diffusion mechanism. 

Assuming the gas to be an ideal & incompressible homogenous fluid, we get following 

equations; 

Continuity equation: 

ap al/ x ± aVy _ 0  
2.1-8 

pc s2• at 	ax 	ay 

Where; 

P = Hydrostatic pressure 

Cs = speed of sound in gaseous fluid. 

The term in the braces accounts for the fluid to be slightly compressible. 

Conservation of momentum: 

(Navier —Stokes equation) [2, 6]: 

The contribution of convective and diffusive mechanisms to momentum transport can be 

evaluated by the value of Reynolds number. 
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In absence of body forces the conservation of momentum for the creeping incompressible 

Newtonian fluid flow is expressed by the Stokes equation [2]. 

In two dimensional co- ordinate system; 

av, 	ap 	
ay 

a 2g 	+ 
ax 

av,)  a [ 77 /  ay, avy )1  
P at = 	

± 
ax

+
ax 

	

	 ax 	
2. 1 -9 

ay  

p = ay, 	ap + 	277 a 	avy -F  a Wavy  
at ay ay ay ax ax ay 

where, 77 = Fluid viscosity. 

Mass Transport equation: 
Convection Diffusion equation gives; 

:1 
2.1-10 

	

ac, 	ac, 	ac 	a 	ac,) a 	ac,\  +Sc 	±v, 	= 	 (Dy 	 2. 1 - 1 1 

	

at 	ax 	ax 	ax 

i = 1, 2...N 

where; 

D,, & Dy1 = mass diffusion coefficients in X & Y directions respectively. 

and N= Total number of components in gaseous reaction. 

Sc = Source / Sink term. 

Energy Transport equation: 

Solid walls of the domain are considered to be insulated so that there is no heat exchange 

with surroundings. 

Assume negligible effects of boiling & condensation. 

Two dimensional transient energy balance equation is as follows; 

aT 	(„t  aT 	aT) ...,  a r 	 ± 	(k  aT`  + Sh 	2.1-12 
P  at ± Pc P v  ax Y  ay 	ax , ax ) ay Y aY 

where, T = temperature term 

Cp  = Specific heat capacity 

kx  & ky  are thermal conductivity of gaseous fluids. 

Sh= Heat source/ sink. 

13 



Literature Review 

Initial & Boundary conditions: 

At the inlet of the catalytic micro reactors a plug flow velocity field is specified. 

On the impermeable boundaries of the micro reactors, no slip wall boundary conditions 

are imposed. 

The condition of the entering gases is specified at the inlet of the reactor. 

Different constitutive relationships are required for fluid property evaluation. 

The rate of ammonia decomposition can considered to be 1st order with respect to 

ammonia's partial pressure. The small dimensions of the micro chemical reactor systems 

reveal that the transport processes are strongly dominated by the diffusion mechanism. 

The numerical solution of the governing equations can be Stiff in temporal direction due 

to diffusive terms and steep in spatial direction due to convection terms. 

In literature a standard Galerkin Finite Element Technique has been employed for 

solution of the flow equations mentioned. 

2.1C Adsorber Design [3]: 

We discuss the Thermal Swing Adsorption type of adsorption as this type of adsorption 

is the most commonly used to prevent contamination of air by organic solvents of low 

concentration and to dehumidify gases. 

Drying of air by TSA is one of the major commercial gas separation processes. 

In practical adsorption, a one dimensional model serves to be enough for design & 

operation of the system, where radial temperature and concentration distributions are 

neglected. 

The thermal properties of the adsorbates and adsorbents, radial temperature gradient and 

heat transfer through the column wall can affect the column dynamics due to high 

temperature of purge gas. The system is a packed bed with porous spherical adsorbent 

particles. 

Mathematical model: 

Assumptions: 

1. The flow patterns of gas phase in the packed bed can be described by an axially 

dispersed plug flow model. 
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2. Gas phase behaves as an ideal gas mixture. 

3. Frictional pressure drop is neglected. 

4. Velocity distribution & second order concentration gradient in radial direction is 

neglected. 

Because, only axial dispersion is considered both in one & in 

models, the same component and overall mass balance equations 

were used. 

5. Contribution of Nitrogen to total adsorption is neglected. 

6. Thermal equilibrium is assumed between gas and solid phases. 

7. Axial conduction in the column wall can be neglected but heat loss through 

column wall and heat accumulation in the wall cannot be neglected. 

The balance equations are as follows: 

Component mass balance: 

—D a 2c 
 +

a(uc) + ac  
+ pp  

	

- az 2 	az 	at 

Overall mass balance: 

o(u/ T) 1  aT  + pp P R(1— eg  
j ag  - 

	

az 	T 2  at  
 

at 0  

Energy balance in bed: 

(apgC pg + p3C pg  + pg qC paltla ) aaTt +—: (6.  B UP gC pgT)-  

0B (__ AHs)aq  kz a 2T  k, [i r ,  aT1,  0  
az 2 	r ar 	ar 

2. 1 - 1 5 

Energy balance in wall: 

aTw  
Pw C pw  Aw 	

at 
 =2FIRR,a 1 ,=Rw —Tw )-21-1R,oho (Tw  —Ta,„,) 2.1-16 

two dimensional 

for the gas phase 

(1—&B l  aq 

B  at 
=0 2. 1 - 1 3 

2. 1 - 14 
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In axial directions we need the Danckwert's boundary conditions for both energy and 

mass balances.Clean bed conditions and saturated bed conditions were used as initial 

conditions for adsorption breakthrough and regeneration breakthrough. 

2.1D Fixed Bed catalytic reactors 17]: 

Here we mention the Convection Diffusion equations required to represent the transport 

model of a fixed bed catalytic reactor. 

The term "fixed" means that the catalyst pellets are held in place & do not move with 

respects to fixed reference frame. 

Material and energy balances are required for both the fluid & catalyst particles. 

Essentially all reactions occur within catalyst particles. 

This step to consider; 

1) Transport of reactants and energy from external surface 

2) Transport of reactants & energy from external surface into porous pellet 

3) Adsorption, chemical reaction and desorption of products at the catalytic sites. 

4) Transport of products from catalyst interior to the external surface of the pellet 

5) Transport of the products into the bulk fluid. 

Next we take the rate limiting steps as below; 

The system is intra particle transport controlled if the step 2 is the slow process 

(referred to as diffusion limited). 

For kinetics or reaction control step 3 is the slowest process. 

For the step 1 as the slowest process, the reaction is said to be externally transport 

controlled. 

Let the effective diffusivity coefficient is p, and sold density is Ps 

Pellet void fraction (g)= pp .Vg  

Let; 

= velocity of species j giving rise to molar flux Nj  

NJ = CJVJ 

E = Total Energy within the volume element 

e = flux of total energy through the boundary surface due to all mechanisms of 

transport. 

16 



Literature Review 

The conservation of mass and energy is given by following Convection Diffusion 

equations; 

ad, 
=-ON1 + Ri  j = 1, 2,...N 	 2.1-17 at 

OE =-Ve at 
where; 

R.]  = production of species ̀  due to chemical reactions. 

2.1-18 

-DiV 2Ci +R j  

e = -kV 2T -IN ill 

j = 1, 2...N 	 2.1-19 

2.1-20 

Boundary equations are given as; 

= CAS where r = R 	 2.1-21 

The symmetry of pellet implies the vanishing of derivative at the centre of the pellet. 

ac A  = 0 at 	r = 0 	 2.1-22):'` 

Next in terms of the characteristic length for sphere; 

41-IR 3  

Or 

3 	R - r 	C a = 	 = , r= &C= 	 
S 	4FIR 2  P 	 3 	a CAS 

Above equation becomes; 

1 	d 2 r 	. dC _ 113 2  C—  =0 
r 2  dr dr 

2.1-23 

2.1-24 

subject to; dC _ 	= 0 for r = 0 
dr 

2.1-25 

The numerical simulation of this equation considering steady state conditions has 
been done in this report. 

In a similar way we can formulate the Convection Diffusion equations for other 
types of reactors. Even the Combustion process can be modeled by such equations. 
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As we have seen that the convection diffusion equations consider both the temporal 

and spatial variations in the systems, the resulting partial differential equations are 

not easy to solve using the analytical techniques and thus require a variety of 

numerical methods to solve these equations. 

In the next section we discuss some of the numerical methods that are in recent use to 

solve these Convection Diffusion Equations along with their applications. 

2.2 Numerical methods to Solve Convection Diffusion Equations 

In the previous section we have described the importance of the Convection Diffusion 

equations in characterizing flows in various fields of Science and Engineering.The 

equation is a very useful in predicting the dynamic characteristics of a number of systems 
in the field of Chemical Engineering. 

In the present section we shall discuss briefly the various numerical methods for 

obtaining the solution of these Convection Diffusion equations with as much as practical 
accuracy as possible. 

Several methods are applied to the Convective Diffusion equation because it has a sharp 

front but is a linear problem with an exact solution. However due to the hyperbolic 

behavior of the equation induced by the term of Convection we need to handle the 
equation cautiously. 

While investigating the interpolation error when we use some general numerical methods 

such as finite difference or finite element method to interpolate the exact solution, we 

find that there comes a restriction on the maximum number of interval that are considered 
to reduce the possible error [15]. 

We write the Convection Diffusion in the mathematical form as follows [2]; 

2  ac + Pe 	 a
x  2  

ac  =  
2.2-1 at ox a 

subject to C(x,0) = 0; C(0, t)=1; ac —(1,t)= 0 ax 2.2-2 

A variety of traditional numerical methods including method of finite differences, finite 

element method, Galerkin finite element method ,Orthogonal collocation, method of 

lines(MOL),Weighted Residual Methods, Finite Volume methods, Adaptive Grid 
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Methods & Moving Grid Methods are presently used in dealing with the solution of 

these equations. We discuss some of these methods in the following sections. 

2.2A Numerical Solution of One-Dimensional 

Convection-Diffusion Equation (finite differences method) [8]: 

Here several finite difference schemes for solving the one-dimensional convection-

diffusion equation with constant coefficients are discussed. 
In the research carried out by Mehdi Dehghan [8] the use of Modified Equivalent Partial 

Differential Equation (MEPDE) as a means of estimating the order of accuracy of a given 
finite difference technique is emphasized. 

This approach can unify the deduction of arbitrary techniques for the numerical solution 
of convection-diffusion equation. It is also used to develop new methods of high 

accuracy. This approach allows simple estimation and comparison of the errors 
associated with the partial differential equation. Various difference approximations are 

derived for the one-dimensional constant coefficient convection-diffusion equation. 

Computational aspects are also studied in the research work. 

When comparing the explicit finite difference techniques described in the report, it was 

found that the most accurate method is the fourth-order explicit formula. 

2.2B Finite element Approximations of Convection Diffusion Equations 

Using Graded Meshes [18]: 

As is well known, the numerical approximation of convection-diffusion equations 

requires some special treatment in order to obtain good results when the problem is 

convection dominated due to the presence of boundary or interior layers. A lot of work 

has been done in this direction. There are in principle two ways to proceed: to use some 

kind of upwind or to use adapted meshes appropriately refined. Ricardo G. Duran and 
Ariel L. Lombardi [18] proved that, using appropriate graded meshes, the solution is 
well approximated by the standard piecewise bilinear finite element method. 

The numerical experiments showed that no oscillations appear in the numerical solution 

and the predicted order of convergence is observed. 
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2.2C Finite-Element Solution of Convection Diffusion with reaction [11] 

The techniques are based on the modified method of characteristics, in some cases 

including streamline or velocity-weighted numerical diffusion to suppress numerical 

oscillations.A effective scheme is mentioned in the paper authored by Biyue Liu, Myron 
B. Allen, Hristo Kojouharov, Benito Chen [11]. 

The finite element method discussed involve the dividing the volume of the system into 

small elements (fine gridding) and are analysed each of these elements for solution. The 

equations obtained are expressed in terms of matrices and are thus solved by integrating 

over the volume. 

The study is focused on Finite Element scheme for the two-dimensional, advective 
reaction-diffusion equation. 

The general form of such a equation with reaction is given as; 

ac la) 	+ v.vc - v.(Dvc) = f (C) for concentration C(x, t) 	 2.2-3 
at 

What makes the above equation numerically challenging is the advective term V.VC 

One can measure the degree of advection dominance via the dimensionless Peclet 

number. The numerical solution requires considering fine gridding and is expensive. 

A common alternative to fine gridding is to suppress the oscillations by adding 
numerical diffusion of various types. 

The amount of such numerical diffusion to be added is devised in the work. 

2.2D Fourth-order difference schemes on rotated grid for 

two-dimensional convection—diffusion equation [101: 

A fourth order difference scheme on the rotated grid for the two-dimensional 

Convection— Diffusion equation is also developed in the literature. 

A comparison of the fourth-order schemes with the nine point scheme obtained from the 

second-order central difference scheme has shown remarkable accuracy and sharp error 

reduction. In literature a fourth-order compact finite difference approximation for above 

Convection Diffusion equation is already derived by Gupta et al. The idea behind the 

method is to utilize the Taylor's series expansions of all the functions involved in above 

equation. In the paper authored by, Jun Zhang, Jules Kouatchou & Lixin Gea [10] a 
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derivation of a family of fourth-order finite difference schemes of above equation on the 

rotated grid is given. 

Besides the numerical techniques discussed above a large number of methods are 

currently in research and applications such as Sinc-Galerkin method for convection 

diffusion equation with mixed boundary conditions [14] , Broyden scheme[20], High 

resolution FEM-FCT scheme, Finite volume Descretization scheme, method of 
approximation etc... 

However it is seen that the most commonly used and widely accepted methods are 

the methods of finite elements and the method of finite differences [15, 16]. 

This is because, these are easy to formulate, less expensive when carried out with 

accepted limits of error, easily converged, stable, accurate for designing and using in 

the computational Software applications with short computational times. 

From the literature review carried out on CONVECTION DIFFUSION equations it is 

clear that a vast number of engineering & physical systems can be modeled using the-
Convection Diffusion equations. The recent applications include the use of the equation 

in biochemical engineering, fuel cell modeling, modeling & modeling of the micro 

reactors. The equations have a great importance in describing the flow & conservation of 

mass, momentum, & energy in various unit processes and operations from the field of 
Chemical Engineering. 

The numerical solution of these equations determines transport models of the systems 

which is a very good tool in writing the computer algorithms for studying and 

determining the fluid properties. 

From the field of the numerical techniques, we find that the Method of the Finite 

Differences is largely used in handling the convection diffusion equations which has 

many advantages over other classical techniques in the view of convergence, accuracy 

and error reduction. 
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CHAPTER 3 

METHOD OF FINITE DIFFERENCES 

Finite Difference Method [15, 16, 21]: 

Here in this chapter, we first discuss the basics of the method of finite differences, the 

different approximations meant for the partial derivatives along with the order of the 
errors associated with their use. 

Subsequently we derive the difference equations for the steady state and dynamic 

Convection Diffusion equations. Consequently we include the addition of different 
complexities such as non linearity, complex boundary conditions (moving boundary 

type), addition of source terms, purely hyperbolic nature, solution for simultaneous 
differential equations etc. 

Based on these difference schemes we carry out the descretization of some of the 
engineering problems in the next chapter. 

The Finite difference method is concerned with specific points in the domain called grids. 

The domain is divided into a number of equidistant intervals. We then use the Taylor 

series expansion to deduce the difference formulae for first and the second derivatives of 
the given differential equation. 

Using these approximations of the derivatives we obtain an interpolation formula. 

Further we obtain the value of a parameter at a grid point using the linear difference 
equations and carry out similar scheme for other grid points. 
Thus we see that the Finite Differences method has the advantage that the method is 
easy to formulate, although it may need a large number of grid points for high accuracy. 

Derivatives must be correctly evaluated in order not to destroy the accuracy that has been 

achieved. While handling the partial differentials we express the spatial derivatives too in 
the same way as shown in the previous equations. 

The local truncation error is defined as the difference of the differential equation and the 

finite difference scheme. The finite difference scheme is called consistent if the limit of the 

local truncation error is zero as Ar and/or At approach zero. 
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While obtaining the higher order derivatives we use the derivatives interpolations 

obtained by the difference equation of lower order derivatives. 

A different range of the finite difference schemes are available based on the consideration 

of the number of grid points in the estimation of the values at a particular grid point. 

In practice we use 2-point, 3-point, 5-point and 9-point schemes. 

The finite differences schemes are also classified based on the truncations done in the 

Taylor approximations. These are called first order, second order, third order & fourth 

order descretizing techniques. 

3.1 Steps involved in Finite Differences method 
A Finite difference method typically involves the following steps: 

1. Generate a grid, where we want to find an approximate solution. 

2. Substitute the derivatives in an ODE/PDE or an ODE/PDE system of equations with 

finite difference schemes. The ODE/PDE then become a linear/non-linear system of 

algebraic equations. 
3. Solve the system of algebraic equations using some standard iterative techniques. 

4. Implement and debug the computer code. 

5. Do the error analysis, both analytically and numerically. 

In the following section we study the difference equations for steady state Convection 

Diffusion equations. 

3.2 Finite Difference methods for steady state Convection diffusion Equations: 
In this part of study, we shall study the method of formulation of various finite difference 

schemes that can be used to approximate the steady state Convection Diffusion equations. 

To understand the approximation procedure we consider a differential equation and 

subject it to different situations and conditions for analysis [16, 21, 23]. 

Here as an example, we consider the differential equation used to describe the heat 
conduction in an un-insulated, tapered rod which is thin enough that a one dimensional 

analysis can be used. 
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d 2 u 2 du 2p 	u = 0 
clx 2  q+x cbc q+x 3.2-1 

The length variable, x and the temperature variable, u, are dimensionless and normalized. 

The constants `q' and p ' are dimensionless combination of parameters which describe 

the geometry and heat transfer characteristics of the rod. These are defined as; 

11 4 p= 
k 
hL  1

" 4-  f 2 	
and 	q =

Do 
 JL 

where L is the length of the rod. 

h is the coefficient of heat transfer between the rod and surroundings. 

k is the thermal conductivity of the rod. 

f and Do define the diameter, D, of the rod by D = DO + fLx. 
Consider the simplest boundary conditions as: 

3.2-2 

u(0) = 0 and 	u(/)=/ 	 3.2-3 

The above differential equation is a steady state form of Convection Diffusion 

equation. The first term accounts for the diffusion of heat and the second term 
results as a result of convection. 

Now we convert this continuous differential equation into discrete finite difference 

equation that is an approximation with some error. 

Using the Taylor series expansion, the adjacent points that are separated by finite 

difference, A.,c (i.e. step size), are given as; 

du 	d 2  u 	(Ax- )2  d 3  u 	(A)c)3  u(x + dx)= u(x)+ dx (x).Ax + dx  2  (x). 21 	dx3 	31  (x). 	+ 	3.2-4 

Notation for the discrete variables: 

It is very convenient to use a special notation for the discrete variables that are spaced 

between 0 and 1 as shown in figure 3.1 
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U (X) 

u(X,) = u, 

o 0 0 0 0 0 0 0 0 0 

xo 	 xi_1 xj xj+1 

AX 

Fig. 3.1 Discrete and continuous variables 

We denote the value of the discrete variable at each of these points by the subscript 'V 

and define it as; 

x = i(Ax) 	 3.2-5 

The index `i ' takes the values from 0 to R, where R is the total number of increments in 

the complete interval between 0 and 1. 

Further the adjacent values are given as; 

= x, + Ax 

x,_, = x, – Ax 	 3.2-6 

Now the values of dependant variable u at x, are denoted by u, 

We follow this nomenclature through out this work. 

In the nomenclature given above, the Taylor series appears as; 

( duj 	 d 2  u"  (Ax)2 7  d3  u \  0,43  (614  tc u,+, = u, + 	+ 	+ 	+ 	3.2-7 dx2 ) 	2! 	 2! 	 4 dx 	 chc3  	41 

Similarly the value u,_, at x,_, is ; 

du A   c1211 042  I 	 (.6003 ici4u (644  
=u i  4—) dx  Lax+ 

X 4 J r 4! dx 2  ), 2! 	dx3  ), 3! 	Ci  
+ 	+ 	3.2-8 

-41 
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(Ax )2 

3.2-11 (Ax)2 	dx4 	12 
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Analogs for the derivatives: 

a) Analog for the first derivative: 
When equation 3.2-7 is solved for the first derivative; it takes the form; 

(du) 
clx 

u1,1 —u, (d2u \ 
dx2 ji 

Ax (643 
3.2-9 Ax 2! 

(d 3u 
dx3 ) 3! 

The error in using this analog is of the order of the first term which is truncated 

(dd 2 u / dx 2 ) / (Ax / 2!). This term contains Ax , so the truncation error is said to be first 

order, and the analog is said to be first order correct. 
b) Analog for second derivative: 

A finite difference analog to the second order derivative is obtained by adding equations 
and 3.2-7 and 3.2-8. The result is; 

[ 	() 
141,1 	

c/ 2 /4 u,_1 = 2u + 	(Ax)2 + 2 d 4U (AX)4  + + 	 3.2-10 dx 2 jt 
dX 4 ) 4! 

On writing the equation explicitly for second derivative, we have; 

This approximation is second order correct, since the first term dropped contains 

An improved analog for the first derivative is obtained by subtracting equation 3.2-8 

from equation 3.2-7. The resulting equation, written explicitly for the first derivative is; 

du 	— 111 ( (rid 0002 

) 	204 	ci7c3 j, 6 3.2-12 

This approximation is second order correct and possesses a good degree of precision. 

