
COST EFFECTIVE ENHANCED ANT ALGORITHM
BASED LOAD BALANCING TASK SCHEDULING IN

GRID COMPUTING

A DISSERTATION
Submitted in partial fulfillment of the

requirements f©r the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

M. ARUN KUMA

I

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE • 247 667 (INDIA)

JUNE, 2006

CANDIDATE'S DECLARATION

I here by declare that the work which is being presented in the dissertation entitled,

"Cost effective Enhanced Ant algorithm based Load Balancing Task scheduling in
Grid Computing" being submitted in partial fulfillment of the requirements for the
award of the degree of Master of Technology in Information Technology, in the
Department of Electronics and Computer Engineering, Indian Institute of Technology

Roorkee, Roorkee (India) is an authentic record of my work, carried out from August

2005 to June 2006 under the guidance and supervision of A.K. Sarje, . Professor,
Department of Electronics and Computer Engineering, Indian Institute of Technology
Roorkee, Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other
degree or diploma.

Lt LL
(M. Arun Kumar)

Date: (cl 1 & (06

Place:

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of
my knowledge.

A.K. Sarje
Professor,
E&C Department,
IIT-Roorkee.

Date: iq) ,) ab

Place: V, e-

i

ACKNOWLEDGEMENT

I would like to express my deep sense of gratitude to my guide A.K. Sarje, Professor,

Department of Electronics and Computer Engineering, IIT Roorkee, for encouraging me

to undertake this dissertation as well as providing me all the necessary guidance and

inspirational support throughout this dissertation work, without which this dissertation

work would not have been in the present shape.

I am also thankful to the staff of the Computer Lab, Department of Electronics and

Computer Engineering, IIT Roorkee for providing necessary facilities.

(M. Arun Kumar)

Enroll No: 049008

ii

ABSTRACT

Load balanced task scheduling is very important problem in complex grid

environment. Finding optimal schedules for such an environment is an NP-hard problem,

and so heuristic approaches must be used. Ant-algorithm is a heuristic task scheduling

algorithm which is distributable, scalable and fault tolerant. It uses the state prediction of

the resources for scheduling which is necessary for effective utilization of resources.

In this dissertation work, an enhanced ant-algorithm for task scheduling in grid is

proposed which gives better throughput with a controlled cost. The simulation results of

various scheduling algorithms are also compared. The results also show that the enhanced

version works better than the ant-algorithm. The inclusion of price factor into the ant-

algorithm makes this new scheduling algorithm more suitable for wide use.

iii

Table of Contents

Candidate's declaration ... i

Acknowledgement . .. ii

Abstract .. iii

Chapter 1 	Introduction ... 1
1.1 	Motivation .. 	2
1.2 Problem Statement 2
1.3 Organization of the report .. 3

Chapter 2 About Grid computing .. 4
2.1 Grid concepts and components .. 4
2.2 Grid computing capabilities .. 5
2.3 Grid architecture 	...7
2.4 Grid software components ... 8

Chapter 3 	Task Scheduling on Grid .. 11
3.1 Classification of scheduling & load balancing 11
3.2 Scheduler organization ... 12
3.3 State Estimation 	..13
3.4 Related Work ..14

3.4.1 	Ant algorithm 1 4
3.4.2 	Ant algorithm based task scheduling algorithm........... 15

Chapter 4 Design & Implementation .. 17
4.1 Enhancement to the algorithm 	... 17
4.2 Proposed task Scheduling Algorithm 17
4.3 Simulation model 	.. 19
4.4 Simulation Environment ... 22
4.5 Implementation ...23

Chapter 5 	Results & Discussions ... 26
Chapter6 	Conclusion ... 3 1

References... 32
AppendixA .. 34
AppendixB.. 41

Chapter 1
INTRODUCTION

In the last decade, even though the computational capability and network performance

have gone to a great extent, there are still problems in the fields of science, engineering,

and business, which cannot be effectively dealt with using the current generation of

supercomputers. In fact, due to their size and complexity, these problems are often

resource (computational and data) intensive and consequently entail the use of a variety

of heterogeneous resources that are not available in a single organization. The emergence

of the Internet as well as the availability of powerful computers and high-speed network

technologies as low-cost commodity components is rapidly changing the computing

landscape and society. These technology opportunities have led to the possibility of using

wide-area distributed computers for solving large-scale problems, leading to what is

popularly known as Grid computing.

Grids enable the sharing, selection, and aggregation of a wide variety of resources

including super computers, storage systems, data sources, and specialized devices that

are geographically distributed and owned by different organizations for solving large-

scale computational and data intensive problems in science, engineering, and

commerce [1].

Grid computing, most simply stated, is distributed computing taken to the next

evolutionary level. The goal is to create the illusion of a simple yet large and powerful

self managing virtual computer out of a large collection of connected heterogeneous

systems sharing various combinations of resources. The standardization of

communications between heterogeneous systems created the Internet explosion. The

emerging standardization for sharing resources, along with the availability of higher

bandwidth, are driving a possibly equally large evolutionary step in grid computing.

The Grid system is responsible for the execution of the jobs submitted to it. The

advanced Grid systems would include a task scheduler which automatically finds the

most appropriate machine on which a given job is to run. This resource selection is very

important in reducing the total execution time and cost of executing the tasks which

depends on the task scheduling algorithm. The scheduling policy followed by the

Dept. of E&C Engineering 	 1 	 2005-06

scheduler determines the Grid system throughput and utilization of the resources in the

grid. The goal of the scheduler is to maximize the system throughput and utilization of

the resources by balancing the loads on them.

1.1 MOTIVATION
Resource management and task scheduling are very important and complex problems in

grid computing. In grid environment, autonomy resources are linked through internet to

form a huge virtual seamless environment. The resources in the grid are heterogeneous

and the structure of the grid is changing almost all the time. In a grid, some resources

may fail, some new resources enroll the grid, and some resources resume to work. So, it

is necessary to do resource state prediction to get proper task scheduling [2].

Although various classification of task scheduling strategies exist, depending on the type

of the grid, the scheduler organization and task scheduling strategy has to be chosen such

that the resources in the grid are effectively utilized. Along with the scheduling

organization, state estimation is also necessary for the dynamic grid. To achieve

maximum resource utilization and high job throughput, re-scheduling of the jobs on

different resources is also some times required. The resources in the grid are

heterogeneous and the structure of the grid is changing almost all the time. In a grid,

some resources. may fail, some new resources enroll the grid, and some resources resume

to work. So, it is necessary to do resource state prediction to get proper task scheduling.

Since the static algorithms like round robin algorithm, fastest processor-largest task first

algorithm etc, are no longer suitable for the effective utilization of the grid, a good load

balancing task scheduling method should be used which is distributable, scalable and

fault tolerant [3,4,5]. Along with the effective utilization of the resources in the grid, the

cost of the resources being utilized should also be minimized by the scheduling method.

1.2 PROBLEM STATEMENT
The aim of this dissertation work is to propose an improvement in ant-algorithm based

load balancing dynamic task scheduling algorithm and also make it cost effective in

complex grid environments where the jobs are assumed to be computation-intensive, that

are totally independent with no communication between them.

Dept. of E&C Engineering 	 2 	 2005-06

1.3 ORGANIZATION OF THE REPORT

Including this introductory chapter, the dissertation is organized in 5 chapters. Chapter 2

contains the basics of grid computing. Chapter 3 describes the task scheduling on grid. It

briefly explains the scheduler organization and state estimation which is required for

adaptive scheduling. It also includes the basic ant-algorithm based task scheduling

algorithm. Chapter 4 presents the proposed scheduling algorithm with the enhancement

to the ant algorithm. This chapter also includes the simulation architecture and

description about GridSim which is the simulator used. Chapter 5 contains the

discussions of various experiment results and comparison graphs of different scheduling

strategies. Finally, Chapter 6 includes concluding remarks and scope for future work.

--
Dept. of E&C Engineering 	 3 	 2005-06

Chapter 2
ABOUT GRID COMPUTING

2.1 Grid concepts and components [3]

In this section, the various grid concepts, components, and terms are introduced in more

detail.

2.1.1 Types of resources

A grid is a collection of machines, sometimes referred to as "nodes," "resources,"

"members," "donors," "clients," "hosts," "engines," and many other such terms. They all

contribute any combination of resources to the grid as a whole. Some resources may be

used by all users of the grid while others may have specific restrictions.

Computation

The most common resource is computing cycles provided by the processors of the

machines on the grid. The processors can vary in speed, architecture, software platform,

and other associated factors, such as memory, storage, and connectivity. There are three

primary ways to exploit the computation resources of a grid. The first and simplest is to

use it to run an existing application on an available machine on the grid rather than

locally. The second is to use an application designed to split its work in such a way that

the separate parts can execute in parallel on different processors. The third is to run an

application that needs to be executed many times, on many different machines in the grid.

Storage

The second most common resource used in a grid is data storage. A grid providing an

integrated view of data storage is sometimes called a "data grid". Each machine on the

grid usually provides some quantity of storage for grid use, even if temporary. Storage

can be memory attached to the processor or it can be "secondary storage" using hard disk

drives or other permanent storage media.

Communications

The rapid growth in communication capacity among machines today makes grid

computing practical, compared to the limited bandwidth available when distributed

computing was first emerging. Therefore, it should not be a surprise that another

important resource of a grid is data communication capacity. This includes

communications within the grid and external to the grid. Communications within the grid

Dept. of E&C Engineering 	 4 	 2005-06

are important for sending jobs and their required data to points within the grid. External

communication access to the Internet, for example, can be valuable when building search

engines

Software and licenses
The grid may have software installed that may be too expensive to install on every grid

machine. Using a grid, the jobs requiring this software are sent to the particular machines

on which this software happens to be installed.

2.1.2 Jobs and applications

Although various kinds of resources on the grid may be shared and used, they are usually

accessed via an executing "application" or "job.". Applications may be broken down into

any number of individual jobs. Those, in turn, can be further broken down into "sub

jobs."

