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ABSTRACT

In the present thesis we have primarily addressed ourselves to certain
shortcomings noticed in the work of Mohan, Saxena and Agarwal (Astrophys.
Space Sci., Vol.163, p.23,1990 and Vol.178, p.89, 1991) which relates to the
problems of computing the equilibrium structure and periods of oscillations of
rotating stars and star in binary system. In this work equipotentials surfaces of
the rotationally and tidally distorted primary component of a binary star are
approximated by Roche equipotential surfaces which are obtained by assuming
the who'e mass of the star to be concentrated at its centre which acts as a point
mass surrounded by an evanescent envelope in which density varies as the
square of distance from the centre. Since even in this approximation analytic
solutions in closed form are not possible, following Kopal (1972) series
expansions have been to represent the potential on an equipotentials surface.
Convergence of this series expansion has not been possible. We have tried to
analyze the effects of incorporating the effects of including mass variation inside
a star on the computation of its equipotential surfaces while computing the
equilibrium structures as well as periods of oscillations of rotating stars and stars
in binary system. The problem of the validity of series expansions for certain
parameters has also been considered.

The thesis consists of nine chapters. Chapter one we briefly discuss the
astrobhysical significance of the problems of determining the equilibrium
structures, and the periods of oscillations of rotationally as well as tidally
distorted stellar models. A brief survey of the literature available on the subject
and summary of the work presented in the succeeding chapters of the thesis
also appears in this chapter.

In chapter Il we first present the concept of Roche equipotentials and
Roche coordinates as introduced by Kopal (Astron. And Astrophys., Vol. 9,
1972) and how it has been used by Mohan and Singh (Astrophys Space Sci.,



Vol. 85, 1982) in Kippenhahn and Thomas technique to determine the
equilibrium structures of rotationally and tidally distorted stars. The validity of the
series expansions used in their work for certain Roche coordinates has been
numerically checked. Our results show that these series expansions are
reasonably valid under the assumptions under which these series are
recommended to be used.

in chapter lll we consider the problem of determining the equilibrium
structures of rotationally and/or tidally distorted stars following Mohan, Saxena
and Agarwal(Astrophys Space Sci, Vol. 163, p.23,1990) approach. This
approach is modified by as modified by us to take into account the effect of mass
variation inside the star on its equipotential surfaces inside the star.
Mathematical expressions determining the equipotential surfaces, volume,
‘sur'face area, etc are first derived and then used to obtain the system of
differential equations governing equilibrium structure of a rotationally and tidally
distorted star. This modified approach has then been used to numerically
compute the equilibrium structures of rotationally and tidally distorted polytropic
models. The results thus obtained have been compared with the resuits earlier
computed by Mohan and Saxena (Astrophys Spacé Sci., Vol. 95, p. 369, 1983)
for polytropic models of stars.

The methodology developed in chapter iil is next used in chapter IV to
determine the equilibrium structure of rotationally and/or tidally distorted Prasad
model in which density pinside the star varies according to the law

p=p.(1-x"), p.being density at the center and xa nondimensional measure of

the distance of a fluid element from its center. This methodology has also been
used to compute the equilibrium structures of a series of rotationally andfor

tidally distorted composite models of the stars which have cores in which density

varies as in Prasad model according to the law p = pc(léxz), and which are

surrounded by envelopes in which density varies inversely as the square of the

distance from the center as in Roche model. These composite models have
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Prasad model at one extreme and Roche model at the other extreme and
reasonably represent the effect of density variations inside the star on its
structure. Analytical expressions for the density and the pressure at various
points in the core and the envelope of these composite models have been
obtained. The equilibrium structures and other physical parameters of the
rotationally and tidally distorted composite models of stars have been computed
for different models of this series by assuming the interface between the core
and the envelope at the distance 0.3, 0.5, 0.7 and 0.9 of the total radius from the
center. Results have been compared with earlier results obtained for such
models in Roche approximation. Certain conclusions based on this study have
also been drawn. '

The problem of determining the equilibrium structures of certain
differentially rotating and tidally distorted models computed so as to incorporate
the effects of mass variation in the potentiai on its structure, has next been
considered in chapter V. Boundary value problem governing the equilibrium
structures of stars rotating differentially according the law @ =4, +b,s°, where
wis the angular velocity of rotation s is the distance of fluid element from axis of
rotation and b,,b, certain constants, is first formulated. It has next been used to
numerically compute the equilibrium structures of differentially rotating Prasad
model as well as certain polytropic models for polytropic indices 1.5, 3.0 and 4.0
for different numerical values of rotation parametersb, 5,. The results thus

obtained have been compared with the earlier results obtained for these models
by Mohan, Lal and Singh(1992)

In chapter VI we implement the approach developed in the earlier
chapters to determine the equilibrium structures of various types of white dwarf
models of the stars having solid body rotation as well as differential rotation

assuming the taw of rotation of the type w =5, +b,5*. The explicit expressions

that can be used to compute the shape, volumes, surfaces areas as well as
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other physical parameter of differentially rotating white dwarf models are also
obtained. Computations have been performed to obtain the equilibrium

structures of certain differentially rotating white dwarf models for the values of

the parameter 1/¢02 as 0.01, 0.05, 0.2, 0.4, 0.6, and 0.8. The results thus

obtained have been compared with the results earlier computed by Mohan, Lal
and Singh (16) for white dwarf models of the stars.

In chapter VIl we consider the effect of mass variation in potential on the
structures of rotationally and tidally distorted stars in which the angular velocity
of rotation varies both along the axis of rotation, as well as in the direction
perpendicular to the axis of rotation by assuming a general law of differential
rotation of the type w® = b, +5,s* +b,s* +b,2> +b,z* + b,z’s*, s being the distance
of the fluid element from axis of rotation and z being the distance of the fluid
element from the equatorial plane perpendicular to axis of rotation passing
through the center of the star. By giving different values to constants

by,b,.b,,b,,b,and b, various types of differential rotations can be generated in

which the angular velocity varies both along as well as perpendicular to the axis
of rotation. In this chapter we have determined in particular the equilibrium
structures of differentially rotating polytropic models of stars assuming this
generalized law of differential rotation for polytropic models of indices 1.5, 3.0
and 4.0. Numerical results obtained in this chapter have also been compared

with earlier results to draw some conclusions of practical significance.

In chapter Vill we next analyze the effect of mass variation in potential on
the eigenfrequencies of small adiabatic barotropic modes of oscillations of
rotating stars and stars in binary systems. The eigenvalued boundary value
problems which determine the eigenfrequencies of small adiabatic pseudo-radial
and nonradial modes of oscillations of differentially rotating stellar models

obeying a law of differential rotation of the type ” =5, +b,5’hhave been

formulated taking into account the effects of mass variation inside the star on its
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equipotentials surfaces. The method has been then used to determine the
eigenfrequencies of various pesudo-radial and nonradial modes of oscillations of
certain differentially rotating composite models as well as polytropic models of
indices 1.5, 3.0 and 4.0. The eigenfrequencies of pseudo-radial modes of
oscillations of certain rotationally and tidally distorted models have been also
obtained.

Conclusions based on the present study are finally drawn in the
concluding chapters IX. The astrophysical significance of the present work as
well as the limitations and scope of the present work are also briefly discussed in
this concluding chapter.
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INTRODUCTION



This chapter is introductory in nature. In section 1.1 we first explain in
brief the astrophysical significance carrying out of the theoretical study of the
problem of determining the effects of rotation and/or tidal distortions on the
equilibrium structure and the periods of small adiabatic oscillations of gaseous
spheres. A brief survey of the literature available on the subject is presented in
section 1.2. A brief summary of the work presented in the succeeding chapters

of the thesis is finally presented in section 1.3.

1.1 ASTROPHYSICAL SIGNIFICANCE OF THE PROBLEM OF
DETERMINING THE EFFECTS OF ROTATION AND TIDAL
DISTORTIONS ON THE EQUILIBRIUM STRUCTURE AND THE
PERIODS OF OSCILLATIONS OF GAS SPHERES

The theoretical model of a star is essentially a self gravitating gaseous
sphere in hydrostatic and thermal equilibrium. Theoretical studies of the
problems of the equilibrium structure of a gaseous sphere are often carried out
to understand the nature of the internal structures responsible for various
observed phenomena of the stars. Whereas some of the stars are observed
as single stars others are observed in groups of two or more stars.
Observations also show that some of the stars are rotating about their axes of
rotation. This rotation may be a solid body rotation or a differential rotation.
Many of the stars in binary and multiple systems are also known to be rotating
about their axes as well as revolving around each other. Thus if we assume the
equilibrium model of a single non rotating star as a gaseous sphere, the
equilibrium model of a rotating star will be rotationally distorted gaseous
sphere. Similarly, the equilibrium model of a star appearing in a binary system

or a multiple system will be a tidally distorted gaseous sphere if it is not rotating



and a rotationaily and tidally distorted gaseous sphere if the star is rotating as

well.

- The brightness of certain observed stars varies with time. These
stars are called variable stars. In some of these variable stars the variations in
luminosity are periodic. In the case of such regular variable stars it is
reasonable to assume that these stars are pulsating gaseous spheres in which
the variation in luminosity are being caused by the periodic contraction and
expansion of the gaseous mass. The regular variable stars gained importance
in astrophysics when it was discovered that there exists a definite relation
between the periods of pulsation and the luminosities of such stars. This
relationship has often been used to estimate the distance of these stars. This
important use of the regular variable stars motivated theoretical astrophysicists
to investigate the problems of small oscillations of the equilibrium models of the
variable stars so as to have a clear picture of the mechanism which could
possibly be sustaining pulsations in these stars. Such investigations are also
expected to help us in understanding the nature of the internal structure of the
stars. In most of these theoretical studies, the variable star is represented by a

gaseous sphere undergoing radial and nonradial oscillations.

Observations, however, show that some of the variable stars are
rotating stars. The theoretical models of such rotating star can be regarded as
rotationally distorted gaseous spheres performing small oscillations about their
equilibrium configurations. Similarly some of the variable stars have also been
observed in binary and multiple stellar systems. The theoretical .models of
such stars can be regarded as rotationally and tidally distorted gaseous

spheres performing small oscillations about their equilibrium configurations.
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it is thus evident that theoretical investigations determining the effects of
rotation and tidal forces on the equilibrium structure and the periods of small
radial and nonradial modes of oscillations of gaseous spheres may be of some
help in better understanding the observed phenomena of the rotating stars and
stars in binary and multiple systems. Such studies are also expected to help in
a better understanding of the problems of stellar stability as well as the
problems of stellar variability of rotating stars and stars in binary or multiple

systems.

In the present thesis an attempt has, been made to investigate certain
aspects of the problems of equilibrium structures and small oscillations of

rotationally and tidally distorted gaseous spheres.
1.2 BRIEF REVIEW OF THE LITERATURE

Most of the theoretical studies about the equilibrium structures and
oscillations of the stars have been carried out in literature by assuming the star
as an undistorted gaseous sphere. Extensive literature is now available on
this subject (See for instance Abhyankar (1), Bhatia (9), Bhatnagar (10),
Bohm-Vitense (13), Clement (23), Chandrasekhar (19), Cox (27), Cox and
Giuli (26), Dintransan and Rieutord (31), Deupree (30), Eddington (35),
Hurley et al. (63), Kippenhahan and Thomas (62), Kippenhahn and Weigert
(63), Kennedy and Biudman (61), Kopal (65), Lal (69), Ledoux and Walraven
(72), Menzeil et al. (80), (131) Mohan and Singh (89), Mohan et al. (85, 91,92),
Prasad (108), Rosseland (116), Schwarzschild (126), Singh Woodard (159),

Sharma (130), Sperzum (141), Trehan (153).



There are some stars whose brightness varies with time. These are
called variable stars. Whereas variation in brightness of some of the stars is
regular and periodic in others it is not so. An important class of regular variable
stars is Cepheid variables. The regular variable stars, gained importance in
astrophysics in the year 1912, when Miss Leavitt discovered that there exists a
definite relation between the periods of pulsation and the luminosities of such
stars and the relationship could be utilized to determine the distance of these
stars. In most of the theoretical studies of such stars, the variable star is
represented by a gaseous sphere, both in hydrostatic and thermal equilibrium,
undergoing small periodic oscillations. These oscillations can be radial as well

as nonradial.

If the regular variable star is a nonrotating star which exists in isolation
then it may be reasonable to represent it by a gaseous sphere performing
radial or nonradial oscillations. However, if the star is a rotating or is a member
of a binary or multiple systems then not only its equilibrium structure but also
its modes of oscillations will also get affected by the rotational and or tidal
forces. Mathematical models of such stars will obviously have to be
rotationally and or tidally distorted gaseous spheres performing pseudo-radial
or nonradial or some other types of modes of oscillations. As a result
mathematical study of the problem of equilibrium structure and periods of
small adiabatic oscillations of gaseous spheres gained importance in
astrophysics. Ritter was perhaps the first to suggest in the year 1879 that the
periodic variations in the luminosity of a variable star may be due to radial
oscillations. Extensive studies have been made to the problems of small

adiabatic radial modes of oscillations of gaseous spheres. (Buchler, Kollath



and Marom (17), Cox (27), Das et. al (29), Goupil et al.(46), Gurm (47),
Guzik and Cox (48), Ledoux and Walraven (72), Ledoux and Walraven
Rosseland (116), Prasad (108), Prasad and Mohan (107), Saio and Jeffery
(122), Tassoul et. al (147)) studied the effect of moderate rotation on stellar

pulsations

In the case of regular variables, the high symmetry of their observed
properties favors the hypothesis of purely radial oscillations. Even though now
people generally seem to believe that Beta Cephei instability problem has been
resolved with the advent of OPAL opacities, purely radial oscillations may not
be able to explain many other phenomena observed in the case of certain
variables stars. Ledoux and Walraven (72) pointed out that the dynamical
instability leading to explosions in the stars might be easier to reach for some
modes of nonradial oscillations. Chandrasekhar and Lebovitz (19) were of the
view that it might be possible to explain variability of Beta Canis major types
stars on the basis of resonance between the radial and nonradial modes of
oscillations. Dalsgaard (28) suggested that certain observed phenomena in the
outer layer of sun could be explained on the basis of certain modes of
oscillations of the sun. Smith (137) studied zero-age main sequence B star and
found that this star is pulsating nonradially.

Theoretical studies of the problem of nonradial oscillations commenced
with Kelvin’s investigation of the oscillatory modes of an incompressible gas
sphere. But the proper formulation of the problem was given by Perkeris (105)
who derived the forth order linear differential equation governing the adiabatic
nonradial modes of oscillations of a compressible self- gravitating gaseous

sphere. Since then the theoretical studies of the problem of nonradial



oscillations of spherical models have been carried out by many investigators.
Several authors such as Yojisoki (160), Mc Dermott et al. (79), Chandrasekhar
and Ferrari (20) have made significant contributions to the studies of the
problems of nonradial pulsations of stars. Cox and Cahn (25) calculated
representative radial and nonradial pulsation modes of five Wolf- Rayet star
models. Chandrasekhar and Ferrari (20) have proposed a complete theory of
the nonradial oscillations of a static spherical symmetric distribution of matter
described in terms of energy density and isotropic pressure on the premise that
the oscillations are excited by incident gravitational waves. Bradely and Winget
(16) computed the period and Kinetic distributions for nonradial g-modes of
spherical harmonic indices from 1 to 3 in the adiabatic approximation.
Rossenwald and. Rabaey (117) have given an application of the continuous
orthonormalization and adjoint methods to the computation of star
eigenfrequencies and eigenfrequency sensitivities. This method integrates an
eight-order nonlinear system of ordinary differential equations which define the
linear adiabatic nonradial oscillatory modes of the sun. Telting and Schrijvers
(151) used a model of a nonradially, adiabatically pulsating rotating star to
generate time series of absorption line profiles. Clement (1998) also discussed
normal modes of oscillations for rotating stgrs using a new numerical method
for computing nonradial eigenfunctions. This technique for calculating the

normal modes of spherical stellar models is generalized to two dimensions.

The theoretical investigations of problems of determining equilibrium
structures and stability of rotating, self gravitating objects, possibly begun with
the work of Newton. He was the first to realize the importance of the law of

gravitation for explaining the figures of celestial bodies. Later on Maclaurin,



Clairaut, Laplace, Legendre, Jacobi, Poincare etc. contributed ideas,
necessary for the development of the general theory of rotating bodies.
Maclaurin, Jacobi, Kelvin and Jeans investigated in detail the problem of
structure and stability of rotating liquid masses assuming uniform rotation.
Saxena (124) studied the structure of rotationally and tidally distorted polytropic

models of stars.

In the year 1923, Edward Arthu.r Miine developed a technique for
constructing the first detailed model for a slowly rotating star in pure radiative
equilibrium. Later on in the year 1933, this technique of Miine was generalized
and applied to slightly distorted polytrope by Chandrasekhar. Computation of
the equilibrium structures of many of the rotating steilar modeis that do not

greatly deviate from spherical symmetry often rely upon these two studies.

The effect of uniform rotation on slow rotating Cowling star obeying
simple Kramer’s opacity has been studied by Sweet and Roy (145), Sackmann
and Anand (121), Chandrasekhar and Lebovitz (19), Roberts (113,114), Smith
(136), Linnell (74), kopal (65), Mohan and Saxena (85), Geroyannis and Valvi
(41), Roxburgh et al. (118) have also investigated the problems of equilibrium
structures of rotating stars.. Much of the work on the effect of rotation on stellar
interiors is summarized in the review article of Stritmatter (143). Later
developments may be found in Tassoul (150), Durney (34), Kawaler (60), Soo
and Kak (139). Mohan, Saxena and Aggarwal (92), Meynet and Meader (81)
studied the effects of rotation on the equilibrium structure and evolution of
massive stars. Whereas Antona et. al.(5) , investigated the theoretical models
of low mass premain sequence rotating stars and Zeng (161) has developed

more powerful evolutionary models for rotating stars.
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The influence of‘uniform rotation on the global structure of white dwarf
models has been considered by Anand (4), Bandyopadhyay (7),
Chandrasekhar (21), Krishnan et al. (68), Suda (144) and. The most detailed
models of uniformely rotating white dwarf are due to Anand (4), Anand et al.
(3), Monaghan (84), Roxburgh (119). Some of the authors such as Roxburgh et
al. (118), Ostriker and Tassou] (102), Shapiro and Teukolsky (129) have
considered the stability analysis of uniformly rotating white dwarf stars. Ostriker
and Bodenheimer (99), Smart and Monaghan (135), and Blinnikov (11) have
analysed the models of zero-temperature white dwarfs in non- uniform rotation.
Hachisu et al. (50) studied the fate of merging double white dwarfs. Bouvier
(14), Cox (27), Durney (34), Kawaler (60), Lal et al. (70), Nelemans and
Yungelson (95), Rudiger (120), Soo and Kak (139), Tassoul (149), and
Vandervoord and Welty(156) have also made significant contributions in this

directions.

Whereas many of the observed rotating stars may be having solid body
rotation some of the stars are observed to be rotating differentially. In such
type of stars different parts of the star are rotating about the axis of rotation
with different angular velocities. Problems of differentially rotating stellar
models have also been studied in literature. Stoeckly (142) obtained the
numerical solution of the hydrostatic equilibrium equation for nonuniformly
rotating stellar models having no meridional currents. With pressure density

relation of the type P p¥* , Peraiah (104) showed that synchronism between

orbital and rotational angular velocities of binary stars mayvnot hold in many
cases in the presence of differential rotation. Ireland (55) presented results for

gravity darkening and limb darkening in a rapidly rotating'Roche mode! of a star



subject to nonuniform rotation and demonstrated that the effects of small
uniform rotation are likely to be of greater significance than the actual values
of rotational velocities themselves. Schmitz (125) studied the equilibrium
structures and stability of differentially rotating self gravitating gaseous
spheres. Komatsu et al. (64) applied the numerical method developed for
Newtonian gravity models to general relativistic differentially rotating bodies
including ring-like structures. He also obtained equilibrium structures for
polytropes of indices 0.5 and 1.5. Goode et al. (45) also tried to analyze the
nature of differential rotation in the interior of the sun for the study of its 5-min
oscillations. Authors such as Bruning (15), Deupree (30), Durney (34), Endal
and Sofia (36), Galli (37), Geroyannis and Hadjopolous (41), Glatzmaier et al.
(43), Goldreich (44), Harris and Clement (51), Hoiland (52), Mohan and Singh
(88) , Pinsonneault et al. (106), Shapiro et al. (128), Solberg (138), Von Zeipal
(157), Welty et al.(158), have also analysed the problems of differential

rotation. Garud (38) worked on rotationally driven meridional flow in the stars.

Equilibrium structures of stars which appear in binary and multiple
systems are likely to be effected by both the rotational effects as well as the
tidal effects of the companion stars. Attempts have been made in literature to
determine the effects of rotation and tidal distortions on the equilibrium
structure and modes of oscillations of the stars in binary and multiple systems.
In a series of papers Chandrasekhar developed a first order analysis which he
applied to the study of the rotational problem, the tidal problem and the binary
star problem. The method, however, was found unsuitable when the separation

between the components is only a few times the undisturbed radius of the
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primary. Monaghan (93) modified it to get more accurate results near the

surface.

The method of Monaghan and Roxburgh (119) to study the structure of
the primary component of a synchronous close binary was further extended by
Naylor and Anand (94). Goupil et al. (46) have analysed the effect of moderate
rotation on stellar pulsations. Kippenhahn and Thomas (62) suggested a
practical way of analyzing the effects of rotation and tidal distortions on the
equilibrium structures of stars by approximating the actual equipotentials

surfaces of the star by Roche equipotentials.

Kopal (65) introduced a system of coordinates, which he called Roche
coordinates, to study the problems of rotating stars and stars in binary system.
Kopal and Ali (67) studied the integrability of the Roche coordinates. Mohan
and Saxena (85) used the Kippenhahn and Thomas (62) averaging technique
in conjunction with Kopal’’s results on Roche.equipotentials to determine the
combined effects of rotation and tidal distortions on the equilibrium structures
of the theoretical models of the stars. This approach is presented in detail in
Saxena (124). Later this approach was also used by Aggarwal (2), Manmohan
and Singh (76) to study the effects of rotation and tidal distortions on the
structure and periods of small adiabatic oscillations of composite models of
stars. The technique was subsequently formalized by Mohan, Saxena and
Agarwal (92) and used to study the problems of rotationally and tidally distorted
main sequence stars. Seidov (127) derived the exact analytical formula for the
potential and mass ratio as a function of Lagrangian points position, in the

classical Roche model of the close binary stars.
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Chan and Chau (18) developed a method which allows an efficient and
accurate investigation of the structure and evolution of a rotationally and tidally
distorted star in close binary systems. Nepon et al.(97) have discussed the
evolution of rotationally and tidally distorted low-mass close binary systems.
Iben (54) has studied the problem of evolution of binary components which first
fill their Roche lobes after the exhaustion of central helium. Tassoul and
Tassoul (148) considered the meridional circulation in rotating stars and mean
steady motions in rotationally and tidally distorted stars. Tassoul (148) later
extends the earlier work to study the reflection effects in close binaries when
there is meridional circulation in rotating stars. Rocca (115) studied effect of
slow uniform rotation on the tidal effects in close binary system. Pac(znyski
X;M’F*F{;*n},g%as discussed evolution process in close binary systems\. The
evolution of mass losing component of a close binary has been studied in
literature without considering the dynamical effects of gas outflow from the

star.

Avani and Schiller (6) studied the Roche potential systems where the
stellar rotation axis is not aligned with the orbital revolution axis. Hachisu et al.
(49) proposed a numerical method for constructing models of double white
dwarf binary systems and central white dwarf heavy disk systems. He (50)
also formulated a new-three dimensional method for obtaining structure of a
rapidly rotating star and multiple stellar system including binaries. Rleutord
(112) has shown that large scale flows driven by Ekman pumping in the spin
up-down of a tidally distorted star is not efficient enough to reduce the
synchronization time. Todaran (152) has used the time dependent potential

function to study the equipotentials surfaces in close binary systems.
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The simple hypothesis of the pulsating mode! of a regular variable star is
made all the more complicated by the fact that some of the variable stars
observed to be rotating stars or stars in binary or multiple systems. The
eigenfrequencies of small oscillations of such stars are ‘expected to be

influenced by rotation and tidal effects of companion stars.

Most of the authors have studied pulsations of stars having solid body
rotation. However, there are several variable stars which are suspected fo be
rotating differentially. Clement (24) has shown that by assuming a particular
form of differential rotation the discrepancy that existed between observations
and earlier calculations based on the assumption of uniform rotation could be
removed. Woodard (159) considered the effect on eigenfrequencies and
eigenfunctions of slow, axisymmetric differential rotation whivch is also mirror
symmetric across the solar equatorial plane. Chandrasekhar and Ferrari (20)
analysed the problem of nonradial oscillations of slowly rotating stars induced
by the lense- thrinning effect. Urpin (155) studied the problem of rotation,
circulation and turbulence in radiative zones of stars. Reyniers and Smeyers
(111) have discussed tidal perturbation of linear, isentropic oscillations in

components of circular orbit close binaries.

Trehan and Kochar (153),. Sood and Singh (140) studied adiabatic
pulsation and convective instability of uniformly rotating gaseous masses. Saio
(123), Martin and Smeyers (78) investigated the problem of linear adiabatic
oscillations of a uniformly and synchronously rotating component of a binary
system. Mohan and Singh (89) considered the use of Roche coordinates in
solving the problems of small adiabatic oscillations of rotationally and tidally

distorted stellar models. They also considered the use of Kippenhahn and
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Thomas averaging approach in conjunction with certain results on Roche
equipotentials. Mohan and Saxena (85) considered the possibility of using this
approach in general to determine the effects of rotation and tidal distortions on
the eigenfrequencies of radial and nonradial modes of oscillations of stars and
applied it on polytropic models of the stars. Based on these studies, Mohan,
Saxena and Agarwal (92) proposed a method for computing the
eigenfrequencies of small adiabatic barotropic modes of oscillations of
rotationally and tidally distorted stars and applied it to the main sequence stars.
Mohan, Lal, and Singh (69, 70) studied equilibrium structures and periods of
osciliations of differentially rotating polytropic models of stars. Later on Singh
and Sharma (133) also studied the oscillations of differentially rotating stars in
binary system. Beech (8) presented a double polytropic model for low mass

stars with M <M . Karino and Eriguchi (59) have considered the linear stability

analysis of some differentially rotating polytropes.

Whereas the properties of equilibrium structures and periods of small
adiabatic radial and nonradial modes of oscillations of undistorted gaseous
sphere have been investigated in detail in literature, the effect of rotation and
tidal distortions on the equilibrium structures and the modes of oscillations of
gaseous sphere have still, not been fully understood. In the present work we

have addressed ourselves to the analytic study of problems related to this field.

1.3 THE PRESENT WORK
The problem of determining the equilibrium structure and the periods of
oscillations of the stars distorted by the effects of rotation and tidal forces has

practical importance in astrophysics as it will help in better understanding the
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nature of the rotating stars and stars in binary and multiple systems. There is
thus a need for an in-depth theoretical investigation of the effects of rotational
and tidal forces on the equilibrium structures and the periods of small radial

and nonradial modes of oscillations of gaseous spheres.

Analytic study of the problem of determining the equilibrium structures,
periods of oscillations and stability of rotationally and tidally distorted stellar
models is quite complex. The problem becomes still more complex if the
rotation is differential. Therefore attempts have been often made in literature
to investigate these problems in some approximate ways. In one such attempt
Mohan, Saxena and Aggarwal (92) used Kippenhahn and Thomas (62)
'averaging ‘technique in conjunction with Kopal's results (65) on Roche
equipotentials, to determine the effects of rotation and tidal forces, on the
equilibrium structure and the eigenfrequencies of small adiabatic barotropic
radial and nonradial modes of oscillations of the theoretical models‘of the
stars. They also demonstrated the use of this approach in the case of the
polytropic models of the stars as well as certain realistic theoretical models of
the main sequence stars. Lal (69) investigated the effectivehess of Mohan,
Saxena and Agarwal (92) approach in computing the effects of differential
rotation and tidal distortions on the equilibrium structures and the

eigenfrequencies of radial and nonradial modes of oscillations of rotating stars.

In Mohan, Saxena and Agarwal approach the actual equipotentials
surfaces of a rotationally and tidally distorted star are approximated by
equipotentials surfaces obtained by assuming the entire mass of the star to be
placed at the center of the star. This approximation is usually referred to as

Roche approximation and the equipotentials surfaces thus generated are
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called Roche — equipotential surfaces. This approximation is reasonably valid
for highly centrally condensed types of stars but not very much justified for less
centrally condensed stars. It is, therefore, desirable to improve upon this
approximation. For instance, instead of approximating the actual equipotentials
surfaces inside the star by Roche equipotentials, these may be approximated
by equipotentials surfaces which are obtained when the mass exterior to the
equipotential surface is neglected and the mass interior to this equipotential
surface is supposed to be concentrated at the center of the star. Such an
approximation is motivated by the fact that in a self-gravitating spherical
configuration the gravitational potential at a point inside the sphere depends
only on the mass enclosed within the concentric spherical surface passing

through that point.

Another shortcomin‘g in the work of Mohan et. al is that for analysing
properties of Roche equipotentials they have utilized the results of Kopal (65)
on Roche coordinates which in the absence of the availability of mathematical
expressions in closed form assume series expansions for some of these
coordinates However the analytic proofs for the convergence of these series

expansions are lacking.

In the present thesis we have primarily addressed ourselves to these
tWo shortcomings in the work of Mohan et. al. We have investigated the validity
6f series expansions for certain parameters used in the system of Roche
coordinates. We have also tried to analyse the effects of including the variation
in mass inside a star on its equipotential surfaces while computing the
equilibrium structure as well as periods of oscillations of rotating stars and

stars in binary systems.
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The thesis consists of nine chapters. Chapfer one the present study
only is introductory in nature. In this chapter we first briefly discuss the
astrophysical significance of the problems of determining the equilibrium
structures, and periods of oscillations of rotationally as well as tidally distorted
stellar models. A brief survey of the literature available on the subject and
summary of the work presented in the succeeding chapters of the thesis also

appears in this chapter.

In chapter Il we first preseht in brief the concept of Roche equipotentials
and Roche coordinates and how it has been incorporated by Mohan et. al in
Kippenhahn énd Thomas technique to determine the equilibrium structures of
rotationally and tidally distorted stars. The validity of the series expansions
used in the system of Roche coordinates (for which analytic proofs of the
series being convergent are not easily possible) has been checked
numerically. Results shbw that these series expansions are reasonably valid
under the assumptions under which these series are recommended to be

used.

In chapter lli we first consider the problem of determining the
equilibrium structures of rotationally and/or tidally distorted stars using Mohan
et.al approach as modified by us to take into account the effect of mass
variation inside the star on its equipotential surfaces inside the star.
Mathematical expressions determining the equipotential surfaces, volume,
surface area, etc are first derived and then used to obtain the system of
differential equations governing equilibrium structure of a rotationally and
tidally distorted star. The modified approach has then been dsed to numerically

compute the equilibrium structures of rotationally and tidally distorted polytropic
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models. The results thus obtained have been compared with the results earlier
computed by Mohan and Saxena (85) for these polytropic models assuming
whole mass to be concentrated at the centre while obtaining the equipotential

surfaces.

The methodology developed in chapter Ill is next used in chapter IV to
determine the equilibrium structure of rotationally and/or tidally distorted

Prasad model in which density pinside the star varies according to the law

p=p,(1-x"), p.being the density at the center and xa nondimensional

measure of the distance of a fluid element from the center of the star.
Methodology has also been used to compute the equilibrium structures of a
series of rotationally and/or tidally distorted composite models of the stars

which have cores in which density varies as in Prasad model according to the
law p = p,(1-x*), and which are surrounded by envelopes in which density

varies inversely as the square of the distance from the center as in Roche
model. These composite models have Prasad model at one extreme and
Roche model at the other extreme and reasonably represent the effect of
density variations inside the star on its structure. Analytical expressions for the
density and the pressure at various points in the core and the envelope of
these compdsite models have been obtained. The equilibrium structures and
other physical parameters of the rotationally and tidally distorted composite
models of stars have been computed for different models of this series by
assuming the interface between the core and the envelope to be a distance
0.3, 0.5, 0.7 and 0.9 of the total radius from the center. Results have been
compared with earlier results obtained for such models in Roche

approximation. Certain conclusions based on this study have also been drawn.
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The problem of determining the equilibrium structures of certain
differentially rotating and tidally distorted models so as to incorporate the
effects of mass variation in the potential on its structure, has been next
considered in chapter V. Boundary value problem governing the equilibrium
structures of stars rotating differentially according to the law o =b, +b,s*,
where wis the angular velocity of rotation s is the distance of fiuid element
from axis of rotation and 5,,5, certain constants, is first formulated. It has next
been used to numerically compute the equilibrium structures of differentially
rotating Prasad model as well as certain polytropic models for polytropic
indices 1.5, 3.0 and 4.0 for different numerical values of rotation

parametersb, b,. The results obtained have been compared with the resuits

earlier obtained for these models in Roche approximation

In chapter VI we implement the approach developed in the earlier
chapters to determine the equilibrium structures of various types of white dwarf
models of the stars having solid body rotation as well as differential rotation
assuming the law of rotation of the typew = b, +b,s*. The explicit expressions
that can be used to compute the shape, volumes, surfaces areas as well as
other physical parameter of differentially rotating white dwarf models are also
obtained. Computations have been performed to obtain the equilibrium

structures of certain differentially rotating white dwarf models for the values of
the parameter 1/¢,’as 0.01, 0.05, 0.2, 0.4, 0.6, and 0.8. The results thus

obtained have been compared with the resuits earlier computed by Mohan, Lal
and Singh (91) for white dwarf models of the stars assuming Roche model for

the star.

19



In chapter VIl we consider the effect of mass variation in potential on
the structures of rotationally and tidally distorted stars in which the angular
velocity of rotation varies both along the axis of rotation, as well as in the
direction perpendicular to the axis of rotation by assuming a general law of
differential rotation of the type w? =&, +b,s® +b,s* +b,z* +b,z* +bz%s%, s
being the distance of the fluid element from axis of rotation and z being the
distance of the fluid element from the equatorial plane perpendicular to axis of
rotation passing through the center of the star. By giving different values to

constants b,,6,,b,,b,,b,and b, various types of differential rotations can be

generated in which the angular velocity varies both along as well as
perpendicular to the axis of rotation. In this chapter we have determined in
particular the equilibrium structures of differentially rotating polytropic modeis
of stars assuming this generalized law of rotation for polytropic maodels of
indices 1.5, 3.0 and 4.0. Numerical results obtained in this chapter have also
been compared with earlier results to draw some conclusions of practical

significance.

In chapter VIll we next analyze the effect of mass variation in potential
on the eigenfrequencies of small adiabatic barotropic modes of oscillations of
rotating stars and stars in binary systems. The eigenvalued boundary value
problems which determine the eigenfrequencies of small adiabatic pseudo-

radial and nonradial modes of oscillations of differentially rotating stellar
models obeying a law of differential rotation of the type @ =4, + bzszhave

been formulated taking into account the effects of mass variation inside the
star on its equipotentials surfaces. The method has been then used to
determine the eigenfrequencies of various pesudo-radial and nonradial modes
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of oscillations of certain differentially rotating composite models as well as
polytropic models of indices 1.5, 3.0 and 4.0. The eigenfrequencies of pseudo-
radial modes of oscillations of certain rotationally and tidally distorted models

have been also obtained.

Conclusions based on the present study are finally drawn in the
concluding chapters IX. The astrophysical significance of the present work as
well as the limitations and scope of the present work are also briefly discussed

in this concluding chapter.
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CHAPTER - |

USE OF THE CONCEPT OF ROCHE EQUIPOTENTIALS IN
- DETERMINING THE EQUILIBRIUM STRUCTURES AND
PERIODS OF OSCILLATIONS OF ROTATIONALLY AND/OR
TIDALLY DISTORTED STARS AND STARS IN BINARY
SYSTEMS



In this chapter we present the concept of Roche equipotentials and how it
has been used by Kopal and subsequently Mohan et al. for determining the
equilibrium structures of rotationally and tidally distorted stars. Since analytic
expressions in closed form for all the three Roche coordinates were not possible,
series expansions have been used in cases where analytic expressions in closed
form were not possible. However, the convergence of these series expansions
could not be analytically established. In the absence of this, one may doubt the
correctness of analysis and subsequent results derived by using these series
expansions. In this chapter we have tried to check the validity of these series
expansions using numerical approach as we ourseives have not been able to
establish analytically the convergence of these series expansions.

A brief discussion of the concept of Roche equipotentials and Roche
coordinates is presented in sections 2.1 and 2.2, respectively. Certain results
obtained by Kopal (65) and Mohan and Saxena (85) for Roche equipotentials are
also presented in this section. In section 2.3 we show how Kippenhahn and
Thomas (62) used an averaging technique for determining the equilibrium
structures of rotationally and tidally distorted stars. In section 2.4 we next present
how Mohan. et al (92) used Kippenhahn and Thomas (62) approach in conjuction
with certain results on Roche equipotentials to obtain the system of differential
equations governing the equilibrium structures of rotationally and tidally distorted
gaseous spheres. Section 2.5 is devoted to checking numerically the validity of
series expansion used developed by Kopal for a Roche coordinate whose explicit

expression in closed form was not possible. Whereas numerical approach
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adopted for this purpose is given in subsection 2.5.1, numerical computations
carried out on this basis are given in subsection 2.5.2. Conclusions based on this

numerical study are given in subsection 2.5.3.

21 ROCHE EQUIPOTENTIAL

In order to introduce the concept of Roche equipotential, we assume two
components of a close binary system known as primary and secondary star. The
primary star is supposed to be more massive than the secondary which acts as a
point mass causing tidal effects on the more massive primary component. Both
the component of binary system is assumed to be rotating about their axis as well
as revolving about their common center of mass. Following Kopal (65), Mohan
and Singh (87), Mohan Lal and Singh (90), certain results on Roche equipotential
which are of practical interest to the present study, are summarized below:

Let us suppose M, and M, be the masses of the two components of a

close binary system separated by a distance D. The primary component of this

system of mass M, is much larger than its companion star of mass
M, (M, 2 M )which can be regarded as a point mass. Suppose that the position

of the two components is referred to as a rectangular system of Cartesian

coordinates with origin at the center of gravity of mass M, the X — axis along the

line joining the mass centers of two components, and Z —axis perpendicular to
the plane of the orbit of the two components (See Fig. 1.1).