Finite Difference Equations: 

On substituting the respective difference equations for first and second derivatives into 
above equations we obtain; 

u,+i — 2u, + u,_ 	2 	u,+ , —u,_1 	2p 
	 = 0 	 3.2-13 	(Ar)2 q + i(Ax) 2(Ax) 	q + i(Ax 
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When rearranged, it becomes; 

Ax 	 Ax)2 	 Ax u + [ 2 2p( 	u + [1+ 	 u , = 0 
q + i(6,101 	q + i(Ax)1 	q + i(Ax) [1 3.2-14 

Boundary conditions: 

The finite difference equations written about the points x1 and xR are different from the 
above equations and contain the terms involving the boundary points that are known from 

the boundary conditions. Putting these values we get the following equations for the 
boundary points. 

[  2  2 2P(Ax)  Ax 	+ [1+  Ax  lu2 --- 0 
q + Ax 

q + (R _0(Ax)ju R_2 +[ 2 	
A,1 

q + (R _1)(Ax.)1--1 = [1+ 	
Ax  

(R —1)(Ax)1 

Ax 	 2p(0 	
uR 

2  

3.2-15 

3.2-16 

Hence we have converted the given non linear differential equation into a set of 

linear algebraic equations. This is the essence of using the finite differences method. 

These equations are to be solved simultaneously for determining the values of 

dimensionless dependant variable 'it'. 

The equations above can be written in the following tridiagonal form; 

blur + c/u2 + 0 + ...............+ 0 = d1  
a2u1 + b2u2 + c2u3 + 0 + 	+ 0 = d2 

0+ 	+ biui + c iui+1 + 	• + 0 = di 	 3.2-17 

0 ± 	+ 0 + aR-2UR-3 bR-214R-2 CR-2UR-I dR-2 
0 + 	+ 0  + aR..124R_2 + bR_IuR_I = dR-1 

A method for solving a set of equations of this type (3.2-17) has been developed by 

Thomas. An algorithm to implement this method is given in Appendix A2. 

The computer program for this entire difference method is also given in Appendix A4. 

The results and discussions obtained are discussed in detail in the chapter 5. 
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Other types of Boundary conditions: 

We now apply the method of finite differences to the same differential equation, but for 

some complex boundary conditions. 

We consider the following types of boundary conditions: 

du 
(0) = g a) 	 3.2-18 

dx 

u(1) =1 

These conditions arise when the rate of heat transferred to the rod is specified at one end. 

The boundary condition at x = 1 is unchanged. However the boundary condition specified 

at x=0 is that the first derivative, du/dx, is equal to the constant value g. To specify the 

value of the first derivative at the boundary, a fictitious point, x_1  , outside the region is 

used. The second-order-correct analog to (du/dx)o, given by equation 3.2-12 with i= 0, is 
then set equal to g. Thus, 

u_, = u, — 2g(dx) 	 3.2-19 

The boundary equation is obtained by substituting this value for u_1  into 'equation 3.2-14 

for i = 0. The resulting equation is 

a - 
-2 — 2P(Ax)  u0  + 2u1  = 2g(6x)(1— 	) 3.2-20 

q _ q 

This equation is included in the formulation of tridiagonal system of equations and is 

solved using Thomas Algorithm (Appendix A2).The computer code is given in Appendix 

A4.The results and discussions are given in the chapter 5. 

b) Now we consider a more general boundary condition that results when the rate of 

heat transferred to an end of the rod is given by Newton's law of convection. In this case 

the boundary condition at x = 0 can be expressed as 

du 
(0)— Hu(0) =—g 	 3.2-21 

where H = hL 
k 

The condition of equation 3.2-21 for x = 0 is handled similarly to that for equation 3.2-18 

A fictitious point is used, and the dependent variable at this point, u_, , is eliminated from 

dx 
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the finite difference equation for x = 0 by the finite difference analog of the boundary 

condition. This is; 

	 Huo  
2(Ax) 

3.2-22 

u_1  = — 2H(Ax)uo  + 2g(Ax) 	 3.2-23 

The resulting finite difference equation is 

2(p — H)(Ax)21
u0  + 2u, = —2g(Ax)(1-- —2 — 21-1(&)  	

.x )  

 

3.2-24 

 

The equations for this problem also are of the tridiagonal form and can be readily solved 

by the Thomas algorithm (given in Appendix A2). 

A computer program for this problem is also given in Appendix A4. 

Many a times, it is desirable to develop a single set of equations that can handle a variety 

of boundary conditions. This objective can be accomplished by spacing the first point at 

half increment from the boundary. The points are arranged as shown in the following 

figure 3.2 and the value of the independent variable at each point is given by 

x, =(i — ),6,x 
2 

3.2-25 

The complete set of difference equations for the difference equations are given in the 

following chapter. 

The program to implement this technique is given in Appendix A4 and the results that are 

obtained with exactness are discussed in the chapter 5. 

One disadvantage of the arrangement of points as mentioned above is that the 

temperature at the boundaries is not computed. However, each of these can be evaluated 

as the average of the exterior value and the last interior value. The exterior value can be 

obtained from the appropriate boundary condition analog. 
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u(X) 

0 

AX 

0 0 0 0 0 0 0 0 0 0 

X0 	X1 	 Xi 	Xi+1 	 XRA- 1 

Fig 3.2 Grid points shifted from boundaries. 

The arrangement of points shown in Figure 3.2 is also convenient to use when the 

problem is described by radial coordinates. The differential equation for heat conduction 

in radial coordinates is similar to the equation for a tapered rod which goes to a point at 

one end. This latter equation is obtained by setting the parameter q in equation to zero. In 
fact, when the parameter `p, is also set to zero so that there is no heat loss from the 

surface of the rod by convection, equation 3.2-1 becomes the equation for heat 

conduction in a sphere. The equation for heat conduction in a cylinder is similar. 

Although numerical methods can be used to great advantage for unsteady state heat 

conduction in a cylinder or sphere, the steady state problems for these geometries have 
trivial solutions. 

3.3 Finite differences for unsteady state Convection Diffusion Equations: 

In the Introduction chapter it was stated that most of the applications involving 

Convection Diffusion equations are dynamic in nature (behavior varying with time). 

In this section we shall see the treatment of such applications. The equations arising from 

such analysis are mostly partial differential and possess either parabolic or hyperbolic 
nature. 

AX 
2 
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We first consider the most general form of such equation where the term interpreting the 

convection phenomenon is neglected. This simplification gives a good understanding of 

the derivation of difference equations[16, 21, 23]. 

Consider the one dimensional diffusion equation. 

The equation is purely parabolic. 

a2u au 
ax e  at 

the boundary conditions are given as, 

	

u(0, t) = 0 
all t 	 3.3-2 

u (1, t) =1 

With an initial condition given as; 

	

u(x,0) = 0; x < I 
	

3.3-3 

Since the time domain has to be included in the difference equations, we do this by 

adding 'n' as subscript for `14' in the difference equations. We take the time step as At . 

The descretization grid is as shown in the following figure. 

3.3-1 

Fig. 3.3 Grid points for unsteady state problem. 
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Method of Finite Differences 

For many numerical solutions, it will be desirable to increase the size of the time step as 

the solution progress. However in this entire simulation work we shall consider the step 

size to remain constant along the time axis. 

The dependant variable is now a function of two independent variables, x and t. 

3.3-1 General procedure for solving Parabolic Equations: 

For the problem described by above equations (3.3-1), the value of the dependant 

variable is unknown at a row of points at each time level and there are actually an 

unlimited number of time intervals. It is not feasible to solve for all the unknown vales of 
u simultaneously even when a limited number of time intervals are considered. 

Consequently the technique employed is to solve for the unknown values of u at one time 
interval, using the known values of u at the previous time level. 
The values of u at the initial time level, where n = 0; are given by the initial conditions. 
These values are used to determine the unknown values of u at the next time level for 
which n = 1 and so on. This procedure is continued for as many time increments as 

desired. Therefore the finite difference equations are so formulated that they contain 
values of u at two consecutive time levels. 

3.3-la Forward Difference equation. 

The forward finite difference equation is an explicit method and is probably the most well 

known, although it is the least efficient of all the possible equations which can be used 

In developing the forward finite difference equation, we write an analog for a 2u ax 2  at 
the known time level which is indexed by n. 

The relation thus used is, 

This analog is second order correct in the variable x. 

The analog to time derivative is obtained from Taylor series in time about the point x,,t, 
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This is given as; 

au 	 n  +i 	1,n ( a2U 	At 
At 	ate  

,,I7 

3.3-5 

The analog resulting from truncations of this series after the first term is first order 

correct in t. 

When the analogs defined as above are substituted in to the equation; we get the 

difference equation as; 

At 
u, 	= 	2 0u,+1 ,n 1 

2At 
in 3.3-6 

(Ax) 0002 

This equation certainly contains only one unknown value and is written explicitly. 

The numerical computations of the dependant variable are thus made one point at a time. 

Even though it appears that the forward difference equation is an easy way to estimate the 

dependant variable, there lies a problem with its convergence. 

For a numerical solution to be of any value, its solution must converge to solution of 

the corresponding differential equation when the finite increments are Ax and At are 

decreased. 
Analysis has shown that a very restrictive relationship between the size of Ax and that of 

At must be satisfied in order for the solution of the equation to approach that of the 

equation. The restriction requires that the ratio of At to Ax must remain less than or 

equal to 1/2, 
This restriction is rather a serious one, because in order to minimize the truncation errors 

in the x analogs, the size of Ax has to be small. Thus for the forward equation, the size of 

At must remain on the order of Ax for the solution to be stable and hence a very small 

value of At must be used for stability even when a much larger value could be used 

without causing truncation error. 

A difference equation which does not need this restriction is therefore a much better one 

to use as an analog to the diffusion equation. 
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3.3-lb Backward Differences: 

In searching for a new finite difference equation which does not have a restriction on the 

size of At for stability, we might write the finite difference analogs for the a 2 u /ax e  at 

the new or unknown time interval which is indexed by n+1. This backward difference is; 
a2u  

ax2 ,n+1 

Ui+1 n+1 _ 	  
(Ax)2 

3.3-7 

The time derivative analog is obtained from a Taylor series in time about point x,t„,_, 

The series is; 

( au 	= u,,,+, — u,,„ 	a2u 	At 
at  r,n+1 	At 	at ) e ,n+1 2  

3.3-8 

The first term on the right side of the equation is a first order correct analog to the time 
derivative. 

On substitution we arrive at the following implicit equation; 

u,_,,,,,+, + 	2 

 
(A)2 i 
	 "i,n+1 + "i+1,n4-1 = 

( AX) 2 
[ 	 Ui n  

At 	 At ' 
3.3-9 

The equation is implicit because it contains three values of the dependant variable u at the 
unknown time interval. 

If we consider R increments along x direction then; we have to write down the separate 
equations for the boundary conditions for i=/ and i- (R-1). 

For the given boundary conditions we get the following difference equations for these 
values of i. 

[ 2  

ox y 
2  

	

R-1,n+1 U 2,n+1 = [ (  Ar1 	ul , n 	 3.3-10 At 	 At  

.[ (Ax )2 
	 u12-1,n —1 1412-2,n+1 [-2 (Ax)2  + u2-1 ,n+1 At 	 At 

3.3-11 

Finally, we get a set of equations in the form of; 3.2-17. In terms of matrix, we have a 

coefficient matrix that is tridiagonal. Thus the equations can be readily solved using the 

Thomas Algorithm (Appendix A2). After determining the values at one time level we 
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can proceed for the next time interval with the same type of equations and the values 

found in the previous time level. 

The difference equation suffers no restriction on time step for stability. However we need 
to use a small time step in order to reduce the truncation error of the Taylor series in time. 

The backward difference is an efficient one, and is simple to use. However, it is only first 

order correct in time. 

It is thus desirable to find out second order correct analog to this derivative. 

3.3-1c Crank-Nicholson equation: 
The desired second order correct analog is called the Crank-Nicholson equation. 

For this equation all the finite difference equations are written about the point x,t„+„, 

which is half way between the known and the unknown time levels. 

The second order correct analog for the time derivative at this point is given by; 

(aU n+1 n  a 	(At)2  3u  
(At) 	at 3 )1'n±Y2 24 

3.3-12 

The second order spatial derivative is approximated about the point x by the arithmetic 

average of its finite difference analogs at the point 	and x,t„,, . The resulting analog is 

the average of the forward and backward analogs and is given as; 
a2u  1 	— 2u,, + 	n  Ui+1 n+1  21i, ,n+1+14,_1,n+1 

(Ax)2 	 (Ax.)2 
aX2 	2 

3.3-13 

 

Further on substituting these approximations in the differential equations we get the 

following difference equation; 

2(dx)2 	 20)02  + [ 2 	 Vii+1,n+1 	+1.L. 	 -1Ui,n —141+1,n 	3.3-14 
At 	 At 

The boundary condition equations can then be derived from the above difference 

equation in a similar way as was done in the backward difference scheme. 

The set of equations thus obtained are readily solved in the tridiagonal form employing 

the Thomas Algorithm (Appendix A2). 
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Here a large value of time step can be effectively used since the time derivative analog is 
second order correct. Thus the Crank-Nicholson equation is more efficient than the 

backward difference method and is thus the preferred method for obtaining the numerical 

solutions for parabolic differential equations. 

The Crank-Nicholson equation, like the backward difference equation is stable for 
all ratios of Ax and At . 

For other types of the boundary conditions: 

The difference equation developed in the previous sections(3 .2) can be used with other 

types of complicated boundary conditions with approximations for the derivative terms in 

the boundary condition equations and including them to approximate the difference 
equations for the values of i=1 and i=1?-1; 

However it is observed sometimes that the coefficients in the boundary conditions may 

bring oscillations in the solutions which cause the smaller step size selection inevitable. 
The smaller step size serves the purpose by compensating these oscillations. 

3.3-2 Parabolic equation with small Dispersion Coefficient: 

Consider the following Convection Diffusion equation. As expressed in detail in the 

previous chapters, the first term here considers the diffusion of the dependant variable 

which may be as such concentration, Velocity, temperature etc. The second term is the 

convective transfer term which considers the bulk transport of the dependant variable. 

The differential equation to be considered is; 

a2u au au 	 b 
ax 2 	ax at 

The above equation describes the one dimensional flow of a fluid with dispersion or 
diffusion. Here the parameter b is the ratio of the velocity of flow to the dispersion 
coefficient. 

When the dispersion coefficient is small, or the parameter b is very large, the adjoining 
term becomes the controlling term on the left side. Under such conditions the numerical 

solutions at a given time interval oscillate around the true curve. The extent of these 

oscillations depends upon the relative values of b and Ax .Price et al have shown that for 
the Crank Nicholson equation there will be no oscillations when; 

3 .3-1 5 

36 



Method of Finite Differences 

(bAx2 < 1 for 0 x 1. 	 3.3-16 

As a result, for large values of `b.', small values of Ax are to be used to eliminate this 

oscillation. For problems in one space dimension, it should be possible to use a Ax , small 

enough to eliminate the oscillation. When the dispersion coefficient becomes zero so that 

`1) ' becomes unbounded and the equation is no longer parabolic, it is impossible to use 

small enough time increment. Consequently, the crank Nicholson and backward 

difference equations are not applicable to the solution of differential equations of such a 

type. 

The difference equations that are developed by the three methods: Forward Differences, 

Backward Differences, Central Differences (Crank Nicholson scheme) are applied to the 

one dimensional parabolic equation as shown and the results are analyzed to check for 

their accuracy and stability in the chapter 5. 

A difference method to solve for the parabolic equation with small dispersion coefficient 

is also developed and analyzed in the next chapter. 

MATLAB programs for all these equations are given in Appendix A4. 

3.3-3 Linear Hyperbolic partial differential equations: 
One-dimensional hyperbolic differential equations arise from pure convection problems. 

The simplest equation describes the flow of a fluid through a tube with no transfer of the 

quantity conserved and with no generation or consumption. This equation is 

, au au 
- 10 	 3.3-17 

ax at 

The centered difference equation is used for its numerical solution. 

The Centered Difference Equation: 

For the centered difference equation, the finite difference analogs are centered in both 

space and time with respect to the grid points at which the values of the dependent 

variable are determined. In Figure 3.4, two successive time levels of grid points are 

shown in space. 
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Subscripts for u 

0 0 0 0 0 0 0 0 0 0 n +1 

9 0 0 0 0 0 0 0 0 0 n 
1 i-1 i R-1 

X=0 X=1 

2 i i+1 R R+1 

0 0 0 0 0 0 0 0 0 • n+1 

0 0 0 0 0 0 0 0 0 • n 
Subscript for v 

Fig. 3.4 Split points for coupled hyperbolic equations. 

A single, representative point about which the finite difference analogs are written is 

shown; this point is designated by a cross. The coordinate of this point is x,_112 	. As 

in the Crank-Nicholson equation, the space derivative at the n + -'/2 time level is 

approximated as the average of the space derivatives at the time levels for t„ and 4+, . 

This analog is; 

au 	1 u ,n+1 	 U1  . — U ,n 	I-1,n 3 .3 - 1 8 
i-112,n+112 2 	Ax 	Ax 

This analog is second-order correct. In a similar manner, the time derivative at the (i -1/2) 

space position is approximated as the average of the time derivatives at the space 

positions for x, and x,_1 . This derivative is also second-order correct, and it is given as; 

( au ) 1 

~ 2 
Iii,n+1 —111,n 141-1,n+1 3.3-19 at 	i-1/ 2,n+112 At At 
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Both of these analogs contain values of the dependent variable at the same four points in 

the grid. Consequently, when they are substituted into equation 3.3-17, the resulting finite 

difference equation will contain values of u at these four points. This equation is 

(b 	1 	b 	1 )1, 	 b 	1 
— + — u „+1  =(— – — 	 + u,_" 
Ax At ) 	Ax At ) 	 Ax At 

3.3-20 

This equation is stable for any ratio of Ax / At . 

The centered difference analog of equation (3.3-17) is explicit. Although the centered 

difference equation is stable for any ratio of increments, the truncation error can be 

minimized by a proper choice of this ratio. In fact, there is no truncation error at all in 

equation (3.3-20) for the proper value of the ratio Ax / At . This value is b, the velocity of 

the fluid. 

Numerical methods are not required to solve hyperbolic equations as simple as equation 

(3.3-17). For many physical problems, however, the material conserved is being added to 

or removed from the stream by a mechanism such as adsorption, heat transfer, or 

chemical reaction. For these equations a numerical solution is often desired, and the 

centered difference equation is very satisfactory. 

A large number of physical problems are described by two or more coupled hyperbolic 

equations. Some of these arise from fluid-to-fluid heat exchangers, while others describe 

fixed-bed adsorbers. In these latter cases, there is no spatial derivative in the equation 

for the solid, since it is not moving. The centered difference equations have proved 

excellent for these problems also. 

This is demonstrated by the simulation of a counter current heat exchanger where we 

experience two or three partial differential equations as model equations in the chapter 4. 

3.4-1 Nonlinear Parabolic Equations: 
One of the most important applications of numerical methods is solution to nonlinear, 

partial differential equations. Several methods for solving quasi-linear equations have 

been developed that result in linear finite difference equations which can be solved by 

existing algorithms and which do not involve excessive iteration. These methods are used 
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with finite difference analogs which are centered midway in time between the old and the 

new time steps. The general quasi-linear parabolic equation is 
2 	 au 	au 

	

[a(u)]  ax u  2  + [b(0] —ax  +[c(u)]u = 
at 	

3.4-1 

In order that the equation to be quasi-linear, these coefficients must be functions of 

'only and not of its derivatives. The general finite difference equation to be used for 

solving (3.4-1) is the Crank-Nicholson equation, and various methods of handling the 

nonlinear coefficients are used in conjunction with this method. For many quasi-linear 

equations, the boundary conditions are linear and can be handled by methods discussed 
previously. 

In order to study the various methods to solve the quasi-linear parabolic equations, it is 

sufficient to consider the following partial differential equations with some non linear 

coefficients. All other non-linearities can be handled in a similar way. 

[a(u)] 	 
au 

au = — 	 3.4-2 _x  2 	at  

Following are some of the efficient methods to solve the above equation numerically. 

3.4-2 Iteration using old value: 

The Crank-Nicholson analogs to the derivatives are centered about the time level 

co, 2  .An analog to the nonlinear coefficient, a(u), is required at this time level; and, if the 

resulting finite difference equations are to be linear, analog must not contain values of u 
at the time level tn+1  . The simplest analog is obtained by evaluating a(u) at the old time 

level and using for a(u n.012 ). If the function a(u) does not change very rapidly with u, the 

solution to the resulting finite difference equations should be fairly near correct values. 

These values can be improved by next evaluating a(u,,,„ 2 ) as aKu„ + 	2] where 

un1 +1  is the value obtained when a(u,) was used for a(u„,i12 ). The result of a continuation 

of this procedure is the following iterative equations: 

 

( 
U i( ,„!  in) (In +1) 

1  
2

A2x(11)1 -41(.741-11)) 
  

u 

At 

 

a 3.4-3 

 

2 
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—2u + u,-1n  
where ; 	 gu,n  	 3.4-4 Ax  2 

and 	 u,0)  = U, n 	 3.4-5 

Iteration is continued until u1(1::+1) u  (m) 1 within a predetermined tolerance, The resulting 

finite difference equations are linear in u;'",++11)  with the coefficient matrix being 

tridiagonal so that the Thomas algorithm can be used for the solution. This method 

should converge in three or four iterations. Notice, however, that the first analog to 

a(un+1 ,2 ) is completely forward, so that there will be some limitations on the size of the 

time increment to ensure stability. 