2.1.3, Scheduling, reservation, and scavenging

The grid system is responsible for sending a job to a given machine to be executed. The

advanced grid systems would include a job "scheduler" of some kind that automatically

finds the most appropriate machine on which to run any given job that is waiting to be

executed. Schedulers react to current availability of resources on the grid.

In a "scavenging" grid system, any machine that becomes idle would typically report its

idle status to the grid management node. This management node would assign to this idle

machine the next job which is satisfied by the machine's resources.

As a further step, grid resources can be "reserved" in advance for a designated set of jobs.

This is done to meet deadlines and guarantee quality of service. Thus, various

combinations of scheduling, reservation, and scavenging can be used to more completely

utilize the grid.

2.2 Grid computing capabilities [3]
The following are the things that are possible by implementing a grid.

2.2.1 Exploiting underutilized resources

The function of the grid is to better balance resource utilization. The easiest use of grid

computing is to run an existing application on a different machine. The machine on

--
Dept. of E&C Engineering 	 5 	 2005-06

which the application is normally run might be unusually busy due to an unusual peak in

activity. The job in question could be run on an idle machine elsewhere on the grid.

An organization may have occasional unexpected peaks of activity that demand more

resources. If the applications are grid-enabled, they can be moved to underutilized

machines during such peaks.

2.2.2 Parallel CPU capacity
The potential for massive parallel CPU capacity is one of the most attractive features of a

grid. In addition to pure scientific needs, such computing power is driving a new

evolution in industries such as the bio-medical field, financial modeling, oil exploration,

motion picture animation, and many others. The common attribute among such uses is

that the applications have been written to use algorithms that can be partitioned into

independently running parts.

2.2.3 Applications
There are many factors to consider in grid-enabling an application. One must understand

that not all applications can be transformed to run in parallel on a grid and achieve

scalability. Furthermore, there are no practical tools for transforming arbitrary

applications to exploit the parallel capabilities of a grid. There are some practical tools

that skilled application designers can use to write a parallel grid application. However,

automatic transformation of applications is a science in its infancy.

2.2.4 Access to additional resources
In addition to CPU and storage resources, a grid can provide access to increased

quantities of other resources and to special equipment, software, licenses, and other

services. The additional resources can be provided in additional numbers and/or capacity.

For example, if a user needs to increase his total bandwidth to the Internet to implement a

data mining search engine, the work can be split among grid machines that have

independent connections to the Internet.

2.2.5 Resource balancing
A grid federates a large number of resources contributed by individual machines into a

greater total virtual resource. For applications that are grid-enabled, the grid can offer a

resource balancing effect by scheduling grid jobs on machines with low utilization. This

Dept. of E&C Engineering 	 6 	 2005-06

feature can prove invaluable for handling occasional peak loads of activity in parts of an

larger organization. This can happen in two ways:

- An unexpected peak can be routed to relatively idle machines in the grid.

- If the grid is already fully utilized, the lowest priority work being performed on the grid

can be temporarily suspended or even cancelled and performed again later to make room
for the higher priority work.

2.2.6 Management
The goal to virtualize the resources on the grid and more uniformly handle heterogeneous

systems will create new opportunities to better manage a larger, more disperse IT

infrastructure. It will be easier to visualize capacity and utilization, making it easier for

IT departments to control expenditures for computing resources over a larger

organization.

2.3 Grid Architecture [5]
Virtual Organizations (VOs) enable disparate groups of organizations and/or individuals

to share resources in a controlled fashion, so that members may collaborate to achieve a

shared goal. Grid technologies comprise protocols, services, and tools that address the

challenges that arise when we seek to build scalable VOs. These technologies include

security solutions that support management of credentials and policies when

computations span multiple institutions; resource management protocols and services that

support secure remote access to computing and data resources and the co-allocation of

multiple resources; information query protocols and services that provide configuration

and status information about resources, organizations, and services; and data

management services that locate and transport datasets between storage systems and

applications.

The figure 2.3 illustrates a categorization that we have found useful when explaining the

roles played by various Grid technologies.

--
Dept. of E&C Engineering 	 7 	 2005-06

I 	A i? c=ttiorn 	I

Resource

1 ':."`
C.Onne.:tivitv;:

I.

Figure 2.3 Grid architecture

In the Fabric, we have the resources that we wish to share: computers, storage systems,

data, catalogs, etc.

The Connectivity layer provides communication and authentication services needed to

communicate with these resources.

Resource protocols (and, as in each layer, associated APIs) negotiate access to individual

resources.

Collective protocols, APIs, and services are concerned with coordinating the use of

multiple resources, and finally application toolkits and Applications themselves are

defined in terms of services of these various kinds.

2.4 Grid software components [3]
The following are some of the key components that must be discussed before designing a

grid computing architecture.

2.4.1 Management components

Any grid system has some management components. First, there is a component that

keeps track of the resources available to the grid and which users are members of the

grid. This information is used primarily to decide where grid jobs should be assigned.

Second, there are measurement components that determine both the capacities of the

nodes on the grid and their current utilization rate at any given time. This information is

used to schedule jobs in the grid.

--
Dept. of E&C Engineering 	 8 	 2005-06

2.4.2 Donor software

Each machine contributing resources typically needs to enroll as a member of the grid

and install some software that manages the grid's use of its resources. Usually, some sort

of identification and authentication procedure must be performed before a machine can

join the grid. A Certificate Authority can be used to establish the identity of the donor

machine as well as the users and the grid itself.

2.4.3 Submission software

Usually any member machine of a grid can be used to submit jobs to the grid and initiate

grid queries. However, in some grid systems, this function is implemented as a separate

component installed on "submission nodes" or "submission clients." When a grid is built

using dedicated resources rather than scavenged resources, separate submission software

is usually installed on the user's desktop or workstation.

2.4.4 Distributed grid management

Larger grids may have a hierarchical or other type of organizational topology usually

matching the connectivity topology. That is, machines locally connected together with a

LAN form a "cluster" of machines. The grid may be organized in a hierarchy consisting

of clusters of clusters. The work involved in managing the grid is distributed to increase

the scalability of the grid. The collection and grid operation and resource data as well as

job scheduling is distributed to match the topology of the grid. For example, a central job

scheduler will not schedule a submitted job directly to the machine which is to execute it.

Instead the job is sent to a lower level scheduler which handles a set of machines (or

further clusters). The lower level scheduler handles the assignment to the specific

machine. Similarly, the collection of statistical information is distributed. Lower level

clusters receive activity information from the individual machines, aggregate it, and send

it to higher level management nodes in the hierarchy.

2.4.5 Schedulers
Most grid systems include some sort of job scheduling software. This software locates a

machine on which to run a grid job that has been submitted by a user. In the simplest

cases, it may just blindly assign jobs in a round-robin fashion to the next machine

matching the resource requirements. However, there are advantages to using a more

Dept. of E&C Engineering 	 9 	 2005-06

advanced scheduler. More advanced schedulers will monitor the progress of scheduled

jobs managing the overall work-flow.

2.4.6 Communications

A grid system may include software to help jobs communicate with each other. For

example, an application may split itself into a large number of sub jobs. Each of these sub

jobs is a separate job in the grid. However, the application may implement an algorithm

that requires that the sub jobs communicate some information among them. The sub jobs

need to be able to locate other specific sub jobs, establish a communications connection

with them, and send the appropriate data. The open standard Message Passing Interface

(MPI) and any of several variations is often included as part of the grid system for just

this kind of communication.

2.4.7 Observation, management, and measurement

We mentioned above the schedulers react to current loads on the grid. Usually, the donor

software will include some tools that measure the current load and activity on a given

machine using either operating system facilities or by direct measurement. This software

is sometimes referred to as a "load sensor."

Such measurement information is useful not only for scheduling, but also for discovering

overall usage patterns in the grid.. Also, measurement information about specific jobs can

be collected and used to better predict the resource requirements of that job the next time

it is run. The better the prediction, the more efficiently the grids workload can be

managed.

--
Dept. of E&C Engineering 	 10 	 2005-06

Chapter 3

TASK SCHEDULING ON GRID

Grid is an aggregation of a wide variety of resources that may include super computers,

storage systems, data sources, and specialized devices that are geographically distributed

and owned by different organizations. The term Grid is chosen as an analogy to the

electric power Grid that provides consistent, pervasive, dependable, transparent access to

electricity, irrespective of its source.

The technology used for solving large-scale computational and data intensive problems in

science, engineering, and commerce using the Grid is Grid Computing.

The grid system is responsible for the execution of the job submitted to it. The advanced

grid systems would include a "task scheduler" which automatically finds the most

appropriate machine on which a given job is to run. This resource selection is very

important in reducing the total execution time and cost of executing the tasks which

depends on the task scheduling algorithm.

3.1 Classification of Scheduling & load balancing [2]

Two important aspects of any wide area network scheduler are its transfer [12] and

location policies. The transfer policy decides if there is need to initiate load balancing

across the system, and is typically threshold based. Using workload information, it

determines when a node becomes eligible to act as a sender (transfer a job to another

node) or as a receiver (retrieve a job from another node). The location policy selects a

partner node for a job transfer transaction. In other words, it locates complementary

nodes to/from which a node can send/receive workload to improve overall system

performance.

Location policies can be broadly classified as sender-initiated [9], receiver-initiated [9,

10], or symmetrically-initiated [11, 12, 13]. Sender-initiated policies are those where

heavily-loaded nodes search for lightly-loaded nodes while receiver-initiated policies are

those where lightly-loaded nodes search for suitable senders.. Symmetrically-initiated

policies combine the advantages of these two by requiring both sender and receiver to

look for appropriate partners.

Dept. of E&C Engineering 	 11 	 2005-06

Load balancing policies can also be classified on the basis of how up-to-date each node's

knowledge is about the state of the system. Dynamic [14, 15] policies make decisions

based on the current system state and can rapidly adapt to workload fluctuations. On the

other hand, policies that use static information and are not amenable to changes in the

workload are known as static [8] policies. However, dynamic policies incur the overhead

of communicating among the system nodes to keep them informed about the state of the

system.

