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ABSTRACT 

The unit commitment problem under deregulated environment involves determining the 

time intervals at which a particular generating unit should be online and available for 

generation, and the associated generation or dispatch, the aim being to maximize its total 

profits based on a given price profile. This dissertation describes how a lagrangian 

relaxation method and single unit dynamic programming algorithm is used to solve this 

complex optimization problem. All the usual unit constraints are considered, after which 

results for the chosen 26 generating units are presented, and discussed. 
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CHAPTER-1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION 

Electric power consumption varies with time reflecting the predictably cyclical nature of 

human activities. The demand for electricity is higher during the day and early evening, 

weekdays and the summer or winter seasons as compared to the late night and early 

morning, weekends and fall or spring seasons. Also, electricity is a non-storable 

commodity and needs to be produced at the same rate at which it is consumed. In order to 

run the electric power generation system economically so as to reliably meet the demand, 

it is thus necessary to switch the generating units on and off at appropriate times. The 

generating units cannot however be turned on and off in a haphazard manner. Besides the 

start-up costs, one also needs to consider certain operating constraints that dictate how 

frequently and in what manner the units can be turned on and off. They are, for example: 

minimum up time, minimum down time, minimum capacity, maximum capacity, and 

ramping rate. The decision problem of optimally scheduling the operation of these 

machines is known as the unit commitment problem (UCP). [Wood and Wollenberg 

(1996)]. Before the restructuring of electric power systems it is the point of generation 

part of utility and after deregulation it is the Point of Generation Company wishing to 

optimize their operation, which is minimum production cost for the first case and 

maximize profit for the second case. The restructuring and deregulation of electric power 

systems have resulted in market-based competition by creating an open market 

environment. A restructured system allows the power supply to function competitively, as 

well as allowing consumers to choose suppliers of electric energy. In a regulated 

framework, an electric utility serves the customers of a certain region under tariffs 

calculated to guarantee the recovery of its costs. In this situation, a power generating 

utility solves the UCP to obtain an optimal production schedule of its units to meet 

customer demand. The optimal schedule is found by minimizing the production cost over 

a given time interval while satisfying the demand and the set of operating constraints. The 

minimization of the production costs assures maximum profits because the power 

generating utility has no option but to reliably supply the prevailing demand. The price of 

electricity over this period is predetermined. Therefore; the decisions on the operation of 
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individual units have no effect on the firms' revenues. Under deregulation the price of 

electricity is however no longer predetermined. The unit commitment decisions in this 

situation are based on the expected market price of electricity rather than on the demand 

although these variables are usually correlated. The UCP now requires the stochastic 

formulation that includes the representation of the electricity market. And a bottom up 

engineering economic approach is used to forecasting the market prices. Well-known 

mathematical programming techniques such as integer programming, dynamic 

programming, branch and bound, Benders decomposition, and Lagrangian relaxation 

method have been used to solve the UCP. For small problems, they can provide the 

optimal solution in a reasonable amount of time. However, for large problems, the 

computational time required to find the optimal solution becomes prohibitive. In such 

cases, the solution space is only partially searched and therefore there is no guarantee that 

the optimal solution can be found. Meta-heuristic methods such as simulated annealing 

tabu search, and genetic algorithms have also been used for solving these large and highly 

complex problems. Within a regulated framework, the unit commitment problem can be 

solved by minimizing the production cost over a given time interval while satisfying the 

demand and the set of operating constraints. The price of electricity over this period is 

predetermined. Under deregulation the price of electricity is however no longer 

predetermined. The unit commitment decisions in this situation are based on the expected 

market price of electricity rather than on the demand although these variables are usually 

correlated. In a deregulated environment if a power producer is having M number of 

generating then the unit commitment problem can be solved by considering each unit 

separately in this situation the objective is to maximize expected profits, and the 

decisions are required to meet standard operating constraints. When the market price of 

electricity is considered exogenous to the unit commitment decisions and the demand 

constraints are the only coupling constraints, then the optimization problem (for a 

generation company acting as a price-taker in a Pool Co-type electricity market) 

decomposes in a straightforward manner into as many sub-problems as the number of 

generating units owned by the company. Therefore, the optimal solution of a UCP with M 

units can be found by solving Muncoupled sub-problems. The feature of decomposability 

into sub-problems for the deregulated market considerably reduces the computational 

burden. 
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1.2 MOTIVATION AND OBJECTIVE 
In order to stay in business, an electric utility company or an electric power producer 

must not only avoid making losses; they must also achieve sufficient revenue to meet a 

certain profit margin. Profit maximization is therefore the motivation for this dissertation 

project, the specific objective being to develop a software program to solve the unit 

commitment (UC) problem so that it maximizes a generator's total profits of a single 

power producer over a given scheduling period. 

1.3 OUTLINE OF THE DISSERTATION 
The first chapter of this dissertation presents the introduction and motivation for this work 

and outlines the main objective that it seeks to achieve. 

Chapter 2 provides an idea of unit commitment problem, constraints and costs associated 

with the problem and solution techniques that are useful for solving conventional unit 

commitment problem. 

Chapter 3 provides an idea of unit commitment problem under deregulated environment 

and also gives the idea of structure of deregulated power system and calculation of 

marginal price or market clearing price. 

Chapter 4 suggests an idea of problem formulation for UCP and constraints associated 

with the main problem. 

Chapter 5 suggests some of classical and non classical solution techniques for solving 

the unit commitment problem under deregulation, which includes explanation about some 

of the classical methods like simulated annealing, branch and bound and some of the non 

classical methods like artificial intelligence methods and genetic algorithm. 

Chapter 6 provides the application of lagrangian relaxation method for decomposition of 

main problem into several sub problems and application of dynamic programming in 

solving these single units sub problems. 

Chapter7 gives the results for the chosen 26 generating units for profit, Power and state. 
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1.4 LITERATURE REVIEW 

A paper by "Valenzuela, .I, Majumdar, M" suggests a formulation for the commitment of 

electric power generators under a deregulated electricity market in this the problem is 

expressed as a stochastic optimization problem in which the expected profits are 

maximized while meeting demand and standard operating constraints. They showed that 

when an electric power producer has the option of trading electricity at market prices an 

optimal unit commitment schedule could be obtained by considering each unit separately. 

Therefore they describe solution procedures for the self-commitment of one generating 

unit only. This description is given for three certainty equivalent formulations of the 

stochastic problem. 

Another paper by "Valenzuela, J,• Majumdar, M" suggests the computation of the 

bivariate probability distribution of the marginal unit. They suggested that for the 

calculation of the probability distribution of the marginal unit there is a need to consider 

the all-possible combinations of generating units. 

Another paper by "Cohen, A.I" suggests how to consider the ramp limitation constraints 

in solving unit commitment problem. 

Another paper by "Wang, C; shahidehpour, S.M" suggests the effects of ramp rate limits 

on unit commitment and economic dispatch. 

Another paper by "Valenzuela, J; Mazumdar, M" highlights the need for considering the 

stochastic processes associated with the frequency and duration of generating unit outages 

for assessing the mean and variance of production costs under operating constraints. A 

numerical example based on a Markov model is given to show that Monte Carlo estimates 

of these quantities may be incorrect if only the forced outage rates are used in place of the 

stochastic parameters underlying the outage frequency and duration. Additionally it 

describes a variance reduction procedure whereby the Monte Carlo estimates can be 

obtained with a much smaller sample size than would be required. 

Another paper described by "kothari, D.P; Ahmad, A" suggests hybrid expert system 

dynamic programming approach to the power system unit commitment problem. Here 
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supplementing it with the rule based expert system enhances the scheduling output of the 

usual dynamic programming. 

Another paper by "Sasaki, H,• watanabe, M,• Kubokawa, J; Yorino, N; Yokoyama, R ". 

Suggests the possibility of applying the Hop field neural network to combinatorial 

optimization problems in power systems, in particular to unit commitment. They 

suggested that dedicated neural networks could handle a large number of inequality 

constraints included in unit commitment 

Another paper by "Kazarlis, S.A; Bakirtzis, A. G; Petridis, V" presented a genetic 

algorithm (GA) solution to the unit commitment problem. They suggests that genetic 

algorithms are general purpose optimization techniques based on principles inspired from 

the biological evolution using metaphors of mechanism such as natural selection, genetic 

recombination and survival of the fittest. They implemented a simple GA algorithm using 

the standard crossover and mutation operators. 

Another paper by "Mantawy, A.H; Abdel-Magid, Y.L; Selim, S.Z" suggests an application 

of the tabu search (TS) method to solve the unit commitment problem (UCP). The TS 

seeks to counter the danger of entrapment at a local optimum by incorporating a memory 

structure that forbids or penalizes certain moves that would return to recently visited 

solutions. New rules for randomly generating feasible solutions for the UCP are 

introduced. The problem is divided into two sub problems: a combinatorial optimization 

problem and a nonlinear programming problem. The former is solved using the tabu 

search algorithm (TSA) while the latter problem is solved via a quadratic programming 

routine. 