Then the total potential y of the gravitational and disturbing force acting at an
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arbitrary point P (x.y,-), which is not inside in any of this ge:eous sphere is
given by:
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where r’=x+y*+z* and r’=(D-x)’+y*+z* represent the
squares of the distances of P from the center of gravity of the two components,
Q denotes the angular velocity of rotation of the system about an axis
perpendicular to the xy- plane and passing through the center of gravity of the
system and G the constant of gravitation. The first, second and third term on
the right hand side of (2.1) represents the potential arises due to the mass of

the primary component of mass M, the disturbing potential of its companion of

mass M,, and the potential arising from the centrifugal force, respectively.

Equation (2.1) strictly holds at points which are the outside of both the
components of binary system. In case we assume Roche model for the primary
and a point mass for the secondary components, equation (2.1) holds

everywhere.

In nondimensional form equation (2.1) can be expressed as

vt ig 1 ek * (1) 2.2)
2
where w*= Dy _ M,

T GM, 2M,(M,+M,)
is the nondimensional form of total potential w and r* =r/D is nondimensional

form of r, A=esin@cosg,u="sinfsing,v=cosd (r,0,pbeing the polar

!

spherical coordinate of the hoint P).

Also,
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9=~ (2.3)

is a nondimensional parameter representing the ratio of mass of the secondary
over primary and 2n represents the square of the normalized angular
velocity Q2. The equation (2.1) reduces to the potential of a spherical model
rotating with angular velocity only if g=0 and»=0, it reduces to the potential of
a non-rotating spherical model distorted by the tidal effects of the companion.
Fora ‘binary system in synchronous rotation, the angular velocity Q is identical
with Keplerian angular velocity so that

‘ Mo +M,

Q=G o (2.4)

The relation expressed in terms of the nondimensional variable of
equation (2.2) becomes

n=q—;’l (2.5)

The surface generated by setting y =constant on the left hand side of

(2.1) are referred to as Roche equipotentials. Roche equipotentials in
nondimensional form may be represented by y'= constant where v is same
as defined in (2.2). The form of Roche-equipotential depends entirely upon the
“values ofy . If i is large the corresponding equipotentials will consist of two
separate ovals, closed around each of the two mass point (see Fig. 1.2). For
specified values of M,,M,,Q and D the right hand side of (2.1) can be large
only if » and r, becomes small. Therefore, large value of y correspond to
equipotentials which differ but little from spheres surrounding one of the two

mass centers. With decreasing values of y of the ovals defined by (2.1)
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become increasingly elongated in the direction of the center of gravity of the

system until for a certain critical value of y characterstic of each mass ratio.

Both ovals will unite in a single point on the X -axis to form a dumbbell like

configuration. These limiting values of y are called Roche limits. For certain

mass ratios Kopal (65) computed the numerical values of Roche limits in the

case of synchronous binary stars for a values of ¢ ranging from zero to one.
Defining a non-dimensional variable r, by the relation

1
w*-q

¥y, =

(2.6)

Kopal has also shown that on the surface of Roche equipotentials (r,9,4) are

connected through the relation

*_ 3 4 5 6 7 8 9 ]
P =r |14 Cy 18 +Cord +Co1 +Cony® +Corl +CyrE +Cy 1l +..

(2.7)
where
C,=qP,+n(1-v*), C,=qP,, C,=qP,
Co=qps +3C,> C,=qP, +7qC,” P,
C,=qP, +8¢C, P, +4¢° P} (2.8)

C,=qP, +9¢C, P, +9¢°P, P,
And P =P,(A) are Legendre polynomials and terms upto second order of

smallness in n and q have been retained in (2.8). This relation helps to obtain

the shape of a Roche equipotentials y =constant.
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The volume enclosed by the equipotential surface y = constant is given

[ | Zdadv (2.9)
1
Kopal has shown that the explicit expression of ¥, in terms of », defined by
(2.6), can be represented as

4 12 8 32 15 .
v, =§7zD3 r03[1+2nr03 +{?q2 tgna+ nz}ro(’ 4-7q2 ' +2¢%rl +]
(2.10)

where terms up to second order of smaliness in n and q are retained.
Following the approach of Kopal (65), and Mohan and Singh (87), the

explicit expressions for the surface area S, and the values of averages or

parameters r, ,Z g”' on the Roche equipotential y =constant are given as
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(2.14)

Inverting the relation (2.12) they also obtain

(2.15)

where ry: =r, /D, r,; being the nondimensional form r,. In all the above

expressions terms upto second order of smallness in n and q are retained.
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2.2 ROCHE COORDINATES

To study the problems of rotationally and tidally distorted stars, Kopal
(65,66) introduced a system of coordinates, which he called Roche
Coordinates. He and some of his co-workers (Kitumara (66), Ali (67) etc)
investigated some of the mathematical properties of this system of coordinates.
Kopal (65) also indicated how this system of coordinates could be used to
study the problems of vibrations of rotationally and tidally distorted stellar
models. In the system of Roche coordinates the equipotential surfaces of a
distorted Roche model are chosen to represent the equipotential surfaces of an
actual stellar model distorted by rotational and tidal forces. Choosing the
equipotential as one coordinates, the other two coordinates are chosen to form
a triply orthogonal system. In the system of Roche coordinates (£,1,8) , we
take the & coordinate to be an equipotential surface of the form (2.1) and
choose the other two coordinates n and ¢ in such a way as to satisfy the
conditions of mutual orthogonality with respect to £ as well as each other.

Kopal (65) and his co-workers investigated the mathematical properties
of this system of Roche coordinates. Their work shows that it is not possible in
general to obtain expressions for n and ¢ in closed analytic forms. Kopal
investigated two particular cases of this problem in detail. In the one case q is
taken to be zero, and in the other Q*is taken to be zero. The first corresponds
to the Roche coordinates of a star distorted by rotational forces alone and the
second corresponds to the Roche coordinates of a nonrotating star distorted by

the tidal effects of a companion star.
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For the rotational case Kopal (65) has shown that whereas the first two

Roche coordinates ¢ and n are expressible in closed analytic form as
_1 a2 _
g=—+nm"(1-v°), n=y (2.16)
r

the expression for the third Roche coordinate ¢ is not possible in closed

analytic form. Kopal obtained an expression for it in the form of an infinite

series in ascending powers of n as

cos¢ =vi en)’rx, (2.17)

2
where x,(v)=1, x,(v)=-1(1-v?), n=% while for  j>1 all subsequent X;

(£)’'s can be generated with the aid of recursion formula
3JXJ+(l—v2)[(u Xj_l),—3(j—-1)Xj_l]=0 (2.18)

where the prime denotes differentiation with respecf to v. Kopal also obtained

the values of metric coefficients hy, h,, hz up to second order terms in n.

In case of tidally distorted Roche model Kopal (65) has shown that

;’=1+q[ ! —ﬂr]=constant (2.19)

r \/‘1—22r+r2i

which represents the equipotential surface of a star distorted by the tidal forces
of a nearby star Taking { as defined above Kopal (65) has shown that the

second and third coordinates are given by

4 J+l
n= cost A - q Z r Pj' (2.20)
2 oJ+l

iz

and

£ =cos™ (2.21)
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respectively. In these relations a prime denotes differentiation with respect to
A.

Following Kopal's approach, Mohan and Singh (89) used the system of
Roche coordinates to obtain explicit forms of equations of small radial
oscillations of rotationally distorted and tidally distorted stars assuming Roche
model for the star and used these to numerically compute certain
eigenfrequencies of oscillation of such distorted models. Their work show that
the system of Roche coordinates can be used with advantage to study the
problem of small oscillations of rotating star as well as only tidally distorted
stars. The main advantage of the technique of studying small oscillations of
rotating s_tellar models through the use of Roche coordinates is that we were
able to account for the effects of distortion caused by rotation or tidal effects
automatically while studying the problem of small oscillations of these models
in the usual way. One limitation of the present technique, however, is that it
must be applied with care when studying the vibrations of stellar models which
have unusually large angular velocities of rotation, because we do not get the
expression for the third Roche coordinate in a closed analytic form and,
instead, have to express it as an infinite series in ascending powers of the
angular velocity of rotation.

However it was observed that use of this approach for determining the
combined effects of rotation and tidal distortions on the equilibrium structure
and periods of oscillations of binary stars, in which the rotational and tidal
effects have to be considered jointly, is not convenient. Moreover the method
could not be conveniently used when more realistic models in place of Roche

model are to be used for the inner structure of the star.
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2.3 AVERAGING TECHNIQUE OF KIPPENHAHN AND THOMAS

In order to study the effects of rotation and tidal distortions on the
equilibrium structure of gaseous sphere, Kippenhahn and Thomas (62)
developed the concept of topologically equivalent spherical surféces
corresponding to actual equipotential surfaces of a rotationally and tidally

distorted model. They define on these equivalent spherical surfaces, quantities
such as f,getc. which denote the certain averages of the quantities 1, g,
respectively on the actual equipotential surfaces. If y denotes the total

potential (gravitation, rotation and tidal forces) arises of a rotationally and tidally

distorted model at an arbitrary point P(x,y,z)then v (x,y,z) = constant is an

equipotential surface. Let ¥, be the volume enclosed by the equipotential
surface y =constant and S, is surface area of this equipotentials surfaces y =

constant. For any function f(x, y,z) they define f as its mean values over the

equipotential surfaces  =constant by the relation

F=o  [fdo (2.22)
Sl// w=cons tan!

Kippenhahn and Thomas define a variable r,in analogy with a sphere by the

relation
(2.23)

where do denotes the surface element of the equipotential surface
w =constant. Also f thus defined over the topologically equivalent 5urface is
used to represent the value of f over the topologically equivalent spherical
surfaces. Clearly if f is a function of equipotential surface y only and can be

obtained as (2.22) for each equipotentials surface y =constant By definition
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S, = [do (2.24)

y=constant
Obviously, S, is in general not equal to 4ﬂry,2. Kippenhahn and Thomas
define a function g (x, y,z) by the relation

_dy

gdn

(2.25)

This g corresponds to the force of gravity of a sphere. The distance d# in
betwéen two neighboring surface y =constant and y +dy =constant is in
general not constant (i.e. not same at all points of the surface). From this
equation (2.25) the mean values gand g™ can be calculated with the help of
relations

gzl “‘ ay do

dn

¥ y=constant

-1

5 1 dy
= —1 d

& j [dn ?

¥ w=constant

S (2.26)

Both g and g~'are functions of w alone and represent the value of gand g™,

respectively over the topologically equivalent spherical surface. The volume

dv,, between the surface y = constant and y +dy =constant is given by

-1
av,= [dndo= | (ﬂ] dn =S,g7" dy (2.27)

y=cons tant y=cons tant d h

Kippenhahn and Thomas also define nondimensional parameters «, v, w, as

S gr’ " GM
g e (2.28)
i,

74 14 4

where M, is the mass enclosed by equipotential surface y =constant.
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We may thus regard the equipotential surface y =constant to be
topologically equivalent to a sphere of radius r, for which various functions are

defined by the above relations. (It may be noticed that if y is the gravitational

potential of a sphere then the surface y =constant are spherical surfaces with

v

2

Ty

r, =r forwhichu=1and g= is constant on these spheres and therefore

u and w are constants and equal to 1).

Equations (2.22) to (2.28) are purely mathematical definitions, which
have been applied by Kippenhahn and Thomas to gravitational fields of
gaseous spheres distorted by rotational and tidal forces. In hydrostatic
equilibrium the equipotential surfaces are also surface of equipressure and

equidensity. Therefore on an equipotential surface the pfessure P, and the
density p, are also constant. Using these concepts, Kippenhahn and Thomas

obtain the equations governing the equilibrium structure of a rotationally and

tidally distorted stellar model in the following manner

From equation (2.28) the mass dM between the equipotentials

surfaces y =constant and y + dy =constant is given by

M, =dv, p, =47zru,2pw dr, (2.29)
Thus we get
aMm, )
= am,’p, (2.30)

14

From equation (2.27) and (2.29) we have

dy =2 gy Py M, M,
v, " “dy’ B, 5P (2.31)
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Using relations (2.28) we get

_GM,dM,

- 4
4r r, Pv,uw

(2.32)

The conditions for hydrostatic equilibrium, dP, /d;y:—Pw, can now be written

with equation (2.28) in the form

dP GM :
dMV =— ”4 fp (2.33)
v 47zrw

Where

1 4zr,

fr=— —
uw GM, S, g™

The factor f, is a function of y only. If y is known the equipotentials surfaces

can be determined, and with them values of Sy o1, ,E and E for each

equipotentials surface simply from the geometry of the equipotentials. The

mass M, which depends on the density distribution p,can be determined by

integrating the equation (2.30). Similarly the other structure equations derived
by Kippenhahn and Thomas (62), which includes the effects of rotation and
tidal distortions on the equilibrium structure of gaseous spheres are as follows.

For chemically homogenous spheres, the -nuclear energy generation

rate ¢ depends only upon density p, and the temperature T, and are,
therefore, constant on equipotentials surfaces. Thus if L, is the energy which

passes per second through the equipotential surface y = constant, then

Ly . 2.34
a, - (234)
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Using (2.30) it can be written as

dL, )
gr—-=4ﬂ' Yy p'// & (235)
v

If the energy is transported by radiation, then the energy transport equation is

dacl’ dr. 4xr ‘uw
g oo_2acly dy 4, 47r, (2.36)
v 3k dndM, GM,

where F, is the radiative flux on the equipofentials surface y =constant by

integrating F,, over the equipotentials surface y = constant, we get

L, = _[Fw do
w=constant

dacT’ dT.’ 4xr'
b’ Y uw—F I (gﬂ Ydo
3k dM, GM dn

¥ w=constant
3.4
=_647r2acTw Ny dT,
3k dM,
(2.37)
so that
dT 3k L
2 ke 2 (2.38)
dM,  64r’acT,’r,” u'vw
Using (2.29) this equation can be expressed as
dT, 3k p, L
o _Th g (2.39)

3 2
dM, l6zacl,’r,

1

uz vw

where fr=

Equations (2.30), (2.33), (2.34) and (2.38) which are the four basic equations
governing the equilibrium structure of a gaseous sphere distorted by rotation

and tidal forces and the boundary conditions to be satisfied are
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MW=0, LW =0, at the centre rv,=0
M,=M,,L,=L,,F =0T, =0 (2.40)

S Ty

yS* Ty v

or P, =P, T, =T, atthe free surfacer, =R,

24 MOHAN AND SAXENA APPROACH FOR DETERMINING THE
EQUILIBRIUM STRUCTURE OF ROTATIONALLY AND TIDALLY
DISTORTED STELLAR MODELS
In order to determine the inner structure of a rotationally and tidally

distorted gaseous sphere the system of equations (2.30), (2.33), (2.34), (2.38)

has to be integrated numerically subject to the boundary conditions (2.40)

specified therein. Therefore the evaluation of the actual equipotential surface

of a rotationally and tidally distorted Qaseous sphere is complicated.

Kippenhahn and Thomas (62) proposed that for evaluation of the distortion

parameters u,v,w, f, ’f.T etc., the actual equipotentials surface may be replaced

by Roche equipotentials surfaces.
Once the equipotential surfaces of a rotationally and tidally distorted star
are approximated by the Roche equipotentials, the results obtained by Kopal

(65) and Mohan and Singh (89) may be used to evaluate explicitly the values of

the distortion parameters u,v,w, f,.f; appearing in stellar structure equations
(2.33) and (2.39). Using (2.28), (2.33), (2.39 ) and (2.11- 2.14) the explicit
expressions of the distortions parameters u,v,w, f,,f; on the equipotential

surface as obtained by Mohan et al. are
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2 3

q 2 4 216 1 2 05 1 5 4

u=1—-<—+—ng+—n“tr" ——q°r ——q°r, +..
{5 15 1745 }‘” 797 Tt

V=1 _%nrws _{%qz +% nq+2_§ nz}rw'6_3_q2r *g —3(]27' *10

4 4 |23 , 16 212 s 81 o3 10
.w=1+§nrw +{—5—q +Enq+4—5n2}r,, +-l—2q2ry, +7q%r L (2.41)

4 {2 , 44 128 2}r.(,_7_9 2 6 62 2
v

13?94

14 28 56 6 46 s 34 .
Ir =1‘{—5-42 +-1—5-nq+4—5n2}r,,, : ‘ﬁqz " -5 1 2,

=l-—nr, " - +—ng+—n
e A PR TIL AT

r a - ]
where r; =% is the nondimensional form of r, and terms upto second order

of smallness in » and q are retained.

The value of M, P, ,L, etc. on the various equipotentials surfaces of a

rotationally and tidally distorted gaseous sphere may now be obtained by
solving the system of differential equations (2.30), (2.33), (2.34) with boundary
condition (2.40) and using the values of the correction factors f, and f.

It may be noted that approximating the equipotential surfaces of a
rotationally and tidally distorted model by Roche equipotentials, the structure of
the star is not approximated by the structure of a Roche model. In the case of
no distortion (n=9=0), equation (2.41) gives u=v=w=f, =f, =1 and the
system of differential equations (2.30), (2.33), (2.34), (2.39) reduce to the
equations governing the equilibrium structure of the original undistorted star but
not of the Roche model.

Usual methods for stellar structure equations such as Henvey method
can be used to integrate the system of differential equation (2.30), (2.33),

(2.34), (2.39) governing the equilibrium structure of a rotationally and tidally
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distorted gaseous sphere. At every step the values of the parameters

u,v,w, f, and f; must be taken from (2.41).

In case the thermal properties are not considered important and only
‘hydrostatic equilibrium of a rotationally and tidally distorted gaseous spheres is
to be investigated then we need only to integrate equation (2.30) and (2.33)

subject to the boundary conditions

M, =0, L, =0, at the centre r, =0,
M,=M,, L, ,=L,,P, =0T, =0,F =P, atthesurfacer, =R

yS*y

(2.42)

4

In case of star is being distorted by rotational forces alone (or tidal
forces alone) we may set gq=0 (or n=0) in (2.41) and still use the above
approach to determine the equilibrium structure of its rotationally distorted or
tidally distorted model. For obtaining the structure of the primary component

synchronous binary system we should set n = qT“.

Mohan and Saxena (85) find it more convenient to work with 7, in place
of M, or r, as independent variable by introducing (2.6) which is connected
with variable r, through relations (2.10). Saxena (124) expressed the system

of differential equations governing the equilibrium structure of a rotationally and

tidally distorted model as

am ,
r"’ =4zD’p, 1} f, (2.43a)
0
&My, (2.43b)
dr, Dr} Y
dL
—Y _4z D3pwr02fl (2.43c)
dr,

and
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aT, _ 3kL, p,

=— — 2.43d
dr, 167rDach,3 7y ( )

where f,, f, f, are certain functions of n,q and r, incorporating the effect of

rotation and tidal distortions on the equilibrium structure equations of
rotationally and tidally distorted models. The explicit expressions for these

distortion parameters as given by Saxena (124 ) are

fi=1+4nr + {356q 2, q+?§6—n }ro +§q2r08+%q2r010+...

5 7
(2.44a)

2 4 16 9 8

£ =1—{§q2 +E"Q+E"2}’"oﬁ —aq r —§q rl 4.
(2.44b)
dnr; (6 , 4 224 24 20
£ =1+T°+{§q2 +§nq+¥n2}ro6 +1—4q2 %o +—9—q2 7+

(2.44c)

In these above expressions terms upto second order of smallness in n and ¢
are retained. The boundary conditions now become
M, =0, L, =0 atthe center 7, =0,

M,=M,, L, =L, P, =0,T,=0

>ty
or
Pw =PV/S’ Tw =Tws

at the free surface r,=r,, (r,, being the value of r, atthe free surfaces.)

In fact

Fos = — (2.45)
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where . is the nondimensional value of the total potential y on the

outermost equipotential surface of the rotationally and tidally distorted stellar

model.

In the case of no distortion f, = f, =1 and the above equation reduce to the

usual equations governing the equilibrium structure of an undistorted gaseous
sphere. Kippenhahn and Thomas (62) advocated the use of these equations to

determine the inner structure of stars distorted by rotation and tidal forces.

25 VALIDITY OF SERIES EXPANSION USED IN ROCHE COORDINATES
AND MOHAN AND SAXENA APPROACH

The series expansion (2.2) of one of the of Roche coordinates was
obtained by Kopal (65) for determining of equilibrium structure of rotating close
binary stars in which the actual potential of a rotating dipole is replaced by the
Roche equipotential. The system of Roche coordinates, using this series
expansion (2.2) for one of the coordinate was then used by him to determine
small oscillations of rotationally and tidally distorted stars. Mohan et al. (88)
have also used this series expansion in their work. However as pointed out by
Kopal in his work, the convergence of the series expansion has not been
theoretically established. Mohan et al (92) also have not established
convergence of the series expansions based on this approach and used in
their work. Establishing validity of the convergence of these series is thus
essential. Only then one can feel assured regarding the V%ﬂlolf‘%t of these
Roche equipotential based methods for computing equilibrium structures and
oscillations of rotationally and tidally distorted stars.

Although it has not been possible for us so far to theoretically‘justify

convergence of the series expansions, attempt has been made in this section
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to numerically verify the validity of the series expansions (2.7). The remainder
of this chapter is devoted to checking the validity of series expansion (2.7)
used by Kopal and also by Mohan and Saxena in their work, for which analytic
proof of the convergence of the series expansion is not available. In 2.5.1 we
discuss the numerical approach which has been adopted by us to check the
validity of results obtained by using series expansions (2.7). In 2.5.2 we
present the numerical computations based on this approach’which have been
carried out by us to check validity of numerical results obtained from (2.2) in
different situations. Analyis of this numerical result is next carried out in 2.5.3

and conclusions drawn.

2.5.1 Numerical Approach for Checking Validity of Series Expansions

In order to establish validity of convergence of series (2.7) let us
consider the equation (2.2) which is nondimensional form of the total potential

w . Then equation (2.2) can be written as

*

v =i_+qz:rj‘“'pj(/i)+n(1—u2)r'2
r j=2

(2.46)

Unfortunately, the expression (2.46) for v~ is such that ' cannot be found
explicitly in terms of y’. Equation (2.46) of the Roche equipc;tentials represent
an implicit function defining, for given values of ', ¢, and n, ' as a function
of 4,u. When it has been rationalized and cleared of fractions, the results are

an algebraic equation of eighth degree in »*, which is very difficult to solve and
whose analytical solution presents unsurmountable difficulties. In the case of

pure rotational distortion i.e. (g =0), equation (2.46) can be reduced to a cubic
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equation and is solvable in terms of circular functions. In case of a purely tidal

distortion i.e. (n=0), equation (2.46) becomes a quadratic, which could also be

solved for " in a closed form. However, in general case of rotational and tidal
distortion interaction, any attempt at an exact solution of (2.46) for r’
,becomes virtually hopeless. Therefore approximate solutions are sought by
successive approximations. The desired approximate solution of equation

(2.46) for r* as a function of 4 and v in the form of series expansion as

obtained by and written in the ascending power of r, is

r=r, [1+(P2 q+nx) ro3 + P qro4 +P,qr,’ +(P5 g+3q* 1’22 +3gP, nx)r06
+(P6q+7q2P2 P3+7qP3nx)r07+(qu+8q2 P,P,+8qP, nx+4q’ P32)r08
+(P8 q+9q¢’ P,P, +9q* P, P, +9qP5nx)r09
+(P, g+104> P, P, +10¢" P, P, +10¢ P, nx+5¢> P Jr,"
+(Pog+11g> P, P, +11¢> P, P, +11g* P, P, +11g P, nx Jr," + .]
' (2.47)

where x=1-v’ and r,=

»

v -4
This is a basic relation determining the shape of a Roche equipotentials

surface y* = constant. Kopal (65), Mohan and Singh (87) used this relation to

find various physical parameters 7V, , Sw,g, g7 explicitly in terms of series

expansion in powers of r,. The series expansion for distortion parameters no

doubt look appealing from the theoretical point of view.

In order to establish the convergence of series (2.47) numerically, we
take the help of procedure, generally, adopted to test the convergence of any
infinite series. A finite sequence {§,} of partial sums of series (2.47) is
constructed by taking D =1. Four our convenience, only five sums have been
considered which are given as
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S, =7, +(P2q+nx)r04

S,=S,+ P, qr,’,

Sy =S, +P.q 1, +(P,g+8 P, P,q* +8 P, qnx+4 P} g*)r,’
S, =8, +(qP5 +7 P,P,qg* +7P, qrzx)ro3

S, =S, +(P,q+9 P, P,q*> +9 P, P,g*+9 P, gnx)r,’ etc

(2.48)
Thus the approximate value of r'.canAbe estimated either from each
value of partial sums or computed by adding all these partial sums. To
establish the validity of convergence of this series to " a numerical method is
applied to equation (2.2) to find another approximate solution of 7. This new

approximate value of r helps us to estimate the growth of errors which arise in

each computed value of the partial sums given in (2.48).

We apply fixed- point iteration method to compute r*with specified error

tolerance. An equation of the form
r=F(r) (2.49)
can be derived from equation (2.2) so that any solution of (2.48) is the solution

of (2.2).' The iteration function F(r) for solving (2.2) can be chosen as

F(r)=l[1+qri P (R)r’ +nr(1-0?)  (250)
v

j=2
The iterative sequence generated by the recursion formula
rma=F(), i=0,1,2 (2.51)

will converge to a point » for which equation (2.49) is satisfied. The value of

thus computed with desired accuracy is written as r, , for avoiding the

exp

confusion between the two values of ~.
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2.5.2 Numerical Computations

The fixed- point iteration technique proposed in section (2.5.1) may be
used to determine the value of r which gives us the shape of outermost
surfaces of rotationally and tidally distorted gas spheres. Numerical

computation for (2.51) have been performed with initial approximation

r, = ,1 , for some specified values of ., n andg. This value of
v, -4

v, and q were selected in such a manner that the distorted models are well
within the respective Roche lobes. The values of ~,__ is computed with

exp

desired accuracy of 0.000005.

In order to exhibit the convergence of the series r in (2.7)
numerically, each partial sum S, (i,=1,3,5,7,9) is computed for the same
specified values of r,, y/s',n, q, 0 and ¢and is compared with the values of
r,.,-Computed from equation (2.51) the percentage error needed to see the

growth of errors in each partial sum relative to r, , is given by

rexp _Si‘
, =———x100, i=1,3,5,7,9 (2.52)

Vexp

ES

In order to exhibit the effect of rotation on the shape of rotationally

distorted models, we present the values of r, , S, (i,=1,3,5,7,9)in Table 2.1

xp? i

(a), 2.2 (a), 2.3 (a) . for various combinations of & and ¢ on the outermost
equipotential surfaces y, =2.5,5.0, 10.0 of rotating models. The results written
in parenthesis just below the values of S,, indicate the percentage error in it

with respect to 7,, . The results presented in Table 2.1 (b), 2.2 (b), 2.3 (b)

show the effect of tidal forces on the shape of the outermost equipotential

47



surfaces y, =2.5,5.0, 10.0 of tidally distorted models. Finally the results shown

in Tables 2.1 (c), 2.2 (c), 2.3 (c) and 2.1 (d), 2.2(d), 2.3 (d), 2.4 (d) are,
respectively, the effect of nonsynchronously and synchronously rotating binary

systems on the outermost surfaces of the equipotential surfaces

w, =2.5,5.0, 10.0

2.5.3 Analysis of the Numerical Results

Results presented in Tables 2.1, 2.2 , 2.3, 2.4 (a, b’, ¢) and Table 2.5
essentially give the difference between the numerically computed value of r
on the outer most surface at difference using exact equations (2.2) and the
corresponding values of » as obtained from series expansion (2.7) when terms

up to difference order are included. Where as Tables (2.1) correspond to

purely rotating stars of different dimensions for n=0.2 (v, is value of y at the

outer most surface, smaller the value of . more extended is the model),

Table (2.2) corresponds to tidally distorted stars and Table 2.3 (a, b, ¢) to
rotationally as well as tidally distorted stars. Tables 2.3 (d) represent a

- synchronously rotating binary system. Where as values of »n ,q are reasonably

small in these cases, in Table (2.5) we present a situation in which values of

n,q are large.

Our results show that where as in the case of purely rotating models
Tables 2.1 (a) , 2.2 (a), 2.3 (a) the maximum percentage difference in the value

of S, (when all terms in series expansion 2.7 are included) and corresponding
values of 7, ~computed numerically using (2.2) is only 0.4‘02609 for most
extended model given in Table 2.1(a) for v, = 2.5, it is 0.418518 in Table 2.1

(b) for y,;=2.5 for tidally distorted models, 0.425011 in Table 2.1 (c) for v =
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2.5 for rotationally and tidally distorted model and 1.440326% in case of Table
2.4 (d) for a synchronously rotating binary system. In all these cases values of
n,q can be considered to be reasonably small. However in Table 2.5 when
n,q are taken large for an extended rotationally and tidally distorted model,
maximum value of this percentage difference is as high as 18.0044%.

Our numerical results in Tables 2.1, 2.2, 2.3 and 2.4 also show that the
series expansion (2.7) shows a converging trend as the value of percentage

difference between values computed from it and value of r,  computed from

(2.2), the value of percentage difference deqreases (except on account of
truncation errors in certain cases) as more and more terms are included in its
expansion. It is expected that even this small percentage difference is
expected to reduce further if higher terms are included in series expaﬁsion
(2.7) (as has been done by Mohan et al. in certain cases in their series
expansion and by us also in our subsequent studies).

It may be noted that for points inside the star y >y, the trend of
results in Tables 2.1 (a, b, ¢), 2.2 (a, b, ¢), 2.3 (a, b, c) and 2.4 (a, b, ¢)
therefore shows that points inside the star the difference between the value of
r computed using series solutions (2.7) and its value as obtained numerically

from (2.2) is expected to be less than difference in their values at surface
(w=y.). However at points which are outside the star (0 <y <y.) the
difference in the value of y as computed from series solutions (2.7) and as

obtained through numerical solution of (2.2) is expected to be more than the
difference in their values on the surface. Difference will increase as

y decreases towards zero. However it may be noted that in problems regarding

structure and pulsations of rotationally and tidally distorted stars analysis is
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usually carried out at points inside the star where series expansion (2.7) yields

quite accurate values of r.
The numerical study thus shows that the sequence of partial sums

contain more error for smaller values of . and kw.,gw values of n and ¢. As

v, decreases we are nearing Roche limit. As » increases star is rotating more
rapidly and as ¢ increases mass of accompanying star increases. Kopal had
assumed that in his studies » and g are small and star is well within Roche

limit. Our analysis thus shows that series solution (2.7) reasonably justified for

rotationally and tidally distorted stars in which values of » and goda not large

and star is well within Roche limit.
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CHAPTER - 1l

EFFECT OF INCLUDING MASS VARIATION IN COMPUTATION
OF THE POTENTIAL ON THE EQUILIBRIUM STRUCTURES OF
ROTATIONALLY AND TIDALLY DISTORTED POLYTROPIC
MODELS



Investigators such as Kopal (65), Mohan and Singh (89), Mohan et
al.(70, 85,‘90,92) approximate the equipotentials surfaces of -rotationaHy and
tidally distorted models by equivalent rotationally and tidally distorted Roche
equipotentials This approximation is valid for highly centrally condensed types
of gaseous spheres. In the case of models in which the central condensation is
not too large, this approximation is not justified. It will, therefore be useful to
see if in such types of models which are not too centrally condensed, the
approximation of actual equipotentials surfaces by the Roche equipotentials
surfaces can be improved upon.

in the present chapter we study the equilibrium structures of rotationally
and tidally distorted polytropic models by‘iﬁcluding in an approximate way the
effect of mass variation inside the sta_r_' on its equipotentials surfaces. The
modified Roche equipotential surfaces of such rotationally and tidally distorted
stars are presented in section 3.1. In séction 3.2 the problem of determining
the structures of rotationally and/ or tidally distorted stars using Mohan et
al.(85) approach, as modified by us ta;i,ng into account the effect of mass
variation inside the star on its equipotentiais surfaces, is then discussed. In this
section mathematical expressions det‘erminin‘g the equipotential surfaces,
volumes, surface areas etc. are first derived and then used to obtain the
system of differential equations govgrning the equilibrium structures of
rotationally and tidally distorted stars. In .section 3.3, the modified approach has
been used to numerically determine the equilibrium structures of rotationélly
and tidally distorted polytropic models. N_umerical results for the inner structure
and shape and other physical parameté(é of certain rotating polytropic models
with polytropic indices 1.5, 3.0, 4.0 are next obtained in section 3.4. Numerical

results thus obtained have been compared in section 3.5 with the results
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earlier obtained by Mohan and Sexena (85) and other authors who while
computing Roche equipotential surfaces considered the whole mass of star to
be concentrated at its centre. Certain conclusions based on this study have

finally been drawn in section 3.6

3.1 EQUATION OF MODIFIED ROCHE EQUIPOTENTIAL

In order to investigate the equilibrium structures and stability of binary
stars, the concept of Roche equipotentials and Roche limits have often been
used in literature. While computing Roche équipotential, the whole mass of the
sphere is assumed to be concentrated at its centre. This approximation, though
reasonably correct for highly centrally condensed stellar models, is not true forv
stars which are not very highly centrally condensed. The concept of Roche
equipotentials therefore needs to be modified in case of stars which are not
highly centrally condensed taking into Vg_‘t:_:;gpunt the effect of mass variation on
its equipotential surfaces inside the star. The results on Roche equipotential

t
based on this modification and which are of practical interest to the present

study are summarized below.

Let M, and M, be the total m‘,}‘a‘ssAes of the primary ‘and secondary
components of a binary system which are assumed to be gaseous spheres.
The primary is much Iarger than the secondary (M,>M,). Let M (r) represent‘
the mass interior to a Sphere of radius r inside the primary component. Let
D be the mutual separation between thé:_ centers of these two masses. Further
suppose that the position of the two‘_ éémponents of this binary system is
referred to a rectangular system of cartesian coordinates having the origin at’
the center of gravity of mass M, the X -—axis along the line joining the centers
of the two components, and Z - axis perpendicular to the plane of the orbit of

66



the two components (fig 3.1), then the total potential y due to the gravitational,
rotational and other disturbing forces acting at an arbitrary point P(x,y,z)

may be expressed

z

i v ey

r 1
2 .

/'fx \1A( MID b 0’ 0)

A1 Gl M+ M, N
- L0 o > X
Mo() K7 D \/

FIG. 3.1 AXES OF REFERENCE

My(r) M, 1 _, MD .
=G+ G = Q| (x———2 + 3.1
T TR [(x Mo+, y} 31

where all other symbols have same meanings as assigned to them in chapter
Il. Thus, the three terms on the right hand side of (3.1) are, respectively, the

potential arising from the mass M, of the primary, the disturbing potential of its
companion of mass M, and the potential arising from the centrifugal force. In
first term on the right hand side of (3.1) M, of (2.1) is replaced by M,(») and is

based on the fact that in a self-gravitating spherical configuration, the
gravitational potential at a point inside the sphere depends only upon the mass
enclosed within the concentric spherical surface passing through that point.

Equation (3.1) in nondimensional form can be expressed as

y;':i,+q 1‘ = —Ar | +nr' P (1-0v%) (3.2)
r O 1=24r" +r
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oDy _ M and z=
GM, 2M,(M,+M,)’ M,

where v

is the nondimensional form of the total potential v and z the ratio of mass
M, (r) inside spherical surface of radius » of the primary to its total mass. Also
A=sinf cosg,u=sinf sing and v =cosd, r,0,¢4 are as earlier the spherical
polar coordinates of the point?. Obviously z is a nondimensional parameter
which becomes zero at center of primaries M, and one at the surface of the

primary. Also as in chapter Ii,
g=—-", (3.3)

is a nondimensional parameter representing the ratio of mass of the secondary
over primary and 2n represents the square of the normalized angular velocity
Q. In equation (3.2) if g=0. It reduces to the potential of a rotating spherical
model rotating with angular velocity Q and if»n=0, then it reducés to the
potential of a spherical model distorted only by the tidal effects of a companion.
The angular velocity Q and the nondimensional parameter » are defined in the

similar way as defined by (2.4) and (2.5) in section 2.1 respectively.

Equipotential surfaces in nondimensional form  represented by
w " =constant are the modified form of the Roche equipotentials of rotationally

and tidally distorted spherical models when the effect of mass variation in
computation of potential at points inside the primary is considered. On

substituting z=1, in (3.2) or M ,(r)= M, in (3.1) it reduces to the Roche

equipotentials which were earlier obtained by Kopal.

68



Adopting an approach similar to the one adopted by Kopal (65) and

Mohan and Singh (87), we define a nondimensional variable r, by the relation

v' -q (3.4)

Then following Kopal (65), (7, 8,¢) on the surfaces of the modified Roche

equipotentials given by (3.2) are connected through the relation

. P, 3
ro=r=rll+r’a+ T2 qP +£ A {q a°
z z

}+

2p2

P 4g°P
r {f’—z—i{aqaofz)}+ro*{q—zi+;(8qaoa)+ 75 44

2
4

P11 942 P. P (3.9)
""'09{h +;(9qao Ps)"'—q—23_4

}

q1’91

+r0 T2 - (10qa, P)+ (P +2P P} +..]
z

n(1-v?)

wherea, = ah + , P,=P, (1) are Legendre polynomials and terms up
z

to second order of smallness in n and q are retained. This relation can be used
to obtain the modified shapes of Roche equipotentials y = constant inside the
primary. (Outside primary where z=1, earlier approach ‘and this approach

become identical). Following Kopal (65) and Mohan, Saxena and Agarwal (92),

the expressions for Volume?,, Surface area S, and r, enclosed by the °

equipotentials surface y = constant inside the primary are given by
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3
v, =2 20 (22 2 0 2 2ty 23 g
Y3 z Sz 5z 5z 7z (3.6)

2 210
+? qr +...]