3.2 Scheduler organization [2]

The scheduling component of the Resource Management System (RMS) can be

organized in three different ways as shown in Figure 3.2. In the centralized organization,

there is only one scheduling controller that is responsible for the system-wide decision

making. Such an organization has several advantages including easy management, simple

deployment, and the ability to co-allocate resources. In a Grid RMS the disadvantages of

this organization such as the lack of scalability, lack of fault-tolerance, and the difficulty

in accommodating multiple policies outweigh the advantages.

Centr: line

Org nization 	Hi .rar hic l

Deco-ntrnlized

Fig3.2 Scheduler organization taxonomy.

The other two organizations, hierarchical and decentralized have more suitable properties

for a Grid RMS scheduler organization. In a hierarchical organization, the scheduling

controllers are organized in a hierarchy. One obvious way of organizing the controllers

would be to let the higher level controllers manage larger sets of resources and lower

level controllers manage smaller sets of resources. Compared with the centralized

scheduling this mode of hierarchical scheduling addresses the scalability and fault-

tolerance issues. It also retains some of the advantages of the centralized scheme such as

co-allocation.

--
Dept. of E&C Engineering 	 12 	 2005-06

One of the key issues with the hierarchical scheme is that it still does not provide site

autonomy and multi-policy scheduling. This might be a severe drawback for Grids

because the various resources that participate in the Grid would want to preserve control

over their usage to varying degrees. Many Grid resources would not dedicate themselves

only to the Grid applications. Therefore hierarchical scheduling schemes should deal with

dynamic resource usage policies.

The decentralized organization is another alternative. It naturally addresses several

important issues such as fault-tolerance, scalability, site-autonomy, and multi-policy

scheduling. However, decentralized organizations introduce several problems of their

own some of them include management, usage tracking, and co-allocation. This scheme

is expected to scale to large network sizes but it is necessary for the scheduling

controllers to coordinate with each other via some form of resource discovery or resource

trading protocols. The overhead of operation of these protocols will be the determining

factor for the scalability of the overall system. Lack of such protocols may reduce the

overhead but the efficiency of scheduling may also decrease.

3.3 State Estimation [2]
The resources in Grid are heterogeneous, and the structure of the Grid is dynamic: some

resource gets failed, some new resource enrolls the Grid, and some resource resumes to

work. So, state estimation is also very important in scheduling the jobs in the grid.

Figure 3.3 shows the state estimation taxonomy.

Hwriri tics

Predictive 	Pricinc) Models
state 	 tii i..c,hine Learniri4 Estirii ,tion

Heuristics

h oii-prediotivta
Frc,,6lility+ DistriL~a#itjn

Fig3.3 State estimation taxonomy.
Non-predictive state estimation uses only the current job and resource status information

since there is no need to take into account historical information. Non-predictive

--
Dept. of E&C Engineering 	 13 	 2005-06

approaches use either heuristics based on job and resource characteristics or a probability

distribution model based on an offline statistical analysis of expected job characteristics.

A predictive approach takes current and historical information such as previous runs of

an application into account in order to estimate state. Predictive models use either

heuristic, pricing model or machine learning approaches. In a heuristic approach,

predefined rules are used to guide state estimation based on some expected behavior for

Grid applications. In a pricing model approach, resources are bought and sold using

market dynamics that take into account resource availability and resource demand. In

machine learning, online or offline learning schemes are used to estimate the state.

3.4 Related Work

There are load balancing scheduling strategies [4, 5] which are mostly application

specific and also they does not consider the cost factor of the resources. Minimizing the

cost of resources being utilized is very important in real time grids.

3.4.1 Ant algorithm [71
Ant algorithm is a new heuristic, predictive scheduling algorithm; it is based on the

behavior of real ants. When the blind insects, such as ants look for food; every moving

ant lays some pheromone on the path, then the pheromone on shorter path will be

increased quickly, the quantity of pheromone on every path will affect the possibility of

other ants to select the path. At last all the ants will choose the shortest path.

When the blind insects such as ants look for food, every moving ant lays some

pheromone on the path. As soon as the ants get food, they return to their home by laying

the pheromone on the - same path on which they come. If the ants are served quickly at a

food centre, then the pheromone from the home to the food centre increases quickly as

more ants choose that path. This phenomenon is shown in the figure 3.4.

--
Dept. of E&C Engineering 	 14 	 2005-06

Fig 3.4 behavior of ants

This behavior of ants is suitable to be used in Grid computing task scheduling where the

ant-home corresponds to the scheduler, ants correspond to tasks, and food sources

correspond to the resources.

The algorithm has been successfully used to solve many NP problems, such as Traveling

Salesman Problem (TSP), assignment problem, job-shop scheduling and graph coloring.

The algorithm has inherent parallelism, and we can validate its scalability. So, it's

obvious that ant algorithm is suitable to be used in Grid computing task scheduling.

3.4.2 Ant-algorithm based task scheduling algorithm [7]

1. When a resource `j' enrolls the Grid, it is asked to submit its performance parameters,

No. of PE, MIPS of every PE etc. Resource monitor tests these parameters for validation,

and initialize the links pheromone as:

r1(0) = mx p+c/s J

Where `m' is the No. of PEs

`p' is the MIPS of one PE

`c' is the size of the parameters

`sj` is the parameter transfer time from resource `j' to resource monitor.

--
Dept. of E&C Engineering 	 15 	 2005-06

2. Every time a new resource joins the grid, a resource gets failed, a task is assigned, or

there is some task returned, the pheromone on path from schedule centre to the

corresponding resource will be changed as
w 	old z~ne

= p.z- + Az~

Az-1 is the change of pheromone on path from the schedule center to resource j;

p is the permanence of pheromone (0 < p <1)

1 - p is evaporation of pheromone.

when task is assigned to resource j,

A z, = - k, k is the compute and transfer quality of the task.

when task successfully returned from resource

A r1 = Ce x k, Ce is the encourage factor.

when task failed returned from resource `j',

A r1 = Cp x k, Cp is the punish factor.

3. The possibility of task assignment to every resource will be recomputed as:
P k (t) _ 	[Z; (t)]a * [7 (t)J'°

I u [z -(t)1a * [77.]Q j, u are online resources

= 0 	others

z~ (t) is the pheromone intensity on the path from schedule center to resource j.

r7~ (t) is the innate performance of the resource, that is r, (0) .

a is the importance of the pheromone.

,3 is the importance of resource innate attributes.

The parameter values a = 0.5, /3 = 0.5, p = 0.8, Ce = 1.1, Cp = 0.8 will be taken for

here.

This gives the probabilities of the resources in the grid which helps the task scheduler in

scheduling.

4. The scheduler assigns a new task `k' on to a resource `j' at time't' with a probability
k

equal to it's corresponding ° (t)

--
Dept. of E&C Engineering 	 16 	 2005-06

Chapter 4
DESIGN AND IMPLEMENTATION

4.1 Enhancement to the ant algorithm
k

The scheduler explained in [7] schedules a task based on the possibilities [Pi 0th] of the

resources. The problem with this algorithm is, it may schedule a task to a resource with

low possibility even if the resources with high possibility are free. To avoid this, If the

tasks are always scheduled to the resource with high possibility, then the load on the

resource may be increased and the jobs may be kept waiting in the queue waiting for the

resource to be free even though the other resources are free.

So, the algorithm can be modified in such a way that if the difference between the

possibility of the resource selected for execution of a task using ant-algorithm and the

possibility of the resource with highest possibility is less than certain threshold, then the

task will be scheduled to the resource selected by the ant-algorithm. Otherwise, the

scheduler selects another resource and the above procedure will be repeated. The

selection of the threshold plays an important role. Since this modified algorithm takes the

resources with highest possibility into consideration, although the processing time is

reduced, the processing cost of the tasks may increase when compared to that of ant-

algorithm. The inclusion of price factor into this modified algorithm which is the

proposed algorithm minimizes the total execution time as well as the processing cost of

the tasks. Also the algorithm is made into a de-centralized scheduling algorithm which

can be executed on the scheduler of the node on which the task is submitted. The

schedulers of every node run independently except that they fetch the status of the

resources in the grid from a centralized resource state manager.

4.2 Proposed task scheduling algorithm
This algorithm is decentralized and improved version with the inclusion of cost factor of

ant-algorithm based task scheduling.

1. 	When a resource `j' enrolls the Grid, it is asked to submit its performance

parameters, No. of PE, MIPS of every PE etc. Resource monitor tests these parameters

for validation, and initialize the links pheromone as:

Dept. of E&C Engineering 	 17 	 2005-06

r1(0)=mx p+c/s~

Where `m' is the No. of PEs

`p' is the MIPS of one PE

`c' is the size of the parameters

`si` is the parameter transfer time from resource `j' to resource monitor.

2. Every time a new resource joins the grid, a resource gets failed, a task is assigned,

or there is some task returned, the pheromone on path from schedule centre to the

corresponding resource will be changed as
new r~ = p.t;ld

+Oz.1

Az, is the change of pheromone on path from the schedule center to resource j;

p is the permanence of pheromone (0 < p <1)

1 - p is evaporation of pheromone

when task is assigned to resource j,

A z~ = - k, k is the compute and transfer quality of the task.

when task successfully returned from resource

A ri = Ce x k, Ce is the encourage factor.

when task failed returned from resource

= Cp x k, Cp is the punish factor.

3. The possibility of task assignment to every resource will be recomputed as:
k

P; (t) = 	
[r (t)] a * {77j lt)1 R

IJ others

z (t) is the pheromone intensity on the path from schedule center to resource j, ii (t) is

the innate performance of the resource, that is z~ (0) .

a is the importance of the pheromone.
/? is the importance of resource innate attributes.

I u [zu (t)]a *
j, u are online resources

--
Dept. of E&C Engineering 	 18 	 2005-06

The parameter values a = 0.5,,8 = 0.5, p = 0.8,

Ce = 1.1, Cp = 0.8 will be taken for here.

This gives the probabilities of the resources in the grid which helps the task scheduler in

scheduling.