Another paper by "Baldick, R" formulate a generalized version of the unit commitment 

problem that can treat minimum up and down time constraints, power flow constraints, 

line flow limits, voltage limits reserve constraints, ramp limits, and total fuel and energy 

limits on hydro and thermal power generating units. 

Another paper by "Sheble, GB; Fand, GB" suggests several optimization techniques that 

have been applied to the solution of the thermal unit commitment problem. 
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Another paper by "Cohen, Al; Brandwahjn, V; Show-kan Chang" suggests that for many 

electric power systems the limitations of the transmission network strongly affects the 

system operation. In traditional regulated power systems, the operator follows operating 

rules and procedures to schedule generation so that the power system operates reliably. 

As the power industry moves towards open markets, it is necessary to develop power 

system schedules that produce high-quality non-discriminatory schedules that are 

consistent with secure operation. This paper describes the Security constrained unit 

commitment (SCUC) program that has been developed to meet this need. 

Another paper by "Bellman, R.E; Dreyfus, S.E" suggests the application of dynamic 

programming in solving unit commitment problem. 

Another paper by "Kazarlis, S.A; bakirtzis, A, G; petridis, V": suggests the application of 

genetic algorithm solution in solving the unit commitment problem,' 

Another paper by "Chen, C.L. and Wang, S.C" suggests an idea of branch and bound 

scheduling for thermal units. The details of branch and bound technique and simulated 

annealing and several other classical and non-classical techniques have been discussed in 

the coming chapter. 
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CHAPTER-2 

UNIT COMMITMENT PROBLEM 

2.1 INTRODUCTION 
Since human activities follow cycles, most systems supplying services to a large 

population will experience cycles. These include transportation systems, communication 

systems etc. The total loads on the system will generally be higher during day time and 

early evening when industrial loads are high, lights are on, and so forth, and lower during 

late evening and early morning when most of the population are asleep. In addition, the 

use of electric power has a weekly cycle, the load being lower over weekend than 

weekdays. Why is this a problem in the operation of an electric power system? Why not 

just simply commit enough units to cover the maximum system loads and leave them 

running? Note that to "commit" a generating unit is to "turn it on", i.e. to bring the unit up 

to speed synchronize it to the system, and connect it so that it can deliver power to the 

network. The problem with "commit enough units and leave them on line" is one of 

economics. It is quite expensive to run too many generating units. Turning units off when 

they are not needed can save a great deal of money. Hence, electricity generating 

companies and power systems has the problem of deciding how best to meet the varying 

demand for electricity. 

2.2 UNIT COMMITMENT PROBLEM 
The unit commitment problem is to schedule available generators (on or off) to meet the 

required loads at a minimum cost subject to system constraints. 
2.2.1 System Constraints 

1. The total output of all the generating units must be equal to the forecast value 

of the system demand at each time-point. 

2. The total spinning reserve from all the generating units must be greater than or 

equal to the spinning-reserve requirement of the system. This can be either a 

fixed requirement in MW or a specified percentage of the largest output of any 

generating unit. (The purpose of the spinning-reserve requirement is to ensure 

that there is enough spare capacity from the units on-load or 'spinning' at any 
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time to cover the accidental loss of any individual generating unit, or to meet 

higher than expected demands.) 

3. Minimum up time: Once the unit is running, it should not be turned off 

immediately. 

4. Minimum down time: Once the unit is decommitted (off), there is a minimum 

time before it can be recommitted. 

5. The output power of the generating units must be greater or equal to the 

minimum power of the generating units. 

6. The output power of the generating units must be smaller or equal to the 

Maximum power of the generating units. 

2.2.2 Cost Calculation 

Mainly, the total power production can be separated into two parts that is start-up cost 

and operating cost. 

1) Start-up cost is warmth-dependent, corresponding to the hot, warm or cold 

condition of each generating unit, as determined by the time that the unit has been 

off-loaded. Its value depends on the shutdown time; alpha, beta and i which can 

be obtained from Unit Data. 

SU, =a. +/3i (1—exp(—X' ,/z,)) 

SU,.' : Start-up cost of unit i at time interval t. 

at  : Combined crew start-up costs and the equipment maintenance costs of unit i. 

fl1 : Cold start-up cost of unit i 

r,.: Cooling time constant of unit i 

Xof  ; : Continuous offline time of unit i at time interval t. 

2) Each generating unit has a 'no-load' or fixed operating cost and a number of 

incremental operating costs, which can define a non-linear profile of operating 

costs. 



2.3 SOLUTION METHODS 

2.3.1 general background and concepts 
Various approaches have been developed to solve the optimal UC problem. These 

approaches have ranged from highly complex and theoretically complicated methods to 

simple rule-of thumb methods. The scope of operations scheduling problem will vary 

strongly from utility to utility depending on their mix of units and particular operating 

constraints. The economic consequences of operation scheduling are very important. 

Since fuel cost is a major cost component, reducing the fuel cost by little as 0.5% can 

result in savings of millions of dollars per year for large utilities. A very important task in 

the operation of a power system concerns the optimal UC considering technical and 

economical constraints over a long planning horizon up to one year. The solution of the 

exact long-term UC is not possible due to exorbitant computing time and, on the other 

hand, the extrapolation of short-term UC to long-term period is inadequate because too 

many constraints are neglected such as maintenance time and price increases, etc. Energy 

management systems have to perform more complicated and timely system control 

functions to operate a large power system reliably and efficiently. 

2.3.2 Solution Methods For Conventional UCP 

Well-known mathematical programming techniques such as integer programming, 

dynamic programming, branch and bound, Benders decomposition, and Lagrangian 

relaxation have been used to solve the UCP. For small problems, they can provide the 

optimal solution in a reasonable amount of time. However, for large problems, the 

computational time required to find the optimal solution becomes prohibitive. In such 

cases, the solution space is only partially searched and therefore there is no guarantee 

that the optimal solution can be found. Meta-heuristic methods such as simulated 

annealing tabu search, and genetic algorithms have also been used for solving these large 

and highly complex problems. 
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CHAPTER-3 

UCP UNDER DEREGULATION 

3.1 INTRODUCTION 
The unit commitment problem can be analyzed in two situations. The first one is the unit 

commitment before the restructuring of electric power systems, while the second one is 

based on the system after deregulation. Before the restructuring of electric power systems 

it is the point of generation part of utility and after deregulation it is the Point of 

Generation Company wishing to optimize their operation, which is minimum production 

cost for the first case and maximize profit for the second case. The restructuring and 

deregulation of electric power systems have resulted in market-based competition by 

creating an open market environment. A restructured system allows the power supply to 

function competitively, as well as allowing consumers to choose suppliers of electric 

energy. In a regulated framework, an electric utility serves the customers of a certain 

region under tariffs calculated to guarantee the recovery of its costs. In this situation, a 

power generating utility solves the UCP to obtain an optimal production schedule of its 

units to meet customer demand. The optimal schedule is found by minimizing the 

production cost over a given time interval while satisfying the demand and the set of 

operating constraints. The minimization of the production costs assures maximum profits 

because the power generating utility has no option but to reliably supply the prevailing 

demand. The price of electricity over this period is predetermined. Therefore; the 

decisions on the operation of individual units have no effect on the firms' revenues. 

Under deregulation the price of electricity is however no longer predetermined. The unit 

commitment decisions in this situation are based on the expected market price of 

electricity rather than on the demand although these variables are usually correlated. in a 

deregulated power systems there will be mainly three components exists one is power 

producer and second is power consumers and last one is independent system operator 

which acts as a mediator between power producers and power consumers ,usually the 

independent system operator will forecast the load demand at each and every instant of 

our and accepts the bids and prices from producers and consumers to meet this load 

demand. 
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3.2 STRUCTURE OF DEREGULATED POWER SYSTEM 

Power 	BIDS 
Producer 

b Independent 
System 
Operator 

(ISO) 

PRICE'J Power 
consumers 

Power 	 Power 
Producer 	 consumers 

BIDS 	 PRICES 

Figure 3.1:structure of deregulated power system 

As shown in figure the central bidding and pricing system in a deregulated environment 

involves mainly a group of power producers and power consumers and an independent 

system operator, which acts as a mediator between producers and consumers. In a 

deregulated power system Scheduling and price-setting is done centrally by the system 

operator to determine which generating units to start up, when to connect them to the 

network, how much they should generate when they are online, the order in which they 

should be shut down, how the bids and prices should be accepted and forecasted load 

demand. A unit is said to be `committed' when it is scheduled for connection to the 

system. 

