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ABSTRACT 

Transmission Control protocol (TCP), the most widely used transport layer protocol 

on Internet, has attained significant maturity over the last few years and the popularity 

of wireless communication and computing systems is on the rise. Efforts are 

underway to extend TCP to wireless to enable smooth integration of the two 

technologies. Since TCP was developed for wired medium, wireless medium posed an 

altogether a new set of challenges to TCP. For this reason TCP requires improvements 

or modifications. 

TCP assumes every packet loss is a congestion loss hence decreases the sending rate. 

This will decrease the sender's throughput when there is an appreciable rate of loss 

due to link error. This issue is significant for wireless links. We present an extension 

of TCP-Casablanca which improves TCP performance over wireless links. We 

proposed a new discriminator which not only differentiates congestion and wireless 

losses, but also identifies the congestion level in the network, i.e., whether the 

network is lightly congested or heavily congested and throttles the sender's rate 

according to the congestion level in the network. 
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CHAPTER 1 	 INTRODUCTION & STATEMENT OF THE PROBLEM 

1.1 Introduction: 
TCP is a popular protocol for reliable data delivery in the interne. Most current 

applications use TCP/IP protocols for data transfer. TCP assumes that every packet loss is 

an indication of network congestion and throttles the sender's rate. Although TCP was 

initially designed and optimized for wired networks, the growing popularity of wireless 

data applications has lead third generation wireless networks such as CDMA2000 and 

UMTS networks to extend TCP to wireless communications as well. The initial objective 

of TCP was to efficiently use the available bandwidth in the network and to avoid 

overloading the network (and the resulting packet losses) by appropriately throttling the 

senders' transmission rates. Network congestion is deemed to be the underlying reason 

for packet losses. Consequently, TCP performance is often unsatisfactory when used in 

wireless networks. 

Wireless environments with transmission errors are becoming more common and TCP 

may perform poorly when wireless link subject to transmission errors. The reason for this 

is the implicit assumption in TCP that all packet losses are treated as congestion losses by 

decreasing the transmission window. Reno and Tahoe TCP implementations and many 

proposed alternative solutions [9, 10, 18] use packet loss as a primary indication of 

congestion; a TCP sender increases its window size, until packet losses occur along the 

path to the TCP receiver. Decreasing the congestion window when packet loss occurs due 

to lossy wireless links leads the performance degradation of TCP. 

Currently, a TCP sender considers all losses as congestion signals. When loss occurs 

sender decreases its sending rate by halving its congestion window which is a part of 

congestion control activity. Taking congestion control actions may be appropriate when a 

packet loss is due to congestion, however, it can unnecessarily reduce sending rate if 

packet losses happen to be due to wireless transmission errors. Ideally, it would help the 

sender to differentiate between packet losses due to congestion from the packet losses 

due to wireless transmission errors using some technique. Once a sender knows that the 
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packet loss is due to congestion or wireless transmission error, it can respond 

appropriately. The sender does not know exactly which packets are lost. The receiver has 

a better view of the losses; it knows exactly which packets are lost. This observation led 

us to consider schemes which can enable the receiver to distinguish between congestion 

losses and wireless error losses. 

We extend TCP-Casablanca [12] to differentiate congestion and wireless losses, and 

identifying the network state by using RTT. Estimating network condition by using RTT 

(Round Trip Time) is not new, Brakmo and Malley proposed TCP-Vegas [3], which 

estimates network condition by using RTT and according to that it increases/decreases 

the congestion window. We use simulation to study the ability of discrimination of our 

method. Then we modify TCP-New Reno integrates our scheme and study the throughput 

enhancement induced. The TCP-New Reno modified with our scheme will be called 

TCP-RoS. We compare the performance of our scheme, TCP-RoS, with the TCP-

Casablanca [12] and TCP-New Reno. 

1.2 Statement of Problem: 
Whenever there are wireless transmission errors in wireless networks TCP performance 

will degrade. This is because sender unnecessarily throttles the congestion window when 

packet loss occurs due to wireless error. As a result the bandwidth of the network gets 

under utilized. Our aim is to improve the performance of TCP in presence of wireless 

losses by de randomizing the congestion losses. 

1.3 Organization of Report: 

This paper is organized as follows. 
Chapter 2 presented detailed description about TCP, TCP Congestion control algorithms 

and different discriminators used for differentiating wireless and congestion losses. 

Chapter 3 describes the proposed discriminator, TCP-RoS (TCP with Router Support). 

Chapter 4 describes implementation details, Network model and performance metrics 

used for evaluating the proposed discriminator. 
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Chapter 5 discusses the simulation results in terms of throughput and Accuracies. 

Chapter 6 gives a brief conclusion and is followed by scope of future work. 
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CHAPTER 2 	 BACKGROUND 

2.1 TCP overview: 
Transmission Control Protocol (TCP) was first introduced in early 1980s to provide 

reliable operation over a variety of transmission media. TCP is a means for building a 

reliable communications stream on top of the unreliable packet Internet Protocol (IP). 

TCP is the protocol that supports Internet applications. The combination of TCP and IP is 

referred to as TCP/IP. 

TCP [16] has been widely used in today's Internet. The protocol supports reliable data 

transport by establishing a connection between the transmitting and receiving ends. The 

transmitter starts a timeout mechanism when sending a packet to the receiver. The 

transmitter constantly tracks the round-trip times (RTTs) for its packets as a means to 

determine the appropriate timeout period. At the receiver, each received packet is 

acknowledged implicitly or explicitly to the transmitter. If the transmitter does not 

receive an acknowledgment for a given packet when the corresponding timeout period 

expires, the packet is deemed to be lost and subject to retransmission. A congestion 

window with dynamically adjusted size is used by the protocol to regulate the traffic flow 

from the transmitter to the receiver. 

TCP is being used on wired networks with stationary host for the last 2-3 decades. It has 

been adapted significantly to optimize its performance on these networks. The wired 

networks are highly reliable and less than 1 % of the packet losses can be attributed to 

link errors. TCP attributes packet loss on the network to congestion. TCP sender buffers 

the packets sent to the receiver. The receiver sends cumulative acknowledgments to 

indicate the receipt of the packets. The sender retransmits the lost packets to guarantee 

reliable delivery. For this purpose, it maintains a running average of the estimated round 

trip delay and the mean linear deviation from it. 

The sender identifies the loss of a packet either by the arrival of several duplicate 

cumulative acknowledgments or by the absence of an acknowledgment for a packet 
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within a timeout interval that is equal to the sum of the smoothed round-trip delay and 

four times its mean deviation. TCP reacts to packet losses by dropping its transmission 

(congestion) window size before retransmitting packets, initiating congestion control or 

avoidance mechanisms [.7] (e.g., slow start) and backing off its retransmission timer 

(Karn's algorithm [20]). These measures result in a reduction in the load on the 

intermediate links, thereby controlling the congestion in the network. 

2.2 TCP in Wireless Environment 

The characteristics of wireless medium differ significantly from that of wired medium. 

The major factors affecting TCP performance in wireless environment are [8]: 

1. Limited Bandwidth: Bit rates of 100 Mbps are common on wired LANs. Optical 

links provide data rate of the order of gigabits per second. As compared to this the 

current wireless standards for example the IEEE 802.11b standard for Wireless 

LAN offers raw bit rates of up to only 11 Mbps. Thus available bandwidth is one of 

the major bottlenecks that degrade the throughput of TCP on wireless medium. 

2. Long Round Trip Times: In general, wireless media exhibit longer latency delays 

than wired media. The rate at which the TCP sender increases its congestion 

window is directly proportional to the rate at which it receives ACKs from the 

receiver. Due to longer round Trip Times, the congestion window increases at a 

much lower rate in the case of wireless links. This directly limits the throughput of 

TCP on wireless links. 

3. Random Losses The transmission losses on wireless medium are significantly 

higher than that on wired medium. These losses result in packet drops and hence the 

sender does not receive acknowledgments within retransmit timeout. This causes 

the sender to retransmit the segment, exponentially back off its retransmit timer and 

closes its congestion window to one segment. Repeated errors ensure a low 

throughput. The loss of packet on wireless link, which in general is the last hop, 
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results in end-to-end retransmission. This causes traffic overload on the wired links 

also. 
Forward Error Correction (FEC) can be employed to bring the False Alarm Error 

Rate (FAER) down to the order of 10. However, FEC achieves such low FAER 

only under certain conditions at the expense of significant bandwidth, but 

bandwidth already a scarce resource in wireless medium. Hence FEC is usually not 

preferred. In addition, FEC cannot solve all problems because terrain type and 

natural and man-made objects can handicap wireless connectivity altogether. 

4. User Mobility In the case of cellular networks when a user (mobile host) moves 

from one cells to another, all the necessary information has to be transferred from 

the previous base station to the new base station. This 2 process is called Handoff, 

and depending on the technology used, there might be short duration of 

disconnection. TCP attributes delays and losses caused by these short periods of 

disconnection to congestion and triggers congestion control and avoidance 

mechanism. This again results in reduced throughput. 

In the case of ad hoc networks, mobile nodes can move randomly causing frequent 

topology changes. This causes packet losses and forces mobile hosts to initiate route 

discovery algorithms frequently. The overall result is significant throughput 

reduction. 

5. Short Flows Services like web browsing and e-mail involve small amount of data 

transfer between the client and the server. A major portion of the wireless networks 

data transfer fall in this category. The TCP sender increases its congestion window 

progressively as it receives acknowledgments from the receiver (Slow Start). There 

is a high probability that the transfer completes even before the sender's window 

reaches the maximum possible size. This results in under utilization of the network 

capacity. 
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6. Power Consumption The retransmissions caused by frequent packet losses result 

in longer connection duration and hence higher power consumption. Power 

consumption is a very important factor in case of battery operated devices like 

laptops, PDAs and wireless phones. 

2.3 TCP Congestion control [20]: 

TCP uses end-to-end congestion control. This means that congestion control is not 

network-assisted. There is no explicit feedback from the network and congestion is 

inferred from the observed end-systems loss and delay. Using congestion control, 

transmission rate is limited by the congestion window size (in short cwnd) over segments 

as shown in the following figure 2.1 [20]. 

Fig 2.1[20]: TCP congestion window 

TCP congestion control starts with probing for usable bandwidth. Ideally someone 

should transmit as fast as possible without loss. Instead cwnd increases until loss. When 

loss occurs, we decrease cwnd and then begin probing (increasing cwnd) again. During 

this process there are two phases. The first is the slow start and the second is the 

congestion avoidance. Important variables are cwnd and the threshold that defines the 

boundary between the slow start phase and the congestion avoidance phase. 

