
titelab keutaktipb

DIFFERENTIATION OF WIRELESS AND
CONGESTION LOSSES IN TCP

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

BY
\MENDER SUSI REDDY

ra,

DEPARTMENT OF ELECTRONICS & COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)
JUNE, 2006

CANDIDATE'S DECLARARTION

I hereby declare that the work which is being presented in this dissertation entitled

"Differentiation of Wireless and Congestion Losses in TCP" in partial

fulfillment of the requirement for the award of the degree of Master of

Technology in Information Technology, Submitted in the Department of

Electronics and Computer Engineering of the Indian Institute of Technology

Roorkee, Ro'orkee, is an authentic record of my own work carried out during the

period july 2005 to June 2006, under the supervision of Prof. Anil K. Sarje.

The matter embodied in this dissertation has not been submitted by me for the

award of any other degree.

Date: June 2006

Place: Roorkee 	 (Vijender Busi Reddy)

CERTIFICATE

This is certify that the above statement made by the candidate is correct to the best of

my knowledge.

k 6
(Prof. Anil X. Sarje)

Professor

Department of E &C

Roorkee

ACKNOWLEDGEMENT

It is my privilege to express my profound sense of gratitude and thanks to my guide

Dr. Anil K. Sarje, Professor, E&C Dept., HT Roorkee for his valuable guidance

and suggestions throughout my dissertation work.

I owe a great deal of appreciation to Dr D.K. Mehra, HOD, Department of

Electronics and Computer Science Engineering for providing all the resources

needed for successful completion of this work.

I am also thankful to Computer Center staff members for their cooperation.

Next I feel indebted to all those endless researchers all over the world whose work I

have used in my dissertation report. Their sincerity and devotion motivates me the

most.

Finally, I would like to thank all my friends who cooperated all the time during this..

dissertation work.

\Aier'c'
(Vijender Busi Reddy)

M.Tech(IT)

Dept. of E&C

ii

ABSTRACT

Transmission Control protocol (TCP), the most widely used transport layer protocol

on Internet, has attained significant maturity over the last few years and the popularity

of wireless communication and computing systems is on the rise. Efforts are

underway to extend TCP to wireless to enable smooth integration of the two

technologies. Since TCP was developed for wired medium, wireless medium posed an

altogether a new set of challenges to TCP. For this reason TCP requires improvements

or modifications.

TCP assumes every packet loss is a congestion loss hence decreases the sending rate.

This will decrease the sender's throughput when there is an appreciable rate of loss

due to link error. This issue is significant for wireless links. We present an extension

of TCP-Casablanca which improves TCP performance over wireless links. We

proposed a new discriminator which not only differentiates congestion and wireless

losses, but also identifies the congestion level in the network, i.e., whether the

network is lightly congested or heavily congested and throttles the sender's rate

according to the congestion level in the network.

iii

CONTENTS

CANDIDATE'S DECLARARTION

ACKNOWLEDGEMENT 	 ii

ABSTRACT 	 iii

1. INTRODUCTION & STATEMENT OF PROBLEM 	 1

1.1 Introduction 	 1

1.2 Statement of Problem 	 2

- 1.3 Organization of Report 	 2

2. BACKGROUND 	 4

2.1 TCP overview 	 4

2.2 TCP in Wireless Environment 	 5

2.3 TCP Congestion control 	 7

2.4 Congestion Control Algorithms 	 7

2.4.1 Slow Start and Congestion Avoidance 	 8

2.4.2 Fast Retransmit and Fast Recovery 	 10

2.4.3 TCP Tahoe, Reno, New Reno, Vegas and SACK 	12

2.5 Queuing types 	 15

2.5.1 Drop-Tail queue 	 15

2.5.2 Random Early Detection (RED) 	 15

2.6 Wireless and Congestion loss discriminators 	 16

3. PROPOSED DISCRIMINATOR 	 21

3.1 Rationale of proposed discriminator 	 21

3.2 Proposed discriminator (TCP-RoS) 	 21

4. IMPLEMENTATION DETAILS 	 25

4.1 NS-2 overview 	 25

4.2 System Requirements 	 27

4.3 Network Model 	 27

iv

4.4 Performance metrics
	 28

4.5 Description of the classes used
	 29

5 RESULTS AND DISCUSSIONS 	 31

5.1 Accuracies Ac and Aw 	 31

5.2 Throughput 	 33

6 CONCLUSION 	 36

6.1 Conclusion 	 36

6.2 Scope of future work 	 36

REFERENCES 	 37

APPENDIX
A.1 NAM output and Trace file sample output

	 i

A.2 Source Code Listing
	 iii

v

CHAPTER 1 	 INTRODUCTION & STATEMENT OF THE PROBLEM

1.1 Introduction:
TCP is a popular protocol for reliable data delivery in the interne. Most current

applications use TCP/IP protocols for data transfer. TCP assumes that every packet loss is

an indication of network congestion and throttles the sender's rate. Although TCP was

initially designed and optimized for wired networks, the growing popularity of wireless

data applications has lead third generation wireless networks such as CDMA2000 and

UMTS networks to extend TCP to wireless communications as well. The initial objective

of TCP was to efficiently use the available bandwidth in the network and to avoid

overloading the network (and the resulting packet losses) by appropriately throttling the

senders' transmission rates. Network congestion is deemed to be the underlying reason

for packet losses. Consequently, TCP performance is often unsatisfactory when used in

wireless networks.

Wireless environments with transmission errors are becoming more common and TCP

may perform poorly when wireless link subject to transmission errors. The reason for this

is the implicit assumption in TCP that all packet losses are treated as congestion losses by

decreasing the transmission window. Reno and Tahoe TCP implementations and many

proposed alternative solutions [9, 10, 18] use packet loss as a primary indication of

congestion; a TCP sender increases its window size, until packet losses occur along the

path to the TCP receiver. Decreasing the congestion window when packet loss occurs due

to lossy wireless links leads the performance degradation of TCP.

Currently, a TCP sender considers all losses as congestion signals. When loss occurs

sender decreases its sending rate by halving its congestion window which is a part of

congestion control activity. Taking congestion control actions may be appropriate when a

packet loss is due to congestion, however, it can unnecessarily reduce sending rate if

packet losses happen to be due to wireless transmission errors. Ideally, it would help the

sender to differentiate between packet losses due to congestion from the packet losses

due to wireless transmission errors using some technique. Once a sender knows that the

Dept. of E&C Engineering 	 1 	 2005-06

packet loss is due to congestion or wireless transmission error, it can respond

appropriately. The sender does not know exactly which packets are lost. The receiver has

a better view of the losses; it knows exactly which packets are lost. This observation led

us to consider schemes which can enable the receiver to distinguish between congestion

losses and wireless error losses.

We extend TCP-Casablanca [12] to differentiate congestion and wireless losses, and

identifying the network state by using RTT. Estimating network condition by using RTT

(Round Trip Time) is not new, Brakmo and Malley proposed TCP-Vegas [3], which

estimates network condition by using RTT and according to that it increases/decreases

the congestion window. We use simulation to study the ability of discrimination of our

method. Then we modify TCP-New Reno integrates our scheme and study the throughput

enhancement induced. The TCP-New Reno modified with our scheme will be called

TCP-RoS. We compare the performance of our scheme, TCP-RoS, with the TCP-

Casablanca [12] and TCP-New Reno.

1.2 Statement of Problem:
Whenever there are wireless transmission errors in wireless networks TCP performance

will degrade. This is because sender unnecessarily throttles the congestion window when

packet loss occurs due to wireless error. As a result the bandwidth of the network gets

under utilized. Our aim is to improve the performance of TCP in presence of wireless

losses by de randomizing the congestion losses.

1.3 Organization of Report:

This paper is organized as follows.
Chapter 2 presented detailed description about TCP, TCP Congestion control algorithms

and different discriminators used for differentiating wireless and congestion losses.

Chapter 3 describes the proposed discriminator, TCP-RoS (TCP with Router Support).

Chapter 4 describes implementation details, Network model and performance metrics

used for evaluating the proposed discriminator.

Dept. of E&C Engineering 	 2 	 2005-06

Chapter 5 discusses the simulation results in terms of throughput and Accuracies.

Chapter 6 gives a brief conclusion and is followed by scope of future work.

Dept. of E&C Engineering 	 3 	 2005-06

CHAPTER 2 	 BACKGROUND

2.1 TCP overview:
Transmission Control Protocol (TCP) was first introduced in early 1980s to provide

reliable operation over a variety of transmission media. TCP is a means for building a

reliable communications stream on top of the unreliable packet Internet Protocol (IP).

TCP is the protocol that supports Internet applications. The combination of TCP and IP is

referred to as TCP/IP.

TCP [16] has been widely used in today's Internet. The protocol supports reliable data

transport by establishing a connection between the transmitting and receiving ends. The

transmitter starts a timeout mechanism when sending a packet to the receiver. The

transmitter constantly tracks the round-trip times (RTTs) for its packets as a means to

determine the appropriate timeout period. At the receiver, each received packet is

acknowledged implicitly or explicitly to the transmitter. If the transmitter does not

receive an acknowledgment for a given packet when the corresponding timeout period

expires, the packet is deemed to be lost and subject to retransmission. A congestion

window with dynamically adjusted size is used by the protocol to regulate the traffic flow

from the transmitter to the receiver.

TCP is being used on wired networks with stationary host for the last 2-3 decades. It has

been adapted significantly to optimize its performance on these networks. The wired

networks are highly reliable and less than 1 % of the packet losses can be attributed to

link errors. TCP attributes packet loss on the network to congestion. TCP sender buffers

the packets sent to the receiver. The receiver sends cumulative acknowledgments to

indicate the receipt of the packets. The sender retransmits the lost packets to guarantee

reliable delivery. For this purpose, it maintains a running average of the estimated round

trip delay and the mean linear deviation from it.

The sender identifies the loss of a packet either by the arrival of several duplicate

cumulative acknowledgments or by the absence of an acknowledgment for a packet

Dept. of E&C Engineering 	 4 	 2005-06

within a timeout interval that is equal to the sum of the smoothed round-trip delay and

four times its mean deviation. TCP reacts to packet losses by dropping its transmission

(congestion) window size before retransmitting packets, initiating congestion control or

avoidance mechanisms [.7] (e.g., slow start) and backing off its retransmission timer

(Karn's algorithm [20]). These measures result in a reduction in the load on the

intermediate links, thereby controlling the congestion in the network.

2.2 TCP in Wireless Environment

The characteristics of wireless medium differ significantly from that of wired medium.

The major factors affecting TCP performance in wireless environment are [8]:

1. Limited Bandwidth: Bit rates of 100 Mbps are common on wired LANs. Optical

links provide data rate of the order of gigabits per second. As compared to this the

current wireless standards for example the IEEE 802.11b standard for Wireless

LAN offers raw bit rates of up to only 11 Mbps. Thus available bandwidth is one of

the major bottlenecks that degrade the throughput of TCP on wireless medium.

2. Long Round Trip Times: In general, wireless media exhibit longer latency delays

than wired media. The rate at which the TCP sender increases its congestion

window is directly proportional to the rate at which it receives ACKs from the

receiver. Due to longer round Trip Times, the congestion window increases at a

much lower rate in the case of wireless links. This directly limits the throughput of

TCP on wireless links.