4. The scheduler schedules the task `k' on the same resource `i' which belong to the

node on which the task is submitted when (Ph (t) —pk (t)) <_ T. Otherwise steps 5,6,7

get executed.
k

Where `h' is the resource with highest'iO (t)

`Th' is the threshold which will be taken as 1/ (no. of resources).

5. The scheduler finds a resource `j' on which a new task `k' can be scheduled at
k

time `t' with a probability equal to it's corresponding p' (t) until

(Ph(t)_Pk(t))<Th

6. The scheduler finds a resource `i' taking one resource at a time in the ascending

order of C; / (MIPS;) until °Y (t) — p k (t) j < T; * f

where C; is the cost of the resource `i' per second

MIPS; is the total MIPS of the resource

T1= Th — (Ph (t) — PJ (t)) and

'f' is the cost reduction factor which is selected by the grid user who submits the

task. 0 < f < 1.

7. The scheduler schedules the new task `k' on to the resource `i' by sending the task

to the node of which resource `i' belongs to.

4.3 Simulation model

In Grid environment, the client nodes can enroll the Grid at any time, deliver requests to

the schedule center, and monitor the implementation of themselves tasks. The tasks are

Dept. of E&C Engineering 	 19 	 2005-06

assumed to be computational intensive and are totally independent with no

communication between them. There are five important modules in the schedule center;

the architecture of the scheduler center of a node can be expressed as in the figure 4.3

below. Each node denotes a client or a Grid resource, and each edge denotes a link

between nodes.

Client 1 . 	 Client m

Task Receiver

Resource graph

Scheduling ~ 	Task 	I 	I Resource
manager 	dispatcher 	monitor

...11..1.1......................: 	;
Schedule center of a node /

Centralized resource
state manager

Scheduling manager
of another node

R1........................ (Rn

Fig4.3 Grid simulation architecture

THE WORK MODE OF SCHEDULE CENTER

When a grid client delivers a request, the grid works as follows:

• The client delivers a request that contains an application description to the task

receiver. The description is about the work load of the application,

communication load, and time limit, etc.

--
Dept. of E&C Engineering 	 20 	 2005-06

• The task receiver queues the tasks in priority, and delivers the first task in the

queue to scheduling manager. The receiver maintains an unscheduled task queue;

record the client name and user requirements, application workload,

communication load, and time limit, etc.

• The scheduling manager selects a most appropriate scheduling scheme from all

schemes according to the resource graph, resources states and user requirement,

then delivers the scheme to task dispatcher and inform resource monitor. This is

the most important and complex scheduling in the schedule center, there are many

scheduling strategies can be put in the scheduling manager. We design the ant

algorithm based strategy, and will discuss it in the following section.

• Task dispatcher delivers the task to the selected resource, and gives transfer delay

and actual task assignment result to the resource monitor. The selected resource

can be on the same node or on different node. If it is on different node, the request

for the resource will be sent to the scheduling manager of the node in which the

selected resource belongs to. The dispatcher maintains a scheduled task queue;

record the assigned resource name, application work load, communication load,

and time limit, etc. When some task is finished or failed, the dispatcher delete the

task in the queue or put the task back to unscheduled task queue, and notifies the

resource monitor.

• The resource monitor maintains the up to date of every resource and revises the

resource graph.

• A graphic is used to express the grid environment, each node denotes a client or a

grid resource (number of processors, speed of each processor, I/O bandwidth,

RAM capability, and disk capacity, etc.), and each edge denotes a link between

nodes (bandwidth, delay, quantity of pheromone, etc.).

This ant algorithm for task scheduling in grid computing will be put in the scheduling

manager of the simulation center.

--
Dept. of E&C Engineering 	 21 	 2005-06

4.4 Simulation Environment
Gridsim Simulator

GridSim[16] is a Java-based toolkit for modeling, and simulation of Grid resources, and

application scheduling. It supports primitives for application composition, information

services for resource discovery, and interfaces for assigning application tasks to

resources, and managing their execution. These features can be used to simulate resource

brokers or Grid schedulers for evaluating performance of scheduling algorithms or

heuristics. Other than GridSim, there are few tools available for application scheduling

simulation in Grid computing environments, such as Bricks, MicroGrid and SimGrid

toolkit.

GridSim entities are namely, user, broker, resource, information service, statistics,

shutdown, and report writer. Once GridSim starts, the resource entities register

themselves with the Grid Information Service (GIS) entity. The broker entity queries GIS

entity for resource discovery, based on the user entity's request. The GIS entity returns a

list of registered resources, and their contact details. The broker entity queries the

resources for resource configuration, and properties. They respond with dynamic

information such as resources cost, capability, availability, load, and other configuration

parameters. Broker entity selects the appropriate resources, and sends user jobs (gridlets)

to those resources for execution. The resources send back the processed gridlets to the

I/O queue of the broker entity. Finally, the user will collect the processed gridlets from

the 1/0 queue. Figure 3.4 depicts the flowchart of the GridSim simulation [12] used in the

project simulation

--
Dept. of E&C Engineering 	 22 	 2005-06

T.

IGet resources 311l'orn", lio €-t -and.. racers informatio€t.
(no, of resoarcoe. FsilPs of evh re urcp, no of taritllets
(obs},v<~.1en<jth, Avg. size, avj,.output s zo of t1~e jric[let}

InWalize GridSirn package

Crete Grit! rtra

Crete 'S !'t tiny obe.* .11141 .19ri1 ter

-E'€e 4e Gric1tets

$V'%tt 	#t t tt©tt

Got GI d rc%ot+►cos cit r~ratolivtks

Sol-gotiolo the icdlets d :ttxssicjn theITI to tilt: JU i<1 I0"tu-coa

,ewttlTh. gridlets to 4116 Gf id 	cute

Grid resoau ce 	- s the jrkflets

Grid resources- send back the firocessecl giidtets to user

Get the t reseived ridlet f reran 110 queue

Ptlnt the einiittlaut €i sill-t€t to the user

W

Fig 4.4 Process flow of GridSim simulation

4.5 Implementation
SOURCE CODE FILES:

Siminfo Java: This file contains the code for the GUI to accept input data about the
resource characteristics of the resources in the grid and job characteristics of the users.
This information will be stored in a file called `info.tmp'. This stored information in the
file is used for multiple simulations of scheduling algorithms for the same input.

InformationJava: This contains a java class `Information' of which object is used for
storing the resource and job characteristics as well as the simulation results into the file
`info.tmp'. This file also contains some of the results of the simulations like total
execution times, total processing costs.

--
Dept. of E&C Engineering 	 23 	 2005-06

ResultDisplay Java: This file contains the GUI code to display the results obtained after
simulation. This displays the user-wise information as well as the resource-wise
information. In user-wise information, the resource on which the task is executed, the
time taken to execute the task, the cost of completing the task etc, will be there. In
resource-wise information, the no. of tasks the resource executes, the utilization time etc.
will be there.

Comparison.) ava: This contains the GUI code to display the comparison results after
simulation of different scheduling algorithms. It compares the total execution time taken
and cost of executing the total tasks on the grid for various scheduling strategies.

Graphs Java: This contains the GUI code to display the graphical information to compare
the various scheduling algorithms performance using the multiple simulation results. The
total execution time of tasks and the total cost of completing the tasks are taken on the y-
axis while the no. of resources in the grid is taken on x-axis.

Scheduling Java: This file contains the core code of this work which implements the
simulation of proposed task scheduling algorithm.

Grid resources information and Grid users information will be given as input to start the

simulation. Then the simulation starts step by step as shown in the flow diagram. First,

GridSim initialization will be performed. Next, resource creation followed by the

construction of `Scheduling' class objects. Each Scheduling object corresponds to a grid

user. The `Scheduling' class implements the task creation for the user and also

implements the scheduling of those tasks on to the appropriate resources that are

registered to the grid. The tasks are created based on user specified parameters (total

number of tasks, average MI of each task, and the deviation percentage of the MI).

Then, the system starts the GridSim simulation. It first gathers the characteristics of the

available Grid resources created in the resource creation section in the system. The

scheduler maintains the pheromone value of each resource (from schedule center) and

will compute the possibilities of the current resources available in the Grid every time

when a task is to be scheduled. Then, the scheduler at the node on which a new task is

submitted determines whether the task can be scheduled on the same node or should be

sent to other nodes. If any of the processors in the node are free and the condition is

satisfied then it will be scheduled on the same node. Otherwise, the scheduler selects a

resource based on the proposed algorithm and schedules the task. When a task is

Dept. of E&C Engineering 	 24 	 2005-06

submitted to a resource, its pheromone value will be decreased by the compute and

transfer quality of the task. The Grid resources process the received tasks and send back

the processed tasks to the grid user.

The system then gathers the processed tasks sent back to the user. If the task is

successfully is executed then, the pheromone value of the resource on which this task is

submitted will be increased. If the task execution fails, the pheromone of the resource

will be decreased. The simulation will be completed when all the user task get executed

on the grid resources and get back the results.

--
Dept. of E&C Engineering 	 25 	 2005-06

Chapter 5
RESULTS & DISCUSSIONS

Simulations were conducted to analyze and compare the differences between various

scheduling algorithms, in terms of processing times and processing costs. Resources R1

through R20 are used for these simulations. Users U 1 to U40 submit tasks to the grid.

The resource and user tasks characteristics taken for the simulation are shown in the table

5.1 and table 5.2 respectively.