2.4 Congestion Control Algorithms: 
There are four congestion control algorithms: slow start, congestion avoidance, fast 

retransmit and fast recovery. In some situations it may be beneficial for a TCP sender to 

be more conservative than the algorithms allow, however a TCP must not be more 

aggressive than the following algorithms allow (that is, must not send data when the 

Dept. of E&C Engineering 	 7 	 2005-06 



value of cwnd computed by the following algorithms would not allow the data to be 

sent). 

2.4.1 Slow Start and Congestion Avoidance [1] 

The slow start and congestion avoidance algorithms must be used by a TCP sender to 

control the amount of outstanding data being injected into the network. To implement 

these algorithms, two variables are added to the TCP per-connection state. The 

congestion window (cwnd) is a sender-side limit on the amount of data the sender can 

transmit into the network before receiving an acknowledgment (ACK), while the 

receiver's advertised window (rwnd) is a receiver-side limit on the amount of outstanding 

data. The minimum of cwnd and rwnd governs data transmission. 
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Fig 2.2: Slow Start 
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Another state variable, the slow start threshold (ssthresh), is used to determine whether 

the slow start or congestion avoidance algorithm is used to control data transmission, as 

discussed below. 

Beginning transmission into a network with unknown conditions requires TCP to slowly 

probe the network to determine the available capacity, in order to avoid congesting the 

network with an inappropriately large burst of data. The slow start algorithm (shown in 

Fig 2.2) is used for this purpose at the beginning of a transfer, or after repairing loss 

detected by the retransmission timer. 

IW, the initial value of cwnd, must be less than or equal to 2*SMSS (Sender Maximum 

Segment Size) bytes and must not be more than 2 segments. We note that a non-standard, 

experimental TCP extension allows that a TCP may use a larger initial window (IW), as 

defined in equation 1 

IW = min (4*SMSS, min (2*SMSS, 4380 bytes)) 	 (1) 

With this extension, a TCP sender may use 3 or 4 segment initial window, provided the 

combined size of the segments does not exceed 4380 bytes. We do not allow this change 

as part of the standard defined by this document. 

The initial value of ssthresh may be arbitrarily high (for example, some 

implementations use the size of the advertised window), but it may be reduced in 

response to congestion. 

The slow start algorithm is used when cwnd < ssthresh, while the congestion avoidance 

algorithm is used when cwnd > ssthresh. When cwnd and ssthresh are equal the sender 

may use either slow start or congestion avoidance. 

During slow start, a TCP increments cwnd by at most SMSS bytes for each ACK 

received that acknowledges new data. Slow start ends when cwnd exceeds ssthresh or 
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when congestion is observed. During congestion avoidance, cwnd is incremented by 1 

full-sized segment per round-trip time (RTT). Congestion avoidance continues until 

congestion is detected. One formula commonly used to update cwnd during congestion 

avoidance is given in equation 2: 

cwnd= cwnd + SMSS*SMSS/cwnd 	 (2) 

This adjustment is executed on every incoming non-duplicate ACK. Equation (2) 

provides an acceptable approximation to the underlying principle of increasing cwnd by 1 

full-sized segment per RTT. 

2.4.2 Fast Retransmit and Fast Recovery [1] 

A TCP receiver should send an immediate duplicate ACK when an out-of-order segment 

arrives. The purpose of this ACK is to inform the sender that a segment was received 

out-of-order and which sequence number is expected. From the sender's perspective, 

duplicate ACKs can be caused by a number of network problems. First, they can be 

caused by dropped segments. In this case, all segments after the dropped segment will 

trigger duplicate ACKs. Second, duplicate ACKs can be caused by the re-ordering of 

data segments by the network. Finally, duplicate ACKs can be caused by replication of 

ACK or data segments by the network. In addition, a TCP receiver should send an 

immediate ACK when the incoming segment fills in all or part of a gap in the sequence 

space. This will generate more timely information for a sender recovering from a loss 

through a retransmission timeout, a fast retransmit, or an experimental loss recovery 

algorithm, such as NewReno. The TCP sender should use the "fast retransmit" algorithm 

to detect and repair loss, based on incoming duplicate ACKs. The fast retransmit 

algorithm uses the arrival of 3 duplicate ACKs (3 identical ACKs without the arrival of 

any other intervening packets) as an indication that a segment has been lost. After 

receiving 3 duplicate ACKs, TCP performs a retransmission of what appears to be the 

missing segment, without waiting for the retransmission timer to expire. 
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After the fast retransmit algorithm sends what appears to be the missing segment, the 

"fast recovery" algorithm governs the transmission of new data until a non-duplicate 

ACK arrives. The reason for not performing slow start is that the receipt of the 

duplicate ACKs not only indicates that a segment has been lost, but also that segments 

are most likely leaving the network (although a massive segment duplication by the 

network can invalidate this conclusion). In other words, since the receiver can only 

generate a duplicate ACK when a segment has arrived, that segment has left the network 

and is in the receiver's buffer, so we know it is no longer consuming network resources. 

Fig 2.3: TCP Congestion Window 

Furthermore, since the ACK "clock" is preserved, the TCP sender can continue to 

transmit new segments (although transmission must continue using a reduced cwnd). The 

fast retransmit and fast recovery algorithms (Shown in Fig 2.3) are usually implemented 

together as follows. 

1. When the third duplicate ACK is received, set ssthresh to max (FlightSize / 2, 

2*SMSS). Where, FlightSize is the amount of outstanding data in the network 
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2. Retransmit the lost segment and set cwnd to ssthresh plus 3*SMSS. This artificially 

"inflates" the congestion window by the number of segments (three) that have left 

the network and which the receiver has buffered. 

3. For each additional duplicate ACK received, increment cwnd by SMSS. This 

artificially inflates the congestion window in order to reflect the additional segment 

that has left the network. 

4. Transmit a segment, if allowed by the new value of cwnd and the receiver's 

advertised window. 

5. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the 

value set in step 1). This is termed "deflating" the window. 

This ACK should be the acknowledgment elicited by the retransmission from step 1, one 

RTT after the retransmission (though it may arrive sooner in the presence of significant 

out-of-order delivery of data segments at the receiver). Additionally, this ACK should 

acknowledge all the intermediate segments sent between the lost segment and the receipt 

of the third duplicate ACK, if none of these were lost. 

2.4.3 TCP Tahoe, Reno, New Reno, Vegas and SACK: 
The error control mechanism of TCP is primarily oriented towards congestion control. 

Congestion control can be beneficial to the flow that experiences congestion, since 

avoiding unnecessary retransmissions can be lead to better throughput-delay tradeoff. 

TCP utilizes acknowledgments to pace the transmission of segments and interprets 

timeout events as signs of congestion. In response to congestion, the TCP sender reduces 

the transmission rate by shirking its window. There are four major versions of TCP 

(Tahoe, Reno, New Reno and Vegas). In the following lines we discuss each version: 

TCP Tahoe [2O]: TCP Tahoe is the oldest version of TCP but on the other hand one of 

the most famous versions. TCP Tahoe congestion algorithm includes Slow Start and 
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Congestion Avoidance. In order to declare a loss event, three timeouts have to be passed. 

This is its main drawback as when a segment is lost; the sender side of the application 

may have to wait a long period of time for the timeout. After timeout it again starts from 

Slow Start phase. 

TCP Reno [20]: TCP Reno, except from Slow Start and Congestion Avoidance also 

includes Fast Retransmit and Fast Recovery. A receiver sends a duplicate ACK 

immediately on reception of each out-of-sequence packet. The Reno TCP transmitter 

interprets reception of three duplicate ACKs as a congestion packet loss, and sets the 

slow start threshold size (ssthresh) to one-half of the current congestion window (cwnd) 

and retransmits the missing packet. The cwnd is then set to ssthresh plus three times the 

segment size (one per each duplicate ACK). cwnd is increased by one segment on 

reception of each duplicate ACK, which continues to arrive after fast retransmission. This 

allows the transmitter to send new data when cwnd is increased beyond the value of the 

cwnd before the fast retransmission. 

When an ACK arrives, which acknowledges all outstanding data sent before the 

duplicate ACKs were received, the cwnd is set to ssthresh so that the transmitter slows 

down the transmission rate and enters the linear increase phase. 

TCP Reno's Fast Recovery can be effective when there is only one segment drop from a 

window of data, given the fact that Reno retransmits at most one dropped segment per 

RTT. The problem with the mechanism is that is not optimized for multiple packet drops 

form a single window, and this could negatively impact performance. 

TCP New Reno [5]: If two or more packets have been lost from the transmitted data 

(window), the fast retransmission and fast recovery algorithms (Reno) will not be able to 

recover the multiple losses without waiting for retransmission time out. Hoe proposed a 

modification to Reno TCP usually called New-Reno to overcome this problem. New-

Reno introduces the concept of a fast retransmission phase, which starts on detection of a 

packet loss (receiving three duplicate ACKs) and ends when the receiver acknowledges 
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reception of all data transmitted at the start of the fast retransmission phase. The 

transmitter assumes reception of a partial ACK (acknowledging some, but not all, packets 

outstanding at the start of fast retransmission phase) during the fast retransmission phase 

as an indication that another packet has been lost within the window, and retransmits that 

packet immediately to prevent expiry of the retransmission timer. 

TCP Vegas [3]: TCP Vegas approaches the problem of congestion from another 

perspective. The basic idea is to detect congestion in the routers between source and 

destination before packet loss occurs and lower the rate linearly when this imminent 

packet loss is detected. The longer the round-trip times of the packets, the greater the 

congestion in the routers. Every two round trips delays the following quantity is 

computed: 

p = (WindowSizeCurrent - WindowSizeOld) * (RTTCurrent-RTTOld) 

If p>0 

The window size is decreased by 1/8. 

Else 
The window size is increased by one segment size. 

One problem that it does not seem to overcome is the path asymmetry. The sender makes 

decisions based on the RTT measurements, which, however, might not accurately 

indicate the congestion level of the forward path. Furthermore, packet drops caused by 

retransmission deficiencies or fading channels may trigger a Slow Start. However, this 

problem is common to all of the above versions. Another drawback is that, Vegas 

algorithm is very new (1999) and is not fully embedded in the most popular TCP 

implementations. 