3. Random Losses The transmission losses on wireless medium are significantly

higher than that on wired medium. These losses result in packet drops and hence the

sender does not receive acknowledgments within retransmit timeout. This causes

the sender to retransmit the segment, exponentially back off its retransmit timer and

closes its congestion window to one segment. Repeated errors ensure a low

throughput. The loss of packet on wireless link, which in general is the last hop,

Dept. of E&C Engineering 	 5 	 2005-06

results in end-to-end retransmission. This causes traffic overload on the wired links

also.
Forward Error Correction (FEC) can be employed to bring the False Alarm Error

Rate (FAER) down to the order of 10. However, FEC achieves such low FAER

only under certain conditions at the expense of significant bandwidth, but

bandwidth already a scarce resource in wireless medium. Hence FEC is usually not

preferred. In addition, FEC cannot solve all problems because terrain type and

natural and man-made objects can handicap wireless connectivity altogether.

4. User Mobility In the case of cellular networks when a user (mobile host) moves

from one cells to another, all the necessary information has to be transferred from

the previous base station to the new base station. This 2 process is called Handoff,

and depending on the technology used, there might be short duration of

disconnection. TCP attributes delays and losses caused by these short periods of

disconnection to congestion and triggers congestion control and avoidance

mechanism. This again results in reduced throughput.

In the case of ad hoc networks, mobile nodes can move randomly causing frequent

topology changes. This causes packet losses and forces mobile hosts to initiate route

discovery algorithms frequently. The overall result is significant throughput

reduction.

5. Short Flows Services like web browsing and e-mail involve small amount of data

transfer between the client and the server. A major portion of the wireless networks

data transfer fall in this category. The TCP sender increases its congestion window

progressively as it receives acknowledgments from the receiver (Slow Start). There

is a high probability that the transfer completes even before the sender's window

reaches the maximum possible size. This results in under utilization of the network

capacity.

Dept. of E&C Engineering 	 6 	 2005-06

beady 	vcolo, 	t
ok'ed 	yot sent

sent, nor
yot cideod r1.01 usable

6. Power Consumption The retransmissions caused by frequent packet losses result

in longer connection duration and hence higher power consumption. Power

consumption is a very important factor in case of battery operated devices like

laptops, PDAs and wireless phones.

2.3 TCP Congestion control [20]:

TCP uses end-to-end congestion control. This means that congestion control is not

network-assisted. There is no explicit feedback from the network and congestion is

inferred from the observed end-systems loss and delay. Using congestion control,

transmission rate is limited by the congestion window size (in short cwnd) over segments

as shown in the following figure 2.1 [20].

Fig 2.1[20]: TCP congestion window

TCP congestion control starts with probing for usable bandwidth. Ideally someone

should transmit as fast as possible without loss. Instead cwnd increases until loss. When

loss occurs, we decrease cwnd and then begin probing (increasing cwnd) again. During

this process there are two phases. The first is the slow start and the second is the

congestion avoidance. Important variables are cwnd and the threshold that defines the

boundary between the slow start phase and the congestion avoidance phase.

2.4 Congestion Control Algorithms:
There are four congestion control algorithms: slow start, congestion avoidance, fast

retransmit and fast recovery. In some situations it may be beneficial for a TCP sender to

be more conservative than the algorithms allow, however a TCP must not be more

aggressive than the following algorithms allow (that is, must not send data when the

Dept. of E&C Engineering 	 7 	 2005-06

value of cwnd computed by the following algorithms would not allow the data to be

sent).

2.4.1 Slow Start and Congestion Avoidance [1]

The slow start and congestion avoidance algorithms must be used by a TCP sender to

control the amount of outstanding data being injected into the network. To implement

these algorithms, two variables are added to the TCP per-connection state. The

congestion window (cwnd) is a sender-side limit on the amount of data the sender can

transmit into the network before receiving an acknowledgment (ACK), while the

receiver's advertised window (rwnd) is a receiver-side limit on the amount of outstanding

data. The minimum of cwnd and rwnd governs data transmission.

Hcst

Host B

Fig 2.2: Slow Start

Dept. of E&C Engineering 	 8 	 2005-06

Another state variable, the slow start threshold (ssthresh), is used to determine whether

the slow start or congestion avoidance algorithm is used to control data transmission, as

discussed below.

Beginning transmission into a network with unknown conditions requires TCP to slowly

probe the network to determine the available capacity, in order to avoid congesting the

network with an inappropriately large burst of data. The slow start algorithm (shown in

Fig 2.2) is used for this purpose at the beginning of a transfer, or after repairing loss

detected by the retransmission timer.

IW, the initial value of cwnd, must be less than or equal to 2*SMSS (Sender Maximum

Segment Size) bytes and must not be more than 2 segments. We note that a non-standard,

experimental TCP extension allows that a TCP may use a larger initial window (IW), as

defined in equation 1

IW = min (4*SMSS, min (2*SMSS, 4380 bytes)) 	 (1)

With this extension, a TCP sender may use 3 or 4 segment initial window, provided the

combined size of the segments does not exceed 4380 bytes. We do not allow this change

as part of the standard defined by this document.

The initial value of ssthresh may be arbitrarily high (for example, some

implementations use the size of the advertised window), but it may be reduced in

response to congestion.

The slow start algorithm is used when cwnd < ssthresh, while the congestion avoidance

algorithm is used when cwnd > ssthresh. When cwnd and ssthresh are equal the sender

may use either slow start or congestion avoidance.

During slow start, a TCP increments cwnd by at most SMSS bytes for each ACK

received that acknowledges new data. Slow start ends when cwnd exceeds ssthresh or

Dept. of E&C Engineering 	 9 	 2005-06

when congestion is observed. During congestion avoidance, cwnd is incremented by 1

full-sized segment per round-trip time (RTT). Congestion avoidance continues until

congestion is detected. One formula commonly used to update cwnd during congestion

avoidance is given in equation 2:

cwnd= cwnd + SMSS*SMSS/cwnd 	 (2)

This adjustment is executed on every incoming non-duplicate ACK. Equation (2)

provides an acceptable approximation to the underlying principle of increasing cwnd by 1

full-sized segment per RTT.

2.4.2 Fast Retransmit and Fast Recovery [1]

A TCP receiver should send an immediate duplicate ACK when an out-of-order segment

arrives. The purpose of this ACK is to inform the sender that a segment was received

out-of-order and which sequence number is expected. From the sender's perspective,

duplicate ACKs can be caused by a number of network problems. First, they can be

caused by dropped segments. In this case, all segments after the dropped segment will

trigger duplicate ACKs. Second, duplicate ACKs can be caused by the re-ordering of

data segments by the network. Finally, duplicate ACKs can be caused by replication of

ACK or data segments by the network. In addition, a TCP receiver should send an

immediate ACK when the incoming segment fills in all or part of a gap in the sequence

space. This will generate more timely information for a sender recovering from a loss

through a retransmission timeout, a fast retransmit, or an experimental loss recovery

algorithm, such as NewReno. The TCP sender should use the "fast retransmit" algorithm

to detect and repair loss, based on incoming duplicate ACKs. The fast retransmit

algorithm uses the arrival of 3 duplicate ACKs (3 identical ACKs without the arrival of

any other intervening packets) as an indication that a segment has been lost. After

receiving 3 duplicate ACKs, TCP performs a retransmission of what appears to be the

missing segment, without waiting for the retransmission timer to expire.

Dept. of E&C Engineering 	 10 	 2005-06

lirec

Fatt:re#ran nil atetl..Cao 	o very

SS: Slow Star
CA: Co Inge ti oil A vo dattrR

TO: Brae Out

After the fast retransmit algorithm sends what appears to be the missing segment, the

"fast recovery" algorithm governs the transmission of new data until a non-duplicate

ACK arrives. The reason for not performing slow start is that the receipt of the

duplicate ACKs not only indicates that a segment has been lost, but also that segments

are most likely leaving the network (although a massive segment duplication by the

network can invalidate this conclusion). In other words, since the receiver can only

generate a duplicate ACK when a segment has arrived, that segment has left the network

and is in the receiver's buffer, so we know it is no longer consuming network resources.

Fig 2.3: TCP Congestion Window

Furthermore, since the ACK "clock" is preserved, the TCP sender can continue to

transmit new segments (although transmission must continue using a reduced cwnd). The

fast retransmit and fast recovery algorithms (Shown in Fig 2.3) are usually implemented

together as follows.

1. When the third duplicate ACK is received, set ssthresh to max (FlightSize / 2,

2*SMSS). Where, FlightSize is the amount of outstanding data in the network

Dept. of E&C Engineering 	 11 	 2005-06

2. Retransmit the lost segment and set cwnd to ssthresh plus 3*SMSS. This artificially

"inflates" the congestion window by the number of segments (three) that have left

the network and which the receiver has buffered.

3. For each additional duplicate ACK received, increment cwnd by SMSS. This

artificially inflates the congestion window in order to reflect the additional segment

that has left the network.

4. Transmit a segment, if allowed by the new value of cwnd and the receiver's

advertised window.

5. When the next ACK arrives that acknowledges new data, set cwnd to ssthresh (the

value set in step 1). This is termed "deflating" the window.

This ACK should be the acknowledgment elicited by the retransmission from step 1, one

RTT after the retransmission (though it may arrive sooner in the presence of significant

out-of-order delivery of data segments at the receiver). Additionally, this ACK should

acknowledge all the intermediate segments sent between the lost segment and the receipt

of the third duplicate ACK, if none of these were lost.

2.4.3 TCP Tahoe, Reno, New Reno, Vegas and SACK:
The error control mechanism of TCP is primarily oriented towards congestion control.

Congestion control can be beneficial to the flow that experiences congestion, since

avoiding unnecessary retransmissions can be lead to better throughput-delay tradeoff.

TCP utilizes acknowledgments to pace the transmission of segments and interprets

timeout events as signs of congestion. In response to congestion, the TCP sender reduces

the transmission rate by shirking its window. There are four major versions of TCP

(Tahoe, Reno, New Reno and Vegas). In the following lines we discuss each version:

TCP Tahoe [2O]: TCP Tahoe is the oldest version of TCP but on the other hand one of

the most famous versions. TCP Tahoe congestion algorithm includes Slow Start and

Dept. of E&C Engineering 	 12 	 2005-06

Congestion Avoidance. In order to declare a loss event, three timeouts have to be passed.

This is its main drawback as when a segment is lost; the sender side of the application

may have to wait a long period of time for the timeout. After timeout it again starts from

Slow Start phase.

TCP Reno [20]: TCP Reno, except from Slow Start and Congestion Avoidance also

includes Fast Retransmit and Fast Recovery. A receiver sends a duplicate ACK

immediately on reception of each out-of-sequence packet. The Reno TCP transmitter

interprets reception of three duplicate ACKs as a congestion packet loss, and sets the

slow start threshold size (ssthresh) to one-half of the current congestion window (cwnd)

and retransmits the missing packet. The cwnd is then set to ssthresh plus three times the

segment size (one per each duplicate ACK). cwnd is increased by one segment on

reception of each duplicate ACK, which continues to arrive after fast retransmission. This

allows the transmitter to send new data when cwnd is increased beyond the value of the

cwnd before the fast retransmission.

When an ACK arrives, which acknowledges all outstanding data sent before the

duplicate ACKs were received, the cwnd is set to ssthresh so that the transmitter slows

down the transmission rate and enters the linear increase phase.

