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ABSTRACT 

In the present thesis we have primarily addressed ourselves to certain 
shortcomings noticed in the work of Mohan, Saxena and Agarwal (Astrophys. 

Space Sci., Vol.163, p.23,1990 and Vo1.178, p.89, 1991) which relates to the 
problems of computing the equilibrium structure and periods of oscillations of 
rotating stars and star in binary system. In this work equipotentials surfaces of 
the rotationally and tidally distorted primary component of a binary star are 

approximated by Roche equipotential surfaces which are obtained by assuming 
the whole mass of the star to be concentrated at its centre which acts as a point 

mass surrounded by an evanescent envelope in which density varies as the 
square of distance from the centre. Since even in this approximation analytic 

solutions in closed form are not possible, following Kopal (1972) series 
expansions have been to represent the potential on an equipotentials surface. 
Convergence of this series expansion has not been possible. We have tried to 
analyze the effects of incorporating the effects of including mass variation inside 
a star on the computation of its equipotential surfaces while computing the 

equilibrium structures as well as periods of oscillations of rotating stars and stars 
in binary system. The problem of the validity of series expansions for certain 

parameters has also been considered. 

The thesis consists of nine chapters. Chapter one we briefly discuss the 
astrophysical significance of the problems of determining the equilibrium 

structures, and the periods of oscillations of rotationally as well as tidally 
distorted stellar models. A brief survey of the literature available on the subject 

and summary of the work presented in the succeeding chapters of the thesis 

also appears in this chapter. 

In chapter II we first present the concept of Roche equipotentials and 
Roche coordinates as introduced by Kopal (Astron. And Astrophys., Vol. 9, 
1972) and how it has been used by Mohan and Singh (Astrophys Space Sci., 



Vol. 85, 1982) in Kippenhahn and Thomas technique to determine the 

equilibrium structures of rotationally and tidally distorted stars. The validity of the 

series expansions used in their work for certain Roche coordinates has been 

numerically checked. Our results show that these series expansions are 

reasonably valid under the assumptions under which these series are 

recommended to be used. 

In chapter III we consider the problem of determining the equilibrium 

structures of rotationally and/or tidally distorted stars following Mohan, Saxena 

and Agarwal(Astrophys Space Sci., Vol. 163, p.23,1990) approach. This 

approach is modified by as modified by us to take into account the effect of mass 

variation inside the star on its equipotential surfaces inside the star. 

Mathematical expressions determining the equipotential surfaces, volume, 

surface area, etc are first derived and then used to obtain the system of 

differential equations governing equilibrium structure of a rotationally and tidally 

distorted star. This modified approach has then been used to numerically 

compute the equilibrium structures of rotationally and tidally distorted polytropic 

models. The results thus obtained have been compared with the results earlier 

computed by Mohan and Saxena (Astrophys Space Sci., Vol. 95, p. 369, 1983) 

for polytropic models of stars. 

The methodology developed in chapter Ill is next used in chapter IV to 

determine the equilibrium structure of rotationally and/or tidally distorted Prasad 

model in which density p inside the star varies according to the law 

p= pc  (1 — x2 ), pc  being density at the center and x a nondimensional measure of 

the distance of a fluid element from its center. This methodology has also been 

used to compute the equilibrium structures of a series of rotationally and/or 

tidally distorted composite models of the stars which have cores in which density 

varies as in Prasad model according to the law p= pc (1 — x2 ), and which are 

surrounded by envelopes in which density varies inversely as the square of the 

distance from the center as in Roche model. These composite models have 
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Prasad model at one extreme and Roche model at the other extreme and 

reasonably represent the effect of density variations inside the star on its 

structure. Analytical expressions for the density and the pressure at various 

points in the core and the envelope of these composite models have been 

obtained. The equilibrium structures and other physical parameters of the 

rotationally and tidally distorted composite models of stars have been computed 

for different models of this series by assuming the interface between the core 

and the envelope at the distance 0.3, 0.5, 0.7 and 0.9 of the total radius from the 

center. Results have been compared with earlier results obtained for such 

models in Roche approximation. Certain conclusions based on this study have 

also been drawn. 

The problem of determining the equilibrium structures of certain 

differentially rotating and tidally distorted models computed so as to incorporate 

the effects of mass variation in the potential on its structure, has next been 

considered in chapter V. Boundary value problem governing the equilibrium 

structures of stars rotating differentially according the law co = bl  + b2s2  , where 

co is the angular velocity of rotation s is the distance of fluid element from axis of 

rotation and bi  , b2  certain constants, is first formulated. It has next been used to 

numerically compute the equilibrium structures of differentially rotating Prasad 

model as well as certain polytropic models for polytropic indices 1.5, 3.0 and 4.0 

for different numerical values of rotation parameters b, b2 . The results thus 

obtained have been compared with the earlier results obtained for these models 

by Mohan, Lal and Singh(1992) 

In chapter VI we implement the approach developed in the earlier 

chapters to determine the equilibrium structures of various types of white dwarf 

models of the stars having solid body rotation as well as differential rotation 

assuming the law of rotation of the type co = b, + b2 s2  . The explicit expressions 

that can be used to compute the shape, volumes, surfaces areas as well as 
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other physical parameter of differentially rotating white dwarf models are also 
obtained. Computations have been performed to obtain the equilibrium 
structures of certain differentially rotating white dwarf models for the values of 

the parameter 1/002  as 0.01, 0.05, 0.2, 0.4, 0.6, and 0.8. The results thus 

obtained have been compared with the results earlier computed by Mohan, Lal 
and Singh (16) for white dwarf models of the stars. 

In chapter VII we consider the effect of mass variation in potential on the 
structures of rotationally and tidally distorted stars in which the angular velocity 
of rotation varies both along the axis of rotation, as well as in the direction 

perpendicular to the axis of rotation by assuming a general law of differential 

rotation of the type co' = bo  + bis2 b25,4  113z2  b 	b5z 2 s2 s being the distance 

of the fluid element from axis of rotation and z being the distance of the fluid 

element from the equatorial plane perpendicular to axis of rotation passing 
through the center of the star. By giving different values to constants 

bo ,b,,b2 ,b3 ,b4  and b5  various types of differential rotations can be generated in 

which the angular velocity varies both along as well as perpendicular to the axis 
of rotation. In this chapter we have determined in particular the equilibrium 
structures of differentially rotating polytropic models of stars assuming this 

generalized law of differential rotation for polytropic models of indices 1.5, 3.0 
and 4.0. Numerical results obtained in this chapter have also been compared 
with earlier results to draw some conclusions of practical significance. 

In chapter VIII we next analyze the effect of mass variation in potential on 

the eigenfrequencies of small adiabatic barotropic modes of oscillations of 
rotating stars and stars in binary systems. The eigenvalued boundary value 

problems which determine the eigenfrequencies of small adiabatic pseudo-radial 

and nonradial modes of oscillations of differentially rotating stellar models 

obeying a law of differential rotation of the type co' = b, + b2 s2  have been 

formulated taking into account the effects of mass variation inside the star on its 
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equipotentials surfaces. The method has been then used to determine the 
eigenfrequencies of various pesudo-radial and nonradial modes of oscillations of 
certain differentially rotating composite models as well as polytropic models of 
indices 1.5, 3.0 and 4.0. The eigenfrequencies of pseudo-radial modes of 
oscillations of certain rotationally and tidally distorted models have been also 
obtained. 

Conclusions based on the present study are finally drawn in the 
concluding chapters IX. The astrophysical significance of the present work as 
well as the limitations and scope of the present work are also briefly discussed in 
this concluding chapter. 
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CHAPTER I 

INTRODUCTION 



This chapter is introductory in nature. In section 1.1 we first explain in 

brief the astrophysical significance carrying out of the theoretical study of the 

problem of determining the effects of rotation and/or tidal distortions on the 

equilibrium structure and the periods of small adiabatic oscillations of gaseous 

spheres. A brief survey of the literature available on the subject is presented in 

section 1.2. A brief summary of the work presented in the succeeding chapters 

of the thesis is finally presented in section 1.3. 

1.1 ASTROPHYSICAL SIGNIFICANCE OF THE PROBLEM OF 
DETERMINING THE EFFECTS OF ROTATION AND TIDAL 
DISTORTIONS ON THE EQUILIBRIUM STRUCTURE AND THE 
PERIODS OF OSCILLATIONS OF GAS SPHERES 

The theoretical model of a star is essentially a self gravitating gaseous 

sphere in hydrostatic and thermal equilibrium. Theoretical studies of the 

problems of the equilibrium structure of a gaseous sphere are often carried out 

to understand the nature of the internal structures responsible for various 

observed phenomena of the stars. Whereas some of the stars are observed 

as single stars others are observed in groups of two or more stars. 

Observations also show that some of the stars are rotating about their axes of 

rotation. This rotation may be a solid body rotation or a differential rotation. 

Many of the stars in binary and multiple systems are also known to be rotating 

about their axes as well as revolving around each other. Thus if we assume the 

equilibrium model of a single non rotating star as a gaseous sphere, the 

equilibrium model of a rotating star will be rotationally distorted gaseous 

sphere. Similarly, the equilibrium model of a star appearing in a binary system 

or a multiple system will be a tidally distorted gaseous sphere if it is not rotating 
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and a rotationally and tidally distorted gaseous sphere if the star is rotating as 

well. 

The brightness of certain observed stars varies with time. These 

stars are called variable stars. In some of these variable stars the variations in 

luminosity are periodic. 	In the case of such regular variable stars it is 

reasonable to assume that these stars are pulsating gaseous spheres in which 

the variation in luminosity are being caused by the periodic contraction and 

expansion of the gaseous mass. The regular variable stars gained importance 

in astrophysics when it was discovered that there exists a definite relation 

between the periods of pulsation and the luminosities of such stars. This 

relationship has often been used to estimate the distance of these stars. This 

important use of the regular variable stars motivated theoretical astrophysicists 

to investigate the problems of small oscillations of the equilibrium models of the 

variable stars so as to have a clear picture of the mechanism which could 

possibly be sustaining pulsations in these stars. Such investigations are also 

expected to help us in understanding the nature of the internal structure of the 

stars. In most of these theoretical studies, the variable star is represented by a 

gaseous sphere undergoing radial and nonradial oscillations. 

Observations, however, show that some of the variable stars are 

rotating stars. The theoretical models of such rotating star can be regarded as 

rotationally distorted gaseous spheres performing small oscillations about their 

equilibrium configurations. Similarly some of the variable stars have also been 

observed in binary and multiple stellar systems. The theoretical .models of 

such stars can be regarded as rotationally and tidally distorted gaseous 

spheres performing small oscillations about their equilibrium configurations. 
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It is thus evident that theoretical investigations determining the effects of 

rotation and tidal forces on the equilibrium structure and the periods of small 

radial and nonradial modes of oscillations of gaseous spheres may be of some 

help in better understanding the observed phenomena of the rotating stars and 

stars in binary and multiple systems. Such studies are also expected to help in 

a better understanding of the problems of stellar stability as well as the 

problems of stellar variability of rotating stars and stars in binary or multiple 

systems. 

In the present thesis an attempt has, been made to investigate certain 

aspects of the problems of equilibrium structures and small oscillations of 

rotationally and tidally distorted gaseous spheres. 

1.2 BRIEF REVIEW OF THE LITERATURE 

Most of the theoretical studies about the equilibrium structures and 

oscillations of the stars have been carried out in literature by assuming the star 

as an undistorted gaseous sphere. Extensive literature is now available on 

this subject (See for instance Abhyankar (1), Bhatia (9), Bhatnagar (10), 

Bohm-Vitense (13), Clement (23), Chandrasekhar (19), Cox (27), Cox and 

Giuli (26), Dintransan and Rieutord (31), Deupree (30), Eddington (35), 

Hurley et al. (53), Kippenhahan and Thomas (62), Kippenhahn and Weigert 

(63), Kennedy and Bludman (61), Kopal (65), Lal (69), Ledoux and Walraven 

(72), Menzeil et al. (80), (131) Mohan and Singh (89), Mohan et al. (85, 91,92), 

Prasad (108), Rosseland (116), Schwarzschild (126), Singh Woodard (159), 

Sharma (130), Sperzum (141), Trehan (153). 
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There are some stars whose brightness varies with time. These are 

called variable stars. Whereas variation in brightness of some of the stars is 

regular and periodic in others it is not so. An important class of regular variable 

stars is Cepheid variables. The regular variable stars, gained importance in 

astrophysics in the year 1912, when Miss Leavitt discovered that there exists a 

definite relation between the periods of pulsation and the luminosities of such 

stars and the relationship could be utilized to determine the distance of these 

stars. In most of the theoretical studies of such stars, the variable star is 

represented by a gaseous sphere, both in hydrostatic and thermal equilibrium, 

undergoing small periodic oscillations. These oscillations can be radial as well 

as nonradial. 

If the regular variable star is a nonrotating star which exists in isolation 

then it may be reasonable to represent it by a gaseous sphere performing 

radial or nonradial oscillations. However, if the star is a rotating or is a member 

of a binary or multiple systems then not only its equilibrium structure but also 

its modes of oscillations will also get affected by the rotational and or tidal 

forces. 	Mathematical models of such stars will obviously have to be 

rotationally and or tidally distorted gaseous spheres performing pseudo-radial 

or nonradial or some other types of modes of oscillations. As a result 

mathematical study of the problem of equilibrium structure and periods of 

small adiabatic oscillations of gaseous spheres gained importance in 

astrophysics. Ritter was perhaps the first to suggest in the year 1879 that the 

periodic variations in the luminosity of a variable star may be due to radial 

oscillations. Extensive studies have been made to the problems of small 

adiabatic radial modes of oscillations of gaseous spheres. (Buchler, Kollath 
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and Marom (17), Cox (27), Das et. al (29), Goupil et al.(46), Gurm (47), 

Guzik and Cox (48), Ledoux and Walraven (72), Ledoux and Walraven 

Rosseland (116), Prasad (108), Prasad and Mohan (107), Saio and Jeffery 

(122), Tassoul et. al (147)) studied the effect of moderate rotation on stellar 

pulsations 

In the case of regular variables, the high symmetry of their observed 

properties favors the hypothesis of purely radial oscillations. Even though now 

people generally seem to believe that Beta Cephei instability problem has been 

resolved with the advent of OPAL opacities, purely radial oscillations may not 

be able to explain many other phenomena observed in the case of certain 

variables stars. Ledoux and Walraven (72) pointed out that the dynamical 

instability leading to explosions in the stars might be easier to reach for some 

modes of nonradial oscillations. Chandrasekhar and Lebovitz (19) were of the 

view that it might be possible to explain variability of Beta Canis major types 

stars on the basis of resonance between the radial and nonradial modes of 

oscillations. Dalsgaard (28) suggested that certain observed phenomena in the 

outer layer of sun could be explained on the basis of certain modes of 

oscillations of the sun. Smith (137) studied zero-age main sequence B star and 

found that this star is pulsating nonradially. 

Theoretical studies of the problem of nonradial oscillations commenced 

with Kelvin's investigation of the oscillatory modes of an incompressible gas 

sphere. But the proper formulation of the problem was given by Perkeris (105) 

who derived the forth order linear differential equation governing the adiabatic 

nonradial modes of oscillations of a compressible self- gravitating gaseous 

sphere. Since then the theoretical studies of the problem of nonradial 
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oscillations of spherical models have been carried out by many investigators. 

Several authors such as Yojisoki (160), Mc Dermott et al. (79), Chandrasekhar 

and Ferrari (20) have made significant contributions to the studies of the 

problems of nonradial pulsations of stars. Cox and Cahn (25) calculated 

representative radial and nonradial pulsation modes of five Wolf- Rayet star 

models. Chandrasekhar and Ferrari (20) have proposed a complete theory of 

the nonradial oscillations of a static spherical symmetric distribution of matter 

described in terms of energy density and isotropic pressure on the premise that 

the oscillations are excited by incident gravitational waves. Bradely and Winget 

(16) computed the period and Kinetic distributions for nonradial g-modes of 

spherical harmonic indices from 1 to 3 in the adiabatic approximation. 

Rossenwald and Rabaey (117) have given an application of the continuous 

orthonormalization and adjoint methods to the computation of star 

eigenfrequencies and eigenfrequency sensitivities. This method integrates an 

eight-order nonlinear system of ordinary differential equations which define the 

linear adiabatic nonradial oscillatory modes of the sun. Telting and Schrijvers 

(151) used a model of a nonradially, adiabatically pulsating rotating star to 

generate time series of absorption line profiles. Clement (1998) also discussed 

normal modes of oscillations for rotating stars using a new numerical method 

for computing nonradial eigenfunctions. This technique for calculating the 

normal modes of spherical stellar models is generalized to two dimensions. 

The theoretical investigations of problems of determining equilibrium 

structures and stability of rotating, self gravitating objects, possibly begun with 

the work of Newton. He was the first to realize the importance of the law of 

gravitation for explaining the figures of celestial bodies. Later on Maclaurin, 
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Clairaut, Laplace, Legendre, Jacobi, Poincare etc. contributed ideas, 

necessary for the development of the general theory of rotating bodies. 

Maclaurin, Jacobi, Kelvin and Jeans investigated in detail the problem of 

structure and stability of rotating liquid masses assuming uniform rotation. 

Saxena (124) studied the structure of rotationally and tidally distorted polytropic 

models of stars. 

In the year 1923, Edward Arthur Milne developed a technique for 

constructing the first detailed model for a slowly rotating star in pure radiative 

equilibrium. Later on in the year 1933, this technique of Milne was generalized 

and applied to slightly distorted polytrope by Chandrasekhar. Computation of 

the equilibrium structures of many of the rotating stellar models that do not 

greatly deviate from spherical symmetry often rely upon these two studies. 

The effect of uniform rotation on slow rotating Cowling star obeying 

simple Kramer's opacity has been studied by Sweet and Roy (145), Sackmann 

and Anand (121), Chandrasekhar and Lebovitz (19), Roberts (113,114), Smith 

(136), Linnell (74), kopal (65), Mohan and Saxena (85), Geroyannis and Valvi 

(41), Roxburgh et al. (118) have also investigated the problems of equilibrium 

structures of rotating stars.. Much of the work on the effect of rotation on stellar 

interiors is summarized in the review article of Strittmatter (143). Later 

developments may be found in Tassoul (150), Durney (34), Kawaler (60), Soo 

and Kak (139). Mohan, Saxena and Aggarwal (92), Meynet and Meader (81) 

studied the effects of rotation on the equilibrium structure and evolution of 

massive stars. Whereas Antona et. al.(5) , investigated the theoretical models 

of low mass premain sequence rotating stars and Zeng (161) has developed 

more powerful evolutionary models for rotating stars. 
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The influence of uniform rotation on the global structure of white dwarf 

models has been considered by Anand (4), Bandyopadhyay (7), 

Chandrasekhar (21), Krishnan et al. (68), Suda (144) and. The most detailed 

models of uniformely rotating white dwarf are due to Anand (4), Anand et al. 

(3), Monaghan (84), Roxburgh (119). Some of the authors such as Roxburgh et 

al. (118), Ostriker and Tassoul (102), Shapiro and Teukolsky (129) have 

considered the stability analysis of uniformly rotating white dwarf stars. Ostriker 

and Bodenheimer (99), Smart and Monaghan (135), and Blinnikov (11) have 

analysed the models of zero-temperature white dwarfs in non- uniform rotation. 

Hachisu et al. (50) studied the fate of merging double white dwarfs. Bouvier 

(14), Cox (27), Durney (34), Kawaler (60), Lal et al. (70), Nelemans and 

Yungelson (95), Rudiger (120), Soo and Kak (139), Tassoul (149), and 

Vandervoord and Welty(156) have also made significant contributions in this 

directions. 

Whereas many of the observed rotating stars may be having solid body 

rotation some of the stars are observed to be rotating differentially. In such 

type of stars different parts of the star are rotating about the axis of rotation 

with different angular velocities. Problems of differentially rotating stellar 

models have also been studied in literature. Stoeckly (142) obtained the 

numerical solution of the hydrostatic equilibrium equation for nonuniformly 

rotating stellar models having no meridional currents. With pressure density 

relation of the type P cc 1)312  , Peraiah (104) showed that synchronism between 

orbital and rotational angular velocities of binary stars may not hold in many 

cases in the presence of differential rotation. Ireland (55) presented results for 

gravity darkening and limb darkening in a rapidly rotating Roche model of a star 
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subject to nonuniform rotation and demonstrated that the effects of small 

uniform rotation are likely to be of greater significance than the actual values 

of rotational velocities themselves. Schmitz (125) studied the equilibrium 

structures and stability of differentially rotating self gravitating gaseous 

spheres. Komatsu et al. (64) applied the numerical method developed for 

Newtonian gravity models to general relativistic differentially rotating bodies 

including ring-like structures. He also obtained equilibrium structures for 

polytropes of indices 0.5 and 1.5. Goode et al. (45) also tried to analyze the 

nature of differential rotation in the interior of the sun for the study of its 5-min 

oscillations. Authors such as Bruning (15), Deupree (30), Durney (34), Endal 

and Sofia (36), Galli (37), Geroyannis and Hadjopolous (41), Glatzmaier et al. 

(43), Goldreich (44), Harris and Clement (51), Hoiland (52), Mohan and Singh 

(88) , Pinsonneault et al. (106), Shapiro et al. (128), Solberg (138), Von Zeipal 

(157), Welty et al.(158), have also analysed the problems of differential 

rotation. Garud (38) worked on rotationally driven meridional flow in the stars. 

Equilibrium structures of stars which appear in binary and multiple 

systems are likely to be effected by both the rotational effects as well as the 

tidal effects of the companion stars. Attempts have been made in literature to 

determine the effects of rotation and tidal distortions on the equilibrium 

structure and modes of oscillations of the stars in binary and multiple systems. 

In a series of papers Chandrasekhar developed a first order analysis which he 

applied to the study of the rotational problem, the tidal problem and the binary 

star problem. The method, however, was found unsuitable when the separation 

between the components is only a few times the undisturbed radius of the 
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primary. Monaghan (93) modified it to get more accurate results near the 

surface. 

The method of Monaghan and Roxburgh (119) to study the structure of 

the primary component of a synchronous close binary was further extended by 

Naylor and Anand (94). Goupil et al. (46) have analysed the effect of moderate 

rotation on stellar pulsations. Kippenhahn and Thomas (62) suggested a 

practical way of analyzing the effects of rotation and tidal distortions on the 

equilibrium structures of stars by approximating the actual equipotentials 

surfaces of the star by Roche equipotentials. 

Kopal (65) introduced a system of coordinates, which he called Roche 

coordinates, to study the problems of rotating stars and stars in binary system. 

Kopal and All (67) studied the integrability of the Roche coordinates. Mohan 

and Saxena (85) used the Kippenhahn and Thomas (62) averaging technique 

in conjunction with Kopal"s results on Roche equipotentials to determine the 

combined effects of rotation and tidal distortions on the equilibrium structures 

of the theoretical models of the stars. This approach is presented in detail in 

Saxena (124). Later this approach was also used by Aggarwal (2), Manmohan 

and Singh (76) to study the effects of rotation and tidal distortions on the 

structure and periods of small adiabatic oscillations of composite models of 

stars, The technique was subsequently formalized by Mohan, Saxena and 

Agarwal (92) and used to study the problems of rotationally and tidally distorted 

main sequence stars. Seidov (127) derived the exact analytical formula for the 

potential and mass ratio as a function of Lagrangian points position, in the 

classical Roche model of the close binary stars. 
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Chan and Chau (18) developed a method which allows an efficient and 

accurate investigation of the structure and evolution of a rotationally and tidally 

distorted star in close binary systems. Nepon et al.(97) have discussed the 

evolution of rotationally and tidally distorted low-mass close binary systems. 

Iben (54) has studied the problem of evolution of binary components which first 

fill their Roche lobes after the exhaustion of central helium. Tassoul and 

Tassoul (148) considered the meridional circulation in rotating stars and mean 

steady motions in rotationally and tidally distorted stars. Tassoul (148) later 

extends the earlier work to study the reflection effects in close binaries when 

there is meridional circulation in rotating stars. Rocca (115) studied effect of 

slow uniform rotation on the tidal effects in close binary system. Pacznyski 

g Ii ;14,Ma has discussed evolution process in close binary systems. The 

evolution of mass losing component of a close binary has been studied in 

literature without considering the dynamical effects of gas outflow from the 

star. 

Avani and Schiller (6) studied the Roche potential systems where the 

stellar rotation axis is not aligned with the orbital revolution axis. Hachisu et al. 

(49) proposed a numerical method for constructing models of double white 

dwarf binary systems and central white dwarf heavy disk systems. He (50) 

also formulated a new-three dimensional method for obtaining structure of a 

rapidly rotating star and multiple stellar system including binaries. Rleutord 

(112) has shown that large scale flows driven by Ekman pumping in the spin 

up-down of a tidally distorted star is not efficient enough to reduce the 

synchronization time. Todaran (152) has used the time dependent potential 

function to study the equipotentials surfaces in close binary systems. 
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The simple hypothesis of the pulsating model of a regular variable star is 

made all the more complicated by the fact that some of the variable stars 

observed to be rotating stars or stars in binary or multiple systems. The 

eigenfrequencies of small oscillations of such stars are expected to be 

influenced by rotation and tidal effects of companion stars. 

Most of the authors have studied pulsations of stars having solid body 

rotation. However, there are several variable stars which are suspected to be 

rotating differentially. Clement (24) has shown that by assuming a particular 

form of differential rotation the discrepancy that existed between observations 

and earlier calculations based on the assumption of uniform rotation could be 

removed, Woodard (159) considered the effect on eigenfrequencies and 

eigenfunctions of slow, axisymmetric differential rotation which is also mirror 

symmetric across the solar equatorial plane. Chandrasekhar and Ferrari (20) 

analysed the problem of nonradial oscillations of slowly rotating stars induced 

by the lense- thrinning effect. Urpin (155) studied the problem of rotation, 

circulation and turbulence in radiative zones of stars. Reyniers and Smeyers 

(111) have discussed tidal perturbation of linear, isentropic oscillations in 

components of circular orbit close binaries, 

Trehan and Kochar (153), Sood and Singh (140) studied adiabatic 

pulsation and convective instability of uniformly rotating gaseous masses. Saio 

(123), Martin and Smeyers (78) investigated the problem of linear adiabatic 

oscillations of a uniformly and synchronously rotating component of a binary 

system. Mohan and Singh (89) considered the use of Roche coordinates in 

solving the problems of small adiabatic oscillations of rotationally and tidally 

distorted stellar models. They also considered the use of Kippenhahn and 
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Thomas averaging approach in conjunction with certain results on Roche 

equipotentials. Mohan and Saxena (85) considered the possibility of using this 

approach in general to determine the effects of rotation and tidal distortions on 

the eigenfrequencies of radial and nonradial modes of oscillations of stars and 

applied it on polytropic models of the stars, Based on these studies, Mohan, 

Saxena and Agarwal (92) proposed a method for computing the 

eigenfrequencies of small adiabatic barotropic modes of oscillations of 

rotationally and tidally distorted stars and applied it to the main sequence stars. 

Mohan, Lal, and Singh (69, 70) studied equilibrium structures and periods of 

oscillations of differentially rotating polytropic models of stars. Later on Singh 

and Sharma (133) also studied the oscillations of differentially rotating stars in 

binary system. Beech (8) presented a double polytropic model for low mass 

stars with M <M a  . Karino and Eriguchi (59) have considered the linear stability 

analysis of some differentially rotating polytropes. 

Whereas the properties of equilibrium structures and periods of small 

adiabatic radial and nonradial modes of oscillations of undistorted gaseous 

sphere have been investigated in detail in literature, the effect of rotation and 

tidal distortions on the equilibrium structures and the modes of oscillations of 

gaseous sphere have still, not been fully understood. In the present work we 

have addressed ourselves to the analytic study of problems related to this field. 

1.3 THE PRESENT WORK 

The problem of determining the equilibrium structure and the periods of 

oscillations of the stars distorted by the effects of rotation and tidal forces has 

practical importance in astrophysics as it will help in better understanding the 
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nature of the rotating stars and stars in binary and multiple systems. There is 

thus a need for an in-depth theoretical investigation of the effects of rotational 

and tidal forces on the equilibrium structures and the periods of small radial 

and nonradial modes of oscillations of gaseous spheres. 

Analytic study of the problem of determining the equilibrium structures, 

periods of oscillations and stability of rotationally and tidally distorted stellar 

models is quite complex. The problem becomes still more complex if the 

rotation is differential. Therefore attempts have been often made in literature 

to investigate these problems in some approximate ways. In one such attempt 

Mohan, Saxena and Aggarwal (92) used Kippenhahn and Thomas (62) 

averaging technique in conjunction with Kopal's results (65) on Roche 

equipotentials, to determine the effects of rotation and tidal forces, on the 

equilibrium structure and the eigenfrequencies of small adiabatic barotropic 

radial and nonradial modes of oscillations of the theoretical models of the 

stars. They also demonstrated the use of this approach 4n the case of the 

polytropic models of the stars as well as certain realistic theoretical models of 

the main sequence stars. Lal (69) investigated the effectiveness of Mohan, 

Saxena and Agarwal (92) approach in computing the effects of differential 

rotation and tidal distortions on the equilibrium structures and the 

eigenfrequencies of radial and nonradial modes of oscillations of rotating stars. 

In Mohan, Saxena and Agarwal approach the actual equipotentials 

surfaces of a rotationally and tidally distorted star are approximated by 

equipotentials surfaces obtained by assuming the entire mass of the star to be 

placed at the center of the star. This approximation is usually referred to as 

Roche approximation and the equipotentials surfaces thus generated are 
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called Roche — equipotential surfaces. This approximation is reasonably valid 

for highly centrally condensed types of stars but not very much justified for less 

centrally condensed stars. It is, therefore, desirable to improve upon this 

approximation. For instance, instead of approximating the actual equipotentials 

surfaces inside the star by Roche equipotentials, these may be approximated 

by equipotentials surfaces which are obtained when the mass exterior to the 

equipotential surface is neglected and the mass interior to this equipotential 

surface is supposed to be concentrated at the center of the star. Such an 

approximation is motivated by the fact that in a self-gravitating spherical 

configuration the gravitational potential at a point inside the sphere depends 

only on the mass enclosed within the concentric spherical surface passing 

through that point. 

Another shortcoming in the work of Mohan et. al is that for analysing 

properties of Roche equipotentials they have utilized the results of Kopal (65) 

on Roche coordinates which in the absence of the availability of mathematical 

expressions in closed form assume series expansions for some of these 

coordinates However the analytic proofs for the convergence of these series 

expansions are lacking. 

In the present thesis we have primarily addressed ourselves to these 

two shortcomings in the work of Mohan et. al. We have investigated the validity 

of series expansions for certain parameters used in the system of Roche 

coordinates. We have also tried to analyse the effects of including the variation 

in mass inside a star on its equipotential surfaces while computing the 

equilibrium structure as well as periods of oscillations of rotating stars and 

stars in binary systems. 
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The thesis consists of nine chapters. Chapter one the present study 

only is introductory in nature. In this chapter we first briefly discuss the 

astrophysical significance of the problems of determining the equilibrium 

structures, and periods of oscillations of rotationally as well as tidally distorted 

stellar models. A brief survey of the literature available on the subject and 

summary of the work presented in the succeeding chapters of the thesis also 

appears in this chapter. 

In chapter II we first present in brief the concept of Roche equipotentials 

and Roche coordinates and how it has been incorporated by Mohan et. al in 

Kippenhahn and Thomas technique to determine the equilibrium structures of 

rotationally and tidally distorted stars. The validity of the series expansions 

used in the system of Roche coordinates (for which analytic proofs of the 

series being convergent are not easily possible) has been checked 

numerically. Results show that these series expansions are reasonably valid 

under the assumptions under which these series are recommended to be 

used. 

In chapter III we first consider the problem of determining the 

equilibrium structures of rotationally and/or tidally distorted stars using Mohan 

et.al approach as modified by us to take into account the effect of mass 

variation inside the star on its equipotential surfaces inside the star. 

Mathematical expressions determining the equipotential surfaces, volume, 

surface area, etc are first derived and then used to obtain the system of 

differential equations governing equilibrium structure of a rotationally and 

tidally distorted star. The modified approach has then been used to numerically 

compute the equilibrium structures of rotationally and tidally distorted polytropic 
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models. The results thus obtained have been compared with the results earlier 

computed by Mohan and Saxena (85) for these polytropic models assuming 

whole mass to be concentrated at the centre while obtaining the equipotential 

surfaces. 

The methodology developed in chapter III is next used in chapter IV to 

determine the equilibrium structure of rotationally and/or tidally distorted 

Prasad model in which density p inside the star varies according to the law 

p = p ,(1- x2 ), Pc being the density at the center and x a nondimensional 

measure of the distance of a fluid element from the center of the star. 

Methodology has also been used to compute the equilibrium structures of a 

series of rotationally and/or tidally distorted composite models of the stars 

which have cores in which density varies as in Prasad model according to the 

law p = pc (1 - .x2  ), and which are surrounded by envelopes in which density 

varies inversely as the square of the distance from the center as in Roche 

model. These composite models have Prasad model at one extreme and 

Roche model at the other extreme and reasonably represent the effect of 

density variations inside the star on its structure. Analytical expressions for the 

density and the pressure at various points in the core and the envelope of 

these composite models have been obtained. The equilibrium structures and 

other physical parameters of the rotationally and tidally distorted composite 

models of stars have been computed for different models of this series by 

assuming the interface between the core and the envelope to be a distance 

0.3, 0.5, 0.7 and 0.9 of the total radius from the center. Results have been 

compared with earlier results obtained for such models in Roche 

approximation. Certain conclusions based on this study have also been drawn. 
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The problem of determining the equilibrium structures of certain 

differentially rotating and tidally distorted models so as to incorporate the 

effects of mass variation in the potential on its structure, has been next 

considered in chapter V. Boundary value problem governing the equilibrium 

structures of stars rotating differentially according to the law 0 = b, + b2 s 2  , 

where co is the angular velocity of rotation s is the distance of fluid element 

from axis of rotation and 	b2  certain constants, is first formulated. It has next 

been used to numerically compute the equilibrium structures of differentially 

rotating Prasad model as well as certain polytropic models for polytropic 

indices 1.5, 3.0 and 4.0 for different numerical values of rotation 

parameters b, b2 . The results obtained have been compared with the results 

earlier obtained for these models in Roche approximation 

In chapter VI we implement the approach developed in the earlier 

chapters to determine the equilibrium structures of various types of white dwarf 

models of the stars having solid body rotation as well as differential rotation 

assuming the law of rotation of the type o.) = b1  + b2s 2  . The explicit expressions 

that can be used to compute the shape, volumes, surfaces areas as well as 

other physical parameter of differentially rotating white dwarf models are also 

obtained. Computations have been performed to obtain the equilibrium 

structures of certain differentially rotating white dwarf models for the values of 

the parameter 1/4 2 as 0.01, 0.05, 0.2, 0.4, 0.6, and 0.8. The results thus 

obtained have been compared with the results earlier computed by Mohan, Lal 

and Singh (91) for white dwarf models of the stars assuming Roche model for 

the star. 
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In chapter VII we consider the effect of mass variation in potential on 

the structures of rotationally and tidally distorted stars in which the angular 

velocity of rotation varies both along the axis of rotation, as well as in the 

direction perpendicular to the axis of rotation by assuming a general law of 

differential rotation of the type cot =b0  + bi  .5.2  + b2s 4  + b3z2  +b4 z4  +b5z2s2  , s 

being the distance of the fluid element from axis of rotation and z being the 

distance of the fluid element from the equatorial plane perpendicular to axis of 

rotation passing through the center of the star. By giving different values to 

constants bo ,b0b2 ,b3 ,b4  and b5  various types of differential rotations can be 

generated in which the angular velocity varies both along as well as 

perpendicular to the axis of rotation. In this chapter we have determined in 

particular the equilibrium structures of differentially rotating polytropic models 

of stars assuming this generalized law of rotation for polytropic models of 

indices 1.5, 3.0 and 4.0. Numerical results obtained in this chapter have also 

been compared with earlier results to draw some conclusions of practical 

significance. 

In chapter VIII we next analyze the effect of mass variation in potential 

on the eigenfrequencies of small adiabatic barotropic modes of oscillations of 

rotating stars and stars in binary systems. The eigenvalued boundary value 

problems which determine the eigenfrequencies of small adiabatic pseudo-

radial and nonradial modes of oscillations of differentially rotating stellar 

models obeying a law of differential rotation of the type co = b1  + b2s2  have 

been formulated taking into account the effects of mass variation inside the 

star on its equipotentials surfaces. The method has been then used to 

determine the eigenfrequencies of various pesudo-radial and nonradial modes 
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of oscillations of certain differentially rotating composite models as well as 

polytropic models of indices 1.5, 3.0 and 4.0, The eigenfrequencies of pseudo-

radial modes of oscillations of certain rotationally and tidally distorted models 

have been also obtained. 

Conclusions based on the present study are finally drawn in the 

concluding chapters IX. The astrophysical significance of the present work as 

well as the limitations and scope of the present work are also briefly discussed 

in this concluding chapter. 
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CHAPTER - II 

USE OF THE CONCEPT OF ROCHE EQUIPOTENTIALS IN 
DETERMINING THE EQUILIBRIUM STRUCTURES AND 

PERIODS OF OSCILLATIONS OF ROTATIONALLY AND/OR 
TIDALLY DISTORTED STARS AND STARS IN BINARY 

SYSTEMS 



In this chapter we present the concept of Roche equipotentials and how it 

has been used by Kopal and subsequently Mohan et al. for determining the 

equilibrium structures of rotationally and tidally distorted stars. Since analytic 

expressions in closed form for all the three Roche coordinates were not possible, 

series expansions have been used in cases where analytic expressions in closed 

form were not possible. However, the convergence of these series expansions 

could not be analytically established. In the absence of this, one may doubt the 

correctness of analysis and subsequent results derived by using these series 

expansions. In this chapter we have tried to check the validity of these series 

expansions using numerical approach as we ourselves have not been able to 

establish analytically the convergence of these series expansions. 