TCP Sack 191: The selective acknowledgment (SACK) option for Reno TCP has been 

introduced to further enhance TCP performance. When the receiver buffer holds in-

sequence data packets, the receiver sends duplicate ACKs bearing the SACK option to 
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inform the transmitter about which packets have been correctly received. This allows the 

transmitter to modify the retransmission procedure to selectively retransmit only lost 

packets, without retransmitting already Sacked packets. The transmitter is also able to 

accurately estimate the number of transmitted packets that have left the network by using 

the explicit information carried by SACKS. This provides efficient transmission of more 

packets to utilize the network. The SACK option has been implemented in most of the 

recent releases of operating systems, while New-Reno implementations are still 

emerging. 

If the receiver does not acknowledge the packet and, instead, acknowledges (SACK), a 

subsequently transmitted packet, the transmitter considers that this is a good indication of 

loss of the retransmitted packet. All these modifications to TCP assume that every packet 

loss is an indication of network congestion and take measures to avoid further congestion 

in the network by reducing the transmission rate. This results in a very low utilization of 

the link when there is an appreciable rate of losses due to link errors. 

2.5 Queuing types: 

2.5.1 Drop-Tail queue: 
The most well known operation of the queue is the First-In-First-Out (FIFO) queue 

process. FIFO queue shared by all packets to be transmitted over an out-bound link. The 

queue simply provides some capacity for tolerating variability in the load (i.e., Bursty 

traffic) on the outbound link. A short burst of packet arrivals may exceed the available 

bandwidth of the link even when the average load is well below the link bandwidth. 

However, when the load exceeds the available capacity of the link for sustained periods 

of time, the queue capacity is exceeded. Router implementations using a simple fixed-

size FIFO queue typically just drop any packet that arrives to be enqueued to an already-

full outbound queue. This behavior is often called drop-tail packet discarding. 

2.5.2 Random Early Detection (RED) 
The RED algorithm uses a weighted average of the total queue length to determine when 

to drop packets. When a packet arrives at the queue, if the weighted average queue length 
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is less than a minimum threshold value, no drop action will be taken and the packet will 

simply be enqueued. If the average is greater than a minimum threshold value but less 

than a maximum threshold, an early drop test will be performed as described below. 

An average queue length in the range between the thresholds indicates some congestion 

has begun and flows should be notified via packet drops. If the average is greater than the 

maximum threshold value, a forced drop operation will occur. An average queue length 

in this range indicates persistent congestion and packets must be dropped to avoid a 

persistently full queue. Note that by using a weighted average, RED avoids over-reaction 

to bursts and instead reacts to longer-term trends. Furthermore, note that because the 

thresholds are compared to the weighted average (with a typical weighting of 1/512 for 

the most recent queue length), it is possible that no forced drops will take place even 

when the instantaneous queue length is quite large. 

2.6 Wireless and Congestion loss discriminators: 
There has been considerable work characterizing the benefits of differentiating wireless 

losses from congestion losses for TCP connections, and developing various techniques 

for preventing TCP from reacting to wireless losses as if they indicated congestion. A 

discriminator is any technique which distinguishes congestion losses from wireless 

losses. 

A. Biaz discriminator [111: 
Biaz proposed one discriminator uses packets inter arrival time to differentiate between 

loss types. The concept here is that based on the arrival time of P„ if P,+,7+1 arrives right 

around the time that it should have arrived, we can assume the missing packets were 

properly transmitted and lost due to wireless errors. If P;+„+1 arrive much earlier than it 

should, then at least some packets ahead of it (130-1... Pi+n) probably were dropped at a 

buffer, and if it arrives much later than expected, then it is likely that queuing times at 

buffers have increased. Either way, we can attribute the loss to congestion. 
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B. Spike discriminator [17]: 
The Spike discriminator differentiated among degrees of congestion but did not 

explicitly differentiate wireless loss from congestion loss. ROTT is a measure of the time 

a packet takes to travel from the sender to the receiver and used to identify the state of the 

current connection. If the connection is in the spike state, losses are assumed to be due to 

congestion; otherwise, losses are assumed to be wireless. The spike state is determined 

as follows. On receipt of a packet with sequence number i, if the connection is currently 

not in the spike state and the ROTT for packet exceeds the threshold, then the algorithm 

enters the spike state. Otherwise, if the connection is currently in the spike state, and the 

ROTT for packet is less than a second threshold, the algorithm leaves the spike state. 

When the receiver detects a loss because of a gap in the sequence number of received 

packets, it classifies the loss based on the current state. 

The problem in this method is, it is sensitive to threshold values. The distance 

between these two parameters determines the stability between spike and non-spike 

states. If d (difference between two threshold values) is small then the algorithm 

oscillates between two states. If d is large the algorithm is stable but misclassification of 

losses increases. 

C. ZigZag discriminator [4]: 
ZigZag classifies losses as wireless, based on the number of losses n and the 

difference between rott, and its rottmean. A loss is classified as wireless if 

AND rott, < rottmenn-rotAnev) 

OR (n=2 AND rotti<rottmean-rottd,/2) 

OR (n=3 AND rotti<rott mean) 

OR (n>3 AND rott<rottn,ean-rottd„/2). 

Otherwise, the loss is classified as congestion loss. rottmean  and rottde, calculated as 

follows: 

rottmear,(1-ct)*rottmean+ Ct*rott 

rottd, — (1-2a )*rotidev+2 a *Irott-rottmeanl. 
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By definition, ROTT has a high probability of having values greater than (rottmean-

rottdev): 84% if it were a normalized Gaussian distributed random variable. As one packet 

loss is the most common loss pattern in a wired network, and congestion loss usually 

comes with higher delay, the threshold of rott > rott,ean-rottd„ intuitively would classify 

most of the congestion loss correctly. The reasoning behind increasing the threshold with 

the number of losses encountered is that a more severe loss is associated with higher 

congestion and with higher ROTT. This way, a loss event containing four or more 

packets would be classified as congestion loss only when relatively large ROTT were 

observed. 

Taking ROTT to classify wireless losses leads to the problem of high misclassification of 

congestion and wireless losses. The problem with this type of algorithms is, the sender 

and receiver must be synchronized. 

D. Hybrid discriminator: 
Cen et al. proposed a hybrid discriminator ZBS [4] which uses three loss 

discriminators: ZigZag, Biaz and Spike. ZBS dynamically switches between the three 

loss discriminators according to observed network conditions. 

E. TCP Casablanca [12]: 
Biaz and Vaidya proposed this discriminator that takes support from intermediate routers 

and uses different discard priority packets and biased queue management that first drops 

low priority packets if queue is full. Our algorithm is based on TCP-Casablanca [12]. 

This algorithm "de-randomizes" congestion losses such that the distribution of 

congestion losses differs from that of wireless error losses. In this algorithm the packets 

are divided in to two priorities in and out. One packet out of k packets labeled as out. 

Let us denote all data packets a TCP sender sends as P 	P 1M  is the ith packet, and it is 

marked with M (in or out). A retransmitted packet keeps the same index i but is always 

marked in to avoid jeopardy for packets initially marked out. It is assumed that routers 
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first drop packets marked out, and start dropping packets marked in only if there are no 

more packets marked out in the queue. 

TCP sender marks the packets such that one packet out of k packets is marked out all 

other packets are marked in. A biased queue management is implemented at routers 

which first drop out packets. At the receiver side when ever an out-of-order packet 

received, TCP receiver considers the patter of losses between the next expected packet 

P,ixt  and the Packet Ph,  with the highest sequence number seen so far and calculated the 

following function. 

F(x, r, k) = 1- Lk. '1 

x = number of out packets lost. 

r = total number of lost packets. 
If F(x, r, k) > 0 then the losses are diagnosed as wireless losses. 

Otherwise they are diagnosed as congestion losses. 

After identifying the loss type receiver sends signal to sender (by setting ELN flag) in 

duplicate ACK. If the ELN (Explicit Loss Notification) flag is set then the sender doesn't 

halve the congestion window (because the loss is due to wireless loss). Otherwise it 

decreases the congestion window to half. 

If the congestion is high then F(x, r, k) mistakenly identifies the loss is due to wireless 

loss. If this happens then the sender doesn't decrease it's sending rate, due to this the 

network performance will degrade. 

The biased queue management raises the issue of fairness between flows that mark some 

of their packets out and the flows that do not. If some flows do not mark out any of their 

packet, then packets will be dropped only from flows that mark packets out. Only flows 
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that mark packets out would be responsive to light congestion. Flows that do not mark 

packets out may monopolize the available link capacity. 

Note that some performance improvement is usually obtained even with weak loss 

discriminators. This observation is supported by Barman and Matta [2] who studied the 

effectiveness of poor loss discriminators in improving TCP performance. Barman and 

Matta showed that despite a low accuracy in diagnosing congestion losses or wireless 

losses, TCP performance can still be significantly improved. 

In this chapter we discussed overview of TCP, major factors affecting TCP performance 

in wireless medium, various congestion control algorithms in TCP and different 

discriminators used for differentiating wireless and congestion losses. 
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CHAPTER 3 	 PROPOSED DISCRIMINATOR 

In this chapter we discuss our proposed discriminator TCP-RoS (TCP with Router 

Support). 

3.1 Rationale of proposed discriminator 
The problem of distinguishing congestion losses from random wireless losses is 

particularly hard when congestion is light: congestion losses themselves appear to be 

random. A biased queue management that first drops specifically marked packets will 

"de-randomize" congestion losses. The TCP-RoS discriminator is implemented at the 

TCP receiver because the receiver has a better "view" of the losses than the sender. 

For every k packets which the sender sends, it marks one of the packets as out and all 

other packets as in. In case of congestion, the router at the bottleneck link must first drop 

packets marked out before dropping any packet marked in. Therefore, the out packets are 

dropped first by the biased queue management at the bottleneck. If there is no congestion, 

the pattern of dropping will likely be different as wireless links do not distinguish 

between out and in packets. As high proportion of packets are marked as in, it is expected 

that these will likely be dropped. From this observation, the receiver will diagnose a 

pattern of losses as biased if a high proportion of packets marked out are lost. If the 

pattern appears to be biased, the receiver concludes that the losses are due to congestion. 

In the following, it is formally shown that a biased queue management enables the design 

of a very accurate TCP-RoS loss discriminator. The sender also estimates congestion 

level of the network by using RTT. 

3.2 Proposed discriminator (TCP-RoS): 
Our proposed discriminator TCP-RoS, is using priority packets to de-randomize 

congestion losses. This new method also identifies congestion level in the network and 

also solves fairness problem which is in TCP-Casablanca [12]. 