Generally power producers and power consumers will submit their bids and prices to the 

power pool. And the independent system operator forecasts the load demand at each and 

every instant of hour and it will accepts the lowest bids to meet the load demand. In a 

pool-based competitive electricity market, bids offered by the generators are aggregated 

to form the supply curve. The prices are ranked and taken in an increasing order until the 

demand is satisfied. This is carried out every half-hour. The adjusted marginal price of the 

most expensive unit scheduled at each half hour is then used to set the market-clearing 

price for that half-hour. This price is known as the system marginal price (SMP), and 

every MWH traded during that period is sold at this price. Figure 3.2 shows how the 

SMP is determined. 
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Margmai cost [$/MWh] 

Renaud 	 Qw~nti y [MW) 

Figure 3.2: Determination of the system marginal price. 

3.3 UNIT COMMITMENT PROBLEM UNDER DEREGULATION 

Unit commitment problem under deregulation is particularly related with either power 

producer or generating company and it involves determining the optimum combination of 

available units (if a power producer is having M number of generating units) to serve the 

forecasted demand at minimum production cost and to obtain maximum profit, while 

observing all power system and unit constraints. The total production cost consists of fuel 

costs, transition costs. (start-up/shut-down costs) and no-load costs (when a unit is idle or 

on standby). 
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CHAPTER-4 

PROBLEM FORMULATION FOR UCP UNDER 
DEREGULATION 

4.1 UCP UNDER DEREGULATION 
In a decentralized electricity market or in a deregulated environment, the aim is not to 

minimize the total production cost of a particular generating utility company or a power 

producer, but to maximize its total profit. This can be achieved by considering each 

generating unit separately and maximizing its profit independent of other units. The 

estimated values of the market clearing prices over the scheduling period is used as an 

input to the optimization of the schedule of this single unit. Once the optimal schedule is 

obtained, it can be used to assess which offers would be the most profitable based on a 

forecasted price profile. In practice, however, it may not be possible for a utility to make 

all the trades recommended at each trading period. 

4.2 PROBLEM FORMULATION 

The unit commitment problem under deregulation can be stated as follows: 

"For an electric utility or a power producer with Mgenerating units, and given a certain 

market price profile it is required to determine the start-up/shut-down times and the 

power output levels of all the generating units at each time interval t over a specified 

scheduling period T. so that the generator's total profit is maximized, subject to the unit 

constraints." 

The price can be the actual market prices or simply an estimate of how the prices will 

fluctuate during the scheduling period. This is illustrated in figure 4.1 for an arbitrary 

price profile. The output of the unit and hence its fuel cost are assumed to be constant. 

The areas above the fuel cost give the profit made during periods when A! is higher than 

the fuel cost, while the areas below the .fuel cost give the loss incurred during periods 

when 	is lower than the fuel cost. A utility would try to maximize the gains and 

minimize the losses in order to make as large a net profit as possible. 
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Figure 4.1: profit and loss determination given an arbitrary price profile and 

Assuming a constant fuel cost. 

In practice, the fuel cost for a unit is not constant. The fuel cost, F;  (P,') of unit i in any 

given time interval t is a function of the power output, f!, of that unit during that time 

interval. The cost function is usually modeled as a second-order polynomial, as given by 

equation (F,`. (P,.') = a;  ( P`) 2  + b;  P' + c; ) Where ai  , b;  ,and, c;  are constants Alternatively 

it can be represented by a piece-wise linear cost function as shown in figure 4.2 For piece 

wise linear characteristics the cost function will be given by the formula as below 
toff 	 toff 

=[(inck * 	f')+SU,. °̀n  + 	nlik ]Ut 	 [4.1] 
ton 	 ton 

rock 	Incremental cost of segment k of unit i [$/MWh], k=1,2and 3;. 

nl k : 	No-load cost of segment k of unit i [$/h], k=1,2and 3; 

Pmin pIlIax : The lower and upper generation limits of unit i, respectively in 

[MW]; 

e' , e? : 	The first and second elbow points of the piece-wise linear cost 

Function of unit i, respectively [MW]. 
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Figure 4.2: piece-wise linear cost function 

The UCP under deregulation can be formulated by first defining the following: 

Let 	U; =0 if unit i is offlime during time interval t; 

Ul =1 if unit i is online during time interval t; 

x; = Cumulative up time during time interval t if X; >0; 

X ;̀ = Cumulative down lime during time interval t if X, <0; 

Thermal units are subject to a variety o)f constraints. The unit constraints that must be 

satisfied during the maximization process are: 

1.Unit limits-units can only generate between given limits: 

U,` P' < P` < Ui ]ax 
_ For i=1,2,3...N and t=1,2,3... T 	[4.2] 

2.Unit minimum up time constraint: 

0 	for i=1,2,3...N and t=1,2,3...T 	[4.3] 

Where T"" is the minim m up time constraint [h]. 

3. Unit minimum down time coinstraint: 

(— X,` ' -T `'°"'" )(U; -U") >_ 0 for i=1,2,3 ... N and t=1,2,3...T 	[4.4] 

Where T"° is the minimum down time constraint [h] 

4. Unit ramp-up constraint- the amount a unit's generation can increase in an 

Hour. 

P` -P`-' <R,'' For i=1,.2...N and t=1,2... T 	 [4.5] 

Where R,' is the ramp-up constraint [MW/h]. 
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5.Unit ramp-down constraint-the amount a units generation can decrease in an 

Hour. 

- P` < R1"°"" For i=1,2...N and t=1,2...T 	 [4.6] 

Where R1̀i0'"" is the ramp down constraint [MW/h]. 

Equations [4.5] and [4.6] apply to hours between start-up and shut down. 

The limit at start-up is given by: 

P,.` S Max (Rl,P""°) for i=l,2...N and t=1,2...T 	 [4.7] 

The limit at shut down is given by: 

P,.` _<Max (R,``°""`,P,") for i=l,2...N and t=l,2...T 	 [4.8] 

6.Unit status restrictions-certain units may be required to be online at certain time 

intervals (must run), or may become unavailable due to planned maintenance or 

forced outage (must not run), due to operating constraints, reliability 

requirements, or economic reasons. 

7.The initial conditions of the units at the start of the scheduling period must be 

considered. Plant crew constraints were not considered (thermal plants may have 

limits on the number of units that can be committed or decommitted in a given 

time interval due to manpower limits). Also, units may be derated (i.e. have their 

generating limits reduced), or required to operate at pre-specified generation 

levels. These restrictions were also ignored. The start-up cost in any given time 

interval t depends on the number of hours a unit has been off prior to start-up. 

This can be modeled by an exponential function of the form: 

Su,.` =a1 + 8, (1— exp(--Xo~ , / i; )) 
	

[4.9] 

Where 

Combined crew start-up costs and equipment maintenance costs [$1; 

f i : 	Cold start-up cost [$]; 

Xo~ ; : Number of hours the unit has been offline [h]; 

zi : 	Unit-cooling time constant [h]. 

The shutdown cost. SD;̀ , Is usually given a constant value for each unit per shutdown and 

in this dissertation is assumed to be zero. The total production cost, FT j , for each unit at 
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each time interval is the sum of the running cost, start-up cost and shutdown cost during 

that interval. 
'off 	 toff 

FTi =[(inc 	Pt)++SUton+ 	nik]vi 	 [4.10] 
ton 	 ton 

The profit at each time interval is calculated by subtracting the total . production cost 

during that interval from the revenue, as given by equation [4.11] .a negative profit 

indicates a loss - 

Profit: _(,t  *P,`)U, —Ft 
	

[4.11] 

(2t  * P,.` )U, = Revenue at time interval t. 

As mentioned previously, the prices, Af,  , can be actual market prices or an estimate of 

how they would fluctuate, and are given in [$/MWh]. The total profit for unit i is then 

given by 
T 

Total profit= Pr ofit; 
	

[4.12] 
t-► 

The main complication arises from the unit minimum up and down time constraints. 

When a unit is committed, it incurs a cost equal to its start-up cost. It then has to stay 

online until its minimum up time constraint has been satisfied before it can be shut down 

again. similarly, once a unit is decommitted, it has to remain offline for as long as its 

minimum down time constraint requires before it can be recommitted. 

Another difficulty lies in the time-dependent nature of the start-up cost. Although 

committing a unit at a particular point in the scheduling period may not be the most 

profitable choice at that instant, it may still yield a better solution over the entire study 

period compared to the case in which the unit remained offline at the aforesaid point in 

time. This option may have been totally lost during the optimization process though 

economic disqualification; i.e.if the feasible state associated with starting up the unit had 

been discarded because it incurred a loss during start-up. 

Thus the utility has to decide whether to: 

a) Keep a unit committed even when the price is low during a particular period, 

incurring fuel cost during that period with the hope that the profit made in the 

following period when the price is high, together with the savings achieved from 

not having to start up the unit at the start of or during the high-price period would 

offset the losses; or 
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b) Shut down the unit during the period of low price and incur a cost when starting 

up the unit for the following high-price period. 