4nr,’ +(7q2 ,l4ng s6n°. s 9¢°r

S, =4x D*r,’[1+ v +
v o | 3z 5z 15z 1527 y 72 3.7)
11g%r," '
+—gz—2°+...]
2nr,) 4 6 S 4.8
r, =Dr1+— +(522 q’ 5 %zq+4 —~n*)r, +727q A
2. 10
+—¢q +..]
277 (3.8)
Inverting the above relation we have
.o2m” g 8 4 w 571" 297,
ry=r, [|-——%—- 24 ng - 750 |t i S I
o =1y | 3z (522q 152 1 457 "y 72* 3z° ]
(3.9)

where rw' =r, /D, rv,' being the nondimensional form of r, . Outside primary

z=1, and these expressions are same as obtained by Mohan et al. (92).
Similarly using equations (2.13), (2.14) we have obtained explicit expressions

for the value of g and g~ at points inside the primary as
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- ZGMV, 8nr.’ 3 40 51

= 1-—2 —(Sq* +Zng +—nH)r,’ - 22
& Dzro2 [ 3z (22(] z? 1 9z? o l4zzq 0

13
—yqzrow +...]
(3.10)

— D*r}  8nr, 31 62 584 101

1= ® 1+ 0 4 24 ng + nrt +——grt
& = e, VT TG s M
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+—=q°r, R
977" (3.11)
As in earlier studies in obtaining the above expressions terms up to second
order of smallness in z, n and g are retained.
‘3.2 METHOD FOR DETERMINING THE EQUILIBRIUM STRUCTURE OF
ROTATIONALLY AND TIDALLY DISTORTED STARS INCLUDING

THE EFFECT OF MASS VARIATION IN COMPUTATION OF
POTENTIAL INSIDE THE STAR

Once the equipotentials surfaces of a rotationally and tidally distorted
star are approximated 'vby the modified Roche equipotentials to take into
account effects of mass variation inside the star on its equipotential surfaces,
the approach followed by Kopal (65), Mohan and Singh (89), and Mohan and
Saxena (85) may now be used to evaluate explicitly the values of modified

distortion parameters u, v, w, f, and f,. Following the approach discussed in

chapter Il in section 2.3, these modified distortion parameters become

1 . 2 4 | P
u=l-(—¢q +—5 ng+—n’), -——q’r,
5z 15z 45z 7z (3.12a)
1 210
ko
4nr, 7 14 68 31
v=z[l-—%~ 24 ng + nyrt ———q’r?
[ 3z (522q 1522 1 45z? "y 14227 Y
3, |
___Z_i_quwlO_i_m]

(3.12 b)
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1. A4nr 23 46 212 o« 81 .
=1+ LAY 2 4 ¥ 2 642" 2,°8
W G A g e I
7 2_*10
+—q°r, +..]
227 Y (3.12¢)
YY) 44 128 79
=z[- v 2+ na + nz r*s_ 2r‘8
Jr=2ll=— == G Mt g T T
62 , . '
—52—2q2rv,1° +]
(3.12d)
| 14 28 56 5. 46 5 ug
fT=1—( 2q2+ 7 hq + 2n)rvf T a24r -
_34 o,
922 v

where r,; =r,/D. is the nondimensional form of r, and terms up to second

order of smallness in z, » and ¢ are retained. For z =1, the above expressions

reduce to the expressions which were earlier obtained by Mohan and

Saxena (85).

The values of P,, p,, L, etc. on the various equipotentials surfaces of a

rotationally and tidally distorted gaseous sphere may now be obtained by
solving the system of differential equations (2.30), (2.33), (2.34) and (2.39)
subject to the boundary conditions( 2.40)and using the values of the correction

factors f, and f, asgivenin (3.12).

It may be noted that approximating the equipotentials surfaces of a
rotationally and tidally distorted model by Roche equipotentials, the structure of

the star is not approximated by the structure of a Roche model. This is evident
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from the fact that in the case of no distortion (n=¢=0) and z=1 equations
(3.12) give u=v=w=f,=f,=1 and the system of differential equations

(2.30), (2.33), (2.34) and (2.39) reduce to the equations governing the
equilibrium structure of the original undistorted star and not of the undistorted

Roche model.

Usual numerical methods for solving the stellar structure equations can
be used to integrate the system of differential equétion (2.30 to 2.39) governing
in the equilibrium structure of a rotationally and tidally distorted gaseous
sphere. However, at each step the values of the distortion parameters

u,v,w, f,and f. must be computed using (3.12).

In case a gaseous sphere is being distorted by rotational forces alone

(or tidal alone) we may set ¢ =0(or n=0)in equation (3.12) and still use the

above approach in determining the equilibrium structure of the distorted model.
For the structure of the primary component of a syhchronous binary system we

should set n=(q+1)/2

If the thermal properties are not considered important and only
hydrostatic equilibrium of a rotationally and tidally distorted gaseous sphere is
to be investigated then we need only to integrate equations (2.30) and (2.33)

subject to the boundary conditions

M, =0 atthecenterr, =0,
and

M,=M, P, =00rP,, p, =0 orp,, atthe free surface », =R, (3.13)
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In expressions (3.15) we have only retained terms up to second order of
smallness in n and g. Therefore the above analysis is valid for the rotationally

and tidally distorted models in which the distorting forces causing rotational and

tidal distortions are not too large.

The solution of the boundary value problem (2.40) with modified
parameters as defined here determines the equilibrium structure of a
rotétionally and tidally distorted model. For computational work, we find it more

convenient to work with r, in place of M, or r,as the independent variable.
Variable r, defined in (3.4) is connected with variable r, explicitly through

relations (3.9). By using these relations in (2.30), (2.33), (2.34), (2.39) and
(2.41), the system of equations governing the equilibrium structure of a

rotationally and tidally distorted model can be expressed as:

aM, , )
=4x D Py fi (3148)

o

dapP _GMW P, fa

Y= 3.14b
dro Dro2 ( )
dL
d—"' =4zD’p,1’ f, (3.14¢)

"o

dT 3x L P
At L Ty (3.14d)
dr, 16z DacT,’r,

where f,, f,,f, are certain functions of n, ¢, z and r, incorporating the effects

of rotation and tidal distortions on the equilibrium structure equations of a
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distorted model. These can be expressed explicitly in terms of z,n, ¢ and 7,

such as

anr,’ 36 72 64 55
-fl_l ZO +(522q2+1522 ng + 2”2)r06+ 2q2 08
(3.15a)
+ 2q2 010+
2 4 48 9
=2l 50 g amt g s 2)°6_ﬁ7q2 )
o (3.15b)
- 2 q2r010+ ]
4nr, 6 12 224 s 24 3
=1 .+ g ng+ I, + r +
£ 32 TG T M s Y
+%q2r0m+

(3.15¢)

In the above expressions again terms up to second order of smallness in z, n
and ¢ are retained. The boundary conditions given in (2.40) now become
M, =0 atthe center ,=0 and P,=0or P, , p, =0o0r p,  atthe free surface
r=r, (r,, being the value of r, at the free surface). Also z=1 at surface and

value of 7, at surface is given by

P, =— (3.16)

where y,” is the nondimensional value of -the total potential v on the

outermost equipotentials surface of the rotationally and tidally distorted stellar

models.
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3.3 EQUILIBRIUM STRUCTURES OF ROTATIONALLY AND TIDALLY
DISTORTED POLYTROPIC MODELS TAKING INTO ACCOUNT OF
MASS VARIATION IN COMPUTATION OF POTENTIAL INSIDE THE
STAR ‘ '

Polytropic models have frequently been used in literature to depict the
inner structures of realistic stars. Chandrasekhar developed the theory of
distorted polytropes. Since then the several investigators have discussed the
structure of a rotating polytrope. However not much attention seems to have
been paid to the problems of determining the effects of tidal distortions alone or

the effects of tidal distortions in the presence of rotation on the equilibrium

structures of polytropic models.

In this section we consider the feasibility of using the approach
developed in section 3.1 and 3.2 of this chapter to determine the inner
structures and equilibrium configurations of rotationally and tidally distorted

polytropic models of stars.

Suppose a polytropic model is subject to rotation and tidal distortion then
its structure will become a rotationally and tidally distorted polytropic model.
Following the approach of section 3.2 we shali approximate the equipotentials

surfaces of this distorted model by modified Roche equipotentials. Let P,
denote the pressure and p, the density on the equipotentials surface y =

constant of the distorted model. Then the value of the density and the pressure
on the equivalent surface of the corresponding spherical model will also be

p,and P, respectively. We shall assume that the distorted model also behave
like a polytropic model so that p,and P, are connected through the polytropic

type of relations.
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P,=P,6,"" and p,=p,06," (3.17)

cyy

where P,, and p,, are the values of P, and p, at the center and 6, is
some average of & on the equipotential surface y = constant. In the case of

polytropic models, the following equations

M, , . dn_ GM,
=4rr an =— ,
dr, v P dr, rw2 Py

(3.18)

which govern the hydrostatic equilibrium structure of rotationally and tidally
distorted gaseous spheres can be combined together with (3.17) to yield

d dé
G B a19
v y
N+DP
where al = L——)zi
471',0 cy

If we change the independent variable 7, into 7, equations (3.19) is reduced

to

2

d do D N
d_r0|:A (Z’nsqa rO)_dr_:}=__a_2_B(Zansq9 ro) 0@1 (320) '

dr, .
where A(z,n,q,ro)=ruf;r1’i and B(z,nq,r)=r; y Y. Explicit expressions for
Ty To

these can be written as

2 4 16 6> 5 10g°
Azan, h)= ? 1- 2+ nq + nz]rs———rs‘ r10+"‘,
(&ma.10)=r, [ (5z2q 1522 1T 52" Jo T T

(3.21)
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4n 36 24 9% ,) 6 S5 , 5 26
B(z,nq,r)= 1|1 +—r +| —+ + R ==q'r +——r
(z,m,9,7,) ro{ zro (522 522”‘1 522”]0 722q 0 T3,

(3.22)
ZdBV/
M,n " ar
wherez = —2~~ = 0 (3.23)
Zde'//

0
(rO dr )r0=ro,
0

As regards the boundary conditions since p,and P, must be maximum

at the center and zero at the free surface, these obviously lead to the

dé
conditions 0V=1 and d—"’= 0 at the center and 6, =0 at the free surface.
%o

Thus the boundary conditions which equation (3.20) must satisfy are

dé
7,=0,6,=1,—L=0, atthe center
dr,

and r, =r,,6, =0,at the surface (3.24)

r,, being the value of r, on the free surface.

The quantity a as defined in (3.19) is of the dimension of length. If we
set r, =a& then ¢ will be nondimensional variable defined for the equivalent
spherical model. It corresponds to the usual Emden variable £ of the Lane -

Emden equation for an undistorted spherical polytropic model when terms upto

second order of smallness in distorting parameters z,n, and ¢ are retained.

It may be noted that the approximation of the Roche equipotentials

surfaces by modified Roche equipotentials has not basically changed the
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structure of the polytropic model because in the absence of any distortion z=1,
(n=q =0), equation (2.6) reduces to the usual Lane- Emden equation of an

undistorted polytropic model with index N in non dimensional form and not to

the equation governing the equilibrium structure of undistorted Roche model.

In the case of a rotationally and tidally distorted polytropic model or a
model which is a primary component of binary system, let K denote the ratio
between the undistorted radius R, of the primary and D the distance between

the centers of the two components of the binary system. Then following Mohan

et al.(85) we can write

D_De D, 1. (3.25)

where ¢ is the value of ¢ at the outermost surface of the undistorted
polytropic model. With this substitution equation (3.20) can be written as

5

d ae, N
d_ A(r0>zan>q)d_ =_P9y18(r()szsnaq) (326)

1y Ty

Eqﬁation (3.26) subject to the boundary conditions (3.24) determines the
equilibrium structure of a rotationally and tidally distorted polytropic model. On
~ setting g=0the equation (3.26) can be used to determine the equilibrium
structure of a polytropic model distorted by rotation alone. If we set n=0 then
the equation can be used to determine the equilibrium structures of polytropic
models distortéd by tidal forces alone. Also by setting n=(q+1)/2 this
equation can be used to determine the equilibrium structure of the primary

- component of a synchronously rotating binary system.

79



In order to determine the numerical solution of the second-order
nonlinear differential equation (3.26) subject to the boundary conditions (3.24),

we can start integration of (3.26) (for certain specified values of N, &,,k,n and

do
g) from the centre using 6, =1and —= at the centre (7,=0) as the initial
To

conditions. The integration be continued till 9, first becomes zero. In its
computation we need the value of z at each step of integration to take into

account the effect of mass variation inside the star on the shape of

equipotential surfaces. These values can be calculated using equations (3.23).

The value of 7, (i.e.r, ) when 6, first becomes zero determines the outermost

free surface of the model. Once the solutions of equation (3.26) are obtained,

we know the values of 6, for various values of the nondimensional
independent variable 7, varying from zero to r,. The pressure P, and the

density p, on various equipotentials of the distorted model may now be
obtained through the relations (3.17) in the same manner as~is done for
undistorted polytropic models. Also, the radius r, of the topologically equivalent
spherical surface corresponding to the equipotential surface y = constant can

be determined from (3.9) and written as

2,10

r—(aé"]r 1428 4| 2 g8 ng+ LS W RN e
K ) 3z° 522q 1522 45z* 0 722q 0 322q ¢

(3.27)

34 VOLUMES, SURFACE AREAS AND OTHER PHYSICAL
PARAMETERS OF POLYTROPIC MODELS

In this section we have developed explicit expressions to determine the

volume, the surface area and the shape of a rationally and tidally distorted
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polytropic model. In addition to this we have also shown in this section how the
surface area, the shape and the volume enclosed by an equipotential surface
located in the interior of a rotationally and tidally distorted polytropic model may
be determined. On using (3.25) with (3.6), the total volume enclosed by a

rotatio'nally and tidally distorted polytropic model is given by:

dn(at wm, (12 , 8 32, 15 NE
Vv =— - 1+==7r +| —=g*+—=ng+—=n*|r{ +— r r,
v 3 ( k ) Os|: z 0s (522 q 522 q 522 0s 72 q Os q 0s

(3.28)

Similarly on using (3.25) with (3.7) the total surface area covered by the
free surface of a rotationally and tidally distorted polytropic model can be
expressed as :

2
aé,\ ,|. 4n , (7 , 14 56 ) 9 11 5, 4,
S =dx == | rill+—r + + ng + nlr. + R A R
v ( k ) Os{ 32 0s Szzq 1522 q 1522 Os 7 zq Os 9q Os

(3.29)

Also the shape of the outermost equipotential surface of a rotationally and
tidally distorted polytropic model may be obtained by using (3.25) with (3.5) to

obtain

=a§“ [l+%a0r0s3 %qf r0s4 + q: ss 05 {qP 3a0
1
roS’{"z +=(1ga,R)} +1, { L 4= (SqaoP>+22 7P} +

Yys { A +1 (9qaoP)+ 9q2P P}+
z z

3+

(3.30)

n @5 L G0ga, B+ (P +2P, BY]
VA V4 A

2
where a,= LGl

and P, =P,(4) areLegendre’s polynomials with
z z
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A=sinfcos¢ , u=sinfsing, v=cosf@ and (r,0,4) being the polar spherical

coordinates with the pole at the centre of the primary (c.f.(3.5) and (3.1)). Also

value of polar and equatorial radius R, and R, are given by
R, =r, R

» =l (3.31)

2
R =, Rl1+E@+Dr +4y 4, ¢ +(9—+3i2)r0s6 +
Z zZ ¥4 V4 z z

79’ 124° 184’
+(2+L2)r057 + &+ L o, + @+ 00+
Z zZ zZ zZ V4
+( 4 O]

V4
(3.32)
If we follow Geroyannis and Valvi ( 41) oblateness and ellipticity o and
¢ which are used as measures of the departure of the shape of the star from

spherical symmetry may be computed using

o=—"—F% (3.33)

p=—1F (3.34)

The values of gravitational force g, at the pole and g, at the equator are

given by
gﬁiMf and | (3.35)
p
2q 2n 3__ 4 4_q 5q 6q2 6
g _—GMO 1- ( )0s Tos ( 22 Fos
e 2
| 8,26 0,0 2y
Z 4
(3.36)
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Polytropic model do not include energy conservation and therefore are
not expected to be in thermal balance. However these models have been used
in literature to compute the effect of rotation on variation in temperature and
luminosity on stellar surface. Following Ireland (55) the effective temperature at

/4
any point on the surface of the star can be obtained as [%J:(i]
&r

P

(3.37) whereT,is the polar temperature. Once temperature is known radiative

flux L at any point on the surface may be estimated using L=——34a—cT3grad T
P

(3.38) Where y is the opacity, T the gas temperature, a the radiative
constant, and ¢ the velocity of light.

We have used relations (3.28-'3".(30) may be used to determine the
volume, the surface area and the shap; bf a rotationally and tidally distorted
pblytropic model when terms upto second order of smallness inz, » and ¢ are
retained. In case we néed the volume or the surface érea or the shape of
some inner equipotential surface of thé distorted model then we need only
replace r,, by the appropriate value of r, for that surface in the above
relations (3.28-3.30).Thus once the numerical solutions of the nonlinear
differential equation (3.26) which governs the equilibrium structure of a
rotationally and tidally distorted polytropic:model has been obtained, the value
of r, thus obtained may be used in the above formulae to determine the
volume, the surface area and the shape .of the outermost equipotential surface

of the rotationally and tidally distorted polytropic model.

35 NUMERICAL COMPUTATIONS

To obtain the inner structure, thg shape, the volume and the surface

area of a rotationally and tidally distorted polytropic model, equation (3.26) has

83~



to be integrated numerically subject to the boundary conditions (3.24) for the

specified values of the parameters N, ¢,n,gand K which denote

respectively the polytropic index, the radius of the undistorted polytropic model,
the nondimensional measure of angu'lar velocity of rotation, the ratio of the
mass of the companion to the mass of the primary and the ratio of the
undistorted radius of the primary to the distance between the centres of the
primary and secondary. The value of z required at each step has to be
computed from the equation (3.23). For a polytropic model distorted by
rotational forces alone we should take K =1. In the case of the polytropic model
being the primary component of a binary system the value of K must be
chosen that the outermost surface of the primary component lies well within the
Roche ‘Iobe otherwise the two stars will _ggqlesce (cf. Kopal (65), page 11).

qu obtaining the numerical sqlutions, equation (3.21) has been
integrated by us numerically using fourth-order Runge-Kutta method for the
specified values of the input parameters. A series solution similar to the one
available for undistorted polytropic models (see Chandrasekhar (7) page 95)
was. develbped to start integrations at points near the centré. This serious

solution is given by

2 4 2 6 _ 4
K* , NK' . 2K’ . KN@N-3) o K'Nn .

g, =1-2
v T e P T 200 Tz 0T axs040 0 70z
K®N(122N>-183N-70) K? ,_ , 2 |s
+ - 39" +2nq+8n°) |r, + ... (3.39
[ 9x362880 3627 01 TR (3:59)

Taking starting values from this series solution at #,=0.005, numerical

integration of equation (3.26) was then carried forward using Runge-Kutta
method of order four. Using a step length of 0.005, numerical integration was

continued till 6, first became zero. Relations (3.20), (3.28) and (3.29) were
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then used to determine the shape of the distorted polytropic model, its volume
and its surface area.

Results obtained for different values of the input parameters are
tabulated in Tables 3.1 to 3.3. The value of the parameter has been taken as
one for the rotationally distorted}model and 0.5 for the tidally distorted or
rotationally and tidally distorted models. (This value of K provides the outer-
most surface of the model well within Ro.che lobe for each considered case). In’

Table 3.1 we present the values of g, for various types of distorted polytropic

models of indices 1.5, 3.0 and 4.0. Following Chandrasekhar (21), Linnell (74)
and James (56) we have also computed the results in Table 3.2 by taking
a =1. The values of the volumes and the surface areas and other physical"
paraméters obtained for each of these distorted models are then presented in
Table 3.3. It will be interesting.to compare the present results in which effects
of mass variation in computation of ,.potential has been includes with
corresponding results earlier obtained by Mohan et al (85) in which entire mass
of the model is supposed to be concentrated at centre in computation of
equipotential surfaces. The Results shown in parenthesis for each models in
Table 3.1 (a) (c) and Table 3.3 (a) - (¢) 're(present the result earlier obtained by

Mohan and Saxena (85). !

3.6 ANALYSIS OF RESULTS

Results given in paranthesis in‘second r_ows'of entries in Tables are
reality the values of 8, for respective polytropic models as obtained by Mohan
et al. (85) who earlier carried out corresponding computations assuming whole.
maés to be concentrated at the centre. The results of the Table 3.1(a) show

that for the polytropic model of index 1.5, the value of 6, for each of the

85



distorted model are larger compared to their corresponding values of the

undistorted model (values tabulated in column | for (n =g =0) Our values for
g, in the case of undistorted and rotationally distorted polytropic model for

index 1.5 are smaller in comparison to the corresponding results obtained by
Mohan and Saxena (85) and listed along side in parentheses. However, with

the introductions of tidal effects, our values for 6, .increases in comparison to

the corresponding results as obtained by Mohan and Saxena (1983). For the

polytropic model of index 3.0 however,‘ whereas the values of 6, for the

rotationally and tidally distorted models are larger than the corresponding

fala}] '
values for undistorted model, the values of 6, for tidally distorted models are

marginally smaller than their correspohdihg values for undistorted polytropic
model. A comparison of our results for the undistorted models of index 3.0 with
the corresponding results obtained by Mohan and Saxena (85) shows that
results obtaihed by us are in complete é’éreement with their results. However

our values for 6, for the tidally distorted models are marginally less in
comparison to values for 6, as obtained 'by Mohan and Saxena (85). However

the values of §, obtained by us for rotatibnally and tidally distorted models are

generally larger in comparison to the bér;esponding values obtained by them.
As regards the comparison of our results”'for‘the polytropic model for index 4.0,
with the corresponding resuits obtained by Mohan and Saxena (85) observed a
trend similar to those in the case of results for polytrope.
The results presented in Tab|e'3'.3;"(é), (b) and (c) exhibit the values of
volumes, surface area, and other physical parameters for fotatioﬁally and

tidally distorted polytropic modeis with ‘polytropic indices 1.5, 3.0, 4.0, |
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respectively. In each Table results shown in parenthesis are those obtained

by Mohan and Saxena (85). A comparision of the results of volume v,,and
surface area S, for rotationally and/ or tidally distorted model with undistorted

model for polytropic indices 1.5, it indicates that our results are larger in
comparison to undistorted model. However, for rotationally and tidally

distorted models these are smaller. As regards the polytropic model of index
3.0, values of &, generally increased in comparison to the uﬁdistoned model
with the introduction of distortion terms. A similar trend is noticed for the
polytropic mode! of index 4.0. The values of the shape parameters ¢ and ¢
generally decreased in the presence of distortions. The values of T,/T, and
L, /L, have generally increased with the introduction of rotational effects and

decrease with the tidal and combined rotational and tidal effects. The results
in a way indicate that the rotational forces partly restore the contraction in the

equatorial plane caused by the tidal force.
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Table 3.1(a) : Values of 6, for rotationally and/ or tidally distorted
polytropic models N=1.5

x=r0/r03 K=1.0 K=1.0 K=05 K=05 K=05 K=05
n=0.0 n=0.1 n=0.0 n=0.1 n=0.55 n=0.6
q=0.0 g=0.0 q=0.1 q=0.2 g=0.1 g=0.2
0.0 1.00000 | 1.00000 |1.00000 | 1.00000 | 1.00000 1.00000
0.1 0.97652 |0.97797 |[0.97787 0.97834 | 0.98008 0.98027
(0.97797) | (0.97925) (Q.‘97797) (0.97814) | (0.97887) | (0.9789)
0.2 0.90887 |0.91146 |0.91438 |0.91613 | 0.92266 0.92337
(0.91446) | (0.91923) | (0.91446) | (0.91509) | (0.91781) | (0.9181)
03 0.80492 |0.81665 |0.81100 |0.82013 |0.83339 |0.83483
(0.81665) | (0.82619) | (0.81666) | (0.81791) | (0.82334) | (0.8239)
04 0.67592 |0.69488 |0.69488 |0.70025 |0.72068 0.72291
(0.69488) | (0.70906) (O.'69489) (0.69673) | (0.70481) | (0.7057)
0.5 0.56068 | 0.57797 |0.56068 |0.56291 |0.57276 0.57384
(0.56067 | (0.57797) | (0.56068) | (0.56291) | (0.57276) |(0.5738)
06 0.39210 | 0.42490 |[0.42497 |0.43282 | 0.46345 0.46687
(0.42490) | (0.44279) | (0.42491) | (0.42720) | (0.43736) | (0.4384)
0.7 0.25855 |0.29638 |[0.29647 | 0.30456 | 0.30725 0.34027
(0.29638) | (0.31202) (0._-29639) (0.29837) | (0.30725) | (0.3082)
0.8 0.14018 |0.18112 |[0.17587 |0.18890 |0.20175 0.22347
(0.18112) | (0.19219) | (0.18112) | (0.18250) | (0.08592) | (0.1894)
0.9 0.04028 |0.08218 [0.08228 |0.08910 |0.11712 0.12040
(0.08218) | (0.08756) | (0.08219) | (0.08283) | (0.08592) | (0.0862)
1.0 0.00000 | 0.00000 |0.00000 |0.00000 |0.00000 0.00000

G

~ Note: Results in paranthesis shown in these and subéequent tables are the
corresponding results as obtained earlier by Mohan and Saxena (1983).
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Table 3.1 (b) : Values of ¢, for rotationally and/ or tidally distorted
polytropic models N=3.0
x=r,/r,, | K=1.0 K=1.0 K=05 K=05 K=05 K=05
n=0.0 n=0.1 n=0.0 n=0.1 n=0.55 |[7=0.6
9=0.0 9=0.0 9=0.1 9=0.2 9=0.1 9=0.2
0.0 1.00000 |1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000
0.1 0.92600 |0.92809 |0.92568 |0.92630 |0.92878 |0.92899
(0.92600) | (0.92808) | (0.92600) | (0.92627) | (0.92749) | (0.92758)
0.2 0.75322 |0.75891 |0.75304 |0.75473 |0.76159 | 0.76215
(0.75322) | (0.75892) | (0.75321) | (0.75397) | (0.75730) | (0.75755)
03 0.56495 | 0.57243 |0.56489 |0.56717 |0.57651 | 0.57728
(0.56495) | (0.57254) | (0.56494) | (0.56594) | (0.57038) | (0.57070)
0.4 0.40590 |0.41311 |0.40591 |0.40823 |0.41776 |0.41854
(0.40590) | (0.41327) | (0.40589) | (0.40686) | (0.41118) | (0.41148)
0.5 0.28402 |0.28992 | 0.28408 |0.28614 |0.29463 |0.29532
(0.28402) | (0.29006) | (0.28402) | (0.28482) | (0.28837) | (0.28860)
0.6 0.19316 | 0.19748 |[0.19323 | 0.19495 |0.20204 | 0.20260
(0.19316) | (0.19755) | (0.19315) | (0.19374) | (0.19635) | (0.19649)
0.7 0.12509 |0.12795 |0.12517 |0.12656 |0.13229 |0.13272
(0.12509) | (0.12795) | (0.12508) | (0.12547) | (0.12720 | (0.12726)
, )
0.8 0.07313 | 0.07479 |0.07322 |0.07432 |0.07889 |0.07923
(0.07313) | (0.07472) | (0.07312) | (0.07334) | (0.07434) | (0.07434)
0.9 0.03251 | 0.03327 |0.03261 |0.03349 | 0.03714 |0.037408
(0.03251) | (0.03316) | (0.03251) | (0.03260) | (0.03304) | (0.03300)
1.0 0.00000 | 0.00000 0.00000 | 0.00000 | 0.00000

0.00000
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Table 3.1 (c) : Values of 6, for rotationally and/ or tidally distorted
polytropic models N= 4.0

x=,-o/r05 K=1.0 K=1.0 K=0.5 K=0.5 K=0.5 K=0.5
n=0.0 n=0.1 n=0.0 n=0.1 n=0.55 n=0.6
q=0.0 ¢=0.0 g=0.1 q=0.2 q=0.1 g=0.2
0.0 1.00000 | 1.00000 1.00000 | 1.00000 | 1.00000 | 1.00000
0.1 0.73999 |0.74184 0.73949 |0.73949 |0.74171 |0.74162
(0.7399) | (0.74168) | (0.73993) | (0.74020) | (0.74123) | (0.74128)
0.2 0.44089 | 0.44304 0.44238 | 0.44613 | 0.45266 | 0.45337
(0.44089) | (0.44287) | (0.44083) | (0.44114) | (0.44234) | (0.44240)
03 0.27382 | 0.27540 0.27430 |0.27476 |0.27634 | 0.27623
(0.27382) | (0.27528) | (0.27377) | (0.27400) | (0.27490) | (0.27493)
04 0.17893 | 0.17999 0.17941 |0.17976 |0.18090 | 0.180801
(0.17893) | (0.17991) | (0.17889) | (0.17906) | (0.17966) | (0.17967)
0.5 0.11984 | 0.12050 0.12030 |0.12056 |0.12138 |0.12128
(0.11984) | (0.12045) | (0.11981) | (0.11992) | (0.12030) | (0.12030)
0.6 0.07999 | 0.08038 0.08044 | 0.08063 |0.08123 |0.08113
: (0.07999) | (0.08034) | (0.07997) | (0.08004) | (0.08027) | (0.08026)
0.7 0.05144 | 0.05163 0.05187 |0.05201 | 0.05244 | 0.05235
(0.05144) | (0.05160) | (0.05142) | (0.05146) | (0.05158) | (0.05157)
0.8 0.03001 | 0.03008 0.03042 |0.03053 |0.03084 |0.03076
(0.03001) | (0.03006) | (0.02999) | (0.03001) | (0.03006) | (0.03004)
0.9 0.01334 | 0.01333 0.01322 [0.01322 |0.01333 |0.13922
(0.01334) | (0.01333) | (0.01322) | (0.01322) | (0.01333) | (0.01332)
1.0 0.00000 | 0.00000 0.00000 | 0.00000 |0.00000 |0.00000

Table 3.2 :A comparison of the volumes and surface areas of uniformly
rotating polytropes as obtained by different investigators

02 Volume Surface area
yv=

27Gp, Present |Saxena’s| Chandra-| Linnell's [Present {Saxena's Chanra- | Linnell's

Value Value sekhar | Value |value |Values |[sekhar | Value
Value

Polytropic Index N=1.5
0.0 2.0432 | 2.0432 | 2.0432 2.0432 1.6776 | 1.6776 | 1.6776 | 1.6776
0.04 2.052512.0854 [2.0859 |2.0880 |[1.6827|1.7008 | 1.7000 ! 1.70280
0.08 2.0640 [ 21300 |2.1286 |2.1377 |1.6890 | 1.7250 | 1.7250 | 1.7286
0.012 20764 { 21777 | 21714 | 2.1933 |[1.6958 | 1.7509 | 1.7509 | 1.7577
0.016 2.0890 | 2.2275 | 2.2141 2.2560 |1.7030 | 1.7778 | 1.7778 | 1.7900
0.020 21014 { 22789 | 22568 |2.3276 |1.7102 | 1.8058 | 1.8058 | 1.8260
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0.024 21410 1 2.3315 | 22995 |24102 |1.7324 | 1.8345 | 1.8345 | 1.8667
0.028 21247 | 2.3850 | 2.3422 | 2.5067 | 1.7245 | 1.8639 | 1.8639 | 1.9130
0.032 21354 | 24388 |[2.3850 |2.6203 |1.7314 | 1.8936 | 1.8936 | 1.9666
0.036 2.1452 [ 2.4930 | 24277 | 27534 |1.7380 | 1.9237 | 1.9237 | 2.0298
0.040 21543 [2.5470 | 24704 | 2.9052 | 1.7443 | 1.9539 | 1.9539 | 2.1059
Polytropic Index N=3.0

0.0 1.3741 [ 1.3741 | 1.3741 | 1.3741 | 5.9774 | 59774 | 59774 |5.9774
0.0004 |1.4058 | 1.4099 | 1.4070 | 1.4086 |6.0728 | 6.0814 | 6.0728 |6.0770
0.0008 | 1.4405 | 1.4485 | 14399 | 1.4467 |6.1682|6.1918 |6.1682 |6.1858
0.0012 |1.4780 | 14902 |1.4728 | 1.4890 |6.2636 | 6.3106 | 6.2636 |6.3057
0.0016 |1.5053 | 1.5348 | 1.5057 | 1.5361 |6.3590 | 6.4373 | 6.3590 | 6.4386
0.0020 |1.5632 |1.5825 | 1.5386 | 1.5891 |6.4544 |6.5721 |6.4544 |6.5874
0.0024 |1.6078 |1.6328 | 1.5715 | 1.6492 | 5.5498 | 6.7140 | 5.5498 |6.7557
0.0028 |1.6546 | 1.6856 | 1.6044 | 1.7178 |6.6452 | 6.8628 | 6.6452 | 6.9486
0.0032 |1.7063 | 1.7408 | 1.6373 | 1.7963 | 6.7406 | 7.0181 | 6.7406 | 7.0181
0.0036 |1.7567 |1.7984 | 1.6702 | 1.8844 |6.8359|7.1803 | 6.8359 |7.1803
0.0038 |1.7826 | 1.8281 | 1.6866 | 1.9306 |6.8836 |2.2638 | 6.8836 |7.2638

Table 3.3(a) : Volumes, Surface area and other physical parameters of
rotationally and tidally distorted polytropic index 1.5

m)dm no 14 | ¥,x107|8,x10% |O £ rjt, |LJL,

1 0.0 [0.0[2.0431 |[1.67760 |0.00000 | 0.00000 | 1.00000 | 1.00000
(2.0432) | (1.6776)

2 0.0 [05[2.0493 |1.6794 |0.17395 ] 0.14818 | 0.62261 | 0.37366
(2.0664) | (1.6890)

3 0.05]0.2[2.0248 |16673 |0.06374 | 0.05992 | 0.67388 | 0.69608
(2.0621) | (1.6879)

4 06 [02]1.8397 |1.5643 |0.11087 | 0.09981 | 0.63402 | 0.55291
(2.2437) | (1.7862)

5 0.55[0.1]1.8544 | 15727 |0.08023 | 0.07427 | 0.65009 | 0.65632
(2.2214) | (1.7744)

6 0.02]0.0]2.0543 |[1.68370 |0.01931|0.01895 | 0.98448 | 0.90773
(2.0903) | (1.7035)
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Table 3.3 (b) Volumes, surface area and other physical parameters of
rotationally and tidally distorted polytropic index N =3.0

|r\\l/|gd8| n q walo_3 SWXIO_Z o ¢ Te/T,, Le/Lp

1 0.0 [0.0]1.3741 5.9773 | 0.00000 | 0.00000 | 1.00000 | 1.00000 |
(1.3747) | (5.9774)

2 0.0 [0.5]1.3971 6.0381 |0.19752 | 0.15101 | 0.98793 | 0.36484
(1.3923) | (6.0251)

3 0.05[0.2(1.3846 |6.0068 |0.17783|0.06129 | 0.67490 | 0.68970
(1.3910) | (6.0260)

4 06 [0.2]14859 |[6.2984 |0.06523 | 0.12004 | 0.63865 | 0.47871
(1.5708) | (6.5375)

5 0550114709 |6.2559 |0.13641 |0.08699 | 0.65914 | 0.60454
(1.5486) | (6.4754)

6 0.0210.0|1.4142 |6.0930 |0.019750.01937 | 0.98793 | 0.90574
(1.4185) | (6.1061)

Table 3.3(c) : Volumes, Surface area and other physical parameters of

rotationally and tidally distorted polytropic index N =4.0

Model [ T4 T7, x10° s,x10° [ @ € TjT, |L/L,

1 0.0 |0.0|14.0569 |2.81672 | 0.00000 | 0.00000 | 1.00000 | 1.00000
(14.062) | (2.8175)

2 0.0 [05[14.3202 [2.8491 |0.17846 | 0.15143 | 0.62170 | 0.36354
(14.2581) | (2.8412)

3 0.05(0.2|14.2430 |2.8410 |0.06581{0.06175|0.67523 | 0.68755
(14.266) | (2.8445)

4 06 |0.2]16.3803 |3.1199 |0.14858 | 0.12936 | 0.63931 | 0.44636
(16.539) | (3.1406)

5 0.55|0.1|16.0872 |3.0818 |[0.10215| 0.09267 | 0.66228 | 0.58209
(16.255) | (3.1045)

6 0.020.0|14.5901 |[2.8874 |0.01991 | 0.01952 | 0.98918 | 0.90501
(14.604) | (2.8897)
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CHAPTER-IV

EQUILIBRIUM STRUCTURE OF ROTATIONALLY AND TIDALLY
DISTORTED PRASAD MODEL AND A CLASS OF COMPOSITE
MODELS



in the present chapter we use the methodology developed in chapter IlI
to determine the equilibrium structures of rotationally and tidally distorted
Prasad model as well as a class of composite models. These models are often

used in astrophysics to represent the inner structure of certain types of stars. In

Prasad model the density distribution follows the law p=p, (1-x?), p. being
the value of density p at the centre and x the nondimensional measure of the

distance from the centre. The series of composite models considered in this
chapter consist of cores in which density decreases slowly from the centre to

the interface between the envelope and the core according to the law

p=p,(1-x*).These cores are surrounded by envelopes in which density

varies inversely as the square of the distance from the centre. These
composite model have Prasad model at one extreme and Roche model at the
other extreme and reasonably represent the effect of density variation inside
the star on its structure. A series of such models can be constructed by
varying the position of the interface between the core and the envelope. These
models reasonably depict the inner structures of the stars which have
developed cores of reasonable thickness in which density decreases slowly
outwards from the centre to the interface and surrounding these cores have
envelopes in which density falls of rapidly from the interface to the surface.
Models of this series with extended cores can also be regarded as stars
surrounded by their atmospheres. Prasad model and this series of semi-
analytic composite models have often been used in literature to analyze the
problems of stellar structure and stellar pulsations. Investigations carried on
these models are thus expected to provide some insight into the problems

associated with the structure of certain realistic models of the stars.
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Aggarwal (2), Mohan et al. (85) determined the effects of rotation and
tidal distortions on the equilibrium structures of Prasad model and this series of
composite models of stars. In these studies the actual equipotential surfaces of
rotationally and tidally distorted star were approximated by equipotential
surfaces obtained by assuming the entire mass of the star to be placed at the
center éf the star. Here we have reinvestigated the equilibrium structures of
these rotationally and tidally distorted models by approximating the actual
equipotential surfaces by Roche equipotential surfaces which are determined
by taking into account effect of mass variation in potential.

In section 4.1 we discuss the feasibility of using the approach developed
in chapter |l to determine the equilibrium structures of rotationally and tidally
distorted Prasad model. In section 4.2 we have also used the mgﬁhu@ﬁéﬁ
developed in cha‘pter lll to determine the equilibrium structure of rotationally
and tidally distorted composite models of star. Results for numerical
computation in case of Prasad model and composite models for different
position of interfaces as 0.3, 0.5, and 0.7 of the radius are obtained in section
4.3. Certain conclusions based on this study have also been finally drawn in .

section 4 4.

4.1 EQUILIBRIUM STRUCTURES OF ROTATIONALLY AND TIDALLY
DISTORTED PRASAD MODEL

If we assume that the primary component of binary system behaves as
Prasad model and rotating about its axis) then its equilibrium structure will be
distorted by rotation as well as the tidal effects of the companion. In order to
determine the equilibrium structure of this rotationally and tidally distorted

stellar model we may follow the approach of Mohan and Saxena (85) as given
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in section 2.3 of Chapter |l provided it is assumed that the rotational velocity
and the mass of the secondary as compared to the primary are suitably small.