Sender in the TCP-RoS assigns priority (in or out) to every packet according to the value 

of k (one out packet every k in packets). And when the sender receives ACK from 
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Decrease cwnd by 1/4th 

As New Reno 

Do not halve 
cwnd 

ACK Received 

receiver it checks eln_flag field in ACK. If eln_falg is 1, then sender doesn't decrease 

congestion window. Other wise it checks the following equation 3. 

rtt <= (min_rtt+max_rtt)/2 
	

(3) 

Where rtt is the round trip time, min_rtt is the minimum rtt and max_rtt is the maximum 

rtt till now the sender experienced. If this equation satisfies then the sender assumes that 

the network is lightly congested so it decreases congestion window by '/4 th only. 

Otherwise it acts as same New Reno. The flow chart for sender is shown in Fig 3.1. 

TCP Sender 

Fig 3.1: TCP-RoS Sender flow chart 
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Compute r-x 

Mark Ack with 
eln_flag 

As New Reno 

Packet Received 

We implemented discriminator at receiver side because receiver is better view for losses. 

When receiver receives out-of-order packet, it calculates two parameters x, r. where x is 

the no. of out packets lost. r is the total no. of packets lost. Receiver checks sequence no. 

from first lost packet sequence no. to maximum sequence no. seen up to now and 

calculates x and r parameters. 

TCP- Receiver 

Fig 3.2: TCP-RoS Receiver flow chart 

If all are in packets then receiver sends wireless loss signal to sender in third duplicate 

ACK by setting eln_flag field to 1 in ACK. Otherwise receiver sends congestion loss 

signal to sender by setting eln flag field to 0 in ACK. The flow chart for receiver is 

shown in Fig 3.2. 
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We implemented a new queue management which first drops out priority packets. This 

queue management also solved fairness problem which is in TCP-Casablanca queue 

management. Our queue management works as follows. 

When a packet comes to the router it checks the source and destination addresses of that 

packet, if this packet has priority out, then the sender drops this packet. Otherwise it 

checks with the packets which are in queue for the same source and destination number 

packets. If any out priority packet found in the queue it removes that packet otherwise 

this packet will be dropped. If there is no same source and destination address of that new 

incoming packet then it drops new incoming packet. 
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CHAPTER 4 	 IMPLEMENTATION DETAILS 

Simulation study is carried out using network Simulator -2. Overview of NS-2, the 

Network model used and the performance metrics used for evaluating the discriminators 

are as follows. 

4.1 NS-2 overview: 
NS-2 provides a frame work for simulation of wired and wireless networks, including 

some facility for emulation. NS-2 is the VINT project which is a joint effort by people 

from UC Berkely, USC/ISI, LBL, and Xerox PARC. The project is supported by the 

Defense Advanced Research Projects Agency (DARPA). The NS-2 simulator is written 

in C++ with a Tcl shell front-end that uses oTcl (object-oriented Tcl) libraries scenarios 

are run by feeding an oTcl script to the NS-2 executable. The output can be read directly 

or post-processed by an interactive graphics viewer called Network Animator (NAM). 

NAM does not allow changing parameters on the fly, it is for post-viewing of a 

simulation dump (a .nam file). 

NS is an object oriented simulator, written in C++, with an OTcl interpreter as a front 

end. NS uses two languages because simulator has two different kinds of things it needs 

to do. On one hand, detailed simulations of protocols require a systems programming 

language which can efficiently manipulate bytes, packet headers, and implement 

algorithms that run over large data sets. For these tasks run-time speed is important and 

turn-around time (find bug, fix bug, recompile, re-run) is less important. 

NS meets both of these needs with two languages, C++ and OTcl. C++ is fast to run but 

slower to change, making it suitable for detailed protocol implementation. OTcl runs 

much slower but can be changed very quickly (and interactively), making it ideal for 

simulation configuration. 
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NS-2 is a discrete event simulator. It does the Simulation of TCP, routing, and multicast 

protocols over wired and wireless (local and satellite) networks. This Simulator is written 

in C++. OTci is used as command and configuration interface. 

Components of NS: 

• Ns, the simulator itself 

• Nam, the network animator 

o Visualize ns output 

o Nam editor: GUI interface to generate ns scripts 

• Pre-processing: 

o Traffic and topology generators 

• Post-processing: 

o Simple trace analysis, often in Awk, Perl, or Tcl 

Ns functionalities in Wired Networks: 

• Routing DV, LS, PIM-SM 

• Transportation: TCP and UDP 

• Traffic sources: web, ftp, telnet, cbr 

• Queuing disciplines: drop-tail, RED, FQ, SFQ, DRR 

• Tracing, visualization, various utilities 

To the C++ programmer, object-oriented programming in OTci may feel unfamiliar at 

first. The difference between C++ and OTci are: 

• Instead of a single class declaration in C++,we write multiple definitions in OTci. 

• Instead of a constructor in C++, write an init instproc in OTcl. Instead of a 

destructor in C++, write a destroy instproc in OTci. 

• Unlike C++, OTci methods are always called through the object. The name self, 

which is equivalent to this in C++, may be used inside method bodies. 

C++ is used for per packet processing i.e. preprocessing for each packet of a flow. It is 

fast to run, detailed, familiar and easy to understand. 
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OTcl is used for control of execution. The simulation program written in OTcl is fast to 

write and change. OTci is used in 

• Simulation scenario configurations 

• Periodic or triggered action 

• Manipulating existing C++ objects 

4.2 System Requirements: 
This project was developed on a Linux machine running Fedora 2 with Linux kernel 2.6.5 

& NS-2. The NS-2 [19] version was "ns-allinone-2.1b8a", which is a single tar ball with 

all the requisite packages that easily installs with one command. 

4.3 Network Model: 
Accuracies (Ac  and Aw) of TCP-RoS discriminator and the improvement are measured 

using ns-2[19] simulations. This section presents the topology used for the simulations, 

the packet loss model, and the method used to collect the data. Fig. 6(a) shows the 

topology used. There are three types of pairs sender-receiver: TCP connections over type 

sender-receiver pair experience the longest propagation delay path with a wireless last 

hop. There are five routers. The dashed lines show the TCP transfers between senders and 

receivers. With this topology, a competing TCP traffic with different round-trip times is 

maintained. Bit rates on all links are set such that the bottleneck is the link R3 — R4. 

All senders are TCP senders. Sources are fed with FTP traffic. The results presented in 

this paper have a bit rate on the wired bottleneck of 45 Mb/s and propagation delay is 

5ms. Bit rate B,„ on the wireless link of 10 Mb/s and N1, N2, N3 are 6. Experiments were 

run with Ni, N2 and N3 are varying from 3 to10. 

For the wireless packet loss model, a two-state Markov model is used. In each state, the 

time between successive losses is exponentially distributed. 

Two discriminators were added to TCP sink in ns-2: Casablanca discriminator and 

proposed discriminator (TCP-RoS). For these experiments, each experiment lasts 140s. 
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Accuracies Ac, A, and throughput are collected from this experiment. Note that the same 

starting times are used to conduct the experiment with TCP-New Reno, TCP-Casablanca, 

and TCP-RoS. Five runs of the same experiment were run, changing only the starting 

times. The results reported here for the accuracies and the throughput are the average 

over the 5 runs. 

Fig 4.1: Network model 

4.4 Performance metrics 
An algorithm that attempts to classify each loss into one of two classes can be judged by 

its misclassification rate, the fraction of cases which are classified incorrectly. Since 

misclassifying a wireless loss as a congestion loss does not have the same impact as the 

other way around, we can judge performance by examining the two separate 

misclassification rates. However, our ultimate concern is with the throughput of the 
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traffic stream that results from using the algorithm, and with whether the algorithm 

causes severe congestion and thereby diminishes the throughput of other traffic streams. 

This leads us to a set of three performance measures. 

Throughput: The most important goal is high throughput, where we are concerned with 

the improvement compared with the original TCP-New Reno and TCP-Casablanca when 

transmitting through a network with a wireless link. Our experiments show that 

throughput of our model is higher than New Reno and Casablanca models. 

Congestion Accuracy (At): Ac  is the ratio of the number of congestion losses correctly 

diagnosed over the total number of congestion losses. 

Wireless Accuracy (An): Ay, is the ration of the number of wireless losses correctly 

diagnosed over the total number of wireless losses. 

4.5 Description of the classes used 
We have used the NS-2 simulator to modify the TCP. The TCP module already 

integrated in NS-2. The following functions are modified in various file in tcp (See 

Appendix- for complete code). 

• Modifications in tcpnewreno.cc 

output(seqno, reason) - The function sends one packet with the given sequence number 

and updates the maximum sent sequence number variable (maxseqp to hold the given 

sequence number if it is the greatest sent so far. This function also assigns the various 

fields in the TCP header (sequence number, timestamp, reason for transmission). This 

function also sets a retransmission timer if one is not already pending. It assigns the 

priorities to every packet according to k value. 

recvO - this function is the main reception path for ACKs. Note that because only one 

direction of data flow is in use, this function should only ever be invoked with a pure 
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ACK packet (i.e. no data). The function stores the timestamp from the ACK in ts_peer_, 

and checks for the presence of the ECN bit (reducing the send window if appropriate). If 

the ACK is a new ACK, it calls newack(), otherwise checks elnilag whether the loss is 

due to wireless or congestion and calls dupackaction() by setting loss_type variable. It 

sends a packet by calling send_much. 

Dupack_action0- This function decreases the congestion window according to the 

loss_type. 

• 	Modifications in tcpsink.cc 

recv() — This function is main reception path for packets. It checks whether the expected 

packet or out-of-order packet. This function also updates receive window when it 

received expected packet and sends ack for that packet. If the packet is out-of-order 

packet this function checks whether the loss is due to wireless or due to congestion and 

sets eln_flag field in third duplicate ack. 

• Modification in drop_tail.cc 

enque(Packet p) — This function enque the packet p in to the queue. Then it checks 

whether the present queue length is greater than queue length, if it is then this function 

calls dequebqm(), which is base class method. 

• Modification in queue.cc 

dequebqm() — This function deque the packet from queue. This function first drops low 

priority (out) packet for the same flow belongs to tail end packet. 
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CHAPTER 5 	 RESULTS AND DISCUSSIONS 

5.1 Accuracies A, and Aw: 

It was shown in [12] that the accuracies Ac and Aw  depend on the value k (one packet 

marked out every k packets, others being marked in). In this section, the relationship 

between the accuracies and k is verified through simulations. 

Impact of k on Ac  and Aw: 

—B— TCP-Casablanca-4— TCP-RoS 

Fig. 5.1: Congestion accuracy AcVs k when pv, =0.01. 