3.4-3 Forward projection of Coefficient to Half Level in Time: 
Douglas has devised a method for projecting the value of u to the half-time level for use 
in the nonlinear coefficients. This method has less stringent restrictions on the time-step 
size for stability and converges more rapidly than the method described above. 
For this method the value of the dependent variable at the half level in time is obtained 

from a truncated Taylor series as follows: 

(au) (At) (  a 2u)  I i ., j2 
U l,n+3 / 2 = U

1'n 
-4-  — 	— + 

	
+... + 	3.4-6 

at ,,„ 2 	ox 2  i  , 2! L 2 

The series in equation (3.4-6) is truncated after the second term to obtain a second-order-

correct analog to u,),÷1,2  .The time derivative in this analog is then obtained from equation 

(3.4-2). The resulting finite difference analog for to be used in the nonlinear coefficient 
is; 

At r 	\ 2 
Ui,n+112 = 	 Li 1,n x ,n 2 

3.4-7 

This value is then used in evaluating a(u) for use in the Crank-Nicolson analog to (3.4-2). 
The resulting finite difference equation can be written as; 

—  {ci[ui  + At _Li A2 
	Ax  (te, 	u,n±l , ,n 2 " ku ,n 2 	' 	 At 

3.4-8 
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The values of, ui „, which result from the application of equation (3.4-8), can be 

corrected by an iteration procedure similar to that described in the previous section. The 

need for such a correction can be determined experimentally and usually is found 

unnecessary. It might be more advisable to decrease the time step rather than to iterate. 

The set of equations thus obtained from equation (3.4-8) are solved by the Thomas 

algorithm. Such procedure has been proved to be very efficient for the numerical solution 

of a number of quasi-linear, partial differential equations. 

3.4-4 Backward Taylor series Projection: 

An analog to ui.„,112  for use in the nonlinear coefficients can also be obtained from a 

truncated Taylor series written about the time levelto+l . In this case, the Taylor series is 

i,n+1/ 2 — 
au At (  a 2  ui 	1 (At

-s, 2 
3.4-9 

at 1,n+1/ 2 2 	\ at 2 i,n+1/ 2 2! = Vi 	 — + 
	2 ) 

Again, the Taylor series is truncated after the second term to obtain a second-order-

correct analog, and the time derivative is obtained from (3.4-2).The resulting finite 

difference equations can be written as 

U i,n+1/2  [ct(u ,AA2„u „ 1/2  = 	 3.4-10 
At / 2 

This equation is not explicit, but the resulting coefficient matrix is tridiagonal. The values 

of utn+1,2  can thus be readily obtained, and these are used in a Crank-Nicholson analog to 

(3A-2), which is 

\-1 1  A2 („ 	 U, n+1  — 
[a(14 f,n+1/ 2 1-1 2  'x■,"1,n ' "i,n+1 At 

The values obtained can be refined using the iteration scheme given in section 3.4-2 

3.4-5 Centered Taylor Series Projection: 

The centered Taylor series projection for 	can be obtained from the Taylor series 

for u,,„1,2  and u,,, written about the level tn+112  . In this case a(u,„) is used for a(u,,,+1 ,2  ), 

and the resulting finite difference equation is; 

3.4-11 
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[a(u, )11A41,,, +Lie , „ )= 	/ 2  
2 " 2 	At/ 2 

3.4.-12 

The values of 14, n+112 obtained from this implicit equation are then used in (3.4-11) to 

obtain the values of ur,+, .This method is called a predictor-corrector method by Douglas. 

All the above discussed methods are implemented using MATLAB. The codes generated 

are used for developing the results. The results are given in the chapter 5 of this report. 

The programs for the above methods are given in Appendix A4. 

Further, all these methods discussed above can be used for the solution of non linear 

coupled (more than one) partial differential equations. 

These equations are successfully used to simulate for the enthalpy and material balances 

describing a packed bed reactor. The equations can be easily coupled with the reaction 

term also. This is included in the simulation of an isothermal packed bed reactor with 

second order reaction as demonstrated in chapter .4. Computer program is given in the 

Appendix A4. 

3.5 Nonlinear Hyperbolic Equations 

Most of the methods described in the previous sections can be adapted for use with quasi-

linear, hyperbolic equations. As one of the more important applications of numerical 

methods of solution of hyperbolic equations is to those with split boundary conditions, 

the methods will be illustrated on this system. Consider the equations 

-111(t)-  

+b2 -)+[c2 (u,v)t, _ 	fv, 3.5-1 

More generally, the coefficients of the space derivatives could also be functions of u and 

v, but the methods of handling the nonlinear terms would be the same. 

The nomenclature and indexing for the centered difference method applied to a split 

boundary value problem is illustrated in Figure 0. The derivatives are centered about the 

point x,_1 , 2,t„112  for the variable u and about the point xt+1,2  , t„1 , 2  for the variable v. 

Actually, this is the same point in space, but the x index is shifted for the two variables. 
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It is necessary then to evaluate u1_112,n+11 2 and Vi+1/2,n±1/ 2  for determining the c1 	v) and 

c2  (u, v) in the centered difference equation. 

A method of straight iteration using old values similar to that described in the previous 

section can be used. The average of the two values at the level t„ must be used for the 

starting value; as a result, the starting value of the nonlinear coefficient ci  (u,v) is 

	

1 	 \ 1 [ c1 ku1-1/2,n+112 , V i+1/ 2,n+1/ 2 ) 	C1 —2 	i-In 	t 1  1n 11-2 k1/1n 	Vi+1,n 	 3.5-2 

The starting value for c2  (u,v) is defined similarly. With c1  and c2  being known, the 

centered difference equations, such as (3.3-20) can be used to compute the values of 

and v,„+1  by one of the algorithms. These values can be further improved by an 

iterative process similar to that described in previous sections. 

Forward Projection: 

The forward projection method described in Section 3.4-3 is also readily adaptable to 

hyperbolic systems. The Taylor series of equation (3.4-6) is written about the point 

X i--1/ 2 to  for the variable u, and it is also truncated after the second term of the series. The 

time derivative is evaluated by equation (3.5-1). The values of the variables 	 and 

v,+1 ,2 ,, are evaluated as the average of the values at the two grid points on either side. 

These values are used both for evaluating the nonlinear coefficients and in the -term 

—v).The finite difference analog of the space derivative is second-order correct and is; 

3.5-3 

The resulting relation for u,_112 n+112 is; 

At b..  
U i-1/ 2,n+1/ 2 = U i-I / 2,n — 	1.1'1 (u i,n 	Ui-1,n)I /6"70 ± [C1 1(141-112,n V i+1 2,J1 	 / 2,n — V i+112,n 

2 

where 

3.5-4 

U t-1/ 2,n 	— kUi  
2 	' 	

141_Lti 
 

Similar equation can be written for the dependant variable vi+,12,n  

3.5-5 
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Using the value from equation (3.5-4), the values of the nonlinear coefficients, 

cju, v)and c 2  (u, v), can be computed. These can then be used in the finite difference 

equations, and, and the values at the new time level, u,„+ , and 	, can be computed. 

The difference schemes for some of the examples involving the forward difference 

equations for non linear hyperbolic equations are discussed in the next chapter. 

The program for such an example is given in Appendix A4. 

Results and discussions are given for the particular example in the subsequent chapter. 

3.6 Nonlinear Boundary Conditions 

All the second-order methods described in the previous sections have been applied 

satisfactorily to all types of linear boundary conditions without any complications in the 

use of existing solution algorithms. These algorithms can be used on problems with 

nonlinear boundary conditions with little additional complication and with a negligible 

increase in computer time. The method of handling nonlinear boundary conditions can be 

described easily for a single parabolic equation so that the resulting finite difference 

equations are tridiagonal and can be solved by the Thomas algorithm. 

Consider heat conduction in an insulated rod, which is described by 

a 2  U au 	— 
axe at 3.3-1 

Let one end be held at a constant temperature and the other end receives heat by radiation 

from a constant-temperature source. These boundary conditions are 

u = uo  

— U 4  )— 	=0 
	

3.6-1 

with the initial condition 

u = uo 	 3.6-2 

In this case the temperature has been divided by the absolute temperature of the source of 

radiation in the normalization process. The parameter's' in equation (3.6-1) is 

dimensionless and contains the cube of the source temperature, the Stephan-Boltzmann 

constant, and the thermal conductivity and length of the rod. 
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2(Ax) 
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The Crank-Nicholson equation can be used for equation (3.3-1) as shown in the previous 

sections, and the boundary condition at x = 0 can be handled readily as done previously. 

Consider that the grid points are arranged as shown in the figure; 3.3.The backward 
analog to should be used at x=1 to ensure against oscillation of the computed values 

ofuR  . This value can be obtained from equation (3.3-9) as 

R-1,n+1 + [— 2  (Ax 2  )] 
(AX)  At 	R,n+1 	R+1,n+1  At 

3.6-3 

The discrete analog to the boundary condition of equation is ; 

4 	) 
R+1,n+1 = 	 2s(Ax)(1—u R ra +1 3.6-5 

When the value of u from equation is substituted into equation as was done with the 

linear boundary condition, the resulting equation is nonlinear in uR 	 and this is one of 

the unknowns to be evaluated. 

If this equation were linear, it would have been written as the last equation of the 
tridiagonal system and would be 

aRR-1 bRU R = d R 	 3.6-6 

where aR ,bR , and d R  are known constants. Since this equation is nonlinear, we write it 

as; 

aR uR _, + b„uR  = h+ guR 	 3.6-7 

where aR ,b„, h and g are constants. Now we write this as the last equation of the 

tridiagonal set of the difference equations. All the rest of the equations are linear. Thus 

the first half of the Thomas Algorithm, as given in the appendix, can be applied exactly 

as shown except for the computation of 7 R , which is also uR,n+, . In place of this 

computation, coefficients in a nonlinear equation containing only uRn+1  are computed. 

This equation is; 

h— a122/1?-1 	g  4 
U R,n+1 = 7R — 	 Rn +1 R 	PR 

3.6-8 
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or 
4 u R,n+1 = P quR,n+i 3.6-9 

where p and q are constants as defined in equation. This equation can be solved by a 

number of techniques. Once the value of is u „„+1  determined, the back half of the 

Thomas algorithm can be used to obtain the rest of u,,,+1  . 

Hence the non linear boundary can be handled with a negligible increase in computation 

time. Here we determine the value of uR,„+1  from non linear relationship given by 

equation using the method of false position, or regula falsi method. This method gives 

assured convergence. The algorithm for the regula falsi method is given in Appendix A5. 

The entire difference equations are developed and implemented using the program code 

given in Appendix A4. 

Similarly we can handle the situations with non linear boundary conditions at both ends. 

In this case however, we need to first consider initial assumptions at one boundary and 

carry the forward calculations as was done with the case of single non linear boundary 

conditions and further the back calculations are carried to refine the initial assumptions 

using a similar analysis as shown above. 

The results obtained are discussed in the chapter 5. 
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CHAPTER 4 

ENGINEERING APPLICATIONS 

Applications to Engineering Problems: 
In this chapter we apply the numerical schemes developed in the previous chapters to 
a number of engineering problems. The examples considered are quite general, but 
they can be used to simulate a number of systems where such types of equations are 
found. The fundamental difference equations are developed to treat a particular type 
of system with a set of initial and boundary conditions. The computer programs given 
in Appendix A4 are based on these numerical schemes. A reference can be taken 
from the Appendix for various algorithms used to solve the linear system of equations 
developed here in this chapter. 
The results obtained from these schemes are discussed in the next chapter. 

4.1 Heat Flow in Insulated Rod: 
The heat flow in an insulated rod is modeled by Diffusion equation as given below. 
The equation may be having constant parameters multiplied on both sides of the 
equation. 

a
ax

2U

2 

= au 

u(0,t) = 0 
all t 

3.3-1 

2 2 
(Ax)2 

At 11  i,n4-1 	" i+1,n+1 = n 	i+1,n 

This equation is in dimensionless form and all the variables are normalized. 
Following are the resulting difference equations when the respective analogs for the 
partial differentials are substituted. 
for 2 i R— 2 

(Ax  Ni2 
2 	2 \- 	 u,,„ 	4.1 -1  -1 

At 
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for z=1 

—2-2 
(Ax)2 

U2,n+1 At 
= [2 2 

 0,92 
1141n  — u2n  

At 
4.1 -2 

for i = R — 1 

u R-2,n+1 + — 2 2 
(A 	

,n+ 
.02 	 0.02 

1 	 uR_Ii  = 	R- U 2,n ± 2 2 	i u„_,,„ — 2 	4.1-3 
At 	 At J 

These result in a set of linear algebraic equations that can be readily solved using 

Thomas Algorithm A2 for the estimation of dependant variable. 

4.2 Heat Flow in Tapered Rod 
Here we consider the heat flow in a tapered rod with some moving boundary 

conditions. The equation consists of both Diffusive and Convective terms. Here the 

term '13' is dimensionless combination of parameters that describe geometry and heat 

transfer characteristics. 

4.2-1 

subject to; 

t) = 1 

au— pu = 0 at x = 0 all t 	 4.2-2 

u(x,0) = 0 all x 

We define: x, = —1 / 2)Ax and the step size is given as; Ax = 1 / R 

Next we use the Crank-Nicholson method to derive the difference equations as given 

below. 

for 2 	(R —1) 

a 2u 	2 ± au— = 
axe 	X 

pu 
ax at 

ax 

  

4p(Ax) 2(Ax)2 - 21+  1 
Ut,n+1 	2i — 1 jui-i-I'n+1 = 

12i-3) 
u 

2i —1 
2 

2i —1 	At 

 

       

(21-3\  
21-1 j  

u;_ ],„ 
12i+1)  

2i —1)141+1'n  
4 	p(Ax)  2(Ax)2  

	

2 +   u, „ 
2i —1 	At  

    

4.2-3 
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ci( u 

—
0

= 

C 2 (U — V) =( 4,1-Vtl b2  
4.3-1 
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for 

for 

i=1 

2 	4p(Ax) 2 — p(Ax) 2(Ax)2 
1111,n+I + 3u 2,n-1-1 	= 

4p(Ax) 	2 — P(Ax) 	2(Ax)2  + 
u 1,n — 3u2 n 

4.2-4 

2i — 1 

i—R 

2 + p(Ax) At 

[2  
2 + p(Ax) At 

( 2R — 
2R — 1) R-1,n+1 + 	2 

4p(Ax) 2(Ax)2  2R +1 
2R — I 	At 	2R —1 R,n+1 

   

(2R  — 3 a( 2R -F 1  [ 	4p(1x) 2R + 1 2(Ax)2 7 
,,2R —1)

u 	
2R —1 1+ 

,, 
±  2R-1 ± 2R — I 	At 	/2,n  

4.2-5 

This set of equations again constructs a tridiagonal system of linear equations that is 

readily solved using Thomas Algorithm as given in Appendix A2. The results 

obtained are explained in chapter 5. 

4.3 Countercurrent Heat Exchanger 
The equations that model the transfer of heat in an unsteady state countercurrent heat 

exchanger are purely convective as given below. These equations are a result of heat 

balance of fluids (cold and hot) flowing in the countercurrent heat exchanger. Here 

2̀1'  is the dimensionless temperature. The parameters b1  and b2  are dimensionless 

velocities of the two streams and the parameters CI  and c2  contain the coefficient of 

heat transfer between the two streams. 

Subject to; 

u (x, 0) = 0 x > 0 
	

4.3-2 
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u(0,0) = 
v(x,0) = 0 

all t 	 4.3-3 
u(0, t) = 1 
v(1, t) = 0 

We define x, = i(Ax) for u and x = (i – 1)(Ax) for v. 

The difference equations generated as a result of application of difference analogs 

given in the previous chapter (section 3.3-3) are; 

for 2 i R –1 

b, 	c, 	1 	b 	c 	1 \‘ 
Vi +1,n-0 —Ax ± —2 

+ At  ut-1,4-1 	 — u 	(— )Vi n Ax 	2 	At,. ''n+- 	2 	' 	2 ) 

b, 	c, 	1 	 b1 	c1 	1 	el ) ( + 	u, 
' 
„ + 	v,+, 

'
+ v,,„ + 	u 1  + i-,n &C 2 At 	Ax 2 At 	2 k 

4.3-4 

and 

c2 	 c2 ju 	b2 C2 1 	 1 
2 u 1-1,n,n+I 	 +(— t ,n+1 	– — – 	 )V. 

	

2 	At )
v i+1,n+I 2 	Ax 2 At ''"÷ (Ax 

b 	C2 	1 
2 

– 	(21 	211_1.,7 	2 	
2 	At 

– —)V 
l '" 	Ax 	 ''" 

b2 
Ax 

± C2 

2 	At I Jvi+l,n 
 

4.3-5 

The boundary condition equations are found by substituting their values in equations 

for i=I and i=R. The resulting equations form a bi-tridiagonal coefficient matrix that 

is solved using the Algorithm given in Appendix A3. Results are discussed in chapter 

5. 

4.4 Isothermal flow reactor 
The model equation given below is a Convection Diffusion equation usually 
describing the flow of mass in a variety of reactors such as packed bed catalytic 
reactor and Adsorber etc.The equation also contains a source term to account for the 

reaction. The dependant variable u, is the dimensionless concentration. 
a  2 u  2  au 
	 S — – ru = 
ax e  ax 	at 

4.4-1 
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ax 
au s(1— u) = 0 at x=0, alit 4.4-4 

{ 	 2( )2 — rOxY ui,n+ii 2 
S(AX)1}  + [1 s( 1U2,n+i  = 

2  
1+ 

At 
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Subject to the boundary conditions; 

	

u(x,0) = 0 for all x 	 4.4-2 

	

au = 0; at x=1 , all t 	 4.4-3 
ax 

The equation is a non linear partial differential equation. We apply the Crank-

Nicholson equation. The resulting finite difference equations are; 

for 2 i R —1 

2(Ax)2 
1 ± 	± 	2 r(Ax)2 

Ui,n+1,, 2  
2 -1-1 U.r,n ± [1 

S(AX)1  
141+1,r7-4-1 

 

  

2(6.x)2  u 4_ s(Ax)111, _im 	s(Ax)1u,+,,, + 2 + r(Ax)2 u n4-1/2 2 	 2 	 At 

4.4-5 
With 

  

{ 1 + s(Ax)iu 	+ [1  s(Ax)  
2  

 

+ [2 + r(Ax)2  u E, 

 

U i,n+112 
At  

2(642  
.+1,n ,n 

  

    

4.4-6 
for i=1 

s(Ax)iu2.n  {r(A02. ", 
„I 	1 n+1/ 2 2 

2(,)2  +[-F,±4,0-1  
At LL 	2 j 

}u 1 n — 2s(Ax) 

4.4-7 

with 

= 	
At 	sAx u l,n+1 / 2 	111n ± 20x2  2A 2  
	{.[1 	 

2 
111 	 ) 2,n S( 	A X 

-1+ s(Ax)  + r(Ax)2  u , n  lu 
2 

4.4-8 
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At s(A.,0114R-1,n  ± s(Ax) 
R,n+11 2 = UR n  

{[1±  
2042  2 	j 2 

roxv  
R,n 
	

} 
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For i=R 

1  + s(Alu R _ Ln  +{ 46,42  u R,n+1/ 2 
2(Ax)2  [I ± S(AX)1}U  /2,n-1-1 2 	 At 	2 j 	

=-- 

+  x)i}  u – [1 + s(Ax) 
 u R-1,n + r(Ax)2  U R,n+112 

204
At  2 

  ± [1  s(
2  lt,n+1 2  

4.4-9 
With; 

4.4-10 
The resulting equations here again are tridiagonal in nature and are readily solved. 

This example illustrates the simplification of a number of reactor models. The results 

and the concentration profiles are discussed in chapter 5. 

4.5 Parabolic equation with small dispersion coefficient 
This problem illustrates the effect of dispersion coefficient on a Convection Diffusion 

equation and shows the numerical instability introduced by the Convective term 

The differential equation to be considered is; 

02u au au 
	 b— = 	 4.5-1 
0x2  ax at 

The above equation describes the one dimensional flow of a fluid with dispersion or 

diffusion. Here the parameter b is the ratio of the velocity of flow to the dispersion 

coefficient. 

When the dispersion coefficient is small, or the parameter b is very large, the 

adjoining term becomes the controlling term on the left side. Under such conditions 

the numerical solutions at a given time interval oscillate around the true curve. We 

firstly develop the difference analogues for the partial differential equation. 

By Crank Nicholson analog; 

ax2 i,n+.1,11; 

– 2u,„ +141 _1n 	 + 
2 	(Ax)2 	+ 	(Ax)2 4.5-2 
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and 
( au — 	03u 	(At)2  

(At) 	at 3  ). v +72 24 	 ( 	— 

( au 	 1 	—  
ax)i-1/2,,7-4-1 / 2 	2 	Ax 	Ax 

Substituting these analogues in the equation 4.5-1 we get the following difference 

equation 

( 	2Ax2  0 -I- bAx)u,_,,,,,, 4- — 2 — bAx 	i 1  in+1 + 1 i  ii-t,n+1 = At 

2  bA.x — 1)u1_1,„ (2 	
At 

bAx 2Ax  t  i,n 4.5-5 

This numerical scheme can be tested for different values of b and Ax to study the 

convective effect. The results obtained for such a system, as a result of 

implementation of above scheme are given in chapter 5. 