TCP Reno's Fast Recovery can be effective when there is only one segment drop from a

window of data, given the fact that Reno retransmits at most one dropped segment per

RTT. The problem with the mechanism is that is not optimized for multiple packet drops

form a single window, and this could negatively impact performance.

TCP New Reno [5]: If two or more packets have been lost from the transmitted data

(window), the fast retransmission and fast recovery algorithms (Reno) will not be able to

recover the multiple losses without waiting for retransmission time out. Hoe proposed a

modification to Reno TCP usually called New-Reno to overcome this problem. New-

Reno introduces the concept of a fast retransmission phase, which starts on detection of a

packet loss (receiving three duplicate ACKs) and ends when the receiver acknowledges

Dept. of E&C Engineering 	 13 	 2005-06

reception of all data transmitted at the start of the fast retransmission phase. The

transmitter assumes reception of a partial ACK (acknowledging some, but not all, packets

outstanding at the start of fast retransmission phase) during the fast retransmission phase

as an indication that another packet has been lost within the window, and retransmits that

packet immediately to prevent expiry of the retransmission timer.

TCP Vegas [3]: TCP Vegas approaches the problem of congestion from another

perspective. The basic idea is to detect congestion in the routers between source and

destination before packet loss occurs and lower the rate linearly when this imminent

packet loss is detected. The longer the round-trip times of the packets, the greater the

congestion in the routers. Every two round trips delays the following quantity is

computed:

p = (WindowSizeCurrent - WindowSizeOld) * (RTTCurrent-RTTOld)

If p>0

The window size is decreased by 1/8.

Else
The window size is increased by one segment size.

One problem that it does not seem to overcome is the path asymmetry. The sender makes

decisions based on the RTT measurements, which, however, might not accurately

indicate the congestion level of the forward path. Furthermore, packet drops caused by

retransmission deficiencies or fading channels may trigger a Slow Start. However, this

problem is common to all of the above versions. Another drawback is that, Vegas

algorithm is very new (1999) and is not fully embedded in the most popular TCP

implementations.

TCP Sack 191: The selective acknowledgment (SACK) option for Reno TCP has been

introduced to further enhance TCP performance. When the receiver buffer holds in-

sequence data packets, the receiver sends duplicate ACKs bearing the SACK option to

Dept. of E&C Engineering 	 14 	 2005-06

inform the transmitter about which packets have been correctly received. This allows the

transmitter to modify the retransmission procedure to selectively retransmit only lost

packets, without retransmitting already Sacked packets. The transmitter is also able to

accurately estimate the number of transmitted packets that have left the network by using

the explicit information carried by SACKS. This provides efficient transmission of more

packets to utilize the network. The SACK option has been implemented in most of the

recent releases of operating systems, while New-Reno implementations are still

emerging.

If the receiver does not acknowledge the packet and, instead, acknowledges (SACK), a

subsequently transmitted packet, the transmitter considers that this is a good indication of

loss of the retransmitted packet. All these modifications to TCP assume that every packet

loss is an indication of network congestion and take measures to avoid further congestion

in the network by reducing the transmission rate. This results in a very low utilization of

the link when there is an appreciable rate of losses due to link errors.

2.5 Queuing types:

2.5.1 Drop-Tail queue:
The most well known operation of the queue is the First-In-First-Out (FIFO) queue

process. FIFO queue shared by all packets to be transmitted over an out-bound link. The

queue simply provides some capacity for tolerating variability in the load (i.e., Bursty

traffic) on the outbound link. A short burst of packet arrivals may exceed the available

bandwidth of the link even when the average load is well below the link bandwidth.

However, when the load exceeds the available capacity of the link for sustained periods

of time, the queue capacity is exceeded. Router implementations using a simple fixed-

size FIFO queue typically just drop any packet that arrives to be enqueued to an already-

full outbound queue. This behavior is often called drop-tail packet discarding.

2.5.2 Random Early Detection (RED)
The RED algorithm uses a weighted average of the total queue length to determine when

to drop packets. When a packet arrives at the queue, if the weighted average queue length

Dept. of E&C Engineering 	 15 	 2005-06

is less than a minimum threshold value, no drop action will be taken and the packet will

simply be enqueued. If the average is greater than a minimum threshold value but less

than a maximum threshold, an early drop test will be performed as described below.

An average queue length in the range between the thresholds indicates some congestion

has begun and flows should be notified via packet drops. If the average is greater than the

maximum threshold value, a forced drop operation will occur. An average queue length

in this range indicates persistent congestion and packets must be dropped to avoid a

persistently full queue. Note that by using a weighted average, RED avoids over-reaction

to bursts and instead reacts to longer-term trends. Furthermore, note that because the

thresholds are compared to the weighted average (with a typical weighting of 1/512 for

the most recent queue length), it is possible that no forced drops will take place even

when the instantaneous queue length is quite large.

2.6 Wireless and Congestion loss discriminators:
There has been considerable work characterizing the benefits of differentiating wireless

losses from congestion losses for TCP connections, and developing various techniques

for preventing TCP from reacting to wireless losses as if they indicated congestion. A

discriminator is any technique which distinguishes congestion losses from wireless

losses.

A. Biaz discriminator [111:
Biaz proposed one discriminator uses packets inter arrival time to differentiate between

loss types. The concept here is that based on the arrival time of P„ if P,+,7+1 arrives right

around the time that it should have arrived, we can assume the missing packets were

properly transmitted and lost due to wireless errors. If P;+„+1 arrive much earlier than it

should, then at least some packets ahead of it (130-1... Pi+n) probably were dropped at a

buffer, and if it arrives much later than expected, then it is likely that queuing times at

buffers have increased. Either way, we can attribute the loss to congestion.

Dept. of E&C Engineering 	 16 	 2005-06

B. Spike discriminator [17]:
The Spike discriminator differentiated among degrees of congestion but did not

explicitly differentiate wireless loss from congestion loss. ROTT is a measure of the time

a packet takes to travel from the sender to the receiver and used to identify the state of the

current connection. If the connection is in the spike state, losses are assumed to be due to

congestion; otherwise, losses are assumed to be wireless. The spike state is determined

as follows. On receipt of a packet with sequence number i, if the connection is currently

not in the spike state and the ROTT for packet exceeds the threshold, then the algorithm

enters the spike state. Otherwise, if the connection is currently in the spike state, and the

ROTT for packet is less than a second threshold, the algorithm leaves the spike state.

When the receiver detects a loss because of a gap in the sequence number of received

packets, it classifies the loss based on the current state.

The problem in this method is, it is sensitive to threshold values. The distance

between these two parameters determines the stability between spike and non-spike

states. If d (difference between two threshold values) is small then the algorithm

oscillates between two states. If d is large the algorithm is stable but misclassification of

losses increases.

C. ZigZag discriminator [4]:
ZigZag classifies losses as wireless, based on the number of losses n and the

difference between rott, and its rottmean. A loss is classified as wireless if

AND rott, < rottmenn-rotAnev)

OR (n=2 AND rotti<rottmean-rottd,/2)

OR (n=3 AND rotti<rott mean)

OR (n>3 AND rott<rottn,ean-rottd„/2).

Otherwise, the loss is classified as congestion loss. rottmean and rottde, calculated as

follows:

rottmear,(1-ct)*rottmean+ Ct*rott

rottd, — (1-2a)*rotidev+2 a *Irott-rottmeanl.

Dept. of E&C Engineering 	 17 	 2005-06

By definition, ROTT has a high probability of having values greater than (rottmean-

rottdev): 84% if it were a normalized Gaussian distributed random variable. As one packet

loss is the most common loss pattern in a wired network, and congestion loss usually

comes with higher delay, the threshold of rott > rott,ean-rottd„ intuitively would classify

most of the congestion loss correctly. The reasoning behind increasing the threshold with

the number of losses encountered is that a more severe loss is associated with higher

congestion and with higher ROTT. This way, a loss event containing four or more

packets would be classified as congestion loss only when relatively large ROTT were

observed.

Taking ROTT to classify wireless losses leads to the problem of high misclassification of

congestion and wireless losses. The problem with this type of algorithms is, the sender

and receiver must be synchronized.

D. Hybrid discriminator:
Cen et al. proposed a hybrid discriminator ZBS [4] which uses three loss

discriminators: ZigZag, Biaz and Spike. ZBS dynamically switches between the three

loss discriminators according to observed network conditions.

E. TCP Casablanca [12]:
Biaz and Vaidya proposed this discriminator that takes support from intermediate routers

and uses different discard priority packets and biased queue management that first drops

low priority packets if queue is full. Our algorithm is based on TCP-Casablanca [12].

This algorithm "de-randomizes" congestion losses such that the distribution of

congestion losses differs from that of wireless error losses. In this algorithm the packets

are divided in to two priorities in and out. One packet out of k packets labeled as out.

Let us denote all data packets a TCP sender sends as P 	P 1M is the ith packet, and it is

marked with M (in or out). A retransmitted packet keeps the same index i but is always

marked in to avoid jeopardy for packets initially marked out. It is assumed that routers

Dept. of E&C Engineering 	 18 	 2005-06

first drop packets marked out, and start dropping packets marked in only if there are no

more packets marked out in the queue.

TCP sender marks the packets such that one packet out of k packets is marked out all

other packets are marked in. A biased queue management is implemented at routers

which first drop out packets. At the receiver side when ever an out-of-order packet

received, TCP receiver considers the patter of losses between the next expected packet

P,ixt and the Packet Ph, with the highest sequence number seen so far and calculated the

following function.

F(x, r, k) = 1- Lk. '1

x = number of out packets lost.

r = total number of lost packets.
If F(x, r, k) > 0 then the losses are diagnosed as wireless losses.

Otherwise they are diagnosed as congestion losses.

After identifying the loss type receiver sends signal to sender (by setting ELN flag) in

duplicate ACK. If the ELN (Explicit Loss Notification) flag is set then the sender doesn't

halve the congestion window (because the loss is due to wireless loss). Otherwise it

decreases the congestion window to half.

If the congestion is high then F(x, r, k) mistakenly identifies the loss is due to wireless

loss. If this happens then the sender doesn't decrease it's sending rate, due to this the

network performance will degrade.

The biased queue management raises the issue of fairness between flows that mark some

of their packets out and the flows that do not. If some flows do not mark out any of their

packet, then packets will be dropped only from flows that mark packets out. Only flows

Dept. of E&C Engineering 	 19 	 2005-06

that mark packets out would be responsive to light congestion. Flows that do not mark

packets out may monopolize the available link capacity.

Note that some performance improvement is usually obtained even with weak loss

discriminators. This observation is supported by Barman and Matta [2] who studied the

effectiveness of poor loss discriminators in improving TCP performance. Barman and

Matta showed that despite a low accuracy in diagnosing congestion losses or wireless

losses, TCP performance can still be significantly improved.

In this chapter we discussed overview of TCP, major factors affecting TCP performance

in wireless medium, various congestion control algorithms in TCP and different

discriminators used for differentiating wireless and congestion losses.

Dept. of E&C Engineering 	 20 	 2005-06

CHAPTER 3 	 PROPOSED DISCRIMINATOR

In this chapter we discuss our proposed discriminator TCP-RoS (TCP with Router

Support).

3.1 Rationale of proposed discriminator
The problem of distinguishing congestion losses from random wireless losses is

particularly hard when congestion is light: congestion losses themselves appear to be

random. A biased queue management that first drops specifically marked packets will

"de-randomize" congestion losses. The TCP-RoS discriminator is implemented at the

TCP receiver because the receiver has a better "view" of the losses than the sender.