Let », denote the radius of the topologically equivalent spherical model
which corresponds to an equipg?ential surface y = constant of this rotationally
and tidally distorted Prasad model. Also, let R, be the value of r,on the
equipotentials surface y =constant of this rotationally and tidally distorted
model. Following the approach as discussed in chapter IlI, r, and R, are

given as.

¥ =Dr |i1+4nr03 +[4q2"o6 +8nq +76n2J 6+592"os+2q2r010
vy 0 .

+...| (4.1
3z 4z> 1522 4572 )° 0 722 372 J 1)

. 3 2,6 2 2, 8 2, 10
R =D [l+4nros +(4q Yo +8nq +76n ] 6 +5q fo, +2q Yos +]

= Dr,
4 0 3z 4z> 152 4522 % 772 322
and 4.2)
v 3 s
2(R ) 2(R )

where = (4.3)

Further let p, denote the value of density on an equipotentials
w= constant. The density distribution law of rotationally and tidally distorted
Prasad model is given as

2

Ty
p, =p.( T (4.4)
v
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On substituting the value of », and R, from equation (4.1) and (4.2) in

equation (4.4) we get

2.2 3 2.6 2 28 210
D’r, l_'_4nr0 . 8q i;o +16m§ +172n2 +10q 2ro +4q rg .
3z 5z 15z 45z 7z 3z

4.5)

On substituting value of p, from (4.5) in (3.14a) of chapter Ill and integrating

w.rt. , and using the fact that M, =0 at center r, =0 we get

3 3 2 3 2.5 2.6 2
y, <A 3D o 2nn) 2nRir, +[l2q n' , 8ng 32 ]r:

7 —
v 3 SRw2 ° z ZR'/VZ 5z2 15z 577
15¢> 12¢°D* 8ngD* 116n*| s 2¢* 15¢°R* _ 1
+ 777 "5 2p 2 < ,2p2 (ot 2 D+l
'R, 52z°R, 15z 527 7z R,

(4.6)
Similarly on substituting p, from (4.5) and M, from (4.6) in (3.14 (b)) of

_chapter Ill and integrating with respect to 7, we get

4D'r,' 4nr D'y . 32nD%r,
5R," 5z 5R’ 21zR/

1 4 |4

p 27 Gp: D?
v 3

2,8 2 49
4 28nD
_(qr0+nq+ n]s nen o,

{K—r’o2 +

Vo.—
222 3z 322 )° 45z R}

3q2r01° 144D2qzr010 96D*ngq 42251 10
+| - > + > 3 + 2 2—|— 2 F +...
10z 125z°R, 125z°R, 1125z

4.7)

where K is a constant of integration whose value may be calculated by using

boundary condition say £, =0 at z =r, . This yield
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4 nroS5 D“ros6 32 n DZrOS7 q2r058 ng
2 + + > 3 + > + 2
SR 52z SR, 21z R, 2z 3z

28 nD'r’° 3q°2 144 D%g®> 96 D?*n 4225 n?
0s - - + > q + 7
10 22 125 z?R, 125 z?R} 1125 z°
(4.8)

Similarly the volume 7, , surface area S, g and g‘_' of rotationally and

tidally distorted Prasad model are obtained as

3 3 2 2 2.8 210
Vv,=4”Dr° [1+2n o, 12q2 +8nq +32r12 roﬁ+15q 2r0 +2q 2r0 ]
3 z 5z 5z 5z 7z z

4.9)

3 2 2 2.8 2 10
Sw=47rr02D2[1+43nr° +(7q L 1ang  S6n )r°+9q n o 1an +..]

F4 522152 1522 )° 777 9z*
(4.10)
- zGM 3 2 2 2.8 2 10
= — 2,,,[1_8r1r0 _ 3q2 +2nzq+4011 rOG—SIq :0 _13q 2r0 o]
v, D 3z z z 9z 142z 3z
(4.11)
— _ nD? [1+8n v N 314° +62nq +584n2 r6+101q2ros +75q2r0'° ‘]
& T2om," 3z \ szt 152 #5722 )0 1z 927
(4.12)

4.2 EQUILIBRIUM STRUCTURE OF A CLASS OF ROTATIONALLY AND
TIDALLY DISTORTED COMPOSITE MODELS

In this section we consider the problem of determining equilibrium

structures of a class of rotationally and/or tidally distorted composite models

with cores in which density varies according to the law p = p_(1-x*) and which
are surrounded by envelope in which density follows the law p=p, /x* . Taking

into account the effect of mass variation inside the star on its equipotential

surfaces. Suppose the composite gaseous sphere
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is rotating about its axis and is also the primary component of a binary

system.

Let r, denote the radius of the topologically equivalent spherical model

which corresponds to an equipotential surface w = constant of this rotationaily

and tidally distorted model. Also let R, be the value of », on the outermost
equipotential surface of the model and » R, the value of 7, for the equipotential

surface of the interface between the envelope and the core of the model.

Further let p,. denote the value of density on an equipotential surface of the
core of the distorted model which corresponds to the radial distance r, of the
topologically equivalent spherical model. Corresponding to the density
distribution law p=p,(1-x*) in the core of the original undistorted model we
suppose that in the core (0<r,<bR,) of the distorted model density

distribution on its equipotential surfaces is given by

2
Pye =p{1-—;’”—2—) 0<r, <bR, (4.13)
v
M,,
ZCZZM——-‘)—'—-— (414)
ve In=n,

where M, represents the value of M in the core and is evaluated from

equation (4.6) replacing z by z, and appearing in the expression M,.)en,

is computed from (4.17) on putting r, = r,,and  z, =1.

Similarly for the envelope of the distorted model we shall assume that

density distribution on its equipotential surfaces follows the law

2

R
Pw=,0¢b2(1“b2)—:2— bR, <r, <R, (4.15)

14
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where p, denotes the density on an equipotential surface in the envelope of
the distorted model which corresponds to a distance r, from the centre of the

equivalent spherical model.

Let n denote the nondimensional form the square of the angular velocity

of rotaton ®,q the ratio of the mass of the companion causing tidal
distortions to the mass of the primary under investigations. Also let i, denote

the value of potential " (3.1) on the outermost equipotential surface. Then on

the outermost surface the value of 7, denoted by R, is given by (4.2)

Now for points inside the envelope (bR, <r,<R,) on substituting for

r, from (4.1) in (4.15) we get

pb*(1-b*)R2 4n , (8 , 16 92 ,)es 10 ,
= l-—r; - + + nry -—=qr -
Pye D} 32,0 5227 T2 4522 0 Tzl
4 210
—Eq ro +
(4.16)

On substituting the value of p,, from (4.16) in (3.14a) and integrating

w.r.t. n,we get

2n 4 8
My, = 42D p b A-BM)R, [ My 1+ =o' +(Srq 4 n g+
e ‘ ‘ (4.17)

+

2 7 5 2_9 2 211
21’1 )I’O +'Z—2q ¥, +z—2q ¥, +...]

4 e e

where M, is the mass contained within the equipotential surface y = constant

in the envelope and M,, is a constant of integration.

In order to ensure the continuity of mass across the interface we must

have M, =M, for r,=r,, Using this we have from (4.6) and (4.17) we have
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D*r} [ 3D2 2, 2n 5 20D [12 , 8 32 2] s
- nory

+ == o+ +——= ng+
"TRIA-bHRI| SRz, 0 g (521 52 M5
15 , D12 , 8 16 2\ e, 2 2 15D o,
+ ng+ e [ vy L -
{7z2q [5 YR AT )} e T -l

2n 4 2 8 76 ) 5 2.8 2 210
“r|lv—r | —q + ng + n|r, + rot—q'r, +..
[ 3z, (SZZq 1522 1 4522 oty e 3,21 7o

e e € e

(4.18)
where r; the value of 7, at the interface between the envelope and the core

(where r =bR, ) andis given by

2n 4 8 4 5 2
=by|1-=—b] - 2 4 ng——n’ b5 - 2by ——=q"b’...
°[ 37, ° (523‘] 1552 1 52" [0 T2 T3t

e

with b, = —~ : , (4.19)

M e
and z, =W (420)
Ve h="n,

Again substituting for p , from (4.16) and M,;e from (4.17) in (3.14(b))

and integrating we get

47 Gp2b*(1-b%)* R! M,, 3 2n
= - 1+ r,+3C,r; +—(logr,)r
ve 3D2r03 2M01 0 170 e ( g 0)0 M
2t g B 3 [ 6 q2+ 104 7
27 T3 e T 521 T 2q v

+———4q°r, ¥,
82M, 10220 T 1T

e 01

19 20 20 s, 7 ]

4.21)

where P, is the value of pressure on the equipotential y = constant inside

the envelope and C, is a constant of integration. At the free surface

(ro =15), P,, = 0. Therefore from (3.9) it becomes
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1 3 3 2n 4
C,=- 1+ ——r7, +4n(logr,)r,, + ——r,
1 3r035|: M, 0s (logrys) 7y, Z. M, 0s

+(2q2+4nq+28n2}6 3 [6q2 4nq 104n2)7 87q%
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22 3z 9722 ) AM\5z2 522 4522 )% 7072 ¢

e

e 4

+ To, + S+
822M, © 21z % 1222 M,

(4.22)
Also the pressure must be continuous across the interface. Hence from (4.7)
and (4.21)

. 2b* (1R} M,, [ 3 4n(logr, )1y,

3
) 1+ o +3C 1, +
M, z

e

+

2n 4+(2q2+4nq 28n2)6 3 [6(12 4ngq 104n2)7+87q2 .

Toi Toi

o + ; + +
z,M,, 22 3z2 0 922 )% aM, 522 5z 452 702
2 2 2 2
T A L M R 18 D
2822 M, " 2122 % 1222 M, 5R: " 5z,

LD 32nD? (q2+1nq 4n2J s 28nD*

Ty — Yoi : Yoi —
SRy " 21z, R2 \2z2 3z 322 )" 45z, R}

2 2 2 2
_{8D [18q +12nq+532nJ 3¢ }r:,.—

25K\ 522 522 4522 ) 102
_|5¢ 824D D' 26q2+52,,q+904n2 m+> .
2722 105z2R2 10R:\ 522 15z 4522 )[™ T |7

Thus for the composite model distorted by the combined effects of

rotation and tidal forces, the value of p, , M P, and on various

ws
equipotentials inside the core are given by (4.5), (4.6) and (4.7) respectively,
and on the equipotential surfaces in the envelope, are given by (4.16), (4.17)
and (4.21) respectively.

On setting n=¢g=0 we get the equilibrium structure of the original
undistorted model. On setting »=0 or g=0separately we get the equilibrium

structure of the model which is distorted by the tidal effects alone or rotational

effects alone. Also on setting n=qT+l we obtain the equilibrium structure of
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the rotationally and tidally distorted primary component of a synchronously

rotating binary star system. By changing the value of 5(0<b<1) we can get

equilibrium structures of models for different positions of the interface between

the envelope and the core. On setting 5=0 (no core) we get Roche model

while on setting 5=1 (no envelope) we get Prasad model.

4.3 NUMERICAL EVALUATION OF STRUCTURE FOR PRASAD MODEL
AND COMPOSITE MODELS

For a better appreciation of the effects of rotation and tidal distortions on
the values of density, mass and pressure at various points inside the star we
have used equations (4.5), (4.6) and (4.7)numerically compute the values of

p,, M, and P, at various points inside Prasad model. In the case of

composite models values of these parameters computed in core again using
(4.5), (4.6) and (4.7) and in envelope (4.16), (4.17) and (4.20) for values of
interfacé b=0.3, 0.5 and 0.7 for different values of distortion parameters
nand g . While evaluating various physical parameters of the composite model,

we need the value of z, in the core as well as z, in the envelope. These two

variables can be computed from (4.14) and (4.20). The results are presented in
Tables 4.1. (a, b , ¢, d) and Table 4.2 (a, b, ¢, d) for Prasad model and

composite modejrespectively.

44 ANALYSIS OF RESULTS
The results presented in Tables 4.1 (a ,b, c,d ) and 4.2 (a, b, ¢, d) give

the values of certain structures parameters and related observable quantities
of undistorted, rotationally distorted, tidally distorted and rotationally and tidally

distorted Prasad model as well as composite model for y=5.0. Results show
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that with the modification of expression for potential to account fc|>r mass
variation inside the star on its equipotentials surface.our results show only
marginal effects. No specific trend is observed.

The results presented in Tables 4.3, 4.4, 4.5 and 4.6 show the values

of M, 0P,.V, S, for various types of rotationally and or tidally distorted

composite models with interface at 5= 0.3, b=0.5and 5=0.7 for y =5.0.

The results shown in parenthesis are their corresponding value earlier obtained
by Agarwal (2). Our results indicate no significant change in these values as

well as in comparison to the result shown in parenthesis.



Table 4.1(a) : Structure Parameters of Undistorted Stars For Prasad Model

w=5n=.0,q=0

X Y, Sy Py M, P, g ¢ T/T, | L/L
0.1 0.00001 | 0.00041 | 0.99000 | 0.00248 { 0.00004 | 0.00000 | 0.00000 { 0.14142 | 1.00000
02 0.00006 | 0.00161 | 0.96000 | 0.01951 { 0.00028 | 0.00000 | 0.00000 | 0.20005 | 1.00000
0.3 0.00022 | 0.00362 | 0.91000 | 0.06384 | 0.00081 | 0.00000 | 0.00000 | 0.24497 | 1.00000
04 0.00052 | 0.00642 | 0.84000 | 0.14464 | 0.00150 | 0.00000 | 0.00000 | 0.28285 | 1.00000
0.5 0.00102 | 0.01040 | 0.75000 | 0.26562 { 0.00209 | 0.00000 | 0.00000 | 0.31626 | 1.00000
0.6 0.00171 | 0.01443 | 0.64000 | 0.42336 { 0.00228 | 0.00000 | 0.00000 | 0.34648 | 1.00000
0.7 0.00272 | 0.01967 | 0.51000 | 0.60539 | 0.00190 | 0.00000 | 0.00000 | 0.37417 | 1.00000
0.8 0.00402 | 0.02565 | 0.36000 | 0.78848 | 0.00111 | 0.00000 | 0.00000 | 0.40009 | 1.00000
09 0.00585 | 0.03246 | 0.19000 | 0.93676 | 0.00032 | 0.00000 | 0.00000 | 0.42425 1.00000
1.0 0.00800 | 0.04000 | 0.00000 | 1.00006 | 0.00000 | 0.00000 | 0.00000 { 0.44728 | 1.00000

Table 4.1(b) : Structure Parameters of Rotationally Distorted Stars For
Prasad Model y=5,n=.1,gq=0

X v, S, Py M, P, o € T/T, | L/L,
0.1 0.00001 | 0.00040 .0.99000 0.00242 | 0.00024 | 0.00032 | 0.00032 | 0.14139 | 0.99872
0.2 0.00006 | 0.00160 | 0.96002 | 0.01950 | 0.01404 | 0.00032 | 0.00032 | 0.19995 | 0.99865
0.3 0.00022 | 0.00360 | 0.91000 | 0.06379 | 0.01259 | 0.00033 | 0.00033 | 0.24490 | 0.99862
04 0.00051 ([ 0.0064 0 | 0.84009 | 0.14452 | 0.01037 | 0.00035 | 0.00035 | 0.28279 | 0.99855
0.5 0.00100 | 0.0104 0| 0.75014 | 0.26543 | 0.00787 | 0.00037 | 0.00037 | 0.31616 | 0.99848
0.6 0.00173 | 0.0144 0| 0.64018 | 0.42308 | 0.00537 | 0.00040 | 0.00040 | 0.34632 | 0.99830
0.7 0.00276 | 0.01960 | 0.5102 | 0.60509 | 0.00314 | 0.00045 | 0.00045 | 0.37408 | 0.99812
0.8 0.00403 | 0.02561 | 0.36002 | 0.78822 | 0.00141 | 0.00052 | 0.00051 | 0.39989 | 0.99796
0.9 0.00582 | 0.03242 | 0.18019 | 0.93664 | 0.00032 | 0.00062 | 0.00062 | 0.42413 | 0.99757
1.0 0.00800 | 0.04000 | 0.00000 | 1.0000 { 0.00000 | 0.0008 | 0.00079 | 0.44700 | 0.99607

Table 4.1(c) : Structure Parameters
Model y =5,n=0,9=.1

of Tidally Distorted Stars For Prasad

X V, S v P, M, P, o & Ir, LiL,

0.1 0.00001 0.00042 | 0.95000 | 0.00248 | 0.00003 | 0.00034 | 0.00034 | 0.14283 | 0.99823
0.2 0.00006 | 0.00166 | 0.96000 | 0.01952 | 0.00023 | 0.00036 | 0.00036 | 0.20195 | 0.99815
0.3 0.00022 | 0.00375 | 0.91000 | 0.06385 | 0.00084 | 0.00038 | 0.00038 | 0.24736 | 0.99806
04 0.00054 | 0.00664 | 0.84000 | 0.14464 | 0.00156 | 0.00040 | 0.00040 | 0.28566 | 0.99797
05 0.00105 | 0.01041 | 0.75000 | 0.26562 | 0.00218 | 0.00044 { 0.00044 | 0.31934 | 0.99772
0.6 0.00182 | 0.01497 | 0.64000 | 0.42336 | 0.00237 | 0.00048 | 0.00048 | 0.34988 | 0.99744
0.7 0.00291 0.02040 | 0.51000 | 0.60539 | 0.00198 | 0.00055 | 0.00055 | 0.37785 | 0.99710
0.8 0.00435 | 0.02665 | 0.36000 | 0.78848 | 0.00116 | 0.00064 | 0.00064 | 0.40392 | 0.99668
09 |[0.00618 | 0.03372 | 0.19000 | 0.83676 | 0.00033 | 0.00079 | 0.00078 | 0.42830 | 0.99586
1.0 | 0.00850 | 0.04165 | 0.00000 | 1.00000 | 0.00000 { 0.00103 | 0.0010 | 0.45141 | 0.99446
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Table 4.1(d) :

Stars for Prasad Model =5.0,n=0.1,g=0.1

Structure Parameters of Rotationally and Tidally Distorted

X v, S v ) M, P, - £ TrT, LL,
v
0.1 0.00001 0.00041 | 0.99000 | 0.00248 | 0.00005 | 0.00069 | 0.00069 | 0.14282 | 0.99687
0.2 0.00006 | 0.00166 | 0.96000 | 0.01950 | 0.00028 | 0.00071 | 0:00071 | 0.20193 | 0.99677
0.3 0.00023 | 0.00375 | 0.91000 | 0.06379 | 0.00083 | 0.00074 | 0.00074 | 0.24736 | 0.99662
04 0.00054 | 0.00666 | 0.84010 | 0.14451 | 0.00156 | 0.00078 | 0.00078 | 0.28556 | 0.99642
0.5 0.00106 | 0.01041 | 0.75015 | 0.26541 | 0.00218 | 0.00084 | 0.00084 | 0.31928 | 0.99613
0.6 0.00183 | 0.01499 | 0.64020 | 0.42307 | 0.00237 | 0.00092 | 0.00092 | 0.34972 | 0.99574
0.7 0.00292 | 0.02041 | 0.51024 | 0.60507 | 0.00198 | 0.00103 | 0.00103 0.37770 0.99520
0.8 0.00436 | 0.02667 | 0.36025 | 0.78820 | 0.00116 | 0.00120 | 0.00120 | 0.40387 | 0.99441
0.9 0.00620 | 0.03376 | 0.19020 | 0.93663 | 0.00032 | 0.00145 | 0.00145 | 0.42824 | 0.99319
1.0 0.008510 | 0.04166 | 0.00000 | 1.00000 | 0.00000 { 0.00188 | 0.00188 | 0.45121 | 0.99110
Table 4.2(a) : Density p, in Units of p_ fr Composite modil
b=0.3
X n=0.0, q=0.0 | n=0.0, g=0.1 | n=0.1, n=0.1, n=0.55, q=0.1
y, =50 v, =50 q=0.0 q=0.1 v, =50
' Wi =50 v, =50
1 2 3 4 5 6
0.1 0.99000 0.990001 0.99001 0.99213 0.99863
(0.99000) (0.99000) (0.99001) (0.99001) (0.99006)
0.2 0.96000 0.960001 0.96004 0.96113 0.96612
(0.96000) (0.96000) | (0.96004) | (0.96005) (0.96025)
0.3 0.91000 0.910001 0.91009 0.91077 0.91425
(0.91000) (0.91000) (0.91009) (0.91010) (0.91055)
0.4 0.51187 0.51187 0.51239 0.51403 0.52405
(0.51188) (0.51188) (0.51239) (0.51242) (0.51491)
0.5 0.32760 0.32760 0.32841 0.32846 0.33245
(0.32760) | (0.32760) | (0.32791) | (0.32793) (0.32941)
0.6 0.22750 0.22750 0.22788 0.22790 0.22976
: : (0.22750) (0.22750) (0.22769) (0.22770) (0.22863)
0.7 0.16714 0.16714 0.16733 0.16734 0.16825
(0.16714) (0.16714) | (0.16726) | (0.16727) (0.16784)
0.8 0.12797 0.12796 0.12805 0.128064 0.12849
(0.12797) (0.12797) | (0.12804) | (0.12804) (0.12837)
0.9 0.1011 0.10111 0.10114 0.10114 0.10131
(0.10111) (0.10111) | (0.10114) | (0.10114) (0.10129)
1.0 0.08190 0.08190 0.08190 0.08190 0.08190
(0.08190) (0.08190) (0.08190) (0.08190) (0.08190)
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Table 4.2(b) : Density p, in Units of p, Jon Composite modd)

b=0.5
X N=0.0, g=0.0 | n=0.0,9=0.1 | n=0.1, n=0.1, n=0.55, q=0.1
v, =50 v, =50 q=0.0 q=0.1 v, =50
v, =50 v, =50
1 2 3 4 5 6

0.1 0.99000 0.99000 0.99373 0.99394 0.99943

0.2 0.9600 0 0.96000 0.96208 0.96221 0.97154

0.3 0.91000 0.91000 0.91141 0.91150 0.91825

0.4 0.84000 0.84000 0.84107 0.84114 0.84631

0.5 0.75000 0.75000 0.75085 0.75090 0.75504

0.6 0.52080 0.52083 0.52187 0.52194 0.527Q7

0.7 0.38265 0.38265 0.38313 0.38316 0.38549

0.8 0.29296 0.29296 0.29318 0.29319 0.29425

0.9 0.23148 0.23148 0.23156 0.23156 0.23194

1.0 0.18750 0.18750 0.18750 0.18750 0.18750
Table 4.2(c) : Density p, in Units of p, fv composite meold

b=0. 7
X n=0.0, q=0.0 | n=0.0, g=0.1 | n=0.1, n=0.1, n=0.55, q=0.1
y, =50 y. =50 q=0.0 q=0.1 v, =50
y, =50 v, =50
1 2 3 4 5 6

0.1 0.99000 0.99000 0.99439 0.99463 0.99756

02 0.96000 0.96000 0.96250 0.96265 0.96367

0.3 0.91000 0.91000 0.91170 0.91181 0.91989

0.4 0.84000 0.84000 0.84129 0.84137 0.84759

05 0.75000 0.75000 0.75102 0.75109 0.75607

06 0.64000 0.64000 0.64083 0.64088 0.64493

0.7 0.51000 0.51000 0.51066 0.51070 0.5139%4

0.8 0.39040 0.39046 0.39076 0.32078 0.39225

0.9 0.30850 0.30851 0.30862 0.30863 0.30915

1.0 0.24990 0.24990 0.24990 0.24990 0.24990

Table 4.3(a) : Mass M, in Units of £ 7 D’5, x107for Comprsite modul

b=0.3
X n=0.0, q=0.0 | n=0.0,q=0.1 | n=0.1, n=0.1, n=0.55, q=0.1
y, =50 y, =50 q=0.0 q=0.1 v, =50
v, =50 v, =50
1 2 3 4 5 6

0.1 0.00503 0.00503 0.00502 0.00502 0.00498
(0.00503) (0.00503) (0.00502) (0.00502) (0.00499)

02 0.03952 -0.03952 0.03946 0.03%46 . 0.03916
(0.03953) (0.03953) (0.03947) (0.03946) (0.03916)
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0.3 0.12930 0.12930 0.12911 0.12909 0.12816
(0.12931) (0.12930) | (0.12911) | (0.12910) (0.12816)
04 0.25369 0.25369 0.25344 025342 0.25222
(0.25369) (0.25369) | (0.25344) | (0.25343) (0.25223)
0.5 0.37807 0.37807 0.37778 | 0.37776 0.37636
(0.37808) (0.37808) | (0.37778) | (0.37777) (0.37636)
06 0.50246 0.50246 0.50214 | 0.50212 0.50061
().50246) (0.50246) | (0.50214) | (0.50213) (0.50061)
07 0.062684 062684 062654 | 062652 0.62503
(0.62685) (0.62684) | (0.62654) | (0.62652) (0.62504)
0.8 0.75123 0.75123 0.75097 | 0.75095 0.74969
(0.75123) (0.75123) | (0.75097) | (0.75095) (0.74970)
0.9 0.87561 0.87561 0.87545 0.87544 0.87465
(0.87562) (0.87562) | (0.87545) | (0.87544) (0.87466)
10 1.0000 1.0000 1.0000 1.0000 1.0000
(1.0000) (1.0000) (1.0000) | (1.0000) (1.0000)

Table 4.3(b) : Mass M , in Units of | = D® p, x107 foy Composite moolell

X n=0.0, q=0.0 | n=0.0,q=0.1 | n=0.1, n=0.1, n=0.55, q=l()).‘? 2
v, = 50 w. =50 q=0.0 q=0.1 v, =50
v, =50 v, =50
1 2 3 4 5 6
0.1 0.00256 0.00256 0.00256 0.00256 0.00254
0.2 0.02015 0.02015 0.02011 0.020116 0.01996
0.3 0.06591 0.06591 0.06581 0.06581 0.06533
0.4 0.14930 0.14930 0.14909 0.14908 0.14808
0.5 0.27419 0.27419 0.27385 0.27383 0.27219
0.6 0.41935 0.41935 0.41899 0.41896 0.41720
0.7 0.56451 0.56451 0.56415 0.56413 0.56240
0.8 0.70967 0.70967 0.70937 0.70935 0.70788
0.9 0.85483 0.85483 0.85464 0.85463 0.85371
1.0 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.3(c) : Mass M, in Units of 47D°p, x107 oy composte model

b=0.7
X n=0.0, q=0.0 | n=0.0,q=0.1 | n=0.1, n=0.1, n=0.55, q=0.1
v, =50 v, =50 q=0.0 q=0.1 v, =50
v, =50 v, =50
1 2 3 4 5 6
0.1 0.00212 0.00212 0.00212 0.00212 0.00210
0.2 0.01671 0.01671 ~0.01669 0.01668 0.01656
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03 0.05468 0.05468 0.05460 0.05459 0.05420
04 0.12387 0.12387 0.12369 0.12368 0.12285
0.5 0.22748 0.22748 0.22720 0.22718 0.22582
0.6 0.36256 0.36255 0.36219 0.36217 0.36037
0.7 0.51846 0.51846 0.51807 0.51804 0.51613
0.8 0.67897 0.67896 0.67864 0.67861 0.67699
0.9 0.83948 0.83948 0.83927 0.83926 0.83824
1.0 1.0000 1.0000 1.0000 1.0000 1.0000

Table 4.4(a) : Pressure P, in Units of 27GD’p? x10fon composite modtl

b=0.3
X n=0.0, g=0.0 | n=0.0, g=0.1 | n=0.1, n=0.1, n=0.55, q=0.1
v, =50 v, =50 q=0.0 q=0.1 y. =50
v, =50 v, =50
1 2 3 4 5 6
0.1 0.72973 0.75999 0.73056 0.76206 0.76492
(0.72973) (0.75982) (0.73056) (0.76074) (0.76492)
0.2 0.61448 0.63984 0.61531 0.64073 0.64488
(0.61448) (0.63982) (0.61531) (0.64073) (0.64488)
0.3 0.43475 0.45268 0.43555 0.45356 0.45758
(0.43475) (0.45268) (0.43555) (0.45356) (0.45758)
0.4 0.26872 0.26631 0.26929 0.28043 0.28327
(0.26873) (0.27981) (0.26929) (0.28043) (0.28327)
0.5 0.16783 0.17012 0.16822 0.17519 0.17716
(0.16783) (0.17476) (0.16822) (0.17519) (0.17716)
0.6 0.10491 0.10722 0.10519 0.10954 0.11094
(0.10491) (0.10924) (0.10519) (0.10954) (0.11094)
0.7 0.06362 0.0652 0.06383 0.06647 0.06749
(0.06363) (0.06625) (0.06383) (0.06647) (0.06749)
0.8 0.03525 0.03613 0.03540 0.03687 0.03763
(0.03525) (0.03670) (0.03540) (0.03687) (0.03763)
0.9 0.01497 0.01523 0.01508 0.01571 0.01629
(0.01497) (0.01559) (0.01508) (0.01571) (0.01629)
1.0 0.0000 0.0000 0.0000 0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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Table 4.4(b) : Pressure P, in Units of 27 GD?p? x10™fsr comesite maddl

X n=0.0, q=0.0 | n=0.0, =01 | n=0.1, n=0.1, n=0.55, q=lc)).10 2
o q=0.0 q=0.1 v, =50
v, =50 Vo= 20 v =50 vl =50
1 2 3 4 5 6
0.1 142594 14852 2090033 | 223742 2.85234
0.2 1.31069 13648 137564 | 1.43687 1.84533
03 1.13006 11776 114897 | 1.19867 130128
04 0.90426 004156 | 00912158 | 0.95030 0.09143
05 065312 0.68005 065692 | 068426 0.70382
06 0.43240 043020 043412 | 041835 0.36293
07 0.27149 027327 0.27230 | 026780 0.24237
08 0.15360 0.15523 015426 | 0.15225 0.13850
0.9 0.0664 0.06624 0.06655 | 0.0644 0.05604
1.0 0.0000 0.00182 0.00000 | 0.00304 0.0086

Table 4.4(c) : Pressure P, in Units of 2 7GD?p? x107 fx compesite meddl

X n=0.0, q=0.0 | n=0.0, q=0.1 | n=0.1, n=0.1, n=0.55, q=t()).1 o
v, =50 v, =50 q=0.0 q=0.1 y, =50
v: =50 v, =50
1 2 3 4 5 6

0.1 1.66533 1.73464 2.62940 2.84362 2.8494

0.2 1.55008 1.61408 1.63747 1.71108 2.28869
0.3 1.37033 1.42688 1.39585 1.45513 1.59441
0.4 1.14366 1.19082 1.15429 1.20265 1.25825
0.5 0.89252 0.92932 0.89770 0.93506 0.96179
0.6 0.64241 0.66890 0.64507 0.67184 0.68545
0.7 0.41922 0.43650 0.42053 0.43795 0.44463
0.8 0.2420 0.24071 0.24260 0.23375 0.20156
0.9 0.10576 0.10372 0.10597 0.09963 ~0.08087
1.0 0.00000 0.00392 0.00000 0.00655 0.01859
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Table 4.5 (a) : Volumes of Rotationally and Tidally Distorted Composite
Models in Units of 47D’

X n=00,g=00{ n=00,g=01{n=01,g=0(n=01,g=01] n 30252 =001,
v.=50 v.=50 y.=50 v, =50 v, =50
1 2 3 4 5 6
0.1 0.008 0.00850 0.01055 0.01138 0.02469
0.2 0.008 0.00850 0.00832 0.00886 0.01056
0.3 0.008 0.00850 0.00809 0.00861 0.00913
0.4 0.008 0.00850 0.00805 0.00855 0.00882
0.5 0.008 0.00850 0.00803 0.00853 0.00871
0.6 0.008 0.00850 0.00802 0.00852 0.00866
0.7 0.008 0.00850 0.00801 0.00851 0.00862
0.8 0.008 0.00850 0.00801 0.00851 0.00860
0.9 0.008 0.00850 0.00801 0.00851 0.00859
1.0 0.008 0.00850 0.00801 0.00851 0.00858

Table 4.5 (b) : Volumes of Rotationally and Tidally Distorted Composite Models
in Units of 47D’

X n=00,¢4=00{ n=00,g=01ln=901, ¢g=0(n=01, g =0l n:-(.)g; q =001,
y. =50 y.=50 y. =50 v, =50 y.=50
1 2 3 4 5 6
0.1 0.00800 0.00850 0.01301 0.01416 0.04026
0.2 0.00800 0.00850 0.00863 0.00922 |  0.01254
0.3 0.00800 0.00850 0.00819 0.00872 0.00973
0.4 0.00800 0.00850 0.00808 0.00859 0.00904
0.5 0.00800 0.00850 0.00804 0.00855 0.00879
0.6 0.00800 0.00850 0.00803 0.00853 0.00869
0.7 0.00800 0.00850 0.00802 0.00852 0.00864
0.8 0.00800 0.00850 0.00801 0.00852 0.00861
0.9 0.00800 0.00850 0.00801 0.00851 0.00859
1.0 0.00800 0.00850 0.00801 0.00851 0.00858
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Table 4.5( ¢ ): Volumes of Rotationally and Tidally Distorted Composite Models
in Units of 47 D’

X n=00,¢g=00] n=00,¢g=01Jrn=01,g=0(n=01, g =01, n:;)g.;,q=0.01,
y,=50 v, =50 v, =50 v.=50 v.=50

1 2 3 4 5 6
0.1 0.00800 0.00850 0.01404 0.01533 0.04679
0.2 0.00800 0.00850 0.00876 0.00937 0.01337
0.3 0.00800 0.00850 0.00823 0.00876 0.00998
0.4 0.00800 0.00850 0.00810 0.00861 0.00915
0.5 0.00800 0.00850 0.00805 0.00856 0.00885
0.6 0.00800 0.00850 0.00803 0.00854 0.00872
0.7 0.00800 0.00850 0.00802 0.00852 0.00865
0.8 0.00800 0.00850 0.00801 0.00852 0.00861
0.9 0.00800 0.00850 0.00801 0.00851 0.00859
1.0 0.00800 0.00850 0.00801 0.00851 0.00858

Table 4.6(a) : Surface Areas of Rotationally and Tidally Distorted Composite Models
in Units of 47 D*

X n=00,9g=00] n=00,g=01{n=01,g=04n=01,g=01] » =b-0g?, q =001,
w. =50 y,=50 w. =50 v, =50 v, =50
1 2 3 4 5 6
0.1 0.04000 0.04165 0.04851 0.05108 0.09395
0.2 0.04000 0. 04165 0.04108 0.04285 0.04830
0.3 0.04000 0. 04165 0.04033 0.04201 0.04368
04 0.04000 0. 04164 0.04016 0.04183 0.04268
0.5 0.04000 0. 04164 0.04011 0.04177 0.04234
0.6 0.04000 0. 04164 0.04008 0.04174 0.04217
0.7 0.04000 0. 04164 0.04006 0.04172 0.04206
0.8 0.04000 0. 04164 0.04005 0.04171 0.04200
0.9 0.04000 0. 04164 0.04004 0.04170 0.41950
1.0 0.04000 0. 04164 0.04004 0.04169 0.04191
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Table 4.6 (b) : Surface Areas of Rotationally and Tidally Distorted Composite Models
in Units of 47 D*

X n=00,g=00{ n=00,9=01{n=01,¢4g=0(0n=01,¢9g=01) n= 00.555, g =001,

y.=50 y.=50 v.=50 v, =50 w.=50

1 2 3 4 5 6
0.1 0.04 0.04166 0.05669 0.06015 0.14522
0.2 0.04 0. 04165 0.04212 0.04400 0.05483
0.3 0.04 0. 04165 0.04068 0.04236 0.04567
0.4 0.04 0. 04165 0.04028 0.04196 0.04342
0.5 0.04 0. 04164 0.04015 0.04182 0.04261
0.6 0.04 0. 04164 0.04010 0.04176 ~0.04228
0.7 0.04 0. 04164 0.04007 0.04173 0.04211
0.8 0.04 0. 04164 0.04006 0.04171 0.042021
0.9 0.04 0. 04164 0.04005 0.04170 0.04195
1.0 0.04 0. 04164 0.04004 0.04169 0.04191

Table 4.6(c) : Surface Areas of Rotationally and Tidally Distorted Composite Models
in Units of 47 D’

X n=00,¢4=00{ n=00,9=01|n=01,g=0(rn=01,¢g=01} n 3:)%57, q =001,
v.=50 v, =50 v, =50 v, =50 v, =50
1 2 3 4 5 6
0.1 0.04000 0.04166 0.06012 0.06395 0.01664
0.2 0.04000 0. 04165 0.04256 0.04448 0.05754
0.3 0.04000 0. 04165 0.04078 0.04251 0.04650
0.4 0.04000 0. 04165 0.04034 0.04203 0.04379
0.5 0.04000 0. 04165 0.04018 0.04185 0.04281
0.6 0.04000 0. 04164 0.04011 0.04178 0.04238
0.7 0.04000 0.04164 0.04008 0.04174 0.04215
0.8 0.04000 0.04164 0.04006 0.04171 0.04203
0.9 0.04000 0. 04164 0.04005 0.04170 0.04196
1.0 0.04000 0. 04164 0.04004 0.04169 0.04191
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CHAPTER -V

EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY
ROTATING AND TIDALLY DISTORTED
POLYTROPIC MODELS AND PRASAD MODEL



Most of the stars in binary systems are known to be rotating about their
.axes as well as revolving around their common center of mass. Some of the stars
in binary systems are also expected to be rotating differentially. Differential rotation
is likely to influence the inner structure and equilibrium configurations of such
differentially rotating stars. It is expected that equilibrium structures of such stars in
binary systems are also influenced by the combined effects of differential rotation
as well as the tidal forces of the companion star. In the present chapter we extend
the analysis of chapter Ill to investigate the problem of determining the equilibrium
structures of differentially rotating polytropic model as well as Prasad model of star

following a law of differential rotation w=b5, +b, s*.

The law of differential rotation selected by us for present study is presented
in secti-on 5.1. In section 5.2 we use, the concept of Roche equipotentials which
takes into account the effect of mass 'variation in potential to obtain results for
differentially rotating stars in binary systems. In section 5.3 we use Kippenhahn
and Thomas approach and the results on Roche equipotentials obtained in section
5.2 to derive the system of differential equations governing the equilibrium
structures of differentially rbtating and"tidally distorted gaseous spheres. The
technique is next used in section 54 to obtain the equilibrium structures of
differentially rotating polytropic models, which are primary components of binary
systems. The analysis of section 5.3 is also used in section 5.5 to obtained the
equilibrium structures of differentially rdtéting Prasad model. Certain conclusions

based on this study are finally drawn in section 5.6.