4.6 Heat flow in a rod with heat received by radiation at one end 
This application explains the methods to handle the non linear boundary conditions. 

For understanding purpose we may consider the simple Diffusion equation with non 

linear boundary arising as a result of radiative heat transfer. The equation is; 

02u au 	 — 
aX 2=  at 

Subject to; 

u(x,0)= uo  all x. 

u{0, t) --= uo  all x 

41—u 4 	= 0 at x=1 and t 	 4.6-1 
ax 

Let x, = i(Ax) 

The resulting finite difference equations are; 

4.5-3 

4.5-4 

3.3-1 

   

Ax2 
+ [— 2 2 	 u,_, „ 141-1,n4-1 At 111,n+1 	Ui+1,n+) = 2 4.6-2 
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for i=1 

[— 2 2 (A‘t) 2til,n+1 U2, r7+1 = u2 n 2u0  
At 

Ax.) 2 - 
2 2 ‘- 	ul ,, 	4.6-3 

At 

 

  

For i=1? 

Here we use the backward difference equation to prevent oscillation in the values of 

the dependant variable. 

[2U19,„+1  + — 2 (Ax)  
At 

2 -  

 

[ (Ay) 2 

At u20 „ — 2s(Ax)+ 2s(Ax)u10,,,+1  i 	 4.6-4 

  

U20,n+1 

    

The first half of the Thomas Algorithm is implemented till the computation of 13R _1  

and R_1 . Hereafter we follow the method discussed in previous chapter (section 3.6). 
tAx)  2 

PR = 2 	At 	
2 / /3„_, 	 4.6-5 

then, we have; 

YR = (dR — a l? YR ) /3/2 	 4.6-6 
[ (A02 

R,n 2s(Ax) — a R7 R-1 / fR +[2S(AX) I le Ri4,?,,74-1 	4.6-7 
At 

Comparing equation with equation , we get; 
p 	(Ax

)
-2 

uRn 2s(Ax) — aRy„_, 
At 

and; 4.6-8 

q = 2s(Ax)/ 13 „ 	 4.6-9 

The function to determine the value of un „, using regula falsi method is; 

f = P +quR4  ,n+i — UR,„+1 = 0 
	

4.6-10 

Thus we obtain the values of u R n-1-1 • Thereafter we can implement the remaining half  

of the Thomas Algorithm for the estimation of the all the remaining values of u,„+, . 

Thus the nonlinear boundary conditions are easily handled and their solutions are 

numerically comparable to that obtained by FEM (Finite Element Method) as will be 

shown in the next chapter. 
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4.7 Shrinking core model: 
The model equations developed by this method are used for the concentration 

analysis of 

Catalytic packed bed reactors, slurry reactors, and bubbling fluidized bed reactors. 

The model equation is given as follows. The equation holds true for first order 

reaction. 

d 2  k-11 	2 	 e2kp = o 
d22 	a, dam, 

with the boundary conditions; 

= 1 at 2 =1 

and 	P = finite at 2 = 0 

4.7-1 

4.7-2 

    

here 0 = R 	
pcSa — Thieles modulus and is a dimensionless term. 

The equation is derived for steady state conditions. Also W is the dimensionless 

concentration. We derive the difference equations for this differential. 

Using the difference approximations for second and first derivatives as mentioned in 

the previous chapter, the following difference equations are formulated. 

u, — 2u, + u,_i 2 /4,4., — 	e2 u  = 0 	 4.7-3 
Ax e 	i(dx) 2Ax 

This equation can be rearranged as; 

[
1 — 	+ {-2 — 02  (A)C2  )114 ± [1 1}41,i  = 0 	 4.7-4 

The above difference equation is implemented on MATLAB and the results obtained 

are compared with the theoretical result which is given by; 

= —1  (sinh 	sinh 0) 	 4.7-5 

The detailed discussions are carried in the next chapter. 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

In this chapter, the numerical results obtained as a result of implementation of the 

various finite difference equations for a number of situations are presented. The finite 

difference equations so developed in the previous chapters are to be tested with a 

number of alterations to prove their efficiency and accuracy in handling the 

Convection Diffusion equations. 

All the problems discussed assume that the equations derived are normalized and 

dimensionless. 

The results are obtained from the different MATLAB codes generated in cohesion 

with the formulated difference equations (as given in the Appendix A4). 

The results are checked for a number of parameters such as Convergence, Accuracy, 

Sensitivity, Stability and Error analysis. The various engineering applications that are 

discussed in the previous chapter are also included for result analysis in a serial-wise 

manner. The program codes are so written that they can be run for a number of 

variations in step sizes and other parameters. Most of the times, the accuracy of the 

results are compared with those obtained from `PDEPE tool box' of the MATLAB 

software. 

This tool box is based on the 'Finite Element Method' for partial differential 

equations. 

The programs are written in such a way that the user can enter the step sizes and 

ascertain the boundary and initial conditions. The script files written in MATLAB 

simulate the given problem with these inputs and calculate the results. The files are so 

written that the user can watch the value of the dependant variable at a particular 

instant of time and space. There is provision of plotting the dependant variable 

against the time and space as variables at the user prompt. At the back end, the step 

sizes and parameters so entered are passed to the programs written with PDEPE tool 

box and thereafter are compared with those obtained from the simulation of 

difference equation. This allows to carry out the error examinations. 
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5.1 Heat conduction in uninsulated tapered rod 
Consider the problem of heat conduction in an uninsulated, tapered rod. The 

differential equation (Convection Diffusion) for steady state conditions is; 

d 2 u 2 du 2p 	u = 0 
dx 2  q -h x dx q + x 	 5.1-1 

The length variable, x and the temperature variable, u, are dimensionless and 

normalized. 

The constants `q' and p' are dimensionless combination of parameters which 

describe the geometry and heat transfer characteristics of the rod. These are defined 

as; 

hL 	4 	 Do  
k 

	f2 
	

and 	q = 

where L is the length of the rod. 

h is the coefficient of heat transfer between the rod and surroundings. 

k is the thermal conductivity of the rod. 

f and Do define the diameter, D, of the rod by D = DO + fLx. 

Consider the simplest boundary conditions as: 

u(0) = 0 and 	u(/)=/ 5.1-2 

The finite difference approximations for this equation are developed in the section 3.2 

On implementing the program written in the Appendix A4 we get the following 

results. 

For q=1; p=80 and step size of Ax = 0.1, we get the following plot as shown in figure 

5.1 

The figures show that the results are converging towards 1 and are not sensitive to the 

step size (no oscillations). For error analysis we compare the numerical value of the 

dependant variable with the analytical value at x=0.9. 

Analyticalvalue — Numericalvalue 
%error = 

	

	 x100 
Analyticalvalue 

5.1-3 

%error = 0.419208 — 0.18934849  x 100 = 54.83% 
0.419208 
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Figure: 5.1 Heat conduction in an uninsulated rod Ax 
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Figure: 5.2 Heat conduction in an uninsulated rod. AX =0.01 
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The analytical value for x = 0.9 is 0.419208. 

For Ax =0.01 

0.419208 0.3856 %error = 	 x100 =8.0153% 
0.419208 

Further on running the code for Ax =0.001 and 0.0001 we get 0.69 % and 0.0954% 

error respectively. Thus the difference scheme is efficiently representing the given 

differential equation. 

b) Consider the same differential equation discussed above with a changed boundary 
condition as; 

du (0)= g 
dx 

5.1-4 

We take trials for g= -10. The resulting figures are shown in the figures 5.3 and 5.4 

We see that the solution is converging towards 1 even with this case. It is noticed that 

the solutions are converging and the values for Ax =0.01 and Ax =0.001 are 
comparable and thus the results obtained are accurate with a truncation error. 

c) Consider the moving type of boundary conditions of the type for the same 

differential equation 

du  (0) – Hu(0)= – g 
dx 

where; H = —hL 
Nusseltnumber 

5.1-5 

The figure obtained on inputting the values q=2.5 p=80,-g=10,-11-300 for Ax =0.001 
is shown in figure 5.5 , for Ax =0.005 in figure 5.6. The obtained results are 
compared at x=0.6 and found to be satisfactory. Thus the developed schemes are 

working well with moving boundary conditions and give comparable values of the 
dependant variable u. 
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5.2 Diffusion Equation 
Consider the one dimensional diffusion equation. The equation is purely parabolic. 

a2u  au 
ax e  at 

the boundary conditions are given as, 

u(0,t) = 0}
all t 

u(1,1) =1 

With an initial condition given as; 

u(x,0) = 0; x < 1 

5.2-1 

5.2-2 

5.2-3 

We have already developed the difference equations for the above Diffusion equation 

via three methods. We present them serially. 

a) Forward Differences: 
The difference equations using this method are given in sections 3.3-1a. As already 

mentioned this is an explicit method and imposes a criterion on step sizes for stability 

of the solution. The stability criterion is At I Axe  = 0.5 

A plot to illustrate violated stability condition is shown in figure 5.7. Here we used 

Ax =0.1= At . 

Next we use the step size along time dimension that is well-matched with the stability 

criterion. For a step size of Ax 	this comes out to be At =0.005. 

The subsequent plot obtained is shown in figure 5.8. 

The overall percent error obtained in the method when compared with the PDEPE 

tool box solution is: 2.682149%. We use the same formula for evaluating the percent 

error as given in equation 5.1-3 except for the analytical term is replaced by the one 

obtained from PDEPE tool box. The error initially is too high, because the value of 

the dependant variable changes very slowly, i.e. at successive grid points for every 

time interval. The error can be further reduced, but at the expense of huge 

computational times. 

The figure 5.9 is obtained using the PDEPE tool box of MATLAB and figure 5.10 is 

the result fromfinite difference schemes. The profiles from the figures are 

comparable. 
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b) Backward Differences: 
The difference equations for this method are described in section: 3.3-1b. 

The system does not suffer any stability criterion and reduction in step size entirely 

depends on truncation errors. The error obtained for step size Ax =At = 0.01 is: 

2.563%. 

Further the error resulting from Ax —0.1 and At =0.01 is 1.9135 %. A table showing 

the error values for different step sizes is shown in Table: 1 

The respective plots obtained are shown in figure 5.11, 5.12, 5.13, 5.14. 

c) Crank Nicolson method: 
In this method we use the central difference equations to approximate the given 

partial differential as is described in the section 3.3-1e.The method is stable for all the 

ratios ofAx / At . Further the method gives the most accurate results for At < Ax step 

sizes. One Such trial for Ax =0.1 and At =0.01 is run and the percent error is found to 

be 0.60528%. The respective plots obtained for these values of step size are shown in 

figure 

Finally we present a tabulated form of the percent error found in each of the methods 

(Forward, Backward & Central Differences) for different step sizes along the length 

and time dimension. This is given in Tablel. 

From these tabulated error analysis, one may easily conclude that the Crank 

Nicholson (Central differences) equation is the most effective method as compared to 

others. 

The error obtained is too low to be considered and thus the equations depict the real 

situation of the physical problem. 
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Ax At Percentage Error Remarks 
Forward 

Differences 
r 	Backward 

Differences 
Crank- 

Nicolson 
0.1 0.1 Not applicable 4.81672 4.6961523 Crank- 

Nicolson is 
better 

0.1 0.01 Not applicable 1.9135264 0.6052854 Crank- 
Nicolson is 

better 
0.1 0.05 Not applicable 3.39369 1.650292 Crank- 

Nicolson is 
better 

0.1 0.025 Not applicable 2.59934 0.8888068 Crank- 
Nicolson is 

better 
0.01 0.01 Not applicable 2.56344 1.5665114 Crank- 

Nicolson is 
better 

0.01 0.001 Not applicable 1.41275 0.6609212 Crank- 
Nicolson is 

better 
0.01 0.005 2.682149 2.14429 1.1033498 Crank- 

Nicolson is 
better 

Table:1 Comparison of difference methods for Diffusion equation 
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solution of Diffusion equation using PDEPE 

Position sector X 

Figure 5.11 Diffusion equation (PDEPE Tool Box) Ax = 0.01, At 

Plot of dependant variable U Vs dimensionless length for a particular time t 

Figure:5.12 Diffusion equation (Backward Differences) Ax = Lel, At x.01 
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Plot of dependant variable U 'us dimensionless time for particular position X 
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Plot Of dependant %enable U %Vs dimensionless time for particular position X 
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5.3 Heat Flow in a Tapered Rod (Unsteady state): 

The governing equations are 

32u 2 (au 	au + 	— 	
at  ax 2  X ax 

subject to; 

5.3-1 

0,0=1 

au — pu = 0 
ax 

at x = 0 all t 	 5.3-2 

u(x,0) --- 0 all x 

The numerical difference equations are developed using Crank Nicholson method and 

are mentioned in the section 4.2 

Here we present the results. When the difference scheme is run for Ax = 0.1 and At 

= 0.01, we 'get the profiles as shown in figure 5.19 and 5.20. Here we observe that the 

profiles do match to some extent, but the percentage error calculated achieves a 

greater value of 28.01%. The high error can be devoted to the oscillations brought in 

the numerical scheme by the convective term. This erratic profile can be stated from 

figure 5.18. The convective term is multiplied by the reciprocal of x. This extends the 

effect caused by Convective term. The equation no more possesses the parabolic 

characteristics and develops hyperbolic nature. The PDEPE tool box which we are 

using for error analysis do not support for the solution of hyperbolic equations. Hence 

the tool box cannot be used to handle such situations. This it can be presumed that the 

difference equations are simulating the situation more powerfully than the PDEPE 

tool box. 

5.4 Shrinking Core model 

The difference equations that are derived in the section: 4.7 are simulated. The results 

are compared with those obtained by analytical solution for error analysis. The 

dimensionless concentration profiles are shown in figure 5.21 and 5.22. The error 

obtained for Ax =0.001 is 0.2045%. The results are converging towards I. Hence the 

developed numerical scheme is efficiently simulating the given steady state system. 

This difference scheme thus can be used to simulate the model equations of a number 

of reactors under steady state conditions. 

72 



a_ 

0.3 

-§ 
c77, 0.4 

1 0.7 0.8 0.9 0.4 0.5 0.6 
Position(X) 

1 

0.9 

0.6 

0.7 

54 0.6 
as 

0.5 

0.1 0.2 0.3 

Results and Discussions 

solution of Heat flow in a tapered rod using PDEPE 

0.9 

0.8 

0.7 

g 0.6 
as 

 

0.4 

0.3 

0.2 

0.1 

 

-  

	

I  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Position Rector X 

Figure:5.19 Heat flow in a tapered rod (PDEPE Tool Box) Ax = 0.1 At =0.01 

Plot of dependant variable U Ns dimensionless length for a particular time t 

Figure: 5.20 Heat flow in a tapered rod (Crank Nicholson). Ax = 0.1, At =0.01 

73 



0.7 0.9 0.8 1 

Plot of Dimensionless Conan Vs position rector()) using Analytical Equation 
1 

D
im

en
si

on
le

ss
  C

on
ce

nt
ra

tio
n  

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 	
 

. 	- - 

X: 0.9 
Y: 0.4088 

/ 

0.1 0.2 0.3 0.4 0.5 0.6 
Position vector 

Results and Discussions 

Plot of Dimensionless Concn Vs position wctor(X) using Finite Differences 

X: 0.9 
Y: 0.4088 

a- 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Position rector 

Figure: 5.21 Shrinking core model (Difference equations) Ax = 0.001 

Figure: 5.22 Shrinking core model (Analytic Solution) Ax = 0.001 

D
im

en
si

on
le

ss
  C

on
ce

nt
ra

tio
n
  

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0_1 

0 
0 

74 



Results and Discussions 

5.5 Isothermal Flow Reactor with a Second order Reaction: 

The flow equation describing the concentration in an Isothermal flow reactor with a 

second order reaction can be depicted by a second order non linear partial differential 

equation (Convection Diffusion equation). This equation is as follows 
a2u  au s – ru 2 

ax 

au 
at 

5.5-1 axe 

Subject to the boundary conditions; 

u(x,0) = 0 for all x 

—
au 

= 0; at x=1 , all t 
ax 

5.5-2 

The second order partial differential accounts for the molecular diffusion. The single 

partial differential with respect to space is representing the convective or bulk flow of 

mass where as the term ru e  is the source term accounting for the reaction occurring. 

The difference equations for this non linear partial differential are developed in the 

section: 4.4 

Here we shall discuss the results obtained after simulation of this system. 

For the step size of Ax = At =-0.1 we get the profiles as shown in figure 5.23. 

There is some sort of oscillation in the initial time period. This is because the non 

linear terms are dominant and the linearization of this term is insufficient with these 

step sizes.The percent error in the calculation is 4.1596618%. 

When the step size is reduced to Ax = At =0.01, the error is 1.360%. 

Further for the step size of Ax =0.01 and At =0.001, the error is 1.04714% 

The profiles for both PDEPE tool box and the difference schemes are exactly 

matching as can be seen in the figure: 5.24, 5.25, 5.26, and 5.27. 
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5.6 Countercurrent Heat exchanger 
The equations describing the flow of hot and cold streams are purely convective. 

These are represented by hyperbolic equations. 

The equations are given as; 

— bt  
( au) 	_ v)  (c3azit:i 
	

5.6-1 
b 2(--Zj + c 2  (u — v) 	v  t j 

Subject to; u(x,0) = 0 x>0 ; 

u(0,0)=1  
v(x,0) = 0 
u(0, t) = 1 
v(1, t) = 0 

all t 	 5.6-2 

The difference approximations for these equations are covered in the section: 4.3 

The simulation results are shown here. 

Since the equations are purely hyperbolic, the PDEPE tool from MATLAB is not 

applicable for this particular case.Thus only the profiles obtained by the simulations 

using the difference schemes developed are presented here (see Figure 5.28, 5.29). 

Further the difference scheme can be said to be converging and accurate as it is 

producing the same value of the dependant variables u and v for different step sizes 

(Figure: 5.28, 5.29, 5.30, and 5.31). 
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5.7 Heat flow in a rod with heat received by radiation at one end 
This application explains the methods to handle the non linear boundary conditions. 

We may consider the simple Diffusion equation with non linear boundary arising as a 

result of radiative heat transfer. The equation is; 

a2u =  au 
ax e  at 

Subject to; 

u(x,0) = u0  all x. 

u(0,t)= u0  all x 

so u  
0 at x=1 and t 

ax 

5.7-2 

The difference schemes are developed in the section: 4.6. This is clear that the non 

linear boundary conditions increases the computational times. A functional 

relationship is derived for the grid point along the boundary, which is solved by using 

the regula falsi method as is described in section: 4.6. A similar treatment can be 

prescribed for solutions involving boundary conditions at both the system boundaries. 

Here we analyze the results. For a step size of ,Ax = At =0.1, the error is 0.3362%.For 

Ax =At =0.01 error: 0.045248% and for Ax =0.1 and At =0.01, the error is 0.0478 % 

(see Figure: 5.32, 5.33, 5.34, 5.35). 

We observe that the percent error in the simulation results is very less. This accuracy 

can be devoted to the method of iterations used in refining the values till the tolerance 

level is achieved. 

5.7-1 
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5.8 Parabolic equation with small dispersion coefficient 
The difference equations for this case are derived in the section: 4.5. Here we check 

the dependence of the solution for the varying values of 'b' .i.e for the effect of 

convection dominance in the differential equation. 

Az b
2  

The condition given in the literature is; 	 <1. Thus if we choose the value of 

b=20, and Ax =0.1, the condition is violated. The plot obtained shows severe 

oscillations (see Figure: 5.36, 5.37). Next if we take the value of b as 0.005, Ax =0.1 

and At =0.01, the profiles obtained are shown in Figure: 5.38, 5.39 and the condition 

is not violated. The error in the calculation is 2.303%. Thus for higher values of b one 

cannot use the regular difference equations meant for parabolic equations. 

From the results discussed in the various sections of this chapter, we find that the 

most of the systems modelled by Convection Diffusion equations are simulated and 

the solutions represent the exact characteristics of the system to a considerable extent. 

However it becomes sometimes necessary to analyze the difference equations for 

stability and convergence owing to step size restrictions. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions: 
In the present dissertation work, we focused on the simulation of Convection 
Diffusion equations using method of Finite Differences. As a result of this analysis, 

we may write the following conclusions. 
■ Convection Diffusion equations are widely used in many chemical 

engineering applications to characterize the flow properties of fundamental 

modes of transfer 
i.e. mass, momentum and energy. 

■ The Convection Diffusion equations are mostly unsolved by regular analytical 
techniques as these are basically non linear partial differential equations. Thus 
it becomes mandatory to use several numerical techniques to simulate them. 

■ The most widely used numerical techniques in handling the Convection 
Diffusion equations are: Method of Finite Differences and Method of Finite 

Elements. 
■ The finite difference approximations are easy to formulate and can be utilized 

in the development of computer algorithms for large simulation works. 
■ The method of Finite Differences is an effective and reliable method, when 

the difference equations are formulated with appropriate understanding of the 
system. 

■ In this work, the very basics of the method of Finite differences are studied. 
Thereby a number of finite difference schemes are developed for various 
types of changes involved in the Convection Diffusion equations, such as non 
linearity, moving boundary conditions etc. 