Resource No. of PE MIPS o Communication rat
(Mb/s) Cost/sec

R1 1 50 10 1
R2 4 377 30 2
R3 2 380 10 1
R4 16 410 40 7
R5 4 410 20 2
R6 2 200 20 2
R7 6 410 20 3
R8 16 410 50 7
R9 4 377 20 2
R10 16 410 50 7
R11 1 50 10 1
R12 4 377 30 2
R13 2 380 10 1
R14 16 410 40 7
R15 4 410 20 2
R16 2 200 20 2
R17 6 410 20 3
R18 16 410 50 7
R19 4 377 20 2
R20 16 410 50 7

Table 5.1 Resource characteristics

User Job length
MI Job size (Mb) Output size

(Mb)

U1&21 75000 100 50
U2&22 65000 80 40
U3&23 8000 15 10
U4&24 5000 15 10
U5&25 70000 80 35
U6&26 75000 85 50
U7&27 200 10 10

--
Dept. of E&C Engineering 	 26 	 2005-06

U8&28 45000 90 40
U9&29 3000 30 10

U10&30 100 10 10
U11&31 70000 95 50
U12&32 2200 50 20
U13&33 500 15 10
U14&34 75000 100 50
U15&35 32000 40 25
U16&36 68000 80 45
U17&37 7000 20 10
U18&38 300 10 10
U19&39 1000 10 10
U20&40 54000 60 40

Table 5.2 User task characteristics

From fig 5.1, shows the results of different algorithms with the same input of 10

resources and 20 grid users. The total completion time of the modified ant algorithm is

lesser than that of ant-algorithm. But the cost of executing the tasks in modified

algorithm is more than that of ant-algorithm. The results of ant algorithm (highest

possibility) are the results with the scheduling algorithm in which a new task will always

be scheduled on to the resource with highest possibility.

Total Completion time 	Total Cost

Ant Algprithm 1

Ant algorithm 1.,633,64
(Hi1hsst:PaSSibiitY:I'1

Moditied,Ant al'gur thin 1 .GI33.6A

Cost-effective algorithm 1 ,012.14

,..:_ 	
Close

Fig 5.1 Results of different algorithms.

--
Dept. of E&C Engineering 	 27 	 2005-06

The following are the results of simulation of various algorithms for the 40 grid users as

the number of resources in the grid increases. Adding of resources to the grid is taken in

the same order as mentioned in the input resource characteristics above. Here the C of all

the user tasks is taken as 1. The values in the graphs are taken as the mean of 20

simulation values. .

5.2.1 Experiment 1: Simulation results of various scheduling strategies

2200

2000

1800

~ 1600

aF
1400

U5
d

1200

1000

800

600

400 ~'y

0

ant algorithm
-- 	;- -- - , ------ ;-------F -- --------'— modified ant algorithm

cost effective improved algorithm
1 I I 	 1 	 1 	 I 	 1 	 I 	 I 	 1

1 I I

J a y 	 1 	 I
I 1 I 1 1 I 1 I I I

1 I I

1 I 1 1

1 1 1 1

1 1 1 I

1 1 I 1

1 1 1 1 I 1

1 1 1

1 1

1

~ i 1
-

'~ 	 I 	 1 	 1 	 I 	 1

1 1 I I I 1

1 ~

1 I ~ 1 I 1 I
-

I 	 1 	 I
I 	 I

2 4 6 8 10 12 14 16 18 20

No. of resources

Fig 5.2 No. of resources Vs total processing time

As shown in the Fig 5.2, the processing time in the modified ant-algorithm (up to step 5

in the algorithm given in Chapter 4) and the developed algorithm which is inclusive of

price factor is reduced when compared to that of ant algorithm.

Dept. of E&C Engineering 	 28 	 2005-06

x 104
6

ant algorithm
------- modified ant algorithm

• cost effective improved algorithm

E4 -------I-------I--------------------

y

2

00 	2 	4 	6 	8 	10 	12 	14 	16 	18 	20
No. of resources

Fig 5.3 No. of resources Vs total processing time

As shown in the Fig 5.3, the processing costs in the developed algorithm is lot more

controlled when compared to that of modified ant-algorithm in which the price factor is

not included.

5.2.2 Experiment 2: Simulation results for different threshold values in the
algorithm

1100

1000

900

800

700

600

500

400

300

200

100

a 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Threshold

Fig 5.4 Threshold Vs total processing time

Dept. of E&C Engineering 	 29 	 2005-06

Fig 5.4 shows the total processing times for different values of threshold in the

scheduling algorithm. If the threshold value increases certain value, then the algorithm

results will be similar to that of ant-algorithm. The above are the results for 20 resources

and 40 tasks.
5.2.3 Experiment3: Simulation results for different `t' values in the algorithm

x 104
1.6-

1.4

04'
0
	

0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1
Cost reduction factor

Fig 5.5 Cost Reduction Factor Vs total processing cost

From the Fig 5.5, it is shown that as the `~' value increases, the control on processing

cost also increases. The results of scheduling algorithm with `t' value 0 are similar to

the algorithm with out inclusion of price factor (up to step 5 of the algorithm in Chapter

4). The above are the results for 20 resources and 40 tasks.

--
Dept. of E&C Engineering 	 30 	 2005-06

Chapter 6

CONCLUSION

Since the structure of the grid dynamically changes, there is no particular scheduling

algorithm which can effectively utilize all the resources in a grid. But, the algorithm

should be distributable, scalable and fault tolerant. It should also estimate the state of the

resources which are currently in the grid. And predictive state estimation is better then

non-predictive state estimation because it uses the current state as well as the historical

status of the resources. So, the static algorithms like round-robin scheduling are no longer

suitable.
The Ant algorithm is a heuristic predictive state estimating scheduling algorithm which is

distributable, scalable and fault tolerant. The inherent parallelism and scalability make

the algorithm very suitable to be used in grid computing task scheduling. The proposed

scheduling strategy results in increased performance in terms of low processing time and

low processing cost if it is applied to a Grid application with a large number of coarse

granularity tasks like parameter sweeps application. This works effectively in minimizing

both the processing time of the tasks as well as the processing cost of the tasks depending

upon the CRF value chosen by the grid user who submits the task.

Future work would involve developing a more comprehensive distributive scheduling

system that takes into account the hierarchy of clusters of resources. And also to reduce

the transmission costs and delays in the applications with large number of light weight

jobs, job grouping can be done before load balancing the jobs on to the resources.

--
Dept. of E&C Engineering 	 31 	 2005-06

References

[1] Mark Baker, Rajkumar Buyya, and Domenico Laforenza, "Grids and Grid
Technologies for Wide-Area Distributed Computing", 	Software: Practice and
Experience (SPE) Journal, Wiley Press, USA, 2002.

[2] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran, "A Taxonomy and
survey of Grid Resource Management Systems for Distributed Computing", Software:
Practice and Experience (SPE) journal, Wiley Press, USA, 2001.

[3] Bart Jacob, Luis Ferreira, Norbert Bleberstein, Candice Gllzean, Jean-Yves Girard,
Roman Strachowski, Seong(Steve) Yu, "Enabling applications for grid computing with
Globus", International Business Machines corporation Red Books 2003,
http://www.ibm/redbooks

[4] Quinn Snell, Kevin Tew, Joseph Ekstrom, Mark Clement, "An Enterprise-Based Grid
Resource Management System", Proceedings of the I1 th IEEE International Symposium
on High performance Distributed computing HPDC-11 2002 (HPDC'02).

[5] F. De Turck, S. Vanhaste, B. Volckaert, P. Demeester, "A generic middleware-based
platform for scalable cluster computing", Future Generation Computer Systems, vol. 18,
2002, pp.549-560.

[6] Ron Oldfield, David Kotzl, "Armada: a parallel I/O framework for computational
grids", Future Generation Computer Systems, vol 18, 2002, pp.501-523.

[7] Xhihong Xu, Xiangdan Hou, Jizhou Sun, "Ant Algorithm based task scheduling in
Grid Computing", Proceedings of the IEEE Canadian Conference on Electrical and
Computer Engineering, vol. 2, 2003, pp. 1107-1110, Montreal, May 2003.

[8] T.D. Braun, H.J. Siegel, N. Beck, L.L. Boloni, M. Maheswaran, A.I.Reuther, J.P.
Robertson, M.D. Theys, B. Yao, D. Hensgen, and R.F. Freund, "A comparison of eleven
static heuristics for mapping a class of independent tasks onto heterogeneous distributed
computing systems", Journal of Parallel and Distributed Computing. 61(6):810-837,
June 2001.

[9] D.L. Eager, E.D.Lazowska, and J.Zahorjan, "A comparison of receiver-initiated and
sender-initiated adaptive load sharing", Performance Evaluation, 6(1):53-68, 1986.

[10] H. Linand, C.Raghavendra, "A dynamic load-balancing policy with a central job
dispatcher (LBC), IEEE Trans. Software Engineering, 18(2):pp 148-158, February 1992.

[11] Y.Feng, D. Li.H. Wu, and Y.Zhang, "A dynamic load balancing algorithm based on
distributed database system, Proceedings of 4`" International Conference on High

--
Dept. of E&C Engineering 	 32 	 2005-06

Performance Computing in the Asia-Pacific Region, pages 949-952, Beijing, China, May
2000.

[12] N. Shivaratri, P. Krueger and M. Singhal, "Load distributing for locally distributed
systems, IEEE Computer, 25(12): pp 33-44, December 1992.

[13] M. Willebeek-LeMairand, A.Reeves, "Strategies for dynamic load balancing on
highly parallel computers, IEEE Trans. Parallel and Distributed Systems, 9(4): pp 979-
993, September 1993.

[14] T.Tzenand, L. Ni, "Trapezoid self-scheduling: A practical scheduling scheme for
parallel computers", IEEE Trans. Parallel and Distributed Systems, 4(1): pp 87-98,
January 1993.

[15] J.Torrellas, A. Tucker, and A.Gupta, "Evaluating the performance of cache-affinity
scheduling in shared-memory multi-processors, Journal of Parallel and Distributed
Computing, 24(2): 139-151, February 1995.

[16] Rajkumar Buyya, and Manzur Murshed, GridSim: "A Toolkit for the Modeling,
and Simulation of Distributed Resource Management, and Scheduling for Grid
Computing ", The Journal of Concurrency, and Computation: Practice, and Experience
(CCPE), Volume 14, Issue 13-15, Pages: 1175-1220, Wiley Press, USA, November -
December 2002.