For every k packets which the sender sends, it marks one of the packets as out and all

other packets as in. In case of congestion, the router at the bottleneck link must first drop

packets marked out before dropping any packet marked in. Therefore, the out packets are

dropped first by the biased queue management at the bottleneck. If there is no congestion,

the pattern of dropping will likely be different as wireless links do not distinguish

between out and in packets. As high proportion of packets are marked as in, it is expected

that these will likely be dropped. From this observation, the receiver will diagnose a

pattern of losses as biased if a high proportion of packets marked out are lost. If the

pattern appears to be biased, the receiver concludes that the losses are due to congestion.

In the following, it is formally shown that a biased queue management enables the design

of a very accurate TCP-RoS loss discriminator. The sender also estimates congestion

level of the network by using RTT.

3.2 Proposed discriminator (TCP-RoS):
Our proposed discriminator TCP-RoS, is using priority packets to de-randomize

congestion losses. This new method also identifies congestion level in the network and

also solves fairness problem which is in TCP-Casablanca [12].

Sender in the TCP-RoS assigns priority (in or out) to every packet according to the value

of k (one out packet every k in packets). And when the sender receives ACK from

Dept. of E&C Engineering 	 21 	 2005-06

Decrease cwnd by 1/4th

As New Reno

Do not halve
cwnd

ACK Received

receiver it checks eln_flag field in ACK. If eln_falg is 1, then sender doesn't decrease

congestion window. Other wise it checks the following equation 3.

rtt <= (min_rtt+max_rtt)/2
	

(3)

Where rtt is the round trip time, min_rtt is the minimum rtt and max_rtt is the maximum

rtt till now the sender experienced. If this equation satisfies then the sender assumes that

the network is lightly congested so it decreases congestion window by '/4 th only.

Otherwise it acts as same New Reno. The flow chart for sender is shown in Fig 3.1.

TCP Sender

Fig 3.1: TCP-RoS Sender flow chart

Dept. of E&C Engineering 	 22 	 2005-06

Compute r-x

Mark Ack with
eln_flag

As New Reno

Packet Received

We implemented discriminator at receiver side because receiver is better view for losses.

When receiver receives out-of-order packet, it calculates two parameters x, r. where x is

the no. of out packets lost. r is the total no. of packets lost. Receiver checks sequence no.

from first lost packet sequence no. to maximum sequence no. seen up to now and

calculates x and r parameters.

TCP- Receiver

Fig 3.2: TCP-RoS Receiver flow chart

If all are in packets then receiver sends wireless loss signal to sender in third duplicate

ACK by setting eln_flag field to 1 in ACK. Otherwise receiver sends congestion loss

signal to sender by setting eln flag field to 0 in ACK. The flow chart for receiver is

shown in Fig 3.2.

Dept. of E&C Engineering 	 23 	 2005-06

We implemented a new queue management which first drops out priority packets. This

queue management also solved fairness problem which is in TCP-Casablanca queue

management. Our queue management works as follows.

When a packet comes to the router it checks the source and destination addresses of that

packet, if this packet has priority out, then the sender drops this packet. Otherwise it

checks with the packets which are in queue for the same source and destination number

packets. If any out priority packet found in the queue it removes that packet otherwise

this packet will be dropped. If there is no same source and destination address of that new

incoming packet then it drops new incoming packet.

Dept. of E&C Engineering 	 24 	 2005-06

CHAPTER 4 	 IMPLEMENTATION DETAILS

Simulation study is carried out using network Simulator -2. Overview of NS-2, the

Network model used and the performance metrics used for evaluating the discriminators

are as follows.

4.1 NS-2 overview:
NS-2 provides a frame work for simulation of wired and wireless networks, including

some facility for emulation. NS-2 is the VINT project which is a joint effort by people

from UC Berkely, USC/ISI, LBL, and Xerox PARC. The project is supported by the

Defense Advanced Research Projects Agency (DARPA). The NS-2 simulator is written

in C++ with a Tcl shell front-end that uses oTcl (object-oriented Tcl) libraries scenarios

are run by feeding an oTcl script to the NS-2 executable. The output can be read directly

or post-processed by an interactive graphics viewer called Network Animator (NAM).

NAM does not allow changing parameters on the fly, it is for post-viewing of a

simulation dump (a .nam file).

NS is an object oriented simulator, written in C++, with an OTcl interpreter as a front

end. NS uses two languages because simulator has two different kinds of things it needs

to do. On one hand, detailed simulations of protocols require a systems programming

language which can efficiently manipulate bytes, packet headers, and implement

algorithms that run over large data sets. For these tasks run-time speed is important and

turn-around time (find bug, fix bug, recompile, re-run) is less important.

NS meets both of these needs with two languages, C++ and OTcl. C++ is fast to run but

slower to change, making it suitable for detailed protocol implementation. OTcl runs

much slower but can be changed very quickly (and interactively), making it ideal for

simulation configuration.

Dept. of E&C Engineering 	 25 	 2005-06
R00011111

NS-2 is a discrete event simulator. It does the Simulation of TCP, routing, and multicast

protocols over wired and wireless (local and satellite) networks. This Simulator is written

in C++. OTci is used as command and configuration interface.

Components of NS:

• Ns, the simulator itself

• Nam, the network animator

o Visualize ns output

o Nam editor: GUI interface to generate ns scripts

• Pre-processing:

o Traffic and topology generators

• Post-processing:

o Simple trace analysis, often in Awk, Perl, or Tcl

Ns functionalities in Wired Networks:

• Routing DV, LS, PIM-SM

• Transportation: TCP and UDP

• Traffic sources: web, ftp, telnet, cbr

• Queuing disciplines: drop-tail, RED, FQ, SFQ, DRR

• Tracing, visualization, various utilities

To the C++ programmer, object-oriented programming in OTci may feel unfamiliar at

first. The difference between C++ and OTci are:

• Instead of a single class declaration in C++,we write multiple definitions in OTci.

• Instead of a constructor in C++, write an init instproc in OTcl. Instead of a

destructor in C++, write a destroy instproc in OTci.

• Unlike C++, OTci methods are always called through the object. The name self,

which is equivalent to this in C++, may be used inside method bodies.

C++ is used for per packet processing i.e. preprocessing for each packet of a flow. It is

fast to run, detailed, familiar and easy to understand.

Dept. of E&C Engineering 	 26 	 2005-06

OTcl is used for control of execution. The simulation program written in OTcl is fast to

write and change. OTci is used in

• Simulation scenario configurations

• Periodic or triggered action

• Manipulating existing C++ objects

4.2 System Requirements:
This project was developed on a Linux machine running Fedora 2 with Linux kernel 2.6.5

& NS-2. The NS-2 [19] version was "ns-allinone-2.1b8a", which is a single tar ball with

all the requisite packages that easily installs with one command.

4.3 Network Model:
Accuracies (Ac and Aw) of TCP-RoS discriminator and the improvement are measured

using ns-2[19] simulations. This section presents the topology used for the simulations,

the packet loss model, and the method used to collect the data. Fig. 6(a) shows the

topology used. There are three types of pairs sender-receiver: TCP connections over type

sender-receiver pair experience the longest propagation delay path with a wireless last

hop. There are five routers. The dashed lines show the TCP transfers between senders and

receivers. With this topology, a competing TCP traffic with different round-trip times is

maintained. Bit rates on all links are set such that the bottleneck is the link R3 — R4.

All senders are TCP senders. Sources are fed with FTP traffic. The results presented in

this paper have a bit rate on the wired bottleneck of 45 Mb/s and propagation delay is

5ms. Bit rate B,„ on the wireless link of 10 Mb/s and N1, N2, N3 are 6. Experiments were

run with Ni, N2 and N3 are varying from 3 to10.

For the wireless packet loss model, a two-state Markov model is used. In each state, the

time between successive losses is exponentially distributed.

Two discriminators were added to TCP sink in ns-2: Casablanca discriminator and

proposed discriminator (TCP-RoS). For these experiments, each experiment lasts 140s.

Dept. of E&C Engineering 	 27 	 2005-06

N2 Senders N2 Receivers

Bws.5 m

Lossy Li]

	(Bs)

60Mbps, 5ms 90Mbps, 5ms -
	

1991\4 bps, 5ms)OMbps, 5ms
30 Mbps, 5ms _ - - 	----------------

Bw, Tp -

- -

11,

Ni Receivers

Accuracies Ac, A, and throughput are collected from this experiment. Note that the same

starting times are used to conduct the experiment with TCP-New Reno, TCP-Casablanca,

and TCP-RoS. Five runs of the same experiment were run, changing only the starting

times. The results reported here for the accuracies and the throughput are the average

over the 5 runs.

Fig 4.1: Network model

4.4 Performance metrics
An algorithm that attempts to classify each loss into one of two classes can be judged by

its misclassification rate, the fraction of cases which are classified incorrectly. Since

misclassifying a wireless loss as a congestion loss does not have the same impact as the

other way around, we can judge performance by examining the two separate

misclassification rates. However, our ultimate concern is with the throughput of the

Dept. of E&C Engineering 	 28 	 2005-06

traffic stream that results from using the algorithm, and with whether the algorithm

causes severe congestion and thereby diminishes the throughput of other traffic streams.

This leads us to a set of three performance measures.

Throughput: The most important goal is high throughput, where we are concerned with

the improvement compared with the original TCP-New Reno and TCP-Casablanca when

transmitting through a network with a wireless link. Our experiments show that

throughput of our model is higher than New Reno and Casablanca models.

Congestion Accuracy (At): Ac is the ratio of the number of congestion losses correctly

diagnosed over the total number of congestion losses.

Wireless Accuracy (An): Ay, is the ration of the number of wireless losses correctly

diagnosed over the total number of wireless losses.

4.5 Description of the classes used
We have used the NS-2 simulator to modify the TCP. The TCP module already

integrated in NS-2. The following functions are modified in various file in tcp (See

Appendix- for complete code).

• Modifications in tcpnewreno.cc

output(seqno, reason) - The function sends one packet with the given sequence number

and updates the maximum sent sequence number variable (maxseqp to hold the given

sequence number if it is the greatest sent so far. This function also assigns the various

fields in the TCP header (sequence number, timestamp, reason for transmission). This

function also sets a retransmission timer if one is not already pending. It assigns the

priorities to every packet according to k value.

recvO - this function is the main reception path for ACKs. Note that because only one

direction of data flow is in use, this function should only ever be invoked with a pure

Dept. of E&C Engineering 	 29 	 2005-06

ACK packet (i.e. no data). The function stores the timestamp from the ACK in ts_peer_,

and checks for the presence of the ECN bit (reducing the send window if appropriate). If

the ACK is a new ACK, it calls newack(), otherwise checks elnilag whether the loss is

due to wireless or congestion and calls dupackaction() by setting loss_type variable. It

sends a packet by calling send_much.

Dupack_action0- This function decreases the congestion window according to the

loss_type.

• 	Modifications in tcpsink.cc

recv() — This function is main reception path for packets. It checks whether the expected

packet or out-of-order packet. This function also updates receive window when it

received expected packet and sends ack for that packet. If the packet is out-of-order

packet this function checks whether the loss is due to wireless or due to congestion and

sets eln_flag field in third duplicate ack.