A brief discussion of the concept of Roche equipotentials and Roche 

coordinates is presented in sections 2.1 and 2.2, respectively. Certain results 

obtained by Kopal (65) and Mohan and Saxena (85) for Roche equipotentials are 

also presented in this section. In section 2.3 we show how Kippenhahn and 

Thomas (62) used an averaging technique for determining the equilibrium 

structures of rotationally and tidally distorted stars. In section 2.4 we next present 

how Mohan et al (92) used Kippenhahn and Thomas (62) approach in conjuction 

with certain results on Roche equipotentials to obtain the system of differential 

equations governing the equilibrium structures of rotationally and tidally distorted 

gaseous spheres. Section 2.5 is devoted to checking numerically the validity of 

series expansion used developed by Kopal for a Roche coordinate whose explicit 

expression in closed form was not possible. Whereas numerical approach 
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adopted for this purpose is given in subsection 2.5.1, numerical computations 

carried out on this basis are given in subsection 2.5.2. Conclusions based on this 

numerical study are given in subsection 2.5.3. 

2.1 ROCHE EQUIPOTENTIAL 

In order to introduce the concept of Roche equipotential, we assume two 

components of a close binary system known as primary and secondary star. The 

primary star is supposed to be more massive than the secondary which acts as a 

point mass causing tidal effects on the more massive primary component. Both 

the component of binary system is assumed to be rotating about their axis as well 

as revolving about their common center of mass. Following Kopal (65), Mohan 

and Singh (87), Mohan Cal and Singh (90), certain results on Roche equipotential 

which are of practical interest to the present study, are summarized below: 

Let us suppose Mo  and M, be the masses of the two components of a 

close binary system separated by a distance D. The primary component of this 

system of mass 	Mo  is much larger than its companion star of mass 

M,(M0  M,) whichcan be regarded as a point mass. Suppose that the position 

of the two components is referred to as a rectangular system of Cartesian 

coordinates with origin at the center of gravity of mass M, the X — axis along the 

line joining the mass centers of two components, and Z —axis perpendicular to 

the plane of the orbit of the two components (See Fig. 1.1). 

Then the total potential yr of the gravitational and disturbing force acting at an 
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where r 2  =x 2  +y2 +z2  and /12  = (D — x)2 +y2 +z2 represent the 

squares of the distances of P from the center of gravity of the two components, 

S2 denotes the angular velocity of rotation of the system about an axis 

perpendicular to the xy- plane and passing through the center of gravity of the 

system and G the constant of gravitation. The first, second and third term on 

the right hand side of (2.1) represents the potential arises due to the mass of 

the primary component of mass Mo  , the disturbing potential of its companion of 

mass MI , and the potential arising from the centrifugal force, respectively. 

Equation (2.1) strictly holds at points which are the outside of both the 

components of binary system. In case we assume Roche model for the primary 

and a point mass for the secondary components, equation (2.1) holds 

everywhere. 

In nondimensional form equation (2.1) can be expressed as 

=-1 	 1 +q 	 
r* 	111-2Ar* + r *2  

Ar* + nr* 2  (1-152 ) 	 (2.2) 

  

where Dv/ 	A/12  vi* = GM0  2M0  (M0  + M1) 

is the nondimensional form of total potential yi and r* = rID is nondimensional 

form of r, A =csinOcos0„u =.sinGsin0,0=cose9 (r,0,0 being the polar 

spherical coordinate of the point P). 

Also, 

(2.1) 
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M, 
q= 

m, 

is a nondimensional parameter representing the ratio of mass of the secondary 

over primary and 2n represents the square of the normalized angular 

velocity Q . The equation (2.1) reduces to the potential of a spherical model 

rotating with angular velocity only if q= 0 and n=0, it reduces to the potential of 

a non-rotating spherical model distorted by the tidal effects of the companion. 

For a binary system in synchronous rotation, the angular velocity 0 is identical 

with Keplerian angular velocity so that 

n2=G-
m 
"
+m 
D3  

The relation expressed in terms of the nondimensional variable of 

equation (2.2) becomes 

n=
q+1  

2 
(2.5) 

The surface generated by setting yi =constant on the left hand side of 

(2.1) are referred to as Roche equipotentials. Roche equipotentials in 

nondimensional form may be represented by yi  = constant where 	is same 

as defined in (2.2). The form of Roche-equipotential depends entirely upon the 

values of . If tif is large the corresponding equipotentials will consist of two 

separate ovals, closed around each of the two mass point (see Fig. 1.2). For 

specified values of Mo  ,M, ,0 and D the right hand side of (2.1) can be large 

only if r and r1  becomes small. Therefore, large value of 1, correspond to 

equipotentials which differ but little from spheres surrounding one of the two 

mass centers. With decreasing values of yr of the ovals defined by (2.1) 

(2.3) 

(2.4) 
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become increasingly elongated in the direction of the center of gravity of the 

system until for a certain critical value of ti characterstic of each mass ratio. 

Both ovals will unite in a single point on the X -axis to form a dumbbell like 

configuration. These limiting values of cv are called Roche limits. For certain 

mass ratios Kopal (65) computed the numerical values of Roche limits in the 

case of synchronous binary stars for a values of q ranging from zero to one. 

Defining a non-dimensional variable ro  by the relation 

1 ra = 	 (2.6) 

Kopal has also shown that on the surface of Roche equipotentials (r, O, are 

connected through the relation 

r*.ro [1+C3 r03 + c4 r04 +c5 r0 5 + c6 r06 +c7 r +C8 r08  + C9 r09  +... 

where 

C3  = q P2  + n(1 — v 2 ), C4  = qP3 , C5  =qP4  

C6  = q p5  + 3 C3 2  C7  = qP6  + 7 q C3 2  P3  

C8  = q P7  + 8q C3  P4  + 4q 2  P32 	 (2.8) 

C9  = q P8  + 9 q C3  P5  + 9q2  P3  P4  

And P., = (2) are Legendre polynomials and terms upto second order of 

smallness in n and q have been retained in (2.8). This relation helps to obtain 

the shape of a Roche equipotentials v =constant. 

(2.7) 
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The volume enclosed by the equipotential surface Iv= constant is given 

by 

I 1-,iz 	3 r 
Vv, 	—dA dv 

3 	117:7 P 
(2.9) 

Kopal has shown that the explicit expression of Vv  in terms of ro  defined by 

(2.6), can be represented as 

3  {12 2 	8 	32 2} 6 	15 2 8 	2 10 V8, = —
4

it D3  r: 1+ 2n ro  + 	+ —
5

n q + —
5 

n ro  + q ro  +2q ro  + 
3 

(2.10) 

where terms up to second order of smallness in n and q are retained. 

Following the approach of Kopal (65), and Mohan and Singh (87), the 

explicit expressions for the surface area S v, and the values of averages or 

parameters ry, 	on the Roche equipotential w =constant are given as 

1 	 1Z1.2 	2  

Sw  =2 f J -r  — dA,d v 
-1 -11-7 P  

[ .471- D2 r02  1+ 4n ro
3 
 +Fq 

2 14
n q + 	n

2 
3 	5 	15 	15 

6 	9  2 8 	1 1  2 10
+  ro  + — q ro  +-- 

9 
 q ro  

7 

(2.11) 
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3 	5 	15 	45 	7 	3 

(2.12) 

— 2  ' 	(d 1r 2  
S = f  	dAdv 

Sy -1 	- n p 

= GM i  8n r3  
„ 

{
3q2  + 2nq + 40 n2 r6 	r a 	q 2 T10 +... 

	

D 2r02 	3 - 	 9 	° 14 ° 3 

(2.13) 

1 I1—As  
f 

Sit/ 	41—A2 

-i 

(dnj 
T clAdu dyr  r 2 

D2  r02 	8n 3 {31 2 62 	584 2} 6 101 2 8 75 2 10 	 + — ro  + —q +—nq+—n ro  +—q ro  +--q ro  +... 
G My, 	3 	5 	15 	45 	14 	9 

(2.14) 

Inverting the relation (2.12) they also obtain 

2 8 4 14 	 s 2n , 	2 r0  y =r1 1 —__r*- 	 _n2 }r 6 	2 8 	2n --
5 q r — —2 q * 10 r 

3 5 15 45 	7 	3 v  

(2.15) 

where r; =r1, I D, r; being the nondimensional form ry  . In all the above 

expressions terms upto second order of smallness in n and q are retained. 
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2.2 ROCHE COORDINATES 

To study the problems of rotationally and tidally distorted stars, Kopal 

(65,66) introduced a system of coordinates, which he called Roche 

Coordinates. He and some of his co-workers (Kitumara (66), Ali (67) etc) 

investigated some of the mathematical properties of this system of coordinates. 

Kopal (65) also indicated how this system of coordinates could be used to 

study the problems of vibrations of rotationally and tidally distorted stellar 

models. In the system of Roche coordinates the equipotential surfaces of a 

distorted Roche model are chosen to represent the equipotential surfaces of an 

actual stellar model distorted by rotational and tidal forces. Choosing the 

equipotential as one coordinates, the other two coordinates are chosen to form 

a triply orthogonal system. In the system of Roche coordinates (0-1,0 , we 

take the coordinate to be an equipotential surface of the form (2.1) and 

choose the other two coordinates 11  and C in such a way as to satisfy the 

conditions of mutual orthogonality with respect to C as well as each other. 

Kopal (65) and his co-workers investigated the mathematical properties 

of this system of Roche coordinates. Their work shows that it is not possible in 

general to obtain expressions for rl and C in closed analytic forms. Kopal 

investigated two particular cases of this problem in detail. In the one case q is 

taken to be zero, and in the other n2  is taken to be zero. The first corresponds 

to the Roche coordinates of a star distorted by rotational forces alone and the 

second corresponds to the Roche coordinates of a nonrotating star distorted by 

the tidal effects of a companion star. 
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For the rotational case Kopal (65) has shown that whereas the first two 

Roche coordinates C and ri are expressible in closed analytic form as 

r 
+nr 2 (1—v 2 ), 	1= yr 	 (2.16) 

the expression for the third Roche coordinate C is not possible in closed 

analytic form. Kopal obtained an expression for it in the form of an infinite 

series in ascending powers of n as 

cos(; yE (2 n) J  r 3J  x j (v) 
	

(2.17) 
J=0 

where xo  (v) =1, xi(v) = - 3- (1- v2 ), n =-T2  while for 	 j >1 all subsequent Xj 

(C)'s can be generated with the aid of recursion formula 

3JX., + (1- v2 )[(t) X j _ - 30-1 )X _ 1 = 0 	 (2.18) 

where the prime denotes differentiation with respect to v . Kopal also obtained 

the values of metric coefficients h1, h2, h3 up to second order terms in n. 

In case of tidally distorted Roche model Kopal (65) has shown that 

-1 + 
[V(1 

- constant (2.19) q 
r — 2.1r1 	+ r 2 ) 

which represents the equipotential surface of a star distorted by the tidal forces 

of a nearby star Taking C as defined above Kopal (65) has shown that the 

second and third coordinates are given by 

and 

q 	
 4 rJ+1 

= cos-' A, 	E 	Pi 
111-22  J=2J+1  

(2.20) 

=cos , 	 
111 -A2  

(2.21) 
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respectively. In these relations a prime denotes differentiation with respect to 

Following Kopal's approach, Mohan and Singh (89) used the system of 

Roche coordinates to obtain explicit forms of equations of small radial 

oscillations of rotationally distorted and tidally distorted stars assuming Roche 

model for the star and used these to numerically compute certain 

elgenfrequencies of oscillation of such distorted models. Their work show that 

the system of Roche coordinates can be used with advantage to study the 

problem of small oscillations of rotating star as well as only tidally distorted 

stars. The main advantage of the technique of studying small oscillations of 

rotating stellar models through the use of Roche coordinates is that we were 

able to account for the effects of distortion caused by rotation or tidal effects 

automatically while studying the problem of small oscillations of these models 

in the usual way. One limitation of the present technique, however, is that it 

must be applied with care when studying the vibrations of stellar models which 

have unusually large angular velocities of rotation, because we do not get the 

expression for the third Roche coordinate in a closed analytic form and, 

instead, have to express it as an infinite series in ascending powers of the 

angular velocity of rotation. 

However it was observed that use of this approach for determining the 

combined effects of rotation and tidal distortions on the equilibrium structure 

and periods of oscillations of binary stars, in which the rotational and tidal 

effects have to be considered jointly, is not convenient. Moreover the method 

could not be conveniently used when more realistic models in place of Roche 

model are to be used for the inner structure of the star. 
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2.3 AVERAGING TECHNIQUE OF KIPPENHAHN AND THOMAS 

In order to study the effects of rotation and tidal distortions on the 

equilibrium structure of gaseous sphere, Kippenhahn and Thomas (62) 

developed the concept of topologically equivalent spherical surfaces 

corresponding to actual equipotential surfaces of a rotationally and tidally 

distorted model. They define on these equivalent spherical surfaces, quantities 

such as 1,g.  etc. which denote the certain averages of the quantities f,g , 

respectively on the actual equipotential surfaces. If ig denotes the total 

potential (gravitation, rotation and tidal forces) arises of a rotationally and tidally 

distorted model at an arbitrary point P(x,y,z)then yr (x,y,z) = constant is an 

equipotential surface. Let 	be the volume enclosed by the equipotential 

surface yr =constant and Sv  is surface area of this equipotentials surfaces ti/ = 

constant. For any function f (x, y, z) they define f as its mean values over the 

equipotential surfaces tu =constant by the relation 

1 
	if d6 

Sy/ w=cons tan / 
(2.22) 

Kippenhahn and Thomas define a variable r, in analogy with a sphere by the 

relation 

• = —4 zr 3 
3 

(2.23) 

where do- denotes the surface element of the equipotential surface 

iv =constant. Also j' thus defined over the topologically equivalent surface is 

used to represent the value of f over the topologically equivalent spherical 

surfaces. Clearly if f is a function of equipotential surface yr only and can be 

obtained as (2.22) for each equipotentials surface v/ =constant By definition 
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U = 	

1' 

  W= 	 2 V  = GA  , w  2rw  
4 w  

S y, 	gr y, 

	

2 	glT GM 
(2.28) 

jdo- 
{v=cons tan t 

(2.24) 

Obviously, S„ is in general not equal to 4ir r„ 2  . Kippenhahn and Thomas 

define a function g (x, y, z) by the relation 

thy 
g = do 

(2.25) 

This g corresponds to the force of gravity of a sphere. The distance d n in 

between two neighboring surface yr=constant and iy 4-dy/ =constant is in 

general not constant (i.e. not same at all points of the surface). From this 

equation (2.25) the mean values g and g-' can be calculated with the help of 

relations 

g
1 f dig do.  

= c, 
y/ =constant d n 

5  

= 1 	r (dw 
S y=cons tan t d n  

(2.26) 

Both g and g-1  are functions of yr alone and represent the value of g and 	, 

respectively over the topologically equivalent spherical surface. The volume 

driv  between the surface yl= constant and yi +clyi =constant is given by 

dVw = jdndo-= 	(dvf d n =Sy,g -' dyi  
v=cons tan t 	=cons tan t d n  

(2.27) 

Kippenhahn and Thomas also define nondimensional parameters u, v, w, as 

where M, is the mass enclosed by equipotential surface (if =constant. 
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We may thus regard the equipotential surface y =constant to be 

topologically equivalent to a sphere of radius ry, for which various functions are 

defined by the above relations. (It may be noticed that if y is the gravitational 

potential of a sphere then the surface y =constant are spherical surfaces with 

A tv  
r = r for which u =1 and g = 

GI
is constant on these spheres and therefore 2 

u and w are constants and equal to 1). 

Equations (2.22) to (2.28) are purely mathematical definitions, which 

have been applied by Kippenhahn and Thomas to gravitational fields of 

gaseous spheres distorted by rotational and tidal forces. In hydrostatic 

equilibrium the equipotential surfaces are also surface of equipressure and 

equidensity. Therefore on an equipotential surface the pressure Py, and the 

density py, are also constant. Using these concepts, Kippenhahn and Thomas 

obtain the equations governing the equilibrium structure of a rotationally and 

tidally distorted stellar model in the following manner 

From equation (2.28) the mass dA y, between the equipotentials 

surfaces y =constant and y + dy =constant is given by 

dM = dVy, py, =42 r 2  py, dry, 	 (2.29) 

Thus we get 

di 1 1 t, 	2 
dry, 

= 44r
y 
 p 

From equation (2.27) and (2.29) we have 

(2.30) 

dV 	dM y, 	dill w  
dV = 	

-! P 
= 	 dv 	Py, 	Sy, g - dVy, (2.31) 
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Using relations (2.28) we get 

GM dM 
dyi = 	V/4  

4a - r„ P,uw 
(2.32) 

The conditions for hydrostatic equilibrium, dPv, 	=-P, , can now be written 

with equation (2.28) in the form 

Where 

dP, 	G M,  
dM, 	47r r,4 

f 

P 
(2.33) 

1 	47r r 4 	1 
fp = uw GM„ s g-1  w  

The factor fp  is a function of Iii only. If w  is known the equipotentials surfaces 

can be determined, and with them values of Sy  „rw  ,g and ,g-1  for each 

equipotentials surface simply from the geometry of the equipotentials. The 

mass Mw  which depends on the density distribution pv  can be determined by 

integrating the equation (2.30). Similarly the other structure equations derived 

by Kippenhahn and Thomas (62), which includes the effects of rotation and 

tidal distortions on the equilibrium structure of gaseous spheres are as follows. 

For chemically homogenous spheres, the nuclear energy generation 

rate E depends only upon density pv, and the temperature Tv, and are, 

therefore, constant on equipotentials surfaces. Thus if L, is the energy which 

passes per second through the equipotential surface iv = constant, then 

dL„ 
dM -6  (2.34) 
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Using (2.30) it can be written as 

dL 

	

v 	 =Lirr 2 ,o e 

	

dr,„ 	w • yi (2.35) 

If the energy is transported by radiation, then the energy transport equation is 

4acT,„3  dig dTt, 47 rrv, 4  u w 
F = 	 tv   

3K dn dM v, GM,„ 
(2.36) 

where Ft, is the radiative flux on the equipotentials surface v = constant by 

integrating Fv, over the equipotentials surface v = constant, we get 

	

Lyi  = 	iFv, do- 
v =cons tan t 

4acT;  dT; 	43- riv 4 	
s 

( 
 dy/  )dam 

	

.  	uw 	 
3K d M,„ 	G M t, w=constant do 

64x 2acT 3 r 4 	dTt, w V  2 

	

= 	 U vw 	 
3K 	d M v, 

(2.37) 
so that 

dTv, 	3K Li, 	1 	=  	 (2.38) 
d M t, 	647-c2acTV 3r41  4  U 2 VW 

Using (2.29) this equation can be expressed as 

dr, = 3K p L 
vi 	V  2 fT d M y, 	167z.  a c7; rv, 

(2.39) 

where 	 fT -  2 
1 

U VW 

Equations (2.30), (2.33), (2.34) and (2.38) which are the four basic equations 

governing the equilibrium structure of a gaseous sphere distorted by rotation 

and tidal forces and the boundary conditions to be satisfied are 
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M =0 Lw  =0 at the centre r =0 

= M0 , Lr=Lr , Pr = 0, 7; = 0 

or P,,, = Prs ,; =Trs , at the free surfacerr  = RW  
(2.40) 

 

2A MOHAN AND SAXENA APPROACH FOR DETERMINING THE 
EQUILIBRIUM STRUCTURE OF ROTATIONALLY AND TIDALLY 
DISTORTED STELLAR MODELS 

In order lo determine the inner structure of a rotationally and tidally 

distorted gaseous sphere the system of equations (2.30), (2.33), (2.34), (2.38) 

has to be integrated numerically subject to the boundary conditions (2.40) 

specified therein. Therefore the evaluation of the actual equipotential surface 

of a rotationally and tidally distorted gaseous sphere is complicated. 

Kippenhahn and Thomas (62) proposed that for evaluation of the distortion 

parameters u,v,w,fp ,fr  etc., the actual equipotentials surface may be replaced 

by Roche equipotentials surfaces. 

Once the equipotential surfaces of a rotationally and tidally distorted star 

are approximated by the Roche equipotentials, the results obtained by Kopal 

(65) and Mohan and Singh (89) may be used to evaluate explicitly the values of 

the distortion parameters u,v, w, fp JT appearing in stellar structure equations 

(2.33) and (2.39). Using (2.28), (2.33), (2.39 ) and (2.11- 2.14) the explicit 

expressions of the distortions parameters u, v, w,fp ,f7, on the equipotential 

surface as obtained by Mohan et al. are 
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1 (12 _1_2 lig+  4 n2 r.6 _421..8 +le r.10 + ... 
5 15 45 iv  7 iv  9 'v  

U =1- 

 

(2.41) 

3 _ q2 +14  nq+  68 n2 r  *6 - 31 q2 r  .8 v=1- 4  nr 	 -3q2rw*10  
'v 	5 	15 	45 	'I 	14 	w  

.w=1+-4nr *3 +  23(12+16 nq+ 212 n2 r .6 + —81 q2 r *8 +7q2 r*10 
3 ' 5 15 	45 Iv  14 Iv 	

y, 
 

*3 	2 	 2 '6 79 2 *8 62  2 { fp =1--
4 
 nr - 22  —q +—nq+—n44 	128 r -q r --q r '''10  

3 w 	 cv 	iv  5 	15 	45 	14 	9 

1428 	56 1 *6 46 2 *8 34  2 *10 fr  =1 - —q2  +—nq+—n2  r --q r --q r { 
5 15 45 ' 14 'v  9 w  

r 
where r

* 
D is the nondimensional form of r and terms upto second order 

of smallness in n and q are retained. 

The value of.Mw  , P,r 	etc. on the various equipotentials surfaces of a 

rotationally and tidally distorted gaseous sphere may now be obtained by 

solving the system of differential equations (2.30), (2.33), (2.34) with boundary 

condition (2.40) and using the values of the correction factors fp  and fr  . 

It may be noted that approximating the equipotential surfaces of a 

rotationally and tidally distorted model by Roche equipotentials, the structure of 

the star is not approximated by the structure of a Roche model. In the case of 

no distortion (n=q=0), equation (2.41) gives u = v = w = f p  =fr  =1 and the 

system of differential equations (2.30), (2.33), (2.34), (2.39) reduce to the 

equations governing the equilibrium structure of the original undistorted star but 

not of the Roche model. 

Usual methods for stellar structure equations such as Henvey method 

can be used to integrate the system of differential equation (2.30), (2.33), 

(2.34), (2.39) governing the equilibrium structure of a rotationally and tidally 
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and 

dro  

dLv  
= 4n-  D 3  pv ro2  (2.43c) 

distorted gaseous sphere. At every step the values of the parameters 

u, v, w, f p  and f T  must be taken from (2.41). 

In case the thermal properties are not considered important and only 

hydrostatic equilibrium of a rotationally and tidally distorted gaseous spheres is 

to be investigated then we need only to integrate equation (2.30) and (2.33) 

subject to the boundary conditions 

My, = 0, Lv  = 0, 	 at the centre r y, = 0, 

M y, =M0 , L y  =L y,s ,P y, =0, Tv  =0, Pt ,, = Pvs , at the surfacers, = Rv 	(2.42) 

In case of star is being distorted by rotational forces alone (or tidal 

forces alone) we may set q=0 (or n=0) in (2.41) and still use the above 

approach to determine the equilibrium structure of its rotationally distorted or 

tidally distorted model. For obtaining the structure of the primary component 

synchronous binary system we should set n = q +1  
2 

Mohan and Saxena (85) find it more convenient to work with ro  in place 

of M, or ry, as independent variable by introducing (2.6) which is connected 

with variable ry  through relations (2.10). Saxena (124) expressed the system 

of differential equations governing the equilibrium structure of a rotationally and 

tidally distorted model as 

clM 
	=Lig D 3  P y, ro2  
dro  

dPv GM v  

dro  — Dr: P''12  

(2.43a) 

(2.43b) 
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dTv 	3K L 	p 
dro  — 167 rDacTv, ro 

(2.43d) 

where f„ f 2  f 3  are certain functions of n,q and rip  incorporating the effect of 

rotation and tidal distortions on the equilibrium structure equations of 

rotationally and tidally distorted models. The explicit expressions for these 

distortion parameters as given by Saxena (124 ) are 

{ fl  =1 + 4n ro3  + —36 q 2 +-24 nq +-96 n 2}r06 +-55 q 2 ro8 +-26 q 2 ro lo + ... 
5 	5 	5 	3 

(2.44a) 

	

{2 	4 	16 	1 ro6 	9 2 8 8 2 10 +... f2  =1— —q 2  +—nq+—n 2 	----q ro  --9q ro  

	

5 	15 	15 	14  

(2.44b) 

3 f3 =1+ 4n ro  + {6 q 2 + _4 nq+ 224 n2 ro6 + 24 q 2 ro8 +-20 q 2 7.010 +... 
3 	5 	5 	45 	14 	9 

(2.44c) 

In these above expressions terms upto second order of smallness in n and q 

are retained. The boundary conditions now become 

Mw  = 0, Lw  = 0 at the center ro  = 0, 

M,„ = Mo , 	= L,s  PP, =0, Tv, =0 
or 
Pw = Pws , Tv  =Tws  

at the free surface ro =ros  (ros  being the value of ro  at the free surfaces.) 

In fact 

1 rOs = 	* 
 

q 
(2.45) 
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where w: is the nondimensional value of the total potential yi on the 

outermost equipotential surface of the rotationally and tidally distorted stellar 

model. 

In the case of no distortion fp  = fT  =1 and the above equation reduce to the 

usual equations governing the equilibrium structure of an undistorted gaseous 

sphere. Kippenhahn and Thomas (62) advocated the use of these equations to 

determine the inner structure of stars distorted by rotation and tidal forces. 

2.5 VALIDITY OF SERIES EXPANSION USED IN ROCHE COORDINATES 
AND MOHAN AND SAXENA APPROACH 

The series expansion (2.2) of one of the of Roche coordinates was 

obtained by Kopal (65) for determining of equilibrium structure of rotating close 

binary stars in which the actual potential of a rotating dipole is replaced by the 

Roche equipotential. The system of Roche coordinates, using this series 

expansion (2.2) for one of the coordinate was then used by him to determine 

small oscillations of rotationally and tidally distorted stars. Mohan et al. (88) 

have also used this series expansion in their work. However as pointed out by 

Kopal in his work, the convergence of the series expansion has not been 

theoretically established. Mohan et al (92) also have not established 

convergence of the series expansions based on this approach and used in 

their work. Establishing validity of the convergence of these series is thus 

essential. Only then one can feel assured regarding the ara.0ibt, of these 

Roche equipotential based methods for computing equilibrium structures and 

oscillations of rotationally and tidally distorted stars. 

Although it has not been possible for us so far to theoretically justify 

convergence of the series expansions, attempt has been made in this section 
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to numerically verify the validity of the series expansions (2.7). The remainder 

of this chapter is devoted to checking the validity of series expansion (2.7) 

used by Kopal and also by Mohan and Saxena in their work, for which analytic 

proof of the convergence of the series expansion is not available. In 2.5.1 we 

discuss the numerical approach which has been adopted by us to check the 

validity of results obtained by using series expansions (2.7). In 2.5.2 we 

present the numerical computations based on this approach which have been 

carried out by us to check validity of numerical results obtained from (2.2) in 

different situations. Analyis of this numerical result is next carried out in 2.5.3 

and conclusions drawn. 

2.5.1 Numerical Approach for Checking Validity of Series Expansions 

In order to establish validity of convergence of series (2.7) let us 

consider the equation (2.2) which is nondimensional form of the total potential 

. Then equation (2.2) can be written as 

`c 1  + qIrl+  p (2) + n(1— v2  )r *2  
r 	 j=2 

(2.46) 

Unfortunately, the expression (2.46) for v* is such that I' s  cannot be found 

explicitly in terms of vs . Equation (2.46) of the Roche equipotentials represent 

an implicit function defining, for given values of y/', q , and n, r *  as a function 

of 2,v. When it has been rationalized and cleared of fractions, the results are 

an algebraic equation of eighth degree in r , which is very difficult to solve and 

whose analytical solution presents unsurmountable difficulties. In the case of 

pure rotational distortion i.e. (q =0), equation (2.46) can be reduced to a cubic 
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equation and is solvable in terms of circular functions. In case of a purely tidal 

distortion i.e. (n = 0), equation (2.46) becomes a quadratic, which could also be 

solved for r*  in a closed form. However, in general case of rotational and tidal 

distortion interaction, any attempt at an exact solution of (2.46) for r*  

,becomes virtually hopeless. Therefore approximate solutions are sought by 

successive approximations. The desired approximate solution of equation 

(2.46) for r*  as a function of A and v in the form of series expansion as 

obtained by and written in the ascending power of ro  is 

r*  =r0 [1i-(112 q+nx)r0 3  + P3  q ro 4  + P4  q ro 5  F (1)5  q +3 q 2  P2 2  +3 q P2  n 406  

-1-(P6 q+7 q 2  P2  P3  +7 q P3  nx)ro7  +(P2 q+8q2  P2  P4  ± 8 q P4  nx+4q 2  P3 2  )ro8  

+4/58  q+9q 2  P3 P4  +9q 2  P2  Ps  ÷ P5 n 409  

+(/99  q+10q 2  P2  P6  + 1 0 q 2  P3  P5  +10qP6  nx+5q2 p42 )roio 

+(Pio  q+ 1 1q 2  P2  P7  +1 1q2  P3  P65  + 1 1q 2  P4  P5 +11q nx)ron  + ...] 
(2.47) 

where x=1-v2  and ro = 	 -q 

This is a basic relation determining the shape of a Roche equipotentials 

surface igs  = constant. Kopal (65), Mohan and Singh (87) used this relation to 

find various physical parameters V,„ S , , g, g -1  explicitly in terms of series 

expansion in powers of ro  . The series expansion for distortion parameters no 

doubt look appealing from the theoretical point of view. 

In order to establish the convergence of series (2.47) numerically, we 

take the help of procedure, generally, adopted to test the convergence of any 

infinite series. A finite sequence {5'} of partial sums of series (2.47) is 

constructed by taking D =1. Four our convenience, only five sums have been 

considered which are given as 

1 
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= ro  + (P2  q + nx)r0 4  

S3  = S, + P3  q ro 5  , 

S 5  = S 3  + P4  q ro6  +(P5  q+ 8 P3  P4  q 2  +8 P4  qnx-1-4 P3  2  q 2  )1.0 7  

S7  =S5  +(q P5 +7 P2  P3  q 2  +7 P7  q n x)r0 8  

S = S7  + (P9  q +9 P3  P4  q 2  +9 P2  P5  q 2  +9 P5  q n 40 9  etc 

(2.48) 

Thus the approximate value of r' can be estimated either from each 

value of partial sums or computed by adding all these partial sums. To 

establish the validity of convergence of this series to r *  a numerical method is 

applied to equation (2.2) to find another approximate solution of r. This new 

approximate value of r helps us to estimate the growth of errors which arise in 

each computed value of the partial sums given in (2.48). 

We apply fixed- point iteration method to compute r*with specified error 

tolerance. An equation of the form 

r= F(r) 	 (2.49) 

can be derived from equation (2.2) so that any solution of (2.48) is the solution 

of (2.2). The iteration function F(r) for solving (2.2) can be chosen as 

F(r)=1[1+qri Pi (2)rJ+1  +nr 3  (1—v 2 )1 
V 	j=2 

(2.50) 

The iterative sequence generated by the recursion formula 

r,+1 = F (r,), i = 0,1, 2 	 (2.51) 

will converge to a point r for which equation (2.49) is satisfied. The value of r 

thus computed with desired accuracy is written as re x p  for avoiding the 

confusion between the two values of r . 
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2.5.2 Numerical Computations 

The fixed- point iteration technique proposed in section (2.5.1) may be 

used to determine the value of r which gives us the shape of outermost 

surfaces of rotationally and tidally distorted gas spheres. Numerical 

computation for (2.51) have been performed with initial approximation 

ro  = 	.1 	, for some specified values of tit:, n, and q . This value of 
Vs — q 

vs*  and q were selected in such a manner that the distorted models are well 

within the respective Roche lobes. The values of rexp  is computed with 

desired accuracy of 0.000005. 

In order to exhibit the convergence of the series r in (2.7) 

numerically, each partial sum S . (i,=1,3,5,7,9) is computed for the same 

specified values of ro , tit e s  ,n, q, 0 and 0 and is compared with the values of 

rex , .Computed from equation (2.51) the percentage error needed to see the 

growth of errors in each partial sum relative to re, is given by 

rev. — Sit  ES = 	x100, i=1,3,5,7,9 	 (2.52) 
rexp  

In order to exhibit the effect of rotation on the shape of rotationally 

distorted models, we present the values of r„p  , S, (i,=1,3,5,7,9)in Table 2.1 

(a), 2.2 (a), 2.3 (a) . for various combinations of 0 and 0 on the outermost 

equipotential surfaces tvss =2.5,5.0,10.0 of rotating models. The results written 

in parenthesis just below the values of S; , indicate the percentage error in it 

with respect to r„p  . The results presented in Table 2.1 (b), 2.2 (b), 2.3 (b) 

show the effect of tidal forces on the shape of the outermost equipotential 
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surfaces vs*  =2.5,5.0, 10.0 of tidally distorted models. Finally the results shown 

in Tables 2.1 (c), 2.2 (c), 2.3 (c) and 2.1 (d), 2.2(d), 2.3 (d), 2.4 (d) are, 

respectively, the effect of nonsynchronously and synchronously rotating binary 

systems on the outermost surfaces of the equipotential surfaces 

yrs  = 2.5, 5.0, 10.0 

2.5.3 Analysis of the Numerical Results 

Results presented in Tables 2.1, 2.2 , 2.3, 2.4 (a, b, c) and Table 2.5 

essentially give the difference between the numerically computed value of r 

on the outer most surface at difference using exact equations (2.2) and the 

corresponding values of r as obtained from series expansion (2.7) when terms 

up to difference order are included. Where as Tables (2.1) correspond to 

purely rotating stars of different dimensions for n=0.2 (w: is value of y/ at the 

outer most surface, smaller the value of v  more extended is the model), 

Table (2.2) corresponds to tidally distorted stars and Table 2.3 (a, b, c) to 

rotationally as well as tidally distorted stars. Tables 2.3 (d) represent a 

synchronously rotating binary system. Where as values of n ,q are reasonably 

small in these cases, in Table (2.5) we present a situation in which values of 

n ,q are large. 

Our results show that where as in the case of purely rotating models 

Tables 2.1 (a) , 2.2 (a), 2.3 (a) the maximum percentage difference in the value 

of S9  (when all terms in series expansion 2.7 are included) and corresponding 

values of rexp  computed numerically using (2.2) is only 0.402609 for most 

extended model given in Table 2.1(a) for v:= 2.5, it is 0.418518 in Table 2.1 

(b) for v; =2.5 for tidally distorted models, 0.425011 in Table 2.1 (c) for V = 
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2.5 for rotationally and tidally distorted model and 1.440326% in case of Table 

2.4 (d) for a synchronously rotating binary system. In all these cases values of 

n ,q can be considered to be reasonably small. However in Table 2.5 when 

n ,q are taken large for an extended rotationally and tidally distorted model, 

maximum value of this percentage difference is as high as 18.0044%. 

Our numerical results in Tables 2.1, 2.2, 2.3 and 2.4 also show that the 

series expansion (2.7) shows a converging trend as the value of percentage 

difference between values computed from it and value of 	computed from 

(2.2), the value of percentage difference decreases (except on account of 

truncation errors in certain cases) as more and more terms are included in its 

expansion. It is expected that even this small percentage difference is 

expected to reduce further if higher terms are included in series expansion 

(2.7) (as has been done by Mohan et al. in certain cases in their series 

expansion and by us also in our subsequent studies). 

It may be noted that for points inside the star tif >Iv:, the trend of 

results in Tables 2.1 (a, b, c), 2.2 (a, b, c), 2.3 (a, b, c) and 2.4 (a, b, c) 

therefore shows that points inside the star the difference between the value of 

✓ computed using series solutions (2.7) and its value as obtained numerically 

from (2.2) is expected to be less than difference in their values at surface 

Off =yiss ) . However at points which are outside the star (0 < v <yrs) the 

difference in the value of 1,v as computed from series solutions (2.7) and as 

obtained through numerical solution of (2.2) is expected to be more than the 

difference in their values on the surface. Difference will increase as 

yr decreases towards zero. However it may be noted that in problems regarding 

structure and pulsations of rotationally and tidally distorted stars analysis is 
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usually carried out at points inside the star where series expansion (2.7) yields 

quite accurate values of 

The numerical study thus shows that the sequence of partial sums 

contain more error for smaller values of w: and 	eh values of n and q . As 

w: decreases we are nearing Roche limit. As n increases star is rotating more 

rapidly and as q increases mass of accompanying star increases. Kopal had 

assumed that in his studies n and q are small and star is well within Roche 

limit. Our analysis thus shows that series solution (2.7) reasonably justified for 

rotationally and tidally distorted stars in which values of n and qa)d. not large 

and star is well within Roche limit. 
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CHAPTER III 

EFFECT OF INCLUDING MASS VARIATION IN COMPUTATION 
OF THE POTENTIAL ON THE EQUILIBRIUM STRUCTURES OF 

ROTATIONALLY AND TIDALLY DISTORTED POLYTROPIC 
MODELS 



Investigators such as Kopal (65), Mohan and Singh (89), Mohan et 

al.(70, 85, 90,92) approximate the equipotentials surfaces of rotationally and 

tidally distorted models by equivalent rotationally and tidally distorted Roche 

equipotentials This approximation is valid for highly centrally condensed types 

of gaseous spheres. In the case of models in which the central condensation is 

not too large, this approximation is not justified. It will, therefore be useful to 

see if in such types of models which are not too centrally condensed, the 

approximation of actual equipotentials surfaces by the Roche equipotentials 

surfaces can be improved upon. 