Note that in the second case, the unit might have to forfeit any profit it would otherwise 

have been able to attain in the period of high price if its minimum down time constraint 

required that it remained offline during that period (or part of it). Similar decisions must 

be considered when moving from a high-price period to a low —price period. 

These considerations, compounded with the other unit constraints discussed above. 

Clearly render this a very complex problem, as making the wrong decisions could 

significantly reduce the profitability of the unit. Fortunately, there are several possible 

techniques that can be used to solve this problem. These will be discussed in the 

following chapter. 
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CHAPTER-5 

SOLUTION TECHNIQUES FOR UCP UNDER 
DEREGULATION 

5.1 INTRODUCTION 
The unit commitment problem under deregulation is a large, non-linear, mixed integer-

programming problem. A number of techniques can be used to solve this problem. These 

can be divided into two categories. 

• Classical methods, which include dynamic programming, simulated 

annealing, complete enumeration, lagrangian relaxation, and tabu search, 

interior point optimization. 

• Non-classical methods like artificial neural networks, fuzzy systems, 

genetic algorithms, evolutionary programming. 

5.2 CLASSICAL METHODS 

These are traditional methods that require sufficient modeling of the problem. In other 

words, the system model must be formulated with the capabilities of the chosen algorithm 

in mind. 

5.2.1 complete enumeration 

This ideal method involves an exhaustive trial of all the possible solutions and then 

choosing the best among them. All feasible solutions, i.e those that satisfy the unit 

constraints, are evaluated and stored. The solution with the highest total profit is taken as 

the optimal schedule. Given enough time this method is guaranteed to find the optimal 

solution. however, the length of time to complete this enumerative process and the amount 

of computer storage required usually render this method useless for its intended purpose. 

5.2.2 branch and bound 

Branch and bound (B&B) is a general search algorithm, which finds the optimal solution 

by keeping the best solution found so far. A partial solution is abandoned if it cannot 

perform better than the best. 

The method starts by considering the original problem (known as the root problem) with 

the complete feasible region. The lower bound and upper-bound procedures are then 

applied to the root problem if the bounds match, it means that an optimal solution has 
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been found and dividing it into two or more regions portions the procedure 

terminates. otherwise, the feasible region. Each being a strict sub-region of the original, 

which together cover the whole feasible region. These sub-problems become children of 

the root search node. This procedure is applied to each sub-problem recursively, thus 

generating a tree of sub-problems. An optimal solution found to a sub-problem will 

always be a feasible solution to the full problem, but not necessarily the global optimal. 

Since it is feasible, it can be used to `prune' the rest of the tree: if the lower bound for a 

node is greater than the best known feasible solution, then that node can be eliminated 

since no globally optimal solution can exist in the sub-space of the feasible. region 

represented by that node. In this way, the search proceeds until all nodes have been 

solved or pruned, or until some specified threshold is met between the best feasible 

solution found and the lower bounds on all unsolved sub-problems. In this latter case, the 

solution obtained will be sub-optimal. 

5.2.3 simulated annealing 
Simulated annealing is a generalization of a Monte Carlo method for examining the 

equations of state and frozen states of N body systems. The concept is- based on the 

manner in which metals recrystallise in the process of annealing. The generalization of 

this Monte Carlo approach to the profit maximization UC problem is straight forward, 

with the following analogies: 

1) Current state of the thermodynamic system=current solution to the problem. 

2) Energy equation for the thermodynamic system=objective function; and 

3) Ground state=global optimum. 

This method has the following advantages 

1) It produces a reasonably good solution that does not strongly depend on the 

choice of the initial solution, and is therefore able to improve a sub-optimal 

solution obtained using another method. 

2) It does not require complicated mathematical models of the UC problem, and it 

does not require excessive computer storage. 

5.3 ARTIFICIAL INTELLIGENCE METHODS 

5.3.1 artificial neural networks 

An artificial neural network is a system that loosely models the human brain, it attempts 

to simulate the multiple layers of simple processing elements called neurons, each neuron 

receives inputs from many neighboring neurons, but produce only a single output, which 
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is communicated to other neurons.however,the neurons of one layer are always connected 

to the neurons of at least another layer. Communication between linked neurons is via 

varying coefficients of connectivity that represent the strengths or weights of these 

connections. The output of each neuron is simply the sum of the products of all the inputs 

and their respective weights. Learning is accomplished by adjusting the weights to cause 

the overall network to output appropriate results. 

Designing an Ann consists of: 

1) Arranging neurons in various layers. 

2) Deciding the type of connections among neurons for different layers, as well as 

among the neurons within a layer. 

3) Deciding the way a neuron receives input and produces output. 

4) Determining the strength of connection within the network by allowing it to 

learn the appropriate values of connection weights by using a training data set. 

5.3.2 genetic algorithm 

Optimization techniques based on some of the biological process observed in nature are 

slowly finding widespread application as methods for solving complex problems, due to 

the robustness, flexibility and efficiency of biological systems. a good example of this 

genetic algorithms(GA's).GA's represent a population of individuals by equal-size strings 

or matrices of bits. Each population of individuals, termed `chromosomes' Represent a 

candidate solution to a specific problem. Simple transformations based on the process of 

natural selection (survival of the fittest), mating and reproduction, and genetic 

information recombination within the population through a set of main genetic operators 

such as crossover and mutation, are performed on the existing chromosomes to produce 

new, improved `offsprings', i.e.new problem solutions. These operators are very simple, 

involving nothing more complex than random number generation, string copying and 

partial string exchanging. 

When applying GA's to real—life problems, it is necessary to encode the problem solution 

using a chromosome representation. An evaluation function is needed to provide a 

`fitness' figure of merit for any chromosome in the context of the problem. 

A typical genetic algorithm involves the following cycle: 

1.initialize the generation counter to zero and randomly generate an initial 

population of chromosomes, each of which is called a `member `of the population. 

2) Evaluate the fitness of each member in the population. 

3) Select pairs of members for fitness-proportionate mating and reproduction. 
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4) Perform crossover and mutation on the selected members to create new 

offspring. 

5) Form a population for the next generation and delete the old one. 

6) If the process has converged, or if the generation counter exceeds some pre-

declared maximum. Stop the process and return the fittest member as the solution. 

Other wise, go to step 2. 

For the unit commitment problem under deregulation the fitness of each member is 

simply measured by its profit level, i.e.the higher the total profit the fitter the member. 
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CHAPTER-6 

APPLICATION OF LAGRANGIAN RELAXATION 
METHOD AND DYNAMIC PROGRAMMING 

6.1 APPLICATION OF LAGRANGIAN RELAXATION METHOD 

6.1.1 modeling the operation of generating units 

In determining an optimal commitment schedule, there are two decision variables P' and 

U,` where F' denotes the amount of power to be generated by unit i at time t and U,` is the 

control variable whose value is chosen to be "1" if the generating unit i is committed at 

hour t and "0" otherwise (of course if U; =0,then P,1̀  =0) the cost of the power produced 

by the generating unit i depends on the amount of fuel consumed and is typically 

approximated by a quadratic cost function and later it was approximated by piece wise 

linear cost function. The start up cost can be calculated using equation 4.9. In addition to 

startup cost the generating unit must satisfy all the constraints (minimum up time, 

minimum down time, ramp up and ramp down, minimum power and maximum power 

generation) as discussed in the previous chapter. 

6.1.2 decomposition into sub-problems 

The objective function is total profit, revenue minus cost over the interval [1,T]. The 

revenue during hour t is obtained from supplying the quantity stipulated under the long-

term bilateral contracts and by selling surplus energy (if any) to the power pool at the 

market price, 2` ($/MWh). The cost includes those of producing the energy, buying short 

falls (if needed) from the power pool, and the start-up costs. Defining the amount to be 

sold under the bilateral contract by 1, (MWh), the contract price by R ($/MWh), and the 

amount of energy bought or sold from the market by E, , we solve the optimization 

problem by maximizing the expected profit over the period [1,T]. (A positive value of Er 

indicates that Er (MWh) is bought from the power poll and a negative value indicates that 

— Er (MWh) is sold to the pool. The objective function is given by: 

T 	 M 

Max E{J{l,R-2`Er —~FT,} 	 [6.1] 
r=t  i=t 
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This is under the case that the cost function is represented by piece wise linear cost 

characteristics. If cost function is same as in the form of quadratic cost function then the 

objective function will become 
T 	 M 

Max E{ {lt R—~,t E, — [CFi (Pi")+SU; (X ;t-')(1—U )]U } 
t=1 	 i—1 

Where CF; (Pi') FT,; (P.t) = ai (Pt)2 + bi Pt +c1 but we usually consider that the cost 

function will be represented by piece wise linear cost characteristics because this 

representation will fetch us to take the values of cost function as discrete values. And 

hence the objective function will be given by equation (6.1) 

Since the quantity lt R is a constant, the optimization problem reduces to: 

T 	 M 

Max E{Y { — 2`Et — FT ; } 	 [6.2] 
t=1  i=t 

toff 	 toff 

Where FT i = [(inc k Z J-') + Sul. + Z nlik ]U, as given by equation (4.10) 
ton 	 ton 

Subject to the following constraints (for t=l ...T, i=1...M) 

M / 

1) Load: 	Et + J P,t = I, 	 [6.3] 

2) Capacity limits: Ut P " < l,t U , pnnatc 	
[6.4] 

3) Minimum up time: U, >_ 1(1 —< X' <— t,'" —1) 	 [6.5] 

4) Minimum down time: U, <-1— I(—tf°"' +1 <— X;-' <_ —1) 	 [6.6] 

Where I(X)=0 ifXis false, 
=1 ifXis true. 