■ The finite difference approximations can be successfully used to discretize the 
partial differential equations into a set of linear algebraic equations that can be 

solved easily for solutions. This method gives significant results for a number 
of applications in the field of engineering. Further, the error analysis shows 
that the stipulated accuracy can be achieved by simply varying the step size of 
descretization. Knowledge of the stability of the method is essential to avoid 
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erratic results. This needs a considerable study of the physical behavior of the 

system under examination. 

■ The results obtained on application of finite difference schemes to various 

engineering problems are comparable to those affirmed by the PDEPE tool 

box of MATLAB software (based on Method of Finite Elements). 

• Thus the objective of simulation of Convection Diffusion equations using 

Method of Finite Differences is realized. 

Recommendations for future work: 
The conclusions in the previous section imply the capability of Method of Finite 

Differences as a simulation tool. The future developments that can be suggested 

in this work are; 

■ Development of various new models that involve the application of 

Convection Diffusion equations. 

■ The difference equations formulated in this work are suitable for handling 

one dimensional Convection Diffusion equations. Consequently, a search 

for new difference methods pertinent to multidimensional Convection 

Diffusion equations can be recommended. 

■ The finite difference schemes for coupled partial differential equations can 

be formulated for simultaneous simulations of engineering systems. 

• A considerable study can be done in the field of error reduction and 

accuracy. 

• A new user friendly software can be devised that considers the formulated 

difference schemes for fast and reliable computations. 
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Appendix Al 

Derivation of Convection Diffusion Equation [II: 

To derive the governing equation we consider the convective diffusion of a solute in a 
liquid. 

Let C = Concentration (Mass/Volume) is a function of the space variables x, y, z and time 
t. 

Concentration Differences give raise to mass transfer by the process of molecular 
diffusion. 

The flux due to diffusion, 	is given by 

j —DVC 	 1.2-2 

Where ID  has magnitude equal to the mass of the solute crossing unit area in unit time. 

Direction of jo 	is the direction of flow. 

The diffusion constant 'TY (length2/time) varies with the solute & liquid involved; but is 

typically about 10-9  m2/s (H20 & NaC1). 

`D' varies with 'C' and Temperature but we shall assume that the changes in these two 

quantities are sufficiently small to treat D as a constant. 

The flux due to convection, jc  is given by ; 

	

I. = CV 	 1.2-3 

where ; V is the liquid velocity. 

The total flux of matter ; j is the sum of the equations 1.2-2 & 1.2-3 

i.e. 

	

jc  = CV — DVC 	 1.2- 4 

The convection Diffusion equation for mass transport is an expression of conservation of 

matter. 

Consider an arbitrary fixed volume V of space with surface S through which the solute is 

transported. 

Thus the rate of flow of solute out of `V' is; 

1 



if j.E.ds 	 1.2-5 

Where; n is outward normal. 

This is equal to the rate of loss of solute within ' giving the equation; 

	

fij.n.ds =
at 

 flic.dv 	 1.2-6— 

The Left hand side can be changed to a volume integral using the Divergence theorem 

and time derivative on Right hand side can be taken inside the integral since V is fixed & 

therefore ; 

ill 	ac   jdv =o ,- at 
Since the volume V is arbitrary the integrand is zero; we get; 

o.j ac  
± at =0  

Substituting for j from equation and assuming that the fluid is incompressible; so that 

the V.V = 0 ; we obtain the final form of Convection Diffusion Equation as ; 

vIcv-Dvd+ aact  = 0 	 1.2-9 

vcv Dv2c + ac = 0 at 1.2-10 

Dv 2c - v.vc = 5: 	 1 .2- 1 1 

The above equations are the general form of a CONVECTION DIFFUSION equation. 

Here the fundamental property considered is mass. Similar equations can be formulated 

for energy and momentum. 

The different forms and the applications of these equations are discussed in the chapter of 

Introduction. 

1.2-7 

1.2-8 
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Thomas Algorithm for Tri-diagonal Matrix 

The given the linear algebraic equations are written in the following form. 

b it, /  + c itt2  + 0 + 	+ 0 = d1  
a2u1+ b2u2+ c2u3 + 0 + 	+ 0 = d2 

0 + 	+ 	+ 	+ 	+ 0 ---- 

0 + 	+ 0 + aR-21-1R-3 bR-211R-2+ CR-2111?-1 = dR-2 
0 -I- 	+ 0 + 	 bR-111R-1 = dR-1 

The equations can be represented in general as; 

a iu,_ T  + kit + 	di 	for; I < i R 

with a, = c„ = 0 

The algorithm is as follows; 

First Compute; 

a ic A =b; 	 
16.  

with fi, = b i  

and; 

d — a 
71 = 	 with y, = A 	b i  

The values of the dependant variable are then computed by back substituted from; 

U R  I R  and tr, = 

The algorithm however suffers a drawback that, if the coefficients b are assuming 

very small values, then the algorithm gives erratic results. Further the algorithm is not 

applicable for the conditions when b = 0 
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MATLAB PROGRAMS FOR THE SIMULATION OF CONVECTION 

DIFFUSION EQUATIONS 

VI 



S. No. Matlab Program Page No. 
1 Heat conduction in an uninsulted tapered rod (steady state) VII 

2 Heat conduction in an uninsulted tapered rod (moving boundary) IX 

3 Heat conduction in an uninsulted tapered rod (Neumann boundary 

condition) 

XI 

4 Heat conduction in an uninsulted tapered rod (Neumann boundary 

condition--shifted boundaries) 

XIII 

5 Steady state heat conduction in sphere XV 

6 Simulation of heat (diffusion) equation-forward differences XVIII 

7 Simulation of heat (diffusion) equation-backward differences XXII 

8 Simulation of heat (diffusion) equation-Crank Nicholson Method XXVI 

9 Heat conduction in a tapered rod (Crank Nicholson Method) XXX 

10 Shrinking core model XXXIV 

11 Simulation of Isothermal flow reactor XXXVI 

12 Simulation 	of parabolic 	equation 	with 	non-linear 	boundary 

conditions 

XLV 

13 Simulation of counter current heat exchangers XL 



% A program to calculate the Solution of Convection Diffusion Equations 
% for Steady State Conditions. 
% Here mention the values of the specified variables as required 
The program simulates the Dependent variable using Finite Differences 

Schemes 
% Under Steady state conditions the profiles have been generated. 
O 

% The differential equation used to describe the heat conduction in an 
uninsulated, tapered rod which is thin enough that a one dimensional 
analysis can be used. 
% The independent variable is x,and the dependant variable is the 
temperature i.e. 'u' 
All the variables are normalized and dimensionless. 

% The differential Equation is basically given as: 
% D-2U/Dx'2 + (2/(q+x))Du/Dx 	2p/(q+x)u=0 
% The parameters q = DO/fL 
% and p = hL/k(sqroot(1 + 4/f^2)) 
% where L is the Length of the rod, H, the heat transfer coefficient , 
k ,the thermal conductivity 
and f and D define the diameter. 

% The boundary conditions we assume are the simplest i.e u(0)=0 and 
u(1)=1; 
0 	  
function steady() 
cic; 
clf; 

q=3;p=7; 
delx=input('Input the Required grid size along the x direction '); 
R=1/delx; 
for i=1:R 

if (i==1) 
A(i)=(0); 
B(i)=(-2-(2*p*(delx)^2)/(g+delx)); 
C(i)= (1+(delx/(q+delx))); 
D(i) =0; 

elseif(i>1 && i<R) 

A(i)= (1-(deix/(q+i*deix))); 
B(i)= (-2-(2*p*(delx)^2)/(q+i*delx)); 
C(i)= (1+(delx/(q+i*delx))); 
D(i)=0; 

else 
A(i)-(1-(delx/(q+(R)*delx))); 
B(i)= (-2-(2*p*(delx)^2)/(q+(R)*delx)); 
C(i)= 0; 
D(i)=-(1+(delx/(q+((R)*delx)))); 

end 
end 

for i=1:R 
if(i==1) 

beeta(i)=B(1); 
gamma(i)=D(1)/B(1); 

VII 



else 
beeta(i)-(13(i)-(A(i)*C(i-1))/beeta(i-1)); 
gamma(i)=(D(i)-A(i)*gamma(i-1))/(beeta(i)); 
end 

end 

format long 
x=0:delx:1; 
for i=R:-1:1 

if (i==R) 
U(R)=gamma(R); 

else 
U(i)-(gamma(i)-(C(i)*U(i+1)/beeta 
end 

end 

X=[0,U(1:R-1),1]; 
% plot(x,X); 
for(ctr =1:10) 

messagel='Enter a choice:'; 
choice=input('press "A" to see the Solution Matrix, \n B to see 

the specific value of the U at some X value, \n C to see the plot for 
entire U along entire X\n Press Q to Quit\n ','s'); 

if(choice=='Q') 
cic; 
break; 

else 
switch(choice) 
case 'A' 

cic;c1f; 
disp(X); 

case I B  

cic;clf; 
message=' To see the value of the Solution U at a particular 

instant of time1n :'; 
time=input(' 	Enter the value of time :') 
disp(U(time)); 
case 'C' 

cic;c1f; 
message=' You entered the option to view the plot of U versus 

x \n'; 
plot(x,X); 

end 
end 

end 
disp('You came out of the program') 
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% program to calculate the Solution of Convection Diffusion 
Equations for Steady State Conditions 
% Here mention the values of the specified variables as required 
% The program simulates the Dependent variable using Finite 
Differences Schemes 
% Under Steady state conditions the profiles have been generated. 

% The differential equation used to describe the heat conduction in 
an uninsulated , tapered rod which is thin enough that a one 
dimensional analysis can be used. 
% The independent variable is x,and the dependant variable is the 
temperature i.e. 'u' 
% All the variables are normalized and dimensionless 
% The differential Equations is basically given as: 
% D^2U/Dx^2 + (2/(q+x))Du/Dx 	2p/(q+x)u=0 
% The parameters q = DO/fL 
% and p = hL/k(sgroot(1 + 4/f^2)) 
% where L is the Length of the rod, H, the heat transfe coefficient 
, k , the thermal conductivity 
% and f and D define to diameter. 
% The boundary conditions we assume are the simplest i.e du/dx(0)-g 
and u(1)=1; 

function steadyl() 
cic; 
q-0.2;p=80; 
g=input('Enter the value of "g",for the boundary value of the type 
du/dx(0)=g \n'); 
delx=input('Input the Required grid size along the x direction \n '); 
R=1/delx; 

for i=1:(R+1) 
if (i==1) 

A(i)-(0); 
B(i)=(-2-(2*p*(delx)".2)/(q)); 
C(i)= 2; 
D(i)=2*g*delx*(1-delx/q); 

elseif(i>1 && i<(R+l)) 

A(i)= (1-(delx/(q+i*delx))); 
B(i)= (-2-(2*p*(delx)A2)/(q+i*delx)); 
C(i)= (1+(delx/(q+i*delx))); 
D(i)=0; 

else 
A(i)-(1-(delx/(q+i*delx))); 
B(i)= (-2-(2*p*(delx)^2)/(q+i*delx)); 
C(i)= 0; 
D(i)=-(1+(delx/(q+(R*delx)))); 

end 
end 

for i=1:(R+1) 
if (i==1) 

beeta(i)=B(1); 
gamma(i)=D(1)/B(1); 

else 

IX 



beeta(i)-(13(i)-(A(i)*C(i-1))/beeta(1-1)); 
gamma(i)=(D(i)-A(i)'gamma(i-1))/(beeta(i)); 

end 
end 

format long 
x=0:delx:1; 
for i=(R+1):-l:1 

if(i—(RA-1)) 
U(R+1)=gamma(R+1); 

else 
U(i)-(gamma(i)-(C(i)*U(i+1)/beeta(i))); 

end 
end 
% plot(x,U) 
for(ctr= : 1 0) 

messagel='Enter a choice:'; 
choice=input('press "A" to see the Solution Matrix, \n B to see the 

specific value of the U at some X value, \n C to see the plot for 
entire U along entire X\n Press Q to Quit\n ','s'); 

if(choice=='4') 
cic; 
break; 

else 
switch(choice) 

case 'A' 
clf; 
disp(U); 

case 'B' 
cic;c1f; 
message-=' To see the value of the Solution U at a 

particular instant of time\n :'; 
message=' 	Enter the particular instant of time you 

wish to see the value of Dependant variable:'; 
time=input(' 	Enter the value of time :') 
disp(U(time)); 

case 'C' 

message=' You entered the option to view the plot of U 
versus x \n'; 

figure 
plot(x,U); 
grid on; 
title('PLOT OF DIMENSIONLESS TEMPERATURE(U) V/S 

POSITION(X) '); 
xlabel('Position Vector (x)'); 
ylabel('Dimensionless Temperature (U)'); 

end 
end 

end 
disp('You came out of the program'); 
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A program to calculate the Solution of Convection Diffusion Equation 
% for steady state conditions 
% Here mention the values of the specified variables as required 
% The program simulates the dependent variable using Finite Differe=es 
% Schemes. 
% Under Steady state conditions the profiles have been generated. 

% The differential equation used to describe the heat conduction in an 
uninsulated, tapered rod which is thin enough that a one dimensional 
analysis can be used. 
% The independent variable is x,and the dependant variable is the 
% temperature i.e. 'U' 
% All the variables are normalized and dimensionless 

0 
% The differntial Equation is basically given as: 
% D^2U/Dx"2 + (2/(q+x))Du/Dx - 2p/(q+x)u=0 
% The parameters q = DO/fL 
% and p = hL/k(sciroot(1 + 4/f^2)) 
% where L is the Length of the rod, H,the heat transfer 
coefficient, k, the thermal conductivity 
% and f and D define to diameter. 
% The boundary conditions we assume are the simplest i.e du/dx(0) - 
H*U(0)= -g, 
% where H is the Nusselt number and is given as H=hL/k and U(1)=1; 

function steady2() 
q=2.5;p=80;c1c;c1f; 
g=input('Enter the value of "g", in the boundary value of the type 
"du/dx(0)-Hu(0)=-g "\n'); 
H=input('Enter a Value for Nusselt Number i.e H as pr the problem 
norms\n'); 
delx=input('Input the Required grid size along the x direction\n'); 
R=1/delx; 

for i=1:(R+1) 
if (i==1) 

A(i)=.-(0); 
B(i)= (-2 - (2*H*delx)- (2*(p-H)*delx^2)/q); 
C(i)- 2; 

-2*g*delx*(1-delx/q); 

elseif(i>1 && i<(R+1)) 

A(i)= (1-(delx/(q+i*delx))); 
B(i)= (-2-(2*p*(delx)^2)/(q+i*delx)); 
C(i) = (l+(delx/(q+i*delx))); 
D(i)=0; 

else 
A(i)=(1-(delx/(q+i*delx))); 
B(i)= (-2-(2*p*(delx)^2)/(q+i*delx)); 
C(i)= 0; 
D(i)--(1+(delx/(q+(R*delx)))); 

end 
end 
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for i=1:(R+1) 
if(i==1) 

beeta (i)=B(1); 
gamma (i)=D(1)/B(1); 

else 
beeta(i)-(B(i)-(A(i)*C(i-1))/beeta(i-1)); 
gamma(l)=(D(i)-A(i)*gamma(i-1))/(beeta(i)); 

end 
end 

format long 
x=0:delx:1; 
for i=(R+1) :-1:1 

if(i==(R+1)) 
U(R+1)=gamma(R+1); 

else 
U(i)=(gamma(i)-(C(i)*U(i+1)/beeta(i))); 

end 
end 
for(ctr=1:10) 

messagel='Enter a choice:'; 
choice=input('press "A" to see the Solution Matrix, \n B to see the 

specific value of the U at some X value, \n C to see the plot for 
entire U along entire X\n Press Q to Quit\n ','s'); 

if(choice==1 Q1 ) 
cic; 
break; 

else 
switch(choice) 

case 'A' 
disp(U); 

case 'B' 
cic; cif; 
message-1  To see the value of the Solution U at a 

particular instant of time\n :'; 
message=' 	Enter the particular instant of time you 

wish to see the value of Dependant variable:'; 
time-input(' 	Enter the value of time :') 
disp(U(time)); 

case 'C' 
cic; 
message-1  You entered the option to view the plot of U 

versus x \n'; 
figure 
plot(x,U); 
grid on; 
title('PLOT OF DIMENSIONLESS TEMPERATURE(U) V/S 

POSITION(X) '); 
xlabel('Position Vector (x) 1 ); 
ylabel('Dimensionless Temperature (U)'); 

end 
end 

end 
disp('You came out of the program'); 
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% program to calculate the Solution of Convection Diffusion Eouatj_cr. 
% for steady state conditions. 
% Here mention the values of the specified variables as required. 
% The program simulates the dependent variable using Finite 
Differences Schemes 
% Under Steady state conditions the profiles have been generated. 
% ------------------------------------------------------------------- 
% The differential equation used to describe the heat conduction in 
an uninsulated, 
% tapered rod which is thin enough that a one dimensional analysis 
can be used. 
% The independent variable is x,and the dependant variable is the 
temperature i.e. 'U' 
% All the variables are normalized and dimensionless. 

% The differential equation is basically given as: 
% D^2U/DxA2 + 	(2/(q+x))Du/Dx - 2p/(q+x)u=0 
% The parameters q = DO/fL 
% and p = hL/k(sqroot(1 + 4/f^2)) 
% where L is the Length of the rod,h,the heat transfer 
coefficient, k, the thermal conductivity 
% and f and D define the diameter. 
% The boundary conditions we assume are the simplest i.e du/dx(0) - 
H*U(0)= -g, 
% where H is the Nusselt number and is given as H=hL/k 
% and u(2)=1; 

function steady3() 
q=2.5;p=80;c1c;c1f; 
g=input('Enter the value of "g", the boundary value of the type 
du/dx(0)-H*U(0)=-g \n'); 
H=input('Enter a Value for Nusselt Number i.e H as pr the problem 
norms\n'); 
delx=input('Input the Required grid size along the x direction\n'); 
R=1/delx; 
format long 
for i=1:(R) 

format long 
if(i==1) 

B(i)= -(delx/(q+(0.5*delx)))*((2- 
H*delx)/(2+H*delx)+2*p*delx)-((2+(3*H*delx))/(2+(H*delx))); 

C(i)= (1+(delx/(q+(0.5*delx)))); 
A(i)= 0; 
D(i)=-(1-(delx/(q+0.5*delx)))*((2*g*delx)/(2+(H*delx))); 

elseif(i==R) 
A(i)= 1-(delx/(q+(R-0.5)''delx)); 
B(i)= (-3-(((2*p)*(delx)^2)+delx)/(q+(R-0.5)*delx)); 
C(i)= 0; 
D(i)= -(2*(1+(delx/(q+(R-0.5)*delx)))); 

else 
A(i) = (1-(delx/(q+(i-0.5)*delx))); 
B(i)= (-2-(2*p*(delx)^2)/(q+(i-0.5)*delx)); 
C(i)= (1+(delx/(q+(i-0.5)*delx))); 
D(i)=0; 

end 

XIII 



end 
for i=1:R 

format long 
if (i==1) 

beeta(i)=B(1); 
gamma(1)=0(1)/B(1); 

else 
beeta(i)-(B(i)-(A(i)*C(i-1))/beeta(i-1)); 
gamma (i) =(D(i)-A(i)*gamma(i-1))/(beeta(i)); 

end 
end 
format long 
x=0.001:delx:1; 
for i=R:-1:1 

if(i==(R)) 
U(R)-gamma(R); 

else 
U(1)--gamma(i)-(C(i)*U(i+1)/beeta(i)); 

end 
end 
for(ctr=1:10) 

messagel-='Enter a choice:'; 
choice=input('press "A" to see the Solution Matrix, \n B to see 

the specific value of the U at some X value, \n C to see the plot 
for entire U along entire X\n Press Q to Quit\n ','s'); 

if(choice=='Q') 
cic; 
break; 

else 
switch(choice) 

case 'A' 
clf; 
disp(U); 

case 'B' 
cic;c1f; 
message=' To see the value of the Solution U at a 

particular instant of time\n :'; 
message=' 	Enter the particular instant of time you 

wish to see the value of Dependant variable:'; 
time=input(' 	Enter the value of time :') 
disp(U(time)); 

case 'C' 
cic; 
message=' You entered the option to view the plot 

of U versus x \n'; 
figure 
plot(x,U); 
grid on; 
title('PLOT OF DIMENSIONLESS TEMPERATURE(U) V/S 

POSITION(X) '); 
xlabel('Position Vector (x)'); 
ylabel('Dimensionless Temperature (U)'); 

end 
end 

end 
disp('You came out of the program') 
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A program to calculate the Solution of Convection Diffusion Equations 
for steady state conditions. 
% Here mention the values of the specified variables as required. 
% The program simulates the Dependent variable using Finite Differences 
Schemes 
% Under Steady state conditions the profiles have been generated. 