In the present chapter we study the equilibrium structures of rotationally 

and tidally distorted polytropic models by including in an approximate way the 

effect of mass variation inside the star on its equipotentials surfaces. The 

modified Roche equipotential surfaces of such rotationally and tidally distorted 

stars are presented in section 3.1. In section 3.2 the problem of determining 

the structures of rotationally and/ or tidally distorted stars using Mohan et 

al.(85) approach, as modified by us taking into account the effect of mass 

variation inside the star on its equipotentials surfaces, is then discussed. In this 

section mathematical expressions determining the equipotential surfaces, 

volumes, surface areas etc. are first derived and then used to obtain the 

system of differential equations governing the equilibrium structures of 

rotationally and tidally distorted stars. In section 3.3, the modified approach has 

been used to numerically determine the equilibrium structures of rotationally 

and tidally distorted polytropic models. Numerical results for the inner structure 

and shape and other physical parameters of certain rotating polytropic models 

with polytropic indices 1.5, 3.0, 4.0 are next obtained in section 3.4. Numerical 

results thus obtained have been compared in section 3.5 with the results 
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earlier obtained by Mohan and Sexena (85) and other authors who while 

computing Roche equipotential surfaces considered the whole mass of star to 

be concentrated at its centre. Certain conclusions based on this study have 

finally been drawn in section 3.6 

3.1 EQUATION OF MODIFIED ROCHE EQUIPOTENTIAL 

In order to investigate the equilibrium structures and stability of binary 

stars, the concept of Roche equipotentials and Roche limits have often been 

used in literature. While computing Roche equipotential, the whole mass of the 

sphere is assumed to be concentrated at its centre. This approximation, though 

reasonably correct for highly centrally condensed stellar models, is not true for 

stars which are not very highly centrally condensed. The concept of Roche 

equipotentials therefore needs to be modified in case of stars which are not 

highly centrally condensed taking into account the effect of mass variation on 

its equipotential surfaces inside the star. The results on Roche equipotential 

based on this modification and which are of practical interest to the present 

study are summarized below. 

Let Mo  and MI  be the total masses of the primary and secondary 

components of a binary system which are assumed to be gaseous spheres. 

The primary is much larger than the secondary (M0  > MI) . .Let MD  (r) represent 

the mass interior to a sphere of radius r inside the primary component. Let 

D be the mutual separation between the centers of these two masses. Further 

suppose that the position of the two components of this binary system is 

referred to a rectangular system of cartesian coordinates having the origin at 

the center of gravity of mass Mo , the X -axis along the line joining the centers 

of the two components, and Z - axis perpendicular to the plane of the orbit of 
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the two components (fig 3.1), then the total potential yr due to the gravitational, 

rotational and other disturbing forces acting at an arbitrary point 	P(x,y,z) 

may be expressed 

X 

FIG. 3.1 AXES OF REFERENCE 

=G M°(r)  +G M' + 1
2  s

-2 2  ((x 	m .') t 	
)2 +y2 r 1 	 Mo  + 1  

(3.1) 

where all other symbols have same meanings as assigned to them in chapter 

II. Thus, the three terms on the right hand side of (3.1) are, respectively, the 

potential arising from the mass Mo  of the primary, the disturbing potential of its 

companion of mass M1  and the potential arising from the centrifugal force. In 

first term on the right hand side of (3.1) M, of (2.1) is replaced by M 0 (r) and is 

based on the fact that in a self-gravitating spherical configuration, the 

gravitational potential at a point inside the sphere depends only upon the mass 

enclosed within the concentric spherical surface passing through that point. 

Equation (3.1) in nondimensional form can be expressed as 

1 = z   Ar *  +nr" (1— u 2 ) 	(3.2) 
r 	111-2,1,r *  +r*2  
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where v.  =  D yr Hi 2  
	 , and 

GM0  2M0  (Mo  + M1) 
z= Mo  

Mo 

is the nondimensional form of the total potential ty and z the ratio of mass 

Mo(r) inside spherical surface of radius r of the primary to its total mass. Also 

A= sing cos ,p = sin 0 sing and v = cos9, r,0,0 are as earlier the spherical 

polar coordinates of the point P . Obviously z is a nondimensional parameter 

which becomes zero at center of primaries Mo  and one at the surface of the 

primary. Also as in chapter II, 

q = 	, mo (3.3) 

is a nondimensional parameter representing the ratio of mass of the secondary 

over primary and 2n represents the square of the normalized angular velocity 

n. In equation (3.2) if q=0. It reduces to the potential of a rotating spherical 

model rotating with angular velocity n and ifn=0, then it reduces to the 

potential of a spherical model distorted only by the tidal effects of a companion. 

The angular velocity n and the nondimensional parameter n are defined in the 

similar way as defined by (2.4) and (2.5) in section 2.1 respectively. 

Equipotential surfaces in nondimensional form 	represented by 

v =constant are the modified form of the Roche equipotentials of rotationally 

and tidally distorted spherical models when the effect of mass variation in 

computation of potential at points inside the primary is considered. On 

substituting z = 1, in (3.2) or Mo (r) = Mo  in (3.1) it reduces to the Roche 

equipotentials which were earlier obtained by Kopal. 
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Adopting an approach similar to the one adopted by Kopal (65) and 

Mohan and Singh (87), we define a nondimensional variable ro  by the relation 

z r = 	 0 	*
-q 

Then following Kopal (65), (r, 9,q) on the surfaces of the modified Roche 

equipotentials given by (3.2) are connected through the relation 

2 r *  = r *  = ro [1+ r°3  ao +  135  ro4  + q±34-r05  +r06  { qP5  +
3a0

} 
z 	z 	z z2  

	

6  1 	g 	7  1 (8q ao  P4 ) +  4 
 q + ro7 	P +  (7 q a P3 ))+ ro (

q P + 
	

22p32
}-1- 

	

Z z 	 z z 

	

9 q P, 1 	9n2 p p4  
+ ro  { 	+ —(9 q ao  P5 )+ 	32  

Z z 
2 

10 q P6 1 	5,1 	2  
ro  { -+ 

z
(10 q a ° PO+ `12  (P4  +2P3  P5 )} + 

z  

(3.5) 

where a0 =
qP2 

+n(1—v2) ,PJ =P1 (A) are Legendre polynomials and terms up 
z 	z 

to second order of smallness in n and q are retained. This relation can be used 

to obtain the modified shapes of Roche equipotentials yr = constant inside the 

primary. (Outside primary where z=1, earlier approach and this approach 

become identical). Following Kopal (65) and Mohan, Saxena and Agarwal (92), 

the expressions for Volume Vy, , Surface area S, and rw  enclosed by the 

equipotentials surface v = constant inside the primary are given by 

(3.4) 
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4 	3  3 	2nro3 	12 2 	8 	32 2 6 15 2 8 
Vy/  = D ro  [1+ 	z  +(-5z2 q +-5z2 nq +-5z2 n )ro  + —7 z2  q r0  

2 
q2 r010 +...] 

z 

2 
2 	4nr03  7q2  14nq 56n2  6 9q2r08  

S = 47r Dro- 	
3z 	5z2 	15z 2  

[1+ 	
+ ( 4-  3 	15z2  + 	)r°  + 

v 

	

	
7z2 

1 lq

z2  

2r010  + 	+..] 
9 

2nr 3  
rtv =Dr0  [1+ 	° +( 

 4 
 q 2 	

8 
	nq+

6 
n2)ro6 + -5q2 ro8 

3z 	5 z 2 	1522 	45 z2 	7z2  

2 	2 
r

10 , 
3Z2  q° 	 (3.8) 

Inverting the above relation we have 

*10 
4 	

:8 2q..'7 rw  
r =r[1 2nrill

*3 
 ( 	472 	nq 8 	4 

 n )r2 	
*6 5q2ry 

3z 	5z2 	15z2 	45z 2 	7z2 	3z 2  
+...] 

(3.9) 

where 7; = rv /D, r; being the nondimensional form of r, . Outside primary 

z = 1 , and these expressions are same as obtained by Mohan et al. (92). 

Similarly using equations (2.13), (2.14) we have obtained explicit expressions 

for the value of g and g7 at points inside the primary as 

(3.6) 

(3.7) 
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8nr3 
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2 3 	2 	40 2

)r°  6 
	51

2 q
2r08 

g = D2 
ro 	 3z 	z 	

2 W + 	n
2 	z 	9z 	 14z 

13 n  2r  10 +...] 3z2 /  
(3.10) 

D2  r
° 
2 	8nr 3 	31 2 	62 	584 	6 	101  2 8 

ill 
g -1 = 	[1+ 	° +( 2  q + 

15z 2 
 nq+ 	2  n2  )7-0  + 

14z2 
q ro  

zG y, 	3z 	5z 	15z 	45z 	 14z 

75  
9z2 q

2
'1)

10  +...] 
(3.11) 

As in earlier studies in obtaining the above expressions terms up to second 

order of smallness in z, n and B are retained. 

3.2 METHOD FOR DETERMINING THE EQUILIBRIUM STRUCTURE OF 
ROTATIONALLY AND TIDALLY DISTORTED STARS INCLUDING 
THE EFFECT OF MASS VARIATION IN COMPUTATION OF 
POTENTIAL INSIDE THE STAR 

Once the equipotentials surfaces of a rotationally and tidally distorted 

star are approximated by the modified Roche equipotentials to take into 

account effects of mass variation inside the star on its equipotential surfaces, 

the approach followed by Kopal (65), Mohan and Singh (89), and Mohan and 

Saxena (85) may now be used to evaluate explicitly the values of modified 

distortion parameters u, v, w, fp  and h. Following the approach discussed in 

chapter II in section 2.3, these modified distortion parameters become 

1 	*2 	2 	4 	2  *6 	1 	2 *8 
u =1

5z2  q + 15z2 
nq+ 

 4522 
	n )r --q r 

1 	2 *10 – 
9z2 

 q ry, +... 

(3.12a) 

*3 

	

4nry, 	7 	2 
	

142 
 nq+ 

 682  2 n
2 

)r
*6 	312 q2r*s 

	

3z 	
(
5z2 

q + 
15z2 

3 	 *10 ---q2  r, +...] 
z 2  (3.12 b) 
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*3 
1 	4 nr 	23 46 	212 2 *6 	81 	2 *8 IN= 	+( 2  q2 	nq+—n )r 	rw  
z 	3z 	5z 	152 	4522 	14z 

7  2 + 
+—Tq rIP10 + ...]  (3.12c) 

4nr" 	22 44 	128  2 «6 	79 2 *8 fp =2[1 	 ( 	q 2 	nq+ 	n )r 	q r  3z 522  1522  4522 	1422 Cv  
_ 6 2 2  q 2 7.1*10 +...] 

9z 

(3.12d) 

( 14 	28 	56 	*6 	46   a  2 . 8 
5 2 q2  + 1522  nq+  4522 n2 )rly 	1422  7 

rw 

34 2 10 
— 9z2 q 

* 
+... 

(3.12e) 

where r; = rdD is the nondimensional form of r, and terms up to second 

order of smallness in z, n and q are retained. For z =1, the above expressions 

reduce to the expressions which were earlier obtained by Mohan and 

Saxena (85). 

The values of P,„ py„ Ly, etc. on the various equipotentials surfaces of a 

rotationally and tidally distorted gaseous sphere may now be obtained by 

solving the system of differential equations (2.30), (2.33), (2.34) and (2.39) 

subject to the boundary conditions( 2.40)and using the values of the correction 

factors fp  and fT  as given in (3.12). 

It may be noted that approximating the equipotentials surfaces of a 

rotationally and tidally distorted model by Roche equipotentials, the structure of 

the star is not approximated by the structure of a Roche model. This is evident 
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from the fact that in the case of no distortion (n =q = 0) and z=1 equations 

(3.12) give u = v = w = fp  = fT  =1 and the system of differential equations 

(2.30), (2.33), (2.34) and (2.39) reduce to the equations governing the 

equilibrium structure of the original undistorted star and not of the undistorted 

Roche model. 

Usual numerical methods for solving the stellar structure equations can 

be used to integrate the system of differential equation (2.30 to 2.39) governing 

in the equilibrium structure of a rotationally and tidally distorted gaseous 

sphere. However, at each step the values of the distortion parameters 

u,v,w,fp  and fr  must be computed using (3.12). 

In case a gaseous sphere is being distorted by rotational forces alone 

(or tidal alone) we may set q = 0 (or n= 0 )in equation (3.12) and still use the 

above approach in determining the equilibrium structure of the distorted model. 

For the structure of the primary component of a synchronous binary system we 

should set n = (q +1)/2 

If the thermal properties are not considered important and only 

hydrostatic equilibrium of a rotationally and tidally distorted gaseous sphere is 

to be investigated then we need only to integrate equations (2.30) and (2.33) 

subject to the boundary conditions 

My, = 0 at the center rw  = 0, 

and 

Mw  =110 , Pw  =0 or Pvzpw  = 0 or 	at the free surface ry  = Rw 	(3.13) 
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In expressions (3.15) we have only retained terms up to second order of 

smallness in n and q . Therefore the above analysis is valid for the rotationally 

and tidally distorted models in which the distorting forces causing rotational and 

tidal distortions are not too large. 

The solution of the boundary value problem (2.40) with modified 

parameters as defined here determines the equilibrium structure of a 

rotationally and tidally distorted model. For computational work, we find it more 

convenient to work with ro  in place of M y, v  or ry  as the independent variable. 

Variable ;13  defined in (3.4) is connected with variable r,, explicitly through 

relations (3.9). By using these relations in (2.30), (2.33), (2.34), (2.39) and 

(2.41), the system of equations governing the equilibrium structure of a 

rotationally and tidally distorted model can be expressed as: 

di 1 v  
	= 4 ir D3  pi, ro2fi  
d ro  

dPv 	G M py, f 2  
dro 	Dr° 2 

dLv  
	= r D3  pvro 2  
dro  

dTv 	3 K p 	f  
dro 	16z D acTv3  ro 2  3  

(3.14a) 

(3.14b) 

(3.14c) 

(3.14d) 

where fi ,f2 ,f3  are certain functions of n, q, z and ro  incorporating the effects 

of rotation and tidal distortions on the equilibrium structure equations of a 
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distorted model. These can be expressed explicitly in terms of z, n, q and ro  

such as 

, 4nro3 	36 	72 	864 , 6 55 	8 
fi 

 
=1+  - + 	+nq + —n2  )7.0  + 	q-

2 
 ro  

z 	5 z 	15 z2 	45z2 	7 z 
(3.15a) 

2 2 	4 	48 2\  6 	9 	2 8 
f2 

 =z[1
—

(
5Z2 q + 15Z2 nq+  45 z2  n ir° 	14z2  q ro 

8 2 10 +...] — 	q ro  
9 z2  

(3.15b) 

3  

	

4nr0  6 	12 224 6 24 8 f3  =1+ 	+( 2 	q2  + 	nq+ 	n2 )ro  +—q2rn  
3z 	5 z 	15z 	45z 	14z2  
20 

+—Tq2 r°
10 +... 

9z 

(3.15c) 

In the above expressions again terms up to second order of smallness in z, n 

and q are retained. The boundary conditions given in (2.40) now become 

= 0 at the center ro = 0 and 11, =Oor Pws , pv  =0 or pws  at the free surface 

ro = ros  (r„ being the value of ro  at the free surface). Also z=1 at surface and 

value of ro  at surface is given by 

1 
rOs = 	 

q 
(3.16) 

where vs` is the nondimensional value of the total potential vi on the 

outermost equipotentials surface of the rotationally and tidally distorted stellar 

models. 

26 	10 
+-2q2ro +... 3z 
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3.3 EQUILIBRIUM STRUCTURES OF ROTATIONALLY AND TIDALLY 
DISTORTED POLYTROPIC MODELS TAKING INTO ACCOUNT OF 
MASS VARIATION IN COMPUTATION OF POTENTIAL INSIDE THE 
STAR 

Polytropic models have frequently been used in literature to depict the 

inner structures of realistic stars. Chandrasekhar developed the theory of 

distorted polytropes. Since then the several investigators have discussed the 

structure of a rotating polytrope. However not much attention seems to have 

been paid to the problems of determining the effects of tidal distortions alone or 

the effects of tidal distortions in the presence of rotation on the equilibrium 

structures of polytropic models. 

In this section we consider the feasibility of using the approach 

developed in section 3.1 and 3.2 of this chapter to determine the inner 

structures and equilibrium configurations of rotationally and tidally distorted 

polytropic models of stars. 

Suppose a polytropic model is subject to rotation and tidal distortion then 

its structure will become a rotationally and tidally distorted polytropic model. 

Following the approach of section 3.2 we shall approximate the equipotentials 

surfaces of this distorted model by modified Roche equipotentials. Let P, 

denote the pressure and p, the density on the equipotentials surface yr = 

constant of the distorted model. Then the value of the density and the pressure 

on the equivalent surface of the corresponding spherical model will also be 

p„ and P, respectively. We shall assume that the distorted model also behave 

like a polytropic model so that p and P„ are connected through the polytropic 

type of relations. 
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Ptv =Pcv evN+1  and p, =pcy, 	 (3.17) 

where Pet, and pcw  are the values of P y, and p y, at the center and By, is 

some average of B on the equipotential surface 	constant. In the case of 

polytropic models, the following equations 

dM
w 	 = 4 it r p and 

d P y  G M y n  
' d ry 	2 r- 11/ 

 d rw 

(3.18) 

which govern the hydrostatic equilibrium structure of rotationally and tidally 
distorted gaseous spheres can be combined together with (3.17) to yield 

a 2 
d 

( 
dew r,2  = 	2 	N — r y  G y  (3.19) 

dr d \ 

where a 2 
 = (N +1) Pew  

47z-  p2ev, 

If we change the independent variable r„ into ro  equations (3.19) is reduced 

to 

de y 	D 2  
A (z n q, ro )— = – 	B(z,n,q, ro yN  

d ro 	 dro  
(3.20) 

2 	 r
" 

d 
d r where A(z,n,q ,r 	
d r 

)=r 	and B(z,n,q ,r0 )=r 2 
d 

. Explicit expressions for 
r 0 

these can be written as 

A(z,n,q,r0 )=r0 2  \ 2 	4 	162 	2  
1- 	

2 
ro

6 6q 2  
7z 	

rA8 10q 2  r + ••• 

(3.21) 

q + 	 n 
5z 	15z2 

nq+ 
 15z 9 z 2  
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4n c, 
3 ( 36 	24 	96  2 \ 6 	55 	8 26 6 B(z,n,q,r0 )= ro-2 

 1 +—r + — + 	nq+ 	n ro  + 2  q 2  r0  + -- ro  
z 	5z 	5z 2 	5z 2 	 2  

2  d 

	

rn 	 
where z = 

M°  (r) 	d ro  
0 M° 	ro2 d 	) 
ro 	s  

(3.22) 

(3.23) 

As regards the boundary conditions since 	andd Pt, must be maximum 

at the center and zero at the free surface, these obviously lead to the 

conditions 9,„ =1 and 
dO
' 	 = 0 at the center and 9w  =0 at the free surface. 

dro  

Thus the boundary conditions which equation (3.20) must satisfy are 

ro = 0,0v  =1, dew  =0, at the center 
dro  

and ro  = ro„ 9w  = 0, at the surface 	 (3.24) 

ros  being the value of ro  on the free surface. 

The quantity a as defined in (3.19) is of the dimension of length. If we 

set ry, = a then 	will be nondimensional variable defined for the equivalent 

spherical model. It corresponds to the usual Emden variable 	of the Lane – 

Emden equation for an undistorted spherical polytropic model when terms upto 

second order of smallness in distorting parameters z,n, and q are retained. 

It may be noted that the approximation of the Roche equipotentials 

surfaces by modified Roche equipotentials has not basically changed the 
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structure of the polytropic model because in the absence of any distortion z =1, 

(n= q = 0), equation (2.6) reduces to the usual Lane- Emden equation of an 

undistorted polytropic model with index N in non dimensional form and not to 

the equation governing the equilibrium structure of undistorted Roche model. 

In the case of a rotationally and tidally distorted polytropic model or a 

model which is a primary component of binary system, let K denote the ratio 

between the undistorted radius 1?,, of the primary and D the distance between 

the centers of the two components of the binary system. Then following Mohan 

et al.(85) we can write 

D D 1 
Tot  = —4u = 	= (3.25) 

where 	is the value of 	at the outermost surface of the undistorted 

polytropic model. With this substitution equation (3.20) can be written as 

dr 

d [ Afro 	odev. 	2 0: )3  fro  
o  dro 	K 

Equation (3.26) subject to the boundary conditions (3.24) determines the 

equilibrium structure of a rotationally and tidally distorted polytropic model. On 

setting q =0 the equation (3.26) can be used to determine the equilibrium 

structure of a polytropic model distorted by rotation alone. If we set n = 0 then 

the equation can be used to determine the equilibrium structures of polytropic 

models distorted by tidal forces alone. Also by setting n=(q+1)12 this 

equation can be used to determine the equilibrium structure of the primary 

component of a synchronously rotating binary system. 

(3.26) 
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In order to determine the numerical solution of the second-order 

nonlinear differential equation (3.26) subject to the boundary conditions (3.24), 

we can start integration of (3.26) (for certain specified values of N, „,k,n and 

dO 
q) from the centre using Ow  =1 and 	 at the centre (r0=0) as the initial 

dro  

conditions. The integration be continued till Ow  first becomes zero. In its 

computation we need the value of z at each step of integration to take into 

account the effect of mass variation inside the star on the shape of 

equipotential surfaces. These values can be calculated using equations (3.23). 

The value of ro  (i.e. ros  ) when Ow  first becomes zero determines the outermost 

free surface of the model. Once the solutions of equation (3.26) are obtained, 

we know the values of Ow  for various values of the nondimensional 

independent variable re, varying from zero to ros . The pressure Pw  and the 

density pw  on various equipotentials of the distorted model may now be 

obtained through the relations (3.17) in the same manner as is done for 

undistorted polytropic models. Also, the radius r, of the topologically equivalent 

spherical surface corresponding to the equipotential surface 	= constant can 

be determined from (3.9) and written as 

r= ) 6 	 8 	10 ( 
	ti) ro [1+ 2n ro3 +(  4 

2 
 q2 

+ 	
8 nq+ 	76 n2 ro  + 5—iero 	2 	ro  +... 

K 	3z 	5z 	15z2 	45z 2 	7z 	3z 
(3.27) 

3.4 VOLUMES, SURFACE AREAS AND OTHER PHYSICAL 
PARAMETERS OF POLYTROPIC MODELS 

In this section we have developed explicit expressions to determine the 

volume, the surface area and the shape of a rationally and tidally distorted 
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polytropic model. In addition to this we have also shown in this section how the 

surface area, the shape and the volume enclosed by an equipotential surface 

located in the interior of a rotationally and tidally distorted polytropic model may 

be determined. On using (3.25) with (3.6), the total volume enclosed by a 

rotationally and tidally distorted polytropic model is given by: 

471- (a93  3  [, 2n 3  ( 12 2 	8 	32 2) 6 	15 2 8 	2 2 10 -5--z2  q +-5z2 nq+-5--z2 n ros +-7z2 q Vy = T i - ros 1  + 7 ros + 	 ros +-2-q ros z 
(3.28) 

Similarly on using (3.25) with (3.7) the total surface area covered by the 

free surface of a rotationally and tidally distorted polytropic model can be 

expressed as : 

2 
sv  =.47i.  gi  r2 1+  4nr3  + 7 a2  +  14  ( 	 

k 	os 	3z  os 	5z2  v 	
56 	2) 6 	9 	2 8 	11  2 10 

	

nq+ 	n ?I), +-- q ro, +—q ros  
15z2 	15z2 	7z 2 	9 

(3.29) 

Also the shape of the outermost equipotential surface of a rotationally and 

tidally distorted polytropic model may be obtained by using (3.25) with (3.5) to 

obtain 

.2  2 
1 	3 qP3  4 q P4  5 	6 qP5 	 r=—ro [1+—ao ros  +—ros +—ros -Fro, {—+ 2 / K s  z 	z 	z 	z z 

7  , qP6  1 	,„ 	,qP7  1 ,„ 	, 4 2  „ 2, 
+ rips 	/qaor3)1+ros  t—+— kaqao  P4  ) 	r3  

Z Z 	 Z Z (3.30) 

ros9 {q1 +1  (9qa0P5)+29q2P3 114}+ 
z z 

2 

r05
10 

{—
qP9 +-1 

(10qa0 P6 )+
<,,  

{134
2 
 2P3P5}1 z z 

2 where a°- qP2  + n(1- zv)  and P., = P3 (2) are Legendre's polynomials with 
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2= sin° cos 0 , p =sin 9 sin 0, v = cos 9 and (r AO) being the polar spherical 

coordinates with the pole at the centre of the primary (c.f.(3.5) and (3.1)). Also 

value of polar and equatorial radius R p  and Re  are given by 

	

R p  =ros  R 	
(3.31) 

2  Re  =ros  R 1+ (1+ — 

	

[ 	n )ros3  +1ros4  +Ill): 	) 

	

-E  +(q 3q 	6  + z z 	z 	z 	—-T ros  z z 

q 7q 2 	7 	q 12q2 	8 	q 18q 2  , 9 

	

+(q + + —2)ros +(q + + —2—)ros + ( + 	 yos + 
Z z 
q 25q 2  10 z 	z 	

z 	z 

+( z  +  Z 2 )ros +... l 

(3.32) 

If we follow Geroyannis and Valvi ( 41) oblateness and ellipticity a and 

e which are used as measures of the departure of the shape of the star from 

spherical symmetry may be computed using 

6
_ Re Rp 

R p  

Re  —R p  
s= 	 

Re  

(3.33) 

(3.34) 

The values of gravitational force gp  at the pole and ge  at the equator are 

given by 

GM°  and g P 
Rp2 

(3.35) 

GM°  
ge= 12,2 

2q 2n 3 3q 4 4 q 5 	5q 6 q 2  
1—  (— 

Z Z  
+—)ros —

z ros --
z ros 	 r 

Z 	z 	Os 
6 

6q 7 

,z z 	 z z 

7q 2 q 2  , 8 9q 9 	9 q 20 q 2 	10  
— —7.08 	+ 2  )ros 	rOs 	+ 	2 ) ros +... _ z  

 

(3.36) 
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Polytropic model do not include energy conservation and therefore are 

not expected to be in thermal balance. However these models have been used 

in literature to compute the effect of rotation on variation in temperature and 

luminosity on stellar surface. Following Ireland (55) the effective temperature at 

[ = 	
v4 

any point on the surface of the star can be obtained as —7' 	8-  
T p j 	g 1, 

(3.37) where Tr  is the polar temperature. Once temperature is known radiative 

flux L at any point on the surface may be estimated using L= 
4 ac T 3  grad T 
3  P Z 

(3.38) Where X  is the opacity, T the gas temperature, a the radiative 

constant, and c the velocity of light. 

We have used relations (3.28-3:30) may be used to determine the 

volume, the surface area and the shape of a rotationally and tidally distorted 

polytropic model when terms upto second order of smallness in z, n and q are 

retained. In case we need the volume or the surface area or the shape of 

some inner equipotential surface of the 'distorted model then we need only 

replace ro, by 	the appropriate value of ro  for that surface in the above 

relations (3.28-3.30).Thus once the numerical solutions of the nonlinear 

differential equation (3.26) which governs the equilibrium structure of a 

rotationally and tidally distorted polytropic:model has been obtained, the value 

of re, thus obtained may be used in the above formulae to determine the 

volume, the surface area and the shape of the outermost equipotential surface 

of the rotationally and tidally distorted polytropic model. 

3.5 NUMERICAL COMPUTATIONS 

To obtain the inner structure, the shape, the volume and the surface 

area of a rotationally and tidally distorted polytropic model, equation (3.26) has 
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to be integrated numerically subject to the boundary conditions (3.24) for the 

specified values of the parameters N 4„, n, q and K which denote 

respectively the polytropic index, the radius of the undistorted polytropic model, 

the nondimensional measure of angular velocity of rotation, the ratio of the 

mass of the companion to the mass of the primary and the ratio of the 

undistorted radius of the primary to the distance between the centres of the 

primary and secondary. The value of z required at each step has to be 

computed from the equation (3.23). For a polytropic model distorted by 

rotational forces alone we should take K=1. In the case of the polytropic model 

being the primary component of a binary system the value of K must be 

chosen that the outermost surface of the primary component lies well within the us . 

Roche lobe otherwise the two stars will coalesce (cf. Kopal (65), page 11). 
"T■ 

For obtaining the numerical solutions, equation (3.21) has been 

integrated by us numerically using fourth-order Runge-Kutta method for the 

specified values of the input parameters. A series solution similar to the one 

available for undistorted polytropic models (see Chandrasekhar (7) page 95) 

was developed to start integrations at points near the centre. This serious 

solution is given by 

ew  = 

	

K 2  2 NK 4  4 2nK 2 	K 6  N(8N —5)  6 1(.4  N n ro  + 
 120 

 ro 	
15 z 	ro 	3x5040 

r + 	 
70 z 

r° + 
6  

[10N(122N2  —183N — 70) K  
2  (3q 2  + 2nq +8n2

) r° 
 + 

9x362880 	36z 
... (3.39) 

Taking starting values from this series solution at ro  =0.005 , numerical 

integration of equation (3.26) was then carried forward using Runge-Kutta 

method of order four. Using a step length of 0.005, numerical integration was 

continued till Ot, first became zero. Relations (3.20), (3.28) and (3.29) were 
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then used to determine the shape of the distorted polytropic model, its volume 

and its surface area. 

Results obtained for different values of the input parameters are 

tabulated in Tables 3.1 to 3.3. The value of the parameter has been taken as 

one for the rotationally distorted model and 0.5 for the tidally distorted or 

rotationally and tidally distorted models. (This value of K provides the outer-

most surface of the model well within Roche lobe for each considered case). In 

Table 3.1 we present the values of Ov  for various types of distorted polytropic 

models of indices 1.5, 3.0 and 4.0. Following Chandrasekhar (21), Linnell (74) 

and James (56) we have also computed the results in Table 3.2 by taking 

a =1. The values of the volumes and the surface areas and other physical'  

parameters obtained for each of these distorted models are then presented in 

Table 3.3. It will be interesting to compare the present results in which effects 

of mass variation in computation of potential has been includes with 

corresponding results earlier obtained by Mohan et al (85) in which entire mass 

of the model is supposed to be concentrated at centre in computation of 

equipotential surfaces. The Results shown in parenthesis for each models in 

Table 3.1 (a) (c) and Table 3.3 (a) - (c) represent the result earlier obtained by 

Mohan and Saxena (85). 

3.6 ANALYSIS OF RESULTS 

Results given in paranthesis in second rows of entries in Tables are 

reality the values of 9, for respective polytropic models as obtained by Mohan 

et al. (85) who earlier carried out correspOnding computations assuming whole 

mass to be concentrated at the centre. The results of the Table 3.1(a) show 

that for the polytropic model of index 1.5, the value of 0,, for each of the 
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distorted model are larger compared to their corresponding values of the 

undistorted model (values tabulated in column I for (n = q =0) Our values for 

0,p  in the case of undistorted and rotationally distorted polytropic model for 

index 1.5 are smaller in comparison to the corresponding results obtained by 

Mohan and Saxena (85) and listed along side in parentheses. However, with 

the introductions of tidal effects, our valifes for O,, increases in comparison to 

the corresponding results as obtained by Mohan and Saxena (1983). For the 

polytropic model of index 3.0 however, whereas the values of 	for the 

rotationally and tidally distorted models are larger than the corresponding 

values for undistorted model, the values of Bcp  for tidally distorted models are 

marginally smaller than their corresponding values for undistorted polytropic 

model. A comparison of our results for the undistorted models of index 3.0 with 

the corresponding results obtained by Mohan and Saxena (85) shows that 

results obtained by us are in complete agreement with their results. However 

our values for IV  for the tidally distorted models are marginally less in 

comparison to values for 0ip  as obtained by Mohan and Saxena (85). However 

the values of Bw  obtained by us for rotationally and tidally distorted models are 

generally larger larger in comparison to the corresponding values obtained by them. 

As regards the comparison of our results for the polytropic model for index 4.0, 

with the corresponding results obtained by Mohan and Saxena (85) observed a 

trend similar to those in the case of results for polytrope. 