Fig 5.1 plots the measured Congestion accuracy versus k when wireless packet loss rate 

pW  =0.01, the key observation is that accuracy decreasing sharply after k=10. It was 

shown that a large decreases the expected number of packets marked out in the queue at 

the bottleneck. When congestion occurs, packets marked out get quickly exhausted for 

large values of k results large no. of in packet drops occur. If this situation will occur then 

the discriminator misclassifies the congestion loss as wireless loss. 
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Fig 5.2: Wireless Accuracy A, when p,, =0.01. 

Simulations results on Fig. 5.2 shows that AW  increases as k increases. When k is large, 

packets marked out are rare and rarely get dropped on the wireless medium. Therefore, 

most losses appear to be random, leading to a high accuracy. Fig. 5.1 and 5.2 suggests 

that k should be chosen around 8 to achieve high values for and both Accuracies. For 

k=8, Ac  is 0.997 and /kw  is 0.88 for TCP-RoS, against A0  is 0.994 and A, is 0.8 for TCP-

Casablanca. 
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5.2 Throughput: 
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Fig 5.3: Throughput Vs wireless loss rate (Pw). 

Simulations are carried out using wireless error rates (13,) of 0.001, 0.01 and 0.1. Figure 

5.3 shows the throughput achieved by TCP-RoS, TCP-Casablanca and TCP-New Reno in 

the presence of increasing error rates on the wireless link. Our results suggest that the 

proposed RoS algorithm identifies random losses on the wireless link. It outperforms 

TCP-New Reno and TCP-Casablanca in terms of throughput. TCP-RoS provides higher 

throughput than TCP-Casablanca and New Reno in all cases. According to the results, 

TCP-RoS has a higher throughput than TCP-Casablanca by 2.4% at P, is 0.001. When PW  

is 0.01 TCP-RoS has higher throughput than Casablanca by 4.21% and 3.8% higher 

throughput when 13„ is 0.1. 

From the graph we can observe that the throughput drops significantly for very high error 

rates. This can be explained as follows. The retransmitted packets are also dropped due to 

wireless transmission errors. When these retransmitted packets are dropped the 
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congestion window of the sender decreases to one. As a result the throughput of TCP 

decreases. 

Throughput in presence of non-priority flows: 

Simulations are carried out in the presence of other flows (Flows that always sends in 

priority packets) to check fairness of our algorithm. 

TCP-Casablanca —6— TCP-RoS —a— TCP-RoSWF 
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Fig 5.4: Throughput Vs wireless loss rate (pw). 

The biased queue management in TCP-Casablanca drops the packets only from flows that 

mark packets out. Only flows that mark packets out would be responsive to light 

congestion. Flows that do not mark packets out may monopolize the available link 

capacity. Due to this the throughput of the flows that mark the packet as out will degrade 

in the presence of other flows. Figure 5.4 shows the throughput achieved by TCP-RoS, 

TCP-Casablanca and TCP-RoSWF in the presence of increasing error rates on the 

wireless link. TCP-RoS throughput is high compare to TCP-Casablanca and TCP-

RoSWF because the queue management drops the packet according to the incoming 

packet flow. TCP-RoS has a higher throughput than TCP-Casablanca by 5.2% when Pw  is 
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0.001. When-Pw  is 0.01 TCP-RoS has a higher throughput than Casablanca by 27.6% and 

74.4% higher throughput when P„ is 0.1. Hence we can conclude that our proposed 

TCP-RoS algorithm out performs TCP-Casablanca and TCP-RoSWF (TCP-RoS with out 

fairness) in presence of other flows. 
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CHAPTER 6 	 CONCLUSION 

6.1 Conclusion: 
We developed a new discriminator TCP-RoS, which not only differentiate wireless and 

congestion losses but also identifies level of congestion in the network. We have shown 

through simulation that TCP-RoS is able to maintain high throughput in wireless error 

prone links than TCP-Casablanca. We solved the fairness problem which is in TCP-

Casablanca. 

6.2 Scope of future work: 
Our future work will focus on discriminator to yield a better accuracy, a key factor in 

improving the performance of TCP in presence of random losses by using multiple 

dropping priorities. Multiple dropping priorities, used with a biased queue management, 

may well yield a higher wireless accuracy .Our further research to investigate the 

behavior of the proposed technique over different network topologies and asymmetric 

networks. 
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A.1 NAM output and Trace file sample output: 

Figure A.1.1 shows the sample NAM output. 

Figure A.1.1: Sample NAM output. 



The following is the sample trace file generated by the NAM for TCP. 

+ 1 0 3 tcp 40 	 2 0.0 4.0 
- 1 0 3 tcp 40 	 2 0.0 4.0 

0 
0 0 

0 

r 1.00014 0 3 tcp 40 	 2 0.0 4.0 0 0 
+ 1.00014 3 4 tcp 40 	 2 0.0 4.0 0 0 
- 1.00014 3 4 tcp 40 	 2 0.0 4.0 0 0 
r 1.100543 4 tcp 40 	 2 0.0 4.0 0 0 
+ 1.10054 4 3 ack 40 
- 1.10054 4 3 ack 40 	 
+1.2 1 3 tcp 40 	 3 
- 1.2 1 3 tcp 40 	3 
r 1.20014 1 3 tcp 40 	 
+ 1.200143 4 tcp 40 	 

2 4.0 0.0 0 1 
2 4.0 0.0 0 1 

1.0 4.1 0 2 
1.0 4.1 0 2 

3 1.0 4.1 0 2 
3 1.0 4.1 0 2 

- 1.20014 3 4 tcp 40 	 3 1.0 4.1 0 2 
r 1.20094 4 3 ack 40 	 2 4.0 0.0 0 1 
+ 1.20094 3 0 ack 40 2 4.0 0.0 0 1 
- 1.20094 3 0 ack 40 	 2 4.0 0.0 0 1 
r 1.20108 3 0 ack 40 	 2 4.0 0.0 0 1 
+ 1.20108 0 3 tcp 1500 2 0.0 4.0 1 3 
- 1.20108 0 3 tcp 1500 2 0.0 4.0 1 3 
r 1.20268 0 3 tcp 1500 2 0.0 4.0 1 3 
+ 1.20268 3 4 tcp 1500 2 0.0 4.0 1 3 

• The first field is event type. 

For enqueue 

- For dequeue 

r For receive 

• Second column is simulation time at which each event occurred. 

• The next two fields indicate between which two nodes tracing is happening 

• The next field is a descriptive name for the type of packet seen (tcp, ack). 

• The next field is the paCket size as encoded in its IP header. 

• The next four characters represent special flag bits, which may be enabled. 

• The next field gives the IP flow identifier field as defined for IP version 6. 

• The subsequent two fields indicate the packets source and destination node 

addresses respectively. 
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• The following field indicates the sequence number. 

• The last field is a unique packet identifier. Each new packet created in the 

simulation is assigned a new unique identifier. 

A.2 Source Code Listing 

tcp.h: 

The following class is added in tcp.h. 

struct hdr_tcp 

#define NSA 3 
double ts_; /* time packet generated (at source) */ 
double ts_echo_;/* the echoed timestamp (originally sent by 

the peer) */ 
int seqno_; 	/* sequence number */ 

///assigning priority to the packet for TCP-RoS. 
int priority_; /* prority for packet */ 

int eln_; 	/* loss notification in TCP-RoS*/ 
///////////////////////////////////////////// 

int reason_; 	/* reason for a retransmit */ 
int sack_area_[NSA+1][2];/*sack blocks:start,end of block*/ 
int sa_length_; /* Indicate the number of SACKs in this * 

/* packet. Adds 2+sack_length*8 bytes */ 
int ackno_; 	/* ACK number for FullTcp */ 
int hlen_; 	/* header len (bytes) for FullTcp */ 
int tcp_flags ; 	/* TCP flags for FullTcp */ 
int last_rtt_; /* more recent RTT measurement in ms, */ 

/* for statistics only */ 
static int offset_; // offset for this header 
inline static int& offset() { return offset_; 
inline static hdr_tcp* access(Packet* p) { 

return (hdr tcp*) p->access(offset j; 
} 

/* per-field member functions */ 
double& ts() { return (ts_); } 
double& ts_echo() { return (ts_echo_); } 
int& seqno() { return (seqno j; } 
int& priority(){return (priority_); } 
int& eln(){return (eln _);} 
int& reason() { return (reason_); } 
int& sa_left(int n) { return (sack_arealn][0]); } 
int& sa_right(int n) { return (sack_arealn][1]); } 
int& sa_length() { return (sa_length j; } 
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int& hlen() { return (hlen_); 
int& ackno() { return (ackno_); 
int& flags() { return (tcp_flags_); 
int& last_rttO { return (last_rtt_); } 

}; 

class BqmTcpAgent : public virtual NewRenoTcpAgent 

public: 
int cong_loss_notify; 

BqmTcpAgent(); 
virtual void recv(Packet *pkt, Handler*); 
virtual void dupack_action(); 
virtual void output(int seqno, int reason = 0); 
wireless_loss loss type; 
}; 

tcpnewreno.cc 

The following functions are added in tcpnewreno.cc: 

static class BqmTcpClass : public TclClass { 
public: 

BqmTcpClass() : Tc1Class("Agent/TCP/Newreno/Bqm") {} 
TclObject* create(int, const char*const*) { 

return (new BqmTcpAgent()); 
} 

class_bqm; 

BqmTcpAgent::BqmTcpAgent() 
{ 
} 
void 
BqmTcpAgent::dupack_action0 
{ 

int recovered = (highest_ack_ > recover_); 
int recovered) = (highest_ack_== recover_); 

int allowFastRetransmit =allow fast retransmit(last cwnd action_); 
if (recovered 11 (!bug_fix_ && !ecn 	allowFastRetransmit) { 

goto reno_action; 
} 

if (bug_fix_ && less_careful_ && recovered 1) 
1* 
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* For the Less Careful variant, allow a Fast Retransmit 
* if highest_ack_ == recover. 
* RFC 2582 recommends the Careful variant, not the 
* Less Careful one. 
*/ 

goto reno_action; 
} 

if (ecn_ && last_cwnd_action_ == CWND_ACTION_ECN) 
last_cwnd_action_ = CWND_ACTION_DUPACK; 
/* 

*What if there is a DUPACK action followed closely by ECN 
* followed closely by a DUPACK action? 