51 LAWS OF DIFFERENTIAL ROTATION

By differential rotation we mean rotation of a gaseous sphere in which all
the fluid elements of the sphere do not have the same angular velocity. Different
authors have used different laws of differential rotation to account for some of the
observed features of differentially rotating stars. Theoretically the general form of a
law of differential rotation for a star rotating about an axis of rotation passing
through its centre should bé of the type Q=Q(s,z) in which the angular velocity Q
of rotation is a function of both distance s from the axis of rotation and the
latitude z . In fact some of the authors.such as Von Zeipel (157), Solberg (138),
Hoiland (52), etc., used such types of laws. However, according to Tassoul (149,
p. 175) it is perhaps not possible to build a chemically homogenous stellar model
in radiative equilibrium with a rotation law of the type Q=Q(s,z). According to him
since in the. zones of efficient convection the transport of enefgy is not by radiation
so in such a case Von Zeipel s argument does not apply and therefore, in practice
for such a differentially rotating star in equilibrium, law of differential‘ rotation of the
form Q=Q(s) may well be used.

As early as 1865 Faye assume(i a law of differential rotation of the type
@ =b, +b‘2 s*(where o is the angulaf velocity of rotation of a fluid element at a
distance s from the axis of rotation ahd b, ,b, are certain constants) to account
for differential rotation of the Suns surface. Stoeckly (142) constructed
axisymmetric models of differentially rotating polytropes of indéx 1.5 with a law of

a differential rotation.

Qs) =Q, e‘(‘”z/&z) : (5.1)
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where s is measured from the axis of rotation, Q_ denotes the angular velocity
on the axis of rotation, £, the equatorial radius of the polytropic model, and a is

a suitably chosen constant. Ireland (55) calculated the results for gravity-
darkening and limb- darkening in a rapidly rotating Roche model of a star

subject to the non-uniform rotation assuming Q=Q(s)where Q is the angular

velocity of the star and sis the distance of a fluid element from axis of rotation.
Bodenheimer (12) calculated the structure of chemically homogenous main-

sequence stars of mass 15M,, 30 M, , and 60 M, (X =0.70, Z=0.03) by

specifying a rotation law which gives the angular momentum per unit mass

J(m) as a function of m, the mass interior to a given cylinder about the axis of

rotation. Haris and Clement (51) presented equilibrium models for slowly

rotating stars of 16 M,, 28 M,, and 47 M, assuming the interior distribution of

angular velocity is uniquely determined by the requirement that the azimuthal
- force near the surface vanishes and the steady state is free frorh meridian
circulation. Geroyannis et al. (42) obtained a complete solution of the structural
equation for differentially rotating polytropes by taking differential rotation law
which is a function of position and time — dependent homoaxial rotation.
Geroyannis and Antonakopoulos (40) studied the structural distortion on the
polytropic stars by differential rotation using a law of differential rotation earlier

proposed by Clement (24). According to this law , the angular velocity o (s)of a

fluid element is given by

3 V2
o(s) = [Z ae” J : (5.2)

where s is a modified nondimensional cylindrical coordinate and aq, , b,

constants. Komatsu et al. (64) computed equilibrium structures of differentially
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rotating relativistic polytropes with indices 0.5 and 1.5 using a rotation law
determined by specifying the angular momentum J(Q) . Although, theoretically
choice of J(Q)is arbitrary, stability criteria impose some constraints on its
selection and thus

JQ@=4Q.-9), (5.3)
where A is positive constant and Q_ is the angular velocity at the centre of the
coordinate system (Q_ depends implicity on the value of A which is called
rotation parameter. For the Newtonian case this leads to the rotation law of the
type

2
Q= A4 (5.4)

A + s’
where s=rsind. When 4 — «, Q approaches a rigid rotation. When 4 — «, it

becomes a J- constant rotation (i. e. the specifying angular momentum is
constant in space). Woodard (159) considered a law of differential rotation of
the type

Q(x)=B, +B, x* +B, x*, (5.5)
where Q) is an even function of latitude x.

For a differentially- rotating model to be Table against local
perturbations, the assumed law of differential rotation should satisfy stability
criteria against local perturbations such as one obtained by (Stoeckly, 142). |
According to this criteria a model rotating differentially according to the law

w=0(s) is Table if
d .,
—[s*o(s)] >0 (5.6)
ds
for all s from centre to surface.
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In the present study we have preferred to use a law of differential
rotation of the type.

® =b +b,s’ (5.7)

where s=rsind. is a nondimension dimensionless measure of the distance of a

fluid element from the axis of rotation passing through its centre, b, , 5, are

suitably chosen arbitrary constants in units of »*.This law may be regarded as

a Taylor series expansion of a general law of the form o= f (sz) in which
terms up to second- order of smallness in a Taylor series expansion of »* are
retained. This includes the law w’=5,+5, 5% +b, s*, used by Lal (69) as special

case and ensures symmetry of »® about the axis of rotation. It may also be
considered as the truncated series expansion of the law (5.7) when terms
beyond s*are neglected. We have preferred this law of differential rotation in
our present study. It not only generates a variety of differential rotation
commonly expected in stars, but is also in a form which it can be convent ally
subjected to the type of mathematical analysis which we proposed to carry out
in the subsequent section of this chapter.

The nature of certain types of differential rotation which can be
generated by the law (5.7) for giving different values of 5 and b, are shown in
Table 5.1 For a star rotating differentially according to this law to be Table
according to Stoeckly (142) criteria (5.6) must be non- negative for all values of
s inside the star. The stability of each of the differential rotation considered by

us in Table 5.1 has been analyzed are presented in the same Table.
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5.2 ROCHE EQUIPOTENTIALS OF A DIFFERENTIALLY ROTATING
AND TIDALLY DISTORTED GAS SPHERES

A binary system of stars consists of a pair of stars in which one of the
stars (called the primary) is usually much more massive and larger as
compared to its companion star (called secondary) . Most of the binary stars
are observed to be rotating about their axes as well as revolving around their
common center of mass. Some of the stars in binary systems are also
expected to be rotating differentially. Because of the differential rotation and the
tidal effects of the companion, the equilibrium structures of stars in such binary
_ systems get influenced by differential rotation as well as tidal effects of the
companion stars.

Mohan and Saxena (85), Mohan, Saxena and Agarwal (92) proposed a
method for determining the equilibrium structures of rotationally and tidally
distorted primary components of stars in binary systems and applied it to main
sequence stars. However in their work they consider the rotation of the star to
be solid body rotation.

In the present chapter we have used the methodology of Mohan,
Saxena and Agarwal (92) to determine the equilibrium structures of a primary
components of stars in binary system by assuming that such a star is rotating

differentially following'a general law of_ differential rotation of the type
@ =b,+b,s* where b, b, are numerical constants and s, is the distance of
rotating fluid element from the axis of rotation.

Following Kopal (65) and Mohan, Lal and Singh (70), we assume that
the total mass M, of the differentially rotating star, which is primary
componént of a binary system, is much more massive than its companion star

which is assumed to be point mass (i.e. M,> M, where M, is mass of the
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component star). Let D be the mutual separation between the centers of these
two masses. Further suppose that the position of the two components of this
binary system is referred to a rectangular system of cartesian coordinates

having the origin at the center of gravity of mass M, the x axis along the line

joining the centers of the components, the z axis perpendicular to the plane of

the orbit of the two components, M,(r) is the interior mass of the primary

component). The primary star is supposed to be differentially rotating and
tidally distorted stellar model. For such a star in the binary system, following

Kopal (65) the total potential Q ata point P(x, y, z) is given by

dQ=dv,+dv, +%a)2(sz)d(sz)

Q=V,+V, +%Iw2(s2)d(s2) (5.8)

where s? = (x——M)2+Y2 , _MD
1 M0+M1

being the position of the center of mass of the binary system. Also ¥, and ¥,

are respectively the gravitational potential arising due to the primary and the
secondary components of the binary system. Assuming Roche model for the

primary and point mass for the secondary, the expression (5.8) can be written

now as
g GMelr) , GM, 1 fo? (sHde?) (5.9)
r 4 2
for making (5.9) dimensionless, we multiply it throughout by = to obtain
0
DQ 2 q 1 J 2, 2 2

Q= =S4+ +— Dd 5.10
TR 2ofw(s)(s) (5.10)
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S N GM
Here r, r, and s are in units of D , g=M,/M, ,and & in units of D30 and

writing @ (s*)= b7 .+2b, b, s> +b2 s* , (5.10) becomes

W=£+i+l[.b12 S2+bl bz S4+1b2284] (511)
ron 2 3
GM,

where b, ,and b, units of —2,
D

Also

2qri 2
=r-0?)- (lirq) " +qq2)2

using A =sinf cosg, p =sinfsing, v =cosé (r,0,4) being the polar

(5.12)

spherical coordinates of the point with center of the star as the origin and 4
being measured from the axis of rotation) in (5.12) » is non dimensional

measure of the distance (r/D) from the center of the star. So that,

W=£+i+%bf{r2(l—uz)—2qm+ 9 }+b‘b2 {r’(l—uz)—zqm+ g }
r

. 1+q (1+g)* 2 1+g (1+9)°
2 2 3
+b—2 r2(1—02)—2qr/1+ g 5
6 . l+g (+9)

(5.13)

As the prima—ry is considered to be much more massive than the secondary (i.e
Mo>>M) q is small. We also assume that »” is small so that b, and b,are

also small quantities. Therefore neglecting terms beyond second order of

smallness in 5, and b, with tidal distortions term ¢ and cross effects of

interaction between variations in angular velocity term 5, and 5, with tidal
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distortion termgand writingr =(1- 2/lr+r2)-}§ , we get after some
simplifications.
v =—i-+q§:rij(/1)+%(l—uz)r2|: bl + b, b,(1-0v*)r? +%b22(1~—vz)2r4]
" (5.14)
on setting ¢=0,z=1 it reduces to the potential of a spherical model having
differential rotation. On settingz =1,5, =5, =0. It reduces to the potential of a

non-rotating model of a star distorted by the tidal effects of a companion. In

case of synchronously rotating binary systems in which rotational velocity is

synchronous with velocity of revolution, w’=1+g. On setting 52 =1+gand

b;=0 and z=1 in (5.14) it reduces to the expression of potential of a binary
system as given in Kopal (65).
The surface generated by setting w=constant in (5.14) is usually

referred to as a Roche equipotential. The Roche equipotential thus defined is a
modification in the light of mass variation inside the primary component of

binary system. Unfortunately, the expression (5.14) for v is such that r cannot
be found explicitly in terms of . To achieve these equations (5.14) has to be
solved by successive approximations keeping in view that 5, b,, gare small

quantities of first order.

Defining nondimensional variable r, -——%_ and following Kopal (65)
v-q

and Lal (69) a relation connecting (r,0,4) on the surface of Roche equipotential

is given as
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2
r=r,D |1+ q? 2—xrf+qP 1+ qf-+bbzz+£ilbqum
z 2z z* z 2z 2z

P} 3qP b P, 79" P, P
+[q12’5+3q sz + q221 x]r0+(q—6+b—- +47—2/1b.2qx2+ q 25 |
z z 2

6z

Z2 z z

L[4

z Z z
2 2 2 p2
{ 21:7 (BERP 4gRE 4q' P ]+
2 2 2
12’8+3Ab§q 9q12’P 9¢P b . 94 12’2P5 24
z 2z z 4z* z
qP,

q

2 2 2

+( , 0Pk WGRE SqbiP s Sq ]+]
z z 322 z

(5.15)
where x=(1—z)2)and p; =p;(4) are legendre polynomial. In the above
expression we have retained terms up to second order of smallness in

b,,b,,q and up to order > in r,.This relation can be used to obtain the
shape of a Roche equipotentials ¥ = constant.

Following the approach of Kopal (65) Mohan, Lal and Singh (70), the

explicit expressions for the volume V,, surface area S, the average

gravitational force and its inverse ?, and ?of the equipotentials surface

w= constant can be

| 4 =4” o D [1+ b12r03 + 4b,b,r, ’ +(1292 4b12 q) r, 81722r07 48 +
©3 z 5z 52° 352
159" 8bbyg  2q° 16b,q 6bb,g
+ + r +...
( 722 7 2 ) 0 +( Z2 3522 35 ) ) 0 ]
(5.16)
2 2 3 5 2 2 2 7
SW =47 r02 D? [1+ bir +8b1b2 ry +(7q2 + Tb; zq)rog +16b2r0
3z 15z 5z° 15z 35z
9¢> 24bb,q. s 11g° 88b3q 22bb,q.
+ + + r, +
Gt a5z 0 T T 3152 T om0 )
(5.17)
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- - zGM, o _4blr’ +8blb2r05 _(3q2 +bfq)r6 _64b7r)
D*r} 3z Sz 22 2270 105z
154 1765, byq 2197 56b;q  1578b by g, 10
- - + +..
G s G s e 0 )
(5.18)

L D' 4b2 ’ 8b1b2r05 31g> 26blq ¢ 64bir)
+(—+ S, +
zGM 32 5z 5z 15z 105z
404° , 674bibyg 57> 184blq 2597bb, q
2 2 2 + 2 + 2
7z 105z 9z> 385z 210z

)ro10 +...]
(5.19)

)o_(

Here M is mass contained within the equipotentials surface y = constant and

terms
up to second order of smallness in z, b,,b,,and ¢ are retained. On setting
b’ = 2n, b2 =0 the results of this section reduce to the results of section 3.2 of

chapter lll for rotationally and tidally distorted stellar models.

5.3 EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING
AND TIDALLY DISTORTED GAS SPHERES

Following Kippenhan and Thomas approach given in section 2.3  of
chapter Il,_the equations governing the equilibrium structures of rotationally and

tidally distorted gas spheres are given as

aM, =4zD’p, 1’ 5.20(a)
. Pyt :
0
ak =—GMW p, [ 5.20(b)
dro Dr02 vi2.
dL
—Y=4zeD’p, 1, f, 5.20(c)
dr,
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3x L
ary ___ Tl . 5.20(d)
dr, 16z Dacl,r,

14

2
r, dr Drldr Dr2dr
£, =2 —Yf and 0 % ¢ are distortion
D® dr, fr= 2 dr, —fp and f;= rv ar, —fr

v

where f =

parameters on account of rotational and tidal effects.

In order to compute the values of these distortion parameters,
r,,u,v,w, f, have to be computed following the approach as discussed in
section 3.5 of chapter_lIl. Explicit expressions of these parameters which
determine the value ofr,.u,v,w,f,and f, on the modified equipotentials
surfaces of the primary component of a star in a binary system, rotating

differentially according to the law @ = b, +b,s*reduced to

£ =r,D[1+ biry + Abibyry +(4q2 + 4iq. ' +_8b§r07 +
v 0 3z 15z 5z 1522 7% 105z (5.21)
5¢° 8bbyg. s 29" 2bbyg 16gb;
+(=+ r, + + + r, At
(722 2122 o (3z2 3522 10522 o ]
u=1- (q2 +bfq)r6__(q2 8bb2q) (q 4b1b2q+8b§q)r10+
52 15227° 722105227 9z 35z 3157227 ° U
(5.22)
2.3 5 2 2 2.7 2
y=z[l- 2bir,  16bbyr, _(7q 2b; q) " _16b,7, _(31q +32bb2q) .

3z 15z 522 157° 35z 14z 357°

3¢ N 15625, b,q N 1845} g

“C ez T ) ]
(5.23)
e l[1+2b12"03+16b1b2r0 (23q 23b,2q)0 Llebin’
z 3z 15z 52 152% 35
(5.24)
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P 262, 16b,b,r,’° (22q2+22b1q _16by 1
p=2l- - - T ac.

3z 15z 522 1522 0 35z
79 S86bb,q s 62q° 3046bb,q 88b1q.
- + ry — + + + .o
(1722 105 22 o (922 252 72 632> o ]
(5.25)
144* 14b2q 46q> 482b b, q 34 > 182bb,q 16biq. 1
=]1- 1 — + 2 + 172 + 2 +

fr (5z2 1522 o (14 2 10522 0 (9z2 21022 2122 o

(5.26)

In the above expressions, terms upto second order of smallness in

b,,b,,qand zand terms up to 7, in 7, are retained.

Using these expressions the values of distortion parameters £, ,f,,f,are

obtained as

2b2r,’ | 32bb, r’  364° 36b12q 16b§r0? 55 88hb,q
+( ' + o5+ —5
z 15z 522 21z 7z 1z
264> 26bb,q 208b2q

fi=1+ )ro8

10
+ +
(322 3522 105 2%
(5.27)
34> 2b2q q2 306b,b,9 8g° 51037b,b,q 8b2g . 1
=z[1- 1 2 _ 1724 %%
fo=2ll-G 7+ )° tG L s 22 ' - 07 441027 31570
(5.28)
2b%r,’  16bb,r, 69> 6b! 165627,
f3=1+ ;o o+(q 1q)0 2o
z 15z 522 35z
24 202bb,q, s 26q° T4bb,q 64byq.
r, +(- - + I
(7 2 105 z2 )y (922 21022 10522)0
(5.29)

The values of P,,p,,L,etc. on the various equipotentials surfaces of a

differentially rotating stellar model may now be obtained by solving the system
of differential equations (5.20a-5.20d) using the values of distortion parameters

fi.fp,and f, as given in (5.27), (5.28) and (5.29) subject to the boundary

conditions
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M, =0,L,=0 atthe center r,=0 and at the free surface r =r,,

M,=M,, L,=L,,F,=0o0rF,  p,=0o0rp, andT, =0 or T,
(5.30)

(r,, being the value of 7, at the free surface).
Once the equilibrium structure of the primary component of a star in a
binary system, rotating differentially according to the law @ =5, +5,s% has

been computed by solving the system of differential equations (5.20) subject to
boundary conditions (5.30), its shapes, and values of various other observable
physical parameters can be computed. Whereas its shape, volume and surface
area can be computed using (5.15), (56.16), and (5.17) its oblateness o and

ellipticity £ may be computed using their definitions as given in section 3.3 of

chapter lll. The values of R,.R,.g,.g.needed for this purpose are to be

calculated from

R, =1,D, | (5.31)

Rr D+ s By o ol (@ By s @ Bg 300,

z? z2
g 7blq 7q b2 q 451 q, 4b bzq 12¢°
1 A 12y, + +
(z 222 22 6z o, + z z? z? z? oy
g 9blq 18blb2q 18q q Sblq 5b,b,q 5b2q 25q
L4 +
( 272 4z* o ( z? z? 322 "

(5.32)
where R, and R, are respectively , the polar and equatorial radial. The

gravitational force g, at the pole and g, at the equator are given as below and

the temperature and Luminosity may be calculated by using equations (3.34)
and (3.35) of chapter Ill.

2
RP

g, = (5.33)
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_2q b 3qr,' 4q 2bb
8. = q )Os qTO_( Zq 2)05 -
5 6b} 6 6 b2 7q 13bb 2¢°
_(—g-+_l_2q+i2)r056 q )087_( q 22q g )Os -
V4 V4 V4 V4 V4

9 2
_ 9qr05 _(21+ 20b,2b2 q, 8 bzq N 20;] )YOSIO ]
z

z Z z Z

(5.34)
A star rotating according to the present type of the law of differential
rotation develops deformations in its shape but maintains spherical symmetry
about the axis of rotation. If we follow Geroyannis and Valvi (42) oblateness

o and ¢ which are used as measures of the departure of the shape of the star

from spherical symmetry may be computed by using

R —-R R —R
I and g=——o0F
R R

D €

g =

(5.35)

The polar angular velocity @,and equatorial angular velocity o,of the

star can be computed as below in units of %using. The temperature and

Luminosity may be calculated by using the equation (3.34) and (3.35) of

chapter lll.

=yb? and , =/b? +2b,b, R? +b? R’ (5.36)

In the next two sections of the present chapter we apply this approach
developed in this section to determine the equilibrium structures of differentially

rotating and tidally distorted polytropic and Prasad models of stars.

5.4 EQUILIBRIUM STRUCTURES OF DIFFERENTIALLY ROTATING AND
TIDALLY DISTORTED POLYTROPIC MODELS OF GAS SPHERES

If we assure primary component of binary star as a polytropic model

rotating differentially according to the law w=b, +b, s> then the equilibrium
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structufe of the primary component of a star will be differentially rotating and
tidally distorted models.

Following the approach as given in section 3.3 of chapter lll the
differential equation governing the equilibrium structure of rotationally and

tidally distorted model now become

d dé
o’ a—{r; 73'—:|= -r6) (5.37)
r, A

where a’=——

On changing independent variable r, in terms of 7,, equation (5.37) can

be written as
do 2 |
L) ap by 20, ) =2 | = -2 BB, bz qm) (5.38)
dr, dr, a

2 2 2 2
A(,b,,bz,z,q,ro)=ré[l-(”’ 2 qus—” -y ],

5z 572 722°° 972
and
2b2r,° 32bb,r° 364 12b%g 165; r,’
B(b,,b,,z,q,r,)=[1+—12 120 +—1 0 + +
(bi.by2,¢,70) =1 15, Ts e N o
2
55¢> 88bb,q. 5 26q° 2080°¢ 124bb,q
+ + r, + + + r, +
(7z2 21z )y (322 10522 35z o
and
, d
rod—g
7= and ry=—
2 40 V=4
' d§ Hh="r

The terms up to second order of smaliness in z, b,,b,,and qup to " are

retained. The boundary conditions which equation (5.38) must satisfy are:
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do
6, =1, —==0, at the center, r,=0
dr,

8, =0 atthe surface r, =r,, (5.39)

In the expression K =R_1;’ R, being the undistorted radius of the primary

and D the distance between the centers of the primary and secondary stars of
the binary system. We can write

b_Db§, D, _1
a af, R, e =gt (5.40)

With this substitution equation (56.38) can be written as

d do, _ e N
_d70. A(bnbz’ro:Z’q)_‘;O— —_FGWB(bpr’r&bZ:q) (538 a)

Where the quantity « is of the dimension of length defined in equation
(3.19) of chapter Il and &, is the value of at the outer surface of the undistorted
polytropic model.

Equation (5.38a) subject to the boundary conditions (5.39) determines
the equilibrium structure of a différentially rotating and tidally distorted
polytropic model. On setting ¢=0 the above equation reduces to (3.20) which
determine the equilibrium structure of a polytropic model of a star distorted by
differential rotation alone under the mass variation inside the star. If we set
b,=b,=0 in (5.39), the equation reduces to an equation which determines the
equilibrium structure of a polytropic model of a star distorted by the effects of
the tidal forces of the companion.

To obtain the inner structure , the volume, the surface area and other

physical parameters of certain different'ially rotating and tidally distorted
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polytropic models, the equation(5.39) has to be integrated numerically with
specified values of parameter N, b, ,b, ,q, and K which respectively denote the
polytropic index, the radius of undistorted polytropic model , the values of
constants (i.e b,, and b,) appearing in the law of differential rotation, the ratio
of mass of the companion star to primary star in the binary system and the ratio

of undistorted radius of the primary to the distance between the centers of the

M,(r)

0

primary and the secondary. The value of z=

required at each point

inside the star is computed from (3.2) of chapter Ill. The value of K must be
such that the outermost surface of the primary component lies well within the
Roche lobe otherwise the two star will coalesce (Kopal (65), page 11). For a

single star distorted by differential rotation alone K=1 and rotationally and/ or

tidally distorted star, K=0.5.

For obtaining the numerical solution, equation (5.38 a) was integrated
using fourth-order Runge-Kutta method for the specified values of the input
parameters. However the center and the surface of the star being singulaﬁties,
series solution similar to the one available for undistorted polytropic model (cf.
Chandrasekhar (21), page 85) was developed to start the numerical integration

at points near the center. This series solution is given by

9 —1 12 , N&& o, bIED s NON-5&° , | Nb2E!  4bb &}
v RO i Yo = s ot 4 2
6K 120K 15 zK 15120K 140 zK* 105 zK

N —1 2 8 2 2 2
12 83N +870N§,, L, b; 7 )5,,2 .o
3265920K 8z 2472 K
(5.41)

Taking starting values from this series solution at r, =0.005, numerical

integration of equation (5.37) was then carried forward using forth order Runge
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—Kutta method with a step length of 0.005. Numerical integration was continued

till 6, first became zero.
Once we obtain r,, the value of », where @, first becomes zero,
relation (5.16) may be used determine its shape by replacing », by r,, and

a§ u

writing z=1 D =—E-relations (5.16) and (5.17) can now be used to determine

the volume and the surface area of the polytropic models of star. The other

physical parameters of such models such as oblateness, ellipticity, polar

angular velocity, equatorial angular velocity, temperature ratio (-]T%) and
: p

luminosity ratio i are computed using the relations (3.35) and (3.36) of
4

chapter Il respectively.
Numerical computations have been performed to compute the inner
structures of certain differentially rotating and tidally distorted polytropic models

of indices 1.5, 3.0, 4.0 with specified values of &,,5,,b,,N,K,Z . The results on

inner structures are presented in Tables 5.3(a), (b), (c). The results computed
for various observable physical parameters are tabulated in Table 5.4 (a), (b),
(c). The value of K has been taken one for the differentially rotating models

and 0.5 for the tidally and/or differentially rotating and tidally distorted models.

5.5 EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING AND
TIDALLY DISTORTED PRASAD MODEL

In order to determine the equilibrium structures of differentially rotating
and tidally distorted Prasad model in the influence of mass variation inside the

model, primary component of binary star is assumed to be Prasad model
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rotating differentially according to the law (5.7). Thus the equilibrium structure
of the primary component of a star will be rotationally and tidally distorted

models. Let r, denote the radius of the topologically equivalent spherical model
which corresponds to an equipotentials surface y = constant of this
differentially and tidally distorted model and R, be the value of r, on the
outermost equipotentials surface. Further, let p, denote the value of density on

an equipotentials surface y = constant. The density distribution law of the

differentially rotating and tidally distorted Prasad model is given by

p=pc(1_x2)
p=p.=2) (5.42)
r, =Dr|1+ 2, + 4bibyry + 4q21;06 + 8b,'ry + 5q2’2'°8 + 2q2r;10 +..
3z 15z 4z 15z 17z 3z
(5.43)
2b’r,°  4bbyr,’ 4q’r,° 8Bl 2, 8 2 10
R, = Dry |14+ 00 B0000, 300, \BOhTor 4o, 20 |
3z 15z 4z 152 7z 32
(5.44)
2 (5.45)
v-q

where z is same as defined in section 4.1 of chapter IV.

On substituting the value of r,. and R, from equation (5.43) and (5.44)

in equation (5.42) we get

2
b, =p. [l _ D*r, {1+ 2b°r,’ N 8b,b,1,” N 8¢°r,° N 6b2 1, N 10¢°r," N 4q°r," +H

R 3z 15z 5z° 105z 72* 3z?

v

' (5.46)
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On substituting value of p, from (5.46) in (3.25a) and integrating w.r.t. 7,

and using the fact that M, =0 at center r, =0 we get

_4mp D’r’ 3D, b’r)  abbyr’ bRy 12¢°1
M, = [1 >+ + > — + >
3 5R, z 5z zR, 5z
+16b22r07 _4bb,R7r) .\ 154 12¢°R’ 8 +(E_ 15q2R2)r 4]
70z 5R} |72 s2R}[° sz 7R
(5.47)

Similarly on substituting value of p, from (5.46) and M, from (5.47) in equation

(3.25b) and integrating w.r.t. r, and

27zGp.* D?
P=7rzpc

4D’r,'  2b’ry  D'r,° 8bb,r, 16D%]r)
’ 3 - - - + +

SR, 5z SR 35z 21zR,’

v 14

[K—r02+

N q’ry  16b,°r,’° s 64b,b,D’r,’  14D*b’r,’
2z 315z 135R) 45zR,"
3¢%R" N 144D*¢*r,”° v ]
10z 1257°R)’

(5.48)
where K is a constant of integration whose value may be calculated by using

boundary conditions 2, =0 at 7, =r,.

4D’r,' 2b°’r,’ D'n° 8bby’ 16D°b°r  ¢’n’
K___ros2_ os  Tos  ETos | OOl 1 Tos +q 0s

5R,’ 52 SR 35z 21zR,*  27°
160, 64bb,D’r 14D'6’r,’ 3¢’n,” 144D%¢’r"
3152 1352R)} 45zR,* 1027 1257°R)
The  explicit expressions for Volume vV, Surface area

14
Sy g_ and g‘_‘gravitational force are given as

y AR B Abbr 12g8 8Bir 15¢°r 24" n

i 3 z 5z 52% 35z 722 z?

+...]

(5.49)
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2b12r03_*_8b1b2r05 +7q2,.06+16b22r07+9q2r08+11q2r010

S =4zri[l+ +...
v o= 152 5722 105z 724 97 ]
(5.50)
- zGM, (1 4bry _8bbyrg 3q'ry 64bir Slg'ry 13¢°r” :
8 vy 3z 5z 7’ 105z 147 3220
(6.51)
g—l _ ry [1+4b12 7y +8bl b, 1, N 31q22r06 N 64b; r, +101q22r08 +75q2:01° ]
zGM, 3z 5z 5z 105z 14z 9z
(5.52)

If we put b} =2n,b;=0 the results of this section reduce to the result of

section 3.1 of chapter .
Numerical computations have been performed to compute the inner
structures of certain differentially rotating and tidally distorted Prasad model for

two values of y and taking four models we replaced r, by xr,, to 5.43 and

5.44 and used x as the independent variable whose value is to zero at the
center and one at the free surface. Ruulls oxe presented in tuple 64>, 54®,
S4(e) and S4(d).
5.6 ANALYSIS OF RESULTS

Results presented in Tables 5.1 show that the behavior of angular
velocity in certain differentially rotating models. This Table also exhibits the
stability of the models considered according to the Stoeckly criteria.

Table 5.2 shows the values of r,, for certain differentially rotating and/or

tidally polytropic models with polytropic indices 1.5, 3.0, and 4.0. The results
show.n in Tables 5.3 (a), (b), and (c) present the values of certain structure
parameters and related quantities of differentially rotating and tidally distorted
polytropic models with polytropic indices 1.5, 3.0 and 4.0 respectively. The
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parameters and related quantities of differentially rotating and tidally distorted
polytropic models with polytropic indices 1.5, 3.0 and 4.0 respectively. The results
shown in paranthesis are the corresponding results earlier obtained by Mohan,
Lal, and Singh (70). Compares on results in Table 5.3 (a) for volumes and surface
areas with corresponding results shown in parenthesis indicate that our values
obtained by us are smaller than the corresponding result shown in parenthesis.
The decrease in these values is small in the case of polytropic model 3.0 and 4.0.
However, the volumes and-surface areas for tidally distorted models 4, 5, 6 are
obtained by us are larger.

As regards the shape of the model represented by cand ¢ for N =15,
values obtained by us are smaller in comparison to the corresponding results
shown in parenthesis. A similar trend is noticed in the case of models for
polytropic indices N = 3.0 and 4.0. However,o and ¢ obtained by us for tidally
distorted models 4 and 6 are larger in comparison to the tidally distorted model,
these are smaller in the case of model 5 for all the polytropic models with indices

N=1.5,3.0and 4.0.

It is also noticed that our resuits for %—and £’—e—which give the temperature
P P

and luminosity at different points on the surface in comparision to their
corresponding values at pole are larger in cdmparison to the corresponding
results shown in parenthesis. It is also noticed that while the values of these
parameters are smaller for the 4 and 6 in comparison to earlier obtained models
these values are larger increase in the case of model 5.

Compared to the undistorted Prasad model the increase (decrease) in the
values of structure parameter for differentially rotating and / or tidally distorted

Prasad model is small for models with y' =10.0 compared to models with

v, =350
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Table 5.1 : Behaviour of Angular Velocity in Certain Differentially Rotating

Models

Model No. | Values of Various Parameters of | Stability of the
differential rotation model according
w*=b +2b, b, s> +b] s* to Stoeckly

criteria

bl b2 q

1 0.0 0.0 0.1 Stable

2 0.3162 0.3162 0.1 Stable

3 0.0 0.3162 0.1 Stable

4 0.3162 0.3162 0.1 Stable

Table 5.2 : Values of r,, for .certain differentially rotating and tidally
distorted models of stars indices 1.5, 3.0, 4.0

Model Values of distortion Polytropic indices of r,,
No. parameters

b, b, q 1.5 3.0 4.0
1.0 0.0 0.0 0.1 0.499815 0.499935 | 0.499955
2.0 0.3162 0.0 0.1 0.496235 0.498620 | 0.499475
3.0 0.0 0.3162 | 0.1 0.499805 0.499935 | 0.499945
4.0 0.3162 0.3162 { 0.1 0.495895 0.498510 | 0.499430

Table 5.3 (a) : Values of certain structure parameters and related
quantities of differentially rotating and tidally distorted

polytropic models of index N= 1.5

xgdel V,x107 | §,x107 | @ £ , @, T,/T, |L/L,

1 2.04188 | 1.67682 | 0.02000 | 0.0262 |0.0000 |0.0000 |0.96769 | 0.85390
(2.0446) | (1.67859) | (0.0326) | (0.3165) | (0.0000) | (0.000) | (0.96471)| (0.83871

2 2.02292 |1.66633 |0.03322 |0.03162 [ 0.3162 |0.3162 | 0.96189 | 0.82853
(2.05867) | (1.68621) | (0.03985) | (0.03832) (0.3162) | (0.3162) | (0.95798)| (0.80994)

3 2.04213 | 1.67696 | 0.02706 |0.02635 | 0.08332 | 0.0000 | 0.96743 | 0.85287
(2.04500) | (1.67876) | (0.03284)| (0.3180) | (0.08345)| (0.0000) | (0.96440)| (0.83752)

4 2.02391 | 1.66684 | 0.03474 |0.03358 | 0.39945 | 0.3162 | 0.95947 | 0.81902
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Table 5.3(b) : Values of certain structure parameters and related
quantities of differentially rotating and tidally distorted

polytropic models of index N= 3.0

Model| v x107° | 5§, x107 | O € , W, /T, |LJL,
No. ' '
1 1.37429 | 597751 |0.0000 (0.0000 |0.0000 |0.0000 |0.96766 |0.85376
(1.3752) | (5.98113) | (0.03268)| (0.03165) (0.000) | (0.000) | (0.96470)| (0.83870)
2 1.38052 | 5.99520 | 0.03387 | 0.03276 | 0.3162 0.3162 |0.96110 | 0.82529
(1.3884) | (6.01921) | (0.0400) | (0.03846) (0.3162) | (0.3162) | (0.95782)| (0.80928)
3 1.36972 |5.96422 |0.02696 |0.02625 | 0.083153 | 0.0000 | 0.96756 | 0.85343
(1.37550) | (5.98181) | (0.03285)| (0.03180) (0.08348) | (0.0000) | (0.96660)| (0.83751)
4 1.38326 |6.00292 | 0.03551 |0.03429 | 0.40046 |0.3162 | 0.95854 | 0.81523
Table 5.3 (c) : Values of certain structure parameters and related
quantities of differentially rotating and tidally distorted
polytropic models of index N= 4.0
m:del v, x107 | S, x107 | @ £ o, p LT, | L/L,
1 14.0598 | 2.81700 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.96765 | 0.85373
(14.0688) | (2.8185) | (0.03269) | (0.03165)| (0.000) | (0.0000) | (0.96470)| (0.83869)|
2 14.1956 | 2.83494 | 0.03411 | 0.03299 | 0.3162 |0.3162 | 0.96081 | 0.82412
(14.2313) | (2.84021) | (0.04010) | (0.03855)| (0.3162) | (0.3162) | (0.95770)| (0.80880)
3 14.0624 | 2.81734 |0.02702 |0.02638 | 0.08337 | 0.0000 | 0.96739 | 0.85269
(14.0713) | (2.81892) | (0.03285) | (0.03180)| (0.08346)| (0.0000) | (0.96439)| (0.83749)
4 142297 | 283941 1003578 |0.03455 | 0.40081 | 0.3162 | 0.95820 | 0.81388
Table 5.4(a) : Structure Parameters of Uniformly Distorted Prasad Model
For (v.=5b,=0b,=0,¢g=01)
x |% s, P, M, P, o 5 T,)T, |L,/L,
0.1 |0.00001 | 0.00042 | 0.99000| 0.00248| 0.01313| 0.00035| 0.00035 | 0.14283 | 0.99825
0.2 |[0.00006 | 0.00166 | 0.96000| 0.01952] 0.01499( 0.00036 | 0.00036 | 0.20199 | 0.99817
0.3 |[0.00023 | 0.00374| 0.91000} 0.06385( 0.01317| 0.00038 | 0.00038 | 0.24738 | 0.99806
0.4 |0.00054 | 0.00666 | 0.84000| 0.14464| 0.01081 0.00041| 0.00041 | 0.28565 | 0.99791
0.5 [0.00106 | 0.01041| 0.75000 | 0.26563| 0.00819| 0.00044 | 0.00044 | 0.31936 | 0.99772
0.6 |0.00183 | 0.01499 | 0.64000 | 0.42336| 0.00559| 0.00049| 0.00049 | 0.34983 | 0.99745
0.7 |0.00291 | 0.20408 | 0.51000 | 0.60536| 0.00327| 0.00056 { 0.00056 | 0.37784 | 0.99709
0.8 |0.00435 | 0.02665 | 0.36000 | 0.78848| 0.00149| 0.00066 | 0.00066 | 0.40391 | 0.99657
0.9 |0.00622 | 0.033730.18999 [ 0.93676 | 0.00036| 0.00081| 0.00081 | 0.42837 [ 0.99576
1.0 |0.00800 | 0.41692| 0.0000 | 1.0000 | 0.00000{ 0.00100| 0.00100 | 0.45148 | 0.99438
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Table 5.4(b) : Structure Parameters of Rotationally and Tidally Distorted

Prasad Model

(¥, =5b,=03162,b, =0,4=0.1)

X

14 S,

14 14

P, M v Pw

[od

o TT, |iL

0.1

0.00001

0.00041

0.99000

0.0028

0.01305

0.00052

0.00052 0.14282 0.99733

02

0.00006

0.00166

0.96001

0.01951

0.01499

0.0005

0.00053 0.20197 0.99729

0.3

0.00023

0.00374

0.91002

0.06382

0.01317

0.00056

0.00056 0.2473§ 0.99715

04

0.00054

0.00666

0.84005

0.14457

0.01081

0.00059

0.00059 0.28562 0.99697

0.5

0.00106

0.01041

0.75007

0.26551

0.00820

0.0006

0.00064 0.31933 0.99671

0.6

0.00183

0.01499

0.64010

0.42321

0.00659

0.00071

0.00071 0.34979 0.99637)

0.7

0.00291

0.02041

0.51012

0.60523

0.00327

0.00080

0.0008Q 0.3778Q 0.99589

0.8

0.00435

0.02666

0.36012

0.78834 0.0014§ 0.00093

0.00093 0.40385 0.99519

0.9

0.00620

0.03375

0.19010

0.93670

0.00036

0.00114 0.00114

0.4283Q 0.99411

1.0

0.00850

0.41673

0.00000

1.00000

0.00000

0.00149

0.00149

0.45138 0.99226

Table 5.4(c) : Structures Parameters of Rotationally and Tidally Distorted
Prasad Model (y; =5,b =0,b, =0.3162,q=0.1)

X

V., S,

v v

pw MV/

P

v o

P T,/T, |cL/L

0.1

0.00001 0.00041

0.99000 0.00249

0.01313 0.00035

0.00039 0.14832 | 0.998245

0.2

0.0000

0.0016q 0.96000

0.01852

0.01499 0.00036 0.00034 0.20199

0.998168

0.3

0.00022

0.00374 0.91000

0.06384

0.01317 0.00038

0.00034 0.24738 | 0.998060

0.4

0.00054 0.00666

0.84000 0.144641

0.01081| 0.00041

0.00041 0.28565 | 0.99915

0.5

0.00106 0.01041

0.75000 0.26562

0.00819

0.00044 0.00044 0.31936

0.997721

0.6

0.00183 0.01499

0.64000 0.42333 0.00559 0.00049 0.00049 0.34983

0.997459

0.7

0.00291) 0.02040

0.51000 0.60539

0.00327 0.00056

0.0005§ 0.37784 | 0.997096

0.8

0.00435 0.0266

0.3600Q 0.78848

0.00144 0.0006

0.0006§ 0.40391 | 0.996572

09

0.00619 0.03373

0.18999 0.93676

0.0003§ 0.00081

0.00081| 0.42837 | 0.995764

1.0

0.00850 0.41649

0.0000q 1.00000

0.0000q 0.0010

0.00107 0.45148 | 0.994383

140



Table 5.4(d): Structure Parameters of Differentially Rotating and Tidally

Distorted Prasad Model(y/; =5,b, = 3162,b, =.32,4=0.1)

|4

v

S,

Py

M

14

P

4

oz

£

Te /TP

LL

(4

0.1

0.00001

0.00042

0.99004

0.00248

0.01304

0.00053

0.00053

0.14282

0.99731

0.2

0.00006

0.00166

0.96001

0.01951

0.01489

0.00054

0.00054

0.20198

0.99726

0.3

0.00023

0.00375

0.91003

0.06385

0.01314

0.00056

0.00056

0.24736

0.99713

0.4

0.00054

0.00666

0.84005

0.14457

0.01087

0.00060

0.00060

0.28562

0.99694

0.5

0.00106

0.01041

0.75008

0.26551

0.00819

0.00065

0.00065

0.31933

0.99668

0.6

0.00184

0.01499

0.64001

0.42320

0.00559

0.00072

0.00072

0.34983

0.99632

0.7

0.00292

0.02041

0.51013

0.60522

0.00327

0.00082

0.00081

0.37782

0.99582

0.8

0.00435

0.02665

0.36014

0.78833

0.00146

0.00095

0.00095

0.40386

0.99512

0.9

0.00619

0.03378

0.19010

0.93669

0.00035

0.00116

0.00116

0.42830

0.99399

1.0

0.00850

0.04165

0.00000

1.00000

0.00000

0.00153

0.00153

0.45147

0.99203
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CHAPTER - VI

EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY
ROTATING WHITE DWARF MODELS OF STARS



White dwarf star is largely supported against gravity by the pressure
provided by the kinetic energy of the degenerate electrons. In contrast, its
luminosity is almost entirely derived from the thermal energy of the
nondegenerate ions, when nuclear process no longer comes into play and
gravitational contraction has almost ceased. A completely degenerate white
dwarf very much resemble a polytropic configuration, polytropic index ranging

from the N=1.5 (in the limit M — 0) to N =3.0 (in the limit M — M, where
M, is the mass of polytropic index 3.0). Such models have frequently been

used in literature to depict the inner structures of realistic stars at the last stage
of their evolution. The white dwarf stars of class DC, those which have no
observable lines, are possible candidates for having differential rotation. To test
this suggestion, Milton (82) calculated the emergent spectra of hydrogen rich,
differentially rotating white dwarf models. By virtue of the poincare-Wavre

theorem, a barotropic configuration in a state of permanent rotation must

naracearily anmnlu with tha aanditian N _ NN\ ahara « tha Adicatanan franm $ha
i 5 Ty - k] T TR T TN T T RT T I T TT YO

axis of rotation .The particular case of constant angular velocity of rotation has
been considered by several authors such as James (56), Anand and Dubas (3), '
Roxburg (119), Ostriker and Hartwic (100) etc. Their results show that solid
body rotation does not induce any substantial change in the global structure of
degenerate dwarfs. However the intense study carried out by Hoyal and
Roxburgh on some problems of differentially rotating white dwarf stars

assuming an angular momentum distribution law of the type J = J(m,),where
m_is the mass fraction interior to the cylinder, pointed out completely different

picture. Detailed models of massive white dwarfs in fast non-uniform rotation

have been also constructed by Ostriker et al. (99).
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In the present chapter we implement the approach developed in
chapter Ill to determine the effects of differential rotation on the equilibrium
structures of white dwarf models using a law of differential rotation of the type
(6.7). Even though approximation of exact equipotentials surfaces of rotating
white dwarfs by corresponding Roche equipotentials, used in the present
method, may not be very much justified, in the absence of more accurate
analysis. 4t will be of interest to see how the results obtained by the present
approach compare with the earlier results and observations.