--
Dept. of E&C Engineering 	 33 	 2005-06

Appendix A
SNAPSHOTS

GUI for giving the basic input information like resource information and user
information for the simulation:

rrnulat.nn lnfa ,' R5arur(T Info,,. - tts1.r I,ufi) l ;̀

%;fiesotarc lrrfo 'SimuijtiariIcrfo 	U ..'x1,111'

` test Ro uur e ,Resource 1

I esour,ccr' Itlarne Rasourro

R~sdr7tCr 	,r,.Ittertrnee .. 	amt] 	
.. 	.,..... 	_ 	.- 	, 	.

Routce OS urindows

r
Baud Rate .O 	Mop)

(3
20 	.-,. 	1

p 	C ii tfsc

1..

Failure 	°la} rate{n

Typ. of, resource •, 71rne5harert4 	spaceSharea

Save

Dept. of E&C Engineering 	 34 	 2005-06

Add another PE 	 Yens

Add another Resource 	[Yes J 	No

Dept. of E&C Engineering 	 35 	 2005-06

mnro tieSO urc Ir 	User:iro

Simulation Information

No: of Resources 9

No, of Users 	1 TJ2~

ArrV times 	 c Poissionrrivals

User into (SimuIatJOrl R 	,;ResoClfce Into

elect the User User t

• o. of Grrrllets

Gridlet length 	 Mean I?5Qpt 	j Var 	6 	 _ . 	to
(in Million Instructions)

G'rii ibt size (in Mb) 	.. 	Mean ~0
far 	€~_.........., 	%

Clutput,file size (in. 5[l Var 	Its 	3 of4

Arnwai tirne

Task Requirements

--
Dept. of E&C Engineering 	 36 	 2005-06

' user into :=: Sttnutatian Info -, Ftesoiirce inr

Select the User• 1USer t~

No. of Gridlets L

Gridlet length 	 Mean 17500©] 	Var °/°

on Minion Instructions)

Gridlet size (in Mb) 	Mean 50 Var r~ 	° I 	.m.; 	/o

Output file size (in Mb) 	Mean X513 	J 	Var 5
,........ 	%

Arrival time

Task Requirements

Resource Architecture

Resource OS Any

Add another User E!:Yr i 	tta

(sIrUiatnonnfotx saU elnfaW rdfi1a

--
Dept. of E&C Engineering 	 37 	 2005-06

The results after the simulation of ant-algorithm scheduling:

Algorithm: Ant-algorithm

(user krfo 	Resource^litt"ol

Select User

Algorithm: Ant-algorithm

.....
User hifo 	Resource info jT

j,.

~.:

flea i4ame 	I9.:' uses time

p

titt!Iizt*it~rt grist executea:(in MIa): ` Cost

Resaurce1 	5 	0 0 0 0
Resourte2 	9 	2 0.004 500 4
Resource3 	13 	0 0 0 0
Resource,$ 	17 	685 1.2 240,000 4,085
Resources 	21 	1 0,002 100 2
Resaurce6 	25 	0 0 0 0
Resource7 	29 	166 0.34 58,200 498
Resource8 	33 	880 1.806 362,300 6,160
Resource3 	37 	-0 0 0 0
Resourcel0 	41 	8 0.018 5,000 18

Total execution time aftha tasks: 457:611 	 rotat cost: 10,777

Close

Dept. of E&C Engineering 	 38 	 2005-06

Comparison of different scheduling algorithms results:

Graph showing the results of ant-algorithm:

13639 	 132996

12275 	 119696

10911 	 106396

9547 	 93097

6183 	 79797

6819 	 66498

5455 	 53198

4091 	 39898

2727 	 26599

1363 	 13299

1 	2 	3 	4 	5 	6 	7 	0 	9 	10 	 1 	2 	3 	4 	5 	6 	7 	8 	9 	10

X &xis:. no. of resources
	

5(axis; no. of resources

Y axis: Total Execution time 	 Y-axis: Total cost

--- 	 -------------------
Dept. of E&C Engineering 	 39 	 2005-06

Graphs showing the comparison of different scheduling algorithm results

BMA
13539 132996 fl idY$+kitQ4tf£t'rPil

13275 179fi96
modified ant-algorrhm

1(3911 1105338

round-robin aicgoritinm
9547 93097

8183 79797

081'9 06499

5455 53198

4091 39898

2727 20598

1343 z 3299

1 2 3 4 5 6 7 8 9 10
	

1 2 3 4 5 9 7 8 9 10

X-: no. of resilur;#5 	 X-4xis. iao. (3(OUT
'r axis: Tolal Exocu1ion 4ims{in Sews) 	 -;oxis: Total cast-~a Co 1 uniis)

ildffT

3878 63073 © ant-algorifthm
3770 61920
3590 50566
3382 55312 D modified ant-aigorithm
3183 52059
2984 48805 ! coda effective algorithm
2785 45551',
2566 42299
2383' 39044
2188 35790
1989 32537
1790 29283
1591 k 	26029
1392 227Y5
1 193
98•i +++ 	

1' 0522
 W6268

T95 130114 j *`•f
595 9761
397 6507
198 3253

1 2 3 4 5 6 7 8 9 101112131415109718192© 1 ',2 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20

1-axis: no. ofresourcss 	 X abs. no. of resources
Y-axd$: Total flxf; cutlon D.sne 	 Y-a 1s; Ta1Wl Cost

Dept. of E&C Engineering 	 40 	 2005-06

Appendix B
SOURCE CODE

Note that the GUI source code is not included here.

//Schedulingjava

import java.util.*;
import java.text.*;
import gridsim. *;
import gridsim.util.*;
import java.io.*;

public class Scheduling extends GridSim
{

private Integer ID_;
private String name_;
private GridletList list_;
private GridletList receiveList_,failList;
private int totalResource_;
private LinkedList resPher,resPoss,innate;
private static GridResource res[];
public static ResourceCharacteristics resCharList[];
private static int rcount,algo;
private double arr_time;
public static double gridletCount[];
private static int userCount;
public static long arrTimes[];
private double K;
public static int resGridletCount[];
private static int roundRobin;
private static Information inf;
private static double ResUtil[];
private static String resName[];
private static int resId[],usedTime[],noInst[];
private static double resCost[];
private static double SimTime;
private int uno,nodeNo;
private static int count_r,count u;
private static double threshold;
private static ResultDisplay gui;

Scheduling(String name, double baud_rate,int total_res,LinkedList resP,LinkedList
resPos,double at,int algo,int u,int nodeNo)

throws Exception

--
Dept. of E&C Engineering 	 41 	 2005-06

super(name, baud_rate);
this.name_ = name;
this.totalResource_ = total_res;
this.receiveList_ = new GridletListQ;
this. arr_time=at;
this.algo=algo;
this.uno=u;
this.nodeNo=nodeNo;

failList=new GridletListO;
resPher=resP;
resPoss=resPos;
this.ID_ = new Integer(getEntityId(name));
this.list = createGridlet(this.ID_.intValueO);

{
public void body()
{
int resourcelD[] = new int[this.totalResource_];
double resourceCost[] = new double[this.totalResource_];
String resourceName[] = new String[this.totalResource];
LinkedList resList;
ResourceCharacteristics resChar;
while (true) {
super.gridSimHold(1.0); // hold by 1 seconds
resList = (LinkedList) getGridResourceListO;
if (resList. size() _= this.totalResource_)

break;
} //while
// a loop to get all the resources available
inti=0;
for (i = 0; i < resList.sizeO; i++) {

// Resource list contains list of resource IDs not grid resource
// objects.
resourcelD[i] _ ((Integer) resList. get(i)).intValue();
resId[i]=resourcelD [i];
// Requests to resource entity to send its characteristics
send(resourcelD[i], arr_time,

GridSimTags.RESOURCE_CHARACTERISTICS, this.ID_);
// waiting to get a resource characteristics
resChar = (ResourceCharacteristics) receiveEventObjectO;
resCharList[i]=resChar;
resourceName[i] = resChar.getResourceNameO;
// record this event into "stat.txt" file
recordStatistics("\'Received ResourceCharacteristics " +

"from " + resourceName[i] + "\"" "")•

--
Dept. of E&C Engineering 	 42 	 2005-06

Double pher = new Double(resChar.getMIPSRatingo +in£resBr[i]);
resPher.add(pher);
setPheremone(i,pher.doubleValueO);
resPoss.add(new Double(0));

} //for
//computing the denominator
innate = resPher;
Gridlet gridlet;
String info;
// a loop to get one Gridlet at one time and sends it to a random grid
// resource entity. Then waits for a reply
int id = 0;
int flag[] =- new int[totalResource];
double prob = 0, max = 0, val;
int mpos = 0;
for (i = 0; i < this.list .size(); i++)
{

gridlet = (Gridlet)this.list_.get(i);
info = "Gridlet_" + gridlet.getGridletlD();
//Scheduling alogorithm
NumberFormat numFormat = NumberFormat.getInstance();
numFormat. setMaximumFractionDigits(2);
double tot = 0, pos;
for (int j = 0; j < totalResource_; j++) {

tot += StrictMath.pow(getPheremone(j), 0.5) *
StrictMath.pow(getlnnate(j), 0.5);

}
for (int j = 0; j < totalResource_; j++) {

pos = StrictMath.pow(getPheremone(j), 0.5)
StrictMath.pow(getInnate(j), 0.5);

pos /= tot;
//this also has to be changed later
setPossibility(j, pos);

} //int j=0
for (int t = 0; t < totalResource_; t++)
flag[t] = 0;

double rand = StrictMath.randomO;
//System.out.println("random number: "+rand);
if (algo == 0) {
prob = 0;
while (prob < rand) {
max = 0;
for (int p = 0; p < totalResource_; p++) {
if (flag[p] = 1)

continue;
if (!inf.userArch[uno].equals("Any") &&

--
Dept. of E&C Engineering 	 43 	 2005-06

!inf.userArch[uno].equals(infresArch[p])
!infuserOs[uno].equals("Any") &&
!inf userOs[uno].equals(inf.resOs[p]))

continue;
val = getPossibility(p);
if (max < val) {
max = val;
mpos = p;

} //if max<val
} //for
flag[mpos] = 1;
prob += getPossibility(mpos);

} //while
id=mpos;