% The differential equation for heat conduction in radial co-ordinates 
is similar to that for a tapered rod which goes to a point at one end. 
% This is obtained by setting the parameter q=0 in the equation given 
below 
% The differential Equation is basically given as: 
% D^2U/Dx^2 + 	(2/(q+x))Du/Dx - 2p/(q+x)u=0 
% The parameters q = DO/fL 
% and p = hL/k(sqroot(1 + 4/f-2)) 

% Further when the parameter "p" is also set to zero so that there is 
no heat loss from the surface of the rod by convection, then the above 
eauation may be treated as the equation of heat conduction in a Sphere. 
% Also the heat conduction in a cylinder is similar. 
a 
a 

% The independent variable is x,and the dependant variable is the 
% temperature i.e.'U' 
% All the variables are normalized and dimensionless 
O 

% 	Here L 	is 	the Length of 	the rod, 	H, the 	heat 	transfer 
coefficient,k,the thermal conductivity 
% and f and D define the diameter. 
% The boundary conditions we assume are the simplest i.e du/dx(0) 
H-U(0)= -g, 
% where H is the Nusselt number and is given as H=hL/k. 
% and u(1)=1; 

function steady4() 
alc;c1f; 
q=0;p=12; 
g=input('Enter the value of "g", the boundary value of the type 
du/dx(0) 	H*U(0)= -g \n'); 
H= p; 
delx=input('Input the Required grid size along the x direction\n 	'); 
R=1/delx; 
format long 
for i=1:(R) 

format long 
if (i==1) 

B(i)= 	-(delx/(q+(0.5*delx)))*((2-H*delx)/(2+H*delx)+2*p*delx)- 
((2+(3*H*delx))/(2+(H*delx))); 

C(i)= (1+(delx/(c1-1-(0.5*delx)))); 
A(i)= 0; 
D(i)=-(1-(delx/(q+0.5*delx)))*((2*g*delx)/(2+(H*delx))); 

elseif(i==R) 
A(i)= 1-(delx/(q+(R-0.5)*delx)); 
B(i)= (-3-(((2*p)*(delx)^2)+delx)/(q+(R-0.5)*delx)); 
C(i)= 0; 
D(i)= -(2*(1+(delx/(q+(R-0.5)*delx)))); 
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else 
(1-(delx/(q4-(1-0.5)*deix))); 

B(i)= (-2-(2*p*(delx)^2)/(q+(i-0.5)*delx)); 
C(i)= (11-(delx/(q+(i-0.5)*delx))); 
D(i)=0; 

end 
end 

for i=1:R 
format long 
if (i==1) 

beeta(i)=B(1); 
gamma(i)=D(1)/B(1); 

else 
beeta(i)--(B(i)-(A(i)*C(i-1})/beeta(i-1)); 
gamma(i)=(D(i)-A(i)*gamma(i-1))/(beeta(i)); 

end 
end 

format long 
x=0.001:delx:1; 
for i=R:-1:1 

if(i==(R)) 
U(R)=gamma(R); 

else 
U(i)--gamma(i)-(C(i)*U(i+1)/beeta(i)); 

end 
end 
X=[U]; 

for(ctr=1:10) 

messagel='Enter a choice:'; 
choice=input('press "A" to see the Solution Matrix, \n B to see the 

specific value of the U at some X value, \n C to see the plot for 
entire U along entire X\n Press Q to Quit\n ','s'); 

if(choice=='Q') 
cic; 
break; 

else 
switch(choice) 

case 'A' 
clf; 
disp(U); 

case 'B' 
cic; cif; 
message=' 	To see the value of the Solution U at a 

particular instant of time\n :'; 
message=' 	Enter the particular instant of time you 

wish to see the value of Dependant variable:'; 
time=input(' 	Enter the value of time :') 
disp(U(time)); 

case 'C' 
cic; 
message=' You entered the option to view the plot of U 

versus x \n'; 
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figure 
plot(x,U); 
grid on; 
title('PLOT 	OF 	DIMENSIONLESS 	TEMPERATURE(U) . V/S 

POSITION(X) '); 
xlabel('Position Vector (x)'); 
ylabel('Dimensionless Temperature (U)'); 

end 
end 

end 
disp('You came out of the program'); 
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% Numerical simulation of Heat(Diffusion) Equation. 

% The equation is basically 	a second order partial differential 
.equation of parabolic nature. i.e 
O 

% d-2U/dx^2=du/dt 

% subject to boundary conditions U(0,t)=0 and U(1,t)=1 for all t; 
% we further need a initial condition i.e U(x,0)= 0 for all x<1 
O 
O 

% We adopt the method of Finite Differences where by we substitute the 
various differential terms in the equation with thier respective 
difference equations 
% The space and time domain is replaced by respective grid points of 
significant step size which has to comply with the stability and 
truncation error conditions. 

% Here we use the forward differences equations for the analogs of the 
partial diferential terms. 

function unsteadyforward () 
cic;c1f; 
disp(' 	Program for simulation of Heat equation 	' ); 
delx=input('\n\nEnter the step size along spatial direction: 	'); 
delt=input('Enter the step size along the time domain: 	'); 
format long 
for(i=1:10) 

temp=(delt/(delx^2)); 
templ=(delxA2)*.5; 
if(temp>0.5) 

disp('The time step is too large for computation'); 
delt=input('Enter a. new step size which satsfies the stability 

condition'); 
else 

break; end;. 
end 

R-=1/delx; 
N--1/delt; 
x-[0:delx:1]; 
t=[0:delt:1]; 
for(n=1:N+1) 

U(1,n)=0; 
U(R+1,n)=1; 

end 
for(i=1:(R+1)) 

U(i,1)=0; 
end 
U(R+1,1)=1; 
for(n=2:N+1) 

for(i=2:(R)) 
U(i,n)=(delt/(delx^2))*(U(i+1,n-1)+U(i-1,n-1))+(1- 
(2*delt/(delx^2)))*U(i,n-1); 

end 
end 
U=U'; 
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for(ctr=1:10) 
disp('press "A" to see the entire Solution Matrix.') 
disp('press B to see the specific value of the 	some 

values'); 
disp('press C to see the values of the dependant variable d_ a 

particular instant U(T)for all x'); 
disp('press D to see the plot for entire U along entire X'); 
disp('Press Q to Quit 	'); 
choice= input('Enter a choice: 	','s'); 
if(choice=='Q') 

cic; 
break; 

else 
switch(choice) 

case 'A' 
elf; 
disp('The Solution matrix U is :: '); 
disp(U); 

case 'B' 
cic;c1f; 
disp(' 	You choose to see the value of the U at a 

particular instant of time and position 	'); 
disp('Enter the particular instant of time you wish to 

see the value of Dependant variable: 	'); 
time=input('Enter the value of time : 	'); 
disp(' Enter the position along the X direction, you 

wish to see the value of Dependant variable:'); 
position=input('Enter the value of exact position 

' ) ; 
xp= R*(position)+1; 
tp=N*(time)+1; 
disp(U(tp,xp)); 

case 'C' 
cic; 
disp('You choose to see the values of the U at a 

particular instant(t) along entire X'); 
time=input('Enter the value of time: 	' ) ; 
tp=N*(time)+1; 
for(i=1:R+1) 

Oinstantaneous(i)=U(tp,i); 
end 
disp(Uinstantaneous); 
figure 
plot(x,Uinstantaneous); 

case 'D' 
cic; 
disp('You entered the option to view the plots of U '); 
st=input('Press I to view U v/s X and press 2 to view U 

v/s T 	'); 
if(st==1) 

figure 
plot(x,U); 
grid on; 

	

title('Plot 	of 	dependant 	variable 	U 	v/s 
dimensionless length for a particular time t'); 

xlabel('Position(X)');ylabel('Dependant 
variable(U)'); 
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elseif(st==2) 
figure 
plot(t,U'); 
grid on; 
title('Plot 	of 	dependant 	variable v, s 

dimensionless time for a particular position(X)') 
xlabel("rime(t)');ylabel('Dependant variable(U). ); 

end 
end 

end 
end 
[ans]= linearparabolicpde(delx,delt); 
for(n=2:N+1) 

for(i=2:R) 
percenterror(n,i)=abs(((ans(n,i)-U(n,i)))/(ans(n,i)))*100; 

end 
end 
disp(percenterror); 
Avgerror=0; 
for(n=2:N) 

for(i=2:R) 
Avgerror=Avgerror+percenterror(n,i); 

end 
end 
disp(Avgerror/((R)*(N))); 

disp('You came out of the program'); 

% Simulation of Diffusion Equation using the PDEPE tool box 

% Here we give the partial differential equation in terms of parameters 

% Functions are written for the differential equation as well as for 
the initial and boundary conditions. 
% The tool box simulates the solution using thre Finite Element 
Analysis. 

function [ans]=linearparabolicpde(delx,delt) 
cic; 
format long; 
% x=linspace(0,1,10); 
% t=linspace(0,1,10); 
x=[0:delx:1]; 
t=f0:delt:1]; 
m=0; 
sol = pdepe(m,@pdex7pde,@pdex7ic,@pdex7bc,x,t); 
u=sol(:,:,1); 
disp(u'); 
figure 
plot(x,u'); 
title('solution of Diffusion equation using PDEPE'); 
xlabel('Position vector X'); 
ylabel('Dependant variable U') 
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% figure 
% surf(x,t,u); 

title('Surface plot for Ur) 
% xlabel(rPosition vector X'); 
% ylabel('Time t'); 
ans=u; 

0 	  
% function [c,f,s]-pdex7pde(x,t,u,DuDx) 
% c=1; 
% f=DuDx; 
% s=0; 

% function uo=pdex7ic(x) 
% uo=0; 

% function [pl,q1,pr,qr]=pdex7bc(xl,u1,xr,ur,t) 
% pl=u1; 
% q1=0; 
% pr=[ur-l]; 
% qr=(sin (pi)); 



Numerical simulation of Heat(Diffusion Equation) 
---------------------------------------------------------------------- 
The equation is basically of the type of a second order partial 

differential equation of parabolic nature. i.e 
% d^2U/dx-2=du/dt 
% subject to boundary conditions U(0,t)=0 and U(1,t)=1 for all t; 
% we further need a initial condition i.e 0(x,0)= 0 for all x<1 

% The space and time domain is replaced by respective grid points of 
significant step size which has to comply with the stability and 
truncation error conditions. 
% Here we use the backward differences equations for the analogs of the 
%partial diferential terms. 
The backward differences scheme do not impose any stability conditions 
and is free to choose any of the value of step size. 

function unsteadybackwardl() 
cic;c1f; 
delx=input('Enter the step size along spatial direction\n'); 
delt=input('Enter the step size along the time domain\n'); 

R-1/delx; 
N=1/delt; 
x-[0:delx:1]; 
t-10:delt:1]; 
for(n=1:N+1) 

U(1,n)=0; 
U(R+1,n)=1; 

end 
for(i=1:R) 

U(i,1)=0; 
end 

Formation of tri diagonal system of equations 
for(n=2:N+1) 

for(i=2:R) 
if(i==2) 

A(i,n)=0; 
B(i,n)-(-2-(delx^2)/delt); 
C(i,n)=1; 
D(i,n)=(-(delx^2)/delt)*U(i,n-1); 

A(i,n)=1; 
B(i,n)-(-2-((delx^2))/delt); 
C (i, n) =0; 
0(1,n)-(-(delx^2)/delt)*U(R,n-1)-1; 

else 
A(i,n)=1; 
B(i,n)=(-2-((delx^2))/delt); 
C (i, n) =1; 
D(i,n)=(-(delx^2)/delt)*U(i,n-1); 

end 
end 

for(i =2:R) 
if (i==2) 

beeta(i,n)=B(i,n); 
gamma(i,n)=D(i,n)/B(i,n); 
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else 
beeta(i,n)-(B(i,n)-(A(i,n)*C(i-1,n)/beeta(L-1,n);:, 
gamma(i,n)=(D(i,n)-A(i,n)-kgamma(i-1,n))/(beeta(i,n 

end 
end 

format long 
for i=R:-1:2 

if (i=-R) 
U(R,n)-gamma(R,n); 

else 
U(i,n)=(gamma(i,n)-((C(i,n)*U(i+1,n))/beeta(i,n))); 

end 
end 

end 
U=W; 
for(ctr=1:100) 

disp('press "A" to see the entire Solution Matrix.') 
disp('press 13 to see the specific value of the U at some X & T 

values'); 
disp('press C to see the values of the dependant variable at a 

particular instant U(T)for all x'); 
disp('press D to see the plot for entire U along entire X'); 
disp('Press Q to Quit 	'); 
choice= input('Enter a choice: 	','s'); 
if(choice=='Q') 

cic; 
break; 

else 
switch(choice) 

case 'A' 
clf; 
disp('The Solution matrix U is :: '); 
disp(U); 

case 'B' 
cic;c1f; 
disp(' 	You choose to see the value of the U at a 

particular instant of time and position 	'); 
disp('Enter the particular instant of time you wish to 

see the value of Dependant variable: 	'); 
time=input('Enter the value of time : 	'); 
disp(' Enter the position along the X direction, you 

wish to see the value of Dependant variable:'); 
position=input('Enter the value of exact position : 	'); 
xp= R*(position)+1, 
tp=N*(time)+1; 
disp(U(tp,xp)); 

case 'C' 
cic; 
disp('You choose to see the values of the U at a 

particular instant(t) along entire X'); 
time=input('Enter the value of time: 	'); 
tp=N''(time)+1; 
for(i=1:R+1) 

Uinstantaneous(i)=U(tp,i); 
end 
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disp(Uinstantaneous); 
plot(x,Uinstantaneous'); 

case 'D' 
cic; 
disp('You entered the option to view the plots of 

dependant variable U '); 
st=input('Press 1 to view U v/s X and press 2 to view U 

v/s T 	'); 
if(st==2) 

figure 
plot(t,U); 
grid on; 
title('Plot 	of 	dependant 	variable 	U 	v/s 

dimensionless time for particular position X'); 
xlabel('Time (t)');ylabel('Dependant variable(U)'); 

eIseif(st==1) 
figure 
plot(x,U'); 
grid on; 
title('Plot 	of 	dependant 	variable 	U 	v/s 

dimensionless length for a particular time t') 
xlabel('Position(X)');ylabel('Dependant 

variable(U)'); 
end 

end 
end 

end 
[ans]= linearparabolicpde(delx,delt); 
for(n=2:N+1) 

for(i=2:R) 
error(i,n)-abs(HU(n,i)-ans(n,i)))/(U(n,i)))*100; 

end 
end 
disp(error); 
Avgerror=0; 
for(n=2:N) 

for(i=2: R) 
Avgerror=Avgerror+error(i,n); 

end 
end 
disp(Avgerror/((R+1)'(N+1))); 

disp('You came out of the program'); 

% Simulation of Diffusion Equation using the PDEPE tool box 

% Here we give the partial differential equation in terms of parameters 

Functions are written for the differential equation as well as for 
the initial 
% and boundary conditions. 
% The tool box simulates the solution using thre Finite Element 
Analysis. 

function [ans]=linearparabolicpde(deix,delt) 
cic; 
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format long; 
% x=linspace(0,1,10); 
% t=iinspace(0,1,10); 
x=[0:delx:1]; 
t--[0:delt:1]; 
m=0; 
sol = pdepe(m,@pdex7pde,@pdex7ic,@pdex7bc,x,t); 
u=sol(:,:,1); 
disp(u'); 
figure 
plot(x,u'); 
title('solution of Diffusion equation using PDEPE'); 
xlabel('Position vector X'); 
ylabel('Dependant variable U') 

% figure 
% surf(x,t,u); 
% title('Surface plot for U') 
% xlabel('Position vector X'); 
% ylabel('Time t'); 
ans=u; 

0 	  
% function [c,f,s]=pdex7pde(x,t,u,DuDx) 
% c=1; 
% f=DuDx; 
% s=0; 

function uo=pdex7ic(x) 
% uo=0; 

% function [p1,q1,pr,qr]=pdex7bc(xl,u1,xr,ur,t) 
% pl=ul; 
% q1=0; 
% pr=[ur-1]; 
% qr=(sin (pi)); 



Simulation of the Heat Equation using the Crank NHcclso Method 
---------------------------------------------------------------------- 
% Here the differential Equation is replaced by Dirference equation 
written about a point half way between two Successive time steps i.e we 
consider U(i,n+1/2) 
% The method is as such a combination of For,,,ard and Backward 
Differences. 

The method do not establish any stablity criteria on the time step 
considered. 
%However we use a smaller step size for time dimension than the space 
%direction in order to prevent heavy oscillations. 
O 

% Hence we simulate the equation: 
% D^2(U)/Dx^2=DU/Dt 
I subject to U(x,0)=0 for all x; 

U(0,t)=0 for all t; 
U(l,t)=1 for all t; 

function cranknicolsonl() 
cic;c1f; 
delx=input('Enter the step size along the Spatial Direction x: 	'); 
delt=input('Enter the step size along the time Domain t: 	'); 

R=1/delx; 
N=1/deft; 
x=[0:delx:1];t=[0:deit:1]; 

for(n=1:N+1) 
U(1,n)=0; 
U(R+1,n)=1; 

end 
for(i=2:R+1) 

U(1,1)=0; 
end 
% 	Formation of tri diagonal system of equations 
for(n=2:N+1) 

for(i=2:R) 
if(i==2) 

A(i,n)=0; 
B(i,n)=(-2-(24'(delx'2)/deit)); 
C(i,n)=1; 
D(i,n)=(2-(2*(delx^2)/delt))*U(2,n-/)-U(i+1,n-1); 

elseif(i= -R) 
A(i,n)=1; 
B(i,n)=(-2-(2*(delx^2))/delt); 
C(i,n)=0; 
D(i,n)= -U(i-1,n-1)+(2-(2*(delx^2))/delt)*U(R,n-1)-2; 

else 
A(i,n)=1; 
B(i,n)=(-2-(2*(delx^2))/delt); 
C(i,n)-1; 

D(i,n)--U(1-1,n-1)-U(i+1,n-1)+((2-(2*(deix^2))/delt)*U(i,n-1) ) ; 
end 

end 
for(i=2:R) 

if(i==2) 
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beeta(i,n)=B(2,n); 
garnma(i,n)=D(2,n)/B(2,n); 

else 
beeta(i,n)-(B(i,n)-(1/beeta(i-1,n))); 
gamma(i,h)--(D(i,n)-gamma(i-1,n))/(beeta(i,n)); 

end 
end 
format long 
for i=R:-1:2 

if (i==R) 
U(R,n)=gamma(R,n); 

else 
U(1,n)=(gamma(i,n)-((C(i,n)-A- U(i+1,n))/beeta(i,n))); 

end 
end 

end 
U=U 1 ; 
for(ctr=1:100) 

disp('press "A" to see the entire Solution Matrix.') 
disp('press B to see the specific value of the U at some X & T 

values'); 
disp('press C to see the values of the dependant variable at a 

particular instant U(T)for all x'); 
disp('press D to see the plot for entire U along entire X'); 
disp('Press Q to Quit 	'); 
choice= input('Enter a choice: 	','s'); 
if(choice=='Q') 

cic; 
break; 

else 
switch(choice) 

case 'A' 
clf; 
disp('The Solution matrix U is :: '); 
disp(U); 

case 'B' 
cic; cif; 
disp(' 	You choose to see the value of the U at a 

particular instant of time and position 	'); 
disp('Enter the particular instant of time you wish to 

see the value of Dependant variable: 	'); 
time=input('Enter the value of time : 	); 
disp(' Enter the position along the X direction, you 

wish to see the value of Dependant variable:'); 
position=input('Enter the value of exact position : 	'); 
xp= R*(position)+l; 
tp=N*(time)+1; 
disp(U(tp,xp)); 

case 'C' 
cic; 
disp('You choose to see the values of the U at a 

particular instant(t) along entire X'); 
time=input('Enter the value of time: 	'); 
tp=N*(time)+1; 
for(i=1:R+1) 

Uinstantaneous(i)=U(tp,i); 
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end 
disp(Uinstantaneous); 
plot(x,Uinstantaneous'); 

case 'D' 
cic; 
disp('You entered the option to view the plots of 

dependant variable U '); 
st=input('Press I to view U v/s X and press 2 to view U 

v/s T 	'); 
if(st=-2) 

figure 
plot(t,U); 
grid on; 
title('Plot 	of 	dependant 	variable 	U 	v/s 

dimensionless time for particular position X'); 
xlabel(lTime (t)');ylabel('Dependant variable(U)'); 

elseif (st==1) 
figure 
plot(x,U'); 
grid on; 
title('Plot 	of 	dependant 	variable 	U 	v/s 

dimensionless length for a particular time t') 
xlabel('Position(X)');y/abel('Dependant 

variable(U)'); 
end 

end 
end 

end 
[ans]= linearparabolicpde(delx,delt); 
for(n=2:N+1) 

for(i=2:R) 
percenterror(n,i)=abs(((U(n,i)-ans(n,i)))/(U(n,i)))*100; 

end 
end 
disp(percenterror); 
Avgerror=0; 
for(n=2:N) 

for(i=2:R) 
Avgerror=Avgerror+percenterror(n,i); 

end 
end 
disp(Avgerror/((R+1)*(N+1))); 

surf(x,t,U); 
disp('You came out of the program'); 

% Simulation of Diffusion Equation using the PDEPE tool box 

% Here we give the partial differential equation in terms of parameters 

% Functions are written for the differential equation as well as for 
the initial and boundary conditions. 
% The tool box simulates the solution using thre Finite Element 
Analysis. 
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function [ans]=linearparaboiicpCe(Oeix,deit) 
cic; 
format long; 
% x=linspace(0,1,10); 
t-linspace(0,1,10); 

x=[0:delx:1); 
t=[0:delt:11; 
m=0; 
sol = pdepe(m,Opdex7pdep@pdex7ic,@pdex7bc,x,t); 
u=sol(:,:,1); 
disp(u'); 
figure 
plot(x,u'); 
title('solution of Diffusion equation using PDEPE'); 
xlabel('Position vector X'); 
ylabel('Dependant variable U') 

% figure 
% surf(x,t,u); 
% title('Surface plot for U') 
% xlabel('Position vector X'); 
% ylabel('Time t'); 
ans=u; 

% function [c,f,s]=pdex7pde(x,t,u,DuDx) 
c=1; 

% f=DuDx; 
% s=0; 
0 

% function uo=pdex7ic(x) 
% uo=0; 

function [pl,q1,pr,qr]=pdex7bc(xl,u1,xr,ur,t) 
% pl=ul; 
% q1=0; 
% pr=[ur-1]; 
% qr=(sin (pi)); 



Simulation of the Heat Equation in a tapered Rod using the Crank 
Nicolson Method 
0 

	

	  
Here the differential Equation is replaced by Difference equation 

written 
% about a point half way between two successive values of X i.e 
successive 
%time steps i.e we consider U(i,n+1/2). 