In section 6.1 we first briefly introduce white dwarf model. The boundary
value problem determining the equilibrium structures of differentially rotating
white dwarf models of stars based on Kippenhahn and Thomas averaging
approach has next been set up in section 6.2. Expressions determining the
volume, surface area and other physical parameters of a differentially rotating
white dwarf model are obtained in section 6.3. Numerical results for the
equilibrium structures of certain differentially rotating white dwarf models have
been obtained in section 6.4. In section 6.5 numerical results have been

analysed to draw some conclusions of practical significance.

6.1 INTRODUCTION

White dwarf models have been extensively studied in literature as
representative models of low mass stars in their last stage of evolution (see for
instance, Chanadrasekhar (21)).In the case of completely degenerate white
dwarf model, the equation of state can be written as (cf. Chvandrasekhar (21),
eqns. (16), (17) and (18) chapter XI).

P=Af(x), p=Bx’ 6.1)
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where, A=6.01x102, B=9.82x10° u,, (6.2)

f(x)=x(2x* =3)(x* +1)¥* + 3sinh ' x, (6.3)

P, . R
x =—2 s a relativistic constants?
mc

and g, denotes mean molecular weight per electron.

The equilibrium structure of a white dwarf model can be shown to be

governed by the nonlinear differential equation

L d o add e 1
7 dn(ﬂ dn) (¢ ¢02)2 (6.4)

which has to be solved subject to the boundary conditions

o=1, ﬂ =0 atthecentre n=0,
dn
and qﬁ-—-l at the surface n=n,. (6.5)

provides much more

quantitative information. The boundary conditions (6.5) combined with a

particular value of ¢, determines ¢ completely and therefore the mass of the

configuration as well. Once the solution to the differential equation (6.4)
satisfying boundary conditions (6.5) is obtained, other physical parameters of
the white dwarf model can be obtained.

Equation (6.4) does not admit of a homology constant, and hence each
mass has a density distribution charactéristic of itself, which cannot be inferred
from the density distribution in a configuration of a different mass. This is most
fundamental difference between the white dwarfs and the polytropic models.

Chandrasekhar (21) and other investigators have numerically solved the
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equation (6.4) to satisfy the boundary conditions (6.5) for values of 1/¢, 2 varying

from 0 to 1 and used these to determine the values of various physical

parameters of white dwarf stars.

6.2 EQUILIBRIUM STRUCTURES OF DIFFERENTIALLY ROTATING
WHITE DWARF MODELS

In this section we use the method developed in chapter Il to obtain the
equilibrium structures of certain differentially rotating white dwarf models. In
case a white dwarf model is rotating differentially then as a result of the
rotational forces its equilibrium surfaces get distorted from there original form of
spherical symmetry. Following the approach of>chapter Ill, these distorted
equipotentials surfaces due to mass variation may be approximated by the

appropriate Roche equipotentials.

Let P, and p, denote the pressure and density respectively on the
equipotentials surface y =Constant of a differentially rotating white dwarf
model. Then assuming that the distorted model is also a completely degenerate
white dwarf model, P,and p, of such a configuration will be ‘connected
through the relations of the type

P,=Af(x), and p, =Bx’. 6.7)
where f(x) is given by equations (6.3). Equations (3.18) and (3.19) which

govern the hydrostatic equilibrium structure of a differentially rotating stellar

model can be combined together to yield

2
1 d |7, dp,
L |\ IV e _4nGp (6.8)
ry,2 dr, |ip¢, dru,] v

and using relation (6.7) and substituting (xz +1)= ¢02¢¢,2 , it reduces to
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2
@’ d| 2| [, L
v dr [r*” d J [¢” ¢02J o9

) 24

where " =——
rGB°¢

In case the white dwarf model is rotating differentially according to the

law (5.7), the values of 7, needed in equation (6.9) is provided by equations

(3.16) of chapter lll. it may be noted that the approximation of equipotentials
surfaces by Roche equipotentials does not basically alter the structures of
white dwarf model because in the absence of any distortion equation (6.9)
reduces to the usual structure of equation (6.4) of white dwarf given in the
earlier section.

To obtain the equilibrium structure of a rotationally distorted model, (6.9)

has to be integrated numerically subject to the boundary conditions

ol 9, =0-gttho.contori=0
YV 5 drv, 7 (]
and é, =-¢1— at the surface r, = R,. (6.10)
0

The values of r, on the outermost equipotentials surface of the distorted white

dwarf is given by

r,=an, 6.11)

where 7, is the value of  when ¢ equals ifor the undistorted model.
0

In case the white dwarf model is assumed to be rotating differentially

according to the law (5.7), the value of r, ¥given by (5.22), of chapter V. On

substituting expression for r, and retaining terms up to second order of
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0

smallness in b, and b,and up to r,”° in rin equation (6.9), the differential

equation governing the equilibrium structure of a differentially rotating white

dwarf can be written explicitly in the nondimensional form as

%
d d¢ 1
;—[A(z,bl,bz,r())d—j}=-n,,2r023(z,b1,bz,ro)(w—F] (6.12)

o 0 o
where

Alz,b,,b,,r,)=r,"+ Other terms containing higher powers of 7,

2 5 2.7
1.'3(2,1,1,1,2,,0)21+2b1‘r0 L 32bbyry 16,

z 15z 21z
d
M r02 d¢w xnu
and gm0 (r) _ Yo
M, 2 49,
(rO —)r =r
; dro 0= 0s
d
where(roz ﬁ} - (yf 5?) (6.12a)
dro ="Troy - d?} n=n,

The value [rf @—J are taken from Chandrasekhar (21) and the r, =Zisa
o Jy=n, v

nondimensional measure of the distance of the fluid element from the center. In

the above expression terms up to second order of smallness in z, b, and b, and

up to r,° in r,have been retained. Equation (6.12) has to be solved subject to

the boundary conditions (6.5) which now become:

d
—¢i =0, and

"o
_1
[

at the center: =04, =1,

at the surface Ty =Tyes B,

(6.13)
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r,, being the value of r, at the outer surface (r, and r,, are both

nondimensional quantities).

Equation (6.12) subject to the boundary conditions (6.13) determines the
equilibrium structure of a differentially rotating white dwarf model. On setting
b,2 =2n andb, =0, the equation (6.12) can be used to determine the
equilibrium structure of a white dwarf model distorted by solid body rotation
alone.

In order to determine the numerical solution of the second-order nonlinear
differential equation (6.12) subject to the‘boundary conditions (6.13), we can

start integration of (6.13) from the center using ¢, =1 as the initial conditions.

d
The integration is to be continued till ¢, equals to 1 and ﬂ=0. However at
To

each step of integration we need the value of z which can be computed using

- equation (6.13). The integration is to be continued till 4, equals to ¢L The
' 0

. 1 .
value r,, of r, for whichg, , becomes —,determines the outermost free
0

surface of the model. Once the solution of equation (6.12) is obtained, we know

the values of ¢, for various values of the nondimensional independent variable
r, varying from 0 to 7, . The values of pressure P,and the density p,on the

- various equipotentials surfaces of the distorted mode!l may now be obtained
through the relation (6.7) in the same manner as is done for the undistorted

white dwarf models.
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6.3 COMPUTATION OF VARIOUS PHYSICAL PARAMETERS

Following the approach of chapter V, the volumeV,, and the surface

area S, and the shapes of a differentially rotating white dwarf are given as

respectively
4 s 3|, bl 4bbr’ bl
V =— 1+ o+ S+ Lo 6.14
v 3 (a”u) Tos l: 5z 352 ( )
and
2b%r,° 8bb,r,’ 16b3r,]
S, =4 Pr |l T 20y (6,15
w ”(anu) 0s|: 32 152 IOSZ ( )
and its shape is determined by
2 3 2 S 2.3 7
r = (an, ), 1_‘_bl Xy, +b1b2x Yys +b2x Tos . (6.16)
2z 2z 6z

values of other parameters such as L,.7,,®,,®,,R,, R,, and ¢ efc. may

now be determined as in section 5.3 of chapter V by assuming ¢= 0 and

replacing D by simply an,.

6.4 NUMERICAL RESULTS
To obtain inner structure, the shape, the volume and the surface area of
a differentially rotating white dwarf model, equation (6.12) has to be integrated

numerically subject to the boundary conditions (6.13) for the specified values of
the parameters 1/¢,”, the radius of the undistorted white dwarf 7,, and the
values of constants b, and b, appearing on the right hand side of the law of

differential rotation (5.7). Numerical integration of this equation may be
performed by the use of fourth order Runge-Kutta method. Since the center

and the surface of the star are singularities of (6.12), for starting numerical
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integration, a series solution has been developed near the center. Such a

series solution for the present case is given by

4
n.
40

b1277u2 q3r 5 _ qS(qu +14) nu6 7 6 + 3b1277z14

152z *° 5040 " 1402

2
¢W =1_nu

4 7
r, +..
6 qrn

3,2 44
qr t——qr, -

(6.17)

where

2o 1

q =
40
Numerical integrations have been performed to obtain the inner

structures of certain differentially rotating white dwarf models taking the values

of 1/ ¢02 as 0.01,0.05, 0.2, 0.4, 0.6, and 0.8. After obtaining the starting value
of ¢, from the series solution (6.17) atr, =0.005, numerical integration of
equation (6.12) was carried forward using Runge-Kutta method of fourth order
using a step length of 0.005. It was  continued till ¢, equaled tol/g 2.
Whereas values of r,at surface are presented in Table 6.1, values for

corresponding volumes, surface areas, shape and other physical parameters

are presented in Table 6.2 (a-f).

6.5 ANALYSIS OF THE RESULTS

Values of r,, for various types of differentially rotating white dwarf

models are presented in Table 6.1. In this Table the value of 5, and b, for first
_three models are same as taken by Mohan et al.(91). The results for the
volumes and surfaces areas given in Tables 6.2 (a) to 6.2 (f) show similar trend
as ‘Giltadred by Mohan et al.(91).(For comparison the volumes and surface

areas as obtained by Mohan et al. Lal (91) are shown in parenthesis), It is
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noticed that because of the modification in the formula for gravitational potential
to account for mass variation at - %l i inside the stars, our values for
volumes and surface areas are comparatively smaller as compared to the
results obtained by Lal (91). However, the actual decreases in the volumes and

surface areas differ from model to model. The maximum decrease has been

noticed in the case of model 2 for all the values of parameters iz considered
0

in our present study. For the model 5 and 6 which are unstable according to
Stockely criteria, the values of volumes and surfaces area are still smaller
compared to the corresponding values for the undistorted models.

The values of o and ¢ presented in these Table give a reasonable idea ?
of the distortion in the shape of the modevl. It is noticed that the values for these
parameter are smaller compared to the corresponding values shown in

parenthesis as obtained earlier by Lal (91). The maximum decrease in these

values is for model 3. The values of ;—8and —Lishown in these Tables also
P P

indicate that as in the case of earlier study of Lal (91))the values of luminosity
and temperatures are less on equator as compared their values at the poles.
The comparison of these results with the results of Mohan et al. (91) shown in

parenthesis also shows that these values are larger than these obtained by Lal.
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Table 6.1 : Values of r, for various types of differentially rotating white

dwarf modelsfor different values of ——12—

0

Model V_alues_ of Values of 1
No. | distortions 2
arameters 001  0.05 02 04 06 08
b, b, Values of r,,

1.0 0.0000 | 0.0000 1.0000 | 1.0000 | 1.0000 1.0000 | 1.0000 1.0000
2.0 0.31623 | 0.0000 | 0.94151 | 0.96427 | 0.97217 | 0.97260 | 0.97259 | 0.97224
30 0.0000 | 0.31623 | 0.99947 | 0.99922 | 0.99891 | 0.99874 | 0.99864 | 0.99858
4.0 0.31623 | 0.31623 | 0.93837 | 0.95929 | 0.96542 | 0.96504 | 0.96457 | 0.96393
50 0.20000 | -0.2000 | 0.97562 | 0.98691 | 0.99066 | 0.99130 | 0.99136 | 0.99134
6.0 0.10000 | -.06000 | 0.99385 | 0.96499 | 0.99742 | 0.99750 | 0.99750 | 0.99749

Table 6.2(a): Values of certain structure parameters and related quantities
for differentially rotating white dwarf models of stars for

—;7 =0.01 and 1, =53571
Model Vw><10‘2 S,,,><10‘2 c & o, @p £ i
.NO. Ty L,
1. 6.43982 | 3.60636 | 0.00000 | 0.00000 | 0.00000 | 0.0000 | 1.00000 | 1.0000C
(6.44244| (3.60780) | (0.00000)| (0.00000)| (0.00000)( (0.0000) | (1.0000) | (1.0000
2. 5.82334:| 3.37474 | 0.04172 | 0.04005 | 0.316200| 0.31620 | 0.94941 0.81077
(6.92549| (3.78622) | (0.05536)| (0.05246)| (0.31623)| (0.31623| (0.94528) | (0.7565.
3. 6.57604 | 3.65722 | 0.016602| 0.01633 { 0.326439( 0.00000 | 0.97385 | 0.8569¢
(6.58056| (3.65939) | (0.01662)| (0.01634)| (0.32654)| (0.0000) | (0.96609) | (0.8568:
4. 6.14835 | 3.50467 | 0.88354 | 0.08118 | 0.31623 | 0.64599 | 0.88853 | 0.8890¢
6.09629 | 3.47702 | 0.00650 | 0.006467| 0.00714 | 0.2000 | 0.98817 | 0.98066
6.35949 | 3.57630 | 0.00257 | 0.00256 0.04043 0.1000 | 0.99651 0.99071
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Table 6.2(b): Values of certain structure parameters and related quantities

for differentially rotating white dwarf models of stars for
;}z- =0.05 and n, = 44601

Model walo"- Sw><10'2 o ¢ @, @p I L
No. T, L,
1. 3.71640 | 2.49976 | 0.00000 | 0.00000 ({ 0.00000 | 0.00000 | 1.00000 | 1.00000
(3.71800f (2.50082) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (1.0000) | (1.0000)
2. 3.63081| 246323 | 0.04482 | 0.04289 | 0.31620{ 0.31620 | 0.94557 | 0.79815
(3.97497| (2.61493) | (0.05505) (0.05219) | (0.31623| (0.31623)( (0.95918)| (0.75771)
3. 3.79203 | 2.5337 0.01657 | 0.01630 | 0.32625| 0.00000 | 0.97377 | 0.85722
(3.79536 (2.53553) | (0.01659)| (0.01632) | (0.32640] (0.0000) | (0.96614)| (0.85706)
4, 3.83960| 2.56166 | 0.09720 | 0.08859 | 0.66649 | 0.31623 | 0.88762 | 0.87068
3.63252 | 2.46208 | 0.00657 | 0.00653 | 0.66649 | 0.20000 | 0.99342 | 0.98049
6. 3.69950 | 2.49219 | 0.00258 | 0.00257 | 0.04385) 0.10000 | 0.98190 | 0.99094
Table 6.2(c): Values of certain structure parameters and related quantities
for differentially rotating white dwarf models of stars for
#1 = 02 and R =31
Model| v, x10?| §,x107 | & £ o, | o L L
No. T, L,
1. 2.16871 | 1.74563 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000
(2.16960] (1.74634) | (0.0000) | (0.0000) | (0.0000){ (0.0000) | (1.00000) | (1.0000)
2. 2.17576 | 1.75089 | 0.04593 [ 0.04391 | 0.31620 | 0.31620 | 0.96252 | 0.79366
(2.30842| (1.82018) | (0.05479)| (0.05195)| (0.31623] (0.31623) | (0.94584) | (0.75874)
3. 2.21071 ] 1.76819 | 0.016538{ 0.01626 | 0.32603 { 0.00000 |0.97368 | 0.85751
(2.2132) | (1.7698) | (0.01657)| (0.1630) | (0.3262) | (0.0000) | (0.96619) | (0.85727)
4 2.29277 | 1.81672 | 0.09993 | 0.09085 | 0.67275 | 0.3162 0.88701 | 0.89909
5. 2.14421 1 1.73251 | 0.00660 | 0.00656 | 0.00111 | 0.2000 0.99531 | 0.98043
6. 2.16489 | 1.74359 | 0.00259 | 0.00258 | 0.03999 | 0.1000 0.99830 | 0.99067
Table 6.2(d):Values of certain structure parameters and related quantities
for differentially rotating white dwarf models of stars for
-;E =04 and 1, = 35245
Model |y x107 | S, x101 @ £ o, |o, T, L
No. T, L,
1. 1.83391 | 1.55013] 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000
(1.83462)( (1.56161 (0.0000) | (0.0000) | (0.0000) | (0.0000) | (1.0000) | (1.0000)
2, 1.84253 | 1.56722| 0.04599 | 0.04397 | 0.31620 | 0.31620 | 0.96270 | 0.79341
(1.94785)((1.62533) (0.05467) (0.05184) (0.3162) | (0.3162) | (0.94595) | (0.75921)
3. 1.8684 | 1.5806 | 0.16510 | 0.01624 | 0.32590 | 0.00000 |0.97363 | 0.85768
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(1.87095)(1.58225) (0.01656]) (0.01629] (0.32616] (0.0000) | (0.96622) | (0.8573¢
4. 1.93607 | 1.62302| 0.09976 | 0.09071 | 0.67236 | 0.3162 0.88705 0.89981
1.81677 | 1.55131| 0.00661 | 0.00567 | 0.00085 | 0.2000 0.99564 0.98042
1.83116 | 1.5594 | 0.00259 | 0.00258 | 0.03999 | 0.1000 0.99835 0.99067

Table 6.2(e):Values of certain structure parameters and related quantities
for differentially rotating white dwarf models of stars for

¢_lg =06 and n, = 3.6038

Model| v x10?| S, x107 © £ @, @, T, L,

No. TP LP

1. 1.96052 | 1.63204 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 1.00000
(1.96123)| (1.63265)| (0.0000) | (0.0000) | (0.0000) | (0.0000) | (1.0000) | (1.0000)

2. 1.969695| 1.63850 | 0.04599 | 0.04397 | 0.31620 | 0.31620 | 0.96269 | 0.79342
(2.07993)| (1.69799)| (0.05460) | (0.05184) | (0.31623) | (0.31623)| (0.94001) | (0.75944)

3. 1.99678 | 1.65220 | 0.01650 | 0.01623 | 0.32583 | 0.00000 | 0.97360 0.85777
(1.99969)| (1.65402)| (0.01654) [ (0.16279) | (0.32611) | (0.0000) | (0.96623) | (0.85743)

4, 2.0660 1.6948 | 0.09955 | 0.09053 | 0.67187 | 0.31620 | 0.88710 0.90070

5. 1.94254 | 1.62210 | 0.00661 | 0.00657 | 0.00083 | 0.2000 0.99567 0.98042

6. 1.95754 | 1.63039 | 0.00259 | 0.00258 | 0.03999 | 0.1000 0.99834 0.99067

Table 6.2(f):Values of certain structure parameters and related quantities
for differentially rotating white dwarf models of stars for

¢—12 =08 and n, = 4.0446

Mode | 7, x107| S, x107 @ & o, ®, T, L,

| No. T.

No T, L,

1. | 277150 | 2.05571 | 0.00000 | 0.00000 | 0.00000 [ 0.00000 | 1.00000 | 1.00000
(2.7725) | (2.0564) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (1.0000) | (1.0000)

2. 278116 | 2.06223 | 0.04594 | 0.04392 | 0.31620 | 0.31620 | 0.96255 | 0.79362
(2.9381) | (2.1377) | (0.05456) | (0.05174) | (0.3162) | (0.3162) | (0.94605) | (0.75960)

3. 2.82224 [ 2.08083 [0.01649 | 0.01623 | 0.32579 | 0.00000 | 0.97358 | 0.85783
(2.8265) | (2.0832) | (0.01654) | (0.1627) | (0.32608) | (0.0000) | (0.96624) | (0.85747)

4 2.91367 [2.13138 | 0.09926 | 0.09029 |0.67122 | 0.31620 | 0.88717 | 0.89193
2.74554 [ 2.04291 | 0.00661 | 0.00657 |0.00084 |0.2000 |0.99564 | 0.98042
2.7672 | 2.05361 | 0.00250 | 0.00258 | 0.03991 |0.1000 |0.99834 | 0.99067
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CHAPTER VII

EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING
GAS SPHERES FOLLOWING A MORE GENERALIZED LAW OF
DIFFERENTIAL ROTATION



In the chapters V and VI we considered the problem of determining

equilibrium structures of differentially rotating gas spheres obeying a law of
differential rotation of the form @’ = (s*). In this chapter we consider the

problem of determining the equilibrium structures of differentially rotating gas

spheres assuming a more general law of differential rotation of the type
o’ =w(s*,z%) (where o is a nondimensional measures of the angular velocity

of rotation, s and z nondimensional measures of the distance of the fluid
element from and along the axis of rotation) which accounts for variations in
angular velocity along the axial direction as well as in a direction perpendicular
toit.

We assume a law of differential rotation of the type
@’ =b, +bz" +b,z* +b,2> +b,z* +b, z's*which accounts for variations in
angular velocity along s as well as z directions. As in the earlier chapters,
Kippenyha»hg and Thomas averaging approach has been used to obtain the
equilibri;m structures of such typeS‘ ’6fwdifferentially rotating models following
the approach explained in chapter Il which accounts for the effect of mass
variation on the potential. The technique has been then used to obtain the
equilibrium structures of differentially rotating polytropic models of indices 1.5,

3.0 and 4.0 for various choices of the values of rotation parameters
by, b,, b, ,b,, b, andb.

The law of differential rotation selected by us for our present study is
presented in section 7.1. The nature of some of the important types of
differential rotations is considered in this section. In section 7.2 we consider the
problem of determining the Roche equipotentials of differentially rotating stars

taking effect of mass variation inside the star on its equipotential surface. The
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methodologies is next used in section 7.3 to derive the system of differential
equations which govern the equilibrium structures of such types of differentially
rotating gas spheres. The methodology is next applied in section 7.4 to
determine the equilibrium structures of differentially rotating polytropic models
of stars. Numerical solutions have been next obtained in section 7.5 to
determine the equilibrium structures of certain differentially rotating polytropic
models of indices 1.5 and 3.0. Certain conclusions based on the present study

are finally drawn in section 7.6.

74 PROPOSED GENERALIZED LAW OF DIFFERENTIAL ROTATION
As far back as 1932, Giao and Wehrle suggestéd a differential rotation

law of the type

= ms
Q(s, 2)=Q, coOSmz
(5, 2)= ,;22"(n+1)(n!)2

(7.1)

where Q,and m are two constants of integration. In the case of a quasi

spherical system (such as the sun), it is cbnvenient »to use spherical
coordinates (r,§ =90-6,y ). On substituting s=rcos¢ and z=rcosé in

equation (7.1) we obtain

Q(R,9)=Q,cos (mRsing) 2 Zzn’ZnR;clo)s(i')z

(7.2)

where R gives mean boundary of the configuration with mean radiusr=R.
The remarkable feature of equation (7.2) is that it reproduces with good
accuracy the solar rotation law, when Q, and mRare fitted at two different
heliocentric latitudes. Another approach, which also takes into account the

viscous forces in a restricted form, was suggested by Schwarzschild in 1942.

The method consists of the derivation of the function Q(s,f), which is a
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solution of the usual equations for an inviscid fluid. Practical means to

determine the function Q(s,#)and various application of these ideas were

suggested by several authors such as Jeans (57,58), Clement (24), Marks and
Clement (77) etc. In order to be able to compute the inner structure of a
differentially rotating star it will be helpful if the law of rotation is assumed in a
form which takes into account the true nature of the differential rotation in the
star as well as is convenient to use. In case we assume symmetry of rotation
along and perpendicular to the axis of rotation, the law of differential rotation

which can account for variations in angular velocity both along s and z
directions will be of the type w = (s*,z%). Following the commonly assumed
law of differential rotation @ = b, +b,s* for stars in which there is no variation in
angular velocity along z axis we may assume
w=c,+¢s’ +c,2° (7.3)

as a law which accounts for variations ins, as well as z directions. Here
¢y, €, ¢, are suitably chosen arbitrary constants which account for variations
in ® along s and z directions. By squaring (7.3) we get,

o =c,) +¢ st +¢,0 2t +2¢,c,5 +2¢,0,27 +20,¢,8° 2" (7.4)
In analogy with our earlier assumption of a law of differential rotation of the type
w® =b +b,s* for stars in which there is variation in the angular velocity
perpendicular to the axis of fotation alone we may therefore assume

@® =by +b.s’ +b,s* +b, 2" +b, z* + b, 275> (7.5)
as a law of differential rotation which accounts for variations in the angular
velocity along s and ¢ directions. The law (7.5) is more general than (7.4) and

reduces to (7.4) for b, =cl b, =2c,c,, b, =¢,’, by =2 ¢c,c,, b, =ctand b,=2c,c,.
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For a gaseous sphere rotating differentially according to law (7.5)

b,, b, b,, b,, b, and b, must be so chosen such that »’is non-negative
everywhere inside the star. For b,=b,=b,=0 it reduces to the law
w® = b, +b,s” +b,s*used in the earlier chapters. According to the law (7.5), the
value of the angular velocity w, at the center, w, at the pole and o,at the

equator are given by
o, =+b, (7.6)

@,= b, +bR,+bR) (7.7)

and
@, =+[b, +b, R2+b,R} | (7.8)

where R, is the polar and R,the equatorial radius of the star. For suitable
choice of the values of b, b, b,, b,, b,and,b; we can generate a variety of
differentials rotations. Some of which may correspond to the differential
rotations actually occurring in the case of certain differentially rotating stars Lal
(91). The nature of certain types of differentials rotations which can be
generated by (7.5) by giving different values to 3,,5,,b,,b,,b,and b, are shown
in Table 7.1 (cf. Lal (91)).

As far as dynamical stability of such differentially rotating stars is
concerned, stable density stratifications permit certain rotation laws that
depend on both sand z and are not in conflict with Von Zeipal paradox. As
discussed in chapter Il, a baroclinic star in permanent rotation rotating
according to the law Q=Q(s, z)will be dynamically stable with respect to

axisymmetric motions if and only if the condition (5.6) given in chapter V is

satisfied.
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For a star rotating differentially according to the law (7.5) to be locally
stable according to Hoiland (52) criteria, b, +b,s® +b,s* +b, 2> +b, z* +b, 275
must be non-negative for all values of s and z. The stability of each of the
differential rotations considered by us in Table (7.1) was analyzed by Lal (91)

according to these criteria and the results of this stability analysis are presented

in the same Table for ready reference.

7.2 THE ROCHE EQUIPOTENTIALS OF DIFFERENTIALLY ROTATING
GAS SPHERE INCORPORATING THE EFFECT OF MASS
VARIATION ON THE POTENTIAL
For a star rotating differentially according to the law (7.5) the total

potential Q of the fluid element is given by
Q= IdV+ ja)zs ds
= V+% Ia)zd(sz)

=M+% ford(s?) (7.9)

v

GM,(r)
’

Assuming Roche model for a differentially rotating gas sphere, V = at

a point distant r from the center. M, (r)is mass interior to sphere of radius r

and M, the total mass of the rotating gas sphere. Substituting these in (7.9)

and multiplying throughout by R we get
GM,
t 1 R 5 2
= += d(s®). 7.10
V=3B 2GM0I(0 () (7.10)
where 1* t=M—°(rl
M,
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Since dimension of s is same as that of R, assuming w’to have a dimension

of%, the nondimensional form of (7.10) can be represented as

w=—i—+%[wzd(s2) (7.11)

Substituting w” = b, +b,s* +b,s* +b,z2 +b,z* +b,z°s* , we get
W= £+% I(bo +bs® +b,s +b,z° +b,2" +b,2°5") d(s?)
r

1
=£+b0s2 +lb1s4 +lb2s6 +bt’s? +b,t's? +=bs 1’5
r 2 3 2

Writing s* =r>(1-0?) and z>=r’0v* we get
t 1, 2 1 2\ .2 2 N
v=—4o 1-v*)[b, + Ebl(l—u yri+bw? (1-0H) i +
¥

(7.12)
+{—;—b2 (1-0?)? +b4u“(1—02)+%b5 02(1—02)}1"4 ]

Here y is" now the nondimensional form of the total potential
RQ . . .
Q(y = @), A=sinfcosg, u =sinfsing,v =cosd,(r,6,¢4 being the polar

spherical coordinates of the point with center of the star as the origin, X - axis

in the equatorial plane, & being measured from the axis taken as Z -axis).

M, (r)

(Note 1*: Normally we have been using symbol for Z = and are also taking Z one of the variable in

0
the law of differential rotation @ =@ (s, Z ) -To avoid confusion the variable Z generally used for in
the mass ratio is taken as [ in this chaptm) .

Also in (7.12), r is a nondimensional measure (r/R)of the distance of the fluid

element from the center of the star and b&,,5,,b,,b,,b,and b,are numerical
constants in units of G M, /R’ . In our present study, we shall assume the law of
differential rotation (7.5) in which ’,b,,b,b,,b,,b,and b,are in units

ofGM,/R’, s is a nondimensional measure of the distance of the fluid element
0
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from the axis of rotation and z is nondimensional measure of its distance from

the equatorial plane.

Following the approach used in section 3.4 of chapter Ill it can be shown

that the coordinates (r,6,¢) of an element on a Roche equipotentials y =

constant of a star rotating differentially according to the law (7.5) are connected

through the relation
r=r,R 1+—1—b xr,’ bb x? + ! bx(l x)br° —3—b 2x2r,S
0 2t 070 0 4f2 0 0
1 1 1 b,b,x’ 2b b x?
+{ ab2x3 +2—tb4x(1—x)+Eb5x2(l—x)}r07 +{ "t; (1- x)}

{6 bbx+ bbx(l x)+—bbx(l x)+ bbx(l x)} +... |

(7.13)

t .
where x=(1-v?), r,=—and terms upto second order of smallness in
78

t, by, by, b,,b;, b,and bs and upto order 7, in », are retained. We may obtain

the shapes of various equipotential surfaces of the differentially rotating gas
sphere by setting r= constant. In (7.13) R denotes the radius of the

undistorted model.

Following the approach discussed in chapter V and VI the volumeV,
surface area S, , average value g, of acceleration due to gravity and its inverse

E are given by the explicit relations

dr ., 86,°r,° 8b, b
V,=—Rr |1+  + L+ 20" + =+ (SR + 2+ 2
v 3 [ o ( )° st TGs Ty 35t) o
4 128 24 16
+( b b + b b ) 0 (105t2 bob2 +Wbob4 +‘3—§t—2b0b5
8 12b 2
+35t2b1b3+352)0 i }
(7.14)
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5 4 14 16
S, =4n Rzroz[l+§bo"o3 +(Eb1 3) o 15 1c,2 °2r°6 -’-(IOStb2
, g 36 12 704
t by by + (3 bob + 5 bobi )y + (5 bob, +
15104 105 73" (3512 by 5T b + (G b
44 88 v
+———bb, + bybs + biby+ b I+
10522 24 T 3ps2 0% T 315 2 315 b+ ]

(7.15)

E = bs)"o7

IEY; 5t 17 5¢

488 214 . 1616 46 64
— (== byb, + ————b,b,)r,* —(——b,b, + b.b, +
(31512 1 315 Iy (94512 %72 7 105¢2 " 10542

36 67 o,
+ bbb, +——b ), +...
1757 00 T apsats o ]

zGM 4 4 2 7 64 32 32
Y 11-—b,r,’ —(—b, +—b,)r,’ ——b,’r,° - b, +——b, +
R’r)’ [ oy G hr b bt = (ot b Has b 05,

byb;

(7.16)
5 R 4 131 32
T 14 2pr + (G4 2,0, L 64
£ zGM[ 310 (t )" s (105t 1057 ¢
32, 1352 418 3664 22
2T b + (2 bbb b+ (o b b, +—2 b b
10572 * Qs b tar oy + (Qgsgz Db+ 5 bobs
448 116 187 5 1
——bb, +———=b. ), +...
317 s P igs e Y g b O ]
(7.17)

In the above expression M is the same masses contained within
the equipotential' surface w = constant and terms up to second order of
smallness in b, b,b,,b,, band b, are retained. On setting
b,=b=2n,b=b,=b,=b,=b,the above expressions reduce to the
corresponding expressions for solid body rotation as obtained by Mohan,
Saxena and Aggarwal (92). Again on setting b,=b,=b, =0 these expressions

reduce to corresponding expfessions for the differential rotation obtained in

section 5.2 of chapter V.
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7.3 EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING
MODEL FOLLOWING GENERALIZED LAW OF DIFFERENTIAL
ROTATION

In case of rotating models in which rotation depends upon
distance from axis of rotation as well as distance from equatorial axis surfaces
of constant density and pressure may not coincide. Therefore strictly speaking
the approach being adopted in the present work which assumes that surfaces
of equfpressure are same as equidensity is not strictly applicable. However in
the absence of a more realistic approaéh which will be more complicated, we
have analysed here this problem also adopting the earlier approach.