And 	Uj =1 if X,.t >0 
0 if X,'<0 

After substituting in the objective function Et +EPt = 1, obtained from equation 
i=t 

6.4 we can rewrite equation 6.3 as follows. 
T 	M 	M 

Max E{ {— t' (l —ZPi')—ZFT} 	 [6.7] 
t=1  i=1  i=1 

Which after removing the constant term is equivalent to 
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T M 
Max E{y, E)JP,' —FT i } 	 [6.8] 

Subject to the operating constraints 6.5, 6.6,and 6.7 because these constraints refer to 

individual units only. Equation 6.8 shows that the optimization problem is now separable 

by individual units. The optimal solution can be found by solving M-decoupled sub 

problems. Thus the sub problem for the i th unit is 
T 

Max E{E 1, P,.` — F 1 } 
	

[6.9] 

Subject to the operating constraints of the its' unit. Equation (6.9) is similar to the sub-

problem obtained in the standard version of the UCP using the lagrangian relaxation 

method, except that the values of Lagrange multipliers are now replaced by the market 

price of electricity Xt  and the expected value is being maximized. When the optimization 

sub-problem is solved for a particular unit, we assume that the market consists of N 

generating units (N will be much larger than Al). The generating unit for which the sub-

problem is solved is excluded from the market. Excluding a unit from the market does not 

influence the spot price because of the existence in all likelihood of a number of 

generating units with almost equal marginal costs, ready to produce if any of 

The infra-marginal (or marginal) units are unavailable. 

6.2 THE PARAMETER X 

Usually the parameter A is a Lagrangian multiplier, but in this deregulated case this 

parameter is considered to be the market price (whether it is observed price or a 

calculated one). Fig 6.1 shows how the parameter A is adjusted in real life situation to 

solve the unit commitment problem In this method usually the coordinator sends a set of 

Lagrange multipliers A', to each generating unit. Each unit then tries to minimize its total 

production cost based on the fixed values of A'. If during the time interval t, the 
M 

forecasted demand is L` and if P` > L` , then the coordinator decreases A'. Conversely 

M 

P,` <L' then the coordinator increases A.'. The values of A` are adjusted in this manner 

until the balance between demand and supply is achieved during each time interval to get 
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the optimum schedule. The application of lagrangian relaxation method in solving unit 

commitment problem is described in greater detail in [3]. 

Fig 6.1: application of lagrangian relaxation method for single unit 

Considering M units 

6.3 SINGLE UNIT DYNAMIC PROGRAMMING 

Dynamic programming (DP) was the earliest optimization-based technique to be applied 

to the UC problem and is still used extensively all over the world. The DP technique 

employs a systematic searching algorithm that tries to achieve the optimal solution 

without having to access all the possible combinations. The unit commitment problem 

can be solved using a dynamic programming algorithm. This technique can be applied 

because: 

1) The problem satisfies the principle of optimality if all parts of an optimal solution 

are themselves optimal solutions to sub-problems. 

2) The number of relevant sub-problem depends on a limited number of smaller sub-

problems. 

3) The number of relevant sub-problems is limited by the unit constraints. 

6.3.1 the dynamic programming algorithm 

The unit commitment problem can be solved in a bottom-up manner, whereby: 

1) The smallest sub-problems are solved first. This corresponds to finding the 

feasible states (whether 0 or 1), the associated nominal generation or dispatch. 

And the profit that it would entail for each unit at each time interval. 

2) These solutions are then combined to solve larger sub-problems. In this case the 

individual profits of each feasible solution path are added together to give the total 
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Profit over the scheduling period, after which the path with the highest total profit 

is determined. This gives the optimal schedule for that unit for a given price 
profile. 

3) Finally, the individual maximum total profits are summed over all the units in the 

utility to give its maximum total profit for a given price profile. 

The dynamic programming algorithm is given as follows: 

• Specify the rule that relates large problems to small problems. 

• Store the partial feasible solutions of each sub problem. 

• Extract the final solution for main problem considering all solutions from sub 
problems. 

6.3.2 Single Unit Dynamic Programming 

The objective function for the dynamic programming algorithm would be the one that 

gives the total profits for a unit i over the scheduling period. This was defined in equation 

(4.12) and can be rewritten as: 
T 	 toff 	 toff 

Total profit i _ J [(At * P`U) — [inck * ~ Pt ) + SU,.`°" + nl,'` ]U 	[6.10] 
t=1 	 ton 	 ton 

The aim is to find the maximum of this function. This is easily formulated as a single unit 

DP problem, as illustrated in figure6.2 

iTr ~1~ 

Uf =o 
t=o 	 t=T 

Figure 6.2: single unit dynamic programming problem 

When U;t =0,the value of the function to be maximized is trivial and equals to zero. 

When U; =1 ,the function to be maximized is: 

toff 	toff 

Max [(2` *Pt )—[inck * Pt) +Znik )] 	 [6.11] 
ton 	ton 

The start-up cost, SU,t°n , is neglected. As it is only added at instances when the unit is 

turned on. The maximum of this function is found by taking its first derivative: 

d /dp, [(2tp;)— [inc k * ]t) +I nik jj 4t —inc;` = 0 	[6.12] 
ton 	ton 

Giving A! = inck 
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However, the incremental costs of a unit can only take on discrete values if the unit 

characteristics are represented by a piece-wise linear cost function. Therefore, the output 

power of each unit, F' is determined as follows: 

• If A! <— inc' 	then P,.` = pmin 	 [6.13] 

• If inc.` <A! <_ inc2 	then P. f  = e.' 	 [6.14] 

• If inc? <A! _< inc! 	then P,.` = e; 	 [6.15] 

• If A! > inc, 	then P = p°'a" 	 [6.16] 

Equations [6.13] to [6.16] only apply if the unit ramp rates are non-binding. i.e. in cases 

where the ramp-up and ramp-down .rates are very large. Otherwise, the generation must 

comply strictly with the ramping constraints, regardless of the profit or loss level, to avoid 

shortening the life of the turbine due to excessive ramp rates. 

6.3.3 MODELLING THE EFFECTS OF T,."P and T ìown  

X ;̀ And U; , are related by the following difference equation: where X ;̀ is the number of 

hours the unit has been on or off line and U; denotes the state of the unit either 0 or 1. 

If X,' -'=T," and U; =1 	 [6.17] 

X;-' +1 	If X,-̀ >_ 1 and U =1 	 [6.18], 

X= 	1, 	If X;-' _ Ti 	and U,` =1 	 [6.19]" 

If X,` -̀  _ _T b0 and Ut =0 	 [6.20] 

Xi-`-1 	If X; ' <_-1 and U,' =0 	 [6.21] 

—1 	If X'=T"Pand U,.'=0 	 [6.22] 

Where X,.`-' =T "P (— T ` f°"") corresponds to case in which the unit is on (off) for at least 

T,'' hours. Figure6.3 illustrates the state transition diagram for the case in which T,.UP is 2 

hours and T/'°""' is 3 hours. It is simply an expanded version of that given in figure6.2 But 

shown here only for 2 time intervals, and is used to model the effects of the minimum up 

and down time constraints. How ever, because of the minimum up and down time 

constraints, not all states are feasible. Also if a state can be reached by more than one 
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path, then from therom of optimality [ 14] only the one with the highest cumulative profit 

needs to be preserved; the others can be eliminated. These not only reduce the size of the 

actual search space, but also the program run time. 

X States 

`ON' STATES 

`OFF' STATES 

 

T  T+1 

Figure 6.3:state transition diagram for X states for Ti uU =2 hours and T,.`~° " =3 hours 

Here is an example of how we consider the up and down time constraints while solving 

unit commitment problem 

Example: consider the total scheduling period to be 12 hours i.e. T=12; 

So for a particular unit there will be 2T-' combinations can be possible for the entire time 

period T. out of all these combination we will consider only the combinations which are 

satisfying the minimum up and down time constraints using equations [6.17] to [6.22] 

after considering minimum up and down time constraints we will get the feasible 

combinations which are satisfying up and down time constraints out of a112T-' 

combinations. For example: considering some of the possible states for the above Ti" =2 

hours and T/'°'"" =3 hours and time period for 12 hours. 