* The optimal thing to do would be to remember all 
* congestion actions from the most recent window 
* of data. Otherwise "bugfix" might not prevent 
* all unnecessary Fast Retransmits. 
*1 
reset_rtx_timer(1,0); 
output(last ack_ + 1, TCP REASON_DUPACK); 

dupwnd_ = numdupacks_; 
return; 

} 

if (bug_fix_) { 
if (bugfix_ts_ && tss[highest_ack_ % tss_size 	ts_echo _) 

goto reno_action; 
else if (bugfix_ack_ && cwnd_ > 1 && highest_ack_ - 

prev_highest_ack_ <= numdupacksj 
goto reno_action; 

else 
/* 
* The line below, for "bug_fix_" true, avoids 
* problems with multiple fast retransmits in one 
* window of data. 

return; 

reno action: 
recover_ = maxseq  ; 
reset_rtx_timer(1,0); 
if (!lossQuickStart()) { 

trace event("NEWRENO FAST RETX"); 
-fast 

 
last_cwnd_action_ =—CWN15-  ACTION 	DUPACK; 

//////////////////////code written by Vijender/////////////////////7////////////////////////// 



if(loss_type==WIRELESS) 
///if loss is due to wireless 

slowdown(CWND_ACTION_WIRELESSERROR); 
else if(loss_type—LESS_CONGESTION) 

//if loss is due to congestion and network is lightly congested 
slowdown(THREE_QUARTER_CWND); 

else 

slowdown(CLOSE_SSTHRESH_HALF1CLOSE_CWND_HALF); 
output(last_ack_ + 1, TCP_REASON DUPACK); 
// from top 
dupwnd_ = numdupacks_; 

} 	• 
return; 

} 

void BqmTcpAgent::output(int seqno, int reason) 
{ 

int force_set_rtx_timer = 0,k_=8; 
Packet* p = allocpkt(); 
hdrtcp *tcph = hdr_tcp::access(p); 
hdr_flags* hf = hdr_flags::access(p); 
hdr_ip *iph = hdr_ip::access(p); 
int databytes = hdr_cmn::access(p)->size(); 
tcph->seqno() = seqno; 

tcph->ts() = Scheduler::instance().clock(); 

// Mark packet for diagnosis purposes if we are in Quick-Start Phase 
if (qs_approvedp { 

hf->qs() = 1; 
} 

////code written by vijender for TCP-RoS////////// 
if(seqno % k_ ==0) 

{ 
tcph->priority_ = k_ + 64; 
hdr_cmn::access(p)->priority_tcp_=1; 

} 
else 

{ 
tcph-> priority_=k_; 
hdr cmn::access(p)->priority_tcp_=0; 
} 

///////////////////////////////////////////////////////////////// 

// store timestamps, with bugfix_ts_. From Andrei Gurtov. 
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// 

// (A real TCP would use scoreboard for this.) 
if (bugfix_ts_ && tss==NULL) { 

tss = (double*) calloc(tss_size_, sizeof(double)); 
if (tss==NULL) exit(1); 

} 
//dynamically grow the timestamp array if it's getting full 
if (bugfix_ts_ && window() > tss_size_* 0.9) { 

double -*-ntss; 
ntss = (double*) calloc(tss_size_*2, sizeof(double)); 
printf("resizing timestamp table\n"); 
if (ntss == NULL) exit(1); 
for (int i=0; i<tss_size_; i++) 

ntss[(highest_ack_ + i) % (tss_size_ * 2)] = 
tss[(highest_ack_ + i) % tss_size_]; 

free(tss); 
tss_size_ *= 2; 
tss = ntss; 

} 

if (tss!=NULL) 
tss[seqno % tss_size] = tcph->tsO; 

tcph->ts_echo() = ts_peer_; 
tcph->reason() = reason; 
tcph->last_rtt() = int(int(t_rtt_)*tcp_tick_*1000); 

if (ecn_) { 
hf->ectO = 1; // ECN-capable transport 

} 
if (cong_action_) 

hf->cong_action() = TRUE; // Congestion action. 
cong_action_ = FALSE; 

} 
/* Check if this is the initial SYN packet. */ 
if (seqno == 0) { 

if (syn_) { 
databytes = 0; 
curseq_ += 1; 
hdr cmn::access(p)->size() = tcpip_base_hdr_size_; 

} 
if (ecn_) { 

hf->ecnechoO = 1; 
hf->cong_action() = 1; 
hf->ect() = 0; 

} 
if (qs_enabled _) { 
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hdrqs *qsh = hdr_qs::access(p); 

// dataout is kilobytes queued for sending 
int dataout = (curseq_ - maxseq_ - 1) * (size_ + 

headersize()) / 1024; 
int qs_rr = rate_request_; 
if (qs_request_mode_ — 1) { 

// PS: Avoid making unnecessary QS requests 
// use a rough estimation of RTT in qs_rtt_ 
// to calculate the desired rate from dataout. 
if (dataout * 1000 / qs_rtt_ < qs_rr) { 

qs_rr = dataout * 1000 / qs_rtt_; 
} 
// qs_thresh_ is minimum number of unsent 
// segments needed to activate QS request 
if ((curseq_ - maxseq_ - 1) < qs_thresh j 

qs_rr = 0; 
} 

} 

if (qs_rr > 0) { 
// QuickStart code from Srikanth Sundarrajan. 
qsh->flag() = QS_REQUEST; 
Random::seed_heuristically(); 
qsh->ttl() = Random::integer(256); 
ttl_diff = (iph->ttl() - qsh->ttlO) % 256; 
qsh->rateO = hdr_qs::Bps_to_rate(qs_rr * 1024); 
qs_requested_ = 1; 

} else { 
qsh->flag() = QS_DISABLE; 

} 
} 

} 
else if (useHeaders_ == true) { 

hdr cmn::access(p)->size() += headersize(); 
} 

hdr_cmn::access(p)->size(); 

/* if no outstanding data, be sure to set rtx timer again */ 
if (highest_ack_ == maxseq j 

force_set_rtx_timer = 1; 
/* call helper function to fill in additional fields */ 
output_helper(p); 

++ndatapack_; 
ndatabytes_ += databytes; 
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send(p, 0); 
if (seqno == curseq_ && seqno > maxseq j 

idle(); // Tell application I have sent everything so far 
if (seqno > maxseq_) 

maxseq_ = seqno; 
if (!rtt_active_) {  

rtt active = 1; 
if (seqno > rtt_seq_) { 

rtt_seq  = seqno; 
rttts = Scheduler::instance().clock(); 

} 

} 
} else { 
++nrexmitpack_; 

nrexmitbytes_ += databytes; 
} 
if (!(rtx_timer.status() 	TIMER_PENDING)11 force_set_rtx_timer) 

/* No timer pending. Schedule one. */ 
set_rtx_timer(); 

} 

void BqmTcpAgent::recv(Packet *pkt, Handler*) 
{ 

hdr_tcp *tcph = hdr_tcp::access(pkt); 
int valid_ack = 0; 
static double min_rtt=0,max_rtt=9999999999.00; 

/* Use first packet to calculate the RTT --contributed by Allman */ 

if (qs_approved_ == 1 && tcph->seqno() > last_ack j 
endQuickStart(); 

if (qs_requested_ == 1) 
pro cessQuickStart(pkt); 

if (++acked_ == 1) 
basertt = Scheduler::instance().clock() - firstsent_, 

/* Estimate ssthresh based on the calculated RTT and the estimated 
bandwidth (using ACKs 2 and 3). */ 

else if (acked_ == 2) 
ack2_ = Scheduler::instance().clock(); 

else if (acked_ == 3) { 
ack3_ = Scheduler: :instance°. clock(); 
new ssthresh = int((basertt_ * (size_ / (ack3_ - ack2 j)) / size j; 
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if (newreno changes_ > 0 && new_ssthresh_ < ssthreshj 
ssthresh_ = new_ssthresh_; 

} 

#ifdef notdef 
if (pkt->type_ != PT_ACK) 

fprintf(stderr, 
"ns: confiuration error: tcp received non-ack\n"); 

exit(1); 
} 

#endif 
/* W.N.: check if this is from a previous incarnation */ 
if (tcph->ts() < lastreset_) 

// Remove packet and do nothing 
Packet::free(pkt); 
return; 

} 
++nackpack_; 
is peer_ = tcph->tsO; 

if (hdr_flags::access(pkt)->ecnecho() && ecn_) 
ecn(tcph->seqno()); 

recv helper(pkt); 
recv_frto_helper(pkt); 
if (tcph->seqno() > last_ack _) { 

if (tcph->seqno() >= recover_ 
(last_cwnd_action_ != CWND_ACTION_DUPACK)) { 

if (dupwnd_ > 0) { 
dupwnd_ = 0; 
if (last_cwnd_action_ == CWND_ACTION_DUPACK) 

last_cwnd_action_ = CWND ACTION EXITED; 
if (exit_recovery_fix_) 

int outstanding = maxseq_ - tcph->seqno() + 1; 
if (ssthresh_ < outstanding) 

cwnd = ssthresh ; 
else 

cwnd_ = outstanding; 
} 

} 
firstpartial_ = 0; 
recv newack_helper(pkt); 
if (last_ack_ == 0 && delay_growth _) { 

cwnd_ = initial window(); 
} 

} else { 
/* received new ack for a packet sent during Fast 



* Recovery, but sender stays in Fast Recovery */ 
if (partial_window_deflation_ == 0) 

dupwnd_ = 0; 
partialnewackhelper(pkt); 

} 
} else if (tcph->seqno() == last_ack _) 

if (hdr_flags::access(pkt)->eln_ && eln_) { 
tcp_eln(pkt); 
return; 

} 
if (++dupacks_ == numdupacksj {  

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
if(tcph->eln_==1) 

{ 
printf("wireless loss\n"); 

loss_type=WIRELESS; 
} 

else 
{ 

if( t_rtt_ <= (min_rtt+max_rtt)*0.5) 
/// checking rtt whether network is lightly congested or not 

loss_type=LESS CONGESTION; 
else 

loss_type=CONGESTION; 
printf("congestion loss\n"); 

} 
dupack_action(); 

if (!exitFastRetrans_) 
dupwnd_ = numdupacks_; 

} 
else if (dupacks_ > numdupacks_ && (!exitFastRetrans_ 

II last_cwnd_action_ == CWND_ACTION_DUPACK)) 
trace event("NEWRENO FAST RECOVERY"); 
++dupwnd_; // fast recovery 

/* For every two duplicate ACKs we receive (in the 
* "fast retransmit phase"), send one entirely new 
* data packet "to keep the flywheel going". --Allman 
*/ 

if (newreno_changes_ > 0 && (dupacks_ % 2) == 1) 
output (t_seqno_++,0); 