The results presented in Table 3.3 (a), (b) and (c) exhibit the values of 

volumes, surface area, and other physical parameters for rotationally and 

tidally distorted polytropic models with polytropic indices 1.5, 3.0, 4.0, 
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respectively. In each Table results shown in parenthesis are those obtained 

by Mohan and Saxena (85). A comparision of the results of volume Vv„ and 

surface area Ste  for rotationally and/ or tidally distorted model with undistorted 

model for polytropic indices 1.5, it indicates that our results are larger in 

comparison to undistorted model. However, for rotationally and tidally 

distorted models these are smaller. As regards the polytropic model of index 

3.0, values of By, generally increased in comparison to the undistorted model 

with the introduction of distortion terms. A similar trend is noticed for the 

polytropic model of index 4.0. The values of the shape parameters a and c 

generally decreased in the presence of distortions. The values of T e /Tp  and 

Le /LP  have generally increased with the introduction of rotational effects and 

decrease with the tidal and combined rotational and tidal effects. The results 

in a way indicate that the rotational forces partly restore the contraction in the 

equatorial plane caused by the tidal force. 
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Table 3.1(a) : Values of Ov  for rotationally and/ or tidally distorted 
polytropic models N= 1.5 

x=ro/ros  K =1.0 
n =0.0 
q =0 .0 

K =1.0 
n =0.1 
q =0.0 

K =0.5 
n=0.0 
q =0.1 

K =0.5 
n =0.1 
q =0.2 

K =0.5 
n =0 .55 
q =0.1 

K= 0.5 
n =0.6 
q =0.2 

0.0 	) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.1 0.97652 0.97797 0.97787 0.97834 0.98008 0.98027 
(0.97797) (0.97925) (0.97797) (0.97814) (0.97887) (0.9789) 

0.2 0.90887 0.91146 0.91438 0.91613 0.92266 0.92337 
(0.91446) (0.91923) (0.91446) (0.91509) (0.91781) (0.9181) 

03 0.80492 0.81665 0.81100 0.82013 0.83339 0.83483 
(0.81665) (0.82619) (0.81666) (0.81791) (0.82334) (0.8239) 

0.4 0.67592 0.69488 0.69488 0.70025 0.72068 0.72291 
(0.69488) (0.70906) (0.'69489) (0.69673) (0.70481) (0.7057) 

0.5 0.56068 0.57797 0.56068 0.56291 0.57276 0.57384 
(0.56067 (0.57797) (0.56068) (0.56291) (0.57276) (0.5738) 

0.6 0.39210 0.42490 0.42497 0.43282 0.46345 0.46687 
(0.42490) (0.44279) (0.42491) (0.42720) (0.43736) (0.4384) 

0.7 0.25855 0.29638 0.29647 0.30456 0.30725 0.34027 
(0.29638) (0.31202) (029639) (0.29837) (0.30725) (0.3082) 

0.8 0.14018 0.18112 0.17587 0.18890 0.20175 0.22347 
(0.18112) (0.19219) (0.18112) (0.18250) (0.08592) (0.1894) 

0.9 0.04028 0.08218 0.08228 0.08910 0.11712 0.12040 
(0.08218) (0.08756) (0.08219) (0.08283) (0.08592) (0.0862) 

1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Note: Results in paranthesis shown in these and subsequent tables are the 
corresponding results as obtained earlier by Mohan and Saxena (1983). 
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Table 3.1 (b) : Values of 9,, for rotationally and/ or tidally distorted 
polytropic models N= 3.0 

x=r, I r„ K=1.0 
n =0.0 

q =0.0 

K=1.0 
n =0.1 
q =0.0 

K =0.5 
n =0.0 
q =0.1 

K =0.5 
n =0.1 
q =0.2 

K=0.5 
n =0.55 
q =0.1 

K= 0.5 
n =0.6 
q =0.2 

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.1 0.92600 0.92809 0.92568 0.92630 0.92878 0.92899 
(0.92600) (0.92808) (0.92600) (0.92627) (0.92749) (0.92758) 

0.2 0.75322 0.75891 0.75304 0.75473 0.76159 0.76215 
(0.75322) (0.75892) (0.75321) (0.75397) (0.75730) (0.75755) 

03 0.56495 0.57243 0.56489 0.56717 0.57651 0.57728 
(0.56495) (0.57254) (0.56494) (0.56594) (0.57038) (0.57070) 

0.4 0.40590 0.41311 0.40591 0.40823 0.41776 0.41854 
(0.40590) (0.41327) (0.40589) (0.40686) (0.41118) (0.41148) 

0.5 0.28402 0.28992 0.28408 0.28614 0.29463 0.29532 
(0.28402) (0.29006) (0.28402) (0.28482) (0.28837) (0.28860) 

0.6 0.19316 0.19748 0.19323 0.19495 0.20204 0.20260 
(0.19316) (0.19755) (0.19315) (0.19374) (0.19635) (0.19649) 

0.7 0.12509 0.12795 0.12517 0.12656 0.13229 0.13272 
(0.12509) (0.12795) (0.12508) (0.12547) (0.12720 (0.12726) 

) 
0.8 0.07313 0.07479 0.07322 0.07432 0.07889 0.07923 

(0.07313) (0.07472) (0.07312) (0.07334) (0.07434) (0.07434) 

0.9 0.03251 0.03327 0.03261 0.03349 0.03714 0.037408 
(0.03251) (0.03316) (0.03251) (0.03260) (0.03304) (0.03300) 

1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
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Table 3.1 (c) : Values of Ow  for rotationally and/ or tidally distorted 
polytropic models N= 4.0 

x=r0  I ros  K=1.0 
n =0.0 
q =0.0 

K=1.0 
n =0.1 
q =0.0 

K =0.5 
n=0.0 
q =0.1 

K =0.5 
n=0.1 
q =0.2 

K =0.5 
n =0.55 
q =0.1 

K = 0.5 
n =0.6 
q =0.2 

0.0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

0.1 0.73999 0.74184 0.73949 0.73949 0.74171 0.74162 
(0.7399) (0.74168) (0.73993) (0.74020) (0.74123) (0.74128) 

0.2 0.44089 0.44304 0.44238 0.44613 0.45266 0.45337 
(0.44089) (0.44287) (0.44083) (0.44114) (0.44234) (0.44240) 

03 0.27382 0.27540 0.27430 0.27476 0.27634 0.27623 
(0.27382) (0.27528) (0.27377) (0.27400) (0.27490) (0.27493) 

0.4 0.17893 0.17999 0.17941 0.17976 0.18090 0.180801 
(0.17893) (0.17991) (0.17889) (0.17906) (0.17966) (0.17967) 

0.5 0.11984 0.12050 0.12030 0.12056 0.12138 0.12128 
(0.11984) (0.12045) (0.11981) (0.11992) (0.12030) (0.12030) 

0.6 0.07999 0.08038 0.08044 0.08063 0.08123 0.08113 
(0.07999) (0.08034) (0.07997) (0.08004) (0.08027) (0.08026) 

0.7 0.05144 0.05163 0.05187 0.05201 0.05244 0.05235 
(0.05144) (0.05160) (0.05142) (0.05146) (0.05158) (0.05157) 

0.8 0.03001 0.03008 0.03042 0.03053 0.03084 0.03076 
(0.03001) (0.03006) (0.02999) (0.03001) (0.03006) (0.03004) 

0.9 0.01334 0.01333 0.01322 0.01322 0.01333 0.13922 
(0.01334) (0.01333) (0.01322) (0.01322) (0.01333) (0.01332) 

1.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Table 3.2 :A comparison of the volumes and surface areas of uniformly 
rotating ol tro es as obtained by different investigators 

n2 
v= 

Volume Surface area 
271-Gp, Present 

Value 
Saxena's 
Value 

Chandra- 
sekhar 
Value 

Linnell's 
Value 

Present 
value 

Saxena's 
Values 

::hanra- 
sekhar 

Linnell's 
Value 

Polytropic Index N=1.5 
0.0 2.0432 2.0432 2.0432 2.0432 1.6776 1.6776 1.6776 1.6776 
0.04 2.0525 2.0854 2.0859 2.0880 1.6827 1.7008 1.7000 1.70280 
0.08 2.0640 2.1300 2.1286 2.1377 1.6890 1.7250 1.7250 1.7286 
0.012 2.0764 2.1777 2.1714 2.1933 1.6958 1.7509 1.7509 1.7577 
0.016 2.0890 2.2275 2.2141 2.2560 1.7030 1.7778 1.7778 1.7900 
0.020 2.1014 2.2789 2.2568 2.3276 1.7102 1.8058 1.8058 1.8260 
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0.024 2.1410 2.3315 2.2995 2.4102 1.7324 1.8345 1.8345 1.8667 
0.028 2.1247 2.3850 2.3422 2.5067 1.7245 1.8639 1.8639 1.9130 
0.032 2.1354 2.4388 2.3850 2.6203 1.7314 1.8936 1.8936 1.9666 
0.036 2.1452 2.4930 2.4277 2.7534 1.7380 1.9237 1.9237 2.0298 
0.040 	. 2.1543 2.5470 2.4704 2.9052 1.7443 1.9539 1.9539 2.1059 

Polytropic Index N=3.0 
0.0 1.3741 1.3741 1.3741 1.3741 5.9774 5.9774 5.9774 5.9774 
0.0004 1.4058 1.4099 1.4070 1.4086 6.0728 6.0814 6.0728 6.0770 
0.0008 1.4405 1.4485 1.4399 1.4467 6.1682 6.1918 6.1682 6.1858 
0.0012 1.4780 1.4902 1.4728 1.4890 6.2636 6.3106 6.2636 6.3057 
0.0016 1.5053 1.5348 1.5057 1.5361 6.3590 6.4373 6.3590 6.4386 
0.0020 1.5632 1.5825 1.5386 1.5891 6.4544 6.5721 6.4544 6.5874 
0.0024 1.6078 1.6328 1.5715 1.6492 5.5498 6.7140 5.5498 6.7557 
0.0028 1.6546 1.6856 1.6044 1.7178 6.6452 6.8628 6.6452 6.9486 
0.0032 1.7063 1.7408 1.6373 1.7963 6.7406 7.0181 6.7406 7.0181 
0.0036 1.7567 1.7984 1.6702 1.8844 6.8359 7.1803 6.8359 7.1803 
0.0038 1.7826 1.8281 1.6866 1.9306 6.8836 2.2638 6.8836 7.2638 

Table 3.3(a) : Volumes, Surface area and other physical parameters of 
rotationally and tidally distorted polytropic index 1.5 

Model 
No. 

n q Vw x10-2  Sv  x10-2  cr 6 Te/T p  Le/L p  

1 0.0 0.0 2.0431 1.67760 0.00000 0.00000 1.00000 1.00000 
(2.0432) (1.6776) 

2 0.0 0.5 2.0493 1.6794 0.17395 0.14818 0.62261 0.37366 
(2.0664) (1.6890) 

3 0.05 0.2 2.0248 1.6673 0.06374 0.05992 0.67388 0.69608 
(2.0621) (1.6879) 

4 0.6 0.2 1.8397 1.5643 0.11087 0.09981 0.63402 0.55291 
(2.2437) (1.7862) 

5 0.55 0.1 1.8544 1.5727 0.08023 0.07427 0.65009 0.65632 
(2.2214) (1.7744) 

6 0.02 0.0 2.0543 1.68370 0.01931 0.01895 0.98448 0.90773 
(2.0903) (1.7035) 
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Table 3.3 (b) Volumes, surface area and other physical parameters of 
rotationally and tidally distorted polytropic index N =3.0 

Model 
No. 

n q ri, x10-3  S, x10-2  a 6 Teirp  Le /Lp  

1 0.0 0.0 1.3741 5.9773 0.00000 0.00000 1.00000 1.00000 
(1.3747) (5.9774) 

2 0.0 0.5 1.3971 6.0381 0.19752 0.15101 0.98793 0.36484 
(1.3923) (6.0251) 

3 0.05 0.2 1.3846 6.0068 0.17783 0.06129 0.67490 0.68970 
(1.3910) (6.0260) 

4 0.6 0.2 1.4859 6.2984 0.06523 0.12004 0.63865 0.47871 
(1.5708) (6.5375) 

5 0.55 0.1 1.4709 6.2559 0.13641 0.08699 0.65914 0.60454 
(1.5486) (6.4754) 

6 0.02 0.0 1.4142 6.0930 0.01975 0.01937 0.98793 0.90574 
(1.4185) (6.1061) 

Table 3.3(c) : Volumes, Surface area and other physical parameters of 
rotationally and tidally distorted polytropic index N =4.0 

Model 
No. 

n q icxle Sw xle a e Te /Tp  LeILp  

1 0.0 0.0 14.0569 2.81672 0.00000 0.00000 1.00000 1.00000 
(14.062) (2.8175) 

2 0.0 0.5 14.3202 2.8491 0.17846 0.15143 0.62170 0.36354 
(14.2581) (2.8412) 

3 0.05 0.2 14.2430 2.8410 0.06581 0.06175 0.67523 0.68755 
(14.266) (2.8445) 

4 0.6 0.2 16.3803 3.1199 0.14858 0.12936 0.63931 0.44636 
(16.539) (3.1406) 

5 0.55 0.1 16.0872 3.0818 0.10215 0.09267 0.66228 0.58209 
(16.255) (3.1045) 

6 0.02 0.0 14.5901 2.8874 0.01991 0.01952 0.98918 0.90501 
(14.604) (2.8897) 

92 



CHAPTER - IV 

EQUILIBRIUM STRUCTURE OF ROTATIONALLY AND TIDALLY 

DISTORTED PRASAD MODEL AND A CLASS OF COMPOSITE 

MODELS 



In the present chapter we use the methodology developed in chapter III 

to determine the equilibrium structures of rotationally and tidally distorted 

Prasad model as well as a class of composite models. These models are often 

used in astrophysics to represent the inner structure of certain types of stars. In 

Prasad model the density distribution follows the law p= pc  (1-x2 ), pc  being 

the value of density p at the centre and x the nondimensional measure of the 

distance from the centre. The series of composite models considered in this 

chapter consist of cores in which density decreases slowly from the centre to 

the interface between the envelope and the core according to the law 

p = pc  (1- x2 ).These cores are surrounded by envelopes in which density 

varies inversely as the square of the distance from the centre. These 

composite model have Prasad model at one extreme and Roche model at the 

other extreme and reasonably represent the effect of density variation inside 

the star on its structure. A series of such models can be constructed by 

varying the position of the interface between the core and the envelope. These 

models reasonably depict the inner structures of the stars which have 

developed cores of reasonable thickness in which density decreases slowly 

outwards from the centre to the interface and surrounding these cores have 

envelopes in which density falls of rapidly from the interface to the surface. 

Models of this series with extended cores can also be regarded as stars 

surrounded by their atmospheres. Prasad model and this series of semi-

analytic composite models have often been used in literature to analyze the 

problems of stellar structure and stellar pulsations. Investigations carried on 

these models are thus expected to provide some insight into the problems 

associated with the structure of certain realistic models of the stars. 
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Aggarwal (2), Mohan et al. (85) determined the effects of rotation and 

tidal distortions on the equilibrium structures of Prasad model and this series of 

composite models of stars. In these studies the actual equipotential surfaces of 

rotationally and tidally distorted star were approximated by equipotential 

surfaces obtained by assuming the entire mass of the star to be placed at the 

center of the star. Here we have reinvestigated the equilibrium structures of 

these rotationally and tidally distorted models by approximating the actual 

equipotential surfaces by Roche equipotential surfaces which are determined 

by taking into account effect of mass variation in potential. 

In section 4.1 we discuss the feasibility of using the approach developed 

in chapter III to determine the equilibrium structures of rotationally and tidally 

distorted Prasad model. In section 4.2 we have also used the 1.7)044v 

developed in chapter III to determine the equilibrium structure of rotationally 

and tidally distorted composite models of star. Results for numerical 

computation in case of Prasad model and composite models for different 

position of interfaces as 0.3, 0.5, and 0.7 of the radius are obtained in section 

4.3. Certain conclusions based on this study have also been finally drawn in . 

section 4.4. 

4.1 EQUILIBRIUM STRUCTURES OF ROTATIONALLY AND TIDALLY 
DISTORTED PRASAD MODEL 

If we assume that the primary component of binary system behaves as 

Prasad model and rotating about its axis)  then its equilibrium structure will be 

distorted by rotation as well as the tidal effects of the companion. In order to 

determine the equilibrium structure of this rotationally and tidally distorted 

stellar model we may follow the approach of Mohan and Saxena (85) as given 
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in section 2.3 of Chapter II provided it is assumed that the rotational velocity 

and the mass of the secondary as compared to the primary are suitably small. 

Let rw  denote the radius of the topologically equivalent spherical model 

which corresponds to an equipotential surface W = constant of this rotationally 

and tidally distorted Prasad model. Also, let Rw  be the value of rv, on the 

equipotentials surface yr = constant of this rotationally and tidally distorted 

model. Following the approach as discussed in chapter III, rv, and Rw  are 

given as. 

4q 2ro 6 	8nq 	76n2 
[ 	

3 
r =Dr 1+ 

4nr° 
 +. 	+ , 	,+ 	, 

6 
ro  + 

r 6  
05  

5q 2 ro8 	2q 2ro io  
(4.1) 

(4.2) 

(4.3) 

3z 

1c = Dros 1+
4nro83 

+ [ 

4e 	15  z‘ 	45z., 

4q 2r06 	8nq 	76n2  + 	+ 

i 	+ 	+...] 72. 	3z2  

5q 2r0,8 	2q 2r0s10  + 	+ +... 
3z 
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r
1 	

3 	3 	r_ 
-(--1  Z=
5 

422 	152 2 	45z2  

5  

722  322  

2 Rv, 	2 Ry, 

z 
where 	= r 

V — q 

Further let pv  denote the value of density on an equipotentials 

= constant. The density distribution law of rotationally and tidally distorted 

Prasad model is given as 

r 2 
Pw = Pc(1— f 2 ) (4.4) 
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On substituting the value of rw  and 	Rv  from equation (4.1) and (4.2) in 

equation (4.4) we get 

pw = pc 1 	{1+ 	 [ 	 + ( 26   + 2 	28 	2 13  D 2 r0  2 	4nro  3 	8q r0 	16nq 172n 	10q ro 	4q r 

Rv2 	3z 	' 5z2 	15z2  + 45 z2 + 7z2 -I-  3z20 -L..  

(4.5) 

On substituting value of 	from (4.5) in (3.14a) of chapter III and integrating 

w.r.t. ro  and using the fact that My  = 0 at center ro  = 0 we get 

4irp ,D3r0 3  r 
3 	

3D2  2 2nr
° 	

3  2nR2r05 	12q 2r06  8nq 32n 2  \ 
r 

6 
M = 	 I.1 

 /t 5v
2 ro  + 

z 	zRy, 
	+ 	+ 	+ 

5z 2 	15z 2 	5z2 0 :  ) 
+ 15q2  12q2 D2  8nqD2  116n2  8 +(2q 2  15q 2 R2or  10 +.1  

7z2 5 z 2 Rw 2 5 z 2  ;2 

1.  
K 	15 z2 	+( 5z 2  7 z2  Rv  

(4.6) 

Similarly on substituting pv  from (4.5) and Mw  from (4.6) in (3.14 (b)) of 

chapter III and integrating with respect to ro  we get 

2/1-  Gpe2  D2 
K ro2+

4D2r0 4  4nr 5  D4ro2  32nD2ro7  
Py,  = 	

o 	 , + 

	

3 	 5Rv 2  5z 5Rv̀  21zRv 2  
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3q 2r01°  144D2q 2r010  96D2  nq  4225n2  roio +... + 	+ 	 
10z2 	125z2Rv2 + 125 z2Rv

2+ 
 1125 z2  

(4.7) 
where K is a constant of integration whose value may be calculated by using 

boundary condition say Pw  = 0 at ro  = ros  . This yield 
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Similarly the volume T1, , surface area Sc, , g and g7  of rotationally and 

tidally distorted Prasad model are obtained as 

+ 
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(4.12) 

4.2 EQUILIBRIUM STRUCTURE OF A CLASS OF ROTATIONALLY AND 
TIDALLY DISTORTED COMPOSITE MODELS 

In this section we consider the problem of determining equilibrium 

structures of a class of rotationally and/or tidally distorted composite models 

with cores in which density varies according to the law p= pc (1–x 2 ) and which 

are surrounded by envelope in which density follows the lawp=pc /x2  . Taking 

into account the effect of mass variation inside the star on its equipotential 

surfaces. Suppose the composite gaseous sphere 
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is rotating about its axis and is also the primary component of a binary 

system. 

Let ry  denote the radius of the topologically equivalent spherical model 

which corresponds to an equipotential surface yr = constant of this rotationally 

and tidally distorted model. Also let R,v  be the value of ry  on the outermost 

equipotential surface of the model and bRv  the value of rca  for the equipotential 

surface of the interface between the envelope and the core of the model. 

Further let Arc  denote the value of density on an equipotential surface of the 

core of the distorted model which corresponds to the radial distance rw  of the 

topologically equivalent spherical model. Corresponding to the density 

distribution lawp = p,(1— x 2 ) in the core of the original undistorted model we 

suppose that in the core (0 ry  bRv ) of the distorted model density 

distribution on its equipotential surfaces is given by 

Av e 

Z = 

c 

Mytc 

1 — 
r2 

R 2  
0 rv, <bRr  (4.13) 

(4.14) 
`M re ) ro ro 

where Mia , represents the value of Mv, in the core and is evaluated from 

equation (4.6) replacing z by z, and appearing in the expression (Mrs,) roa,. ro,  

is computed from (4.17) on putting ro  = ros  and za  =1. 

Similarly for the envelope of the distorted model we shall assume that 

density distribution on its equipotential surfaces follows the law 

2  Rv  
pve = pc b 2  (1-1, 2 ) 	2  

rr  
bR 	 (4.15) 
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where pp  denotes the density on an equipotential surface in the envelope of 

the distorted model which corresponds to a distance 	from the centre of the 

equivalent spherical model. 
Let n denote the nondimensional form the square of the angular velocity 

of rotation w ,q the ratio of the mass of the companion causing tidal 

distortions to the mass of the primary under investigations. Also let w:denote 

the value of potential w*  (3.1) on the outermost equipotential surface. Then on 

the outermost surface the value of 1'8, denoted by Itv  is given by (4.2) 

Now for points inside the envelope (bRv, 	R y,) on substituting for 

ry, from (4.1) in (4.15) we get 

Pc  b 2  — b 2 )R y,2   [ 	4n 
	g2 q2 n2 + 	nq  + 92 2  n2 6 	10 

Ape = 	 1 	ro3 	 n 1.0 ro8 - 

	

o 	
.1 

	

D 2  ro2 	3z, 	5z, 	15 ze2 	45 	7 ze  

_ 4 2 q2r:0 +.... 
3ze  

(4.16) 
On substituting the value of py„ from (4.16) in (3.14a) and integrating 

w.r.t. ro  we get 

	

2n 	 4 A I we = 47rD pc b 2  (1—b 2 )R y,2 [M oi +ro  + —3 z  ro
4 

+(—z 2q
2 
 +15

8
z 2 n q+  

	

e 	
e 	, 

7 	2 	7 	5 2 9 22 2 11 +...] 
e e  

+456 	n )roe 	ro 	ro  
 z 	ze  

(4.17) 

where Mwe  is the mass contained within the equipotential surface v = constant 

in the envelope and Mo , is a constant of integration. 

In order to ensure the continuity of mass across the interface we must 

have Mw„  =Mwe  for ro  = roi  Using this we have from (4.6) and (4.17) we have 
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z 	7 ze
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3 
	q 2  

ze 
(4.18) 

where ro, the value of ro  at the interface between the envelope and the core 

(where r w =b 1) and is given by 

[ ro , = bo  1– —ri  1), –H42  q2  + 	8  2  nq 	 :2  n2 jb: 	 2  a b: 	-2  q bo  . 
5 	2 	2 10 .. 

bR y, 

and z =  MWe e 	m 
W

e ro ro  (4.20) 

with b0  = (4.19) 

Again substituting for 

and integrating we get 

	

2 4 	2 2 4 4 a - Gpe b (1–b ) Rty  M 01 1+  3 
	ro+3Clr' 4 n , og ro )1,03  + Pie = 	  3D r0 	 2M01  - 	o + ze  ll 

(( 2 2 	4 	28 2 6 	3 	6 q2  +  4  nq  +  104 + 
ze2 q  + 3 4 nq  + 94 n r°  + 4M01  54 	5 ze2 	45 ze

2  

19 	2 9  20  q2 
 
r10 + 	7  	sil + 	 q ro  

	

28 z M01 	21 z 	° 	12 4M°1 
r° +... 

 

p v, e  from (4.16) and My , from (4.17) in (3.14(b)) 

(4.21) 

where Pyle is the value of pressure on the equipotential yr = constant inside 

the envelope and C1 	is a constant of integration. At the free surface 

(ro  = ros  ), Pve  = 0. Therefore from (3.9) it becomes 
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(4.22) 
Also the pressure must be continuous across the interface. Hence from (4.7) 
and (4.21) 

2  
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Thus for the composite model distorted by the combined effects of 

rotation and tidal forces, the value of pv , Mw , PP, and on various 

equipotentials inside the core are given by (4.5), (4.6) and (4.7) respectively, 

and on the equipotential surfaces in the envelope, are given by (4.16), (4.17) 

and (4.21) respectively. 

On setting n=q=0 we get the equilibrium structure of the original 

undistorted model. On setting n=0 or q=0separately we get the equilibrium 

structure of the model which is distorted by the tidal effects alone or rotational 

effects alone. Also on setting n = q 	
2  
+1  we obtain the equilibrium structure of 

(4.23) 
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the rotationally and tidally distorted primary component of a synchronously 

rotating binary star system. By changing the value of b (0 b_1) we can get 

equilibrium structures of models for different positions of the interface between 

the envelope and the core. On setting b=0 (no core) we get Roche model 

while on setting b=1 (no envelope) we get Prasad model. 

4.3 NUMERICAL EVALUATION OF STRUCTURE FOR PRASAD MODEL 
AND COMPOSITE MODELS 

For a better appreciation of the effects of rotation and tidal distortions on 

the values of density, mass and pressure at various points inside the star we 

have used equations (4.5), (4.6) and (4.7)tonumerically compute the values of 

pv, , My, and Pt, at various points inside Prasad model. In the case of 

composite models values of these parameters computed in core again using 

(4.5), (4.6) and (4.7) and in envelope (4.16), (4.17) and (4.20) for values of 

interface b=0.3, 0.5 and 0.7 for different values of distortion parameters 

nand q . While evaluating various physical parameters of the composite model, 

we need the value of ze  in the core as well as ze  in the envelope. These two 

variables can be computed from (4.14) and (4.20). The results are presented in 

Tables 4.1. (a, b , c, d) and Table 4.2 (a, b, c, d) for Prasad model and 

composite modeltrespectively. 

4.4 ANALYSIS OF RESULTS 
The results presented in Tables 4.1 (a ,b, c, d ) and 4.2 (a, b, c, d) give 

the values of certain structures parameters and related observable quantities 

of undistorted, rotationally distorted, tidally distorted and rotationally and tidally 

distorted Prasad model as well as composite model for yr =5.0. Results show 
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that with the modification of expression for potential to account for mass 

variation inside the star on its equipotentials surface.our results show only 

marginal effects. No specific trend is observed. 

The results presented in Tables 4.3, 4.4, 4.5 and 4.6 show the values 

of M,,P,,V,„Sv, for various types of rotationally and or tidally distorted 

composite models with interface at b= 0.3 , b=0.5 and b=0.7 for cri:=5.0. 

The results shown in parenthesis are their corresponding value earlier obtained 

by Agarwal (2). Our results indicate no significant change in these values as 

well as in comparison to the result shown in parenthesis. 
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Table 4.1(a) : Structure Parameters of Undistorted Stars For Prasad Model 

= 5,n = .0, q =0 

X Vy,  s v Pig Mw  Pv Cr e Te  ITp  Le  Rip 
0.1 0.00001 0.00041 0.99000 0.00248 0.00004 0.00000 0.00000  0.14142 1.00000 
0.2 0.00006 0.00161 0.96000 0.01951 0.00028 0.00000 0.00000 0.20005 1.00000 
0,3 0.00022 0.00362 0.91000 0.06384 0.00081 0.00000 0.00000 0.24497 1.00000 
0.4 0.00052 0.00642 0.84000 0.14464 0.00150 0.00000 0.00000 0.28285 1.00000 
0.5 0.00102 0.01040 0.75000 0.26562 0.00209 0.00000 0.00000 0.31626 1.00000 
0.6 0.00171 0.01443 0.64000 0.42336 0.00228 0.00000 0.00000 0.34648 1.00000 
0.7 0.00272 0.01967 0.51000 0.60539 0.00190 0.00000 0.00000 0.37417 1.00000 
0.8 0.00402 0.02565 0.36000 0.78848 0.00111 0.00000 0.00000 0.40009 1.00000 
0.9 0.00585 0.03246 0.19000 0.93676 0.00032 0.00000 0.00000 0.42425 1.00000 
1.0 0.00800 0.04000 0.00000 1.00006 0.00000 0.00000 0.00000 0.44728 1.00000 

Table 4.1(b) : Structure Parameters of Rotationally Distorted Stars, For 
Prasad Model tv =5, n = .1,q = 0 

x vy,  S v Pip A I tp  Pv a 6  Te  iTi, Le  /LP  

0.1 0.00001 0.00040 0.99000 0.00242 0.00024 0.00032 0.00032 0.14139 0.99872 
0.2 0.00006 0.00160 0.96002 0.01950 0.01404 0.00032 0.00032 0.19995 0.99865 
0.3 0.00022 0.00360 0.91000 0.06379 0.01259 0.00033 0.00033 0.24490 0.99862 
0.4 0.00051 0.0064 0 0.84009 0.14452 0.01037 0.00035 0.00035 0.28279 0.99855 
0.5 0.00100 0.0104 0 0.75014 0.26543 0.00787 0.00037 0.00037 0.31616 0.99848 
0.6 0.00173 0.0144 0 0.64018 0.42308 0.00537 0.00040 0.00040 0.34632 0.99830 
0.7 0.00276 0.01960 0.5102 0.60509 0.00314 0.00045 0.00045 0.37408 0.99812 
0.8 0.00403 0.02561 0.36002 0.78822 0.00141 0.00052 0.00051 0.39989 0.99796 
0.9 0.00582 0.03242 0.19019 0.93664 0.00032 0.00062 0.00062 0.42413 0.99757 
1.0 0.00800 0.04000 0.00000 1.0000 0.00000 0.0008 0.00079 0.44700 0.99607 

Table 4.1(c) : Structure Parameters of Tidally Distorted Stars For Prasad 
Model = 5, n = 0, q = .1 

X V, S ii, pv m. Pi,  a 6 T eT p  4Le  

0.1 0.00001 0.00042 0.95000 0.00248 0.00003 0.00034 0.00034 0.14283 0.99823 
0.2 0.00006 0.00166 0.96000 0.01952 0.00023 0.00036 0.00036 0.20195 0.99815 
0.3 0.00022 0.00375 0.91000 0.06385 0.00084 0.00038 0.00038 0.24736 0.99806 
0.4 0.00054 0.00664 0.84000 0.14464 0.00156 0.00040 0.00040 0.28566 0.99797 
0.5 0.00105 0.01041 0.75000 0.26562 0.00218 0.00044 0.00044 0.31934 0.99772 
0.6 0.00182 0.01497 0.64000 0.42336 0.00237 0.00048 0.00048 0.34988 0.99744 
0.7 0.00291 0.02040 0.51000 0.60539 0.00198 0.00055 0.00055 0.37785 0.99710 
0.8 0.00435 0.02665 0.36000 0.78848 0.00116 0.00064 0.00064 0.40392 0.99668 
0.9 0.00618 0.03372 0.19000 0.93676 0.00033 0.00079 0.00078 0.42830 0.99586 
1.0 0.00850 0.04165 0.00000 1.00000 0.00000 0.00103 0.0010 0.45141 0.99446 
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Table 4.1(d) : Structure Parameters of Rotationally and Tidally Distorted 
Stars for Prasad Model = 5.0 n =0.1,q=0.1 

3( V  f . 
Siw Py, 

Al,, Pr a $ T,T p  1,1,, 

0.1 0.00001 0.00041 0.99000 0.00248 0.00005 0.00069 0.00069 0.14282 0.99687 
0.2 0.00006 0.00166 0.96000 0.01950 0.00028 0.00071 0.00071 0.20193 0.99677 
0.3 0.00023 0.00375 0.91000 0.06379 0.00083 0.00074 0.00074 0.24736 0.99662 
0.4 0.00054 0.00666 0.84010 0.14451 0.00156 0.00078 0.00078 0.28556 0.99642 
0.5 0.00106 0.01041 0.75015 0.26541 0.00218 0.00084 0.00084 0.31928 0.99613 
0.6 0:00183 0.01499 0.64020 0.42307 0.00237 0.00092 0.00092 0.34972 0.99574 
0.7 0.00292 0.02041 0.51024 0.60507 0.00198 0.00103 0.00103 0.37770 0.99520 
0.8 0.00436 0.02667 0.36025 0.78820 0.00116 0.00120 0.00120 0.40387 0.99441 
0.9 0.00620 0.03376 0.19020 0.93663 0.00032 0.00145 0.00145 0.42824 0.99319 
1.0 0.008510 0.04166 0.00000 1.00000 0.00000 0.00188 0.00188 0.45121 0.99110 

Table 4.2(a) : Density pv  in Units of Pc All c"1"15.11.e.  "1°"' 
b=0.3 

X n=0.0, q=0.0 
v: = 5.0  

n=0.0, q=0.1 
411: = 5.0  

n=0.1, 
q=0.0 
w: = 5.0 

n=0.1, 
q=0.1 
ig: = 5.0 

n=0.55, q=0.1 
vf: = 5.0 

1 2 3 4 5 6 
0.1 0.99000 0.990001 0.99001 0.99213 0.99863 

(0.99000) (0.99000) (0.99001) (0.99001) (0.99006) 
0.2 0.96000 0.960001 0.96004 0.96113 0.96612 

(0.96000) (0.96000) (0.96004) (0.96005) (0.96025) 
0.3 0.91000 0.910001 0.91009 0.91077 0.91425 

(0.91000) (0.91000) (0.91009) (0.91010) (0.91055) 
0.4 0.51187 0.51187 0.51239 0.51403 0.52405 

(0.51188) (0.51188) (0.51239) (0.51242) (0.51491) 
0.5 0.32760 0.32760 0.32841 0.32846 0.33245 

(0.32760) (c) .32760) (0.32791) (0.32793) (0.32941) 
0.6 0.22750 0.22750 0.22788 0.22790 0.22976 

(0.22750) (0.22750) (0.22769) (0.22770) (0.22863) 
0.7 0.16714 0.16714 0.16733 0.16734 0.16825 

(0.16714) (0.16714) (0.16726) (0.16727) (0.16784) 
0.8 0.12797 0.12796 0.12805 0.128064 0.12849 

(0.12797) (0.12797) (0.12804) (0.12804) (0.12837) 
0.9 0.1011 0.10111 0.10114 0.10114 0.10131 

(0.10111) (0.10111) (0.10114) (0.10114) (0.10129) 
1.0 0.08190 0.08190 0.08190 0.08190 0.08190 

(0.08190) (0.08190) (0.08190) (0.08190) (0.08190) 
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Table 4.2(b) : Density pv  in Units of pe  ;lot cornpoklie' •rn odik 

b=0.5 
X N=0.0, q=0.0 

tv: = 5.0 
n=0.0, q=0.1 
w 	5.0 = : 

n=0.1, 
q=0.0 
V: =5.0 

n=0.1, 
q=0.1 
ig: =5.0 

n=0.55, q=0.1 
w: = 5.0  

1 2 3 4 5 6 
0.1 0.99000 0.99000 0.99373 0.99394 0.99943 

0.2 0.9600 0 0.96000 0.96208 0.96221 0.97154 

0.3 0.91000 0.91000 0.91141 0.91150 0.91825 

0.4 0.84000 0.84000 0.84107 0.84114 0.84631 

0.5 0.75000 0.75000 0.75085 0.75090 0.75504 

0.6 0.52080 0.52083 0.52187 0.52194 0.52707 

0.7 0.38265 0.38265 0.38313 0.38316 0.38549 

0.8 0.29296 0.29296 0.29318 0.29319 0.29425 

0.9 0.23148 0.23148 0.23156 0.23156 0.23194 

1.0 0.18750 0.18750 0.18750 0.18750 0.18750 

Table 4.2(c) : Density pv  in Units of p, AT composite- rioolea 

b=0.7 
X n=0.0, q=0.0 

w: = 5.0 
n=0.0, q=0.1 

5 0 V, = 	. 
n=0.1, 
q=0.0 
y/: = 5.0 

n=0.1, 
q=0.1 
v, = 5.0 

n=0.55, q=0.1 
y.: = 5.0 

1 2 3 4 5 6 
0.1 0.99000 0.99000 0.99439 0.99463 0.99756 

0.2 0.96000 0.96000 0.96250 0.96265 0.96367 

0.3 0.91000 0.91000 0.91170 0.91181 0.91989 

0.4 0.84000 0.84000 0.84129 0.84137 0.84759 

0.5 0.75000 0.75000 0.75102 0.75109 0.75607 

0.6 0.64000 0.64000 0.64083 0.64088 0.64493 

0.7 0.51000 0.51000 0.51066 0.51070 0.51394 

0.8 0.39040 0.39046 0.39076 0.39078 0.39225 

0.9 0.30850 0.30851 0.30862 0.30863 0.30915 

1.0 0.24990 0.24990 0.24990 0.24990 0.24990 

Table 4.3(a) : Mass M w  in Units of 3  iv LO 8 c  x10-3 -fa' Composite 
b=0.3 

X n=0.0, q=0.0 
w: = 5.0  

n=0.0, q=0.1 
y/: = 5.0 

n=0.1, 
q=0.0 
y/: = 5.0 

n=0.1, 
q=0.1 
yi, = 5.0 

n=0.55, q=0.1 
v: = 5.0 

1 2 3 4 5 6 
0.1 0.00503 0.00503 0.00502 0.00502 0.00498 

(0.00503) (0.00503) (0.00502) (0.00502) (0.00499) 

0.2 0.03952 0.03952 0.03946 0.03946 0.03916 
(0.03953) (0.03953) (0.03947) (0.03946) (0.03916) 
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0.3 0.12930 0.12930 0.12911 0.12909 0.12816 
(0.12931) (0.12930) (0.12911) (0.12910) (0.12816) 

0.4 0.25369 0.25369 0.25344 0.25342 0.25222 
(0.25369) (0.25369) (0.25344) (0.25343) (0.25223) 

0.5 0.37807 0.37807 0.37778 0.37776 0.37636 
(0.37808) (0.37808) (0.37778) (0.37777) (0.37636) 

0.6 0.50246 0.50246 0.50214 0.50212 0.50061 
0.50246) (0.50246) (0.50214) (0.50213) (0.50061) 

0.7 0.062684 0.62684 0.62654 0.62652 0.62503 
(0.62685) (0.62684) (0.62654) (0.62652) (0.62504) 

0.8 0.75123 0.75123 0.75097 0.75095 0.74969 
(0.75123) (0.75123) (0.75097) (0.75095) (0.74970) 

0.9 0.87561 0.87561 0.87545 0.87544 0.87465 
(0.87562) (0.87562) (0.87545) (0.87544) (0.87466) 

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 
(1.0000) (1.0000) (1.0000) (1.0000) (1.0000) 

Table 4.3(b) : Mass M, in Units of 3 r D3  p, X10-3  4,' corniositt. moote.O. 

b=0.5 
X n=0.0, q=0.0 

tif: = 5.0 
n=0.0, q=0.1 
ip, = 5.0 

n=0.1, 
q=0.0 

- 	. - 5  ws, 0  

n=0.1, 
q=0.1 
yi, = 5.0 

n=0.55, q=0.1 
yi: = 5-0  

1 2 3 4 5 6 
0.1 0.00256 0.00256 0.00256 0.00256 0.00254 
0.2 0.02015 0.02015 0.02011 0.020116 0.01996 
0.3 0.06591 0.06591 0.06581 0.06581 0.06533 
0.4 0.14930 0.14930 0.14909 0.14908 0.14808 
0.5 0.27419 0.27419 0.27385 0.27383 0.27219 
0.6 0.41935 0.41935 0.41899 0.41896 0.41720 
0.7 0.56451 0.56451 0.56415 0.56413 0.56240 
0.8 0.70967 0.70967 0.70937 0.70935 0.70788 
0.9 0.85483 0.85483 0.85464 0.85463 0.85371 
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 

Table 4.3(c) : Mass M, in Units of 1703  pC  x10 -3  Say co m po 	rn dak 
b=0.7 

X n=0.0, q=0.0 
w: = 5.0 

n=0.0, q=0.1 
W: = 5.0  

n=0.1, 
q=0.0 
1//, = 5.0 

n=0.1, 
q=0.1 
iy, = 5.0 

n=0.55, q=0.1 
v.: = 5.0 

1 2 3 4 5 6 

0.1 0.00212 0.00212 0.00212 0.00212 0.00210 
0.2 0.01671 0.01671 0.01669 0.01668 0.01656 
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0.3 0.05468 0.05468 0.05460 0.05459 0.05420 

0.4 0.12387 0.12387 0.12369 0.12368 0.12285 
0.5 0.22748 0.22748 0.22720 0.22718 0.22582 
0.6 0.36256 0.36255 0.36219 0.36217 0.36037 
0.7 0.51846 0.51846 0.51807 0.51804 0.51613 
0.8 0.67897 0.67896 0.67864 0.67861 0.67699 
0.9 0.83948 0.83948 0.83927 0.83926 0.83824 
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 

Table 4.4(a) : Pressure PV, in Units of 3n-GD2p,2  x 10-2;377., Co r9i4s .11  e rnoca 

b=0.3 
X n=0.0, q=0.0 

iv: = 5.0 
n=0.0, q=0.1 
V: = 5.0  

n=0.1, 
q=0.0 
IV: =s.0 

n=0.1, 
q=0.1 
y, = 5.0 

n=0.55, q=0.1 
yf, = 5.0 

1 2 3 4 5 6 
0.1 0.72973 0.75999 0.73056 0.76206 0.76492 

(0.72973) (0.75982) (0.73056) (0.76074) (0.76492) 
0.2 0.61448 0.63984 0.61531 0.64073 0.64488 