1) There will be 2 12-̀  =4095 states are possible, out of all these states only some of 

the states are feasible states, feasible states in the sense that which satisfy up and 

down time constraints. 

Considering some of the states: here only five states have shown for an idea 
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(TABLE-I) 
Example For five combinations Considering Up And Down Time Constraints 

1 1 1 1 1 0 0 0 0 0 1 1 0 
2 0 0 0 0 1 1 1 1 0 0 0 1 

3 0 0 1 1 1 1 0 0 1 L 1 0 

4 1 1 1 1 1 0 0 0 0 1 1 1 

5 1 1 1 1 0 0 0 1 1 .1 0 0 

Out of all these five states we have to see which combinations are feasible. 

Considering the first state. U(1) If we calculate the X states for this combination assuming 

initial state at time zero is in off state of —3 hours, then the X states will become X (1)= 

©o000000~ ©0~ 

Considering the second state U(2) and X (2) = 

000000 ©00 ©0® 

Considering The Third State U(3) and X (3) 

00000 ©~0 ©~0~~ 

This is not a feasible state because it is not satisfying minimum down time constraint. 

Considering The Fourth State U(4) and X (4) 

00000000 ©00 

This is also feasible state and if we calculate X states for this it will be 

Considering the Fifth State U(5) and X (5) 

00~ ©00000~~00 

This is also feasible state and X values for this combination will be 

So out of all five combinations one combination is not satisfying the up and down time 

constraints. Like this manner we will calculate all the feasible states for the entire time 

period. As mentioned already the up and down time constraints are useful for finding all 

feasible states from all the possible combinations. 
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6.3.4 MODELLING THE EFFECTS OF R,."n and R;̀ '°"". 

To model the effects of the ramping constraints in the one-unit DP algorithm, the 

following approach can be used [4]. 

Let Y.` =number of hours until shut down. 

Ymax =Maximum number of hours required to ramp down from Pm to 0 MW. 

To determine Ymax the following algorithm can be employed: 

1) Start with Y,.m  =0, Rl;̀ own =Pmax 

2) Ring' = R dOW, - R down * At 

ymax _ ,max +1; 

3) Is R~b0wn >P,.m'" 

Yes 	GO TO 2 

NO— GO TO 4. 

4) IsR 0 t>0 

YES-- Ymax=Y",ax+l; 

NO_ ► END. 

6.3.4.1 calculation of y states and ramp down logic 

Y`, Y max , U` Are related by the five prong equations as below 

Ymax 	If Y,.`-'=0 and Ut =1 

If Y.1-1 =1,n,ax and Y.t =0 

Y` = 	< Y -̀' -1 	if Y,.`-' = Ymax and V;̀  =1 

Y`-̀ -1 	if Y,.`-' <Ymax 

0 	 if U,.` =0 

Where Vi' =1 is the decision to shut down in (Y~max -1) hours. The Y states need only be 

considered if a state is within (Ymax -1) hours of meeting its minimum up time constraint. 
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Figure 6.4 illustrates the state transition diagram for the case in which T7' =2 hours and 

T'" =4 hours and Y"'ax =2 hours 

ON STATES 

OFF STATES 

-4  
Fig 6.4: state transition diagram for X and Y states 

If unit i is to be shut down in Y.` hours at time t, then: 

I,max 	 If Y.t = y f'ax 

Rai? (Y`) 	= 	Max (Pmin Rt(" (Yt+1)- R1~ro,~, *Ot 	If0<Yt<Y,nax 

0 	 If 

Where R,`jn;",.t (Y1̀ ) is the ramp-down limit as a function of state Y,.`, i=1,2,3...M and 

t=1,2,3...T.the generation P.` must satisfy the following: 

IF' Rule (X ;̀ ) 	 If R mu (X1 )<Rii°n : (Y.` ) 

R/Onn(Y`)<F' <RU (XI) 	 If Reim1(Xrt )~ R~in (Y')r r 	m«  
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Figure 6.4 illustrates the state transition diagram for the case in which T °) =2 hours and 

Til" "` =4 hours and Y"'ax =2 hours 

ON STATES 

OFF STATES 

-4  
Fig 6.4: state transition diagram for X and Y states 

If unit i is to be shut down in Y' hours at time t, then: 

p max 	 If Y: 
= ymax 

R<<1oWt(Y`) 	= 	Max (p.min ~R(im~(Y`+1)- R~~ro, 0t 	If0<Y.<<h max 

0 	 If ),.` =0 

Where R1(Y`) is the ramp-down limit as a function of state Y`, i=1,2,3...M and 

t=1,2,3... T.the generation Pi t must satisfy the following: 

Pit ~ R 11 (x;) 	 If Ri m,1(X; )< R; ion () .t) 

Ri m a (Y') ~ F' ~ Rli n11(X,`) 	 If mi, (X,') ? Rim (Y~ ) 
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6.3.4.2 ramp-up logic: 

If unit i has been on for X' hours at time t then: 

Max (R , pmin) 	 if X =0 

R, nit (X,r + 1) _ 

Min 	R; 
f 

mit (X') + R7"), 	if X~ >_ 1 

Where R ,,,,1 (X,) is the ramp-up limit as a function of state X, for i=1,2,3...M and 

t=1,2,3. .T.After considering all the ramp up and ramp down logic we can able to 

calculate the power generated by the unit at each time interval (F.'). After finding P' we 

have to calculate the profit associated with the unit for the time being considered. The 

profit will be calculated using the equation 
T 	 toff' 	 toff 

Total profit =[2' * P,.'U,tt ) — [(inc, * 	P') + SU,' + 	nl;k ]U,' ] 
t=1 	 ton 	 ton 

While calculating the profit we have to consider the following important cases. 

• If 2' <— inc, 	then P,' = pm'" 

• If inc, <2' S inc? 	then P,.` = e,' 

• If inc? <2' <_ inc, 3 	then P.' = e? 

• If X > inc; 	then Pt = pLnax 

[6.23] 

So after considering all the feasible states we can able to calculate the power and profit at 

each and every instant of hour and finally we can able to calculate the cumulative sum of 

the profit of all intervals for each and every unit and finally we will add all these profits 

of each unit to maximize the profit for entire system, and here each sub problem solution 

is optimum solution to them selves so the final solution after considering all the units will 

give the optimum profit. We have to consider the different segments of incremental cost 

functions for the profit calculation of equation (6.3) i.e. 

If 2' —< inc,.' 	then inc;` = inc,1 

If inc < <2' <_ inc? 	then inc,"—inc 

If inc? <2' <_ inc 3 	then inck =inc? 

If A > inc, 	then inc'` = inc3 
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6.4 FLOW CHART FOR THE PROGRAM ALGORITHM 

Begin 

Data 	 Read data for all units and read files 	 in data for market price profile 

I Total generator profit=0 

Perform dynamic programming in one Variable 

P,.` = min(P,.max , R ul m, (X it ), Ri~,lin It (Y'` 

Yes 	 No 
SELECTION 

For the optimal path determine all 

feasible F 1 i 

I 	Trace the optimal solution 

Yes 
N=1& t 5 T 

Print the optimal solution 	 I No 

Write the optimal 
Solution to a text file 

Total generator profit=total generator profit + total profit 

No 
i=i+1 

RW 

Yes 

Write the total generator 
profit to a text file 

Figure 6.5: flow chart 	End 
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CHAPTER-7 

RESULTS AND DISCUSSION 

7.1 RESULTS FOR STATES (U), POWER (P), PROFIT FOR 26 GENERATING 

UNITS: 

TABLE II 
STATES (U) FOR 1-26 UNITS 

©00000 ©0 ©0000 
©0000 © ©00~ ©000 
©00000 ©000 ®0 ©0 
00000 ©00 ©0000© 
©000 © ©00 ©0 © ©00 
00000~~00000 ©~0 
00000 ©000 ©00000 

0~~0 ©00© ©000© 
00000000000 ©00 
m000 © ©00 ©00000 ! 
®0000000 ©0 ©0 ©0~ 
®000 ©00000 ©0 ©00 
®0 ©0000000000 
~00 ©0 ©0 ©0000 ©© 
®00000 ©00 ©0 ©00 
m000 ©0000000000 
~~00 ©0~0 ©0 ©000® 
00 ©0~0 ©00 ®0000 

~000~ ©00© ©0000. 
®00© U -.-© - 
® ©000 ©© ©000 ©0 ©0 

®00 ©0~ ©00 ©00 ©00 
m ©0000 ©0000 00EU 
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TABLES-III, IV 
POWER (pt) 