%we use the crank nicolson method for descretization 
% The method is as such a combination of Forward and Backward 
Differences. 
% The method do not require to fulfil any stablity criteria on the time 
step considered. 

% Hence we simulate the equation: 
D'2(U)/Dx^2 + (2/x)[Du/Dx-pU]=DU/Dt 

% subject to U(x,0)=0 for all x; 
Du/Dx - p0 =0 for all t; 
U(l,t)=1 for all t; 

function cranknicolson2() 
p=10;c1c;c1f; 
delx=input('Enter the step size along the Spatial Direction x: 	'); 
delt=input('Enter the step size along the time Domain t: 	'); 
R=1/delx; 
N=1/delt; 
x=[0:delx:1];t=f0:deit:1] 
for(n=1:N+1) 

U(R+1,n)=1; 
end 
for(i=1:R) 

U(i,1)=0; 
end 

Formation of tri diagonal system of equations 
for(n=2:N+1) 

for (i=2 : R) 
if(i-=2) 

A(i,n)=0; 
B(i,n)=(-2-(4*p*delx)-((2-p*delx)/(2+p*delx))- 

((2*(delx^2))/delt)); 
C(i,n)-(3); 
D(i,n)=-3*U(i+1,n-1)+(2+(4*p*delx)+((2-p*delx)/(2+p*delx))- 

((2*(delx^2))/delt))*U(i,n-1); 
elseif(i=-R) 

A(i,n)=((2*R-3)/(2*R-1)); 
B(i,n)=(-2-((4*p*delx)/(2*R-1))-((24 R+1)/(2'R-1))- 

((2*(delx^2))/delt)); 
C(i,n)=0; 
D(i,n)= 	-((2*R-3)/(2*R-1))*U(R-1,n-1)+(2+((4*p4delx)/(2*R- 

1))+((2*R+1)/(2*R-1))-((2*(deix-2))/delt))*U(R,n-1)-4*((2*R+1)/(2*R-1)) 

else 
A(i,n)=((2*i-3)/(2*i-1)); 
B(i,n)=(-2-((4*p*delx)/(2*i-1))-((2*(delx'2))/delt)); 
C(i,n)=(2*i+1)/(2*1-1); 
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D(i,n)-----((2'i-3)/(2*i-1))kU(i-1,n-1)+;2÷ 
1))-((2*(delx-2))/delt))*U(i,n-1)-((2'i+1)/(2-i-1))*f  

end 
end 

;4'pkdelx)/2 -i- 

for(i=2:R) 
if(i==2) 

beeta(i r n)=B(2,n); 
gamma(i,n)=D(2,n)/B(2,n); 

else 
beeta(i,n)=(B(i,n)-(1/beeta(i-1,n))); 
gamma(i,n)=(D(i,n)-gamma(i-1,n))/(beeta(i ,n)); 

end 
end 

format long 
for i=R:-1:2 

if (i==R) 
U(R,n)=gamma(R,n); 

else 
U(i,n)=(gamma(i,n)-((C(i,n)*U(i+1,n))/beeta(i,h))); 

end 
end 

end 
U=W;c1f; 
for(ctr=1:100) 

disp('press "A" to see the entire Solution Matrix.') 
disp('press B to see the specific value of the U at some X & T 

values'); 
disp('press C to see the values of the dependant variable at a 

particular instant U(T)for all x'); 
disp('press D to see the plot for entire U along entire X'); 
disp('Press Quo Quit '); 
choice= input('Enter a choice: 	','s'); 
if(choice=='Q') 

cic; 
break; 

else 
switch(choice) 

case 'A' 
clf; 
disp('The Solution matrix U is :: ' 
disp(U); 

case 'B' 
cic;c1f; 
disp(' 	You choose to see the value of the U at a 

particular instant of time and position 	'); 
disp('Enter the particular instant of time you wish to 

see the value of Dependant variable: 	'); 
time=input('Enter the value of time : 	'); 
disp(' Enter the position along the X direction, you 

wish to see the value of Dependant variable:'); 
position=input('Enter the value of exact position : 	'); 
xp= R*(position)+1; 
to=N*(time)+1; 
disp(U(tp,xp)); 
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case 'C' 
cic; 
disp('You choose to see the values of the U at a 

particular instant(t) along entire X'); 
time=input('Enter the value of time: 
tp=N4- (time)+1; 
for(i=1:R+1) 

Uinstantaneous(i)=U(tp,i); 
end 
disp(Uinstantaneous); 
plot(x,Uinstantaneous'); 

case 'D' 
cic; 
disp('You entered the option to view the plots of 

dependant variable U '); 

	

st=input('Press 1 to view U v/s X and press 2 to view U v/s T 	'); 
if(st==2) 

figure 
plot(t,U); 
grid on; 
title('Plot 	of 	dependant 	variable 	U 	v/s 

dimensionless time for particular position X'); 
xlabel('Time (t)');ylabel('Dependant variable(U)'); 
elseif(st==1) 
figure 
plot(x,01 ); 
grid on; 

title('Plot of dependant variable U v/s dimensionless length for a 
particular time t') 
xlabel('Position(X)');ylabel('Dependant variable(U)'); 

end 
end 

end 
end 
% disp(unew); 
lans.1= linearparabolicpdel(delx,delt); 
%Error Analysis 
for(n=2:N+1) 

for(i=2:R) 
error(i,n)=abs(((U(n,i)-ans(n,i)))/(U(n,i)))*10(); 

end 
end 
disp(error); 
Avgerror=0; 
for(n=2:N+1) 

for(i=2:R) 
Avgerror=Avgerror+error(i,n); 

end 
end 
disp(Avgerror/((R)*(N+1))); 
disp('You came out of the program'); 

% Simulation of Diffusion Equation using the PDEPE tool box 

% Here we give the partial differential equation in terms of parameters 
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-------------------------------- - ------------------------------------ 
% Functions are written for the differential 	as well as for 
the initial and boundary conditions. 

The tool box simulates the solution using thre rinIte Element 
Analysis. 
% ------------------------------------------- 
function [ans]=Iinearparabolicpdel(delx,deit) 
dlr.; 
format long; 

t-[0:delt:1]; 

sol = pdepe(m,Opdex8pde,@bdex8ic,@pdexetc,x,t); 
u=sol(:,:,1); 
disp(u); 
figure 
plot{x,u); 
title('solution of Heat flow in a tapered rod using PDEPE'); 
xlabeWPosition vector X'); 
ylane.U'Dependant variable U'); 

figure 
surf(x,t,u); 
xlabelf'Fosition vector X'); 
ylabel('Time t'); 
ans=(u1; 

% function [c,fr s]-Tdex8pde(x,t,Aie DulDx) 
% c=1;p-10; 

f=DuDx; 
% s= (27x)*(DuDx-p*u); 

% function uo=pdex8ic(x) 
% uo=0; 

% function [pl,q1(pr,qrl-pdexabc(xl,u1,xr,ur,t 
% p=10; 
% pl.--(p*u1); 
% g1-1; 
% pr-[ur-1]; 
% 
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Program to Simulate the Differential equations describing the 
Diffusion & Reaction on the surface of Catalyst pellet under Steady 
State conditions (Shrinking core model) 
% -------- - ------------------------------------------------------------- 
% Here the differential equation is given in terms of dimensionless 
form 
% D'2U/Dx^2 + (2/x)* DU/Dx - phi^2* U =0; 
% subject to BC (1) U=1 	for x=1; 

BC (2) U=finite 	for x=0; 

% The descretization is done using Finite Differences 
% The computed solutions are then compared with the analytical results 
for error analysis. 
% The average percentage error is calculated and is found to be very 
close to zero. 

function shrinkingcore() 
cic;c1f; 
delx=input(finput the Required grid size along the x direction\n'); 
R=1/delx;phi=10.0; 
U(1)=0; 
U(R+1)=1; 
for i=1:(R) 

if(i==1) 
A(i)=(0); 
B(i)=(-2-(phi^2)*(delx^2)); 
C(i)= (1+(1/(i+1))); 
OW= 0; 

elseif(i>2 && i<(R)) 
A(i)=(1-(l/(i+1))); 
B(i)- (-2-(phi^2)*(delx^2)); 
C(i)= (1+(1/(i+1))); 
D(i)=0; 

else 
A(i)=(1-(1/(i+1))); 
B(i)= (-2-(phi 2̂)*(delx^2)); 
C(i) = 0; 
D(i)= =(1+(1/(i+1)))*U(i+1); 

end 
end 
for i=2: (R) 

if(i==2) 
beeta(i)=B(2); 
gamma(i)=D(2)/B(2); 

else 
beeta(i)=(B(i)-(A(i)*C(i-1))/beeta(i-1)); 
gamma(i)-(D(i)-A(i)*gamma(i-1))/(beeta(i)); 

end 
end 

format long 
x=0:delx:1; 
for i=(R):-1:2 

if(i==(R)) 
U(R)=gamma(R); 

else 
U(i)=(gamma(i)-(C(i)*U(i+1)/beeta(i))); 
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end 
end 

%Analytical solution 
Uanalytical(1)=U(1); 
Uanalytical(R+1)=U(R+1); 
y=delx:delx:1; 

for(i=1:(R)) 
A(i)=sinh (phi*( delx)); 
B.-sinn (phi); 
C(i)=(A(i)/8); 
Uanalytical(i)= (1/(i*delx))*C{i); 

end 
plot(x,Uanalytical); 
error=(Uanalytioal-U); 
disp(error); 
for(i=2:R-4-1 

Avgerror(i)=error(i)/Uanalytical(1)*100; 
end 
disp(Avgerror); 

for(ctr-1:10) 
message1='Enter a choice:'; 
choice=input('press "A" to see the Solution Matrix, \n 13 to see the 

specific value of the U at some X value, \n C to see the plot for 
entire U along entire X\n Press Q to Quit\n ','s'); 

if(choice=='Q') 
cic;clf; 
break; 

else 
switch(choice) 

case 'A' 
elf; 
disp(U); 

case 'B' 
cic;c1f; 
message-' 	To see the value of the Solution U at a 

particular instant of time\n :1 ; 
message=' 	Enter the particular instant of time you 

wish to see the value of Dependant variable:'; 
time=input(' 	Enter the value of time :') 
disp(U(time)); 

case 'C' 
cic; 
message=' You entered the option to view the plot of U 

versus x \n'; 
plot(x,U); 

end 
end 

end 
disp('You came out of the program'); 
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=Simulation of an Isothermal Flow Reactor with Second order- 

%program to calculate the solution fo quasi linear par- Liai differential 
equations 
I the general form of the equation is : 
% [a(U)]11)^2U/Dx^2 	[b(U)]DU/Dx + [c(U)iU = DU/Dt; 
0 	  

% As an example we solve the Isothermal Flow Reactor with Second Order 
Reaction: 
% 	The model equation for this system is given as : 
% 	D'2U/Dx^2 - s*DU/Dx - rU-2 = DU/Dt; 

subject to the boundary Conditions : 
U(x,0)= 0 for all x; 

DU/Dx =0 at x=1 and all t; 
DU/Dx + s*(1-U)= 0 at x=0 all t; 

Here we shall use the Crank-Nicolson scheme for developing the 
difference 
% equations. 

%The simulation gives the dimensionless Concentration as a function of 
time and space(both dimensionless). 
0 	  

function flowreactor() 
cic; 
disp(' 	Simulation of Flow Reactor 	f) 

delx= input('\nEnter the step size along the X direction: 	'); 
delt= input('Enter the step size along the time direction: 	'); 
S=10;r=5;x=(0:delx:1); 
format long; 
R=(1/deli); 
N-(1/delt); 
U=zeros(R+1,N+1); 
for(i=1:R+1) 

U(i,1)=0; 
end 
for(n=2:N+1) 

for(i=2:R+1) 
if (i==2) 

Upre(i,n)=U(i,n-1)+(delt/(2*delx^2))*((l-S*delx/2)*U(i+1,n- 
1)+S*delx -(1+S*delx/2+r*(delx^2)*U(2,n-1))*U(2,n-1)); 

A(i,n)= 0; 
B(i,n)-(-r*(delx^2)*Upre(i,n)-((2*(delx)^2)/delt)-(1+S4 delx/2)); 
C(i,n)= (1-(S*delx)/2); 
D(i,n)=-(1-(S*delx)/2)*U(i+l,n-1)+(r*(delx^2)*Upre(i,n)-  

((2*delx^2)/delt)+(l+S*delx/2))*U(i,n-1)-(2*S*delx); 

elseif(i>2 && i<(R+1)) 
Upre(i,n)=U(i,n-1)+(delt/(2*delx^2))*((l+S*delx/2) 0(1-1,n-

1)+(l-S*delx/2)*U(i+1,n-1)-(2+r*(delx^2)*U(i,n-1))*U(i,n-1)); 
A(i,n)= (1+(S*delx)/2); 
B(i,n)= (-2-r*(delx^2)*Upre(i,n)-(2*(delx^2)/de1t)); 
C(i,n)= (1-(S*delx)/2); 
D(i,n)= -(1+(S*delx)/2)*U(i-1,n-1)- (1-(S*delx)/2)*U(i+1,n-

1)+ (2+r*(delx-2)*Upre(i,n)-((2*delx-2)/delt))*U(i,n-1); 

else 
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Upre(i,n)=U(i,n-1)+(delt/(2*(delx -2))) 	'J 
1,n-1)-(1+S*delx/2+r*delx'2)U(i,n-1))*U(i,n-1)); 

A(i,n)=(1+(S*delx)/2); 
B(i,n)=(-r*(delx^2)*Upre(i,n)-((2*(delx)^2)/delt)-(1+S*Oelx/2) 
C(i,n)= 0; 
D(i,n)=-(1+(S*delx)/2)*U(i-1,n-1)+(r*(delx^2)*Upre(i,n)- 

((2'delx^2)/delt)+(l+S*de1x/2))*U(i,n-1); 
end 

end 
for(i-2:R+1) 

if(i==2) 
beta(1,n)=B(2,n); 
gamma(i,n)=D(2,n)/B(2,n); 

else 
beta(i,n)=B(i,n)-(A(i,n)*C(i-1,n)/beta(i-1,n)); 
gamma(i,n)=(D(i,n)-A(i,n)*gamma(i-1,n))/beta(i,n); 

end 
end 
for(i=(R+1):-1:2) 

if(i==(R+1)) 
U(R+1,n)=gamma(R+1,n); 

else 
U(i,n)=gamma(i,n)-(C(i,n)*U(i+1,n)/beta(i,n)); 

end 
end 

end 
t=(0:delt:1); 
U=0 1 ; 
for(ctr=1:100) 

disp('press "A" to see the entire Solution Matrix.') 
disp('press B to see the specific value of the U at some X & 

values'); 
disp('press C to see the values of the dependant variable at a 

particular instant ,J(T)for all x'); 
disp('press D to see the plot for entire U along entire X'); 
disp('Press Q to Quit '); 
choice= input('Enter a choice: 	','s'); 
if(choice=='Q') 

cic; 
break; 

else 
switch(choice) 

case 'A' 
disp('The Solution matrix U is :: '); 
disp(U); 

case 'B' 
clo;c1f; 
disp(' 	You choose to see the value of the U at a 

particular instant of time and position 	'); 
disp('Enter the particular instant of time you wish to 

see the value of Dependant variable: 	'); 
time=input('Enter the value of time : 	.); 

disp(' Enter the position along the X direction, you 
wish to see the value of Dependant variable:'); 

position=input('Enter the value of exact position : 	'); 
xp= R*(position)+1; 
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tp=W-(time)1; 
dis (U(tp,xp)); 

case 'C' 
cic; 
disp('Yon choose to see the values of the U au 

particular instant(t) along entire X'); 
time=input('Enter the value of time; 
tp-N*(time)+1; 
for(i=1:R*1) 

Uinstantaneous(i)=U(tp,i); 
end 
disp(Uinstantaneous); 
plot(x,Uinstantaneous'); 

case 'D' 
cic; 
disp('You entered the option to view the plots of 

dependant variable U '); 
st=input('Press 1 to view U v/s X and press 2 to view U v/s T 	'); 

if(st==2) 
figure 
plot(t,U); 
grid on; 

title('Plot of dependant variable U v/s dimensionless time for 
particular position X'); 

xlabel('Time (t)');ylabel('Dependant variable(U) 
eiseif(st==1) 

figure 
plot(x,U'); 
grid on; 

title('Plot of dependant variable U v/s dimensionless length for a 
particular time t'); 

xlabel('Position(X)');y1abel('Dependant 
variable(U)'); 

end 
end 

end 
end 
disp('You came out of the program'); 
[ans1= nonlinearparabolicpdel(delx,delt); 
%Error Analysis 
for(n=2:N+1) 

for(a-2:R+1) 
error(i,n)=abs(((U(nr 1)-ans(n,i)))/(0(n,i)))*100; 

end 
end 
dlsp(error); 
totalerror-0; 
for(n-2:N4-1) 

fcri=2:R+1) 
totalerror-totalerrorterror(i,n); 

end 
end 
Avgerror=(totalerror/({R+1}*(N+1))); 
disp(Avgerror); 
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Simulation of Isothermal Flow Reactor(with a second order rest on) 
% using the PDEPE tool box 
% 	________________________________________________________________ 
I Here we give the partial differntiai equation in te=s of parameters 

I Functions are written for the differential equation as well as 5cr 
the initial and boundary conditions. 

The tool box simulates the solution using tare Finite Element 
Analysis. 

function [ansj= nonlinearparabolicpdel(delx,delt) 
cic; 
format long; 
x=10:delx:11; 
t-[0:delt:1]; 
m=0; 
sol = pdepe(m,@pdexl1pde,Opdexilic,@pdexilbc,x,t); 
u-sol(:,:,1); 
disp(u); 
figure 
plot(xfu g ); 
title('Concentration profiles in a flow reactor with second order 
reaction using PDEPE'); 
xlabei(lPosition vector X'); 
ylabel('Dependant variable U') 
ans=[0; 
figure 

% surf(x,t,u); 
% xlabel('Position vector X'); 
% ylabel('Time t'); 

% function [c,f,s1=pdexl1pdex,t,u,DuDx) 
c=1; 

% a=10;r=5; 
I f=DuDx; 
% s-(-r*(u .̂ 2))-a*DuDx; 

% function uo-pdexilic(x) 
% 

% function [pl,q1,pr,gr]=pdexilbc(xl,u1,xr,ur,t) 
% a=10; 
I pl-a*(1-ul); 
% q1=1; 
% pr-0; 
% qr=1; 
I 	  
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Countercurrent Heat Exchanger 
% ------------------ 	------------------ 
% The heat balance equations give a set of Hyperbolic Equations which 
are to be solved using Central finite Differences 
% ---------------------------------------------------------------------- 
% Here we consider a unsteady state Countercurrent Heat Exchanger 
0 

0 

go 

z 
0 
0 
0 

The Equations describing the problem are: 
-bl(DU/Dx)-cl(U-V)=(Du/Dt) 
b2(Dv/Dx)+c2(U-V)=(Dv/Dt) 
subject to following boundary Conditions 

U (x, 0 ) =0 
	

for x>0; 
U ( 0, 0 ) =1; 
v ( x, 0 ) =0; 
U ( 0 , t ) =1; 
V (1, t ) =0; 

%For simplicity we take same step size along time and space domain 
0 
function CountercurrentHE() 
cic;c1f; 
delx=input('Input the step Size along the spatial Direction: 
delt=delx; 
R=(1/delx); 
N=(1/delt); 
x=[0:delx:1]; 
for(n=1:N+1) 

U(1,n)=1; 
end 
for(n=1:N+1) 

✓(R+1,n)=0; 
end 
for(i=1:R+1) 

U(i,1)=0; 
V(1, 1)=0; 

end 
U(1,1)=1; 
format long 
U(1,1)=1; 
bone=l; 
btwo=0.5; 
cone-0.05; 
ctwo=0.05; 
for(n=2:(N+1)) 

for(i=2:(R)) 
if (i==2) 

Aone(i,n)=0; 
Atwo(i,n)=0; 
Bone(i,n)=((bone/delx)+(cone/2)+(//delt)); 
Btwo(i,n)=(-cone/2); 
Cone(i,n)=(0); 
Ctwo(i,n)=(-cone/2); 
Done(i,n)=((bone/delx)-(cone/2)+(l/delt))*U(i-1,n-1 

bone/delx)-(cone/2)+(l/delt))*U(i,n-1)+(cone/2)*(V(i+1,n-1)+V(i 
((-bone/delx)+(cone/2)+(1/delt))*U(i-1,n); 