(0.61448) (0.63982) (0.61531) (0.64073) (0.64488) 
0.3 0.43475 0.45268 0.43555 0.45356 0.45758 

(0.43475) (0.45268) (0.43555) (0.45356) (0.45758) 
0.4 0.26872 0.26631 0.26929 0.28043 0.28327 

(0.26873) (0.27981) (0.26929) (0.28043) (0.28327) 
0.5 0.16783 0.17012 0.16822 0.17519 0.17716 

(0.16783) (0.17476) (0.16822) (0.17519) (0.17716) 
0.6 0.10491 0.10722 0.10519 0.10954 0.11094 

(0.10491) (0.10924) (0.10519) (0.10954) (0.11094) 
0.7 0.06362 0.0652 0.06383 0.06647 0.06749 

(0.06363) (0.06625) (0.06383) (0.06647) (0.06749) 
0.8 0.03525 0.03613 0.03540 0.03687 0.03763 

(0.03525) (0.03670) (0.03540) (0.03687) (0.03763) 
0.9 0.01497 0.01523 0.01508 0.01571 0.01629 

(0.01497) (0.01559) (0.01508) (0.01571) (0.01629) 
1.0 0.0000 0.0000 0.0000 0.0000 0.0000 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
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Table 4.4(b) : Pressure Pv  in Units of ig GD2  p,2 x10-24‘ corn suite In cola 

b=0.5 
X n=0.0, q=0.0 

w: = 5.0 

n=0.0, q=0.1 

yr: = 5.0 

n=0.1, 
q=0.0 
yr: = 5.0 

n=0.1, 
q=0.1 
y/: = 5.0 

n=0.55, q=0.1 
w: = 5.0 

1 2 3 4 5 6 
0.1 1.42594 1.4852 2.09033 2.2374 2 2.85234 
0.2 1.31069 1.3648 1.37564 1.43687 1.84533 
0.3 1.13096 1.1776 1.14997 1.19867 1.30128 
0.4 0.90426 0.94156 0.912158 0.95030 0.99143 
0.5 0.65312 0.68005 0.65692 0.68426 0.70382 
0.6 0.43240 0.43020 0.43412 0.41835 0.36293 
0.7 0.27149 0.27327 0.27230 0.26780 0.24237 
0.8 0.15390 0.15523 0.15426 0.15225 0.13850 
0.9 0.0664 0.06624 0.06655 0.0644 0.05604 
1.0 0.0000 0.00182 0.00000 0.00304 0.0086 

Table 4.4(c) : Pressure P in Units of 3 11GD2  p c,2  x 10-2  A-f C.omiASIte maddi 

b =0.7 
X n=0.0, q=0.0 

w: = 5.0 
n=0.0, q=0.1 
v: = 5.0 

n=0.1, 
q=0.0 
yt, = 5.0 

n=0.1, 
q=0.1 
w: =5.0 

n=0.55, q=0.1 
vf: = 5.0 

1 2 3 4 5 6 
0.1 1.66533 1.73464 2.62940 2.84362 2.8494 
0.2 1.55008 1.61408 1.63747 1.71108 2.28869 
0.3 1.37033 1.42688 1.39585 1.45513 1.59441 
0.4 1.14366 1.19082 1.15429 1.20265 1.25825 
0.5 0.89252 0.92932 0.89770 0.93506 0.96179 
0.6 0.64241 0.66890 0.64507 0.67184 0.68545 
0.7 0.41922 0.43650 0.42053 0.43795 0.44463 
0.8 0.2420 0.24071 0.24260 0.23375 0.20156 
0.9 0.10576 0.10372 0.10597 0.09963 0.08087 
1.0 0.00000 0.00392 0.00000 0.00655 0.01859 
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Table 4.5 (a) : Volumes of Rotationally and Tidally Distorted Composite 
Models in Units of 17C D3  

b=0.3 
x n = 0.0, q = 0.0, 

yi: = 5.0 
n = 0.0, q = 0.1, 
yr, = 5.0 

n = 0.1, q = O.( 
kv:. = 5.0 

n = 0.1, q = 0.1, 
yr: = 5.0 

n = 0.55, q = 0.01, 
yr: = 5.0 

1 2 3 4 5 6 

0.1 0.008 0.00850 0.01055 0.01138 0.02469 

0.2 0.008 0.00850 0.00832 0.00886 0.01056 

0.3 0.008 0.00850 0.00809 0.00861 0.00913 

0.4 0.008 0.00850 0.00805 0.00855 0.00882 

0.5 0.008 0.00850 0.00803 0.00853 0.00871 

0.6 0.008 0.00850 0.00802 0.00852 0.00866 

0.7 0.008 0.00850 0.00801 0.00851 0.00862 

0.8 0.008 0.00850 0.00801 0.00851 0.00860 

0.9 0.008 0.00850 0.00801 0.00851 0.00859 

1.0 0.008 0.00850 0.00801 0.00851 0.00858 

Table 4.5 (b) : Volumes of Rotationally and Tidally Distorted Composite Models 
in Units of 37.D3  

b=0.5 
x n = 0.0, q = 0.0 

V' , = 5.0  

n = 0.0, q = 0.1,n 
y: = 5.0 

= 0.1, q = Of 
yr: = 5.0 

n = 0.1, q = 0.1, 

yr: = 5.0 
n = 0.55, q = 0.01, 

	

I/1 s 	. = 

	

* 	50 

1 2 3 4 5 6 

0.1 0.00800 0.00850 0.01301 0.01416 0.04026 

0.2 0.00800 0.00850 0.00863 0.00922 0.01254 

0.3 0.00800 0.00850 0.00819 0.00872 0.00973 

0.4 0.00800 0.00850 0.00808 0.00859 0.00904 

0.5 0.00800 0.00850 0.00804 0.00855 0.00879 

0.6 0.00800 0.00850 0.00803 0.00853 0.00869 

0.7 0.00800 0.00850 0.00802 0.00852 0.00864 

0.8 0.00800 0.00850 0.00801 0.00852 0.00861 

0.9 0.00800 0.00850 0.00801 0.00851 0.00859 

1.0 0.00800 0.00850 0.00801 0.00851 0.00858 
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Table 4.5( ): Volumes of Rotationally and Tidally Distorted Composite Models 
in Units of 3ir D3  

b=0.7 
x n = 0.0, q = 0.0 

. 
ty s  = 5.0 

n = 0.0, q = 0.1, 
. y , = 5.0 

n = 0.1, q = 0.07= 

y/ : = 5.0 

0.1, q = 0.1, 

v: = 5.0 

n = 0.55, q = 0.01, 
. vs  = 5.0 

1 2 3 4 5 6 

0.1 0.00800 0.00850 0.01404 0.01533 0.04679 

0.2 0.00800 0.00850 0.00876 0.00937 0.01337 

0.3 0.00800 0.00850 0.00823 0.00876 0.00998 

0.4 0.00800 0.00850 0.00810 0.00861 0.00915 

0.5 0.00800  0.00850 0.00805 0.00856 0.00885 

0.6 0.00800 0.00850 0.00803 0.00854 0.00872 

0.7 0.00800 0.00850 0.00802 0.00852 0.00865 

0.8 0.00800 0.00850 0.00801 0.00852 0.00861 

0.9 0.00800 0.00850 0.00801 0.00851 0.00859 

1.0 0.00800 0.00850 0.00801 0.00851 0.00858 

Table 4.6(a) : Surface Areas of Rotationally and Tidally Distorted Composite Models 
in Units of 4,1-  D2  

b=0.3 
x n = 0.0, q = 0.0 

y s  = 5.0 
n = 0.0, q = 0.1,n 
. v , = 5.0 

= 0.1, q = Of 

v: = 5.0 

n = 0.1, q = 0,1, 

v: = 5.0 

n = 0.55, q = 0.01, 
. y s  = 5.0 

1 2 3 4 5 6 

0.1 0.04000 0.04165 0.04851 0.05108 0.09395 

0.2 0.04000 0.04165 0.04108 0.04285 0.04830 

0.3 0.04000 0. 04165 0.04033 0.04201 0.04368 

0.4 0.04000 0. 04164 0.04016 0.04183 0.04268 

0.5 0.04000 0. 04164 0.04011 0.04177 0.04234 

0.6 0.04000 0. 04164 0.04008 0.04174 0.04217 

0.7 0.04000 0. 04164 0.04006 0.04172 0.04206 
0.8 0.04000 0. 04164 0.04005 0.04171 0.04200 
0.9 0.04000 0. 04164 0.04004 0.04170 0.41950 

1.0 0.04000 0. 04164 0.04004 0.04169 0.04191 
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Table 4.6 (b) : Surface Areas of Rotationally and Tidally Distorted Composite Models 
in Units of 47z-  D 2  

b=0.5 
x n = 0.0, q = 0.0 

. 
ty, = 5.0 

n = 0.0, q = 0.1,n 
. 

tv s  = 5.0 
= 0.1, q = OS 
. 

yi s  = 5.0 
n = 0.1, q = 0.1, 
. 

tif s 	5.0 
n = 0.55, q = 0.01, 
. 

II/ s  = 	 .0 

1 2 3 4 5 6 

0.1 0.04 0.04166 0.05669 0.06015 0.14522 

0.2 0.04 0. 04165 0.04212 0.04400 0.05483 

0.3 0.04 0. 04165 0.04068 0.04236 0.04567 

0.4 0.04 0. 04165 0.04028 0.04196 0.04342 

0.5 0.04 0. 04164 0.04015 0.04182 0.04261 

0.6 0.04 0. 04164 0.04010 0.04176  0.04228 

0.7 0.04 0. 04164 0.04007 0.04173 0.04211 

0.8 0.04 0. 04164 0.04006 0.04171 0.042021 

0.9 0.04 0. 04164 0.04005 0.04170 0.04195 

1.0 0.04 0. 04164 0.04004 0.04169 0.04191 

Table 4.6(c) : Surface Areas of Rotationally and Tidally Distorted Composite Models 
in Units of 4/1-  D2  

b=0.7 
x n = 0.0, q = 0.0, 

ty 3  = 5.0 
n = 0.0, q = 0.1, 

ty,. =5.0 
n = 0.1, q = O.( 

/if: = 5.0 
n = 0.1, q = 0.1, 

w: = 5.0 
n = 055, q = 0.01, 

yis  = 5.0 

1 2 3 4 5 6 

0.1 0.04000 0.04166 0.06012 0.06395 0.01664 

0.2 0.04000 0. 04165 0.04256 0.04448 0.05754 

0.3 0.04000 0. 04165 0.04078 0.04251 0.04650 

0.4 0.04000 0. 04165 0.04034 0.04203 0.04379 

0.5 0.04000 0. 04165 0.04018 0.04185 0.04281 

0.6 0.04000 0. 04164 0.04011 0.04178 0.04238 

0.7 0.04000 0. 04164 0.04008 0.04174 0.04215 

0.8, 0.04000 0. 04164 0.04006 0.04171 0.04203 

0.9 0.04000 0. 04164 0.04005 0.04170 0.04196 

1.0 0.04000 0. 04164 0.04004 0.04169 0.04191 
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CHAPTER - V 

EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY 

ROTATING AND TIDALLY DISTORTED 

POLYTROPIC MODELS AND PRASAD MODEL 



Most of the stars in binary systems are known to be rotating about their 

. axes as well as revolving around their common center of mass. Some of the stars 

in binary systems are also expected to be rotating differentially. Differential rotation 

is likely to influence the inner structure and equilibrium configurations of such 

differentially rotating stars. It is expected that equilibrium structures of such stars in 

binary systems are also influenced by the combined effects of differential rotation 

as well as the tidal forces of the companion star. In the present chapter we extend 

the analysis of chapter III to investigate the problem of determining the equilibrium 

structures of differentially rotating polytropic model as well as Prasad model of star 

following a law of differential rotation co =b1  +b2  s2. 

The law of differential rotation selected by us for present study is presented 

in section 5.1. In section 5.2 we use, the concept of Roche equipotentials which 

takes into account the effect of mass 'variation in potential to obtain results for 

differentially rotating stars in binary systems. In section 5.3 we use Kippenhahn 

and Thomas approach and the results on Roche equipotentials obtained in section 

5.2 to derive the system of differential equations governing the equilibrium 

structures of differentially rotating and "tidally distorted gaseous spheres. The 

technique is next used in section 5.4 to obtain the equilibrium structures of 

differentially rotating polytropic models, which are primary components of binary 

systems. The analysis of section 5.3 is also used in section 5.5 to obtained the 

equilibrium structures of differentially rotating Prasad model. Certain conclusions 

based on this study are finally drawn in section 5.6. 
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5.1 LAWS OF DIFFERENTIAL ROTATION 

By differential rotation we mean rotation of a gaseous sphere in which all 

the fluid elements of the sphere do not have the same angular velocity. Different 

authors have used different laws of differential rotation to account for some of the 

observed features of differentially rotating stars. Theoretically the general form of a 

law of differential rotation for a star rotating about an axis of rotation passing 

through its centre should be of the type 0.0(s,z) in which the angular velocity Q 

of rotation is a function of both distance s from the axis of rotation and the 

latitude z . In fact some of the authors such as Von Zeipel (157), Solberg (138), 

Hoiland (52), etc., used such types of laws. However, according to Tassoul (149, 

p. 175) it is perhaps not possible to build a chemically homogenous stellar model 

in radiative equilibrium with a rotation law of the type 0=-0(s,z). According to him 

since in the zones of efficient convection the transport of energy is not by radiation 

so in such a case Von Zeipel s argument does not apply and therefore, in practice 

for such a differentially rotating star in equilibrium, law of differential rotation of the 

form S2---S-2(s) may well be used. 

As early as 1865 Faye assumed a law of differential rotation of the type 

co = + b2  s2  (where to is the angular velocity of rotation of a fluid element at a 

distance s from the axis of rotation and b„b2  are certain constants) to account 

for differential rotation of the Sun s surface. Stoeckly (142) constructed 

axisymmetric models of differentially rotating polytropes of index 1.5 with .a law of 

a differential rotation. 

Q(s) 	e-(-2 /0 	 (5.1) 
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where s is measured from the axis of rotation, S2, denotes the angular velocity 

on the axis of rotation, a  the equatorial radius of the polytropic model, and a is 

a suitably chosen constant. Ireland (55) calculated the results for gravity-

darkening and limb- darkening in a rapidly rotating Roche model of a star 

subject to the non-uniform rotation assuming 0-12(s)where S2 is the angular 

velocity of the star and s is the distance of a fluid element from axis of rotation. 

Bodenheimer (12) calculated the structure of chemically homogenous main-

sequence stars of mass 15 Mo  , 30 Mo  , and 60 Mo  (X = 0.70, Z=0.03) by 

specifying a rotation law which gives the angular momentum per unit mass 

J(m) as a function of m , the mass interior to a given cylinder about the axis of 

rotation. Haris and Clement (51) presented equilibrium models for slowly 

rotating stars of 16 Mo , 28 Mo , and 47 Mo  assuming the interior distribution of 

angular velocity is uniquely determined by the requirement that the azimuthal 

force near the surface vanishes and the steady state is free from meridian 

circulation. Geroyannis et al. (42) obtained a complete solution of the structural 

equation for differentially rotating polytropes by taking differential rotation law 

which is a function of position and time - dependent homoaxial rotation. 

Geroyannis and Antonakopoulos (40) studied the structural distortion on the 

polytropic stars by differential rotation using a law of differential rotation earlier 

proposed by Clement (24). According to this law , the angular velocity co (s)of a 

fluid element is given by 

[  3 
	 )1/2 

CO (S ) = I a1  e-b' s2 
	

, 
i A 

(5.2) 

where s is a modified nondimensional cylindrical coordinate and ai  , bi  

constants. Komatsu et al. (64) computed equilibrium structures of differentially 
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rotating relativistic polytropes with indices 0.5 and 1.5 using a rotation law 

determined by specifying the angular momentum J(S2) . Although, theoretically 

choice of J(Q) is arbitrary, stability criteria impose some constraints on its 

selection and thus 

J (n) = 	- Q), 	 (5.3) 

where A is positive constant and SI, is the angular velocity at the centre of the 

coordinate system (ne  depends implicitly on the value of A which is called 

rotation parameter. For the Newtonian case this leads to the rotation law of the 

type 

= S2  A2  

A2  + s 2 
	 (5.4) 

where s=rsin0. When A —› 00, 52 approaches a rigid rotation. When A 	, it 

becomes a J- constant rotation (i. e. the specifying angular momentum is 

constant in space). Woodard (159) considered a law of differential rotation of 

the type 

1-2 (X)= Bo  +B, x2  +B2  x4 , 
	 (5.5) 

where n is an even function of latitude x. 

For a differentially- rotating model to be Table against local 

perturbations, the assumed law of differential rotation should satisfy stability 

criteria against local perturbations such as one obtained by (Stoeckly, 142). 

According to this criteria a model rotating differentially according to the law 

co =co (s) is Table if 

d 2 [s co(s)]>0 
d s 

(5.6) 

for all s from centre to surface. 
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In the present study we have preferred to use a law of differential 

rotation of the type. 

co =b1  + b2  s2 	 (5.7) 

where s=r sine,. is a nondimension dimensionless measure of the distance of a 

fluid element from the axis of rotation passing through its centre, b1 , b2  are 

suitably chosen arbitrary constants in units of CO 2  .This law may be regarded as 

a Taylor series expansion of a general law of the form 0)2 = f(s2 ) in which 

terms up to second- order of smallness in a Taylor series expansion of co2  are 

retained. This includes the law co2=b0 +b1  s2  +b2  S4 , used by Lal (69) as special 

case and ensures symmetry of co 2  about the axis of rotation. It may also be 

considered as the truncated series expansion of the law (5.7) when terms 

beyond s'are neglected. We have preferred this law of differential rotation in 

our present study. It not only generates a variety of differential rotation 

commonly expected in stars, but is also in a form which it can be convent ally 

subjected to the type of mathematical analysis which we proposed to carry out 

in the subsequent section of this chapter. 

The nature of certain types of differential rotation which can be 

generated by the law (5.7) for giving different values of bi  and b2  are shown in 

Table 5.1 For a star rotating differentially according to this law to be Table 

according to Stoeckly (142) criteria (5.6) must be non- negative for all values of 

s inside the star. The stability of each of the differential rotation considered by 

us in Table 5.1 has been analyzed are presented in the same Table. 
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5.2 ROCHE EQUIPOTENTIALS OF A DIFFERENTIALLY ROTATING 
AND TIDALLY DISTORTED GAS SPHERES 

A binary system of stars consists of a pair of stars in which one of the 

stars (called the primary) is usually much more massive and larger as 

compared to its companion star (called secondary) . Most of the binary stars 

are observed to be rotating about their axes as well as revolving around their 

common center of mass. Some of the stars in binary systems are also 

expected to be rotating differentially. Because of the differential rotation and the 

tidal effects of the companion, the equilibrium structures of stars in such binary 

systems get influenced by differential rotation as well as tidal effects of the 

companion stars. 

Mohan and Saxena (85), Mohan, Saxena and Agarwal (92) proposed a 

method for determining the equilibrium structures of rotationally and tidally 

distorted primary components of stars in binary systems and applied it to main 

sequence stars. However in their work they consider the rotation of the star to 

be solid body rotation. 

In the present chapter we have used the methodology of Mohan, 

Saxena and Agarwal (92) to determine the equilibrium structures of a primary 

components of stars in binary system by assuming that such a star is rotating 

differentially following a general law of differential rotation of the type 

w = bl  +b2s2  where b,, b2  are numerical constants and s, is the distance of 

rotating fluid element from the axis of rotation. 

Following Kopal (65) and Mohan, Lal and Singh (70), we assume that 

the total mass M0  of the differentially rotating star, which is primary 

component of a binary system, is much more massive than its companion star 

which is assumed to be point mass (i.e. Mo  > M1  where M1  is mass of the 
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component star). Let D be the mutual separation between the centers of these 

two masses. Further suppose that the position of the two components of this 

binary system is referred to a rectangular system of cartesian coordinates 

having the origin at the center of gravity of massMo  , the x axis along the line 

joining the centers of the components, the z axis perpendicular to the plane of 

the orbit of the two components, Mo (r) is the interior mass of the primary 

component). The primary star is supposed to be differentially rotating and 

tidally distorted stellar model. For such a star in the binary system, following 

Kopal (65) the total potential S2 at a point P(x , y, z) is given by 

dV0 + 	+!co2(s2 )d(s2 ) 
2 

Q=Vo  +VI  +1  ic0 2 (s2 )d(s2 ) 	 (5.8) 
2 

where s2  = [(x 	D  )- + r 	M D  mo M  mi  	], [mo  

being the position of the center of mass of the binary system. Also Vo  and V, 

are respectively the gravitational potential arising due to the primary and the 

secondary components of the binary system. Assuming Roche model for the 

primary and point mass for the secondary, the expression (5.8) can be written 

now as 

" 
,_, _GM  o (r )  + GM,  + 1 1(02 (5 2 )d(s2 )  

r 	r, 	2 
(5.9) 

for making (5.9) dimensionless, we multiply it throughout by —D to obtain GM to 
 

= DO = z + q + 156202.)d(s2 )  
GMo  r 	2 ;/ 

(5.10) 
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Here r, r, and s are in units of D , q=Mi lMo  ,and w 2  in units of GM,°  and 
D' 

z = M0(r)  
Mo 

writing co (s2 ) = bi2  .+ 2 bi  b2  s2  +14 s4  , (5.10) becomes 

w=I+-9-+-1 [.b,2 s2 +bi b2 s4 +1b;s4 ] 	 (5.11) 
r n 2 	 3 

GM  where b1 ,and b2  units of 	° , 
D3  

Also 

S2  = r 2 	02  ) 2/ qr 	 + 	q2  2 \2 tl+q) (1+q- j 

using A =sin° cos O, p = sinesin 0, v = cos9 (r, 0, 0) 

(5.12) 

being the polar 

spherical coordinates of the point with center of the star as the origin and 0 

being measured from the axis of rotation) in (5.12) r is non dimensional 

measure of the distance (rID) from the center of the star. So that, 

Z 	1 	2  { 2  = 
r

+ 	+-
2
b, 	1. _ v 2 )  2qrA q2 /02 

r
2
(1 	v

2 ) 
1+q (1+q) 2 
n2 }3  

1;1{r2  (1—v 2 ) 2qrA 	 
6 	 1+ q (1+ q)2  

2qrA  +  q2  
2 2  

1+q (1+q) 

(5.13) 

As the primary is considered to be much more massive than the secondary (i.e 

Mo>>Md q is small. We also assume that (02  is small so that b1, and b2  are 

also small quantities. Therefore neglecting terms beyond second order of 

smallness in b,, and b2  with tidal distortions term q and cross effects of 

interaction between variations in angular velocity term b,, and b2  with tidal 
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distortion term q and writing ri =(1-2.1, +r 2 )-Y2  , we get after some 

simplifications. 

tg .-z + qEri Pi(A)+1(1-v 2)r 2[ bi2  + b2(1-v2)r 2  +1.b(1-v2 )2r41 
r J=2 	 2 	 3 

(5.14) 

on setting q=0,z=1 it reduces to the potential of a spherical model having 

differential rotation. On setting z =1 ,b1  = b2  = 0. It reduces to the potential of a 

non-rotating model of a star distorted by the tidal effects of a companion. In 

case of synchronously rotating binary systems in which rotational velocity is 

synchronous with velocity of revolution, w 2  =1+q . On setting b12  =1+ q and 

/4 =0 and z=1 in (5.14) it reduces to the expression of potential of a binary 

system as given in Kopal (65). 

The surface generated by setting ty = constant in (5.14) is usually 

referred to as a Roche equipotential. The Roche equipotential thus defined is a 

modification in the light of mass variation inside the primary component of 

binary system. Unfortunately, the expression (5.14) for cv is such that r cannot 

be found explicitly in terms of ty . To achieve these equations (5.14) has to be 

solved by successive approximations keeping in view that bo  b2 , q are small 

quantities of first order. 

Defining nondimensional variable r0  = 	 and following Kopal (65) 
1// - q 

and Lal (69) a relation connecting (-AO on the surface of Roche equipotential 

is given as 
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r=r D 1 +( q P2  + b1  xjr 3  + q P3  r 4  +(q P4  +  b2  
5  Abi2  qx 1.5  + 0 

	

Z 2 2z 	z 2 z 2  2z 2z 
( q p5  3 q 2 p22 3 qp2 b;) 6 	qp6 b22 _ 	7 	 7  q 2 p2 p3 7  

+ z2 + z2 	+ 	x r 

	

z
2 	0 z 2 6z 

+ 	+ 	x 3  + 	b,2  qx 2  + 	 
4? 	' 	z 2 • 	ro 

	

 

+ ql;  	

-I- 

( 

	

z
2 	

z
2 	Z 2 	

x+  4(1 

Z 2

2 p32 + 8q 2  P2  P4  ± 4q P4  b12  

	

(= 
np_ 3  b22 q 
	 X 3  + 

9  2 p3 	9np3 
	 X  
b  2 + 

 9 
 2 p2 p5  9  

	+   1. + 

	

z 2 	2 Z 2 	Z 2 	422 	2 	0  

q P9  

	

z 2 	
10q2 P, P6 	10n

2p3 p5 5  „, b22 p2  _ 5 ,.,2 p42 
1 0 + 	

z 2 4 	+ 

	22 
	

+ 	

3 Z 2 	Z 2 	r° X3  + 	+... 

(5.15) 

where x=(1— )and pi = p7 (.1,) are legendre polynomial. In the above 

expression we have retained terms up to second order of smallness in 

bi ,b„q and up to order roe  in ro .This relation can be used to obtain the 

shape of a Roche equipotentials yr =. constant. 

Following the approach of Kopal (65) Mohan, Lal and Singh (70), the 

explicit expressions for the volume Tiv , surface area Si, the average 

gravitational force and its inverse g, and le of the equipotentials surface 

v= constant can be 

= 
41- r 3  D3 	br 	4bib2r0 5 	12q 2  4b2  q 6  8b 2r 7  

	

0 	+  1 0  + 	 + 	+ 1 )7. +  2 0  + 8 + 

	

3 	 5z 	5z 2 	5 z 2 	35z 

	

15q 2  8bi b2q 	2q 2 16b2  q 6b,b2 q +( 	+ 	)r0 +( 	+ 	+ 	)r0  +...] 

	

7z. 	7z. 	z. 	35z. 	35z. 

(5.16) 

2b 2 r 3  8b b r 	7q 2  7b12  q 6  16b2r 
= 47r ro2 D2 [1  + 	0  +  1 2 0 + 	+ 	)1,9  + 	2 0  + 

3z 	15z 	5z2  15z2 	35z 

9q 2  24102  q  8 	11q 2  88 14q  22b,b2  q io +( 	+ 	)r0  +( 	+ 	+ 	)r A  +... 
7z 2  35z2 	9z2  315z2  210z2  

r08 + 

(5.17) 
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zGA/f ir  r1  41,12  r03 	8b,b2 r0 5 	3q 2 	b 2q 6 6414 r°' 
g — 	D2  r02 L 	3z 	5z 	z 2 	zi2 )ro 105z 

—(— + 15q 2  176b1  b2q)r0  ( 	+ 8 21q 2  56 /4q  + 1578b1  b2  q  )roio  +...] 
7z2 	105z2 	9z 2 	63z 2 	140z2  

(5.18) 

— _i 	D2  r: 	4b ;1153  8b, b2  ro  5 	31q 2 	26b ; q  6 64 b 22  ro  7  
g = 	[1+ 	+ 	 + ( 	+ 	)ro  + 	+ 

zGA/1,, 	3z 	5z 	5z 2 	15z2 	105z 

+ 
40q2  674  b b 	 184bN,  2597  b1 b2 q )1.0io +...] +( 
7z2 

 + 
 105

1
Z 2

2 q k
0

8 	q ( 5
9
7
z 2

2 
+ 385 z2 	210z2  

(5.19) 

Here M, is mass contained within the equipotentials surface yi = constant and 

terms 

up to second order of smallness in z, b1 ,b2 , and q are retained. On setting 

bi2  = 2n, b22  =0 the results of this section reduce to the results of section 3.2 of 

chapter Ill for rotationally and tidally distorted stellar models. 

5.3 EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING 
AND TIDALLY DISTORTED GAS SPHERES 

Following Kippenhan and Thomas approach given in section 2.3 of 

chapter II, the equations governing the equilibrium structures of rotationally and 

tidally distorted gas spheres are given as 

d M y, 
	= 4 rc D3py,  ro 2f1  d ro  

dPv, GM w  
= 2 Py/ f2 d ro 	D ro  

5.20(a) 

5.20(b) 

d L y, 
=471- eD3

pv  ro 2 f, 
dro  

5.20(c) 
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dry/ 	3 tc Lw pv 	f3  
dro 	16 n-  Da c Tv 3 r0 2  

5.20(d) 

r 2  d r f2  = Dr 0 2 d 
where 	= v 	v 	 and f3  = —± 	fr  are distortion 2  

	

D3  dro 	rw  dro 	
Dr 2  d r 

f1 
 

r d r°  

parameters on account of rotational and tidal effects. 

In order to compute the values of these distortion parameters, 

ry  u, v, w, f,, have to be computed following the approach as discussed in 

section 3.5 of chapter III. Explicit expressions of these parameters which 

determine the value ofrv ,u,v,w,fp and fr  on the modified equipotentials 

surfaces of the primary component of a star in a binary system, rotating 

differentially according to the law co = b1  + b2 s 2  reduced to 

= ro  D[1+ 
b12r03 

+ 4b,b2r05 + (4q2  + 4b12q )1. 0 6 
+ 

81q r,27 + 
3z 15z 5z2  15z2 	105z 

(-5q2  8b,b2q )ro82q2   2 blb2q  16 qb o ic, 
+...] 

7z2  21z2 	3z2  35z2  

q 2 	q 6 	q2 	8bib2 q 	q 2 	4bib  2q 8b q io  
U=1-( -+ 	 )ro  ( 	+ 	) ( 	+ 	+ 	)ro  + 

5z2  15z
2 	

7z2  105 z2 	9e2 	35  e 	315z2 

(5.22) 

2b2 r 3  16bb 1- 5 	7 q2  2b2  q 6 	2 16b2r 7 	31q2  32bb q 8 

	

V=Z [1 	io 	i2 	i )r 	( 	+ 	12  k  
3z 	15z 	5z2  15z2  ° 	35z 	14z2  35z2  ° 

3q2  1562b b q  184b2 q + 	12  ÷ 	2  )ro  to 

z2 	140z2 	315z2  

(5.23) 

w= —1 [1+ 
2N ro3 

 +
16b1b2 r05 

 +(
23q2 

+ 
 23b12q

)r06+
16bro 7  

	

z 	3z 	15z 	5z2 	15z2 	35z 
(81q 2  198b1b2  q \ 8

+(
7q2 

+ 
 5146b1 b2q 

 + 
83Nq )r io +...]  

	

17z2  35z2 jr°  z 2 	420z2 	63z2 
o 

 

(5.24) 

(5.21) 

105z 2  
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fp = z [1 

2b; r°3 16b120 	 • 1 
b r 5 	22a2 22b  q  6  16b2 r0  ( 	 + 	 )1, 

	

3z 	15z 	5z 2  15z2  ° 35z 

( 
7q2   

+ 
586/02  q 

 )ro

g 

(

62 q 2  3046 bi b2  q 

+ 	

q 

	 )r0

10 

 +...] 

	

17? 	105z2 	 9z2 + 252z2 	63z2  
(5.25) 

14q 2  14 b12q 6 	46q 2  482b1  b2  q 8 	34 q 2  fr  —1 ( 	+ 
5Z2 	15Z2 

	 )ro 	( 
	+ 105z2 

)r 	
9z 2 

	

o 	( 	2  
182b1b2 

q 
 ÷ 16b;q  row +... 

210z2 	21z2)  
(5.26) 

In the above expressions, terms upto second order of smallness in 

19,,b2 ,q and z and terms up to 	in in ro are retained. 

Using these expressions the values of distortion parameters A , f2 , f3  are 

obtained as 

fi  =1+ 2bi2 r 3 
-.1- 

32b1b2, r05 
15z 

26g2  26b1b2  q  

+ ( 	 + 	 +

322 	35z,. 

36q2  36b12 q)r  6 + 10;  r0 7 
	 -F( 

5z2  5Z2  ° 21z 
2081):// )7.10 
105z2  ° 

+(55q2 88b b2 q 8 

s, 722 
	 722 

(5.27) 

3q 2  2b12q 6 	6q 2  306b,b2q 8 	8q 2  51037b,b2  q 	814 q 

 )ro + ...] 

? 

10 

f2 = z  [ 1  — 	 + 	+ 	 + 	 )ro 5z 	15 Z 2 	7z 	105 z2 	 9z 	441022 	315 

(5.28) 

q 

	

2b2 r 3  16b b 	6q 2 	61)12 	6  4. 16Nr07 

f3 =1+  1 0  + 	1 2
r 
 0  +( 	 + 	   

	

3z 	15z 	5 z2 	5 z 2 	35z 
24q 2  202  bib2q ro 

) 

8 

+ ( 

26q 2  74b1b2  q 

+ 

64b; q 

 )113

io 

 + ...  

	

722 	105z2 	 9z 2 	210z2 	105 z 2  
(5.29) 

The values of 	etc. on the various equipotentials surfaces of a 

differentially rotating stellar model may now be obtained by solving the system 

of differential equations (5.20a-5.20d) using the values of distortion parameters 

f2, and f3  as given in (5.27), (5.28) and (5.29) subject to the boundary 

conditions 
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Mw  =0, Lv, = 0 at the center ro =0 and at the free surface ro=ro, 

My  = mo , 4 = 45 , Pv  =0 or Pv, 	pv  =0 or pv„ and Tv = 0 or Tv„ 

(5.30) 

(ro, being the value of ro  at the free surface). 

Once the equilibrium structure of the primary component of a star in a 

binary system, rotating differentially according to the law w =1), +b2s2, has 

been computed by solving the system of differential equations (5.20) subject to 

boundary conditions (5.30), its shapes, and values of various other observable 

physical parameters can be computed. Whereas its shape, volume and surface 

area can be computed using (5.15), (5.16), and (5.17) its oblateness a and 

ellipticity e may be computed using their definitions as given in section 3.3 of 

chapter 	The values of Rp ,R„g p ,g, needed for this purpose are to be 

calculated from 

RP rOsD, 
	 (5.31) 

Os
4 
± 	bib2)ro 5  + fq 31)12  q  

Re = ros D[1+(
q + —

bi2 
)ros

3 qr 
s  + 	2 3

q2 6
+  

z z 2z z 2z 	 z z z 

n 7q2 
/4 	7 	q 4b12q 4b,b2q 

+ 
12q2

)r 
8 
+ + 	+ 	+ )ros 

	z z 	z 
+( + 2  + 2 	Os 

z 2z z 6z 	
2 

z 

q 9b12q 18bl b q  18g 2 	9 	q 5b2q 5blb q 5b2q  25q2 	io + 	2  + 	kos 	+  1  + 	2  +  2  + 	17. 

z 2z 	4z 	z 	z 	z 	z 	3z 	
z2 / 0 

(5.32) 

where Rp, and Re  are respectively , the polar and equatorial radial. The 

gravitational force gp  at the pole and g e  at the equator are given as below and 

the temperature and Luminosity may be calculated by using equations (3.34) 

and (3.35) of chapter III. 

GAI0  
gP = 2 (5.33) 
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G M 	2q b12 	3  3q ros4 	4 q 2 b
z
, b2 	5  

g e  = 	[1 ( 	+   ( 	+ 	)ros 1? 	z z 	z z  

z 	z 2 	
z

2 
g 61112 g  6 q  2 	6 	6n  1:4 	7 	7q 13b,b2 q  2q 2  \ 8  

+ 	+ 	)ro, 	( 	+z 	z  )ros 	z 
( 	+ z2 	+ z2  )ros 

*0 	9q + 20 bib2  q  8 qq 20 q 2   \ 10 : 
 z z2 

	

z2 	z2  
YOs + • • .1 

(5.34) 

A star rotating according to the present type of the law of differential 

rotation develops deformations in its shape but maintains spherical symmetry 

about the axis of rotation. If we follow Geroyannis and Valvi (42) oblateness 

a-  and e which are used as measures of the departure of the shape of the star 

from spherical symmetry may be computed by using 

Re  — R p  
CT = 	 

R p  
and 

Re  — Rp  
6= 	 

Re  
(5.35) 

The polar angular velocity cop  and equatorial angular velocity co, of the 

star can be computed as below in units o GM   using. The temperature and 

Luminosity may be calculated by using the equation (3.34) and (3.35) of 

chapter III. 

w p  = 	and 	co, = Vb,2  + 2 b1b2  1? +14 R: 	(5.36) 

In the next two sections of the present chapter we apply this approach 

developed in this section to determine the equilibrium structures of differentially 

rotating and tidally distorted polytropic and Prasad models of stars. 

5.4 EQUILIBRIUM STRUCTURES OF DIFFERENTIALLY ROTATING AND 
TIDALLY DISTORTED POLYTROPIC MODELS OF GAS SPHERES 

If we assure primary component of binary star as a polytropic model 

rotating differentially according to the law co =b, +b2  s2  then the equilibrium 
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a2
[
r2 

d 	
= r 2  O N  

dr y, '1  dro 	w 41  

a
, 
=

(N +1)  where 
4,r 13,2  v  

(5.37) 

structure of the primary component of a star will be differentially rotating and 

tidally distorted models. 