Unit T=1 2 3 4 5 6 7 8 
1 0.0 0.0 0.0 4.0 8.0 12.0 12.0 12.0 
2 0.0 0.0 0.0 4.0 8.0 12.0 12.0 12.0 
3 0.0 0.0 0.0 4.0 8.0 12.0 12.0 12.0 
4 0.0 0.0 0.0 4.0 8.0 12.0 12.0 12.0 
5 0.0 0.0 0.0 4.0 8.0 12.0 12.0 12.0 
6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 
7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 

10 15.2 30.2 45.2 60.2 75.2 76.0 76.0 76.0 
11 15.2 30.2 45.2 60.2 75.2 76.0 76.0 76.0 
12 15.2 30.2 45.2 60.2 75.2 76.0 76.0 76.0 
13 0.0 20.0 40.0 60.0 76.0 76.0 76.0 76.0 
14 0.0 0.0 25.0 50.0 75.0 100.0 100.0 100.0 
15 0.0 0.0 30.0 60.0 90.0 100.0 100.0 100.0 
16 0.0 0.0 30.0 60.0 90.0 100.0 100.0 100.0 
17 0.0 0.0 100.0 155.0 155.0 155.0 155.0 155.0 
18 0.0 0.0 150.0 155.0 155.0 155.0 155.0 155.0 
19 0.0 0.0 150.0 155.0 155.0 155.0 155.0 155.0 
20 0.0 0.0 150.0 155.0 155.0 155.0 155.0 155.0 
21 0.0 0.0 0.0 197.0 197.0 197.0 197.0 197.0 
22 0.0 0.0 0.0 197.0 197.0 197.0 197.0 197.0 
23 0.0 0.0 0.0 197.0 197.0 197.0 197.0 197.0 
24 0.0 0.0 200.00 350.00 350.00 350.00 350.00 350.00 
25 250.00 400.00 400.00 400.00 400.00 400.00 400.00 400.00 
26 250.00 400.00 400.00 400.00 400.00 400.00 400.00 400.00 

cm 



TABLE- IV 
Unitl T=9 10 11 12 13 14 

2 12.0 12.0 12.0 12.0 12.0 12.0 
3 12.0 12.0 12.0 12.0 12.0 12.0 
4 12.0 12.0 12.0 12.0 12.0 12.0 
5 12.0 12.0 12.0 12.0 12.0 12.0 
6 12.0 12.0 12.0 12.0 12.0 12.0 
7 16.0 20.0 20.0 10.0 0.0 0.0 
8 16.0 20.0 20.0 10.0 0.0 0.0 
9 16.0 20.0 20.0 10.0 0.0 0.0 

10 16.0 20.0 20.0 10.0 0.0 0.0 
11 76.0 76.0 76.0 76.0 76.0 76.0 
12 76.0 76.0 76.0 76.0 76.0 76.0 
13 76.0 76.0 76.0 76.0 76.0 76.0 
14 76.0 76.0 76.0 76.0 76.0 76.0 
15 100.0 100.0 100.0 100.0 100.0 100.0 
16 100.0 100.0 100.0 100.0 100.0 100.0 
17 155.0 155.0 155.0 155.0 155.0 155.0 
18 155.0 155.0 155.0 155.0 155.0 155.0 
19 155.0 155.0 155.0 155.0 155.0 155.0 
20 155.0 155.0 155.0 155.0 155.0 155.0 
21 197.0 197.0 197.0 197.0 197.0 197.0 
22 197.0 197.0 197.0 197.0 197.0 197.0 
23 197.0 197.0 197.0 197.0 197.0 197.0 
24 350.00 350.00 350.00 350.00 350.00 350.00 
25 400.00 400.00 400.00 400.00 400.00 400.00 
26 400.00 400.00 400.00 400.00 400.00 400.00 
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TABLES V, VI, VII, VIII 
PROFIT 

Time Unit 
1 

Unit 
2 

Unit 
3 

Unit 
4 

Unit 
5 

Unit 
6 

Unit 
7 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
4 -25.088 -25.644 -26.409 -27.056 -27.703 0.000 0.000 
5 24.093 22.976 21.637 20.457 19.287 0.000 0.000 
6 37.397 35.671 33.696 31.965 30.267 0.000 0.000 
7 100.757 99.031 97.056 95.325 93.627 0.000 0.000 
8 174.197 172.471 170.496 168.765 167.067 -118.404 -119.650 
9 292.037 290.311 288.336 286.605 284.907 113.816 111.497 

10 291.797 290.071 288.096 286.365 284.667 170.429 167.573 
11 228.797 227.071 225.096 223.365 221.667 65.429 62.573. 
12 161.837 160.111 158.136 156.405 154.707 -80.204 -81.718 
13 94.997 93.271 91.296 89.565 87.867 0.000 0.000 
14 33.317 31.591 29.616 27.885 26.187 0.000 0.000 



TABLE VI 
Time Unit 

8 
Unit 

9 
Unit 

10 
Unit 

11 
Unit 

12 
Unit 

13 
Unit 

14 
1 0.000 0.000 -230.540 -231.149 -231.756 0.000 0.000 
2 0.000 0.000 -202.379 -203.532 -204.653 -249.012 0.000 
3 0.000 0.000 -54.605 -56.376 -58.071 -60.295 -433.484 
4 0.000 0.000 618.699 616.235 613.907 609.147 148.817 
5 0.000 0.000 1258.344 1255.104 1252.080 1262.387 782.061 
6 0.000 0.000 1211.3 99 1208.118 1205.057 1201.587 1019.805 
7 0.000 0.000 1612.679 1609.398 1606.337 1602.867 1547.805 
8 -120.890 -122.142 2077.799 2074.518 2071.457 2067.987 2159.805 
9 109.079 106.721 2824.119 2820.838 2817.777 2814.307 3141.805 

10 164.567 161.655 2822.599 2819.318 2816.257 2812.787 3139.805 
11 59.567 56.655 2423.599 2420.318 2417.257 2413.787 2614.805 
12 -83.252 -84.781 1999.519 1996.238 1993.177 1989.707 2056.805 
13 0.000 0.000 1576.199 1572.918 1569.857 1566.387 1499.804 
14 0.000 0.000 1185.559 1182.278 1179.217 1175.747 985.805 



TABLE-VII 
Time Unit 

15 
Unit 
16 

Unit 
17 

Unit 
18 

Unit 
19 

Unit 
20 

Unit 
21 

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 -457.500 -460.800 -73.271 38.770 33.475 28.597 0.000 
4 206.705 200.685 2039.409 2033.395 2027.883 2022.814 -185.744 
5 964.175 955.890 3017.459 3011.445 3005.933 3000.864 1373.953 
6 1010.465 1001.425 2893.459 2887.445 2881.933 2876.864 1216.353 
7 1538.465 1529.425 3711.859 3705.845 3700.333 3695.264 2256.513 
8 2150.465 2141.425 4660.459 4654.445 4648.933 4643.864 3462.153 
9 3132.465 3123.425 6182.559 6176.545 6171.033 6165.964 5396.693 
10 3130.465 3121.425 6179.459 6173.445 6167.933 6162.864 5392.753 
11 2605.465 2596.425 5365.709 5359.695 5354.183 5349.114 4358.503 
12 2047.465 2038.425 4500.809 4494.795 4489.283 4484.214 3259.243 
13 1490.465 1481.425 3637.459 3631.445 3625.933 3620.864 2161.953 
14 976.465 967.425 2840.759 2834.745 2829.233 2824.164 1149.373 



TABLE-VIII 
Time Unit 

22 
Unit 
23 

Unit 
24 

Unit 
25 

Unit 
26 

1 0.000 0.000 0.000 -896.475 -859.995 
2 0.000 0.000 0.000 222.758 215.850 
3 0.000 0.000 18.408 2114.758 2107.850 
4 -206.396 -227.930 4755.457 6578.758 6571.850 
5 1353.302 1331.768 6963.957 9102.758 9095.850 
6 1195.702 1174.168 6683.957 8782.758 8775.850 
7 2235.862 2214.328 8531.957 10894.758 10887.850 
8 3441.502 3419.968 10673.957 13342.758 13335.850 
9 5376.042 5354.508 14110.957 17270.758 17263.850 

10 5372.102 5350.568 14103.957 17262.758 17255.850 
11 4337.852 4316.318 12266.457 15162.758 15155.850 
12 3238.592 3217.058 10313.457 12930.758 12923.850 
13 2141.302 2119.768 8363.957 10702.758 10695.850 
14 1128.722 1107.188 6564.957 8646.758 8639.850 
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TABLE IX 
Final Solution (For All (261 Units) 

UNIT TOTAL PROFIT FOR (T=14) HOURS 
1 1414.134 
2 1396.929 
3 1377.049 
4 1359.646 
5 1342.546 
6 151.066 
7 140.274 
8 129.071 
9 118.107 
10 '19122.986 
11 19084.224 
12 19047.897 
13 19207.385 
14 18663.634 
15 18795.565 
16 18696.600 
17 44956.134 
18 45002.021 
19 44936.085 
20 44875.456 
21 29841.747 
22 29614.585 
23 29377.709 
24 103351.435 
25 132119.379 
26 132066.055 

TOTAL PROFIT 776190.00($/MWh)  

7.2 DISCUSSION ABOUT RESULTS 

Based on the results obtained, the following general observations can be made: 

• The unit constraints were respected in all cases. 