Athree(i,n)=0; 
Afour(i,n)=0; 
Bthree(i,n)=(etwo/2); 

+((-
n-1))- 
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Bfour(i,n)=(-btwo/delx)-(ctwo/2)-(lideir; 

Cthree (i, n) =0; 
Cfour(i,n)-((btwd/delx)-(ctwo/2)-(1/dei'c.)); 

Dtwo(i,n)= 	 (-ctwo/2)-(U(1,n-1)+U(i-i,n- 

1))+((btwo/delx)+(ctwo/2)-(1/delt))*V(i,n-1)4- ((-btwo/delx)ctwo/2)-  

(1/delt))-V(i+1,n-1)-(ctwo/2)'U(i -1 ,n); 
eiseif(i==R) 

Aone(i,n)=(-bene/delx+(cone/2)+(1/delt)); 

Atwo (i, n) =0; 
Bone(i,n)=((bone/delx)+(cone/2)+(l/delt)); 
Btwo(i,n)=(-cone/2); 
Cone(i,n)=(0); 
Ctwo(i,n)=0; 
Done(i,n)=((bone/delx)-(cone/2)+(l/delt))*U(i-1,n-1)+((-  

bone/delx)-(cone/2)+(l/delt))*0(i,n-1)+(cone/2)*(V(i+1,n-1)+V(i,n-1))-  

(-cone/2)*V(i+1,n); 
Athree(i,n)=(ctwo/2); 
Afour(i,n)=0; 
Bthree(i,n)=(ctwc/2); 
Bfour(i,n)=((-btwo/delx)-(ctwo/2)-(1/delt)); 

Cthree (i, n) =0; 
Cfour(i,n)=0; 
Dtwo(i,n)=(-ctwo/2)*(U(i,n-1)+U(i-1,n- 

1))+((btwo/delx)+(ctwo/2)-(1/delt))*V(i,n-1)+((-btwo/delx)+(ctwo/2)-  

(1/delt))*V(i+1,n-1)-((btwo/delx)-(ctwo/2)-(1/delt))*V(i+1,n); 

else 
Aone(1,n)=(-bone/delx+(cone/2)+(1/delt)); 

Atwo (i, n) =0; 
Bone(i,n)=((bOne/delx)+(cone/2)+(1/delt)); 

Btwo(i,n)=(-cone/2); 
Cone(i,n)=(0); 
Ctwo(i,n)=(-cone/2); 
Done(i,n)=((bone/delx)-(cone/2)+(l/delt))*U(i-1,n-1)+((-  

bone/delx)-(cone/2)+(l/delt))*0(i,n-1)+(cone/2)*(V(i+1,n-1)+V(i,n-1));  

Athree(i,n)=(ctwo/2); 
Afour (i, n) =0; 
Bthree(i,n)-(ctwo/2); 
Bfour(i,n)=((-btwo/delx)-(ctwo/2)-(1/delt)); 

Cthree (i, n) =0; 
Cfour(i,n)=((btwo/delx)-(ctwo/2)-(1/delt)); 

Dtwo(i,n)= 	 (-ctwo/2)*(U(i,n-1)1-0(i-1,n- 

1))+((btwo/delx)+(ctwo/2)-(1/delt))*V(i,n-1)+((-btwo/delx)+(ctwo/2)-  

(1/delt))*V(i+1,n-1); 
end 

end 
for(i=2:(R)) 

if(i==2) 
betaone(i,n)=Bone(i,n); 
betatwo(i,n)=Btwc(i,n); 
betathree(i,n)=Bthree(i,n); 
betafour(i,n)=Bfour(i,n); 
mu(i,n)=betaone(i,n)*betafour(i,n)-  

betatwo(i,n)*betathree(i,n); 

deltaone(i,n)=Done(i,n); 
deltatwo(i,n)=Dtwo(i,n); 
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lambdaone(i,n)-((betafour(i,n)*Cone(i,n))- 
(betatwo(i,n)*Cthree(i,n)))/(mu(i,n)); 

lambdatwo(i,n)-((betafour(i,n)4'Ctwo(i,n))- 
(betatwo(i,n)4-Cfour(i,n)))/(mu(i,n)); 

lambdathree(i,n)=((betaone(i,n)*Cthree(i,n))- 
(betathree(i,n)*Cone(i,n)))/(mu(i,n)); 

lambdafour(i,n)=((betaone(i,n)*Cfour(i,n))- 
(betathree(i,n)Ctwo(i,n)))/(mu(i,n)); 

gammaone(i,n)=((betafour(i,n)*deltaone(i,n))- 
(betatwo(i,n)*deltatwo(i,n)))/(mu(i,n)); 

gammatwo(i,n)=((betaone(i,n)*deltatwo(i,n))- 
(betathree(i,n)*deltaone(i,n)))/(mu(i,n)); 

else 
betaone(i,n)-(Bone(i,n)-(Aone(i,n)*lambdaone(i-1,n))- 

(Atwo(i,n)*lambdathree(i-1,n))); 
betatwo(i,n)=03two(i,n)-(Aone(i,n)*lambdatwo(i-1,n))- 

(Atwo( ,n)*lambdafour(1-1,n))); 
betathree(i,n)-(Bthree(i,n)-(Athree(i,n)*lambdaone(i-1,n))- 

(Afour(i,n)*lambdathree(i-1,n))); 
betafour(i,n)--(Bfour(i,n)-(Athree(i,n)lambdatwo(i-1,n))- 

(Afour(i,n)*lambdafour(i-1,n)));• 

mu(i,n)=betaone(i,n)*betafour(i,n)- 
betatwo(i,n)*betathree(i,n); 

deltaone(i,n)=(Done(i,n)-(Aone(i,n)*gammaone(i-1,n))- 
(Atwo(i,n)*gammatwo(i-1,n))); 

deltatwo(i,n)--(Dtwo(i,n)-(Athree(i,n)*gammaone(i-1,n))- 
(Afour(i,n)*gammatwo(i-1,n))); 

lambdaone(i,n)-((betafour(i,n)*Cone(1,n))- 
(betatwo(i,n)*Cthree(i,n)))/(mu(i,n)); 

lambdatwo(i,n)=((betafour(i,n)*Ctwo(i,n))- 
(betatwo(i,n)*Cfour(i,n)))/(mu(i,n)); 

lambdathree(i,n)=((betaone(i,n)*Cthree(i,n))- 
(betathree(i,n)*Cone(i,n)))/(mu(i,n)); 

lambdafour(i,n)-((betaone(i,n)*Cfour(i,n))- 
(betathree(i,n)*Ctwo(i,n)))/(mu(i,n)); 

gammaone(i,n)=((betafour(i,n)*deltaone(i,n))- 
(betatwo(i,n)*deltatwo(i,n)))/(mu(i,n)),! 

gammatwo(i,n)=((betaone(i,n)*deltatwo(i,n))- 
(betathree(i,n)*deltaone(i,n)))/(mu(i,n)); 

end 
end 
for(i=(R):-1:2) 

if(i==(R)) 
U(R,n)-gammaone(R,n); 
V(R,n)----gammatwo(R,n); 

else 
U(i,n)-(gammaone(i,n)-0_ambdaone(i,n)*U(i+1,n))- 

(lambdatwo(i,n)*V(i+1,n))); 
✓(i,n)=(gammatwo(i,n)-(lambdathree(i,n)-'1J(i+1,n))- 

(lambdafour(i,n)*V(i+1,n))); 
end 
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end 
end 

U=U';V=4"; 
for(ctr=1:100) 

disp('press "A" to see the entire Solution Matrix for U and V.') 
disp('press B to see the specific value of the U and at some X S T 

values'); 
disp('press C to see the values of the dependant variables at a 

particular instant U(T) and V(T) for all x'); 
disp('press D to see the plot for entire U or V along entire X'); 
disp('Press Q to Quit 	'); 
choice= input('Enter a choice: 	','s'); 
if(choice=='Q') 

cic; 
break; 

else 
switch(choice) 

case 'A' 
cif; 
disp('The Solution matrix U is :: '); 
disp(U); 
disp('The solution matrix V is :: '); 
disp(V); 

case 'B' 
cic;c1f; 
disp(' 	You choose to see the value of the U and V at 

a particular instant of time and position 	'); 
disp('Enter the particular instant of time you wish to 

see the value of Dependant variables: 	'); 
time=input('Enter the value of time : 	'); 
disp(' Enter the position along the X direction, you 

wish to see the value of Dependant variable:'); 
pcsition-input('Enter the value of exact position 

' ; 
xp= R*{position)+l; 
tp—N*(time)+1; 
disp(Uttp,xp)); 
disp(V(tp,xp)); 

case 'C' 
cic; 
disp('You choose to see the values of the U at a 

particular instant(t) along entire X'); 
time=input('Enter the value of time: 

U=U'; 
tp=N*(time)+1; 
option=input('Press 1 for getting values of U and press 

2 for getting values of V:: 	'); 
if (option=1) 

tor(i=1:R+1) 
Uinstantaneous(i)-U(tp,i); 

end 
disp(Uinstantaneous); 
plot(x,Uinstantaneous); 

end 
if(option==2) 
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for(1-1:R4-1) 
Vinstantanecus(i)=V(tpr i); 

end 
disp(Vinstantaueous); 
plot(x,Vinstantsneous); 

end 
case 'D' 

cic; 
disp('You entered the option to view the plot 

versus entire X and Time 
option-input('Press 1 to view the plot for U and press 

2 for viewing plot for V:: 	); 
if(option=1) 

figure 
plot(x,U);. 

end 
if(option-=2) 

figure 
pIot(x,V); 

end 
end 

end 
end 
disp('You came out of the Program'); 
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% program to solve the parabolic and hyperbolic equators 	1= non 
linear boundary conditions. 

% ----------------------------- 
% 

	--------- 
The resulting differential equations are converted to difference 

equations 
% that are converted to tridiagonal system ,which is there by solved 
using Thomas Algorithm. 

% As an example we solve the heat equation 
I D^2U/Dx^2 = DU/Dt; 
% subject to the boundary conditions : 
% U=Uo 	at x = 0 for all t; 
% s(1-U"- 4) - DU/Dx = 0 at x =1; all t; 
% and U = Uo at t = 0 for all x; 

% The parameter s in the equation is dimensionless and contain the cube 
of the source temperature, the Stephen Boltzmann constant and thermal 
conductivity and length of the rod. 

% We use the crank Nicolson equation for the partial differential 
equation 

function nonlinearboundary() 
cic;c1f; 
delx=input('Enter a specific step size along X direction: 	'); 
delt=input('Enter a specific step size along T direction: 	'); 
format long; 
R=(1/deli); 
N=(//delt);s=0.1; 
U=zeros(R+1,N+1); 
Uo=input('Enter a particular initial value of the variable U at x=0 and 
for all t: 	'); 
for(n=1:N+1) 

U(1,n)=Uo; 
end 
for(i=1:R+1) 

U(i,1)= Uo; 
end 
for(n=2:N+1) 

for(ctr=1:100) 
for(i2:R+1) 

if(i==2) 
A(i,n)= 0; 
B(i,n)= (-2-(2*(deix^2))/delt); 
C(i,n)- 1; 
D(i,n)- (2-(2*(delx'2))/delt)*U(i,n-1)-U(i+1,n-1)-2*Uo; 
beta(i,n)=B(2,n); 
gamma(i,n)=D(2,n)/B(2,n); 

elseif(i>2 && i<(R+1)) 
A(i,n)= 1; 
B(i,n)= (-2-(2(delx^2))/delt); 
C(i,n)= 1; 
D(i,n)=-U(i-1,n-1)+(2-(2*(delx^2))/delt)*U(l,n-1)-  

U(i+1,n-1); 
beta(i,n)=B(i,n)-(A(i,n)*C(i-1,n)/beta(i-1,n)); 
gamma(i,n)=(D(i,n)-A(i,n)*gamma(i-1,n))/beta(i,n); 

else 
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A(i,n)=.  2; 
Bi,n)-(-2-(delx-2)/deIt); 
C(i,n)= 0; 
n= -((deix-2/delt*ui,n-1))+2*s*delx); 
g-(2-k- s*delx); 
beta(i,n)---13(1,n)-(A(i,n)*C(i-1,n)/beta(i-1,n)) 
1D --= ((h-A(i,n) frgamma(i-1,n))/beta(i,n)); 
q= g/beta(i,n); 
if(n==2) 

U1-U(i,n-1); 
disp(01); 
02-0(i,n-2)+2*(U(i,n-1)-0); 

else 
Ul-U(i,h-1); 
U2=U(i,n-1)+2*(U(i,n-1)-U(i,n-2)); 

end 
Ui,n)=regulafalsi(p,q,U1,U2); 

end 
end 

U(i,n)--gamma(i,n)-(C(i,n)-*U(i+1,n)/beta(ir n)); 
end 
for(i=2:R+1) 

Um(i,otr)-U(i,n); 
end 
if(ctr==l) 

continue; 
else 

if(Um(i,ctr)-Um(i,(ctr-1))>=0.0000000005) 
break; 

else 
continue; 

end 
end 

end 
end 
x=(0:delx:1); t=(0:delt:1); 
U=U'; 
for(ctr=1:100) 

disp('press "A" to see the entire Solution Matrix.') 
disp('press 8 to see the specific value of the U at some X 

values'); 
disp('press C to see the values of the dependant variable at a 

particular instant U(T)for all x'); 
disp('press D to see the plot for entire C7 along entire X'); 
disp('press Q to Quit 	'); 
choice= input('Enter a choice: 	','s'); 
if(choice=='Q') 

cic; 
break; 

else 
switch(choice) 

case 'A' 
cif; 

disp('The Solution matrix U is :: '); 
disp(U); 

case 'B' 
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cic;c1f; 
disp(' 	You choose to see the vaiue of to 

particular instant of time and position 	'); 
disp ('Enter the particular instant of time 	wish 

	

see the value of Dependant variable: 	'); 
time=input('Enter the value of time : 	'); 
disp(' Enter the position along the X direction, you 

wish to see the value of Dependant variable:'); 
position=input('Enter the value of exact position 

) ; 
xp= R*(position)+1; 
tp=N*(time)+1; 
disp(U(tp,xp)); 

case 'C' 
cid; 
disp('You choose to see the values of the U at a 

particular instant(t) along entire X'); 
time=input('Enter the value of time: 	'); 
tp=N*(time)+1; 
for(i=1:R+1) 

Uinstantaneous(i)=U(tp,i); 
end 
disp(Uinstantaneous); 
plot(x,Uinstantaneous'); 

case 'D' 
cic; 
disp('You entered the option to view the plots of 

dependant variable U '); 
st=input('Press 1 to view U v/s X and press 2 to view U 

v/s T 	'); 
if(st==2) 

figure 
plot(t,U'); 
grid on; 
title('Plot 	of 	dependant 	variable 	U 	v/s 

dimensionless time for particular position X'); 
xlabel('Time (t)');ylabel('Dependant variab1e(U)'); 

elseif(st==1) 
figure 
plot(x,U); 
grid on; 
title('Plot 	of 	dependant 	variable 	U 	v/s 

dimensionless length for a particular time t'); 
xlabel('Position(X)');ylabel('Dependant 

variable(U)'); 
end 

end 
end 

end 
Eansi= radiationdiffusion(delx,delt); 

%Error Analysis 
for(n=1:N+1) 

for(i=1:R+1) 
error(i,n)=abs((ans(i,n)-U(n,i))/(ans(i,n)))k10e; 

end 
end 
disp(error); 
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Avgerror=0; 
for(n----1:N+1) 

for(i=1:9,l) 
Avgerror-Avgerror+error(i,n); 

end 
end 
disp(Avgerror/((R+l)*(N+1)));-  
disp('You came out of the program'); 

% Simulation of Heat flow in a rod(Conduction accompanied by Radiation 
along Boundary} using the PDEPE tool box 
O 	  

% Here we give the partial differntial equation in terms of parameters 

% Functions are written for the differential equation as well as for 
the initial and boundary conditions. 

The tool box simulates the solution using tyre Finite Element 
Analysis. 

function [ans)= radiationdiffusion(delx,delt) 
cic; 
format long; 
x=[0:delx:1]; 

m=0; 
sol = pdepe(m,@pdexl2pdei @pdexl2ic,@pdexl2bc,x,t); 
u=sol(:,:,1); 
disp(u); 
figure 
plot(x,u); 
title('Dependant variable(U) v/s Position as solved by PDEPE 
xlabel('Position vector(X)'); 
ylabel('Dependant variable U'); 
[ans]=u'; 
% figure 
% surf(x,t,u); 
% xlabel('Position vector X'); 
% ylabel('Time ti); 

% function [c,f,s]---pdex12pde(x e tr u,DuDx) 
% c=1; 
% f=DuDx; 
% s=0; 
C 

% function uo---lodexl2ic(x) 
% uo=0.50; 

% function ipl,q1,pr,q11-pdexl2bc(x1,u1,xr,ur,t) 
% uo=0.50;s=0.1; 
% pl=u1-uo; 
% q1-0; 
% pr-s*(1-(ur)^4); 
% qr=-l; 
go 

) ; 
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Appendix A2 

Thomas Algorithm for Tri-diagonal Matrix 

The given the linear algebraic equations are written in the following form. 

bra/ ciu2 + 0 + 	 + 0 = dr  
a2ui + b2u2+ c2u3 + 0 + 	+ 0 = d2 

0 + ...aiui_i + bine + 	+ 0 = 

± 	+ 0 + aR_211R.3 bR_211R-2± CR-21112-1 = dR-2 
+ 	± 0 ± aR_IuR_2+ 	dR-: 

The equations can be represented in general as; 

a,u;_, +b,u, 	= d, 	for; 1 < i < R1 

with al  ---= 	= 0 

The algorithm is as follows; 

First Compute; 

	

a,c,_, 	with fil  = 

and; 

d, — a,7,_, 

y` 	Q; )6, 
with yi = 

bi  

The values of the dependant variable are then computed by back substituted from; 

y« and u, = 7, 
c,ui±, 

 

The algorithm however suffers a drawback that, if the coefficients b, are assuming 

very small values, then the algorithm gives erratic results. Further the algorithm: is not 

applicable for the conditions when b, = 0 
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Appendix A2 

Thomas Algorithm for Tri-diagonal Matrix 

The given the linear algebraic equations are written in the following form. 

bra/ + ciu2  + 0 + 	+0 =d1  
a2u1  + b2u2 + c2u3 + 0 + 	+ 0 = d2  

O + ...aiui_i  + biui + ciui+1  +- 	+ 0 = di  

O + 	+ 0 + CIR.211R_3 bR-2141-2± CR-21112-1 = d R-2 
O + 	+ 0 ± aR_IuR_2+ 	dR-i 

The equations can be represented in general as; 

a,u,_, +b 	+c,u,+1  = d, 	for; 1 < i < R 

with al = c R  = 0 

The algorithm is as follows; 

First Compute; 

a,c,_, 
A = b, 	 

13,_1 
with fil  = bi  

and; 

d, a,7 
with 
	di 

= 	 wan 7, = — 
Q, 	 bi  

The values of the dependant variable are then computed by back substituted from; 

c,ui+ , 
u i?  = 	and u;  = 

The algorithm however suffers a drawback that, if the coefficients b are assuming 

very small values, then the algorithm gives erratic results. Further the algorithm is not 

applicable for the conditions when b, = 0 
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Appendix A3 

Algorithm for Bi-Tridiagonal Matrix 

The two equations are written in the following general form as; 

+ 	 + b,(1)u, + b)2 ) v, + c ("u,+ , + c ("v,+ , 	d ,") 

and 
(3)

c.-4"  v 	 )tt„ + 	+ c r )u,,  + 	 „(2) 
	

for I < j < R 

with 	c411)  = 4")  = 0 for 1 m < 4 

The algorithm is as follows; 

First compute; 
Aci) = bp — a(1)2,001 — a (2)  AP )  

(2) 	b  (2) 
P, 	— 

a(1)2(2)1,  cir,(2)A(4) 

,(3) ,8 = b,(3 ) a  (3) 	)1  20 a  ( 4 ) 2(3),  

/3,(4) = b (4) a(3) 2(2) 
a

(4) i(3 

with; A(m )  = e")  for 1 < m 5 4 

and; 
4,50) 	d(i) _ a(1)7(01 — a  (2)2, (21) 

(5(2) 	d(2) 	a(3)7(11 
	a(4) ,(2 

with; 

,(1)  = 41)  and g/(2)  = 42)  

and; 

	

pi 	, /3,(1)15, J(4) 	/3i(2).#8,(3) 

The /3,( m )  , 5(m)  and p, are computed to aid in the computation of the following functions 

and need not be stored after the computation of 

	

A(I) 	(16(4)c  ( I ) 	fli(2 )c.,( 3) )/ 
iii 

	

2(2) 	(fisi(4)c, (2) 	.18(2)c  (4) 
)i rai 
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3-3( 	= 01(1)c(3) 	A(3 ) c(I) 11, 
A.,(4 ) = (45,,(1) c  (4) 	73,(3)c(2) 

and; 

i(1) = G6,(4)(5,(1) 	fir(2)8,(2) )/ /Lit  

7;2' = (,6")8,( 2) - /6 /(3' 6,(91 Cli 

The values of 2;"')  and yfm)  must be stored, as they are used in the back solution. This is; 

_ (I) — "re 1R 
(2) 

VR — Yrr  

and; 

(2) 	2(3) 
V 	7, 	7, 

-4-  - /1 4 )v,,t 

for (R — 1) 	1 
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