• Modification in drop_tail.cc

enque(Packet p) — This function enque the packet p in to the queue. Then it checks

whether the present queue length is greater than queue length, if it is then this function

calls dequebqm(), which is base class method.

• Modification in queue.cc

dequebqm() — This function deque the packet from queue. This function first drops low

priority (out) packet for the same flow belongs to tail end packet.

Dept. of E&C Engineering 	 30 	 2005-06

0.2

0
a 	10 	15 	20 	25

k

30 	35 	40 	45 	50 5 0

0.6

CHAPTER 5 	 RESULTS AND DISCUSSIONS

5.1 Accuracies A, and Aw:

It was shown in [12] that the accuracies Ac and Aw depend on the value k (one packet

marked out every k packets, others being marked in). In this section, the relationship

between the accuracies and k is verified through simulations.

Impact of k on Ac and Aw:

—B— TCP-Casablanca-4— TCP-RoS

Fig. 5.1: Congestion accuracy AcVs k when pv, =0.01.

Fig 5.1 plots the measured Congestion accuracy versus k when wireless packet loss rate

pW =0.01, the key observation is that accuracy decreasing sharply after k=10. It was

shown that a large decreases the expected number of packets marked out in the queue at

the bottleneck. When congestion occurs, packets marked out get quickly exhausted for

large values of k results large no. of in packet drops occur. If this situation will occur then

the discriminator misclassifies the congestion loss as wireless loss.

Dept. of E&C Engineering 	 31 	 2005-06

TCP-Casablanca —8-- TCP-RoS

0.8 -

0.2

0

0 	5 	10 	15 	20 	25 	30 	35 	40 	45 	50

k

Fig 5.2: Wireless Accuracy A, when p,, =0.01.

Simulations results on Fig. 5.2 shows that AW increases as k increases. When k is large,

packets marked out are rare and rarely get dropped on the wireless medium. Therefore,

most losses appear to be random, leading to a high accuracy. Fig. 5.1 and 5.2 suggests

that k should be chosen around 8 to achieve high values for and both Accuracies. For

k=8, Ac is 0.997 and /kw is 0.88 for TCP-RoS, against A0 is 0.994 and A, is 0.8 for TCP-

Casablanca.

Dept. of E&C Engineering 	 32 	 2005-06

1—o— TCP-New Reno —az— TCP-Casablanca—o— TCP-RoS1

5.2 Throughput:

90000

80000

70000

60000

1,) 50000
41

40000

30000

20000

10000

0
0.001
	 0.010

	 0.100

wireless loss rate

Fig 5.3: Throughput Vs wireless loss rate (Pw).

Simulations are carried out using wireless error rates (13,) of 0.001, 0.01 and 0.1. Figure

5.3 shows the throughput achieved by TCP-RoS, TCP-Casablanca and TCP-New Reno in

the presence of increasing error rates on the wireless link. Our results suggest that the

proposed RoS algorithm identifies random losses on the wireless link. It outperforms

TCP-New Reno and TCP-Casablanca in terms of throughput. TCP-RoS provides higher

throughput than TCP-Casablanca and New Reno in all cases. According to the results,

TCP-RoS has a higher throughput than TCP-Casablanca by 2.4% at P, is 0.001. When PW

is 0.01 TCP-RoS has higher throughput than Casablanca by 4.21% and 3.8% higher

throughput when 13„ is 0.1.

From the graph we can observe that the throughput drops significantly for very high error

rates. This can be explained as follows. The retransmitted packets are also dropped due to

wireless transmission errors. When these retransmitted packets are dropped the

Dept. of E&C Engineering 	 33 	 2005-06

congestion window of the sender decreases to one. As a result the throughput of TCP

decreases.

Throughput in presence of non-priority flows:

Simulations are carried out in the presence of other flows (Flows that always sends in

priority packets) to check fairness of our algorithm.

TCP-Casablanca —6— TCP-RoS —a— TCP-RoSWF

90000

80000

70000

60000
C)

50000
0.1

1, 40000
0

H
30000

20000

10000

0
0.001
	 0.010

	
0.100

Wireless loss rate (Pw)

Fig 5.4: Throughput Vs wireless loss rate (pw).

The biased queue management in TCP-Casablanca drops the packets only from flows that

mark packets out. Only flows that mark packets out would be responsive to light

congestion. Flows that do not mark packets out may monopolize the available link

capacity. Due to this the throughput of the flows that mark the packet as out will degrade

in the presence of other flows. Figure 5.4 shows the throughput achieved by TCP-RoS,

TCP-Casablanca and TCP-RoSWF in the presence of increasing error rates on the

wireless link. TCP-RoS throughput is high compare to TCP-Casablanca and TCP-

RoSWF because the queue management drops the packet according to the incoming

packet flow. TCP-RoS has a higher throughput than TCP-Casablanca by 5.2% when Pw is

Dept. of E&C Engineering 	 34 	 2005-06

0.001. When-Pw is 0.01 TCP-RoS has a higher throughput than Casablanca by 27.6% and

74.4% higher throughput when P„ is 0.1. Hence we can conclude that our proposed

TCP-RoS algorithm out performs TCP-Casablanca and TCP-RoSWF (TCP-RoS with out

fairness) in presence of other flows.

Dept. of E&C Engineering 	 35 	 2005-06

CHAPTER 6 	 CONCLUSION

6.1 Conclusion:
We developed a new discriminator TCP-RoS, which not only differentiate wireless and

congestion losses but also identifies level of congestion in the network. We have shown

through simulation that TCP-RoS is able to maintain high throughput in wireless error

prone links than TCP-Casablanca. We solved the fairness problem which is in TCP-

Casablanca.

6.2 Scope of future work:
Our future work will focus on discriminator to yield a better accuracy, a key factor in

improving the performance of TCP in presence of random losses by using multiple

dropping priorities. Multiple dropping priorities, used with a biased queue management,

may well yield a higher wireless accuracy .Our further research to investigate the

behavior of the proposed technique over different network topologies and asymmetric

networks.

Dept. of E&C Engineering 	 36 	 2005-06

REFERENCES:
1. M. Allman, V. Paxson, and W. Stevens, "TCP congestion control," IETF, RFC

2581, Apr. 1999.

2. D.Barman and I.Matta, "Effectiveness of loss labeling in improving TCP

performance in wired/wireless networks" in Proc. 10th IEEE Int. Conf. Network

Protocols (ICNP'2002), Paris, France, Nov. 2002, pp. 2-11.

3. L. S. Brakmo and S. O'Malley, "TCP-Vegas: New techniques for congestion

detection and avoidance" in Proc. ACM SIGCOMM, Oct. 1994, pp. 24-35.

4. S. Cen, P. C. Cosman, and G. M. Voelker, "End-to-end differentiation of

congestion and wireless losses" IEEE/ACM Trans. Networking, vol. 11, no. 5,

Oct. 2003, pp. 703-717.

5. S. Floyd and T. Henderson, "The NEWRENO modification to TCP 's fast recovery

algorithm" IETF, RFC 2582, Apr. 1999.

6. HOE, J.C.:"Improving the start-up behavior of a congestion control scheme for

TCP". Proceedings of SIGCOMM '96, 1996, (ACM), pp. 270-280.

7. JACOBSON, V.: "Congestion avoidance and control". Proceedings of

SIGCOMM '88, 1988, (ACM), pp. 314-329.

8. Kostas Pentikousis, TCP in Wired-Cum-Wireless Environments, State University

of New York at Stony Brook, IEEE Communications Surveys, Fourth Quarter

2000.

9. MATHIS, M., MAHDAVI, J., FLOYD, S., and ROMANOW, A.: 'TCP selective

acknowledgment options'. IETF, RFC 2018 (status-Proposed Standard), 1996.

10. MATHIS, M., and MAHDAVI, J.: "Forward acknowledgment: refining TCP

congestion control". Proceedings of SIGCOMM '96, 1996, (ACM). pp. 281-291.

11. Saad Biaz and N.H. Vaidya, "Discriminating congestion losses from wireless

losses using inter-arrival times at the receiver," in Proc. IEEE Symp.

Application-Specific Systems and Software Engineering and Technology

(ASSET'99), Texas University, Mar. 1999, pp. 10-17.

12. Saad Biaz and N.H. Vaidya, ""De-Randomizing" Congestion Losses to improve

TCP performance over wired-wireless networks", IEEE Trans. On Networking,

June 2005, pp. 596-608.

Dept. of E&C Engineering 	 37 	 2005-06

13. SAMARAWEERA, N., and FAIRHURST, G.: "Reinforcement of TCP error

recovery for wireless communication", Computer Communication (ACM), 1998,

pp. 30-38.

14. SAMARAWEERA, N., and FAIRHURST, G.: "Robust data link protocols for

connection-less service over satellite links", Int J. Satellite Communication, 1996,

pp. 427-437.

15. SAMARAWEERA, N., and FAIRHURST, G.: "Explicit loss indication and

accurate RTO estimation for TCP error recovery using satellite links", IEEE

Proc., Communication. 1997, pp. 47-53.

16. STEVENS, W.R.: "TCP/IP illustrated" vol 1 (Addison Wesley, New York, 1994,

1st edn.).

17. Y. Tobe, Y. Tamura, A. Molano, S. Ghosh, and H. Tokuda, "Achieving moderate

fairness for UDP flows by path-status classification" in Proc. 25th Annu. IEEE

Conf. Local Computer Networks (LCN), Tampa, FL, Nov. 2000, pp. 252-261.

18. J. Waldby, U. Madhow, and T. Lakshman. "Total acknowledgements:a robust

feedback mechanism for end-to-end congestion control". In Sigmetrics '98

Performance Evaluation Review, volume 26, 1998.

19. ns-2 network simulator. [Online]. Available: http://www.isi.edu/nsnam/ns/.

20. J. F. Kurose and K. W. Ross, Computer Networking, Addison Wesley, New

York, 2001

Dept. of E&C Engineering 	 38 	 2005-06

APPeND•IX

111f1101111111011111111111 1 11111111111111111111111111

A.1 NAM output and Trace file sample output:

Figure A.1.1 shows the sample NAM output.

Figure A.1.1: Sample NAM output.

The following is the sample trace file generated by the NAM for TCP.

+ 1 0 3 tcp 40 	 2 0.0 4.0
- 1 0 3 tcp 40 	 2 0.0 4.0

0
0 0

0

r 1.00014 0 3 tcp 40 	 2 0.0 4.0 0 0
+ 1.00014 3 4 tcp 40 	 2 0.0 4.0 0 0
- 1.00014 3 4 tcp 40 	 2 0.0 4.0 0 0
r 1.100543 4 tcp 40 	 2 0.0 4.0 0 0
+ 1.10054 4 3 ack 40
- 1.10054 4 3 ack 40 	
+1.2 1 3 tcp 40 	 3
- 1.2 1 3 tcp 40 	3
r 1.20014 1 3 tcp 40 	
+ 1.200143 4 tcp 40 	

2 4.0 0.0 0 1
2 4.0 0.0 0 1

1.0 4.1 0 2
1.0 4.1 0 2

3 1.0 4.1 0 2
3 1.0 4.1 0 2

- 1.20014 3 4 tcp 40 	 3 1.0 4.1 0 2
r 1.20094 4 3 ack 40 	 2 4.0 0.0 0 1
+ 1.20094 3 0 ack 40 2 4.0 0.0 0 1
- 1.20094 3 0 ack 40 	 2 4.0 0.0 0 1
r 1.20108 3 0 ack 40 	 2 4.0 0.0 0 1
+ 1.20108 0 3 tcp 1500 2 0.0 4.0 1 3
- 1.20108 0 3 tcp 1500 2 0.0 4.0 1 3
r 1.20268 0 3 tcp 1500 2 0.0 4.0 1 3
+ 1.20268 3 4 tcp 1500 2 0.0 4.0 1 3

• The first field is event type.