Following the approach as given in section 3.3 of chapter III the 

differential equation governing the equilibrium structure of rotationally and 

tidally distorted model now become 

On changing independent variable rv, in terms of r° , equation (5.37) can 

be written as 

dO 	D 2  d [
A(b,,b„z,q, ro )--L = – —2- B(bob„z,q,ro ) 	(5.38) 

dro 	 dr y,  a 

	

2 	 2 	2  z ,q,r0 ) r02 	3 q2 	1r6 6q 2   g 10q 	 r0 

	

5  2 	5z2 0 7z 
2  IP 	

9z 

and 

B(bob2 ,z,q,r0 )=[1+ 	 
2bi2r03 

+ 
32b1b2ro  5 + (  36 q2 

 + 
12b12q

)ro 
6 
 + 

16b r07  

	

z 	15z 	5 z  2 	5z2 	21z 

208b2q 12 b,a  10  
±(

55q2 
+ 88b1b2q 	 4.  8 

)r0 
 +(26q2 

+ 	+ 	")r + ...] 

	

7z2 	21z 	3z2 	105z2 	35z 	° 

and 

r„, dO 
d z= 	 

2 dO 
r°  d 	ro _ro,  

and z ro 	 
q 

The terms up to second order of smallness in z, b1,b2 , and q up to r012  are 

retained. The boundary conditions which equation (5.38) must satisfy are: 
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Ov  =1, 
dOw

= 0, at the center , ro  =0 
dro  

6v  = 0 at the surface ro = ros 
	 (5.39) 

In the expression K = D , R
u 
 being the undistorted radius of the primary 

and D the distance between the centers of the primary and secondary stars of 

the binary system. We can write 

D
u 	 = 	

D 	I 

a
= 

cgu 
 (5.40) 

With this substitution equation (5.38) can be written as 

2  dO,v 	t, 0  N B(bi,b2,  ro  , z,  0 d  
dro 

A(bi  , b2  , ro  , z,q) 	
d 

[ 
ro ] 	K 

2 iif ‘ (5.38 a) 

Where the quantity a is of the dimension of length defined in equation 

(3.19) of chapter III and 	is the value of at the outer surface of the undistorted 

polytropic model. 

Equation (5.38a) subject to the boundary conditions (5.39) determines 

the equilibrium structure of a differentially rotating and tidally distorted 

polytropic model. On setting q=0 the above equation reduces to (3.20) which 

determine the equilibrium structure of a polytropic model of a star distorted by 

differential rotation alone under the mass variation inside the star. If we set 

b1=b2  =0 in (5.39), the equation reduces to an equation which determines the 

equilibrium structure of a polytropic model of a star distorted by the effects of 

the tidal forces of the companion. 

To obtain the inner structure , the volume, the surface area and other 

physical parameters of certain differentially rotating and tidally distorted 
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polytropic models, the equation(5.39) has to be integrated numerically with 

specified values of parameter N, b1  ,b2  ,q, and K which respectively denote the 

polytropic index, the radius of undistorted polytropic model , the values of 

constants (i.e b1 , and b2 ) appearing in the law of differential rotation, the ratio 

of mass of the companion star to primary star in the binary system and the ratio 

of undistorted radius of the primary to the distance between the centers of the 

cr(r) primary and the secondary. The value of z = Al  	required at each point 
Mo 

inside the star is computed from (3.2) of chapter Ill. The value of K must be 

such that the outermost surface of the primary component lies well within the 

Roche lobe otherwise the two star will coalesce (Kopal (65), page 11). For a 

single star distorted by differential rotation alone K=1 and rotationally and/ or 

tidally distorted star, K=0.5. 

For obtaining the numerical solution, equation (5.38 a) was integrated 

using fourth-order Runge-Kutta method for the specified values of the input 

parameters. However the center and the surface of the star being singularities, 

series solution similar to the one available for undistorted polytropic model (cf. 

Chandrasekhar (21), page 85) was developed to start the numerical integration 

at points near the center. This series solution is given by 

Ov 
=1 

1
" 2  +  1‘[(j4  6K 2 r° 

 120K4 
4  bit 2  5 N(8N — 5)4:  6 {  NbiT  0 15 zK 	15120K6 r0  + 140 zK 4  

41111)2  4,,2  
105 zK 2  

1122N 3  —183N 2  + 70N48 	q 2 	q 4„2  8  u  
3265920K8 	8z 2  24z2)  K2 

ro 
 

(5.41) 

Taking starting values from this series solution at ro  =0.005, numerical 

integration of equation (5.37) was then carried forward using forth order Runge 
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–Kutta method with a step length of 0.005. Numerical integration was continued 

till 0,,first became zero. 

Once we obtain ros  , the value of ro  where Ov  first becomes zero, 

relation (5.16) may be used determine its shape by replacing ro  by ros  and 

writing z=1 D= 4.  relations (5.16) and (5.17) can now be used to determine 

the volume and the surface area of the polytropic models of star. The other 

physical parameters of such models such as oblateness, ellipticity, polar 

angular velocity, equatorial angular velocity, temperature ratio (—Te
) and 

Tp  

L luminosity ratio 	are computed using the relations (3.35) and (3.36) of 

chapter III respectively. 

Numerical computations have been performed to compute the inner 

structures of certain differentially rotating and tidally distorted polytropic models 

of indices 1.5, 3.0, 4.0 with specified values of „,bi ,b2 ,N,K,Z . The results on 

inner structures are presented in Tables 5.3(a), (b), (c). The results computed 

for various observable physical parameters are tabulated in Table 5.4-  (a), (b), 

(c). The value of K has been taken one for the differentially rotating models 

and 0.5 for the tidally and/or differentially rotating and tidally distorted models. 

5.5 EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING AND 
TIDALLY DISTORTED PRASAD MODEL 

In order to determine the equilibrium structures of differentially rotating 

and tidally distorted Prasad model in the influence of mass variation inside the 

model, primary component of binary star is assumed to be Prasad model 
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rotating differentially according to the law (5.7). Thus the equilibrium structure 

of the primary component of a star will be rotationally and tidally distorted 

models. Let r1, denote the radius of the topologically equivalent spherical model 

which corresponds to an equipotentials surface tv = constant of this 

differentially and tidally distorted model and R I" be the value of ry, on the 

	

outermost equipotentials surface. Further, let 	denote the value of density on 

an equipotentials surface yr = constant. The density distribution law of the 

differentially rotating and tidally distorted Prasad model is given by 

p = pc (1 — x2 ) 

P = Pc (1— x2 ) 	 (5.42) 

	

5 	6 

	

= Dr[1+ 2b2r
° +4b1b2ro 	+ 4q r° 	 + 	8b22ro7 + Sq2r08 	m 	+ 2q2ro r 	+... v, 	0 

	

3z 	15z 	4z2 	15z 	7z2 	3z2  

(5.43) 

[  	
4a2    6    8b2    7  

	

,  	4,,,2,   8   1    2 10 

	

2b1   	
+ 	

  +    A   rOS    +    2    ' OS    .÷ j11   ' OS    +   44 r0 5  R   =   Dr s    1 + 	+ ... 

3z 	15z 	4z2 	15z 	7z2 	3z2  

with z ros = 	
—q 

(5.44) 

(5.45) 

where z is same as defined in section 4.1 of chapter IV. 

On substituting the value of rw. and Ry, from equation (5.43) and (5.44) 

in equation (5.42) we get 

pv  _ pc 1  D2  2  r0   j1+  2b1  r03 	5 r0 	8bib2ro 	8q2 6 	2  ro 	6 b2  F.;  10q2  8  r0 	4q2 10 r0  [ 
Rv2  [ 	3z + 

	 
15z + 	+ 	+ 5z2  105z 7z2 + 2  +... 3z  

(5.46) 
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On substituting value of p„ from (5.46) in (3.25a) and integrating w.r.t. ro  

and using the fact that My  = 0 at center ro = 0 we get 

4 
M= 

	, ;rpD3r0
3 	

3D2 [1. 	
0

2 +  b12r0 3
+ 	

r5 	b2R2 	 2 1 	
+ 

r 	12qr0 y 	 6 

	

r 	 , 3 	2 	
5z 2 	zRv,- 	5z 2  

+  2 	 0  + 

	

16b 2 0r ' 4b12  b R 2 r 7 	15q 2  12q2 R 2  r  8 + (2q 2  15q2 R 2 )1.010  
70z 	5zRv,2 	7z2  5z2;2  ° 5z2  7;2  

(5.47) 

Similarly on substituting value of p„ from (5.46) and M„ from (5.47) in equation 

(3.25b) and integrating w.r.t. ro  and 

21rzGpc 2  D 2 	2  4D2 ro 	1  4  2b 05 	D4r06  8b i b2 r0 7 	16D2 bi 02 r 7  
P= 	 [K ro  + 	 

	

51c
2 	

5z 	
5R,2 
	35z 
	 + 	  

2lz;2 + 
v, 	3   

+ 	+ 	 
q 2 r08  16b2 2r09  64b1b2 D2r09  14D4 b1 2 r09  
2z2 	315z 	135zR v,2 	45zRw

4 

3q 2ro m  + 144D2 q 2 r01°  + .1  
10z2 	125z2;2 	.1  

(5.48) 
where K is a constant of integration whose value may be calculated by using 

boundary conditions P, = 0 at ro  =ros- 

2  4D2ros  4  2/012r 5  D4ro  6s  +  8102r0;  16D2bi 2 r0,7  + q 2ros s  
K = r os 	 4. 	os  + 

5;2 	5z 	5/c2 	35z 	21zRv,2 	2z2  

16b2 2ros9  64bib2D2r0,9 
-1-  14D4b12r0,9 + 3q 2r0510  144D2q 2rosi°  

+ 	  
315z 	135z 2 45z/c4 	10z2 	125z2;2  ± 

	

; 	 ... 

The 	explicit 	expressions 	for 	Volume 	17,, , 	Surface 	area 

Sv ,g and g7  gravitational force are given as 

4,r ro rl+b12  r03  4bl b2 r05  + 12 47 2 
8b2 r7 is  2 r8 2  2 r 0 

V = 	 2 0 	q 0 	q 0  
3  L  

	

5z 	5z 2 	35z 	7z2 	z
2 

(5.49) 
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2 	2b; .,3  8 bi b2 r: 7q2  r:  16b2  r07 
9112r: 

 11q2 
ri
° 	

o 
sw  = a. ro  [i 	1 V  + 	  

+  	 eel 

. 3z 	15z 	5z2 	105z 	7z2 	9z2  

(5.50) 

— zGM w 	4 b12 r: 8 b1 b2  ro  3 q  2 1.06 64 b;r07  51.7 2 r08 142 ri

° 	

o 

 g= 	
r0

2 	[ 1 	
3z 	5z 	z 2 	

105z 	14z2 	3z2 	
+...] 

(5.51) 

r 2 
31q 2  ro6 	64 b22  ro7 	101 q 2  7.08 	75q 2 r0 °  0  	4 b12  rip' 	8 b1 b2 r05 

g 

- = 

	[1+ 	 + 	 + 
zGM w 	3z 	5z 	5z2 	105z 	14z2 	9z2  

(5.52) 

If we put b12  = 2n, b; =0 the results of this section reduce to the result of 

section 3.1 of chapter III. 

Numerical computations have been performed to compute the inner 

structures of certain differentially rotating and tidally distorted Prasad model for 

two values of 	and taking four models we replaced ro  by xros  to 5.43 and 

5.44 and used x as the independent variable whose value is to zero at the 

center and one at the free surface. Riau& cou. frreAcnted  in -fa4,.//t, 5.4(a) , 5.4CO, 

cc) and 6 4 64) . 

5.6 ANALYSIS OF RESULTS 

Results presented in Tables 5.1 show that the behavior of angular 

velocity in certain differentially rotating models. This Table also exhibits the 

stability of the models considered according to the Stoeckly criteria. 

Table 5.2 shows the values of ros  for certain differentially rotating and/or 

tidally polytropic models with polytropic indices 1.5, 3.0, and 4.0. The results 

shown in Tables 5.3 (a), (b), and (c) present the values of certain structure 

parameters and related quantities of differentially rotating and tidally distorted 

polytropic models with polytropic indices 1.5, 3.0 and 4.0 respectively. The 
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parameters and related quantities of differentially rotating and tidally distorted 

polytropic models with polytropic indices 1.5, 3.0 and 4.0 respectively. The results 

shown in paranthesis are the corresponding results earlier obtained by Mohan, 

Lal, and Singh (70). Compares on results in Table 5.3 (a) for volumes and surface 

areas with corresponding results shown in parenthesis indicate that our values 

obtained by us are smaller than the corresponding result shown in parenthesis. 

The decrease in these values is small in the case of polytropic model 3.0 and 4.0. 

However, the volumes and surface areas for tidally distorted models 4, 5, 6 are 

obtained by us are larger. 

As regards the shape of the model represented by a and E for N =1.5, 

values obtained by us are smaller in comparison to the corresponding results 

shown in parenthesis. A similar trend is noticed in the case of models for 

polytropic indices N= 3.0 and 4.0. However, a and e obtained by us for tidally 

distorted models 4 and 6 are larger in comparison to the tidally distorted model, 

these are smaller in the case of model 5 for all the polytropic models with indices 

N= 1.5, 3.0 and 4.0. 

It is also noticed that our results for Teand -- L
L which give the temperature 

Tp 	Lp  

and luminosity at different points on the surface in comparision to their 

corresponding values at pole are larger in comparison to the corresponding 

results shown in parenthesis. It is also noticed that while the values of these 

parameters are smaller for the 4 and 6 in comparison to earlier obtained models 

these values are larger increase in the case of model 5. 

Compared to the undistorted Prasad model the increase (decrease) in the 
values of structure parameter for differentially rotating and / or tidally distorted 

Prasad model is small for models with 	=10.0 compared to models with 

ty: = 5.0. 
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Table 5.1 : Behaviour of Angular Velocity in Certain Differentially Rotating 
Models 

Model No. Values 	of 	Various 	Parameters 	of 
differential rotation 
co' =b; +2b1 b2  s 2  + b2 s' 

Stability 	of 	the 
model 	according 
to 	Stoeckly 
criteria 

1)1  b2  q 

1 0.0 0.0 0.1 Stable 

2 0.3162 0.3162 0.1 Stable 

3 0.0 0.3162 0.1 Stable 

4 0.3162 0.3162 0.1 Stable 

Table 5.2 : Values of r0 , for certain differentially rotating and tidally 
distorted models of stars indices 1.5, 3.0 , 4.0 

Model 
No. 

Values of distortion 
parameters 

Polytropic indices of ros  

b, b2  q 1.5 3.0 4.0 

1.0 0.0 0.0 0.1 0.499815 0.499935 0.499955 
2.0 0.3162 0.0 0.1 0.496235 0.498620 0.499475 

3.0 0.0 0.3162 0.1 0.499805 0.499935 0.499945 
4.0 0.3162 0.3162 0.1 0.495895 0.498510 0.499430 

Table 5.3 (a) : Values of certain structure parameters and related 
quantities of differentially rotating and tidally distorted 
polytropic models of index N= 1.5 

Model 
No. 

vy, x 1 0 -2  Sy, X 1 0 -2  a 6 we  W P  Te lTp  Le /Lp  

1 2.04188 1.67682 0.02000 0.0262 0.0000 0.0000 0.96769 0.85390 
(2.0446) (1.67859) (0.0326) (0.3165) (0.0000) (0.000) (0.96471) (0.83871 

2 2.02292 1.66633 0.03322 0.03162 0.3162 0.3162 0.96189 0.82853 
(2.05867) (1.68621) (0.03985) (0.03832) (0.3162) (0.3162) (0.95798) (0.80994) 

3 2.04213 1.67696 0.02706 0.02635 0.08332 0.0000 0.96743 0.85287 
(2.04500) (1.67876) (0.03284) (0.3180) (0.08345) (0.0000) (0.96440) (0.83752) 

4 2.02391 1.66684 0.03474 0.03358 0.39945 0.3162 0.95947  0.81902 
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Table 5.3(b) : Values of certain structure parameters and related 
quantities of differentially rotating and tidally distorted 
polytropic models of index N= 3.0 

Model 
No. 

vv  x10-3  S, x10 -a  6 e W e  coP  Te lTp Le /LP  

1 1.37429 5.97751 0.0000 0.0000 0.0000 0.0000 0.96766 0.85376 
(1.3752) (5.98113) (0.03268) (0.03165) (0.000) (0.000) (0.96470) (0.83870) 

2 1.38052 5.99520 0.03387 0.03276 0.3162 0.3162 0.96110 0.82529 
(1.3884) (6.01921) (0.0400) (0.03846) (0.3162) (0.3162) (0.95782) (0.80928) 

3 1.36972 5.96422 0.02696 0.02625 0.083153 0.0000 0.96756 0.85343 
(1.37550) (5.98181) (0.03285) (0.03180) (0.08346) (0.0000) (0.96660) (0.83751) 

4 1.38326 6.00292 0.03551 0.03429 0.40046 0.3162 0.95854 0.81523 

Table 5.3 (c) : Values of certain structure parameters and related 
quantities of differentially rotating and tidally distorted 
polytropic models of index N= 4.0 

Model 
No. 

vc, x10-3  S, x10 -3  a e We COP  Te ll', Le l Lp  

1 14.0598 2.81700 0.00000 0.00000 0.00000 0.00000 0.96765 0.85373 
(14.0688) (2.8185) (0.03269) (0.03165) (0.000) (0.0000) (0.96470) (0.83869) 

2 14.1956 2.83494 0.03411 0.03299 0.3162 0.3162 0.96081 0.82412 
(14.2313) (2.84021) (0.04010) (0.03855) (0.3162) (0.3162) (0.95770) (0.80880) 

3 14.0624 2.81734 0.02702 0.02638 0.08337 0.0000 0.96739 0.85269 
(14.0713) (2.81892) (0.03285) (0.03180) (0.08346) (0.0000) (0.96439) (0.83749) 

4 14.2297 2.83941 0.03578 0.03455 0.40081 0.3162 0.95820 0.81388 

Table 5.4(a) : Structure Parameters of Uniformly Distorted Prasad Model 
For 	(v: =5,bi  = 0, b2  =0,q=0.1) 

x fc s, Py, MW  Pv  a E Te ITp  Le  /LP 

0.1 0.00001 0.00042 0.99000 0.00248 0.01313 0.00035 0.00035 0.14283 0.99825 

0.2 0.00006 0.00166 0.96000 0.01952 0.01499 0.00036 0.00036 0.20199 0.99817 

0.3 0.00023 0.00374 0.91000 0.06385 0.01317 0.00038 0.00038 0.24738 0.99806 

0.4 0.00054 0.00666 0.84000 0.14464 0.01081 0.00041 0.00041 0.28565 0.99791 

0.5 0.00106 0.01041 0.75000 0.26563 0.00819 0.00044 0.00044 0.31936 0.99772 

0.6 0.00183 0.01499 0.64000 0.42336 0.00559 0.00049 0.00049 0.34983 0.99745 

0.7 0.00291 0.20408 0.51000 0.60536 0.00327 0.00056 0.00056 0.37784 0.99709 

0.8 0.00435 0.02665 0.36000 0.78848 0.00149 0.00066 0.00066 0.40391 0.99657 

0.9 0.00622 0.03373 0.18999 0.93676 0.00036 0.00081 0.00081 0.42837 0.99576 

1.0 0.00800 0.41692 0.0000 1.0000 0.00000 0.00100 0.00100 0.45148 0.99438 
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Table 5.4(b) : Structure Parameters of Rotationally and Tidally Distorted 
Prasad Model 	was  = 5, b, = 0.3162, b2  = 0, q = 0.1 
x v„, s, Pc, M y,  Py,  a  6 

Up  44 

0.1 0.00001 0.00041 0.99000 0.00284 0.01305 0.00052 0.00052 0.14282 0.99733 
0.2 0.00006 0.00166 0.96001 0.01951 0.01499 0.00053 0.00053 0.20197 0.99729 
0.3 0.00023 0.00374 0.91002 0.06382 0.01317 0.00056 0.00056 0.24736 0.99715 
0.4 0.00054 0.00666 0.84005 0.14457 0.01081 0.000591  0.00059 0.28562 0.99697 
0.5 0.00106 0.01041 0.75007 0.26551 0.0082C 0.00064 0.00064 0.31933 0.99671 
0.6 0.00183 0.01499 0.64010 0.42321 0.00559 0.00071 0.00071 0.34979 0.99637 
0.7 0.00291 0.02041 0.51012 0.60523 0.00327 0.00080 0.00080 0.37780 0.99589 
0.8 0.00435 0.02666 0.36012 0.78834 0.00146 0.00093 0.00093 0.40385 0.99519 
0.9 0.00620 0.03375 0.19010 0.93670 0.00036 0.00114 0.00114 0.42830 0.99411 
1.0 0.00850 0.41673 0.00000 1.00000 0.0000C 0.00149 0.00149 0.45138 0.99226 

Table 5.4(c) : Structures Parameters of Rotationally and Tidally Distorted 
Prasad Model (v = 5, b, = 0, b2  = 0.3162, q = 0.1 ) 

X v., s, p, 111,, Pv, a e Te ITp  Le R,,, 

0.1 0.00001 0.00041 0.99000 0.00249 0.01313 0.00035 0.00035 0.14832 0.998245 
0.2 0.00006 0.00166 0.96000 0.01952 0.01499 0.00036 0.00036 0.20199 0.998168 
0.3 0.00022 0.00374 0.91000 0.06386 0.01317 0.00038 0.00038 0.24738 0.998060 
0.4 0.00054 0.00666 0.84000 0.14464 0.01081 0.00041 0.00041 0.28565 0.99915 
0.5 0.00106 0.01041 0.75000 0.26562 0.00819 0.00044 0.00044 0.31936 0.997721 
0.6 0.00183 0.01499 0.64000 0.42333 0.00559 0.00049 0.00049 0.34983 0.997459 
0.7 0.00291 0.0204C 0.51000 0.60539 0.00327 0.00056 0.00056 0.37784 0.997096 
0.8 0.00435 0.02665 0.36000 0.78848 0.00146 0.00066 0.00066 0.40391 0.996572 
0.9 0.00619 0.03373' 0.18999 0.93676 0.00035 0.00081 0.00081 0.42837 0.995764 
1.0 0.00850 0.41649 0.00000 1.00000 0.00000 0.00107 0.00107' 0.45148 0.994383 
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Table 5.4(d): Structure Parameters of Differentially Rotating and Tidally 
Distorted Prasad Model('/: = 5, b, = .3162, b2  = .32, q = 0.1) 

X v. s, Pi, Mw  Pv  a 6 Te g p  4 1,, 

0.1 0.00001 0.00042 0.99004 0.00248 0.01304 0.00053 0.00053 0.14282 0.99731 

0.2 0.00006 0.00166 0.96001 0.01951 0.01489 0.00054 0.00054 0.20198 0.99726 
0.3 0.00023 0.00375 0.91003 0.06385 0.01314 0.00056 0.00056 0.24736 0.99713 
0.4 0.00054 0.00666 0.84005 0.14457 0.01087 0.00060 0.00060 0.28562 0.99694 
0.5 0.00106 0.01041 0.75008 0.26551 0.00819 0.00065 0.00065 0.31933 0.99668 
0.6 0.00184 0.01499 0.64001 0.42320 0.00559 0.00072 0.00072 0.34983 0.99632 
0.7 0.00292 0.02041 0.51013 0.60522 0.00327 0.00082 0.00081 0.37782 0.99582 
0.8 0.00435 0.02665 0.36014 0.78833 0.00146 0.00095 0.00095 0.40386 0.99512 
0.9 0.00619 0.03378 0.19010 0.93669 0.00035 0.00116 0.00116 0.4283C 0.99399 
1.0 0.00850 0.04165 0.00000 1.00000 0.00000 0.00153 0.00153 0.45147 0.99203 
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CHAPTER - VI 

EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY 

ROTATING WHITE DWARF MODELS OF STARS 



White dwarf star is largely supported against gravity by the pressure 

provided by the kinetic energy of the degenerate electrons. In contrast, its 

luminosity is almost entirely derived from the thermal energy of the 

nondegenerate ions, when nuclear process no longer comes into play and 

gravitational contraction has almost ceased. A completely degenerate white 

dwarf very much resemble a polytropic configuration, polytropic index ranging 

from the N =1.5 (in the limit M —> 0) to N =3.0 (in the limit M -->M3 , where 

M3 is the mass of polytropic index 3.0). Such models have frequently been 

used in literature to depict the inner structures of realistic stars at the last stage 

of their evolution. The white dwarf stars of class DC, those which have no 

observable lines, are possible candidates for having differential rotation. To test 

this suggestion, Milton (82) calculated the emergent spectra of hydrogen rich, 

differentially rotating white dwarf models. By virtue of the poincare-Wavre 

theorem, a barotropic configuration in a state of permanent rotation must 

ncnnee~rilu netmnitt 	+Ise. 	 14%.. 	ie.s.ft. 

axis of rotation .The particular case of constant angular velocity of rotation has 

been considered by several authors such as James (56), Anand and Dubas (3), 

Roxburg (119), Ostriker and Hartwic (100) etc. Their results show that solid 

body rotation does not induce any substantial change in the global structure of 

degenerate dwarfs. However the intense study carried out by Hoyal and 

Roxburgh on some problems of differentially rotating white dwarf stars 

assuming an angular momentum distribution law of the type J = J(ms ),where 

m, is the mass fraction interior to the cylinder, pointed out completely different 

picture. Detailed models of massive white dwarfs in fast non-uniform rotation 

have been also constructed by Ostriker et al. (99). 
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In the present chapter we implement the approach developed in 

chapter III to determine the effects of differential rotation on the equilibrium 

structures of white dwarf models using a law of differential rotation of the type 

(5.7). Even though approximation of exact equipotentials surfaces of rotating 

white dwarfs by corresponding Roche equipotentials, used in the present 

method, may not be very much justified, in the absence of more accurate 

analysis. It will be of interest to see how the results obtained by the present 

approach compare with the earlier results and observations. 

In section 6.1 we first briefly introduce white dwarf model. The boundary 

value problem determining the equilibrium structures of differentially rotating 

white dwarf models of stars based on Kippenhahn and Thomas averaging 

approach has next been set up in section 6.2. Expressions determining the 

volume, surface area and other physical parameters of a differentially rotating 

white dwarf model are obtained in section 6.3. Numerical results for the 

equilibrium structures of certain differentially rotating white dwarf models have 

been obtained in section 6.4. In section 6.5 numerical results have been 

analysed to draw some conclusions of practical significance. 

6.1 INTRODUCTION 

White dwarf models have been extensively studied in literature as 

representative models of low mass stars in their last stage of evolution (see for 

instance, Chanadrasekhar (21)). In the case of completely degenerate white 

dwarf model, the equation of state can be written as (cf. Chandrasekhar (21), 

eqns. (16), (17) and (18) chapter XI). 

P = Af (x), p= B x3 	 (6.1) 
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where, 	 A .01x10 22 , B= 9 .82 x105  p„ 	 (6.2) 

f (x) = x(2x 2  - 3)(x 2  + 1)I/2  + 3 sink-1  x, 	 (6.3) 

x = --LP  is a relativistic constants? 
me 

and Pe  denotes mean molecular weight per electron. 

The equilibrium structure of a white dwarf model can be shown to be 

governed by the nonlinear differential equation 

1 d 2  d0 	
0

2 	1 Y2  
= -( q dq dq 

which has to be solved subject to the boundary conditions 

0=1, 
d 

 —
d q 

= 0 at the centre q =0, 

and 
	1 	at the surface 

0o  
	treat e of e ditre-re 	equa ion 	prow•es muc more 

quantitative information. The boundary conditions (6.5) combined with a 

particular value of 00  determines 0 completely and therefore the mass of the 

configuration as well. Once the solution to the differential equation (6.4) 

satisfying boundary conditions (6.5) is obtained, other physical parameters of 

the white dwarf model can be obtained. 

Equation (6.4) does not admit of a homology constant, and hence each 

mass has a density distribution characteristic of itself, which cannot be inferred 

from the density distribution in a configuration of a different mass. This is most 

fundamental difference between the white dwarfs and the polytropic models. 

Chandrasekhar (21) and other investigators have numerically solved the 

(6.4) 

(6.5) 
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equation (6.4) to satisfy the boundary conditions (6.5) for values of 1/4 2 varying 

from 0 to 1 and used these to determine the values of various physical 

parameters of white dwarf stars. 

6.2 EQUILIBRIUM STRUCTURES OF DIFFERENTIALLY ROTATING 
WHITE DWARF MODELS 

In this section we use the method developed in chapter III to obtain the 

equilibrium structures of certain differentially rotating white dwarf models. In 

case a white dwarf model is rotating differentially then as a result of the 

rotational forces its equilibrium surfaces get distorted from there original form of 

spherical symmetry. Following the approach of chapter III, these distorted 

equipotentials surfaces due to mass variation may be approximated by the 

appropriate Roche equipotentials. 

Let 	and p, denote the pressure and density respectively on the 

equipotentials surface w= Constant of a differentially rotating white dwarf 

model. Then assuming that the distorted model is also a completely degenerate 

white dwarf model, Pv, and pv  of such a configuration will be connected 

through the relations of the type 

Pw =A f (x), and 	pw  =Bx3 	 (6.7) 

where f(x) is given by equations (6.3). Equations (3.18) and (3.19) which 

govern the hydrostatic equilibrium structure of a differentially rotating stellar 

model can be combined together to yield 

1
2 

d [rw2  d Pvi.  -47cG Pc, 
2  r dr pw drw 

(6.8) 

and using relation (6.7) and substituting (x2  +1)= 0020,2  , it reduces to 
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(6.9) 

GB' (2:, 
, 	2A a' = where 

In case the white dwarf model is rotating differentially according to the 

law (5.7), the values of ry, needed in equation (6.9) is provided by equations 

(3.16) of chapter III. It may be noted that the approximation of equipotentials 

surfaces by Roche equipotentials does not basically alter the structures of 

white dwarf model because in the absence of any distortion equation (6.9) 

reduces to the usual structure of equation (6.4) of white dwarf given in the 

earlier section. 

To obtain the equilibrium structure of a rotationally distorted model, (6.9) 

has to be integrated numerically subject to the boundary conditions 

d 

and = 
-1 at the surface r = R 
0 	 w • 

0 
(6.10) 

The values of ry  on the outermost equipotentials surface of the distorted white 

dwarf is given by 

= a 77u 	 (6.11) 

where rh, is the value of 77 when 0 equals 'for the undistorted model. 
o 

In case the white dwarf model is assumed to be rotating differentially 

according to the law (5.7), the value of rv, ;given by (5.22), of chapter V. On 

substituting expression for r," and retaining terms up to second order of 

147 



smallness in b1  and b2  and up to row  in ro  in equation (6.9), the differential 

equation governing the equilibrium structure of a differentially rotating white 

dwarf can be written explicitly in the nondimensional form as 

d 	dO 	2 2 A(z b b
2  r 
	u r0 B(z,b0b2 ,r0 ) 

dro [ 	 dr — o  

( 
2 	1 

0y1 
00
I) (6.12) 

where 

Az,bi  ,b2 ,ro ) = ro 2  + Other terms containing higher powers of ro  

B(z,b1,b2,r0)=1+
2br° 

	
3 

+ 
32102 7-05 

+
16b;r07 

+ 
z 	15z 	21z 

and 

2  d Ov, 
ro 	 

dro  

	

z=  M° (r) 	 
(1.02 dow  ) 

r°  d ro   

where (ro 
d  

d ro  , 
ro= ro )11=r1. 

(r,  2 dO 

dn 
(6.12a) 

( 	 z 

	

The value 7-12 —
dO 	are taken from Chandrasekhar (21) and the ro  = — is a 

	

dro 	 (V 11=Ilu 

nondimensional measure of the distance of the fluid element from the center. In 

the above expression terms up to second order of smallness in z, k and b2  and 

up to ram  in ro  have been retained. Equation (6.12) has to be solved subject to 

the boundary conditions (6.5) which now become: 

at the center: 

at the surface 

ro  = 0, Øv  =1, 	(41Y  = 0, and 
dro  

1 

ro = ros, 0w  = 
(PO 

(6.13) 

148 



ros  being the value of ro  at the outer surface (ro  and ros  are both 

nondimensional quantities). 

Equation (6.12) subject to the boundary conditions (6.13) determines the 

equilibrium structure of a differentially rotating white dwarf model. On setting 

b12  = 2n and b2  = 0 , the equation (6.12) can be used to determine the 

equilibrium structure of a white dwarf model distorted by solid body rotation 

alone. 

In order to determine the numerical solution of the second-order nonlinear 

differential equation (6.12) subject to the boundary conditions (6.13), we can 

start integration of (6.13) from the center using k =1 as the initial conditions. 

The integration is to be continued till k 	dO 
equals to 1 and 	= 0 . However at 

dro  

each step of integration we need the value of z which can be computed using 

equation (6.13). The integration is to be continued till k 	1 equals to —. The 
0 o 

value ro s  of ro  for which k , becomes ',determines the outermost free 
0 

surface of the model. Once the solution of equation (6.12) is obtained, we know 

the values of k for various values of the nondimensional independent variable 

7.0  varying from 0 to ros  . The values of pressure PP  and the density pw  on the 

various equipotentials surfaces of the distorted model may now be obtained 

through the relation (6.7) in the same manner as is done for the undistorted 

white dwarf models. 
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6.3 COMPUTATION OF VARIOUS PHYSICAL PARAMETERS 

Following the approach of chapter V, the volume V," , and the surface 

area S and the shapes of a differentially rotating white dwarf are given as 

respectively 

Vv, = 47T (wh,)
3

ros
3 [

1 + 
b;r0,3 

+
4bib2ro: 

 +
8bros' 
	+...

] 
(6.14) 

3 	 5z 	35z 

and 

= 	)2 ros2 [ 	 ros3   + 8bb 2 r0,5 	16b:ro 
	 -F... 	(6.15) 

3z 	15z 	105z 

and its shape is determined by 

2 	3 	2 
r =(aiiii )ros[1+

1,1xrOs  + bl b2 X ros 	b22  X 31.0,7 
(6.16) 

2z 	2z 	6z 

values of other parameters such as Ly, , 	W e  co p , R„ R p , and E etc. may 

now be determined as in section 5.3 of chapter V by assuming q= 0 and 

replacing D by simply a ?hi  . 

6.4 NUMERICAL RESULTS 

To obtain inner structure, the shape, the volume and the surface area of 

a differentially rotating white dwarf model, equation (6.12) has to be integrated 

numerically subject to the boundary conditions (6.13) for the specified values of 

the parameters 1/00 2 , the radius of the undistorted white dwarf 77,4 , and the 

values of constants b1  and b2  appearing on the right hand side of the law of 

differential rotation (5.7). Numerical integration of this equation may be 

performed by the use of fourth order Runge-Kutta method. Since the center 

and the surface of the star are singularities of (6.12), for starting numerical 
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integration, a series solution has been developed near the center. Such a 

series solution for the present case is given by 

	

2 	4 
2 2 	 5  2 	

6 	
2  4  v  = 1  _ 77 	3 r 	 u g yros q(5q + 	 rob 3b1 ii,,   (fro, +... 

	

6 	D
2 ri 	4

°
4 b 1.1 

40 	15z 	 5040 	 140z 

(6.17) 

where 

q  2  = 2  

Numerical integrations have been performed to obtain the inner 

structures of certain differentially rotating white dwarf models taking the values 

of 100 2  as 0.01, 0.05, 0.2, 0.4, 0.6, and 0.8. After obtaining the starting value 

of Ow  from the series solution (6.17) atro  = 0.005, numerical integration of 

equation (6.12) was carried forward using Runge-Kutta method of fourth order 

using a step length of 0.005. It was 	continued till 0,, equaled to1/0 o  . 

Whereas values of ro  at surface are presented in Table 6.1, values for 

corresponding volumes, surface areas, shape and other physical parameters 

are presented in Table 6.2 (a-f). 

6.5 ANALYSIS OF THE RESULTS 

Values of ros  for various types of differentially rotating white dwarf 

models are presented in Table 6.1. In this Table the value of bl  and b2  for first 

three models are same as taken by Mohan et al.(91). The results for the 

volumes and surfaces areas given in Tables 6.2 (a) to 6.2 (f) show similar trend 

as 66.-tearti-A by Mohan et al.(91). (For comparison the volumes and surface 

areas as obtained by Mohan et al. Lal (91) are shown in parenthesis), It is 
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noticed that because of the modification in the formula for gravitational potential 

to account for mass variation at z? 	 inside the stars, our values for 

volumes and surface areas are comparatively smaller as compared to the 

results obtained by Lal (91). However, the actual decreases in the volumes and 

surface areas differ from model to model. The maximum decrease has been 

noticed in the case of model 2 for all the values of parameters —1, considered 
OO 

in our present study. For the model 5 and 6 which are unstable according to 

Stockely criteria, the values of volumes and surfaces area are still smaller 

compared to the corresponding values for the undistorted models. 

The values of a and c presented in these Table give a reasonable idea ? 

of the distortion in the shape of the model. It is noticed that the values for these 

parameter are smaller compared to the corresponding values shown in 

parenthesis as obtained earlier by Lal (91). The maximum decrease in these 

values is for model 3. The values of e and Le  shown in these Tables also 
Tp 	Lp  

indicate that as in the case of earlier study of Lal (91)7the values of luminosity 

and temperatures are less on equator as compared their values at the poles. 

The comparison of these results with the results of Mohan et al. (91) shown in 

parenthesis also shows that these values are larger than these obtained by Lal. 
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Table 6.1 : Values of lb, for various types of differentially rotating white 

dwarf modet3for different values of 12  
66O 

Model 
No. 