} else if (dupacks_ < numdupacks_ && singledup_ ) { 
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send one(); 

if (tcph->seqno() >= last_ack_) 
// Check if ACK is valid. Suggestion by Mark Allman. 
valid_ack = 1; 

if(min_rtt==0) 
min rtt=t_ rtt • 

if(min rtt > t_rttj 
min_—rtt=t_rtt_; 

if(max_rtt==9999999999.00) 
max_rtt=t_rtt ; 

if(max_rtt < t_rtt_) 
maxrtt=trtt; 

Packet::free(pkt); 
#ifdef notyet 

if (trace_) 
plot(); 

#endif 

1* 
* Try to send more data 
*/ 

if 	 aggressive_maxburst_)  
if (dupacks_ == 0) 

/* 
* Maxburst is really only needed for the first 
* window of data on exiting Fast Recovery. 
*1 
send much(0, 0, maxburst_); 

else if (dupacks_ > numdupacks_ - 1 && newreno_changes_ == 0) 
send much(0, 0, 2); 

} 
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tcpsink.cc 

The following functions are modified in tcpsink.cc. 

void TcpSink::ack(Packet* opkt) 
{ 

Packet* npkt = allocpkt(); 
// opkt is the "old" packet that was received 
// npkt is the "new" packet being constructed (for the ACK) 
double now = Scheduler::instance().clock(); 
hdr flags *sf; 

hdr_tcp *otcp = hdr_tcp::access(opkt); 
hdr_ip *oiph = hdr_ip::access(opkt); 
hdr_tcp *ntcp = hdr_tcp::access(npkt); 

//for tcp-casablanca 
if(prevpktno_==ntcp->seqno()) 

no_dup_++; 
else 

prevpktno_=ntcp->seqno(); 
//if(no_dup_==3&&(F_>=0)) 

///assigning eln flag for TCP-RoS 
if(Fflag_==1) 
{ 
Fflag_=0; 
if( F_ 	1) 

ntcp->eln_=1; 
else if(F_ == 2) 

ntcp->eln_=2; 
else 
ntcp->eln_=0; 
} 

/*if(F_>=0) 
{ 
printf("ack marked as wireless\n"); 
ntcp->eln_=1; 

} 
else 

{ 
printf("ack marked as congestion\n"); 
ntcp->eln_=0; 
} 

I*/ 
////////////////////////////////// 



if (qs_enabled_) 
// QuickStart code from Srikanth Sundarrajan. 
hdr_qs *oqsh = hdr_qs::access(opkt); 
hdr_qs *nqsh = hdr_qs::access(npkt); 

if (otcp->seqno() == 0 && oqsh->flag() == QS_REQUEST) { 
nqsh->flag() = QS_RESPONSE; 
nqsh->ttl() = (oiph->ttl() - oqsh->ttl()) % 256; 
nqsh->rate() = (oqsh->rate() < MWS) ? oqsh->rate() : MWS; 

} 
else { 

nqsh->flag() = QS_DISABLE; 
} 

} 

// get the tcp headers 
ntcp->seqno() = acker_->Seqno(); 
// get the cumulative sequence number to put in the ACK; this 
// is just the left edge of the receive window - 1 
ntcp->ts() = now; 
// timestamp the packet 

if (ts_echo_bugfix_) /* TCP/IP Illustrated, Vol. 2, pg. 870 */ 
ntcp->ts_echo() = acker_->ts_to_echoO; 

else 
ntcp->ts_echoO = otcp->ts(); 

// echo the original's time stamp 

hdr_ip* oip = hdr_ip::access(opkt); 
hdr_ip* nip = hdr_ip::access(npkt); 
// get the ip headers 
nip->flowid() = oip->flowid(); 
// copy the flow id 

hdr_flags* of = hdr_flags::access(opkt); 
hdr_flags* of = hdr_flags::access(npkt); 
if (save_ != NULL) 

sf = hdr_flags::access(save_); 
I/ Look at delayed packet being acked. 

if ( (save_ != NULL && sf->cong_action())I1of->cong_action() ) 
// Sender has responsed to congestion. 
acker ->update_ecn_unacked(0); 

if ( (save_ != NULL && sf->ect() && sf->ceO) 
(of->ect() && of->ce()) ) 
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// New report of congestion. 
acker ->update ecn unacked(1); 

if ( (save_ != NULL && sf->ectO) of->ect() ) 
// Set EcnEcho bit. 
nf->ecnecho() = acker ->ecn unacked(); 

if (!of->ect() && of->ecnecho()11 
(save_ != NULL && !sf->ect() && sf->ecnecho()) ) 
// This is the negotiation for ECN-capability. 
// We are not checking for of->cong_action() also. 
// In this respect, this does not conform to the 
// specifications in the internet draft 

nf->ecnecho() = 1; 
acker ->append ack(hdr cmn::access(npkt), 

ntcp, otcp->seqno()); 
add to ack(npkt); 
// the above function is used in TcpAsymSink 

// Andrei Gurtov 
acker ->last_ ack sent_ = ntcp->seqno(); 
// printf("ACK %d is %fin", ntcp->seqno(), ntcp->ts_echoO); 

send(npkt, 0); 
// send it 

} 

void TcpSink::recv(Packet* pkt, Handler*) 
{ 

static double prev_time=Schedulen:instance().clock(); 
int numToDeliver; 
float x=0,r=0; 
int numBytes = hdr_cmn::access(pkt)->size(); 
double cur time; 
double interarrivaltime; 
static double min_inter_time=0,max_inter_time=9999999999.00; 
// number of bytes in the packet just received 
hdr_tcp *th = hdr_tcp::access(pkt); 

int k=th->priority_ % 64; 
/* W.N. Check if packet is from previous incarnation */ 
if (th->ts() < lastreset) { 

// Remove packet and do nothing 
Packet::free(pkt); 
return; 

} 
acker_->update_ts(th->seqno(),th->ts(),ts_echo_rfc1323_); 
// update the timestamp to echo 
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numToDeliver = acker ->update(th->seqno(), numBytes); 
// update the recv window; figure out how many in-order-bytes 
// (if any) can be removed from the window and handed to the 
// application 
if (numToDeliver) 

cur_time=Schedulen:instance().clock(); 
interarrivaltime= cur_time-prev_time; 

bytes_ += numToDeliver; 
recvBytes(numToDeliver); 

} 

////code for setting minimum and max rtts for TCP-RoS 
if(min inter_ time==0)  

min_ inter_ time=interarrivaltime; 
if(min inter_ time > interarrivaltime)  

min_ inter_ time=interarrivaltime; 
if(max inter_ time==9999999999.00)  

max_ inter_ time=interarrivaltime; 
if(max inter_ time < interarrivaltime) _  

max_ inter_ time=interarrivaltime; 
// send any packets to the application 

// Caliculating whether the loss is due to congestion or wireless 

if(numToDeliver==0) 
{ 

int k_temp=0; 
for(int i=acker ->Seqno()+1;i<acker_->Maxseen();i++) 

{ 
if(acker_->seen_[i&acker_->wndmask]==0) 

{ 
printf("packet :%d:lost,%d\n",i,k_temp++); 

if(i%k==0) 
{ 
printf("Packet is out\n"); 

x++; 
} 

r++; 
} 

} 
printf("x,r=%f,%f\n",x,r); 
k_temp=0; 

} 
if(r==0) 
F = -1-, _  

else 
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{ 
if(r-x==r) 

F_ = 1; 
//else if(r-x < r&&r-x>=r/2) 

// F = 2; 
else 

F = 0; 

//F_ = 1.0 - (int) ( k * (x/r) ); 
Fflag_=1; 
} 

printf("F_=%f\n",F_); 
//Fflag_=1; 
/////////////////////////////////////////// 

ack(pkt); 
// ACK the packet 
Packet::free(pkt); 
// remove it from the system 

} 

droptail.cc 

The following functions is modified in droptail.cc 

void DropTail::enque(Packet* p) 
{ 

//char tracer[]="pkt drop\n"; 
if (summarystats) { 

Queue::updateStats(qibiq_->byteLength(:q_->length()); 
} 

int qlimBytes = qlim_ * meanpktsize_; 
if ((!qib_ && (q_->length( + 1) >= qlimp 
(qib_ && (q_->byteLength() + hdr_cmn::access(p)->size()) >= 

qlimBytes)) { 
// if the queue would overflow if we added this packet... 

//code here for biased queue management 
q_->enque(p); 

Packet *delpack=q_->dequebqm(); 
// printf("drp= %d\n",hdr_cmn::access(delpack)->priority_tcp()); 

drop(delpack); 

} else { 
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q_->enque(p); 
11 

queue.cc 

The following function is added in queue.cc 

Packet* PacketQueue::dequebqmo 
{ 

Packet *k,*pp=0; 
int prio=0; 

ns _ addr_ t source; 
ns_addr_t dist; 

for(Packet *pk=head_;pk;k=pk,pk=pk->next_); 
source=hdr_ip::access(k)->src(); 

dist=---hdr_ip::access(k)->dst(); 
for (Packet *p= head_; p;k=pp, pp= p, p= p->nextj { 

///checking the source and destination addresses 
if(source—hdr_ip::access(p)->src()&&dist==hdr_ip::access(p)->dst()) 
{ 

prio=hdr cmn::access(p)->priority_tcp(); 

if(prio==1) 
{ 

if(p—head _) 
head_=p->next_; 

else 
{ 
pp->next_=p->next_; 
if(p==tail) 

tail_=pp; 
} 

//remove(p); 
--len_; 
bytes_ -= hdr_cmn::access(p)->size(); 

printf("packet loss\n"); 
return p; 

} 

} 
} 
remove(pp); 

--len_; 
bytes_ -= hdr_cmn::access(pp)->size(); 
tail_=k; 

printf("packet loss \n"); 
return pp; 
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} 

tcpwireless.tcl 

This tcl file used to create the topology shown in Fig 41 

set opt(chan) 
	Channel/WirelessChannel ;# channel type 

set opt(prop) 
	Propagation/TwoRayGround ;# radio-propagation model 

set opt(netif) 
	

Phy/WirelessPhy 	;# network interface type 
set opt(mac) 
	

Mac/802 11 	;# MAC type 
set opt(ifq) 
	

Queue/DropTail 	;# interface queue type 
set opt(11) 
	

LL 	 ;# link layer type 
set opt(ant) 
	

Antenna/OmniAntenna 	;# antenna model 
set opt(ifqlen) 

	
50 	 ;# max packet in ifq 

set opt(nn) 
	