The equations governing the equilibrium structures of rotating gas
sphere which are rotating differentially according to the law (7.5) are same as
(5.21) of chapter V. Following the approach adopted in section 5.3 of chapter V,
the results of the last section may be used to explicitly evaluate the values of

the distorting parameters r,, u, v, w, f, and f; for such types of differentially

rotating stars. The explicit expressions of the parameters determining the value*

of #,,u,v,w, f, and f; on the various équipotential surfaces of a differentially
rotating star according to the law (7.5) are obtained as:

92 2+ (b by 4
45¢ 105¢ 15¢ 105t

152 46 112 58 8
| == b, +———byb byb, + boby +—=bob
(315:2 YT J" s b s bt g bubs

92 173, 20 100
+———bb, +—=b," ), +...
1575¢2 77 1575¢° 3)_" ]

4

1 2
ty =Rr0l:1+§b0r03+(1—5-; 3)0

(7.18)
1 5 6 8bb  2b,b, 5 . 16 2
w=1———b2r, ¢ — (0L _ (b b, ——=—b_b
a5 0o ~Grsz TRy~ (Ggg gz fobe ~ 3 Dol
8 27 2410
—bb, +———b +
Tis7se 0 7se )‘rf’
(7.19)
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v= t{l—%borf —(-8—b +ib3)r05—-—32—b02r06—(—1§—b + 8

15¢ " 15¢ 45¢* 35¢ % 105¢
24 . 436 248 1472 128
+ b = (o bb, + ——bob )Y — b.b, + b.b
1050000 ~Grsp b3 o (Gasgz 2o ¥ 3y5,2 2oP
40 448 68 2 10
R T T R o U }
(7.20)
1. 2 8 4 68 16 6
w:;\:1+§_tb0r03 4‘(1—5'—tbI +—15—b3)rqs 457 — bg 06+(§5—t-b2 +3—5_t_b4
8 , 284 76 152 136
by + (b b+ bb, + byb
35¢ o+ Gosa o o5 by )ro+ (Tag7 Pob2 3152 b
296 608 152
=2 b, + bb, +
T35 0 TTs7se 0 T 1s7se? B’ }
(7.21)
2 8 4 47 16 6
fp =t 1_5‘;1’0’”03 —(B_tbl +Eba)ros - 4512 b02r06 _(g;bz +§57 4
8§ . 124 118 . . 4 . 656 2
Y35, 00" G by 35 bubs)ry _(31512 2 T 10572 bobs
40 56 203 .. 1
Yo s s s e e }
» (7.22)
and .
14 , . 176 128 32 4
fr=l=g@hn —Ggz bl 31542 bobs)ry —(6312 bbr =21 bubs
272 42
575 2 s Figgp 00
‘ (7.23)

where r, is nondimensional variable defined by roz-f—. The above

expressions contain terms upto second order of smallness in

b,.b,, b,, b, b, and b, and terms up to order r," inr,. Variable r, is connected

to 7, through the relation (7.18).

Following the approach adopted in section 5.3 of chapter V, the

equations governing the equilibrium structure of a star rotating differentially

166,



according to the law (7.5) may finally be written in terms of independent

variable r, as

dM ,
d"()w =47rpwro RSfI
dP GM
* == ;’pw fZ
dro Rro
dL
Y =4z sRr} p, f,, (7.24)
’ 0 v/l
0
and ‘
dT, _ 3KL, Py Py
dr,  16macRT, r, "
where,
2b 16 8 24 16 2 8
=1+ e (— b +— b)) +—b, "1, +(—b, +—b, +——b)r,’
/ 0 O b bIn b (b by £ by
44 1664 104 208
+(7b0b 212bb)0 (5157170172+35t2bob4+10512bob5+
104 52b,’ 'm
+——bb, +
105217 35¢ ETTaC
1 26 8 7 8 2
f2 =t |:1+Wbo A +Eb4r0 +(Wbobl 1051 2bb ) I +( bz.
2 8 8 317 , 2, w0
+-3—17b0b4_mb0b5_315;2 blb3+315[2 b3 )I‘O +.. :|
and

2 3 8 4 28 5 6 16 2 8 7
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In the above expressions, terms up to second order of smaliness in

z, by,b,,b,,b,,b, and b;and up to order 7"in r, are retained. On setting
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q=b, =b, ;bs =0 and neglecting the fourth order termsv as b'in the
expressions for f,, f,, f;,these reduce to their corresponding forms which is
obtained in section 5.3 of chapter V for differentially rotating model with
differential rotation law (5.7). And also if we take b7 =2n,b,=0 then these

terms reduce to equation (3.20) of chapter Il for rotationally and tidally

distorted models.

The values of P ,p,,L,, etc.on the various equipotentials surfaces of a

differentially rotating gas sphere may be obtained by solving the system of

differential equation(7.24) using the values of distortion parameters f|, f,,and

/, subject to boundary conditions (5.31).

i

7.4 EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING
POLYTROPIC MODELS FOLLOWING GENERALIZED LAW OF
DIFFERENTIAL ROTATION

Following the approach adopted in chapter V, the equation
governing the equilibrium structure of a rotating polytropic model, rotating
differentially according to the law (7.5) can be written in nondimensional form

as

) |
;r—{[A(npt,bo,bplh,b3,b4,bs)
r .

0

dé g
d—w :|:—6WN§u2rozB(ro,t, bo,bl,bz,b39b4 ,bs )

(7.25)

0

where

12(')'8

16
Ary) = 7'0{1"1‘5_[2‘[70 o =5

315+2

8 2
‘ b.b, ~
105¢2 °" 105¢

b4r07 __( 2 boba)”o8 =( byb,

35¢

2 8 8 1585 )" +...
Z b b, - byb, — b,b, + b2
3207 10542707 3152 77 157542 0

and
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2b, 6 3 24 16 2 8 7
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The equation (7.25) may be integrated numerically following approach

explained in section 5.3 of chapter V.

The central angular velocity o_,the polar angular velocity w,and the

equatorial angular velocity @, can be obtained using (7.6), (7.7) and (7.8),

respectively. The effective temperature and luminosity at any point on the

surface can also be computed using the method given in section 5.2.

7.5 NUMERICAL COMPUTATIONS

To obtain the inner structure, the shape, the volume and the
surface area of a rotating polytropic model, rotating differentially according to
the law (7.5), equation (7.25) has to be integrated numerically subject to the
boundary conditions (7.26) for the specified values of the polytropic index N ,
the radius of the undistorted polytropic £, and the values of numerical constants
by, b,, b,, b,, b, and b, appearing in the right hand side of expression (7.5). As
explained in chapter V, numerical integratioﬁ of (7.25) can be performed using
fourth order Runge-Kutta method. Since, we need the value of ¢ at each step
of the integration to account the effect of mass variation inside the models. For

this, equation 7.25 (a) is used to calculate ¢ at each interior point. Since the
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center and the surface of the model are singularities of (7.25). Series solution
may be used for starting numerical integration. A series solutions valid near the

center and which has been used by us in our present computations is given by.

1,22 N _44 by 2 s NBN=-5,6 ¢ b,N _ 4
6, =1-— +— -— e oo
y SIS A S TS T a0 o o P Ta0o
122N’ -183N* + 70N

3265920

byt ——b)E ] +{

S 22|08
b 7y +...
105¢ ' 105t T2 0 S }"

(7.26)

Numerical integrations have been performed to obtain the inner
structures of certain rotating polytropes of indices 1.5, 3.0 and 4.0 rotating
differentially according to the law (7.5) for values of constants

b, by, b,, by, b,and b listed in Table 7.1. Values of the volumeV,, and the
surface area S, of the distorted polytropic models were then computed using

(7.14), (7.15) taking o equal to one. The results are presented in Tables 7.2 (a),
7.2 (b), 7.2 (c) for models with polytropic indices 1.5, 3.0 and 4.0, respectively.

We also present in these Tables values of distortion parameters o and e.
Values o,, ®,.and o, the angular velocities of rotation at the center, pole and

equator are also given in these Tables. Relations(3.43) and (3.44) of chapter Il

have been used to compute values of 7, /T, and L,/L, to get an insight into
the effects of differential rotation on the values of surface temperatures and
luminosities of such differentially rotating stars. "Uaﬁwg‘f@;fi ; T,/T, and
L,/L,values of R,, R,, g,and g,,the equatorial radius, the polar radius, the

equatorial gravitational force and the polar gravitational force respectively are

required were computed from the relations (7.13), and (7.16) afius substituting

9=0° and 6=90° mwﬁwﬂy
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7.6 ANALYSIS OF RESULTS _

Table (7.1) presents different laws of differentiél rotation of the type (7.5)
which have been considered by us. These laws were earlier used by Mohan,
Lal, and Singh (91) to determine the equilibrium structure of differentially
rotating polytropic models. Our results in Tables 7.2(a, b, ¢) give the values of
various structure parameters as obtained by us for certain differentially rotating
polytropes of indices 1.5, 3.0 and 4.0

In the case of polytropic models 1.5 and 3.0 presented in Table 7.2 (a)
and 7.2 (b) our results for volumes and surface areas are smaller in
~ comparison to the corresponding results shown in parenthesis. Our results
presented in Table 7.2 ( c) regarding the effects of such types of differential
rotation on the. volumes and the surface area of the polytropic models with
index 4.0 show that because of differential rotation , volume and surface areas
in general increases compared to the results earlier obtained by Mohan et al
(91). However in the case of models 9 and 10 (which are rotationally unstable)
the inclusion of this differential rotation reduces these values for the polytropic
stars with indices 1.5, 3.0 and 4.0.

As regards the shape parameter o and £ model 1, 2, 3 and 4 show
these to be of undistorted type as their oblations and ellipticity are zero.
However their volumes and surfaces areas are larger than the undistorted
model. Also our values of 6and ¢ are smaller than the corresponding values
shown in parenthesis.

Our results in these Tables also depict the effects of such types of
differential rotation on the values of temperatures and luminosities at various

points on the surfacesof such types of differentially rotating stars. Our results for
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;—e@@i}émalﬁa for model 1, 2, 3, 4, 9, and 10 and ia&ge)k for model 5, 6, 7, 8

P
in comparison to the corresponding results shown in parenthesis. This

behaviour is common to all the polytropic models of indices 1.5 and 3.0.

However, while the values of i" remains unchanged for model 1, 2, 3, 4, it
P

increases for models 5, 6, 7, 8 and decreases for models 9 and 10 in
H\L .
comparison to"corresponding results earlier obtained by Mohan et al. (91) and

shown in parenthesis.
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Table 7.1 : Behaivour of Angular Velocity of Certain Differentially Rotating

Models

Model | Values of various parameters in the low of | Stability of the
No. differential rotation model _

w® = by +b s> +b,s' +b, 2> +b, 2" +b, 2% 5’ according to

Hoiland's

b, b, b, b, b, b, criterion
1. 0.0 00 |00 0.1 0.0 0.0 Stable
2. 0.0 00 |00 0.1 0.0 0.1 Stable
3. 0.0 00 |00 0.1 0.1 0.0 Stable
4, 0.0 00 |00 0.1 0.1 0.1 Stable
5. 0.1 01 |00 0.5 0.0 0.0 Stable
6. 0.1 01 |00 0.1 0.0 0.0 Stable
7. 0.1 01 |00 -0.05 {0.0 0.0 Stable
8. 0.1 01 |0.0 0.05 0.0 0.1 Stable
9. 0.4 -0.16 | 0.16 0.04 0.0 0.0 Unstable
10. 0.04 |-0.16 { 0.16 0.04 0.0 0.16 Unstable

Note: This Table has been taken from (cf. Table 5.1, Lal (69)) and is given here
for ready reference
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Table 7.2(a) : Values of Certain Structure Parameters and Related
Quantities for Differentially rotating polytropic models of polytropic
indexN=1.5

K] 7
I\I‘Igdel los Vyx 107 Syx 107 o € e wp -We TelTp | Le/Lp
1. 0.996329 | 2.06043 | 1.66710 | 0.000000 | 0.000000 | 0.000000 | 0.315066 | 0.000000 | 0.99616 | 1.000000
(2.07406) | (1.69221) | (0.00000) | (0.00000) | (0.00000) | (0.31623) | (0.00000) | (1.00000) | (1.00000)
2. 0.995634 | 2.07833 | 1.69696 | 0.000000 | 0.000000 | 0.000000 | 0.314847 | 0.000000 | 0.99781 | 1.000000
(2.06477) | (1.68732) | (0.00000) | (0.00000) | (0.00000) | (0.31623) | (0.00000) | (1.00000) | (1.00000)
3. 0.991549 | 2.06752 | 1.69116 | 0.000000 | 0.000000 | 0.000000 | 0.441564 | 0.000000 | 0.99576 | 1.000000
(2.69704) | (2.01347) | (0.00000) | (0.00000) | (0.00000) | (0.44721) | (0.00000) | (1.00000) | (1.00000)
‘4, 0.990889 | 2.08441 | 1.70051 | 0.000000 | 0.000000 { 0.000000 | 0.441124 | 0.000000 | 0.99543 | 1.000000
(2.57004) | (1.95143) | (0.00000) | (0.00000) | (0.00000) | (0.44721) | (0.00000) | (1.00000) | (1.00000)
5. 0.970024 | 2.16928 | 1.74689 | 0.08119 | 0.07509 | 0.3162 0.383467 | 0.458252 | 0.927023 | 0.62099

(2.26002) | (1.79500) | (0.08726) | (0.08026) | (0.31623) | (0.38730) | (0.44721) | (0.84969) | (0.45942)

6. 0.068430 | 217640 | 1.75102 | 0.08063 | 0.074614 | 0.3162 | 0.440210 | 0.457733 | 0.92673 | 0.62323
(2.27556) | (1.80213) | (0.08670) | (0.07979) | (0.31623) | (0.44721) | (0.44721) | (0.85036) | (0.48254)

7. 0071914 | 2.14346 | 1.73241 | 0.08186 | 0.07567 . | 0.31623 | 0.229715 | 0.458869 | 0.92735 | 0.61831
(2.22495) | (1.77577) | (0.08788) | (0.08078) | (0.31623) | (0.22361) | (0.44721) | (0.84829) | (0.47598)

8. 0.969559 | 2.18268 | 1.75455 | 0.08103 | 0.07495 | 0.31623 | 0.383408 | 0.457445 | 0.92694 | 0.62164
(2.26824) | (1.79973) | (0.08628) | (0.07942) | (0.31623) | (0.38730) | (0.44721) | (0.85193) | (0.48492)

9. 0.981534 | 1.99270 | 1.65055 | 0.001442 | 0.001400 | 0.200000 | 0.281085 | 0.1912163} 0.989192 | 0.977553
(2.05443) | (1.68426) | (0.00206) | (0.00205) | (0.20000) | (0.28284) | (0.20000) | (1.00574) { (1.02105)

10 0.986569 | 2.01944 | 166540 | 0.001440 | 0.001438 | 0.200000 | 0.280949 | 0.1904501| 0.988770 | 0.977802
(206751) | (1.69105) | (0.00211) | (0.00211) | (0.20000) | (0.28284) | (0.20000) | (1.00486) | (1.01742)
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Table 7.2(b)

: Values of Certain

Structure Parameters and Related
Quantities for Differentially rotating polytropic models of
polytropic index N = 3.0

7 7
MOdel fros Ve x 10 S¢x107| 5 € We op We Te/Tp Le/Lp
0.
1. 0.998304 | 1.39430 6.03588 | 0.000000 | 0.000000 { 0.000000 | 0.315691 [ 0.000000 | 0.999152 | 1.000000
(1.39981) | (6.04336) | (0.00000) | (0.00000) | (0.00000) | (0.31623) | (0.00000) { (1.00000) | (1.00000)
2. 0.998199 | 1.40927 6.0793 0.000000 | 0.000000 | 0.000000 | 0.315658 | 0.000000 | 0.999099 | 1.000000
(1.39505) | (6.03022) | (0.00000) | (0.00000) | (0.00000) | (0.31623) (0.00000) | (1.00000) | (1.00000)
3. 0.994490 | 1.40388 6.06420 0.000000 | 0.000000 | 0.000000 | 0.443525 | 0.000000 | 0.997241 | 1.000000
(1.90770) | (7.41641) | (0.00000) | (0.00000) | (0.00000) | (0.44721)| (0.00000) | (1.00000) | (1.00000)
4, 0.994385 | 1.41825 6.10612 | 0.000000 | 0.000000 | 0.000000 | 0.443529 | 0.000000 | 0.997241 | 1.000000
(1.79572) | (7.12903) | (0.00000) | (0.00000) } (0.00000) | (0.44721) (0.00000) | (1.00000) | (1.00000)
5. 0.988795 | 1.56385 6.52000 | 0.088116 | 0.080980 | 0.316227 | 0.385857 | 0.464501 | 0.929995 | 0.593860
(1.57791) | (6.55743) | (0.09130) | (0.08366) | (0.31623) | (0.38730) | (0.44721) | (0.84039) | (0.45706)
6. 0.987815 | 1.56385 6.54000 0.088116 | 0.080980 | 0.31622 0.444497 | 0.464501 | 0.929859 | 0.593860
(1.59528) | (6.559423 | (0.09148) | (0.08382) | (0.31623) | (0.44721) | (0.44721) | (0.83996) | (0.45606)
7. 0.989290 | 1.53452 6.43570 0.088305 | 0.081140) | 0.316227 | 0.225976 | 0.464669 | 0.930062 | 0.593128
(1.54528) | (6.46423) | (0.09148) | (0.08382) | (0.31623) | (0.22361) | (0.44721) | (0.83996) | (0.45606)
8. 0.988769 | 1.557773 | 6.56076 0.088106 | 0.080972 | 0.316227 | 0.385853 | 0.464492 | 0.929991 | 0.593860
(1.58601) | (6.58150) | (0.09032) | (0.08284) | (0.31623) | (0.38730) | (0.44721) | (0.84268) | (0.46249)
9. 0.995634 | 1.37380 5.9790 0.001456 | 0.001454 | 0.200000 | 0.282225 | 0.197670 } 0.992694 | 0.975365
(1.38646) | (6.01283) | (0.00204) | (0.00204) | (0.20000) | (0.28284) | (0.20000) | (1.00600) | (1.02213)
10 0.995519 | 1.39734 6.04760 0.001458 | 0.001453 | 0.200000 | 0.282209 | 0.197578 | 0.992645 | 0.975398
(1.39748) | (6.04535) | (0.00209) | (0.00208) | (0.20000) | (0.28284) | (0.20000) | (1.00526) | (1.01910)

175




Table 7.2(c) : Values of Certain
Quantities for Differentially rotating polytropic models of

polytropic index N=4.0

Structure Parameters and Related

) ")
Model| ros .| Vex 107 Syx 107 £ ®e op De Te/Tp | Le/lp
No. . '
1. 0.998794| 14.2845 2.8471 0.000000 | 0.000000 | 0.000000 { 0.315846 | 0.000000 | 0.99939 1.000000
(1.39981) | (6.04336) | (0.00000) | (0.00000) | (0.00000) | (0.31623) | (0.00000) | (1.00000) { (1.00000)
2. 0.998784| 14.4427 2.8683 0.000000 | 0.000000 | 0.000000 | 0.31584 0.000000 | 0.99939 1.000000
(1.39508) | (6.03022) | (0.00000) | (0.00000) | (0.00000) | (0.31623) | (0.00000) | (1.00000) | (1.00000)
3 0.995114] 14.3898 2.8614 0.000000 | 0.000000 { 0.000000 | 0.44394 0.000000 | 0.997755 | 1.000000
(1.90770) | (7.41641) | (0.00000) | (0.00000) | (0.00000) | (0.44721) | (0.00000) | (1.00000) | (1.00000)
4. 0.995104| 14.5423 2.8819 0.000000 | 0.000000 | 0.000000 | 0.44393 0.000000 | 0.99754 1.000000
(1.79572) | (7.12903) | (0.00000) { (0.00000) | (0.00000) | (0.44721) | (0.00000) | (1.00000) | (1.00000)
5. 0.99574 | 16.4104 3.1253 0.09080 0.08324 0.31622 0.38674 0.46686 0.93088 0.58355
(1.57791) | (6.55743) | (0.09130) [ (0.08366) | (0.31623) | (0.38730) | (0.44721) | (0.84039) | (0.45706)
6. 0.994905| 16.5345 3.14178 0.09048 0.08297 0.31622 0.44607 0.46659 0.93078 0.58476
(1.59528) | (6.559423 | (0.09148) | (0.08382) | (0.31623) | (0.44721) | (0.44721) | (0.83996) | (0.45606)
7. 0.995759| 16.0648 3.0799 0.090817 | 0.083256 | 0.31622 0.224551 | 0.466884 | 0.93089 0.58348
(1.54528) | (6.46423) | (0.09148) | (0.08382) | (0.31623) | (0.22361) | (0.44721) | (0.83996) | (0.45606)
8. 0.995784| 16.5687 3.1465 0.09082 0.08326 0.316227 | 0.386754 | 0.466893 | 0.930894 | 0.583449
(1.58601) | (6.58150) | (0.08032) | (0.08284) | (0.31623) | (0.38730) | (0.44721) | (0.84268) | (0.46249)
9. 0.998344] 14.16932 | 2.83303 0.001462 | 0.001460 | 0.200000 | 0.282608 | 0.199843 | 0.993852 | 0.974591
(1.38646) | (6.01283) | (0.00204) | (0.00204) | (0.20000) | (0.28284) | (0.20000) | (1.00600) | (1.02213)
10 0.998379{ 14.4237 2.86707 0.001462 | 0.001460 | 0.200000 | 0.282613 | 0.199674 | 0.993867 | 0.974581
(1.39748) | (6.04535) | (0.00209) | (0.00208) | (0.20000) | (0.28284) | (0.20000) | (1.00526) | (1.01910)
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CHAPTER - Vil

EIGENFREQUENCIES OF SMALL ADIABATIC BAROTROPIC
MODES OF OSCILLATIONS OF DIFFERENTIALLY
ROTATING AND TIDALLY DISTORTED GAS SPHERES



In the present Chapter we consider the use of averaging approach

developed in Section 3.4 and 3.5 of Chapter lll and section 5.3 and 5.4 of

induding o
chapter V to study the effect ofamass’ variation ¢nside Heifkdr on the

eigenfrequencies of small adiabatic pseudo radial and nonradial modes of
oscillations of differentially rotating and tidally distorted gas spheres.

Using the approach discussed in Section 3.4 and 3.5 of Chapter Ill and
using a .law of differential rotation of the type (5.7), an eigenvalued boundary
value problems determining the eigenfrequencies of small adiabatic pseudo-
radial modes oscillations of differentially rotating and tidally distorted gas
spheres have been formulated in Section 8.1. An eigenvalued boundary value
problem which determines the effect of differential rotation and tidal distortion
on the eigenfrequencies of nonradial modes of oscillations of the gas spheres
has next been formulated in Section 8.2. The formulations of these eigenvalue
problems are based on the analysis developed earlier by Mohan, Saxena and
Aggarwal (92). In Section 8.3 analysis of sections 8.1 has been used to
formulate the eigenvalue problems to determine the pseudo radial modes of
oscillations of rotationally and tidally distorted composite models. The analysis
of section 8.1 and 8.2 have been used in section 8.4 and 8.5, respectively to
formulate the eigenvalue problems which determine pseudo radial and
nonradial modes of oscillations of a differentially rotating and tidally distorted
polytropic models with polytropic indices 1.5, 3.0 and 4.0 The eigenvalue
problems developed in Section 8.3 of rotationally and tidally distorted
composite model and 8.4 and 8.5 for differentially rotating and tidally distorted
polytropic models have been solved numerically in Section 8.5 whose inner

structures was earlier obtained in Chapter Ill, IV and V. Analysis of the
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numerical results has finally been carried out in Section 8.6 to draw certain

conclusions.

8.1 EIGENVALUED BOUNDARY VALUE PROBLEM TO DETERMINE
THE EIGENFREQUENCIES OF SMALL ADIABATIC PSEUDO-
RADIAL MODES OF OSCILLATIONS OF DIFFERENTIALLY
ROTATING AND TIDALLY DISTORTED GAS SPHERES

The problem of determining the effect of differential rotation on the
eigen-frequencies of differentiélly rotating stars in quite complex. Mohan and
Singh (87) formulated an eigenvalued boundary value problem to determine the
periods of small adiabatic pseudo-radial modes of oscillations of rotationally
and tidally distorted Roche model. Mohan, Saxena and Aggarwal (92) used
this approach to formulate eigenvalue problems which determine the
eigenfrequencies of small adiabatic pseudo-radial and nonradial modes of
oscillation of rotationally and tida.lly distorted gaseous spheres in general. The
approach adopted by them was also be used by Lal (69) to set up the
eigenvalue problems which determine the eigenfrequencies of small adiabatic
pseudo-radial and nonradial modes of oscillations of differentially rotating and
tidally distorted stars.

Assuming that during the oscillations the fluid elements on an
equipotential surface oscillate in unison, the eigenfrquencies of small adiabatic
pseudo-radial modes of oscillations of the actual rotating star rotating
differentially according to the law (5.7) can be obtained from its topologically
equivalent spherical model developed on the basis of the averaging technique
of Kippenhahn and Thomas. Following the approach of Mohan et al (92), the
equation deterhining the eigenfrequencies of pseudo-radial modes of
oscillations ‘of a differentially rotating and' tidally distorted stellar models which

correspond to the eigenvalue problem determining the eigenfrequencies of
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radial modes of oscillations of the topologically equivalent spherical model may

be expressed as :

dn A-udn +{:p0,, o’ —(3-iJL}7=O

drozy, Tow droi, "Pow 7 )y
ry dP,
where p=-—2_—% (8.1)
. 0w drOW

Here r,,, p,, and P, are the values of r,, p, and P, on the equipotential y =

const. in its equilibrium position, o the eigenfrequency of oscillation and 75

some average of the relative amplitudes of pulsation of the fluid elements on

the equipotential surface y = constant. Using r,, p, and P, in place of

%oy s Po, and Py, to denote the equilibrium values on the equipotentials

surfaces, taking r,=

in place of r, as the independent variable, and

assuming ® =b +2b, b,s* +bs* as the law of differential rotation, the
equation (8.1) governing the small adiabatic pseudo-radial modes of
oscillations of a differentially rotating and tidally distorted gas sphere may be

expressed as:

d2
A(z,b,,bz,q)d—?+

)

R'c’?
+ ——&-(3—ﬁ)ﬁ2E(z,b,,b,,q n=0
rP rjr, )

14

0 0

4- d
{ yB(z’bl’bz’Q)—C(Zsbl’bz,q)Jd:l
(8.2)

2.3 5 2,6 2.7 2.8 210
A bg) = [1_8.1;, . 16bbyr’  28g7° 12857 90¢°r* ddg’r, +}

3z 15z 522 105z 7z° 372
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5hlr) 28bb,r’ 32¢'n° 24b7r] S0g%n' 2¢°n,
3z 15z 527 35z 72° 37°

B(z,b,,b,,9)= {1

4'b12r03 + Sb]bz rOS + 168q2706 + 646221‘0? N 360q2r08 s 220q2r010

1
C(z,b,,b,,9)= — -
(2.b1,5:,4) T [ 5z 5z2° z 72° 372

2. 10

_ 2671, _8bb, r,’ _ 8q4°r, 168,°r, _ 10¢%,} _44’r,

E(z,b,,b,,q)= [1

3z 15z 5z° 35z 77° 37°
. r,dP, 4 dP
AISO H= __'//__W____r_0=__F(z,bl’b2,q)_r0____V
P, dr, dr, P, dr,
Where
2 2 8 2
F(z,bb,,q)=|1- .b,zro3 _4bb, ro5 244 2r06 _ 565, rO? B 40q22r0 _20q 2rOIO
z 15z 5z 105z 7z 3z
In the absence of any distortion

z=1,b=b,=0,p,=p,P, =P, 5, =x,the above equation reduces to

2 _ 2_2
Mﬁ_ﬁi’l{’f_a_/’_(%ﬂ)ﬁz},:o

dx’ x dx rp r)x
withpz-——{—ég
p dx

which is the usual equation determining the eigenfrequencies of small adiabatic

radial modes of oscillations of a gaseous sphere (cf. Rosseland (105) p.30

with (y = 0).

Equation (8.2) forms an eigenvalue problem in the eigenfrequency of
oscillation o. As usual, this eigenvalue problem is of Sturm-Liouville type
having singularities both at the centre and the surface of the model. It has to

be solved subject to the boundary conditions which require 7 to be finite at the

centre as well as at the free surface.
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In reality equation (8.2) determines the periods of small adiabatic radial
modes of oscillations of the topologically equivalent spherical model. However,
since equipotential surfaces of the actual differentially rotating distorted model
are also the surfaces of equipressure and equidensity, the values of pressure
and density on the equipotential surfaces of the differentially rotating star are
same as on the corresponding equipotential surfaces of the equivalent
spherical model. Hence the eigenfrequencies of the radial modes of
oscillations determined by solving the eigenvalue problem for the topologically
equivalent spherical model are indeed the eigenfrequenices of the radial modes
of oscillation of the undistorted model which have got influenced by the
rotational effects of the star. However, the values of the eigenfunction n
obtained on solving (8.2) for the equivalent spherical model are not the actual

values of amplitudes of pulsation 7 for the distorted model but rather some
averages of the true values of éigen functions n on the differentially rotating

model.

We may thus use equation (8.2) to determine the effects of differential
rotation and the tidal distortions on the periods of small adiabatic radial modes
of oscillations of a stellar model. The effects of differential rotation and tidal
distortions have been incorporated through introduction of terms
A(z,b,,b,,9), B(z,b,,b,,q), C(z,b,,b,,q9), E(z,b,b,,q9), and F(z,b,,b,,9),

and dependence of p, and P, on . The present method in fact incorporates

the effects of distortional forces both while computing the equilibrium structure

(in computing the values of P,, p, etc.) as well as in the coefficients A, B and

C of the equation (8.2) which determines the periods of adiabatic small radial

modes of oscillations.
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The eigenvalue problem (8.2) together with the boundary conditions

which require n to be finite both at the centre as well as the free surface of the

star may be solved numerically in the usual manner as is done in the case of
undistorted models. For convenience in numerical work it is sometimes found

convenient to set

n= 4 and r, = X1y (8.3)

4
(r,s being the value of r, on the outermost surface) in equation (8.2) and treat
x as the independent variable and ¢ as the dependent variable. With these

substitutions x is now zero at the centre and one at the free surface. The

boundary condition n=finite at the centre now gets replaced by =0 at the
centre. The boundary condition n = finite at the free surface now becomes ¢
finite at x=1. Using (8.3) equation (8.2) gets transformed in terms of the

variables ¢ and x and as

d’g dg
A*(2B0y,4,0) =5+ BH(5h,b0,0, ) 22 +C (@ bby, g 00 =0 (84)

where

A*(z,b,,b,,9,%) = A(z,b,,b,,x1,5),
4- 2
B*(z,b,,b,,9,x) = —;ﬁB(Zabnbzsq’xros)_"osC(vabz’Q:xros) ";A(Zsbl’bzv‘ﬁx’bs)s

and

r2 RZ
Tos Py ;2 —(3—i —#—E(z;b,,bz,q,xros)—lB*(z,b,,bz,q,erS)
X

y x?

C*(z,b,b,,9,%) =

4

The bdundary conditions now are :
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¢ =0at the centre x=0
and (8.5)
¢ = finite at the surface x =1

For computing an eigenvalue o (8.4) has to be solved numerically
subject to the specified boundary conditions (8.5). Centre and the free surface
of the star being singularities of this differential equitation it may be advisable to
write the series solutions of (8.4) near the singularities to start numerical

integrations. If we assume ¢ to be normalized to have value one at the free

surface, we can assume a series solutions of the type
{=Y ax’ (8.6)
J=0
near the centre x =0 and
{=1+Y b,(1-x)"" (8.7)
J=0

near the surface x=1, to start the integration of (8.4) near these two
singularities.

For obtaining an eigenfrequency of pseudo-radial mode of oscillation,
the equation (8.4) has to be integrated numerically for trial values of & till a
value of o is obtained for which both the boundary conditions are satisfied.
One way to achieve this objective could be to integrate equation (8.4)
numerically from the surface towards the centre using say fourth-order Runge-
Kutta method. Starting values near the surface may be obtained from series
solution (8.7). Similarly we can integrate equation (8.4) numerically outwards
from the centre starting from a point near the centre. The starting values near

the centre may be obtained from the series solution (8.6). Trials with different
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values of & may be continued till a value of o is found for which the value
¢ / % from the inward and outward integrations match to desired accuracy at

some suitably selected point inside the model.

The quantites p,,P, and the eigenfrequencies o are still in

dimensional form. For determining the eigenfrequencies it is recommended
that these be first converted into suitable nondimensinal forms keeping in view
the physical nature of the mc;del under investigation.

It may be noted that the eigenvalued boundary value problem set up in
this section determines the eigenfrequencies of the pseudo-radial modes of
oscillations of a differentially rotating and tidally distorted gas spheres rotating
differentially according to the law * =5 +2bb,s* +b}s*. For pseudo-radial
oscillations of a rotating model having solid body rotation we may set

b} =2n, b; =0, z=1 (2nbeing the square of the angular velocity of rotation in

equation (8.4)).

8.2 EIGENVALUED BOUNDARY VALUE PROBLEM TO DETERMINE THE
EIGENFREQUENCIES OF SMALL ADIABATIC NONRADIAL MODES
OF OSCILLATIONS OF DIFFERENTIALLY ROTATING AND TIDALLY
DISTORTED GAS SPHERES

Mohan, Saxena and Agarwal (92) also formulated an eigenvalued
boundary value problem to determine the eigenfrequencies of the nonradial
modes of oscillations of rotationally and tidally distorted gaseous spheres. As

in the earlier case values of the physical parameters p, andP, on the

equipotential surfaces of the distorted model being same as those on the
corresponding equipotential surfaces of the topologically equivalent spherical
model, we may use this topological equivalent spherical model to determine the

eigenfrequencies of nonradial modes of oscillations of the differentially rotating
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and tidally distorted gaseous spheres Following Saxena (124), the eigenvalue
problem determining the eigenfrequencies of nonradial modes of oscillations of

a differentially rotating and tidally distorted gas spheres can be expressed in an

o~

explicit form convenient for computational work as

1

d¢ \
—+B&+| B, +—
! 16 [ 2 02

B)n+ ~ B¢ = 0

d d
£+(E'G2 +E2)§+ E3n+E4¢+£=O, (8.8)

and

d¢ + F ¢+F§+F3r7+F¢ 0

dx? dx J
where
Bl=l+1+ 1 dPa//,
x yPB, dx
BZ=2”GP° Py rwz drw
Rx yP, " dx

_270Gp. o [1+2 bln'x' 32k br'x 364 126 o 16b,70n

+
7 P, z 152 (522 5z% ) Fo. 21 z

55 ¢*x%r,' 269 62 b7

I(+1) dr,
B, =- 27 G
} Rx dx Pe
I +1) 4b2r} x° 8b1b,r05. L[284°  28blq
B, =- 272G p.ry |1+ 0¥ . LI rd +
? Rx P 0[ 3z 5z 527 1522 s
64b,r, x” (45 , 24bb,q 24 22bb
+ S 2 270 8 .8 q 1929 | 10 10
1052 [722" 722 )7 +[3z2 MEETEIN CR
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1 Rxdr

2erp r dx
B 1 1+2b,2x3r0s3 +161),b2x5r0,5 +(4q2 +4b[2q)x6r 6 +16bzzx7rm7 A
Yo 27Gpr, x 3z 15z 22 32T 35z
5q> 8bb,q . s 6q° 18bb,gq
+(—+——2xtr H (——+ 0 0t
e e 55 352) o
| A dP Rx
27szL pw dx ;
_ 1 1 1dp, 1 dF dF, | 1_2b12x3r053_32b,b2x5roj_
' 27Gp, D' p, p, dx yP, dx dx xrozé z 15z
36¢° 12bl q 6 16 55q 886b2q
— ——— r —
R T R RaTERLIC)
26q 26bbq 10
S s X e ]
l dr
E,=—+4, —%
x Vdx
d dP
gl L )
x p, dx yP, dx
bl
X
21 dzrw/dx2 2drw
" x dr,jdx v, dx
_ 20+ _1)26°x°n, N 16b,b,x°r,,’ . (24q2 +8b12q)x6r ‘0,
X  x z 3z z’ z’ o
112b,°x"r,]  40¢> 448bb, 60g> 36b,b
+ ;52 %4 ( z? + 21;rz'q)x”rof+( zzq + 7;22q)xmr05l0+.
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Py A, Rx[dr,
F,=2——
pe T dx

v

4q* 4b’q 4
+ + x
3z 152 R AR

P. Py, dx 7Pw dx)erS

P LAR 1 4R [1+2b,2x’r053+16blb2x5r055

16b,°x"r,,'  5q° 8bbg 5 3 64° 18bbq
+ 4 + x°r "+ r,
35z (22 3z2 L (z2 3522 )x Os
4xGpl dr,
F3= W( )
P dx

2 2
+(56(}2 + 560, 2q
3z 5z 5z 15z

3=

47Gpy o g {1 8%, 16bb,x°n,]

)/P )x6ro§v +

7,7 2
, 1285 °x7n," 90q2 +48b.lzzq)x3r%g+(44q 44bb§q)x 0
105z 7z : 3 35z

F=l(’+1)~__l_(d2’v)/(d’w +31_(_1_~dr 1(1+1) ar,
! x? x dx*’ dx" x r, dx r, dx

2

I | 4675, 8bb,x°r,’ 1684° ssbfq s o 448b,7x7r ]
F,= e} + +( 2 2 )X Fog +
z z 5z 5z 105z

72? 2122 0s 372 212>

2 2 2 262K X 8b b, r x°
JELLY +576bb2q) , o220 , 3528, q)x‘°r0x'°+l{ (X’ 8b, 32 S5
V4 ¥4

484* 16bﬁq s s 112b7°x'r,  80g> 128bb,q9. 5 s
+ X 1y, t—— + + X°r
(52 sz L 105 z (722 2122) 0
40‘1 86,9, 10 10
+ +— +...
(3z2 7_z2 )% "os

Also o is the eigenfrequency of oscillations, x=r,/r,, and

2 ' '

r, or, P v
5 RJ I+l ’7=2 G WRZ { ’and¢=2 G gRZ /
T pc X pll/ 3 pc X
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5r, being an average of the amplitudes of Lagrangian variations in the radial
direction and FP,,y, the amplitudes of Lagrangian variation in pressure and

gravitational potential on the equipotential on y =constant.
In the above expressions terms upto second order of smallness

inz ,b,andb, and upto order r,° inr, have been retained. On setting z =1

,b) =2n , and b} =0 the above expressions reduce to the corresponding ones

obtained by Mohan, Saxena and Agarwal (92) for a stellar model having solid
body rotation.