} //algo==0
if (algo == 1)
max 0;
for (int p = 0; p < totalResource_; p++) {

if ((!infuserArch[uno].equals("Any") &&
infuserArch[uno].equals(infresArch[p])) 11

(!infuserOs[uno].equals("Any") &&
! inf. userOs [uno] . equals(inf.resOs [p])))

continue;
val = getPossibility(p);
if (max < val) {

max = val;
mpos = p;

}
} //for

} //algo=l
id = mpos;
if (algo == 2) {

/*
while (true) {
id = roundRobin;
roundRobin++;
if (roundRobin == this.rcount)
roundRobin = 0;

if (!in£userArch[uno].equals("Any") &&
!inf.userArch[uno].equals(inf.resArch[id])
!inf.userOs[uno].equals("Any") &&
! inf userOs [uno].equals(inf resOs [id]))

continue;
break;

} //while
}*/

Dept. of E&C Engineering 	 44 	 2005-06

max = 0;
int maxp=0;
for (int p = 0; p < totalResource_; p++) {

if ((!inf.userArch[uno].equals("Any") &&
! inf.userArch[uno] .equals(inf resArch[p]))

(!inf.userOs[uno].equals("Any") &&
Iinf userOs[uno] .equal s(inf resOs[p])))

continue;
val = getPossibility(p);
if (max < val) {

max = val;
maxp = p;

}
} //for

if((gridiet.getNumPE(}<=resCharList[nodeNo].getNumFreePE())&&((max-
getPossibility(nodeNo))<=threshold))

{
id=nodeNo;

}
else
{
prob = 0;
while(true)
{
while (prob < rand) {
max=0;
for (int p = 0; p < totalResource_; p++) {
if (flag[p] == 1)
continue;

if (!inf.userArch[uno].equals("Any") &&
!inf.userArch[uno].equals(inf.resArch[p]) 11
!inf.userOs[uno].equals("Any") &&
! inf.userOs[uno].equals(inf.resOs[p]))

continue;
val = getPossibility(p);
if (max < val) {

max = val;
mpos = p;

} //if max<val
} //for
flag[mpos] = 1;
prob += getPossibility(mpos);

} //while

Dept. of E&C Engineering 	 45 	 2005-06

id = mpos;

if (getPossibility(maxp) - getPossibility(id) <=gui.threshold)
{

id = mpos;
break;

}
else {
prob = 0;
rand = StrictMath.randomO;
for (int t = 0; t < totalResource_; t++)
flag[t] = 0;

}
} //while(true)

for (int t = 0; t < totalResource. ; t++)
flag[t] = 0;

int f=0;
double min=0;
int minp=0;
while(true)
{

int p;
for (p = 0; p < totalResource_; p++) {

if(flag[p]==1)
continue;

if(resCharList[p] . getCostPerMIQ<minl (f==0)
{
f=1;
min=resCharList[p] . getCostPerMIO;
minp=p;

}
} //for

if(Math.abs(getPossibility(id)-getPossibility(minp))<=(gui.threshold-
(getPossibility(maxp)

-getPossibility(id)))* 1)
{

id=minp;
break;

}
flag[minp]=1;
minp=0;
f0;

Dept. of E&C Engineering 	 46 	 2005-06

} //while
}//else nodeNo

} //algo ==2
if (algo == 3) { //ant-algo
prob = 0;
while (prob < rand) {
max = 0;
for (int p = 0; p < totalResource_; p++) {
if (flag[p] _= 1)
continue;

if (!inf.userArch[uno].equals("Any") &&
!in£userArch[uno].equals(inf.resArch[p])
!inf.userOs[uno].equals("Any") &&
! inf.userOs [uno].equals(inf.resOs [p]))

continue;
val = getPheremone(p);
if (max < val) {

max = val;
mpos = p;

} //if max<val
} //for
flag[mpos] = 1;
prob += getPossibility(mpos);

} //while
id = mpos;
//high probability
max = 0;
for (int p = 0; p < totalResource_; p++) {

if ((!inf.userArch[uno].equals("Any") &&
!in£userArch[uno]. equal s(inf.resArch[p]))

(!inf.userOs[uno].equals("Any") &&
! inf.userOs[uno] .equals(inf.resOs [p])))

continue;

val = getPheremone(p);
if (max < val) {

max = val;
mpos = p;

}
} //for
if (getPossibility(mpos) - getPossibility(id) <= gui.threshold)

id = mpos;
} //algo=3

Dept. of E&C Engineering 	 47

	
2005-06

//changing the pheremone after submitting
double newPher = getPheremone(mpos);
K = (gridlet.getGridletFileSize() / inf.resBr[id] +

gridlet.getGridletLength() / resCharList[id].getMIPSRating());
newPher = 0.8 * newPher - K;
//updating the pheremone
setPheremone(mpos, newPher);
// 	 Sends one Gridlet to a grid resource specified in

"resourcelD"
gridletSubmit(gridlet, resourcelD[id], arr_time, true);
resGridletCount[id]++;
tot = 0;
for (int j = 0; j < totalResource_; j++) {

tot += StrictMath.pow(getPheremone(j), 0.5)
StrictMath.pow(getInnate(j), 0.5);

}
for (int j = 0; j < totalResource_; j++) {

pos = StrictMath.pow(getPheremone(j), 0.5)
StrictMath.pow(getInnate(j), 0.5);

pos /= tot;
setPossibility(j, pos);

} //int j=0

// 	 if the resouce fails

double expTime = 1;
expTime = gridlet.getGridletLengthO / resCharList[id].getMIPSRatingO;
double rndTime;
if (StrictMath.random() <= inf.resFr[id] / 100.0) {

mdTime = StrictMath.random() * expTime;

//cancelling the gridlet
super.gridletCancel(gridlet, resourcelD[id], rndTime);
//System.out.println(this.name_ + ":Gridlet :" +
//gridlet.getGridletlD() +" cancelled");
failList. add(gridlet);
newPher = getPheremone(mpos);
newPher = 0.8 * newPher + 0.8 * K;
//newPher = 0.8 * newPher + 1.6 * newPher;
//updating the pheremone
setPheremone(mpos, newPher);
tot = 0;
for (int j = 0; j < totalResource_; j++) {

tot += StrictMath.pow(getPheremone(j), 0.5)
StrictMath.pow(getInnate(j), 0.5);

}

--
Dept. of E&C Engineering 	 48 	 2005-06

for (int j = 0; j < totalResource_; j++) {
pos = StrictMath.pow(getPheremone(j), 0.5) *

StrictMath.pow(getInnate(j), 0.5);
pos /= tot;
//this also has to be changed later
setPossibility(j, pos);
//System.out.println("possibility for resource "+j+":"+numFormat.format(pos));
//System.out.println("pheremone for resource

"+numFormat. format(getPheremone(j)));
} //int j =0

} //if
else{
// waiting to receive a Gridlet back from resource entity

gridlet = this.gridletReceiveO;
if (resourcelD[id] > -1) {
String subResName;
subResName = gridlet. getResourceName(resourcelD [id]);
int p;
for (p = 0; p < count_r; p++)

if ((inf.resName[p]).equals(subResName)) {
ResourceCharacteristics rc = resCharList[p];
noInst [p]+=gridlet. getGridletLength();
usedTime[p] += gridlet.getProcessingCostO / inf.resCost[p];
resCost[p] = usedTime[p] * inf.resCost[p];

}

} //id>-1
// if the sent gridlet is successfully executed
try {

if (gridlet.getGridletStatusO == Gridlet. SUCCESS) {
newPher = getPheremone(mpos);
newPher = 1.1 * newPher + 1.1 * K;
//newPher = 1.1 * (newPher + 0.4 * newPher);
//updating the pheremone
setPheremone(mpos, newPher);

}
} //try
catch (Exception e) {

System. out.println(e);
}
// when a grid resource entity finished processing the Gridlet,
// then set the resource id and its cost to do the job
gridlet. setResourceParameter(resourc elD [id], resourceCost[id]);
tot = 0;
for (int j = 0; j < totalResource_; j++) {

--
Dept. of E&C Engineering 	 49 	 2005-06

tot += StrictMath.pow(getPheremone(j), 0.5)
StrictMath.pow(getInnate(j), 0.5);

}
for (int j = 0; j < totalResource_; j++) {

pos = StrictMath.pow(getPheremone(j), 0.5)
StrictMath.pow(getInnate(j), 0.5);

pos /= tot;
//this also has to be changed later
setPossibility(j, pos);

} //int j=0
// Recods this event into "stat.txt" file for statistical purposes
recordStatistics("\"Received " + info + " from " +

resourceName[id] + "\" ', gridlet.getProcessingCostO);
// stores the received Gridlet into a new GridletList object
this.receiveList_.add(gridlet);

}
}//else
// shut down all the entities, including GridStatistics entity since
// we used it to record certain events.
shutdownGridStatisticsEntityO;
shutdownUserEntityO;
terminatelOEntities();

} //body
/**

* Gets the list of Gridlets
* @return a list of Gridlets
*/

public GridletList getGridletList()
return this.receiveList ;

public GridletList getFailList()
{

return failList;

private GridletList createGridlet(int userlD)
{

// Creates a container to store Gridlets
GridletList list = new GridletListO;
// We create three Gridlets or jobs/tasks manually without the help
// of GridSimRandom
int id = 0;
double length;
long file_size;
long output_size;
// sets the PE MIPS Rating
GridsimStandardPE.setRating(100);

Dept. of E&C Engineering 	 50

A 	a°~

--- ---- - --------

	

v 	2005-06

//it count = GridSim.rand.intSample(max);
for (int i = 0; i < in£nog[0]; i++)

double agl=in£glLength[uno];
length=agl;
file_size=inf. glS ize [uno] ;
output_size=inf.glOutput[uno];

// creates a new Gridlet object
Gridlet gridlet = new Gridlet(id + i, length, file_size,

output_size);
gridlet. setUserlD(userlD);
// add the Gridlet into a list
list.add(gridlet);

userCount++;
return list;

public static void initSim(ResultDisplay g,int x)
{
gui=g;
algo=x;
try

{
FileInputStream fis=new FileInputStream("c:\\proj\\info.tmp");
ObjectlnputStream ois=new ObjectInputStream(fis);
inf=(Information)oi s.readObj ectO;

catch(Exception e)