Values 	of 
distortions 
parameters 

1 - Values of 
02 

0.01 	0.05 	0.2 	0.4 	0.6 	0.8 

b1 	 b2  Values of ros  
1.0 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2.0 0.31623 0.0000 0.94151 0.96427 0.97217 0.97260 0.97259 0.97224 

3.0 0.0000 0.31623 0.99947 0.99922 0.99891 0.99874 0.99864 0.99858 

4.0 0.31623 0.31623 0.93837 0.95929 0.96542 0.96504 0.96457 0.96393 

5.0 0.20000 -0.2000 0.97562 0.98691 0.99066 0.99130 0.99136 0.99134 

6.0 0.10000 -.06000 0.99385 0.96499 0.99742 0.99750 0.99750 0.99749 

Table 6.2(a): Values of certain structure parameters and related quantities 
for differentially rotating white dwarf models of stars for 

= 0.01 and li r, =5.3571 ms 
Model 
No. 

vwx10' Sv, x10-2  a E We (0 Te  
Tp 

Le  
LP 

1.  6.43982 3.60636 0.00000 0.00000 0.00000 0.0000 1.00000 1.0000C 
(6.44244 (3.60780) (0.00000) (0.00000) (0.00000) (0.0000) (1.0000) (1.0000, 

2.  5.82334 3.37474 0.04172 0.04005 0.316200 0.31620 0.94941 0.81077 
(6.92549 (3.78622) (0.05536) (0.05246) (0.31623) (0.31623 (0.94528) (0.7565,  

3.  6.57604 3.65722 0.016602 0.01633 0.326439 0.00000 0.97385 0.85699 
(6.58056 (3.65939) (0.01662) (0.01634) (0.32654) (0.0000) (0.96609) (0.8568 

4.  6.14835 3.50467 0.88354 0.08118 0.31623 0.64599 0.88853 0.88909 

5.  6.09629 3.47702 0.00650 0.006467 0.00714 0.2000 0.98817 0.98066 

6.  6.35949 3.57630 0.00257 0.00256 0.04043 0.1000 0.99651 0.99071 
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Table 6.2(b): Values of certain structure parameters and related quantities 
for differentially rotating white dwarf models of stars for 

= 0.05 and 77, = 4.4601 mo 
Model 
No. 

vv x10-2  Sv  x10-2  '7 6 we CI) p Te  

Tp 

Le  

LP 

1.  3.71640 2.49976 0.00000 0.00000 0.00000 0.00000 1.00000 1.00000 
(3.71800 (2.50082) (0.0000) (0.0000) (0.0000) (0.0000) (1.0000) (1.0000) 

2.  3.63081 2.46323 0.04482 0.04289 0.31620 0.31620 0.94557 0.79815 
(3.97497 (2.61493) (0.05505) (0.05219) (0.31623 (0.31623) (0.95918) (0.75771) 

3.  3.79203 2.5337 0.01657 0.01630 0.32625 0.00000 0.97377 0.85722 
(3.79536 (2.53553) (0.01659) (0.01632) (0.32640 (0.0000) (0.96614) (0.85706) 

4.  3.83960 2.56166 0.09720 0.08859 0.66649 0.31623 0.88762 0.87068 

5.  3.63252 2.46208 0.00657 0.00653 0.66649 0.20000 0.99342 0.98049 

6.  3.69950 2.49219 0.00258 0.00257 0.04385 0.10000 0.98190 0.99094 

Table 6.2(c): Values of certain structure parameters and related quantities 
for differentially rotating  white dwarf models of stars for 

= O QJld ri,=3-7./71 

Model 
No. 

Vwx10-2  Sy  x10-2  Cr 6' we (f)P Te  

Tp 

Le  

LP  
1.  2.16871 1.74563 0.00000 0.00000 0.00000 0.00000 1.00000 1.00000 

(2.16960 (1.74634) (0.0000) (0.0000) (0.0000) (0.0000) (1.00000) (1.0000) 

2.  2.17576 1.75089 0.04593 0.04391 0.31620 0.31620 0.96252 0.79366 
(2.30842 (1.82018) (0.05479) (0.05195) (0.31623 (0.31623) (0.94584) (0.75874) 

3.  2.21071 1.76819 0.016538 0.01626 0.32603 0.00000 0.97368 0.85751 
(2.2132) (1.7698) (0.01657) (0.1630) (0.3262) (0.0000) (0.96619) (0.85727) 

4.  2.29277 1.81672 0.09993 0.09085 0.67275 0.3162 0.88701 0.89909 

5.  2.14421 1.73251 0.00660 0.00656 0.00111 0.2000 0.99531 0.98043 

6.  2.16489 1.74359 0.00259 0.00258 0.03999 0.1000 0.99830 0.99067 

Table 6.2(d):Values of certain structure parameters and related quantities 
for differentially rotating white dwarf models of stars for 
mo = 0.4 and 77,, = 3.5245 

Model 
No. 

vwx10-2  Sy  x10' a 6 we (1)P Te  
T p  

Le  
LP  

1.  1.83391 1.55013 0.00000 0.00000 0.00000 0.00000 1.00000 1.00000 
(1.83462) (1.5616' (0.0000) (0.0000) (0.0000) (0.0000) (1.0000) (1.0000) 

2.  1.84253 1.56722 0.04599 0.04397 0.31620 0.31620 0.96270 0.79341 
(1.94785)(1.62533', (0.05467; (0.05184; (0.3162) (0.3162) (0.94595) (0.75921) 

3.  1.8684 1.5806 0.16510 0.01624 0.32590 0.00000 0.97363 0.85768 
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(1.87095) (1.58225) (0.01656) (0.01629) (0.32616) (0.0000) (0.96622) (0.8573€ 
4.  1.93607 1.62302 0.09976 0.09071 0.67236 0.3162 0.88705 0.89981 

5.  1.81677 1.55131 0.00661 0.00567 0.00085 0.2000 0.99564 0.98042 
6.  1.83116 1.5594 0.00259 0.00258 0.03999 0.1000 0.99835 0.99067 

Table 6.2(e):Values of certain structure parameters and related quantities 
for differentially rotating white dwarf models of stars for 
± = 0.6 and Th = 3.6038 A 

Model 
No. 

vvx10-2  Sy, X10-2  Cr 6 coe  W P Te  
Tp  

Le  
LP 

1.  1.96052 1.63204 0.00000 0.00000 0.00000 0.00000 1.00000 1.00000 
(1.96123) (1.63265) (0.0000) (0.0000) (0.0000) (0.0000) (1.0000) (1.0000) 

2.  1.969695 1.63850 0.04599 0.04397 0.31620 0.31620 0.96269 0.79342 
(2.07993) (1.69799) (0.05460) (0.05184) (0.31623) (0.31623) (0.94001) (0.75944) 

3.  1.99678 1.65220 0.01650 0.01623 0.32583 0.00000 0.97360 0.85777 
(1.99969) (1.65402) (0.01654) (0.16279) (0.32611) (0.0000) (0.96623) (0.85743) 

4.  2.0660 1.6948 0.09955 0.09053 0.67187 0.31620 0.88710 0.90070 

5.  1.94254 1.62210 0.00661 0.00657 0.00083 0.2000 0.99567 0.98042 
6.  1.95754 1.63039 0.00259 0.00258 0.03999 0.1000 0.99834 0.99067 

Table 6.2(f):Values of certain structure parameters and related quantities 
for differentially rotating white dwarf models of stars for 

06 = 0.8 and rh = 4.0446 

Mode 
I No. 

v
v 
 x10-2  sSy,xio-2  o-  6 We  (0 P Te  

Tp  
Le  
LP 

1.  2.77150 2.05571 0.00000 0.00000 0.00000 0.00000 1.00000 1.00000 
(2.7725) (2.0564) (0.0000) (0.0000) (0.0000) (0.0000) (1.0000) (1.0000) 

2.  2.78116 2.06223 0.04594 0.04392 0.31620 0.31620 0.96255 0.79362 
(2.9381) (2.1377) (0.05456) (0.05174) (0.3162) (0.3162) (0.94605) (0.75960) 

3.  2.82224 2.08083 0.01649 0.01623 0.32579 0.00000 0.97358 0.85783 
(2.8265) (2.0832) (0.01654) (0.1627) (0.32608) (0.0000) (0.96624) (0.85747) 

4.  2.91367 2.13138 0.09926 0.09029 0.67122 0.31620 0.88717 0.89193 

5.  2.74554 2.04291 0.00661 0.00657 0.00084 0.2000 0.99564 0.98042 
6.  2.7672 2.05361 0.00259 0.00258 0.03991 0.1000 0.99834 0.99067 
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CHAPTER VII 

EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING 
GAS SPHERES FOLLOWING A MORE GENERALIZED LAW OF 

DIFFERENTIAL ROTATION 



In the chapters V and VI we considered the problem of determining 

equilibrium structures of differentially rotating gas spheres obeying a law of 

differential rotation of the form co2  =w (s2 ). In this chapter we consider the 

problem of determining the equilibrium structures of differentially rotating gas 

spheres assuming a more general law of differential rotation of the type 

w2 = w (s2,z2 ) (where co is a nondimensional measures of the angular velocity 

of rotation, s and z nondimensional measures of the distance of the fluid 

element from and along the axis of rotation) which accounts for variations in 

angular velocity along the axial direction as well as in a direction perpendicular 

to it. 

We assume a law of differential rotation of the type 

co2 .b0  +1,12.2 4.  b2z 4 +b3z2 4.b4 z 4 +b5  z2s2 which accounts for variations in 

angular velocity along s as well as z directions. As in the earlier chapters, 

Kippenhahn and Thomas averaging approach has been used to obtain the 
.„.. 

equilibrium structures of such types of differentially rotating models following 

the approach explained in chapter III which accounts for the effect of mass 

variation on the potential. The technique has been then used to obtain the 

equilibrium structures of differentially rotating polytropic models of indices 1.5, 

3.0 and 4.0 for various choices of the values of rotation parameters 

bo , b1, b2  ,b3 , b4  and b5 . 

The law of differential rotation selected by us for our present study is 

presented in section 7.1. The nature of some of the important types of 

differential rotations is considered in this section. In section 7.2 we consider the 

problem of determining the Roche equipotentials of differentially rotating stars 

taking effect of mass variation inside the star on its equipotential surface. The 
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methodologies is next used in section 7.3 to derive the system of differential 

equations which govern the equilibrium structures of such types of differentially 

rotating gas spheres. The methodology is next applied in section 7.4 to 

determine the equilibrium structures of differentially rotating polytropic models 

of stars. Numerical solutions have been next obtained in section 7.5 to 

determine the equilibrium structures of certain differentially rotating polytropic 

models of indices 1.5 and 3.0. Certain conclusions based on the present study 

are finally drawn in section 7.6. 

7.1 PROPOSED GENERALIZED LAW OF DIFFERENTIAL ROTATION 

As far back as 1932, Giao and Wehrle suggested a differential rotation 

law of the type 

SI(s, z)= S2o  COS M Z 
ms 

22n (n+1)(n!)2  
(7.1) 

where no and m are two constants of integration. In the case of a quasi 

spherical system (such as the sun), it is convenient to use spherical 

coordinates 	(r,0 =90-0,y ). On substituting s=rcos# and z=rcosq in 

equation (7.1) we obtain 

S2(R,0)= S20  cos (mRsin0)E 2  
n 	(n+1)(n!) =o  2 n

mRcos0 
 2 

(7.2) 

where R gives mean boundary of the configuration with mean radiusr=R.  

The remarkable feature of equation (7.2) is that it reproduces with good 

accuracy the solar rotation law, when no  and mR are fitted at two different 

heliocentric latitudes. Another approach, which also takes into account the 

viscous forces in a restricted form, was suggested by Schwarzschild in 1942. 

The method consists of the derivation of the function n(s,t), which is a 
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solution of the usual equations for an inviscid fluid. Practical means to 

determine the function S2(s,t) and various application of these ideas were 

suggested by several authors such as Jeans (57,58), Clement (24), Marks and 

Clement (77) etc. In order to be able to compute the inner structure of a 

differentially rotating star it will be helpful if the law of rotation is assumed in a 

form which takes into account the true nature of the differential rotation in the 

star as well as is convenient to use. In case we assume symmetry of rotation 

along and perpendicular to the axis of rotation, the law of differential rotation 

which can account for variations in angular velocity both along s and z 

directions will be of the type Co =co (s 2 ,z2 ). Following the commonly assumed 

law of differential rotation co = b, + b2s2  for stars in which there is no variation in 

angular velocity along z axis we may assume 

Co = Co  +CIS2 + C2Z2 	 (7.3) 

as a law which accounts for variations in s , as well as z directions. Here 

Co , C1 , c2  are suitably chosen arbitrary constants which account for variations 

in 0) along s and z directions. By squaring (7.3) we get, 

CO2 = CO2 +C1 2 S4 +C22Z4 +2C0CIS2 + 2c0c2z2 + 2C1 C2S2 Z2 	 (7.4) 

In analogy with our earlier assumption of a law of differential rotation of the type 

CO 2 =b, + b2s2 for stars in which there is variation in the angular velocity 

perpendicular to the axis of rotation alone we may therefore assume 

co2 = bo  +bi.s2 +b2 s4 +1)3 z2 +114 z4 +115 z2s2 	 (7.5) 

as a law of differential rotation which accounts for variations in the angular 

velocity along s and t directions. The law (7.5) is more general than (7.4) and 

reduces to (7.4) for b0  = co 	2coc, , b2  = c12 , b3  = 2 co  c2 , b4  = c22 and b5  =2c, c2. 
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For a gaseous sphere rotating differentially according to law (7.5) 

b 0  , b, , b2 , b3 , b4  and b5  must be so chosen such that co2  is non-negative 

everywhere inside the star. For b3  = b4  = b5  = 0 it reduces to the law 

co 2  = bo  + b,s2  + b2s4 used in the earlier chapters. According to the law (7.5), the 

value of the angular velocity co, at the center, co, at the pole and (pe at the 

equator are given by 

co, = V1T, 	 (7.6) 

co = 	Vb0  + b3Rp2  + b4 Rp 4 	 (7.7) 

and 
we =1bo  +b1 R:+b2 Re4 	 (7.8) 

where Rp  is the polar and Re  the equatorial radius of the star. For suitable 

choice of the values of b0 , b„ b2 , b3 , &land, b, we can generate a variety of 

differentials rotations. Some of which may correspond to the differential 

rotations actually occurring in the case of certain differentially rotating stars Lal 

(91). The nature of certain types of differentials rotations which can be 

generated by (7.5) by giving different values to bo ,b„b2 ,b3 ,b4 and b5  are shown 

in Table 7.1 (cf. Lal (91)). 

As far as dynamical stability of such differentially rotating stars is 

concerned, stable density stratifications permit certain rotation laws that 

depend on both s and z and are not in conflict with Von Zeipal paradox. As 

discussed in chapter II, a baroclinic star in permanent rotation rotating 

according to the law 0=Q(s, z) will be dynamically stable with respect to 

axisymmetric motions if and only if the condition (5.6) given in chapter V is 

satisfied. 
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For a star rotating differentially according to the law (7.5) to be locally 

stable according to Hoiland (52) criteria, bo  + bis2  + b2s4 +173  z2 b4 z4 b5 z 2s2 

must be non-negative for all values of s and z. The stability of each of the 

differential rotations considered by us in Table (7.1) was analyzed by Lal (91) 

according to these criteria and the results of this stability analysis are presented 

in the same Table for ready reference. 

7.2 THE ROCHE EQUIPOTENTIALS OF DIFFERENTIALLY ROTATING 
GAS SPHERE INCORPORATING THE EFFECT OF MASS 
VARIATION ON THE POTENTIAL 

For a star rotating differentially according to the law (7.5) the total 

potential c of the fluid element is given by 

n= fay+ fw2s ds 

1 	2 
= +— co d(s2  ) 

2 

_G A /10 (r) + 1 1'6)2 d (6,2 )  
r 	2 

(7.9) 

Assuming Roche model for a differentially rotating gas sphere, V = GM 0(r)  at 

a point distant r from the center. M 0 (r) is mass interior to sphere of radius r 

and Mo  the total mass of the rotating gas sphere. Substituting these in (7.9) 

and multiplying throughout by
GM 
	we get 

0  

t + 1  R  ico 2 d(s 2 ).  
(r/ R) 2 GM°  

(7.10) 

where 1* t =  M°  ( r  )  AIo  
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Since dimension of s is same as that of R, assuming c02 to have a dimension 

of 
 G 

„
M " the nondimensional form of (7.10) can be represented as 
R' 

cit = —t  +-1   fco2d(s2 ) 
r 2 

Substituting w 2  = b0  +b,s2  +b2s4 +b3z2  +b4z4  +b5z2s2  , we get 

(7.11) 

W =t — +-1   f(bo  +1,1 5.2  + b2s4  +b3 z 2  +b4 z4  +b5 z2s2 ) d(s2 ) 
r 2 

I 	1  '=" —
t 

b0 S 2  +-
2

bis4  + —
3 

b2 s6  +b3t 2s2  +bit 4S2 4--b5 t 2  s4  

Writing s2  = r 2 (1— v2 ) and z 2  =r 2  V 2  we get 

yt= -- +1  r 2 (1—v2 )[bo 	2bi(1—v2 )1.2 +b3v2 (1_1)2) r 2 
r 2  

+ 
 {

—b2  (1—v2 )2  +b4  v4 (1— v2 )+ 1  b5 v2(1—v 2 )}r 4  
3 	 2 

(7.12) 

Here y/ is now the nondimensional form of the total potential 

, 	RS2  
Qw GM ), = sine cos 0, = sin 0 sin 0,v = cos 0,(r,60,# 	being the polar 

spherical coordinates of the point with center of the star as the origin, X- axis 

in the equatorial plane, 0 being measured from the axis taken as Z -axis). 

,, 
(Note 1*: Normally we have been using symbol for Z = 	

M (r)
- 	and are also taking Z one of the variable in 

MO 
the law of differential rotation CO =CO (s, Z) .To avoid confusion the variable Z generally used for in 
the mass ratio is taken as t In this chapter)  

Also in (7.12), r is a nondimensional measure (r/R)of the distance of the fluid 

element from the center of the star and bo ,b„b2 ,b3 ,b4 and b, are numerical 

constants in units ofGM o /R3  . In our present study, we shall assume the law of 

differential rotation (7.5) in which (02,b0,b,,b2,b3,b4 and b5 are in units 

ofGMo /R3  , s is a nondimensional measure of the distance of the fluid element 
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from the axis of rotation and z is nondimensional measure of its distance from 

the equatorial plane. 

Following the approach used in section 3.4 of chapter III it can be shown 

that the coordinates (r,0,0) of an element on a Roche equipotentials yr = 

constant of a star rotating differentially according to the law (7.5) are connected 

through the relation 

r=r0 R 1+-1
2t  b

o xr
°  3 
 + —1 

2t  b
i b2x2  +I

2 t  b
3 x(1–x) r05  +-3 

2
b02x2ro6 [ 

4  

+{ 1b2x3  + _ 1 b4x0  _ x)+1b5x20  _ x) ro, 4.  bo bix3  + 2bob3x2  0 x)  ros  
6t 	2t 	2t 	 t 2 	t 2  

(7.13) 

where x=(1–u2 ), ro  =—t and terms upto second order of smallness in 

t, bo , b1, b2 ,b3 , b4 and b5  and upto order rol°  in ro  are retained. We may obtain 

the shapes of various equipotential surfaces of the differentially rotating gas 

sphere by setting r= constant. In (7.13) R denotes the radius of the 

undistorted model. 

Following the approach discussed in chapter V and VI the volumell, , 

surface area Sv  , average value g, of acceleration due to gravity and its inverse 

g-1  are given by the explicit relations 

= 	R31. 3  [1+ b0 r°3 + 2b1  + b3 )r,,5 + 8b02r06  + 8b2 + b4 + 4b5 )1. 7 

3 	° 	t ° 	5t 5z 	5t2 	35t 5t 35t ° 

+(-12 bobi  + —4, bob3 )ro  ± (  128  bo b2  +  24, bo b4  +  16, bo bs  
7t 	7t` 	105r 	35t 2 	35t` 

2  +  8 bib, + 21b3, )rolo ... 
35t` 	35t` 

(7.14) 
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2[ 	3 	2 h 	5 	14 	1.6  +( 16 b  
= 4ir R2ro  1+ —3tboro (4 	

4- 
, 

15t b" 15t -311.°  + 	
2 

	

15t2 	° 	105t 2  
2 	8 	7 	36 	12 	8 	704  h  + —b + 	b)r + ( 2 o i  bb + 	2  o 3 o  - bb)r 

15t 	105t 	35t 	35t 	+(945t 2  "' 
4 	5  o 	

2 
, 2,r  10 + 44 2  bo b4  +  88   bob5  ±  44 315 t2  bib3  + 22 31512  03 ) o +... 1 105t 	315t 

(7.15) 

— zGillv,[ 	4 . 3 	4 , 	2 	5 	7 	2 6 	64 g = 	2 	0 0 	i 	3  o  1 	61' 	( D + b)r 	b r 	( 	b + 	b + 	b)r 7  32 	32  
R 2r0 	3t 	5t 	5t 	9t`

i o  o 	2 	4  
105t 	105t 	105t 

5 0 
 

	

( 4882  bo bi  + 2142  bob3)ro 	1616  2  bb 2  +  46 	 bb 4  4-  64 2  bb 
31512315t 	3151 	 9451 	1051 	1051 

+ 175t2 
36 , 	 b

1  b3 
 + 

52512 
67  b 32 +)roio +... 

(7.16) 

g7-= 	R2r°2  1+ 4  b r 3 	) 0  + 	bo  ro  +( 	b2  + 	b, 
+( 4b1 + 2b3 ,r5 	131 2 6 	64 	32  

z G1 I 1 w 	3f ° ° 	5t 	5t 	45t 2 	105t 	105t • 
[ 

32  7  1352  + 	b5 )ro  + ( 	, bob, +  418 , b,b,)rn8+(3664 	22 bb + 	bb 
1051 	315t—  315r — - 	945t 2  ° 2  21/2  ° 4  

+  448  bo b5  +  1162  b1b3+  1872  b32 )ro lo +... 
315r 	1751 	5251 

(7.17) 

In the above expression Mv, is the same masses contained within 

the equipotential surface w= constant and terms up to second order of 

smallness 	in 	b0, b1 , b2, b3 , b4  and 	b5 	are 	retained. 	On 	setting 

b0  =b12 =2 n, b1 =b2 = b3 = b4  = b5  the above expressions reduce to the 

corresponding expressions for solid body rotation as obtained by Mohan, 

Saxena and Aggarwal (92). Again on setting b3  =b4  =b5  =0 these expressions 

reduce to corresponding expressions for the differential rotation obtained in 

section 5.2 of chapter V. 
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7.3 EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING 
MODEL FOLLOWING GENERALIZED LAW OF DIFFERENTIAL 
ROTATION 

In case of rotating models in which rotation depends upon 

distance from axis of rotation as well as distance from equatorial axis surfaces 

of constant density and pressure may not coincide. Therefore strictly speaking 

the approach being adopted in the present work which assumes that surfaces 

of equipressure are same as equidensity is not strictly applicable. However in 

the absence of a more realistic approach which will be more complicated, we 

have analysed here this problem also adopting the earlier approach. 

The equations governing the equilibrium structures of rotating gas 

sphere which are rotating differentially according to the law (7.5) are same as 

(5.21) of chapter V. Following the approach adopted in section 5.3 of chapter V, 

the results of the last section may be used to explicitly evaluate the values of 

the distorting parameters rw , u, v, w, fp and fr  for such types of differentially 

rotating stars. The explicit expressions of the parameters determining the value' 

of ri,„u, v,w, fp  and fr  on the various equipotential surfaces of a differentially 

rotating star according to the law (7.5) are obtained as: 

[ 	
1 , 	3 	2 	1 	5 	19 , 2 6 	8 	1 	4 	7  r = Rro  1+ — bo ra  + (--- b, + —103 y°  +tog°  ro  +(--b2  + - b4  + 	b5 )ro  

v 	3t 	15t 	15t 	45t2 	105€ 	15t 	105t  

+(

152 	 2  .0,2 ro
8 
+( 

 112, bob2  +  58  , bob4  + 8 
2 
 bobi  ±  46 

 bb 
315t 	 315r 	315r 	63t2 

bob, 
315 t  

173  2 10' 92 + 	bib3  + 	b3  )ro  + 
1575t2 	1575t

2 
 

(7.18) 

u =1 1 	2  r 6 	8bOb1 	2b0b3 	8 	16 	2  
315t2 	315t2

)ro 	( 
945t 

b062 	315t2  bob4  45r 
b
°  ° 

27 	2
) 
 10 8  

1575t2 
bb

3 
 + 

175r2 b
3  ro  +... 

 
(7.19) 
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8 , 	 s 	2 6 	16 	, v = t [1-- 2  boro3  -(—D1+ 4  —b3 )ro  - 32  —Tb0  1,0  - (— b2+ 18  —04 
3t 	15t 	15t 	45t` 	35 1 	105t 

7 	 ( 	,  bnb,  + 128 ,  /0  , 	 4 + 24  —b )r, 	o  , -(  436   bb +  248   bobje 1472  
105/ - 	315r 	315r 	945t—  315r 

40 	448  68  + 	bob, + 	b,b, 	b3  2 )ro 10  + ...  
63t 2 	1575t 2 	157512  

(7.20) 
16 w= -1 [1+ —2 boro3 + (-8 b, + 4   boros 68  + 	2  bo2r,6  + (—b2 6  b4 

t 	3t 	15t 	15t 	451 	35t 	351 
284 

+— 8  b5 )r07  + 
(284 

  b bob,+  76 2  bob,)r08+( 
1522  bob2  + 1362  bob, 

351 1051 	1051 	 189t 	3151 

296 	
+ 

608  b b 	152  1)  bo  , 	b 2 
315t 2 	1575t 2 	3 + 1575t 2 3  ° 

(7.21) 

=t [1- 2 
 bor03 ( 8 

 b, +  4  b3)ros 	472  bo 2r,6  - (-
16 b2  + —6  b4  

3t 	151 	15t 	451 	351 	351 

+-8 b5 )ro7  ( 
 1242  bob, + 

 1182  bob3 )ros  (  6562  bob2  +  22 2  bob, 
35 1 	63t 	3151 	 3151 	105t 

40 	56 	203  + 	2 
 b

obs  + 	2  bib3 	2  b3  )r010 
63 t 	525/ 	1575t 

(7.22) 

and 

2 6  
f, =1 	

14 
45 t2 
	b0  ro 	( 

176 
 2  bObl 	

128
2  bObOr08  ( 

32
2  b0b2 	

4 
2112 bob4 315/ 	3151 	 631 	211 

272 
2 	 bib3  + 	

42 
2  b32 )ro" 

1575 t 	17512 3 

where ro  is nondimensional variable defined by ro 	The above 
1/1  

expressions contain terms upto second order of smallness in 

bo ,b1 , b2 , b3  b4  and b5  and terms up to order r,o'°  in ro . Variable ro  is connected 

to ry  through the relation (7.18). 

Following the approach adopted in section 5.3 of chapter V, the 

equations governing the equilibrium structure of a star rotating differentially 
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2 , 	z.  
+—o4  + 8 u—oro7 51 	351 

bob, + 
32  

bob
4 

+ 
3512 

according to the law (7.5) may finally be written in terms of independent 

variable ro  as 

and 

where, 

d M 
	=117r p y,r0 2 R 3 f, 
d r0  

dP, GM, f  

dr, – Rr02 	 pw 

dLw 
= 47T ER 3r0 2  
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dTv 3KLW p y, 

dr, 	16/r acRT,i 3 r, 2 f3 
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In the above expressions, terms up to second order of smallness in 

z, b0 ,b„b2 ,b3 ,b4  and b5 and up to order romin r0  are retained. On setting 
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q=b3  = b4  = b5  =0 and neglecting the fourth order terms as 14 in the 

expressions for fl,f2,f3,these reduce to their corresponding forms which is 

obtained in section 5.3 of chapter V for differentially rotating model with 

differential rotation law (5.7). And also if we take b12  = 2n, b2  =0 then these 

terms reduce to equation (3.20) of chapter III for rotationally and tidally 

distorted models. 

The values of Py  pv ,Lw  , etc. on the various equipotentials surfaces of a 

differentially rotating gas sphere may be obtained by solving the system of 

differential equation(7.24) using the values of distortion parameters f f2 , and 

A subject to boundary conditions (5.31). 

7A EQUILIBRIUM STRUCTURE OF DIFFERENTIALLY ROTATING 
POLYTROPIC MODELS FOLLOWING GENERALIZED LAW OF 
DIFFERENTIAL ROTATION 

Following the approach adopted in chapter V, the equation 

governing the equilibrium structure of a rotating polytropic model rotating 

differentially according to the law (7.5) can be written in nondimensional form 

as 

	

—d 	 dOw 
 

dr 
[k(ro,t,bo,b,,b2,b3,b,,b5) 

 dr 	
= — 

	

, 	 , 

where 

N  u2ro  2  4'0 ,1, bo ,b,,b2 ,b3 ,b4 ,b5 ) 

(7.25) 
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2 dew  

t= 	
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The equation (7.25) may be integrated numerically following approach 

explained in section 5.3 of chapter V. 

The central angular velocity co„ the polar angular velocity cop  and the 

equatorial angular velocity we  can be obtained using (7.6), (7.7) and (7.8), 

respectively. The effective temperature and luminosity at any point on the 

surface can also be computed using the method given in section 5.2. 

7.5 NUMERICAL COMPUTATIONS 

To obtain the inner structure, the shape, the volume and the 

surface area of a rotating polytropic model, rotating differentially according to 

the law (7.5), equation (7.25) has to be integrated numerically subject to the 

boundary conditions (7.26) for the specified values of the polytropic indexN, 

the radius of the undistorted polytropic and the values of numerical constants 

b0 , b1 , b2 , b3 , b4  and b5  appearing in the right hand side of expression (7.5). As 

explained in chapter V, numerical integration of (7.25) can be performed using 

fourth order Runge-Kutta method. Since, we need the value of t at each step 

of the integration to account the effect of mass variation inside the models. For 

this, equation 7.25 (a) is used to calculate t at each interior point. Since the 
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center and the surface of the model are singularities of (7.25). Series solution 

may be used for starting numerical integration. A series solutions valid near the 

center and which has been used by us in our present computations is given by. 

, 1 2 2 	N 	4 4 bo  2 5 N(8N -5)  6 6 {  boN 4 
= 1 —

6 u 
 ro +

120 u—c ro 	
``  15t 

—c ro 	
15120 u 

4 ro  + 
140t . 

( 
4 	1  bg - 3 2 1i.  + {122N3  –183N2  + 70N 	5 2   bo  2 2 1r  8 +... 

1051 	105t 	 3265920 	721 	° 
(7.26) 

Numerical integrations have been performed to obtain the inner 

structures of certain rotating polytropes of indices 1.5, 3.0 and 4.0 rotating 

differentially according to the law (7.5) for values of constants 

1)0  bo  b2 , b3, b4  and 1)5  listed in Table 7.1. Values of the volume V , and the 

surface area Sv  of the distorted polytropic models were then computed using 

(7.14), (7.15) taking a equal to one. The results are presented in Tables 7.2 (a), 

7.2 (b), 7.2 (c) for models with polytropic indices 1.5, 3.0 and 4.0, respectively. 

We also present in these Tables values of distortion parameters a and E. 

Values (.0„COp . and we  the angular velocities of rotation at the center, pole and 

equator are also given in these Tables. Relationi(3.43) and (3.44) of chapter Ill 

have been used to compute values of Te /Tp  and Le /Lp  to get an insight into 

the effects of differential rotation on the values of surface temperatures and 

luminosities of such differentially rotating stars. r 	 ; Te /Tp  and 

Le /Lp  values of R„ R p , g e  and gp) the equatorial radius, the polar radius, the 

equatorial gravitational force and the polar gravitational force respectively are 

required were computed from the relations (7.13), and (7.16)04kt substituting 

0=0° and 9=90°  5s-e+e-ch" 
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7.6 ANALYSIS OF RESULTS 

Table (7.1) presents different laws of differential rotation of the type (7.5) 

which have been considered by us. These laws were earlier used by Mohan, 

Lal, and Singh (91) to determine the equilibrium structure of differentially 

rotating polytropic models. Our results in Tables 7.2(a, b, c) give the values of 

various structure parameters as obtained by us for certain differentially rotating 

polytropes of indices 1.5, 3.0 and 4.0 

In the case of polytropic models 1.5 and 3.0 presented in Table 7.2 (a) 

and 7.2 (b) our results for volumes and surface areas are smaller in 

comparison to the corresponding results shown in parenthesis. Our results 

presented in Table 7.2 ( c) regarding the effects of such types of differential 

rotation on the volumes and the surface area of the polytropic models with 

index 4.0 show that because of differential rotation , volume and surface areas 

in general increases compared to the results earlier obtained by Mohan et al 

(91). However in the case of models 9 and 10 (which are rotationally unstable) 

the inclusion of this differential rotation reduces these values for the polytropic 

stars with indices 1.5, 3.0 and 4.0. 

As regards the shape parameter 6 ands model 1, 2, 3 and 4 show 

these to be of undistorted type as their oblations and ellipticity are zero. 

However their volumes and surfaces areas are larger than the undistorted 

model. Also our values of er and e are smaller than the corresponding values 

shown in parenthesis. 

Our results in these Tables also depict the effects of such types of 

differential rotation on the values of temperatures and luminosities at various 

points on the surfaceiof such types of differentially rotating stars. Our results for 
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T. 
94!..4-6mank for model 1, 2, 3, 4, 9, and 10 and love,514. for model 5, 6, 7, 8 

P 

in comparison to the corresponding results shown in parenthesis. This 

behaviour is common to all the polytropic models of indices 1.5 and 3.0. 

However, while the values of --L remains unchanged for model 1, 2, 3, 4, it 
p  

increases for models 5, 6, 7, 8 and decreases for models 9 and 10 in 
4./2- 

comparison tecorresponding results earlier obtained by Mohan et al. (91) and 

shown in parenthesis. 
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Table 7.1 : Behaivour of Angular Velocity of Certain Differentially Rotating 
Models 

Model 
No. 