For enqueue

- For dequeue

r For receive

• Second column is simulation time at which each event occurred.

• The next two fields indicate between which two nodes tracing is happening

• The next field is a descriptive name for the type of packet seen (tcp, ack).

• The next field is the paCket size as encoded in its IP header.

• The next four characters represent special flag bits, which may be enabled.

• The next field gives the IP flow identifier field as defined for IP version 6.

• The subsequent two fields indicate the packets source and destination node

addresses respectively.

ii

• The following field indicates the sequence number.

• The last field is a unique packet identifier. Each new packet created in the

simulation is assigned a new unique identifier.

A.2 Source Code Listing

tcp.h:

The following class is added in tcp.h.

struct hdr_tcp

#define NSA 3
double ts_; /* time packet generated (at source) */
double ts_echo_;/* the echoed timestamp (originally sent by

the peer) */
int seqno_; 	/* sequence number */

///assigning priority to the packet for TCP-RoS.
int priority_; /* prority for packet */

int eln_; 	/* loss notification in TCP-RoS*/
///

int reason_; 	/* reason for a retransmit */
int sack_area_[NSA+1][2];/*sack blocks:start,end of block*/
int sa_length_; /* Indicate the number of SACKs in this *

/* packet. Adds 2+sack_length*8 bytes */
int ackno_; 	/* ACK number for FullTcp */
int hlen_; 	/* header len (bytes) for FullTcp */
int tcp_flags ; 	/* TCP flags for FullTcp */
int last_rtt_; /* more recent RTT measurement in ms, */

/* for statistics only */
static int offset_; // offset for this header
inline static int& offset() { return offset_;
inline static hdr_tcp* access(Packet* p) {

return (hdr tcp*) p->access(offset j;
}

/* per-field member functions */
double& ts() { return (ts_); }
double& ts_echo() { return (ts_echo_); }
int& seqno() { return (seqno j; }
int& priority(){return (priority_); }
int& eln(){return (eln _);}
int& reason() { return (reason_); }
int& sa_left(int n) { return (sack_arealn][0]); }
int& sa_right(int n) { return (sack_arealn][1]); }
int& sa_length() { return (sa_length j; }

iii

int& hlen() { return (hlen_);
int& ackno() { return (ackno_);
int& flags() { return (tcp_flags_);
int& last_rttO { return (last_rtt_); }

};

class BqmTcpAgent : public virtual NewRenoTcpAgent

public:
int cong_loss_notify;

BqmTcpAgent();
virtual void recv(Packet *pkt, Handler*);
virtual void dupack_action();
virtual void output(int seqno, int reason = 0);
wireless_loss loss type;
};

tcpnewreno.cc

The following functions are added in tcpnewreno.cc:

static class BqmTcpClass : public TclClass {
public:

BqmTcpClass() : Tc1Class("Agent/TCP/Newreno/Bqm") {}
TclObject* create(int, const char*const*) {

return (new BqmTcpAgent());
}

class_bqm;

BqmTcpAgent::BqmTcpAgent()
{
}
void
BqmTcpAgent::dupack_action0
{

int recovered = (highest_ack_ > recover_);
int recovered) = (highest_ack_== recover_);

int allowFastRetransmit =allow fast retransmit(last cwnd action_);
if (recovered 11 (!bug_fix_ && !ecn 	allowFastRetransmit) {

goto reno_action;
}

if (bug_fix_ && less_careful_ && recovered 1)
1*

iv

* For the Less Careful variant, allow a Fast Retransmit
* if highest_ack_ == recover.
* RFC 2582 recommends the Careful variant, not the
* Less Careful one.
*/

goto reno_action;
}

if (ecn_ && last_cwnd_action_ == CWND_ACTION_ECN)
last_cwnd_action_ = CWND_ACTION_DUPACK;
/*

*What if there is a DUPACK action followed closely by ECN
* followed closely by a DUPACK action?

* The optimal thing to do would be to remember all
* congestion actions from the most recent window
* of data. Otherwise "bugfix" might not prevent
* all unnecessary Fast Retransmits.
*1
reset_rtx_timer(1,0);
output(last ack_ + 1, TCP REASON_DUPACK);

dupwnd_ = numdupacks_;
return;

}

if (bug_fix_) {
if (bugfix_ts_ && tss[highest_ack_ % tss_size 	ts_echo _)

goto reno_action;
else if (bugfix_ack_ && cwnd_ > 1 && highest_ack_ -

prev_highest_ack_ <= numdupacksj
goto reno_action;

else
/*
* The line below, for "bug_fix_" true, avoids
* problems with multiple fast retransmits in one
* window of data.

return;

reno action:
recover_ = maxseq ;
reset_rtx_timer(1,0);
if (!lossQuickStart()) {

trace event("NEWRENO FAST RETX");
-fast

last_cwnd_action_ =—CWN15- ACTION 	DUPACK;

//////////////////////code written by Vijender/////////////////////7//////////////////////////

if(loss_type==WIRELESS)
///if loss is due to wireless

slowdown(CWND_ACTION_WIRELESSERROR);
else if(loss_type—LESS_CONGESTION)

//if loss is due to congestion and network is lightly congested
slowdown(THREE_QUARTER_CWND);

else

slowdown(CLOSE_SSTHRESH_HALF1CLOSE_CWND_HALF);
output(last_ack_ + 1, TCP_REASON DUPACK);
// from top
dupwnd_ = numdupacks_;

} 	•
return;

}

void BqmTcpAgent::output(int seqno, int reason)
{

int force_set_rtx_timer = 0,k_=8;
Packet* p = allocpkt();
hdrtcp *tcph = hdr_tcp::access(p);
hdr_flags* hf = hdr_flags::access(p);
hdr_ip *iph = hdr_ip::access(p);
int databytes = hdr_cmn::access(p)->size();
tcph->seqno() = seqno;

tcph->ts() = Scheduler::instance().clock();

// Mark packet for diagnosis purposes if we are in Quick-Start Phase
if (qs_approvedp {

hf->qs() = 1;
}

////code written by vijender for TCP-RoS//////////
if(seqno % k_ ==0)

{
tcph->priority_ = k_ + 64;
hdr_cmn::access(p)->priority_tcp_=1;

}
else

{
tcph-> priority_=k_;
hdr cmn::access(p)->priority_tcp_=0;
}

///

// store timestamps, with bugfix_ts_. From Andrei Gurtov.

vi

//

// (A real TCP would use scoreboard for this.)
if (bugfix_ts_ && tss==NULL) {

tss = (double*) calloc(tss_size_, sizeof(double));
if (tss==NULL) exit(1);

}
//dynamically grow the timestamp array if it's getting full
if (bugfix_ts_ && window() > tss_size_* 0.9) {

double -*-ntss;
ntss = (double*) calloc(tss_size_*2, sizeof(double));
printf("resizing timestamp table\n");
if (ntss == NULL) exit(1);
for (int i=0; i<tss_size_; i++)

ntss[(highest_ack_ + i) % (tss_size_ * 2)] =
tss[(highest_ack_ + i) % tss_size_];

free(tss);
tss_size_ *= 2;
tss = ntss;

}

if (tss!=NULL)
tss[seqno % tss_size] = tcph->tsO;

tcph->ts_echo() = ts_peer_;
tcph->reason() = reason;
tcph->last_rtt() = int(int(t_rtt_)*tcp_tick_*1000);

if (ecn_) {
hf->ectO = 1; // ECN-capable transport

}
if (cong_action_)

hf->cong_action() = TRUE; // Congestion action.
cong_action_ = FALSE;

}
/* Check if this is the initial SYN packet. */
if (seqno == 0) {

if (syn_) {
databytes = 0;
curseq_ += 1;
hdr cmn::access(p)->size() = tcpip_base_hdr_size_;

}
if (ecn_) {

hf->ecnechoO = 1;
hf->cong_action() = 1;
hf->ect() = 0;

}
if (qs_enabled _) {

vii

hdrqs *qsh = hdr_qs::access(p);

// dataout is kilobytes queued for sending
int dataout = (curseq_ - maxseq_ - 1) * (size_ +

headersize()) / 1024;
int qs_rr = rate_request_;
if (qs_request_mode_ — 1) {

// PS: Avoid making unnecessary QS requests
// use a rough estimation of RTT in qs_rtt_
// to calculate the desired rate from dataout.
if (dataout * 1000 / qs_rtt_ < qs_rr) {

qs_rr = dataout * 1000 / qs_rtt_;
}
// qs_thresh_ is minimum number of unsent
// segments needed to activate QS request
if ((curseq_ - maxseq_ - 1) < qs_thresh j

qs_rr = 0;
}

}

if (qs_rr > 0) {
// QuickStart code from Srikanth Sundarrajan.
qsh->flag() = QS_REQUEST;
Random::seed_heuristically();
qsh->ttl() = Random::integer(256);
ttl_diff = (iph->ttl() - qsh->ttlO) % 256;
qsh->rateO = hdr_qs::Bps_to_rate(qs_rr * 1024);
qs_requested_ = 1;

} else {
qsh->flag() = QS_DISABLE;

}
}

}
else if (useHeaders_ == true) {

hdr cmn::access(p)->size() += headersize();
}

hdr_cmn::access(p)->size();

/* if no outstanding data, be sure to set rtx timer again */
if (highest_ack_ == maxseq j

force_set_rtx_timer = 1;
/* call helper function to fill in additional fields */
output_helper(p);

++ndatapack_;
ndatabytes_ += databytes;

viii

send(p, 0);
if (seqno == curseq_ && seqno > maxseq j

idle(); // Tell application I have sent everything so far
if (seqno > maxseq_)

maxseq_ = seqno;
if (!rtt_active_) {

rtt active = 1;
if (seqno > rtt_seq_) {

rtt_seq = seqno;
rttts = Scheduler::instance().clock();

}

}
} else {
++nrexmitpack_;

nrexmitbytes_ += databytes;
}
if (!(rtx_timer.status() 	TIMER_PENDING)11 force_set_rtx_timer)

/* No timer pending. Schedule one. */
set_rtx_timer();

}

void BqmTcpAgent::recv(Packet *pkt, Handler*)
{

hdr_tcp *tcph = hdr_tcp::access(pkt);
int valid_ack = 0;
static double min_rtt=0,max_rtt=9999999999.00;

/* Use first packet to calculate the RTT --contributed by Allman */

if (qs_approved_ == 1 && tcph->seqno() > last_ack j
endQuickStart();

if (qs_requested_ == 1)
pro cessQuickStart(pkt);

if (++acked_ == 1)
basertt = Scheduler::instance().clock() - firstsent_,

/* Estimate ssthresh based on the calculated RTT and the estimated
bandwidth (using ACKs 2 and 3). */

else if (acked_ == 2)
ack2_ = Scheduler::instance().clock();

else if (acked_ == 3) {
ack3_ = Scheduler: :instance°. clock();
new ssthresh = int((basertt_ * (size_ / (ack3_ - ack2 j)) / size j;

ix

if (newreno changes_ > 0 && new_ssthresh_ < ssthreshj
ssthresh_ = new_ssthresh_;