• A negative net profit was obtained whenever the unit was brought online, due to 

the actual profit being amortized by the start up cost. 

As shown above in the profit tables if a negative value of profit is there that means it is a 

loss incurred at that time due to that particular unit if profit value is positive it is 

obviously a gain for the producer or a utility. So considering all the units we. calculated 

the best profit for the whole system. 
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CHAPTER-8 

CONCLUSIONS 

Unit commitment problem under deregulation was addressed in this dissertation. 

In solving this problem maximization of the profit for a single power producer was stated 

as the Motivation for this software project the objectives that it sought to achieve were 

outlined from the outset, in the first chapter of the dissertation. The foundation for 

understanding unit commitment problem was laid in the introductory chapter. 

The second chapter provided an idea of unit commitment problem constraints and 

costs associated with the problem and solution techniques that are useful for solving 

conventional unit commitment problem. 

The following chapter presented an idea of unit commitment problem under 

deregulated environment and also gave the idea of structure of deregulated power system 

and calculation of marginal price or market clearing price. 

The fourth chapter provided an idea of problem formulation for UCP and 

constraints associated with the main problem. 

The fifth chapter suggested some of classical and non classical solution techniques 

for solving the unit commitment problem under deregulation, which includes explanation 

about some of the classical methods like simulated annealing, branch and bound and 

some of the non classical methods like artificial neural networks and genetic algorithm. 

The sixth chapter focused on the application of lagrangian relaxation method for 

decomposition of main problem into several sub problems and application of dynamic 

programming in solving these single units sub problems. 

The seventh chapter provided the test results for the chosen 26 generating units for 

Profit, Power and state. 
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APPENDIX 

In this dissertation work I have considered that the power producer is having 26 

generating units and the data for this 26 units had taken from [5]. And is given below. 

TABLE (X- XIII) 
DATA FOR 1-26 UNITS 

Data Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 

P (min) 2.40 2.40 2.40 2.40 2.40 4.00 4.00 

P (max) 12.00 12.00 12.00 12.00 12.00 20.00 20.00 

nil 24.049 24.055 24.262 24.379 24.505 117.307 117.638 

T (up) 0 0 0 0 0 0 0 

T(down) 0 0 0 0 0 0 0 

X (0) -1 -1 -1 -1 -1 -1 -1 

Alpha 0 0 0 0 0 20 20 

Beta 0 0 0 0 0 20 20 

Tao 1 1 1 1 1 2 2 

Rup 4 4 4 4 4 .8 8 

Rdown 3 3 3 4 4 10 10 

Y(0) 0 0 0 0 0 0 0 

a 0.02533 0.02649 0.02801 0.02842 0.02855 0.01199 0.01261 

b 25.5472 25.6753 25.8027 25.9318 26.0611 37.5510 37.6637 

c 24.3891 24.4110 24.6382 24.7605 24.8882 117.7551 118.1083 



TABLE (XI) 

Data Unit 8 Unit 9 Unit 10 Unit 11 Unit 12 Unit 13 Unit 14 

P (min) 4.00 4.00 15.20 15.20 15.20 15.20 25.00 

P (max) 20.00 20.00 76.00 76.00 76.00 76.00 100.00 

n11 117.950 118.286 76.414 76.473 76.558 76.602 210.108 

T (up) 0 0 3 3 3 3 4 

T down 0 0 2 2 2 2 2 
X (0) -1 -1 -3 -3 -3 -3 -3 

Alpha 20 20 50 50 50 50 70 

Beta 20 20 50 50 50 50 70 

Tao 2 2 3 3 3 3 4. 

Rup 8 8 15 15 15 20 25 

Rdown 10 10 15 15 20 20 25 

Y(0) 0 0 0 0 0 0 0 

a 0.01359 0.01433 0.00876 0.00895 0.00910 0.00932 0.00623 

b 37.7770 37.8896 13.3272 13.3538 13.3805 13.4073 18.0000 

c 118.4576 118.8206 81.1364 81.2980 81.4641 81.6259 217.8952 
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TABLE XII 

Data Unit 15 Unit 16 Unit 17 Unit 18 Unit 19 Unit 20 Unit 21 
P (min) 25.00 25.00 54.25 54.25 54.25 54.25 68.95 

P max 100.00 100.00 155.00 155.00 155.00 155.00 197.00 
n11 210.685 211.300 120.673 120.491 120.399 120.392 239.196 

T (up) 4 4 5 5 5 5 5 

T(down) 2 2 3 3 3 3 4 
X (0) -3 -3 -5 -5 -5 -5 -4 

Alpha 70 70 150 150 150 150 200 

Beta 70 70 150 150 150 150 200 

Tao 4 4 6 6 6 6 8 

Rup 30 30 100 150 150 150 200 

Rdown 30 30 100 150 150 150 250 

Y(0) 0 0 0 0 0 0 0 

a 0.00612 0.00598 0.00463 0.00473 0.00481 0.00487 0.00259 

b 18.1000 18.2000 10.6940 10.7154 10.7367 10.7583 23.0000 

c 218.3350 218.7752 142.7348 143.0288 143.3179 143.5972 259.1310 

M. 



TABLE XIII 

Data Unit 22 Unit 23 Unit 24 Unit 25 Unit 26 

P (min) 68.95 68.95 140.00 100.00 100.00 

P (max) 197.00 197.00 350.00 400.00 400.00 
nil 239.682 240.121 132.076 271.202 271.910 

T (up) 5 5 8 8 8 

T(down) 4 4 5 5 5 
X(0) -4 -4 -10 -10 -10 

Alpha 200 200 300 500 500 

Beta 200 200 200 500 500 

Tao 8 8 8 8 10 

Rup 200 200 200 250 250 

Rdown 250 250 300 250 250 

Y(0) 0 0 0 0 0 

a 0.00260 0.00263 0.00153 0.00194 0.00195 

b 23.1000 23.2000 10.8616 7.4921 7.5031 

c 259.1310 260.1760 177.0575 310.0021 311.9102 

MI 



Total scheduling time period has been considered to be 14 hours i.e. T=14 
Market clearing price for the entire scheduling period is assumed to be volatile 

And is given here: 	=market clearing price. 

TABLE XIV 
Time (vs.) market price profile 

T=1 ) t =9.00 

2 9.60 

3 14.33 

4 25.49 

5 31.80 

6 31.00 

7 36.28 

8 42.40 

9 52.22 

10 52.20 

11 46.95 

12 41.37 

13 35.80 

14 30.66 

15 21.43 

16 16.12 

17 10.54 

18 14.04 

~TRAL LJ N.  

50 
	F,~ 

 z.?.Qc c)  



55 

50 

45 

40 

a, 35 

j30 
45 
Co 
E 26 

20 

16 

10 

5 
0 
	

2 	4 	6 	8 	10 	12 	14 	16 	18 
time 

Market Price Vs Time Graph 

51 



Some formulas used 

inc,.' — 	a1[(e)2 —(p°'in )2]+b;[e,' —p min ]/(et _ pmin) 

inc? = 	a; [(e13 2 — (es' ) 2 ] + bi {e? — el ] /(ei2 — es' ) 

= LnC3 	 max 2 	2 2 	 max 	 max i 	 a~ L(Pi ) — (e~) ] + b; LPG 	— e~
2 

] /(Pi 	— et2 
) 

nil 	 a1(pmin 	
1 

)2 +b.(pmin)2 +c• —lncl * ]7 min 
i 	{ 	1 	Y ! 

nl k = 	nl k-1 + ek-1(inC k -1 — inc ) For k=2,3 

(p max 	 If Y,t = 

R;lini~(Y') 	= 	Max (pmin ,R d, (Y`+1)- RI(Io 	Ot 
	If 0< Y` < ymax 

0 
	

If Yt =0 

Max (R77 ,Pn"~ 

R;  (X /̀  + 1) -  

{Min (Pmax,R~nit(Xi)+R7 ), 

if X=0 

if X,` >-1 

If X < inc' 	then inck = inc 

If inci <2 < inc12 	then inc=incl  

If inc 2 <)t' <_ inc3 	then inck=incr 

If A! > inc3 	then inc' =inc' 
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