3 	 ;# number of mobilenodes 
set opt(adhocRouting) DSDV 	 ;# routing protocol 

set opt(cp) 	 ;# connection pattern file 
set opt(sc) "/home/vijay/ns/ns-allinone-2.28/ns-2.28/tcl/mobility/scene/scen-3-test" 
;# node movement file. 

set opt(x) 	670 
set opt(y) 	670 
set opt(seed) 0.0 
set opt(stop) 300 

set opt(ftpl-start) 	160 
set opt(ftp2-start) 	165 

set num_wired_nodes 5 
set num_bs_nodes 	1 

;# x coordinate of topology 
;# y coordinate of topology 

;# seed for random number gen. 
;# time to stop simulation 

# check for boundary parameters and random seed 
if { $opt(x) == 011 $opt(y) == 0 { 

puts "No X-Y boundary values given for wireless topology\n" 
} 
if {$opt(seed) > 0} { 

puts "Seeding Random number generator with $opt(seed)\n" 
ns-random $opt(seed) 

} 

# create simulator instance 
set ns_ [new Simulator] 
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# set up for hierarchical routing 
$ns_ node-config -addressType hierarchical 
AddrParams set domain_ num_ 2 	;# number of domains 
lappend cluster_num 1 1 	;# number of clusters in each domain 
AddrParams set cluster_num_ $cluster num 
lappend eilastlevel 5 4 	;# number of nodes in each cluster 
AddrParams set nodes_num_ $eilastlevel ;# of each domain 

set tracefd [open wireless2-out.tr w] 
set namtrace [open wireless2-out.nam w] 
set cwnd [open cwnd-out.nam w] 
$ns_ trace-all $tracefd 
$ns_ namtrace-all-wireless $namtrace $opt(x) $opt(y) 

# Create topography object 
set topo [new Topography] 
#error model 
set em [new ErrorModel] 
$em set unit pia 
$em set rate_ 0.01 
$em ranvar [new RandomVariable/Exponential] 
$em drop-target [new Agent/Null] 

# define topology 
$topo load_flatgrid $opt(x) $opt(y) 

# create God 
create-god [expr $opt(nn) + $num_bs_nodes] 

#create wired nodes 
set temp {0.0.0 0.0.1 0.0.2 0.0.3 0.0.4} 

;# hierarchical addresses for wired domain 
for {set i 0} {$i < $num_wired_nodes} {incr.  

set W($i) [$ns_ node [lindex $temp $i]] 
} 

# configure for base-station node 
$ns_ node-config -adhocRouting $opt(adhocRouting) \ 

-11Type $opt(11) \ 
-macType $opt(mac) \ 
-ifqType $opt(ifq) \ 
-ifqLen $opt(ifqlen) \ 
-antType $opt(ant) \ 
-propType $opt(prop) \ 
-phyType $opt(netif) \ 
-channelType $opt(chan) \ 
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-topoInstance $topo \ 
-wiredRouting ON \ 

-agentTrace ON \ 
-routerTrace OFF \ 
-macTrace OFF 

#create base-station node 
set temp {1.0.0 1.0.1 1.0.2 1.0.3} ;# hier address to be used for wireless 

;# domain 
set BS(0) [$ns_ node [lindex $temp 0]] 
$BS(0) random-motion 0 	;# disable random motion 

#provide some co-ord (fixed) to base station node 
$BS(0) set X_ 1.0 
$BS(0) set Y_ 2.0 
$BS(0) set Z_ 0.0 

# create mobilenodes in the same domain as BS(0) 
# note the position and movement of mobilenodes is as defined 
# in $opt(sc) 

#configure for mobilenodes 
$ns_ node-config -wiredRouting OFF 

for { set j 0 $j < $opt(nn) } 	j } 
set node_($j) [ $ns_ node [lindex $temp \ 

[expr $j+1]] ] 
$node_($j) base-station [AddrParams addr2id \ 

[$BS(0) node-addr]] 
} 

#create links between wired and BS nodes 

$ns_ duplex-link $W(0) $W(1) 60Mb 5ms DropTail 
$ns_ duplex-link $W(1) $W(2) 90Mb 5ms DropTail 
#this link will change for congestion control 
$ns_ duplex-link $W(2) $W(3) 45Mb 5ms DropTail 
$ns_ duplex-link $W(3} $W(4) 100Mb 5ms DropTail 

$ns_ duplex-link $W(4) $BS(0) 100Mb 5ms DropTail 
$ns_ lossmodel $em $W(4) $BS(0) 
$ns_ duplex-link-op $W(0) $W(1) orient right 
$ns_ duplex-link-op $W(1) $W(2) orient right 
$ns_ duplex-link-op $W(2) $W(3) orient right 
$ns_ duplex-link-op $W(3) $W(4) orient right 
$ns_ duplex-link-op $W(4) $BS(0) orient right-down 
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$ns_ queue-limit $W(0) $W(1) 30 
$ns_ queue-limit $W(1) $W(2) 30 
$ns_ queue-limit $W(2) $W(3) 30 
$ns_ queue-limit $W(3) $W(4) 30 
# setup TCP connections 
## setup TCP connections N2 
for {set j 0} {$j < 5} finer j} {  
set tcp(j) [new Agent/TCP/Reno] 
set sink(j) [new Agent/TCPSinlc/DelAck] 
$ns_ attach-agent $W(1) $tcp(j) 
$ns_ attach-agent $W(4) $sink(j) 
$ns_ connect $tcp(j) $sink(j) 
set ftp(j) [new Application/FTP] 
$ftp(j) attach-agent $tcp(j) 
$ns_ at $opt(ftp 1-start) "$ftp(j) start" 
} 
#for {set j 0} {$j < 5} {incr j 
#set tcp(j) [new Agent/UDP] 
#set sink(j) [new Agent/Null] 
#$ns_ attach-agent $W(1) $tcp(j) 
#$ns_ attach-agent $W(4) $sink(j) 
#$ns_ connect $tcp(j) $sink(j) 
#set ftp(j) [new Application/FTP] 
#$ftp(j) set packetSize_ 1000 
#$ftp(j) set interval_ 0.005 
#$ftp(j) attach-agent $tcp(j) 
#$ns_ at $opt(ftpl-start) "$ftp(j) start" 
#1 
#set up TCP connections N3 
for {set i $j} {$i < 5+$j} finer 
set tcp(i) [new Agent/TCP/Reno] 
set sink(i) [new Agent/TCPSink/DelAck] 
$ns_ attach-agent $W(2) $tcp(i) 
$ns_ attach-agent $W(3) $sink(i) 
$ns_ connect $tcp(i) $sink(i) 
set ftp(i) [new Application/FTP] 
$ftp(i) attach-agent $tcp(i) 
$ns_ at $opt(ftp2-start) "$ftp(i) start" 
} 
#set up TCP connections N3 
#for {set i $j} {$i < 5+$j) finer 
#set tcp(i) [new Agent/LJDP] 
#set sink(i) [new Agent/Null] 
#$ns_ attach-agent $W(2) $tcp(i) 
#$ns_ attach-agent $W(3) $sink(i) 
#$ns_ connect $tcp(i) $sink(i) 
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#set ftp(i) [new Application/FTP] 
#$ftp(i) set packetSize_ 1000 
#$ftp(i) set interval_ 0.005 
#$ftp(i) attach-agent $tcp(i) 
#$ns_ at $opt(ftp2-start) "$ftp(i) start" 
#1 
#set up TCP connections Ni 
#set tcp50 [new Agent/TCP] 
#set sink50 [new Agent/TCPSink] 
#$ns_ attach-agent $node_(0) $tcp50 
#$ns_ attach-agent $W(0) $sink50 
#$ns_ connect $tcp50 $sink50 
#$ns_ add-agent-trace $tcp50 $cwnd 
#$ns_ monitor-agent-trace $tcp50 
#$tcp50 tracevar cwnd_ 
#set ftp50 [new Application/FTP] 
#$tcp50 set class_ 1 
#$ftp50 attach-agent $tcp50 
#$ns_ at $opt(ftpl-start) Iftp50 start" 

set tcp51 [new Agent/TCP/Newreno] 
set sink51 [new Agent/TCPSink] 
$ns_ attach-agent $W(0) $tcp51 
$ns_ add-agent-trace $tcp51 $cwnd 
$ns_ monitor-agent-trace $tcp51 
$tcp51 tracevar cwnd_  
$ns_ attach-agent $node_(1) $sink51 
$ns_ connect $tcp51 $sink51 
set Ttp51 [new Application/FTP] 
$tcp51 set class_ 2 
$ftp51 attach-agent $tcp51 

$ns_ at $opt(ftp 1-start) "$ftp51 start" 
#$ns_ at $opt(ftp 1-start) "$ftp51 send 20000000" 
# source connection-pattern and node-movement scripts 
if { $opt(cp) == "" } { 

puts "*** NOTE: no connection pattern specified." 
set opt(cp) "none" 

} else { 
puts "Loading connection pattern..." 
source $opt(cp) 

if { $opt(sc) == "" 
puts "*** NOTE: no scenario file specified." 

set opt(sc) "none" 
} else { 
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puts "Loading scenario file..." 
source $opt(sc) 
puts "Load complete..." 

} 

# Define initial node position in nam 

for {set i 0} {$i < $opt(nn)} {incr.  i} { 

# 20 defines the node size in nam, must adjust it according to your 
# scenario 
# The function must be called after mobility model is defined 

$ns_ initial nodepos $node_($i) 20 
} 

# Tell all nodes when the simulation ends 
for {set i {$i < $opt(nn) } liner 

$ns_ at $opt(stop).0 "$node_($i) reset"; 
} 
$ns_ at $opt(stop).0 "$BS(0) reset"; 

$ns_ at $opt(stop).0002 "puts \"NS 	 ; $ns_ halt" 
$ns_ at $opt(stop).0001 "stop" 
proc stop 0 { 

global ns_ tracefd namtrace cwnd 
# $ns_ flush-trace 

close $tracefd 
close $namtrace 
close $cwnd 
exec nam wireless2-out.nam & 
exit 0 

} 

# informative headers for CMUTracefile 
puts $tracefd "M 0.0 nn $opt(nn) x $opt(x) y $opt(y) rp \ 

$opt(adhocRouting)" 
puts $tracefd "M 0.0 sc $opt(sc) cp $opt(cp) seed $opt(seed)" 
puts $tracefd "M 0.0 prop $opt(prop) ant $opt(ant)" 

puts "Starting Simulation..." 
$ns run 
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