}

#ifdef notdef
if (pkt->type_ != PT_ACK)

fprintf(stderr,
"ns: confiuration error: tcp received non-ack\n");

exit(1);
}

#endif
/* W.N.: check if this is from a previous incarnation */
if (tcph->ts() < lastreset_)

// Remove packet and do nothing
Packet::free(pkt);
return;

}
++nackpack_;
is peer_ = tcph->tsO;

if (hdr_flags::access(pkt)->ecnecho() && ecn_)
ecn(tcph->seqno());

recv helper(pkt);
recv_frto_helper(pkt);
if (tcph->seqno() > last_ack _) {

if (tcph->seqno() >= recover_
(last_cwnd_action_ != CWND_ACTION_DUPACK)) {

if (dupwnd_ > 0) {
dupwnd_ = 0;
if (last_cwnd_action_ == CWND_ACTION_DUPACK)

last_cwnd_action_ = CWND ACTION EXITED;
if (exit_recovery_fix_)

int outstanding = maxseq_ - tcph->seqno() + 1;
if (ssthresh_ < outstanding)

cwnd = ssthresh ;
else

cwnd_ = outstanding;
}

}
firstpartial_ = 0;
recv newack_helper(pkt);
if (last_ack_ == 0 && delay_growth _) {

cwnd_ = initial window();
}

} else {
/* received new ack for a packet sent during Fast

* Recovery, but sender stays in Fast Recovery */
if (partial_window_deflation_ == 0)

dupwnd_ = 0;
partialnewackhelper(pkt);

}
} else if (tcph->seqno() == last_ack _)

if (hdr_flags::access(pkt)->eln_ && eln_) {
tcp_eln(pkt);
return;

}
if (++dupacks_ == numdupacksj {

//
if(tcph->eln_==1)

{
printf("wireless loss\n");

loss_type=WIRELESS;
}

else
{

if(t_rtt_ <= (min_rtt+max_rtt)*0.5)
/// checking rtt whether network is lightly congested or not

loss_type=LESS CONGESTION;
else

loss_type=CONGESTION;
printf("congestion loss\n");

}
dupack_action();

if (!exitFastRetrans_)
dupwnd_ = numdupacks_;

}
else if (dupacks_ > numdupacks_ && (!exitFastRetrans_

II last_cwnd_action_ == CWND_ACTION_DUPACK))
trace event("NEWRENO FAST RECOVERY");
++dupwnd_; // fast recovery

/* For every two duplicate ACKs we receive (in the
* "fast retransmit phase"), send one entirely new
* data packet "to keep the flywheel going". --Allman
*/

if (newreno_changes_ > 0 && (dupacks_ % 2) == 1)
output (t_seqno_++,0);

} else if (dupacks_ < numdupacks_ && singledup_) {

xi

send one();

if (tcph->seqno() >= last_ack_)
// Check if ACK is valid. Suggestion by Mark Allman.
valid_ack = 1;

if(min_rtt==0)
min rtt=t_ rtt •

if(min rtt > t_rttj
min_—rtt=t_rtt_;

if(max_rtt==9999999999.00)
max_rtt=t_rtt ;

if(max_rtt < t_rtt_)
maxrtt=trtt;

Packet::free(pkt);
#ifdef notyet

if (trace_)
plot();

#endif

1*
* Try to send more data
*/

if 	 aggressive_maxburst_)
if (dupacks_ == 0)

/*
* Maxburst is really only needed for the first
* window of data on exiting Fast Recovery.
*1
send much(0, 0, maxburst_);

else if (dupacks_ > numdupacks_ - 1 && newreno_changes_ == 0)
send much(0, 0, 2);

}

xii

tcpsink.cc

The following functions are modified in tcpsink.cc.

void TcpSink::ack(Packet* opkt)
{

Packet* npkt = allocpkt();
// opkt is the "old" packet that was received
// npkt is the "new" packet being constructed (for the ACK)
double now = Scheduler::instance().clock();
hdr flags *sf;

hdr_tcp *otcp = hdr_tcp::access(opkt);
hdr_ip *oiph = hdr_ip::access(opkt);
hdr_tcp *ntcp = hdr_tcp::access(npkt);

//for tcp-casablanca
if(prevpktno_==ntcp->seqno())

no_dup_++;
else

prevpktno_=ntcp->seqno();
//if(no_dup_==3&&(F_>=0))

///assigning eln flag for TCP-RoS
if(Fflag_==1)
{
Fflag_=0;
if(F_ 	1)

ntcp->eln_=1;
else if(F_ == 2)

ntcp->eln_=2;
else
ntcp->eln_=0;
}

/*if(F_>=0)
{
printf("ack marked as wireless\n");
ntcp->eln_=1;

}
else

{
printf("ack marked as congestion\n");
ntcp->eln_=0;
}

I*/
//////////////////////////////////

if (qs_enabled_)
// QuickStart code from Srikanth Sundarrajan.
hdr_qs *oqsh = hdr_qs::access(opkt);
hdr_qs *nqsh = hdr_qs::access(npkt);

if (otcp->seqno() == 0 && oqsh->flag() == QS_REQUEST) {
nqsh->flag() = QS_RESPONSE;
nqsh->ttl() = (oiph->ttl() - oqsh->ttl()) % 256;
nqsh->rate() = (oqsh->rate() < MWS) ? oqsh->rate() : MWS;

}
else {

nqsh->flag() = QS_DISABLE;
}

}

// get the tcp headers
ntcp->seqno() = acker_->Seqno();
// get the cumulative sequence number to put in the ACK; this
// is just the left edge of the receive window - 1
ntcp->ts() = now;
// timestamp the packet

if (ts_echo_bugfix_) /* TCP/IP Illustrated, Vol. 2, pg. 870 */
ntcp->ts_echo() = acker_->ts_to_echoO;

else
ntcp->ts_echoO = otcp->ts();

// echo the original's time stamp

hdr_ip* oip = hdr_ip::access(opkt);
hdr_ip* nip = hdr_ip::access(npkt);
// get the ip headers
nip->flowid() = oip->flowid();
// copy the flow id

hdr_flags* of = hdr_flags::access(opkt);
hdr_flags* of = hdr_flags::access(npkt);
if (save_ != NULL)

sf = hdr_flags::access(save_);
I/ Look at delayed packet being acked.

if ((save_ != NULL && sf->cong_action())I1of->cong_action())
// Sender has responsed to congestion.
acker ->update_ecn_unacked(0);

if ((save_ != NULL && sf->ect() && sf->ceO)
(of->ect() && of->ce()))

Dept. of E&C Engineering 	 xiv 	 2005-06

// New report of congestion.
acker ->update ecn unacked(1);

if ((save_ != NULL && sf->ectO) of->ect())
// Set EcnEcho bit.
nf->ecnecho() = acker ->ecn unacked();

if (!of->ect() && of->ecnecho()11
(save_ != NULL && !sf->ect() && sf->ecnecho()))
// This is the negotiation for ECN-capability.
// We are not checking for of->cong_action() also.
// In this respect, this does not conform to the
// specifications in the internet draft

nf->ecnecho() = 1;
acker ->append ack(hdr cmn::access(npkt),

ntcp, otcp->seqno());
add to ack(npkt);
// the above function is used in TcpAsymSink

// Andrei Gurtov
acker ->last_ ack sent_ = ntcp->seqno();
// printf("ACK %d is %fin", ntcp->seqno(), ntcp->ts_echoO);

send(npkt, 0);
// send it

}

void TcpSink::recv(Packet* pkt, Handler*)
{

static double prev_time=Schedulen:instance().clock();
int numToDeliver;
float x=0,r=0;
int numBytes = hdr_cmn::access(pkt)->size();
double cur time;
double interarrivaltime;
static double min_inter_time=0,max_inter_time=9999999999.00;
// number of bytes in the packet just received
hdr_tcp *th = hdr_tcp::access(pkt);

int k=th->priority_ % 64;
/* W.N. Check if packet is from previous incarnation */
if (th->ts() < lastreset) {

// Remove packet and do nothing
Packet::free(pkt);
return;

}
acker_->update_ts(th->seqno(),th->ts(),ts_echo_rfc1323_);
// update the timestamp to echo

Dept. of E&C Engineering 	 xv 	 2005-06

numToDeliver = acker ->update(th->seqno(), numBytes);
// update the recv window; figure out how many in-order-bytes
// (if any) can be removed from the window and handed to the
// application
if (numToDeliver)

cur_time=Schedulen:instance().clock();
interarrivaltime= cur_time-prev_time;

bytes_ += numToDeliver;
recvBytes(numToDeliver);

}

////code for setting minimum and max rtts for TCP-RoS
if(min inter_ time==0)

min_ inter_ time=interarrivaltime;
if(min inter_ time > interarrivaltime)

min_ inter_ time=interarrivaltime;
if(max inter_ time==9999999999.00)

max_ inter_ time=interarrivaltime;
if(max inter_ time < interarrivaltime) _

max_ inter_ time=interarrivaltime;
// send any packets to the application

// Caliculating whether the loss is due to congestion or wireless

if(numToDeliver==0)
{

int k_temp=0;
for(int i=acker ->Seqno()+1;i<acker_->Maxseen();i++)

{
if(acker_->seen_[i&acker_->wndmask]==0)

{
printf("packet :%d:lost,%d\n",i,k_temp++);

if(i%k==0)
{
printf("Packet is out\n");

x++;
}

r++;
}

}
printf("x,r=%f,%f\n",x,r);
k_temp=0;

}
if(r==0)
F = -1-, _

else

Dept. of E&C Engineering 	 xvi 	 2005-06

{
if(r-x==r)

F_ = 1;
//else if(r-x < r&&r-x>=r/2)

// F = 2;
else

F = 0;

//F_ = 1.0 - (int) (k * (x/r));
Fflag_=1;
}

printf("F_=%f\n",F_);
//Fflag_=1;
///

ack(pkt);
// ACK the packet
Packet::free(pkt);
// remove it from the system

}

droptail.cc

The following functions is modified in droptail.cc

void DropTail::enque(Packet* p)
{

//char tracer[]="pkt drop\n";
if (summarystats) {

Queue::updateStats(qibiq_->byteLength(:q_->length());
}

int qlimBytes = qlim_ * meanpktsize_;
if ((!qib_ && (q_->length(+ 1) >= qlimp
(qib_ && (q_->byteLength() + hdr_cmn::access(p)->size()) >=

qlimBytes)) {
// if the queue would overflow if we added this packet...