System.out.println(e);
}

count_u=inf ucount;
count_r=inf.rcount;

res=new GridResource[count_r];
ResUtil=new double[count_r];
arrTimes=new long[count_u];
gridletCount=new double[count_u];
resGridletCount=new int[count_r];
noInst=new int[count_r];

resCharList=new ResourceCharacteristics[count_r];
resName=new String[count_r];
resId=new int[count_r];
usedTime=new int[count_r];
resCost=new double[count_r];

Dept. of E&C Engineering 	 51 	 2005-06

private static GridResource createGridResource(ResourceCharacteristies
resChar,String name

,double baud_rate)
{

double peakLoad = 0.0; 	// the resource load during peak hour
double offPeakLoad = 0.0; // the resource load during off-peak hr
double holidayLoad = 0.0; // the resource load during holiday
// incorporates weekends so the grid resource is on 7 days a week
LinkedList Weekends = new LinkedList();
Weekends.add(new Integer(Calendar. SATURDAY));
Weekends.add(new Integer(Calendar. SUNDAY));
// incorporates holidays. However, no holidays are set in this example
LinkedList Holidays = new LinkedList();
GridResource gridRes = null;
try {

gridRes = new GridResource(name, baud_rate, 11 L* 13* 17* 19*23+1,
resChar, 0, 0, 0, Weekends,Holidays);

}
catch (Exception e) {

e.printStackTraceO;
}
return gridRes;

}
public static void startSimulation()
{
LinkedList resP,resPos;
resP=new LinkedListO;
resPos=new LinkedListO;
int total resource=count r;;
try { 	-
int users=count_u;
Scheduling user[]=new Scheduling [users];
double iat=in£miat;
long sh time = 0;
Poisson arrtime;
if(iat<=0)
arrtime = new Poisson("inter-arrival time", 1);
else
arrtime = new Poisson("inter-arrival time", iat);

for(int u=0;u <count_u;u++)
{
if(inf.arrType==0)
sh_time+=arrtime. sample();
else

--
Dept. of E&C Engineering 	 53 	 2005-06

//it count = GridSim.rand.intSample(max);
for (int i = 0; i < inf.nog[0]; i++)

double agl=inf.glLength[uno];
length=agl;
file_size=inf.glSize[uno];
output_size=inf. gl Output [uno] ;

// creates a new Gridlet object
Gridlet gridlet = new Gridlet(id + i, length, file_size,

output_size);
gridlet. setU serlD (userlD);
// add the Gridlet into a list
list.add(gridlet);

userCount++;
return list;

public static void initSim(ResultDisplay g,int x)
{
gut=g;
algo=x;
try

{
FileInputStream fis=new FileInputStream('c:\\proj\\info.tmp");
ObjectlnputStream ois=new ObjectInputStream(fis);
inf=(Information)ois.readObj ectO;

catch(Exception e)

System.out.println(e);
}

count_u=inf.ucount;
count_r=inf.rcount;

res=new GridResource[count r];
ResUtil=new double [count_r];
arrTimes=new long[count_u];
gridletCount=new double[count_u];
resGridletCount=new int[count_r];
nolnst=new int[count_r];

resCharList=new ResourceCharacteristics[count_r];
resName=new String[count_r];
resld=new int[count_r];
usedTime=new int[count_r];
resCost=new double[count r];

Dept. of E&C Engineering 	 51 	 2005-06

System. out.println(" Starting simulation of Ant algorithm");
try

int num_user =count_u; // number of grid users
Calendar calendar = Calendar.getlnstance();
boolean trace_flag = true; // mean trace GridSim events
// list of files or processing names to be excluded from any
// statistical measures
String[] exclude_from_file = { "" };
String[] exclude_from_processing = { "" };
// the name of a report file to be written. We don't want to write
// anything here. See other examples of using the ReportWriter
// class
String report_name = null;
// Initialize the GridSim package
//System.out.println("Initializing GridSim package");
GridSim.init(num_user, calendar, trace_flag, exclude_from_file,

exclude_from_processing, report name);
// Second step: Creates one or more GridResource objects

for(int c=0;c<count_r;c++)
{
MachineList ml=new MachineListQ;
PEList plist=new PEListO;
for(int pc=0;pc<inf.resNpe [c];pc++)

plist.add(new PE(pc,inf.mips[c] [pc]));
Machine m=new Machine(O,plist);
ml.add(m);
int policy;
if(inf.resType [c]==0)

policy=ResourceCharacteristics.TIME_SHARED;
else

policy=ResourceCharacteristics. SPACE_SHARED;
ResourceCharacteristics resChar=new

ResourceCharacteristics(inf.resArch[c],inf.resOs [c],ml,policy,0,inf.resCost[c]);
res[rcount++] = createGridResource(resChar, inf.resName[c],

in£resBr[c]);
resName [c] =inf. resN ame [c] ;

// Third step: Creates grid users
startSimulationO;

catch (Exception e)

e.printStackTrace();
System.out.println("Unwanted errors happen"+e);

--
Dept. of E&C Engineering 	 52 	 2005-06

private static GridResource createGridResource(ResourceCharacteristies
resChar,String name

,double baud_rate)
I

double peakLoad = 0.0; 	//the resource load during peak hour
double offPeakLoad = 0.0; // the resource load during off-peak hr
double holidayLoad = 0.0; // the resource load during holiday
// incorporates weekends so the grid resource is on 7 days a week
LinkedList Weekends = new LinkedListO;
Weekends.add(new Integer(Calendar. SATURDAY));
Weekends.add(new Integer(Calendar.SUNDAY));
// incorporates holidays. However, no holidays are set in this example
LinkedList Holidays = new LinkedListO;
GridResource gridRes = null;
try {

gridRes = new GridResource(name, baud_rate,11 L* 13 * 17* 19*23+1,
resChar, 0, 0, 0, Weekends,Holidays);

}
catch (Exception e) {

e.printStackTraceO;
}
return gridRes;

}
public static void startSimulation()

LinkedList resP,resPos;
resP=new LinkedList();
resPos=new LinkedListO;
int total_resource=count_r;;
try {
int users=count_u;
Scheduling user[]=new Scheduling[users];
double iat=inf.miat;
long sh_time = 0;
Poisson arrtime;
if(iat<=0)
arrtime = new Poisson("inter-arrival time", 1);
else

arrtime = new Poisson("inter-arrival time", iat);
{ for(int u=0;u <count_u;u++)

if(inf.arrType==0)
sh_time+=arrtime. sample();
else

--
Dept. of E&C Engineering 	 53 	 2005-06

sh time=inf.arrTime[0];
user[u]=new

Scheduling("User"+String.valueOf(u),560.00,total_resource,resP,resPos,sh_time,algo,u,
count_u%count—r);

}
// Fourth step: Starts the simulation
GridSim. startGridSimulation();
SimTime=GridSim.clock();
//writing results
NumberFormat numFormat=NumberFormat.getInstanceO;
int totCost=O;
for(int i=0;i<count r;i++)

totCost += resCost[i];
ResUtil [i]=usedTime [i]/S imTime;
//System. out.println(resNames[i]+" 	"+resUtil[i]+"

"+(resUtil [i]/simTime));
gui.ta_res.append('\n'+ resName[i]+" "+resId[i]+"

"+numFormat.format(usedTime [i])+'\t'+numFormat. format(ResUtil [i])+'\t'+
numFormat.format(nolnst[i])+'\t'+numFormat.format(resCost[i])+'\t'+'"

"+numFormat.format(resGridletCount[i]));

gui.i_tcost.setText("Total cost: "+numFormat.format(totCost));
gui.1_time.setText("Total execution time of the tasks:

"+numFormat.format(SimTime));
System.out.println(count r+" exec time: "+SimTime+" . cost:"+totCost);

inf.totResCost[count_r- 1] [algo]=totCost;
inf.totExecTime[count r- 1] [algo]=SimTime;

for(int i=0;i<userCount;i++)
. gui.list_users.add("User"+(i+l),i);

gui.antGletList=new GridletList[userCount];
gui.antGfailList=new GridletList[userCount];

// Final step: Prints the Gridlets when simulation is over
for(int i=0 ;i<users ;i++)

GridletList newList = null;
GridletList fList=null;
newList = user[i].getGridletList();
gui . antG l etL i s t [i] =newL i st ;

--
Dept. of E&C Engineering 	 54 	 2005-06

printGridletList(newList, user[i].name,true);
fList = user[i].getFailListO;
gui.antGfailList[i]=fList;
printGridletList(fList, user[i].name,false);

}

try {
FileOutputStream fos = new FileOutputStream(" c :\\proj\\info .tmp U);

ObjectOutputStream oos= new ObjectOutputStream(fos);
oos.writeObj ect(inf);
oos.closeO;

}
catch(Exception excep)
{

System. out.println(excep);
}

} //try
catch(Exception e)
{

System. out.println("error in startsimulation");
e.printStackTraceO;

}

public static void printGridletList(GridletList list, String name,boolean status)
{

int size = list.sizeO;
Gridlet gridlet;
if(list.sizeO==O)
return;

String indent =
for (int i = 0; i < size; i++)
{

gridlet = (Gridlet) list.get(i);
}

}

synchronized public double getPheremone(int i)
{

return ((Double)resPher.get(i)).doubleValue();
}
synchronized public double getPossibility(int i)
{

return ((Double)resPoss.get(i)).doubleValueO;
}
synchronized public void setPheremone(int i,double v)
{

--
Dept. of E&C Engineering 	 55 	 2005-06

resPher.set(i, new Double(v));

synchronized public void setPossibility(int i,double v)
{

resPoss.set(i, new Double(v));

synchronized public double getlnnate(int i)

return ((Double)innate.get(i)).doubleValue();
}

} // end of scheduling class

--
Dept. of E&C Engineering 	 56 	 2005-06

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