The eigenvalue problem (8.8) determining the eigenfrequencies of
nonradial modes of oscillations of a differentially rotating and tidally distorted
gas spheres is to be solved subject to the boundary conditions at the centre
and the free surface. Boundary conditions at the centre require

or, =0, Puj /p, =0andy; =0forr, =0. These requirements lead to the analytic

conditions
2
(o2
n+p=————=_,
2rGp. lry (8.9)
@ _,
dx

at the centre x = 0.

If the pressure P, on the free surface (r, =R, ) is taken to be zero, then
d P, , the Lagrangian variation in pressure, should be zero at the outer surface.

This leads to the condition

) drw dPW
2zGp, 1, p, K'”R I ¢£=0
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2601y, R2bibyr, (3697 12b)q) . 16b3 7,
2 G ‘ eri — 1 "0s + 172 “0s + q + 1 ra6 + 2 Tos +
T pch (1[ z 152 SZZ 522 0s 212

2 2 dP
+[55q Ll bqur&{%q #1245 bquro'er... ]17+ y Y.E=0.
X

7z 2122 3z? 3522
(8.10a)

However if the pressure P, does not totally vanish on the outermost surface

then following Cox ((27), p.232), the boundary condition (8.10a) is to be

replaced by

27Gp R p, +Lde 1 {1_2612 ro. 32b.b, 75, _{36q2 +12b]2qJ 6

P, " P, dx " rj, z 15z 527 522 )"

1667y, _[55(12 +88b,b2qu8 _[26q2 +26b,b2q) 0, ]

21z 722 212 )% | 322 3522 ) ”

, AP, _ ar, | D? 2b%r)  16b,b,r..  (4g® 4b’ 16b2r,
| oG anae Gy B 11 B MO0 (4 S IO

(32 8hba) . (648 18bbg A b b (124 48,
? 322 )% | 22 35z z 5z 522 5z )"

3
z
_8br _[1542 N 8blb2qu,, _(z_qz+ 61;11)241},o . } }§+ 271G p, I +1)

z

10
rO.s +

rOs
+
35z 72* 722 )% | 2? 35z | ¥ o’r? (7+4)

Os
2bry,  8bbyr, (8q° 8biq) ¢ 16bjry (10 16bb,q) . (44’ 4b,b,q ) 10
l— - | =t 2 rO:— - 2 + rOs— 5t Os
3z 15z 5z 15z 105z 7z 2122 3z* 3577

dp 2p, D? 2b2r  16b. b, 1’ 2 2 1652 7
+27TG,DV(—W‘)—1 Py £+ tfos 0% % Tor 4q2 +4blq s+ 2 Tos
dx 3z 15z 35z

rOx z 322
2 . 2 b2r3 2b2r5
+(5L+8b' bzq)r08:+(§q—+——18b‘b2q]r£+... }+(l+1)pcD2¢{l+ L Al
4

z% 3z? z? 3577 z

2 gp? 5656 r,, 2 64 2 4
+ 24(12 + b‘zq ré e —22 40(12 +6 b, qu re + ———-204; +———b'b§q P+ ...
5z S5z 105z 7z 21z 3z 7z

(8.10b)
The condition requiring gravitational potential to be continuous
across the free surface gives
=0

Cprlodx

14

dx r, dx

v

ﬂ+[l+(l+l)drw }:ﬁ 2Rp, dr,
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or

blr) 4b b, r, 4q° 2 56b% 1,
d¢+{l+(!+l){l+ Lo, 12 +[2 A +8b' quoi+ Loy
zZ

dx 3z 520 577 105z
40q9° 64b b,q) . (209> 4bb,q) 4
+ r,. + + | PO
( 722 2122 )" (322 722 )" ‘
2 26213 16b, b, 1. 2 2 1662 1]
+ pu/ 1+ 1 ’O.s + 1 %270 + 4(]2 +4b[2q ro(,x + 2 "0y +
P, s, 3z 15z z 3z 35z
5g° 8bb,q) s [6g° 18b,b,q) 4
+ + — |Tos + + = rys +... |£=0
( z? 322 0¥ z? 35z° 05 d

(8.10 c)

at the surface x=1

Thus in terms of the nondimensional eigenfunctions &, and ¢ the
problem determining the eigenfrequencies of nonradial modes of oscillation of a
differentially rotating' and tidally distorted gas spheres reduces to solving the
system of differential equation (8.8) subject to the boundary conditions (8.9) at

the centre and the boundary conditions (8.10) at the free surface.

8.3 EIGENVALUED BOUNDARY VALUE PROBLEM TO DETERMINE THE
EIGENFREQUENCIES OF SMALL ADIABATIC PSEUDO-RADIAL
MODES OF OSCILLATIONS OF ROTATIONALLY AND TIDALLY
DISTORTED COMPOSITE MODSELS

The eigenvalued boundary value problem governing the
eigenfrequencies of small adfabatic pseudo-radial modes of oscillations of a
rotationally and tidally distorted gaseous sphere has been formulated in section
8.1. In order to use this formulation to determine the eigenfrequencies of smali
adiabatic pseudo radial modes of oscillations of rotationally and tidally distorted
composite models, we have to use in this eigenvalue problem the values of

P,and p, for the appropriate rotationally and tidally distorted composite model.

The boundary conditions require ¢ to be finite at the centre and the

outermost surface of the gaseous sphere. We can use this equation to
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determine the eigenfrequencies of small adiabatic pseudo-radial modes of
oscillations of rotationally and tidally distorted composite models whose
equilibrium structures were investigated in Chapter IV. For this we have to first
obtain explicit expressions for x_ (the value of u inside the core) and u, (the

value of u inside the envelope) by substituting the appropriate values of

r, and P, for the core and envelope.
On using the value of P, for points inside the core from equation (4.7)'

and the value of r, from (3.8) in the expression for x as given in equation

(8.2), we get after simplifications.

2r'Y, 2n 2n_ 3, 4n . 16nD® s 1 ,2¢q° 4nqg 4n®
=+ (=), + - r, +{— + + -.
M, X, (ZYI z )" (SZXI 3Y,ZRW2)0 {YI( 22 372 322)
24¢> 16nq T72n° 4nD*  32aD? 1 g nqg 204°
~(CE e 2 e (- R L B S
5z 5z 15z SYzR, 21:zX R, X, 2z 3z 3z
8D 18¢> 12nq 232n* 34’ 8n* . 40q° 28nD* 104*
- 2(qz+ 2t 7t qz + 1y qz}r:+ 7+ ‘21 -
SY,R] 520 5z2 4527 272, SX, 'Y, 7z 45X,zR! 9 7%,

328¢° D? s 3D* (26q2 , 52ng +484n2)_ 8 D? ( 1842  L2ng 724 n°
70Y,z’R. 1SY,R, 5z% 1527 4527 7 25X R 5z 5z% 4577
3q° 16 n? 768n* D* 209%. 4
+ 3 ++ To7 T 2 T~ 515 +...
10z°X, 25z°X] 105X, z°Y| R, 3z

)+

(8.11)
where
2 4

X, =Kl -1} +i£)7r04 +1D—4r06

5 RW 5 R,/,
and

2 4

y o1 8022 3D,

20 R
SR, SR
Similarly on substituting for P, from equation (4.21) for points in the

envelope and for r, from (3.8) in the expressions for u as given in equation

(8.2) we get

192



2
po=2 B Ly 28R s 2
x| zV 3 X M, 3Tz

1. 4
+—), -
zY)°

2 2 2 2 2 2 8 2
24g° léng T2n )+_]_ 2q +4nq+4n )+l_(2q, +4nq+28n _8n

- + +
{(5.22 522 45z Y z' 3z0 97227 Xz 3zb 922 7P

2 2 2 2 2 2 2
_16n"(logry) 16n (logry) e - 1 l(6q +4nq+44rz )+_]_(9q +3nq_34n )-

(logry))

3XY2? . M, Y522 5z° 4527 X '10z* 5z° 4577
2 ] ".;l 2 2 2 2 2
31 1k (togryy 2 08)y 0 (00 B 819 dm____An
XYz zX 7z 14Yz 70Xz 3XYz:M;, X zM;
_ 19 L1y 200 L L e
14zM, Yz 2Xz 3 3Yz 7Xz
(8.12)
where
X=1+ v, +3Cr;
2 Mo,
and
Y=1+ T,
0,

Now substituting the values of P, p, and ,u,évfrom (4.7), (4.5) and (8.11) in

(8.2) the nondimensional form of the pulsation equation inside the core

becomes
d*{ g 2

H—+H —+\Hw" -H,|=0 (8.13)

Var? dr, [ } J : »
where

2 1 10 2 _ 2.8 2 10

H,=1—1—6—nr03—(56qz N 12n2q+ 4n2 r06_90q2r0 Mg, N

3z 5z 15z 45z 7z 3z?
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o being the nondimensional form of the eigenfrequency o. Also ¢ is the
value of the relative amplitude of pulsation at 7, in the equivalent spherical
mode! and thus denotes a suitable average of the amplitudes of pulsations of
the fluid eleme;\ts on the equipotential surface y = constant of the distorted
model.

Similarly on substituting the values of P, , p, and u, from equations
(4.21), (4.16) and (8.12) in (8.2), the nondimensional form of the pulsation
equation inside the envelope is same as (8.13). However, now
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Equation (8.13) together with the boundary condition which require ¢ to

be finite at centre and free surface and continuous across the interface
between the core and the envelope, constitute an eigenvalued boundary
problem which determines the eigenfrequencies of small adiabatic pseudo-
radial modes of oscillations of rotationally and tidally distorted composite

models consisting of cores in which density varies according to the law

2
.
p, = p"(I_R_Vz) and envelopes in  which density varies as
|4

R |

p, = pcbz(l——;l). In the formulation of this eigenvalue problem terms upto
r
14

second order of smallness in distortion parameter n and ¢ have been

retained.

It can be easily verified that if we set » = ¢ = 0 in these

equations,
Then we obtain the usual equation determining the eigenfrequencies

of small adiabatic radial modes of oscillations of an undistorted mode! of
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the above series of composite models. On setting n = (¢+1)/2 in the

above formulation we can determine the effects of rotation and tidal
distortions on the periods of small adiabatic pseudo-radial oscillations of
the primary component of a synchronously rotating binary system. Also

by setting ¢ = 0 or n=0 separately, we may study the effects of rotation alone

or tidal distortions alone on the periods of small adiabatic pseudo-radial

oscillations of the models of the series of composite models.

8.4 EIGENVALUE PROBLEM DETERMINING THE EIGENFREQUENCIES
OF SMALL ADIABATIC PSEUDO-RADIAL MODES OF

OSCILLATIONS OF DIFFERENTIALLY ROTATING AND TIDALLY
DISTORTED POLYTROPIC MODELS

The eigenvalued boundary value problem governing the
eigenfrequencies of small adiabatic pseudo-radial modes of oscillations of a
differentially rotating and tidally distorted gas sphere has been formulated in
section 8.1. In order to use this formulation to determine the eigenfrequencies
of small adiabatic pseudo-radial modes of oscillations of a differentially rotating
and tidally distorted polytropic model, we have to use in this eigenvalue

problem the values of p, andP, for the appropriate differentially rotating

polytropic model.

On substituting in equation (8.2) the values of P,, and p, as defined by
relations 3.17 of chapter Il for a differentially rotating and tidally distorted
polytropic models, we get after some simplifications.

HA g, T (ot -H,)p =0 (8.14)

172
dr, dr,
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where

8b'r, 16b.byr, 28q7r° 128br’ 90q°n’ 44¢’r"
3z 5z 5z 105z 152 3z’

H (z,b,,b,,q) =1~

ol 326°r  232b,b,r"  296q°%°  136b7r)  560¢°r° 76q%r,"
2y 3z 15z 52° 352 7z z’

+(N+‘)(_l_d0w)ro{l_8b,2ro3 16,67 128b,°r)] _5642:06 _9oq2r08 _44q2:‘0'°
8, dr, 3z 5z 105z 5z° 72" 3z°

(N+DEk p . 1

Hy=—""—(—)
3}”'0;3 P, ow
1 db _Sb'r,) 28bb,r,’  32¢7r,° 2451
:-(3——)(N+1)(——)-— Ty 28bby 1y’ 32’ 2 Ty
dr, 3z 15z 522 52_
506]2r08 8q2r010
722 z? T )

where 0=

o being the nondimensional form of the eigenfrequency o. In the above
expressions values of the parameters £ ,p and p are to be taken for the
original undistorted polytropig model.

Equation (8.14) is the general equation in nondimensional form which
determines the eigenfrequencies of small adiabatic pseudo-radial modes of
oscillations of a differentially rotating and tidally distorted polytropic model when
terms upto second order of smallnessz, b, , b, and gare retained. For
numerical evaluation of the eigenfrequencies, the second order differential
equation (8.14) is to be solved numerically subject to the boundary conditions

which require » to be finite at points corresponding to the centre (r, =0) and

the free surface (r, =r,;) of the model.
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On sétting z=1, b,=b,=0 (i.e. in the absence of any distortion,
equation (8.14) reduces to the usual equation which determines the

eigenfrequencies of small adiabatic radial modes oscillations of an undistorted
polytropic model. By setting z=1, b’ =2n,b, =0 we can study the effects of

solid body rotation on the eigenfrequencies.

8.5 EIGENVALUED BOUNDARY VALUE PROBLEM DETERMINING THE
EIGENFREQUENCIES OF SMALL ADIABATIC NONRADIAL MODES
OF OSCILLATIONS OF DIFFERENTIALLY ROTATING AND TIDALLY
DISTORTED POLYTROPIC MODELS.

System of equation (8.8) with the boundary conditions (8.9-8.10)
constitutes the eigenvalued boundary value problem which determines the
effects of differential rotation and tidal distortions on the eigenfrequencies of
nonradial modes of oscillations of a differentially rotating and tidally distorted
.gas spheres. In order to use this eigenvalue problem to determine the effects of
differential rotation and tidal distortions on the eigenfrequencies of nonradial

modes of oscillations of polytropic models the values of P,,and p, etc.

appearing in these equations are to be taken from relations (3.17) of Chapter
lll, the system of differential equations (8.8) governing the nonradial modes of
oscillations of a differentially rotating and tidally distorted polytropic model, can

be expressed as

%+B§+(B +£—j77+——¢ 0,

dn 4 _
+(E0? +E)§+E3U+E¢+dx—0 (6.15)

and

d’¢ dg
—+F —+FE{+Fn+ F 0
ot Thg thirEntEig=
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o being the nondimensional form of the eigenfrequency o. As mentioned in

the radial case values of the parameters £, p. and p are to be taken from the

original undistorted polytropic model.
The boundary conditions (8.9) at the centre (x=0) for the case of

distorted polytropic models become

n+é= 32;';4 (ﬁ}f, (8.16)

¢
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and

dg
F-o (8.17)

On substituting the values of P,, and p, from (3.17) in the boundary
conditions (8.10) at the free surface (x=1), the boundary conditions at the free

surface in the case of polytropic models become

0
- [H 2b°n, | 32bbyr,’  364°n 16b'n S5 26¢°n° }

z 15z 522 21z 722 3z?
1 do
Ly
£, dx
(8.18)
(M) 1+b rOS 4b b, r’ 24q Yo, +56b;roj +40q2r0s8
3z 52z% 105z 7z°
2Oq rO\ } }
(8.19)

The system of differential equations (8.15) together with the boundary
conditions (8.16-8.19) constitutes the eigenvalued boundary valué problem
determining the effects of differential rotation and tidal distortions on the
eigenfrequencies of nonradial modes of oscillations of polytropic models.

In the absence of any distortion (i.e.z=1, 5 =b,=0), the system of
differential equations (8.15) along with the boundary conditions (8.16-8.19)
reduce to the usual eigenvalued boundary value problem determining the
eigenfrequencies of nonradial modes of oscillations of undistorted polytropic

models. By setting z=1, 5} =2n,b] =0 we can also study the effects of solid

body rotation on the eigenfrequencies of nonradial modes oscillations of the

polytropic models.
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8.6 NUMERICAL EVALUATION AND ANALYSIS OF RESULTS

In order to determine eigenfrequencies of pseudo-radial modes of
oscillations of rotationally and tidally distorted composite models, computations
were started for some trial value ofo?. For this chosen value of o’ starting
from points near the centre (x=0.02), outward integration was performed right
up to the interface for the pulsation equation (8.13) using the difference method
earlier used by Aggarwal (2) (The details of this method are given in Aggarwal
(2)) with a step length h=0.02. Agéin using the same value ofc’, inward
integration of this equation was performed up to the interface starting from
points near the surface (x=0.98) using a step length 0.2 and the same
difference vformula. In outward in inward integrations we need the value of

z, and z,, respectively. These values were earlier obtained in chapter IV. The
value of (/(d(/dx) obtained from the core integrations and the envelope

integrations were matched at the interface. Trials with different values of o
were continued till the value of {/(d{/dx) at the interface from the core and
envelope integrations agreed to the desired accuracy (the difference in the
values of this ratio obtained from twd solutions was required not to exceed
0.0001).

Computations have been performed to determine the eigenfrequencies
of pseudo-radial modes of oscillations of the fundamental, the first and the

second mode for each distorted composite models, for different sets of the

4

values of the input parametersn,q,y .. andy =§. The results are presented in

Table 8.2 (a, b, ¢). Results presented in the first row of this Table for

n=0.1, g=0depict the eigenvalues for the fundamental, the first and the second
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mode of radial oscillations of the corresponding rotationally distorted model. We
also present in this table results for the eigenfrequencies of the fundamental,
the first and the second mode of pseudo-radial oscillations of the primary
components of  certain synchronously rotating binary systems obtained by

settingn=

(g+1)
=

The eigenvalue problem of section 8.4 is of Sturm-Liouville type. For
determining the eigenfrequencies of small adiabatic pseudo-radial modes of
oscillations of differentially rotating and tidally distorted polytropic models,
equation (8.14) is to be integrated numerically subject to the boundary
conditions which require 7 being finite at points corresponding to the centre
and the free surface of the model. The numerical integration can be performed

using the approach suggested in Section 8.1. The values of z, 8, and

)
y Y needed at various points are to be taken from the numerical solution of
X

the equation (5.38a) obtained in Chapter V.

In order to determine the eigenfrequencies of pseudo-radial modes of
oscillations of differentially rotating and tidally distorted polytropic models,
computations are started with some trial value ofw’. For this chosen value of
o’ at the points very near the centre series solution is first developed and this
solution is then used to carry outward integration of the pulsation equation
(8.14) using fourth order Runge-Kutta method. Again using the same value
ofw’, series solution is first develope}i at points near the surface and this
solution is then used to carry inward integration of the equation (8.14). Again,
we need the value of z at each point in the outward in the inward integrations

these values were earlier obtained in chapter V. The value of
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¢ /(%—C—) obtained from the outward integration and the inward integration of
X

(8.14), is matched at some preselected poiit in the interior of the model. To
start integrations from points near the centre and the surface series solutions
were developed at x=0.01 and x=0.99. Outward and inward integrations were
performed using Runge-Kutta method of order four using a step length x=0.01.

Trials with different values of w? were continued till the absolute difference in

the value ¢/( Z—g) at the preselected point in the interior of the model from the
X

outward and inward integrations was found to be less than 0.0005.

Computations have been performed to compute the fundamental and
the first mode of pseudo-radial oscillations of differentially rotating and tidally
distorted polytropic models of indices 1.5, 3.0 and 4.0 for those values of
distortion parameters z, b, ,b,,q for which equilibrium structures were earlier
obtained in Chapter V. The results are presented in Table 8.3

The eigenfrequencies of the nonradial modes of oscillations of some of
these differentially rotating and tidally distorted polytropic models have also
been computed using Chebyshev polynomial expansion technique earlier Qsed
by Mohan, Saxena and Agarwal (92). The essential details of the method are
given in Saxena (124).The boundary condition (8.18) was used as the

discriminant condition and & =1 at the centre was used as the normalization

do ’
condition. The values ofz, HW and y ¥ needed at various points in the interior
X,

of the model were obtained from the solutions of the structure equation (5.38 a)
of these models earlier obtained in Chapter V. For polytropic indices 1.5 and

3.0 we ordinarily used 10 and 15 collocation points, respectively. However, for

205



determining the eigenfrequencies of certain higher modes of nonradial
oscillations, the number of collocation points was increased to achieve the
desired accuracy of 0.0001 for the polytropic models of indices 1.5 and 3.0 in
getting the discriminant condition satisfied. The number of collocation points
used in determining a specific mode of nonradial oscillation of a distorted
polytropic model was same as used in determining this mode for the
corresponding undistorted model. The numerical results are presented in
Tables 8.4 (a), to (b) for polytropic indices 1.5 and 3.0, respectively. The
number of nodes appearing in the eigenfunctions ¢ and # are also shown in

parenthesis in these tables.

Table 8.1 shows the values of 7, for certain differentially rotating and

tidally distorted model with polytropic indices 1.5, 3.0 and 4.0 The results in
tables 8.2 (a) -(c) present the eigenfrequencies of the fundamental, the first

and the second pseudo radial modes of oscillations of rotationally and/ or

tidally distorted composite models for y:% with interfaces 5= 0.3, 0.5, and 0.7.

The results shown in parenthesis in these tables are the corresponding results
earlier obtained by Aggarwai (2). A comparison of the results for b= 0.3 with t‘he
corresponding results shown in parenthesis shows that values obtained by us
are generally smaller in comparison to the respective values results shown in
parenthesis. However, for the fundamental modes of models

(w=5.0,n=0.0,4=0.2, v =10.0, n=0.1,4=0, =100, n=0, g=.1,2, n=.1,4=.5)
and first mode of models (=2, n=0.2,4=0.0) the values obtained by us are

larger than earlier obtained values. The amount of increase or decrease in the
value varies from model to model. For distorted composite models with

interfaces b= 0.5, it is noticed that eigenvalues for the fundamental mode

1
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increase. The first mode decrease and for second mode again increases in
comparison to the results shown in brackets. For the rotationally or tidally
distorted composite model with interfaces b=0.7, our results for various models
are larger compared to the earlier obtained value in some cases and smaller in
other cases. No specific trend of increase or decrease in the values of
eigenfrequencies of the fundamental, the first and the second modes of
oscillations of such type of composite models has been noticed.

The results presented in table 8.3 show that eigenfrequencies for the
fundamental and the first mode of pseudo-radiai 6scillations of differentially
rotating and tidally distorted polytropic médels with indices 1.5, 3.0 and 4.0.

The value w? and @} shown in parenthesis are corresponding values earlier

obtained by Lal (69). A comparison of our results with the corresponding resuits
presented in parenthesis for maodels 1 and 2 shows that values obtained by us
are generally smaller in combarison to earlier obtained values while these are
larger for model 3 for all the polytropic models with indices 1.5, 3.0 and 4.0.
The model 4 represents differentially rotaﬁng and tidally distorted model which
is rotationally stable. However, Model 5 and 6 represent differentially rotating
and tidally distorted models which are rotationally unstable. Our results show
that eigenfrequencies for the fundame’rit,a‘lA and the first modes for model 4 are
larger for models 5 and 6 these are sma.ller in comparison to tidally distorted
models.

The results presented in table 8.4 (a) show the eigenfrequencies of
nonradial modes of oscillations of various types of differentially rotatiné and
tidally distorted polytroipic hwode!s with inaex 1.5. On comparing our results for
f, p1, p2, p3 modes with the corresponding results shown in parenthesis earlier

obtained by Lal (89), it is noticed that values of eigenfrequencies obtained by
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us are smaller. These are also smaller for differentially rotating and tidally
distorted polytropic modeis in comparison to tidally distorted polytropic models.
The eigenfrequencies of different modes of non radial oscillations of
differentially rotating and tidally distorted polytropic models of stars with index
3.0 are présented in table 8.4(b). On comparing the results for different modes
of differentially rotating and tidally distorted polytropic models with the.
corresponding values depicted in parenthesis it is observed that the values
obtained by us are smaller in comparison to the values earlier obtained by Lal

(69) and shown in parenthesis. While eigenfrequencies of g,,g,,g, modes of

differentially rotating and tidally diétorted polytropic models 4 and 5 are smaller
in comparison to corresponding eigenvalués of tidally distorted polytropic
model eigenfrequencies f, P, P,, P, modes of these models increase. It is also
noticed thét the eigenfrequencies of g,,g,,g, modes of differentially rotating
and tidally distorted models increase and those of f,P,, P,,P, modes decrease
in'comparison to these of tidally distorted polytropic models. However amount
of increase or decrease in these eigenvalues varies from model to model. No

specific trend in variation of the values of eigenfrequencies of these modes of

differentially rotating and tidally distorted polytropic models has been noticed.
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Table 8.2(a) : Eigenfrequencies w2(=

2

2nGp,

J of the fundamental, the first

and the second pseudo-radial modes of oscillations of
tidally distorted models of the
composite series for y =5/3

rotationally and/or

b=0.3
Y n q @} o] )
2 0.1 0.0 - - 2.5782
(0.2259) (1.3979) | (3.4179)
2 0.2 0.0 0.16230 1.88131 1.62278
(0.2232) (1.3965) | (3.4833)
2 0.0 0.1 0.192492 0.6151851 |2.38009
(0.2301) (1.4076) | (3.3831)
2 0.0 0.2 0.180213 - 2.06986
(0.2299) (1.4065) (3.3839)
2 0.1 0.1 o= 0.187757 1.31467
(0.2252) (1.3971) | (3.4194)
2 0.1 0.5 - - 2.31878
(0.1992) (1.2950) | (3.4245)
5 0.1 0.0 0.185471 0.736950 2.20825
(0.2298) (1.4068) (3.3832)
5 0.2 0.0 - 0.791353 -
(0.2296) (1.4058) | (3.3842)
5 0.0 0.1 0.220214 0.631686 1.7848
(0.2301) (1.4078) | (3.3823)
5 0.0 0.2 232320 0.651950 1.87023
(0.2301) (1.4076) | (3.3823)
5 0.1 0.1 0.181136 0.594009 1.9085
(0.2298) (1.4078) | (3.3847)
5 0.1 0.5 - 0.778640 2.31878
(0.22) (1.4064) (3.3835)
10 0.1 0.0 0.238511 0.739072 1.72344
(0.2301) (14076) | (3.3824)
10 0.2 0.0 0.22852 0.655952 1.48745
(0.2300) (1.4075) | (3.3825)
10 0.0 0.1 0.240369 0.6615078 | 1.36303
(0.2301) (1.4078) | (3.3823)
10 0.0 0.2 0.249330 0.662567 1.39183
(0.2301) (1.4078) | (3.3823)
10 0.1 0.1 0.229939 0.816056 1.9959
(0.2301) (1.4076) (3.3824)
10 0.1 0.5 0.230548 0.762350 2.43559
(0.2297) (1.4064) | (3.3835)
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Table 8.2(b) : Eigenfrequencies a)z(= G ] of the fundamental, the first
. “TUp,

and the second pseudo-radial modes of oscillations of

rotationally and/or tidally distorted models of the composite

series for y =5/3

b=0.5
1 n q @; N @3
2 0.1 0.0 - 26679 -
(0.2259) (2.7001) (3.4119)
2 0.2 0.0 . - -
(0.2232) (2.6976) (3.4373)
2 0.0 0.1 0.262870 2.48996 9.4085
(0.2301) (1.4076) (3.5831)
2 0.0 0.2 - 2.4896 -
(0.2299) | (1.4065) (3.3839)
2 0.1 0.1 - 0.815780 | 2.6505
(0.2252) (1.3971) (3.4194)
2 0.1 0.5 - 0.815780 |-
(0.1992) (1.2950) (3.4245)
5 0.1 0.0 0.31713 1.3039 -
(0.2298) (1.4068) (3.3832)
5 0.2 0.0 0.313886 1.3894 4.09301
(0.2296) (1.4058) (3.3842)
5 0.0 0.1 0.306709 1.24508 3.313195
(0.2301) (1.4078) (3.3823)
5 0.0 0.2 0.311214 1.25157 3.8991
(0.2301) (1.4078) (3.3824)
5 0.1 0.1 0.31339 1.31382 -
(0.2298) (1.4067) (3.3833)
5 0.1 0.5 0.313395 1.34296 [ 3.1726
(0.2297) (1.4064) (3.3835)
10 0.1 0.0 0.324357 0685063 |- -
~ (0.2301) (1.4076) (3.3824)
10 0.2 0.0 0.363307 2.26040 6.3373
(0.2300) (1.4075) (3.3825)
10 0.0 0.1 0.393512 0.75337 6.4035
(0.2301) (1.4078) (3.3823)
10 0.0 0.2 0.415197 0.793491 |[6.7683
(0.2301) (1.4078) (3.3823)
10 0.1 0.1 0.323089 0.65563 6.6146
(0.2301) (1.4076) (3.3824)
10 0.1 0.5 0.505068 0.605637 |4.91818
1(0.2297) (1.4076) (3.3835)
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Table 8.2(c) : Eigenfrequencies w?|=—2
able 8.2(c) : Eig q m( 225,

and the second pseudo-radial modes of oscillations of
rotationally and/or tidally distorted models of the composite
series for y =5/3

] of the fundamental, the first

b=0.7
¥ n q w! o] o}
2 0.1 0.0 0.35437 0.930719 11.5460
(0.4125)  |(3.3845) | (8.8415)
2 0.2 0.0 0.4201 491374 12.5913
(0.4106) | (3.3729) | (9.4412)
2 0.0 0.1 0.23240 - 3.7147
(0.4198) (3.3920) (8.6392)
2 0.0 0.2 0.22726 1.02482 10.339
(0.4192) (3.3891) | (8.6397)
2 0.1 0.1 0.3114 0.963990 11.6018
(0.4112) (3.3864) | (8.8936)
2 0.1 0.5 - - -
0.3751) (3.3850) | (9.2865)
5 0.1 0.0 0.292576 3.5343 9.7739
(0.4194) (3.3911) | (8.6374)
5 0.2 0.0 0.288906 8.9778 43692
(0.4189) (3.3897) (8.6454)
) 0.0 0.1 0.267831 1.06443 -
| (0.4199)  |(3.3926) | (8.6301)
5 0.0 0.2 0.258978 - 2.85601
(0.4199)  |(3.3926) | (8.6301)
5 0.1 0.1 0.266041 0.826112 3.5444
04193)  |(3.3910) |(8.6379)
5 0.1 0.5 - 0.669890 -
(0.4192) (3.3904) | (8.6402)
10 0.1 0.0 0.515265 1.14959 9.132115
(0.4198) (3.3924) (8.6309)
10 0.2 0.0 0.491009 3.8537 -
(0.4197) (3.3922) (8.6310)
10 0.0 0.1 - 0.857630 -
(0.4199) (3.3926) | (8.6301)
10 0.0 0.2 0.612730 0.957635 1.27005
(04199) | (3.3026) | (8.6301)
10 0.1 01 0.65800 2.6499 1.15065
(0.4198)  |(6.3924) | (8.6310)
10 0.1 0.5 1.30089 1.30089 0.69424
(0.4198) (3.3024) | (8.6311)
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Table 8.3 : Eigenfrequencies o’ =( )for the fundamental (»}) and

0
the first (o;) the pseudo-radial modes of oscillations of
differentially rotating and tidally distorted polytropic models

Model No. N=1.5 ‘ N=3.0 N=4.0

(@) (@)) (@) (@}) @3) (@)

1. 2.64622 12.60035 9.24115 16.98440 15.00133 24.73604
(2.69269) (12.51098) | (9.26008) (16.95728)

2 2.63913 12.178095 | 9.03280 16.45697 | 14.77951 | 24.33086
(2.66545) | (12.32704) | (9.17380) | (16.72728)

3 270309 | 12.54682 | 9.240501 | 16.98125 | 14.99890 | 24.73044
(2.69226) | (12.50688) | (9.25933) | (16.94656)

ry 2.63136 12.12323 | 9.09602 1661996 | 14.74029 | 24.24683

5. 2.68289 12.42983 | 9.19938 16.88695 | 14.93174 | 2461716

6. 2.69350 12.49290 0.22428 16.94273 14.97307 2468189
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Table 8.4 (a): Eigenfrequencies o’ =(

3

3 32
r"STDG—) of nonradial modes of
0

oscillations of various types of differential rotating and
tidally distorted polytropic models of stars with polytropic

index 1.5.
Model | 9 [+ P} g1 f P4 P; P,
No.
1. - - - 2.01669 10.26798 | 23.46957 | 41.02976
2.4558 (10.2812) | (23.4920) | (41.2378)
(0-0) (1-1) (2-2) (3-3)
2, - - - 2120807 | 9.64289 21.08376 | 36.96368
(2.3856) (10.1135) | (23.1136) | (40.5845)
3, - - - 2.11610 10.26426 | 23.46076 | 41.00848
: (24198) | (10.2779) | (23.4854) | (41.2321)
4) - - - 1.99002 9.51642 21.780768 | 38.3473
5, . - - 2.04887 9.86694 22.5644 39.6534
6. - ] - 2.0773 10.00394 | 2295472 | 40.3310
P‘3~D30'2 .
Table 8.4(b): Eigenfrequencies o’ = (L-m—) of different modes of -
]

nonradial oscillations of differential rotating and tidally

distorted polytropic models of N=3.0

Model |9; g2 g1 f P4 P, P3

No.

1. 1.8497 2.8296 4.8399 8.0070 14.2672 24,6246 37.98749
(1.8700) | (2.8500) | (4.8932) | (8.2487) | (15.2517) | (26.6736) | (41.3569)
(3-3) {(2-2) (1-1) (0-0) (1-1) (2-2) (3-3)

2, 1.8296 2.8370 4.7898 7.9408 14.4533 25.1679 38.91084
(1.8636) | (2.8400) | (4.8729) | (8.1748) | (15.6271) | (26.2351) | (40.6576)

3. 1.8475 2.8383 4.8538 8.1910 15.2319 26.6520 41.3223
(1.8700) | (2.8600) | (4.8936) (8.2480) | (15.2533) | (26.6655) | (41.3435)

4, 1.8400 2.7999 4.8130 7.9724 14.4803 25.2145 39.0588

5. 1.8430 2.8199 4.8227 8.0509 14.7805 | 25.7928 39.9317

6. 1.8565 2.8499 4.8378 8.1158 149817 | 26.1723 40.5416
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CHAPTER -1IX

CONCLUDING OBSERVATIONS



In the present thesis we have primarily investigated the effectiveness
of the use of the concepts of Roche equipotentials in determining the equilibrium
structure and periods of oscillations of rotationally and tidally distorted gas spheres
which have relevance in problems of stellar structure. In this chapter we critically
review in brief the work done in the earlier chapters and outline the scope for

further work in this direction.

9.1 VALIDITY OF SERIES SOLUTION USED IN A ROCHE COORDINATE

In chapter I we have tried to check numerically the validity of series
expansion used by Kopal (65) in oné of the Roche coordinates which has been
used by him and subsequently by Mohan et al. (70, 85, 89, 92) for determining the
equilibrium structures of rotationally an.d tidally distorted stars. Since the analytic
expressions are not possible in closed form for all the three Roche Coordinates,
series expansions were used in cases where analytic expressions in closed form
are not possible. However the convergence of these series expansion could not be
analytically established.

Our numerical results presented in Chapter Il show that the series expansion
(2.7) shows a converging trend as the value of percentage difference between the
value computed from (2.2) decreases (except on account of truncation errors in
certain cases) as more and more terms are included in its expansion. Even this
small percentage difference is expected to reduce further if higher terms are
included in the series expansions 2.7 ( as has been done by Mohan et al. and us

also in certain cases).
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9.2 EFFECT OF INCLUDING MASS VARIATION INSIDE THE STARS ON ITS
EQUIPOTENTIAL SURFACES IN DETERMINING THE EQUILIBRIUM
STRUCTURE OF ROTATIONALLY AND TIDALLY DISTORTED GAS
SPHERES

In chapter Ill we modified approach of Mohan et al. to include effects of
mass variation inside the star on its Roche equipotentials to determine more
accurately the equilibrium structure of rotationally and tidally distorted gas
spheres. Subsequently, we used this approach in chapters IV to VIl to determine
the equilibrium structures of rotationally and tidally distorted gas spheres of
different varieties such as Prasad model, composite models, polytropic models
and white dwarf models. -Our results have shown that this improvement in analysis
modifies to different extents the value of Vérious structure parameters in different
cases. However, no specific trend has béen observed which could summarize the
effects in general except that as expected, the changes are more in case of
gaseous spheres which are less centrally condensed compared to gaseous
spherés which are more centrally condensed and in whose case Roche
approximation is more justified. |
9.3 EFFECT OF INCLUDING MASS VARIATON INSIDE THE GAS SPHERE

ON ITS EQUIPOTENTIAL SURFACES ON THE PERIODS OF

OSCILLATIONS

In chapter VIII we have dévéloped a method for determining
eigenfrequencies of radial and nonradial modes of oscillations of rotationally and
tidally distorted gas spheres when effect of mass variation inside the star on its
equipotential surfaces is included in the analysis. We have also applied this
methodology in this chapter to deterr}nirj.l.‘evthe eigenfrequencies of radial modes of

composite models with interfaces b=0.3, 0.5 and 0.7 and radial and nonradial
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modes of oscillations of polytropic models with polytropic indices 1.5 and 3.0. Out
results show that even though the values of eigenfrequencies get modified and are
now expected to be more accurate, no specific trend is observed in these

changes.

9.4 SCOPE FOR FUTURE WORK

In the present thesis our effort has been to develop a methodology with
which equilibrium structures and periods of oscillations of rotationally and tidally
distorted gas spheres could be determined more accurately. However our results
show that with these modifications the analysis becomes too unwieldy. ’Even
though efforts have been made to develop in series form analytic expressions
where closed from solutions have not been possible, even these series
expansions do not provide any analytic expression which could provide some
result of physical significance. It, may, therefore, be of interest to see if instead of

developing detailed series expansions of distortion parameters u,v,w, f,and f,

etc. required in determining the equilibrium structures and periods of oscillations of
rotationally and tidally distorted stars as discussed in sections 2.4 of Chapter ||
and section 8.1 and section 8.2 of chapter VIl direct numerical evaluations of
these distortion parameter be done numerically during computations is done. This
does not now seem to be a difficult proposition in view of availability of fast
computing machines.

While investigating the problems of differentially rotating stars in binary
system in chapter V, the companion Star has been assumed to be a point mass

star whose mass is much smaller than the mass of the primary star. It is also
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assumed that the axis of rotation is perpendicular to the line joining the mass
centers of the two stars. It may be of interest to analyze the problems in which the
axis of rotation is not perpendicular but inclined at some aﬁgle to the line joining
the mass centres and companion star is not assumed to be a point mass.

From the astrophysical view point, it will be worth while to incorporate the
present methodology into certain available computer codes for stellar structure
and stellar pulsations and apply it to détermine the equilibrium models and trace
the evolutionary tracks of certain realistic models of differentially rotating stars and

stars in binary system.
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