//code here for biased queue management
q_->enque(p);

Packet *delpack=q_->dequebqm();
// printf("drp= %d\n",hdr_cmn::access(delpack)->priority_tcp());

drop(delpack);

} else {

Dept. of E&C Engineering 	 xvii 	 2005-06

q_->enque(p);
11

queue.cc

The following function is added in queue.cc

Packet* PacketQueue::dequebqmo
{

Packet *k,*pp=0;
int prio=0;

ns _ addr_ t source;
ns_addr_t dist;

for(Packet *pk=head_;pk;k=pk,pk=pk->next_);
source=hdr_ip::access(k)->src();

dist=---hdr_ip::access(k)->dst();
for (Packet *p= head_; p;k=pp, pp= p, p= p->nextj {

///checking the source and destination addresses
if(source—hdr_ip::access(p)->src()&&dist==hdr_ip::access(p)->dst())
{

prio=hdr cmn::access(p)->priority_tcp();

if(prio==1)
{

if(p—head _)
head_=p->next_;

else
{
pp->next_=p->next_;
if(p==tail)

tail_=pp;
}

//remove(p);
--len_;
bytes_ -= hdr_cmn::access(p)->size();

printf("packet loss\n");
return p;

}

}
}
remove(pp);

--len_;
bytes_ -= hdr_cmn::access(pp)->size();
tail_=k;

printf("packet loss \n");
return pp;

Dept. of E&C Engineering 	 xviii 	 2005-06

}

tcpwireless.tcl

This tcl file used to create the topology shown in Fig 41

set opt(chan)
	Channel/WirelessChannel ;# channel type

set opt(prop)
	Propagation/TwoRayGround ;# radio-propagation model

set opt(netif)
	

Phy/WirelessPhy 	;# network interface type
set opt(mac)
	

Mac/802 11 	;# MAC type
set opt(ifq)
	

Queue/DropTail 	;# interface queue type
set opt(11)
	

LL 	 ;# link layer type
set opt(ant)
	

Antenna/OmniAntenna 	;# antenna model
set opt(ifqlen)

	
50 	 ;# max packet in ifq

set opt(nn)
	

3 	 ;# number of mobilenodes
set opt(adhocRouting) DSDV 	 ;# routing protocol

set opt(cp) 	 ;# connection pattern file
set opt(sc) "/home/vijay/ns/ns-allinone-2.28/ns-2.28/tcl/mobility/scene/scen-3-test"
;# node movement file.

set opt(x) 	670
set opt(y) 	670
set opt(seed) 0.0
set opt(stop) 300

set opt(ftpl-start) 	160
set opt(ftp2-start) 	165

set num_wired_nodes 5
set num_bs_nodes 	1

;# x coordinate of topology
;# y coordinate of topology

;# seed for random number gen.
;# time to stop simulation

check for boundary parameters and random seed
if { $opt(x) == 011 $opt(y) == 0 {

puts "No X-Y boundary values given for wireless topology\n"
}
if {$opt(seed) > 0} {

puts "Seeding Random number generator with $opt(seed)\n"
ns-random $opt(seed)

}

create simulator instance
set ns_ [new Simulator]

Dept. of E&C Engineering 	 xix 	 2005-06

set up for hierarchical routing
$ns_ node-config -addressType hierarchical
AddrParams set domain_ num_ 2 	;# number of domains
lappend cluster_num 1 1 	;# number of clusters in each domain
AddrParams set cluster_num_ $cluster num
lappend eilastlevel 5 4 	;# number of nodes in each cluster
AddrParams set nodes_num_ $eilastlevel ;# of each domain

set tracefd [open wireless2-out.tr w]
set namtrace [open wireless2-out.nam w]
set cwnd [open cwnd-out.nam w]
$ns_ trace-all $tracefd
$ns_ namtrace-all-wireless $namtrace $opt(x) $opt(y)

Create topography object
set topo [new Topography]
#error model
set em [new ErrorModel]
$em set unit pia
$em set rate_ 0.01
$em ranvar [new RandomVariable/Exponential]
$em drop-target [new Agent/Null]

define topology
$topo load_flatgrid $opt(x) $opt(y)

create God
create-god [expr $opt(nn) + $num_bs_nodes]

#create wired nodes
set temp {0.0.0 0.0.1 0.0.2 0.0.3 0.0.4}

;# hierarchical addresses for wired domain
for {set i 0} {$i < $num_wired_nodes} {incr.

set W($i) [$ns_ node [lindex $temp $i]]
}

configure for base-station node
$ns_ node-config -adhocRouting $opt(adhocRouting) \

-11Type $opt(11) \
-macType $opt(mac) \
-ifqType $opt(ifq) \
-ifqLen $opt(ifqlen) \
-antType $opt(ant) \
-propType $opt(prop) \
-phyType $opt(netif) \
-channelType $opt(chan) \

Dept. of E&C Engineering 	 xx 	 2005-06

-topoInstance $topo \
-wiredRouting ON \

-agentTrace ON \
-routerTrace OFF \
-macTrace OFF

#create base-station node
set temp {1.0.0 1.0.1 1.0.2 1.0.3} ;# hier address to be used for wireless

;# domain
set BS(0) [$ns_ node [lindex $temp 0]]
$BS(0) random-motion 0 	;# disable random motion

#provide some co-ord (fixed) to base station node
$BS(0) set X_ 1.0
$BS(0) set Y_ 2.0
$BS(0) set Z_ 0.0

create mobilenodes in the same domain as BS(0)
note the position and movement of mobilenodes is as defined
in $opt(sc)

#configure for mobilenodes
$ns_ node-config -wiredRouting OFF

for { set j 0 $j < $opt(nn) } 	j }
set node_($j) [$ns_ node [lindex $temp \

[expr $j+1]]]
$node_($j) base-station [AddrParams addr2id \

[$BS(0) node-addr]]
}

#create links between wired and BS nodes

$ns_ duplex-link $W(0) $W(1) 60Mb 5ms DropTail
$ns_ duplex-link $W(1) $W(2) 90Mb 5ms DropTail
#this link will change for congestion control
$ns_ duplex-link $W(2) $W(3) 45Mb 5ms DropTail
$ns_ duplex-link $W(3} $W(4) 100Mb 5ms DropTail

$ns_ duplex-link $W(4) $BS(0) 100Mb 5ms DropTail
$ns_ lossmodel $em $W(4) $BS(0)
$ns_ duplex-link-op $W(0) $W(1) orient right
$ns_ duplex-link-op $W(1) $W(2) orient right
$ns_ duplex-link-op $W(2) $W(3) orient right
$ns_ duplex-link-op $W(3) $W(4) orient right
$ns_ duplex-link-op $W(4) $BS(0) orient right-down

Dept. of E&C Engineering 	 xxi 	 2005-06

$ns_ queue-limit $W(0) $W(1) 30
$ns_ queue-limit $W(1) $W(2) 30
$ns_ queue-limit $W(2) $W(3) 30
$ns_ queue-limit $W(3) $W(4) 30
setup TCP connections
setup TCP connections N2
for {set j 0} {$j < 5} finer j} {
set tcp(j) [new Agent/TCP/Reno]
set sink(j) [new Agent/TCPSinlc/DelAck]
$ns_ attach-agent $W(1) $tcp(j)
$ns_ attach-agent $W(4) $sink(j)
$ns_ connect $tcp(j) $sink(j)
set ftp(j) [new Application/FTP]
$ftp(j) attach-agent $tcp(j)
$ns_ at $opt(ftp 1-start) "$ftp(j) start"
}
#for {set j 0} {$j < 5} {incr j
#set tcp(j) [new Agent/UDP]
#set sink(j) [new Agent/Null]
#$ns_ attach-agent $W(1) $tcp(j)
#$ns_ attach-agent $W(4) $sink(j)
#$ns_ connect $tcp(j) $sink(j)
#set ftp(j) [new Application/FTP]
#$ftp(j) set packetSize_ 1000
#$ftp(j) set interval_ 0.005
#$ftp(j) attach-agent $tcp(j)
#$ns_ at $opt(ftpl-start) "$ftp(j) start"
#1
#set up TCP connections N3
for {set i $j} {$i < 5+$j} finer
set tcp(i) [new Agent/TCP/Reno]
set sink(i) [new Agent/TCPSink/DelAck]
$ns_ attach-agent $W(2) $tcp(i)
$ns_ attach-agent $W(3) $sink(i)
$ns_ connect $tcp(i) $sink(i)
set ftp(i) [new Application/FTP]
$ftp(i) attach-agent $tcp(i)
$ns_ at $opt(ftp2-start) "$ftp(i) start"
}
#set up TCP connections N3
#for {set i $j} {$i < 5+$j) finer
#set tcp(i) [new Agent/LJDP]
#set sink(i) [new Agent/Null]
#$ns_ attach-agent $W(2) $tcp(i)
#$ns_ attach-agent $W(3) $sink(i)
#$ns_ connect $tcp(i) $sink(i)

Dept. of E&C Engineering 	 xxii 	 2005-06

#set ftp(i) [new Application/FTP]
#$ftp(i) set packetSize_ 1000
#$ftp(i) set interval_ 0.005
#$ftp(i) attach-agent $tcp(i)
#$ns_ at $opt(ftp2-start) "$ftp(i) start"
#1
#set up TCP connections Ni
#set tcp50 [new Agent/TCP]
#set sink50 [new Agent/TCPSink]
#$ns_ attach-agent $node_(0) $tcp50
#$ns_ attach-agent $W(0) $sink50
#$ns_ connect $tcp50 $sink50
#$ns_ add-agent-trace $tcp50 $cwnd
#$ns_ monitor-agent-trace $tcp50
#$tcp50 tracevar cwnd_
#set ftp50 [new Application/FTP]
#$tcp50 set class_ 1
#$ftp50 attach-agent $tcp50
#$ns_ at $opt(ftpl-start) Iftp50 start"

set tcp51 [new Agent/TCP/Newreno]
set sink51 [new Agent/TCPSink]
$ns_ attach-agent $W(0) $tcp51
$ns_ add-agent-trace $tcp51 $cwnd
$ns_ monitor-agent-trace $tcp51
$tcp51 tracevar cwnd_
$ns_ attach-agent $node_(1) $sink51
$ns_ connect $tcp51 $sink51
set Ttp51 [new Application/FTP]
$tcp51 set class_ 2
$ftp51 attach-agent $tcp51

$ns_ at $opt(ftp 1-start) "$ftp51 start"
#$ns_ at $opt(ftp 1-start) "$ftp51 send 20000000"
source connection-pattern and node-movement scripts
if { $opt(cp) == "" } {

puts "*** NOTE: no connection pattern specified."
set opt(cp) "none"

} else {
puts "Loading connection pattern..."
source $opt(cp)

if { $opt(sc) == ""
puts "*** NOTE: no scenario file specified."

set opt(sc) "none"
} else {

Dept. of E&C Engineering 	 xxiii 	 2005-06

puts "Loading scenario file..."
source $opt(sc)
puts "Load complete..."

}

Define initial node position in nam

for {set i 0} {$i < $opt(nn)} {incr. i} {

20 defines the node size in nam, must adjust it according to your
scenario
The function must be called after mobility model is defined

$ns_ initial nodepos $node_($i) 20
}

Tell all nodes when the simulation ends
for {set i {$i < $opt(nn) } liner

$ns_ at $opt(stop).0 "$node_($i) reset";
}
$ns_ at $opt(stop).0 "$BS(0) reset";

$ns_ at $opt(stop).0002 "puts \"NS 	 ; $ns_ halt"
$ns_ at $opt(stop).0001 "stop"
proc stop 0 {

global ns_ tracefd namtrace cwnd
$ns_ flush-trace

close $tracefd
close $namtrace
close $cwnd
exec nam wireless2-out.nam &
exit 0

}

informative headers for CMUTracefile
puts $tracefd "M 0.0 nn $opt(nn) x $opt(x) y $opt(y) rp \

$opt(adhocRouting)"
puts $tracefd "M 0.0 sc $opt(sc) cp $opt(cp) seed $opt(seed)"
puts $tracefd "M 0.0 prop $opt(prop) ant $opt(ant)"

puts "Starting Simulation..."
$ns run

Dept. of E&C Engineering 	 xxiv 	 2005-06

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