Values of various 	parameters in the low of 
differential rotation 
co' = bo  +b, s 2 +b2 s 4 +b3 z2 -1-b4 z 4 +b5 z 2 s 2  

Stability of the 
model 
according 	to 
Hoiland's 
criterion  bo  b, b2  b3  b4  b5  

1.  0.0 0.0 0.0 0.1 0.0 0.0 Stable 

2.  0.0 0.0 0.0 0.1 0.0 0.1 Stable 

3.  0.0 0.0 0.0 0.1 0.1 0.0 Stable 

4.  0.0 0.0 0.0 0.1 0.1 0.1 Stable 

5.  0.1 0.1 0.0 0.5 0.0 0.0 Stable 

6.  0.1 0.1 0.0 0.1 0.0 0.0 Stable 

7.  0.1 0.1 0.0 -0.05 0.0 0.0 Stable 

8.  0.1 0.1 0.0 0.05 0.0 0.1 Stable 

9.  0.4 -0.16 0.16 0.04 0.0 0.0 Unstable 

10.  0.04 -0.16 0.16 0.04 0.0 0.16 Unstable 
Note: Th's Table has been taken from (cf. Table 5.1, Lal (69)) and is given here 
for ready reference 
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Table 7.2(a) : Values of Certain Structure Parameters and Related 
Quantities for Differentially rotating polytropic models of polytropic 
index N = 1.5 

Model 
No. 

ros  Vy x 10-3  Sy x 10.2  G 8 We WP - We Teirp Le/Lp 
1.  0.996329 2.06043 1.68710 0.000000 0.000000 0.000000 0.315066 0.000000 0.99816 1.000000 

(2.07406) (1.69221) (0.00000) (0.00000) (0.00000) (0.31623) (0.00000) (1.00000) (1.00000) 

2.  0.995634 2.07833 1.69696 0.000000 0.000000 0.000000 0.314847 0.000000 0.99781 1.000000 
(2.06477) (1.68732) (0.00000) (0.00000) (0.00000) (0.31623) (0.00000) (1.00000) (1.00000) 

3.  0.991549 2.06752 1.69116 0.000000 0.000000 0.000000 0.441564 0.000000 0.99576 1.000000 
(2.69704) (2.01347) (0.00000) (0.00000) (0.00000) (0.44721) (0.00000) (1.00000) (1.00000) 

• 4. 0.990889 2.08441 1.70051 0.000000 0.000000 0.000000 0.441124 0.000000 0.99543 1.000000 
(2.57094) (1.95143) (0.00000) (0.00000) (0.00000) (0.44721) (0.00000) (1.00000) (1.00000) 

5.  0.970024 2.16928 1.74689 0.08119 0.07509 	• 0.3162 0.383467 0.458252 0.927023 0.62099 
(2.26002) (1.79500) (0.08726) (0.08026) (0.31623) (0.38730) (0.44721) (0.84969) (0.45942) 

6.  0.968430 2.17640 1.75102 0.08063 0.074614 0.3162 0.440210 0.457733 0.92673 0.62323 
(2.27556) (1.80213) (0.08670) (0.07979) (0.31623) (0.44721) (0.44721) (0.85096) (0.48254) 

7.  0.971914 2.14346 1.73241 0.08186 0.07567 0.31623 0.229715 0.458869 0.92735 0.61831 
(2.22495) (1.77577) (0.08788) (0.08078) (0.31623) (0.22361) (0.44721) (0.84829) (0.47598) 

8.  0.969559 2.18268 1.75455 0.08103 0.07495 0.31623 0.383408 0.457445 0.92694 0.62164 
(2.26824) (1.79973) (0.08628) (0.07942) (0.31623) (0.38730) (0.44721) (0.85193) (0.48492) 

9.  0.981534 1.99270 1.65055 0.001442 0.001400 0.200000 0.281085 0.1912163 0.989192 0.977553 
(2.05443) (1.68426) (0.00206) (0.00205) (0.20000) (0.28284) (0.20000) (1.00574) (1.02105) 

10 0.986569 2.01944 1.66540 0.001440 0.001438 0.200000 0.280949 0.1904501 0.988770 0.977802 
(206751) (1.69105) (0.00211) (0.00211) (0.20000) (0.28284) (0.20000) (1.00486) (1.01742) 
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Table 7.2(b) : Values of Certain Structure Parameters and Related 
Quantities for Differentially rotating polytropic models of 
polytropic index N = 3.0 

Model 
No. 

ros vw  x 10-3  sw  x10-2  a C 0)e 0.)p (0e Te/Tp  Le/Lp  
1.  0.998304 1.39430 

(1.39981) 
6.03588 
(6.04336) 

0.000000 
(0.00000) 

0.000000 
(0.00000) 

0.000000 
(0.00000) 

0.315691 
(0.31623) 

0.000000 
(0.00000) 

0.999152 
(1.00000) 

1.000000 
(1.00000) 

2.  0.998199 1.40927 
(1.39505) 

6.0793 
(6.03022) 

0.000000 
(0.00000) 

0.000000 
(0.00000) 

0.000000 
(0.00000) 

0.315658 
(0.31623) 

0.000000 
(0.00000) 

0.999099 
(1.00000) 

1.000000 
(1.00000) 

3.  0.994490 1.40388 
(1.90770) 

6.06420 
(7.41641) 

0.000000 
(0.00000) 

0.000000 
(0.00000) 

0.000000 
(0.00000) 

0.443525 
(0.44721) 

0.000000 
(0.00000) 

0.997241 
(1.00000) 

1.000000 
(1.00000) 

4.  0.994385 1.41825 
(1.79572) 

6.10612 
(7.12903) 

0.000000 
(0.00000) 

0.000000 
(0.00000) 

0.000000 
(0.00000) 

0.443529 
(0.44721) 

0.000000 
(0.00000) 

0.997241 
(1.00000) 

1.000000 
(1.00000) 

5.  0.988795 1.56385 
(1.57791) 

6.52000 
(6.55743) 

0.088116 
(0.09130) 

0.080980 
(0.08366) 

0.316227 
(0.31623) 

0.385857 
(0.38730) 

0.464501 
(0.44721) 

0.929995 
(0.84039) 

0.593860 
(0.45706) 

6.  0.987815 1.56385 
(1.59528) 

6.54000 
(6.559423 

0.088116 
(0.09148) 

0.080980 
(0.08382) 

0.31622 
(0.31623) 

0.444497 
(0.44721) 

0.464501 
(0.44721) 

0.929859 
(0.83996) 

0.593860 
(0.45606) 

7.  0.989290 1.53452 
(1.54528) 

6.43570 
(6.46423) 

0.088305 
(0.09148) 

0.081140) 
(0.08382) 

0.316227 
(0.31623) 

0.225976 
(0.22361) 

0.464669 
(0.44721) 

0.930062 
(0.83996) 

0.593128 
(0.45606) 

8.  0.988769 1.557773 
(1.58601) 

6.56076 
(6.58150) 

0.088106 
(0.09032) 

0.080972 
(0.08284) 

0.316227 
(0.31623) 

0.385853 
(0.38730) 

0.464492 
(0.44721) 

0.929991 
(0.84268) 

0.593860 
(0.46249) 

9.  0.995634 1.37380 
(1.38646) 

5.9790 
(6.01283) 

0.001456 
(0.00204) 

0.001454 
(0.00204) 

0.200000 
(0.20000) 

0.282225 
(0.28284) 

0.197670 
(0.20000) 

0.992694 
(1.00600) 

0.975365 
(1.02213) 

10 
. 

0.995519 1.39734 
(1.39748) 

6.04760 
(6.04535) 

0.001458 
(0.00209) 

0.001453 
(0.00208) 

0.200000 
(0.20000) 

0.282209 
(0.28284) 

0.197578 
(0.20000) 

.0.992645 
(1.00526) 

0.975398 
(1.01910) 
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Table 7.2(c) : Values of Certain Structure Parameters and Related 
Quantities for Differentially rotating polytropic models of 
polytropic index N=4.0 

Model 
No. 

ros 	. vp x 10' So( 10-2  a  E we 0.)p we  TeITp  Le/Lp  

1.  0.998794 14.2845 2.8471 0.000000 0.000000 0.000000 0.315846 0.000000 0.99939 1.000000 
(1.39981) (6.04336) (0.00000) (0.00000) (0.00000) (0.31623) (0.00000) (1.00000) (1.00000) 

2.  0.998784 14.4427 2.8683 0.000000 0.000000 0.000000 0.31584 0.000000 0.99939 1.000000 
(1.39505) (6.03022) (0.00000) (0.00000) (0.00000) (0.31623) (0.00000) (1.00000) (1.00000) 

3.  0.995114 14.3898 2.8614 0.000000 0.000000 0.000000 0.44394 0.000000 0.997755 1.000000 
(1.90770) (7.41641) (0.00000) (0.00000) (0.00000) (0.44721) (0.00000) (1.00000) (1.00000) 

4.  0.995104 14.5423 2.8819 0.000000 0.000000 0.000000 0.44393 0.000000 0.99754 1.000000 
(1.79572) (7.12903) (0.00000) (0.00000) (0.00000) (0.44721) (0.00000) (1.00000) (1.00000) 

5.  0.99574 16.4104 3.1253 0.09080 ' 0.08324 0.31622 0.38674 0.46686 0,93088 0.58355 
(1.57791) (6.55743) (0.09130) (0.08366) (0.31623) (0.38730) (0.44721) (0.84039) (0.45706) 

6.  0.994905 16.5345 3.14178 0.09048 0.08297 0.31622 0.44607 0.46659 0,93078 0.58476 
(1.59528) (6.559423 (0.09148) (0.08382) (0.31623) (0.44721) (0.44721) (0.83996) (0.45606) 

7.  0.995759 16.0648 3.0799 0.090817 0 083256 0.31622 0.224551 0.466884 0.93089 0.58348 
(1.54528) (6.46423) (0.09148) (0.08382) (0.31623) (0.22361) (0.44721) (0.83996) (0.45606) 

8.  0.995784 16.5687 3.1465 0.09082 0,08326 0.316227 0.386754 0.466893 0.930894 0.583449 
(1.58601) (6.58150) (0.09032) (0.08284) (0.31623) (0.38730) (0.44721) (0.84268) (0.46249) 

9.  0.998344 14.16932 2.83303 0.001462 0.001460 0.200000 0.282608 0.199843 0,993852 0.974591 
(1.38646) (6.01283) (0.00204) (0.00204) (0.20000) (0.28284) (0.20000) (1.00600) (1.02213) 

10 0.998379 14.4237 2.86707 0.001462 0.001460 0.200000 0.282613 0.199674 0.993867 0.974581 
(1.39748) (6.04535) (0.00209) (0.00208) (0.20000) (0.28284) (0.20000) (1.00526) (1.01910) 
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CHAPTER - VIII 

EIGENFREQUENCIES OF SMALL ADIABATIC BAROTROPIC 
MODES OF OSCILLATIONS OF DIFFERENTIALLY 

ROTATING AND TIDALLY DISTORTED GAS SPHERES 



In the present Chapter we consider the use of averaging approach 

developed in Section 3.4 and 3.5 of Chapter III and section 5.3 and 5.4 of 

chapter V 	to study the effect of,1,t'rtacisl variation eittiolg qiu,t.Mix on the 

eigenfrequencies of small adiabatic pseudo radial and nonradial modes of 

oscillations of differentially rotating and tidally distorted gas spheres. 

Using the approach discussed in Section 3.4 and 3.5 of Chapter III and 

using a law of differential rotation of the type (5.7), an eigenvalued boundary 

value problems determining the eigenfrequencies of small adiabatic pseudo-

radial modes oscillations of differentially rotating and tidally distorted gas 

spheres have been formulated in Section 8.1. An eigenvalued boundary value 

problem which determines the effect of differential rotation and tidal distortion 

on the eigenfrequencies of nonradial modes of oscillations of the gas spheres 

has next been formulated in Section 8.2. The formulations of these eigenvalue 

problems are based on the analysis developed earlier by Mohan, Saxena and 

Aggarwal (92). In Section 8.3 analysis of sections 8.1 has been used to 

formulate the eigenvalue problems to determine the pseudo radial modes of 

oscillations of rotationally and tidally distorted composite models. The analysis 

of section 8.1 and 8.2 have been used in section 8.4 and 8.5, respectively to 

formulate the eigenvalue problems which determine pseudo radial and 

nonradial modes of oscillations of a differentially rotating and tidally distorted 

polytropic models with polytropic indices 1.5, 3.0 and 4.0 The eigenvalue 

problems developed in Section 8.3 of 	rotationally and tidally distorted 

composite model and 8.4 and 8.5 for differentially rotating and tidally distorted 

polytropic models have been solved numerically in Section 8.5 whose inner 

structures was earlier obtained in Chapter III, IV and V. Analysis of the 
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numerical results has finally been carried out in Section 8.6 to draw certain 

conclusions. 

8.1 EIGENVALUED BOUNDARY VALUE PROBLEM TO DETERMINE 
THE EIGENFREQUENCIES OF SMALL ADIABATIC PSEUDO-
RADIAL MODES OF OSCILLATIONS OF DIFFERENTIALLY 
ROTATING AND TIDALLY DISTORTED GAS SPHERES 

The problem of determining the effect of differential rotation on the 

eigen-frequencies of differentially rotating stars in quite complex. Mohan and 

Singh (87) formulated an eigenvalued boundary value problem to determine the 

periods of small adiabatic pseudo-radial modes of oscillations of rotationally 

and tidally distorted Roche model. Mohan, Saxena and Aggarwal (92) used 

this approach to formulate eigenvalue problems which determine the 

eigenfrequencies of small adiabatic pseudo-radial and nonradial modes of 

oscillation of rotationally and tidally distorted gaseous spheres in general. The 

approach adopted by them was also be used by Lal (69) to set up the 

eigenvalue problems which determine the eigenfrequencies of small adiabatic 

pseudo-radial and nonradial modes of oscillations of differentially rotating and 

tidally distorted stars. 

Assuming that during the oscillations the fluid elements on an 

equipotential surface oscillate in unison, the eigenfrquencies of small adiabatic 

pseudo-radial modes of oscillations of the actual rotating star rotating 

differentially according to the law (5.7) can be obtained from its topologically 

equivalent spherical model developed on the basis of the averaging technique 

of Kippenhahn and Thomas. Following the approach of Mohan et al (92), the 

equation determining the eigenfrequencies of pseudo-radial modes of 

oscillations of a differentially rotating and tidally distorted stellar models which 

correspond to the eigenvalue problem determining the eigenfrequencies of 
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radial modes of oscillations of the topologically equivalent spherical model may 

be expressed as : 

[ 	 ] d2  q + 4 - - ii  dr/  + Po,  2 (3  4)  ,u  r 1  = 0  
dro2w 	row  dr02,„ 	rPow 	7 ro2w  

where ,u = 
Pow drove 

Here row  , pow  and Pow  are the values of rw , p w  and Pt, on the equipotential yr = 

const. in its equilibrium position, o the eigenfrequency of oscillation and ii 

some average of the relative amplitudes of pulsation of the fluid elements on 

the equipotential surface fif = constant. Using rw  , pw  and Py  in place of 

row  Poy, and P 	to denote the equilibrium values on the equipotentials 

surfaces, taking ro= 	z 	in place of rw  as the independent variable, and -q 

assuming co 2 =b 2,4.2b1 b2s2 +b22s4 as the law of differential rotation, the 

equation (8.1) governing the small adiabatic pseudo-radial modes of 

oscillations of a differentially rotating and tidally distorted gas sphere may be 

expressed as: 

A(z,b,,b2,q) d
d

2  +[4 	B(z,b,,b2 ,q)- C(z,b,,b2,q) 
dg r2o 	1.0 	 , 

+ R2a2Pw  (3-14 E(z,b1,b2,47 = 0  rP 	r r _ 

(8.2) 

A(z,b,,b2 ,q) =[1 
8.61 

 ° 
3z 	15z 	5z 2 	105z 	7z2 	3z2  

2 r. 3 	16b,b2r05 	28q2r06 	128b2 2r07 	90q2ro 	
+... 

s  44q2rol°  

row  dPow  
(8.1) 
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B(z,b„b2 ,q). 1 
2 	3 

5.b1  r 28b,b, ro5  32q 2 r06  24b2 2 r0 7  500q 2 ro R 	2 q 2  ro li)  

3z 15z 5z 2  35z 7z 2 	3z 2  

1 4.b1 2 r0 3  8b,b2 r0 5 168q 2r5' 64b2 2 ro 7  360q 2r08 	220q 2ro m  

ro  z 5z 5z 2  z 7z` 	3z 

[

E(z,b,,b2 ,q). 	1 
2.b1  2r0 3  8b,b2 r0 5  8q 2 r0 6  16b2  2r07  10 q 2r08 	4 q 2r0")  

+ 
3z 15z 5z 2  35z 7 z 2 	3z 2  

p = 	 r° 	= F (z,b„b2,q)
r dP 

Also 
 

Pw  d ro  d r v, 	 Pw  d ro  

Where 

'
bi 2 r0 3 	4 b,b2 r0 5 	24q 2 r06 	56b2 2r0 7 	40 q 2r08 	20 q 2ro l°  

z 	15z 	5z 2 	105z 	7z 2 	3 z 2  

In 	the 	absence 	of 	any 	distortion 	i.e. 

z =1, b, = b2  = 0, pw  = p,Pw  = P, ro  = x , the above equation reduces to 

d2q + 4 -,u  chi ÷ [R2a2P 	_ 41 P2  = 0 dx  2 	x  dx 	rp 	l r 11 X 

x dP with p =-- 
P dx  

which is the usual equation determining the eigenfrequencies of small adiabatic 

radial modes of oscillations of a gaseous sphere (cf. Rosseland (105) p.30 

with (y = 0) . 

Equation (8.2) forms an eigenvalue problem in the eigenfrequency of 

oscillation a . As usual, this eigenvalue problem is of Sturm-Liouville type 

having singularities both at the centre and the surface of the model. It has to 

be solved subject to the boundary conditions which require 	to be finite at the 

centre as well as at the free surface. 
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In reality equation (8.2) determines the periods of small adiabatic radial 

modes of oscillations of the topologically equivalent spherical model. However, 

since equipotential surfaces of the actual differentially rotating distorted model 

are also the surfaces of equipressure and equidensity, the values of pressure 

and density on the equipotential surfaces of the differentially rotating star are 

same as on the corresponding equipotential surfaces of the equivalent 

spherical model. 	Hence the eigenfrequencies of the radial modes of 

oscillations determined by solving the eigenvalue problem for the topologically 

equivalent spherical model are indeed the eigenfrequenices of the radial modes 

of oscillation of the undistorted model which have got influenced by the 

rotational effects of the star. However, the values of the eigenfunction 

obtained on solving (8.2) for the equivalent spherical model are not the actual 

values of amplitudes of pulsation ti for the distorted model but rather some 

averages of the true values of eigen functions 	on the differentially rotating 

model. 

We may thus use equation (8.2) to determine the effects of differential 

rotation and the tidal distortions on the periods of small adiabatic radial modes 

of oscillations of a stellar model. The effects of differential rotation and tidal 

distortions have been incorporated through introduction of terms 

A(z,b,,b2 ,q), B(z,b,,b2 ,q), C(z,b,,b2 ,q), E(z,b,,b2 ,q), and 	F (z,b,,b2 ,q), 

and dependence of p, and /3,, on y. The present method in fact incorporates 

the effects of distortional forces both while computing the equilibrium structure 

(in computing the values of /Iv , pv, etc.) as well as in the coefficients A, B and 

C of the equation (8.2) which determines the periods of adiabatic small radial 

modes of oscillations. 
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The eigenvalue problem (8.2) together with the boundary conditions 

which require q to be finite both at the centre as well as the free surface of the 

star may be solved numerically in the usual manner as is done in the case of 

undistorted models. For convenience in numerical work it is sometimes found 

convenient to set 

	

= — and ro  = xros 	 (8.3) 
r0  

(ras  being the value of ro  on the outermost surface) in equation (8.2) and treat 

x as the independent variable and ; as the dependent variable. With these 

substitutions x is now zero at the centre and one at the free surface. The 

boundary condition q =finite at the centre now gets replaced by =0 at the 

centre. The boundary condition 77 = finite at the free surface now becomes 4 

finite at x=1. Using (8.3) equation (8.2) gets transformed in terms of the 

variables ; and x and as 

A* (z,b,,b2 ,q,x) d2; +B*(z,b,,b2 ,q,x)—
dc 

+C*(z,b,,b2 ,q,x); = 0 	(8.4) 

	

dx 2 	 dx 

where 

A* (z,b1 ,b2 ,q,x)= A(z,b1 ,b2 ,xros ), 

B*(z,b,,b2,q,x)= 
4 - ,u 

B(z,b,,b2 ,q,xros )-rosC(z,b„b2 ,q,xros)--
2 

A(z,b,,b2 ,q,xros ), 

and 

	

p-,,sR 2pv 	2 	4, it 
C*(z,b,,b2 ,q,x)= 	- (3 --) 	(z, b, , b2 ,q,xros)--

1 
B*(z,b,,b2 ,q,xros ) 

Y Pv 	 y x2 	 X 

The boundary conditions now are : 
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= 0 at the centre x = 0 
and 
	

(8.5) 
= finite at the surface x =1 

For computing an eigenvalue a- (8.4) has to be solved numerically 

subject to the specified boundary conditions (8.5). Centre and the free surface 

of the star being singularities of this differential equitation it may be advisable to 

write the series solutions of (8.4) near the singularities to start numerical 

integrations. If we assume C to be normalized to have value one at the free 

surface, we can assume a series solutions of the type 

a x J+A 
✓=o 

near the centre x = 0 and 

= 1+ Eb xr A  
✓=o 

near the surface x=1, to start the integration of (8.4) near these two 

singularities. 

For obtaining an eigenfrequency of pseudo-radial mode of oscillation, 

the equation (8.4) has to be integrated numerically for trial values of o till a 

value of o-  is obtained for which both the boundary conditions are satisfied. 

One way to achieve this objective could be to integrate equation (8.4) 

numerically from the surface towards the centre using say fourth-order Runge-

Kutta method. Starting values near the surface may be obtained from series 

solution (8.7). Similarly we can integrate equation (8.4) numerically outwards 

from the centre starting from a point near the centre. The starting values near 

the centre may be obtained from the series solution (8.6). Trials with different 

(8.6) 

(8.7) 
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values of cr may be continued till a value of a- is found for which the value 

4/---41d  from the inward and outward integrations match to desired accuracy at 
dx 

some suitably selected point inside the model. 

The quantities 	, Pv  and the eigenfrequencies 0- are still in 

dimensional form. For determining the eigenfrequencies it is recommended 

that these be first converted into suitable nondimensinal forms keeping in view 

the physical nature of the model under investigation. 

It may be noted that the eigenvalued boundary value problem set up in 

this section determines the eigenfrequencies of the pseudo-radial modes of 

oscillations of a differentially rotating and tidally distorted gas spheres rotating 

differentially according to the law w 2  = 1),2  + 2102s2  + b22  s4  . For pseudo-radial 

oscillations of a rotating model having solid body rotation we may set 

b12  = 2n, b22  =0, z=1 (2 n being the square of the angular velocity of rotation in 

equation (8.4)). 

8.2 EIGENVALUED BOUNDARY VALUE PROBLEM TO DETERMINE THE 
EIGENFREQUENCIES OF SMALL ADIABATIC NONRADIAL MODES 
OF OSCILLATIONS OF DIFFERENTIALLY ROTATING AND TIDALLY 
DISTORTED GAS SPHERES 

Mohan, Saxena and Agarwal (92) also formulated an eigenvalued 

boundary value problem to determine the eigenfrequencies of the nonradial 

modes of oscillations of rotationally and tidally distorted gaseous spheres. As 

in the earlier case values of the physical parameters p, and /), on the 

equipotential surfaces of the distorted model being same as those on the 

corresponding equipotential surfaces of the topologically equivalent spherical 

model, we may use this topological equivalent spherical model to determine the 

eigenfrequencies of nonradial modes of oscillations of the differentially rotating 
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and tidally distorted gaseous spheres Following Saxena (124), the eigenvalue 

problem determining the eigenfrequencies of nonradial modes of oscillations of 

a differentially rotating and tidally distorted gas spheres can be expressed in an 

explicit form convenient for computational work as 

dx +B
, 4B2 + 1

2 3)17 +
1  B30 =0, 

d4"  

-1-141  +(E l6 2  +E2 + E3ri+ E40+-J--d  =0, 
dr 

and 

	

d20 	d0 FL4 F3 r1 + F4 0 = 0 

	

dr 2 	dx 

where 

B =
1+1

+ 
 1  dP yr 

x y dx 

2g 	r 2  dr y, 
.u2 	 

Rx y Py  w  dx 

2 7r Gp, 
pw  ros ' x 1+

2 b
I
2r

D5 
 xj 

+
32 b b2  r 	

+(
36 	

+
12b,2q

) r06, + 
16 b,2 ro: 

r P, 	 15z 	5 z 2 	5z 2 	21 

55 q 2  r 8  26q 2  62 b 2  q 
7 z 2 	3z 
	+ 	1  2  ).er,1°  +... 

35z 

	

1(1+1) dry,
B3 = 	 271- Gpe  

Rx dx 

i(/ +1) 
 2gGperos 1+ 

41)12r
°
3sX3 

+ 	
8b1b2ro

5
3. X

5 	
28q 2  28b12 	 6 B3  = 	 ros + 

Rx 	 3z 	5z 	5z 2 	15z 2  

	

64b22ro's  ./c7  ( 45 24b1 b2  q 8 8 	22  q 2 	22 61  b2  q 	10 
+ 	2 q2r Os X +... 

1052 	7z 7z 2 	
r
's 

X +
\ 32 2 	3522   

(8.8) 
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El= 	
1 	Rx dry, 

27G pc, ryZ dx 

1 	1+ 2b1 2 x3r0 ,3  + 16b,b2 x5 r0 ,5 	4q 2 	4bi 'q 6  6 	16b2 2 X 7 rOc  
27z- Gp r,„ x 	3z 	15z 

	+( 	 
z

2 3z2 
	 )x r + os 35z 

Et = 

+(
5q2  8b,b2q)x 

 ros + ( 
8 8  6q2  18b,b2 q 10 10  

z 2 	3Z2 	 z 2 	35z2 	ro, +... 

1 	Av  d Piv  Rx E2 	 
27rGp, 	dx 

E - 	1 	1 1 dpv 1 dP V ) dPV 	1 1 2bI 2 x3rOs 3  321,11,2 x5r0, 5  
2 -=

(  2A- G pc  D2  pv  pv  dx y Py, dx dx xr02  z 15z 

36q 2  121,12q)x6 r0,6 	16 
	b2 

2
x

7
ros

7 
(
558 2 	88102 q  8  8 

	

-( 5z2  + 	 + 	 )x ro, 
- 

26g 2 	

21z 	 7 z 2 	21z 2  

( 	26q,2 
+ 

26102q
)x1°ro,

io 
+ 1 

3z - 	35z 2  

dr 
E3  =-/ +A 	 

x 	dx 

E3 = 
/ +( 

1 dpv 	1 dPV) 
x pv  dx yPv  dx 

E4=1  
X 

2/ d2 rV/dx 2  2 dry,  

FI= x 	drid
,
dx 

+
ry, dx 

2 (/+ 1) 	1 [2b12 x3 ros3  + 
16bb2x5r0s5 

+ 
(24q2 

 + 
8b12q

)x6
ros

6 
+ 

	

X 	X 	z 	3z 	z 2 z 2 

 io 60q2 	2q)xro 
35z 	 s 

2 	7 	40q 2 	 + 4481 112b2 x 7 ros  +( 	02 a 

21z2 
	')x-g 

r s  +(os 	z2 	
367b;  b2  

m  
z` 

+. 
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Pi, A Rx(dry  
F2  = 2- 	2 	 

pc  rw 	d x 

p 	1 dP, 	1  d P  )  1 	2b 2 x3 r 	16b b x5 r 	4 q 2  4b,2 q 6 6  
= 2 —1--1/ ( 	 1+ 	os 	I 2 	Os  +( 	)x roc  

pc 	dx 	dx xros 	3z 	15z 	 3z 2  

16b2
2x rOs + ( 5q

2 	8b1b2q 
	)x

g
ros

8  + (6q 2 	18b,b2  q 
)x

,0
ros

,0  
35z 	 3z2 	 Z 2 	35z 2  

4A- Gp2  dr , 

y Pw  d x 

4Gp2 	8b 2 x3 r 	16b b2 q,2q 6  2 2 	I 	OT 	 I x5 r lb 	 6 + 56 2  56b 
 )x ro , + 

w 
r F3  = 	 0 

R 1+ 	+ 

P 	 3z 	5z 	5z2 	15z 2  

128b2 2 x7 	90q 2  48b,b2q 8  g 	44q 2  44b,b2  q 	to  
	 +( 	2  	)x ros  +(  ( 

3z2 	
oc  +...  

105z 	7z2 	7z 2 	3z 	35z2  

1(1+1) 	1 d 2  r 	dr,,, 	21 1 dr 	1(1+1)  dr 2 
F4 = 	( 	29')/( 	( V ) 2  ( 

x 	x dx 	dx x 	dx 	dx 

1 4bI 2 x3  ros 	8b,b2  x srOs '  +( 168q 2  56b,2q
)x 

 6 6  448b2 2 X7 ros  
F= 4 	

x
2 	 \ 5z 2 

	

5z
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Also o is the eigenfrequency of oscillations, x = 	ros  and 

r 2 8r 	 ; w 	 13 	 V;  
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>and 0

2R- Gp, R 2 x1  
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(5r, being an average of the amplitudes of Lagrangian variations in the radial 

direction and Pv1 ,111; the amplitudes of Lagrangian variation in pressure and 

gravitational potential on the equipotential on ty =constant. 

In the above expressions terms upto second order of smallness 

in z ,b, and b2  and upto order 	in ro  have been retained. On setting z =1 

,b12  = 2n , and b22  = 0 the above expressions reduce to the corresponding ones 

obtained by Mohan, Saxena and Agarwal (92) for a stellar model having solid 

body rotation. 

The eigenvalue problem (8.8) determining the eigenfrequencies of 

nonradial modes of oscillations of a differentially rotating and tidally distorted 

gas spheres is to be solved subject to the boundary conditions at the centre 

and the free surface. 	Boundary conditions at the centre require 

g r, = 0, Pw / pv, = 0 and Vg  = 0 for rv, = 0. These requirements lead to the analytic 

conditions 

a2 
+ 0 = 	  22rG pc tros  

dO =0  
dx 

(8.9) 

at the centre x = 0. 

If the pressure Pv, on the free surface (ry  = Rv ) is taken to be zero, then 

, the Lagrangian variation in pressure, should be zero at the outer surface. 

This leads to the condition 

	

2n- Gpe r,,,2  pv 
dr
' 	77+R

dP
' 

	

dx 	dx 
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(8.10a) 

However if the pressure Pv  does not totally vanish on the outermost surface 

then following Cox ((27), p.232), the boundary condition (8.10a) is to be 

replaced by 

G pc  R 2  pv 1 d Pc, 	1 	2b12  r03, 

Pw 	Pw d x r 'es  
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The condition requiring 

across the free surface gives 

(10 + 
 [, (1+1)drv, 1 

— 
dx 	rw  dx _19$  

gravitational potential to be continuous 

2Rpv, dr y  

per y  dx 
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or 
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+ Obi b2  r:, r  24 q2 

+ 8b1 q l  
—d0 + 1+(1+1) 1+ 	 
d x 	 z 	3z 	5z 2 	5z 2 
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r. + 
16 b; ro7,  [ 
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p,. ros 	3z 	15z 	z 2   ,
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(8.10 c) 

at the surface x=1 

Thus in terms of the nondimensional eigenfunctions 4, g  and 0 the 

problem determining the eigenfrequencies of nonradial modes of oscillation of a 

differentially rotating and tidally distorted gas spheres reduces to solving the 

system of differential equation (8.8) subject to the boundary conditions (8.9) at 

the centre and the boundary conditions (8.10) at the free surface. 

8.3 EIGENVALUED BOUNDARY VALUE PROBLEM TO DETERMINE THE 
EIGENFREQUENCIES OF SMALL ADIABATIC PSEUDO-RADIAL 
MODES OF OSCILLATIONS OF ROTATIONALLY AND TIDALLY 
DISTORTED COMPOSITE MODSELS 

The eigenvalued boundary value problem governing the 

eigenfrequencies of small adiabatic pseudo-radial modes of oscillations of a 

rotationally and tidally distorted gaseous sphere has been formulated in section 

8.1. In order to use this formulation to determine the eigenfrequencies of small 

adiabatic pseudo radial modes of oscillations of rotationally and tidally distorted 

composite models, we have to use in this eigenvalue problem the values of 

Pv and pv, for the appropriate rotationally and tidally distorted composite model. 

The boundary conditions require c.  to be finite at the centre and the 

outermost surface of the gaseous sphere. We can use this equation to 
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determine the eigenfrequencies of small adiabatic pseudo-radial modes of 

oscillations of rotationally and tidally distorted composite models whose 

equilibrium structures were investigated in Chapter IV. For this we have to first 

obtain explicit expressions for pc  (the value of p inside the core) and Pe  (the 

value of ,u inside the envelope) by substituting the appropriate values of 

rw  and 13„, for the core and envelope. 

On using the value of Pt, for points inside the core from equation (4.7) 

and the value of rw  from (3.8) in the expression for p as given in equation 

(8.2), we get after simplifications. 

2r02Y 
 1+( 

2n 2n 3 	4n 	16nD2 	5 	I 2q 2  4nq 4n2 
Pc= xi zY, 	z

)ro +(
5zX, 3Y,z;2 )ro +f yi (  z2 + 3z2+  3z2) • 
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	+ 	)1r0  +( 	4 	 2 )ro +( 	( 	+ 	) 5z - 	5z 2 	15? 	5Y1 zRy  21 zA', /?4, 	XI  2z 2  3z2 	3z 2  
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3q 2  16n2 	768n2 D2 	20q 2 trio +... +  ' 
10z 2 X, 
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(8.11) 

where 

X ! = K; —rn2  + 
4 D2 

r04  + -1—
D4

ro - 	5 Ry2/ 	5 Rw4  

and 

2  8 D  2 3 D4  4 = 1 	, ro 	ro  
5 ity; 	5 Rw4  

Similarly on substituting for Pw  from equation (4.21) for points in the 

envelope and for ry, from (3.8) in the expressions for p as given in equation 

(8.2) we get 
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(8.12) 

where 

X=1+ 3 ro  +3C1 r03  
2Mol  

and 

	

Y=1+ 	
1 

ro 
Mo, 

Now substituting the values of Pvc , 	and,ue  from (4.7), (4.5) and (8.11) in 

(8.2) the nondimensional form of the pulsation equation inside the core 

becomes 

	

d 2; 	d‘ 

	

+ H2  	[ H3  CO 2  - H4  4-  = 0 	 (8.13) 

	

dro2 	dro  

where 

16n 3 „56q2  112nq 104n2 	90q 2 r08  44g 2 r°10  
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w being the nondimensional form of the eigenfrequency 6. Also 	is the 

value of the relative amplitude of pulsation at r0  in the equivalent spherical 

model and thus denotes a suitable average of the amplitudes of pulsations of 

the fluid elements on the equipotential surface tg = constant of the distorted 

model. 

Similarly on substituting the values of P,„ pve  and Ne  from equations 

(4.21), (4.16) and (8.12) in (8.2), the nondimensional form of the pulsation 

equation inside the envelope is same as (8.13). However, now 
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Equation (8.13) together with the boundary condition which require c to 

be finite at centre and free surface and continuous across the interface 

between the core and the envelope, constitute an eigenvalued boundary 

problem which determines the eigenfrequencies of small adiabatic pseudo-

radial modes of oscillations of rotationally and tidally distorted composite 

models consisting of cores in which density varies according to the law 

r 2 

	

pv  = p, (1--;) and 	envelopes 	in 	which 	density 	varies 	as 

R 2  
pv =p, b 2(1--22). In the formulation of this eigenvalue problem terms upto 

second order of smallness in distortion parameter n and q have been 

retained. 

It can be easily verified that if we set n = q = 0 in these 

equations, 

Then we obtain the usual equation determining the eigenfrequencies 

of small adiabatic radial modes of oscillations of an undistorted model of 
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the above series of composite models. On setting n = (q+1)/2 in the 

above formulation we can determine the effects of rotation and tidal 

distortions on the periods of small adiabatic pseudo-radial oscillations of 

the primary component of a synchronously rotating binary system. Also 

by setting q= 0 or n =0 separately, we may study the effects of rotation alone 

or tidal distortions alone on the periods of small adiabatic pseudo-radial 

oscillations of the models of the series of composite models. 

8.4 EIGENVALUE PROBLEM DETERMINING THE EIGENFREQUENCIES 
OF SMALL ADIABATIC PSEUDO-RADIAL MODES OF 
OSCILLATIONS OF DIFFERENTIALLY ROTATING AND TIDALLY 
DISTORTED POLYTROPIC MODELS 

The eigenvalued boundary value problem governing the 

eigenfrequencies of small adiabatic pseudo-radial modes of oscillations of a 

differentially rotating and tidally distorted gas sphere has been formulated in 

section 8.1. In order to use this formulation to determine the eigenfrequencies 

of small adiabatic pseudo-radial modes of oscillations of a differentially rotating 

and tidally distorted polytropic model, we have to use in this eigenvalue 

problem the values of py  and Pv, for the appropriate differentially rotating 

polytropic model. 

On substituting in equation (8.2) the values of Pv  , and py  as defined by 

relations 3.17 of chapter III for a differentially rotating and tidally distorted 

polytropic models, we get after some simplifications. 

d 2 	dri H
1 drri 

 +H2 
 dro 

 + ‘113 (9 2 -114))77 =0 
o  2  

(8.14) 
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where 

	

8b,2  ro 3 	16b 1b2  ro 5 	28g 2  r06 	128b2 2  r07 	90g 2  r08 	44g2 r010 
1/1 (z,bi ,b 2 ,q) =1 	 

105z 
	+ 

3z 	5z 	5z 2 	 15z 	3z 2  

2 = HZ 	
1 
ro  

A  
4-t 

32b1 2  r03  232b1  b2  ro 5  296q -r°  736b22 ro 7  560q =  r08  76q =  ro w  
+.. 

3z 15z 5z 2  35z 7z2 z 2 

+(N+1)( 	)roll — 
811

'
2,-

0
3 I de 	 16b ,b, ro 5 	128b2 2 ro 7 	56 q`ro 6 	90q 2r08 	44q 2 ro10  

105z 	 3z 2  3z 	5z 	 5z 2 	7 Z 2  

H3  = 
(N + 	k

) 
 1 

3y roc' 	 pc  Ov, 

H4 = —(3- 4)(N +1)( 
1"1 W

) 1 
1  

5b1 2 ro3 
 

28b1 b2  ro 5  32q 2r06  24b2 2  ro 7  
dro 	ro  3z 15z 5z 2  5z 

50,12 roe 	8q 2 rolo 

7z2 	Z 2 

where 
	 2 = 

D3 1.OS3  a' 
G M0  

a being the nondimensional form of the eigenfrequency a . In the above 

expressions values of the parameters u , pc  and "15 are to be taken for the 

original undistorted polytropic model. 

Equation (8.14) is the general equation in nondimensional form which 

determines the eigenfrequencies of small adiabatic pseudo-radial modes of 

oscillations of a differentially rotating and tidally distorted polytropic model when 

terms upto second order of smallness z, b1  , b2  and q are retained. For 

numerical evaluation of the eigenfrequencies, the second order differential 

equation (8.14) is to be 'solved numerically subject to the boundary conditions 

which require 	to be finite at points corresponding to the centre (r0  = 0) and 

the free surface (ro  = ros ) of the model. 
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On setting z=1, b1  = b2  = 0 (i.e. in the absence of any distortion, 

equation (8.14) reduces to the usual equation which determines the 

eigenfrequencies of small adiabatic radial modes oscillations of an undistorted 

polytropic model. By setting z =1, 17,2  =2n,b; = 0 we can study the effects of 

solid body rotation on the eigenfrequencies. 

8.5 EIGENVALUED BOUNDARY VALUE PROBLEM DETERMINING THE 
EIGENFREQUENCIES OF SMALL ADIABATIC NONRADIAL MODES 
OF OSCILLATIONS OF DIFFERENTIALLY ROTATING AND TIDALLY 
DISTORTED POLYTROPIC MODELS. 

System of equation (8.8) with the boundary conditions (8.9-8.10) 

constitutes the eigenvalued boundary value problem which determines the 

effects of differential rotation and tidal distortions on the eigenfrequencies of 

nonradial modes of oscillations of a differentially rotating and tidally distorted 

gas spheres. In order to use this eigenvalue problem to determine the effects of 

differential rotation and tidal distortions on the eigenfrequencies of nonradial 

modes of oscillations of polytropic models the values of Pw ,  , and pw  etc. 

appearing in these equations are to be taken from relations (3.17) of Chapter 

III, the system of differential equations (8.8) governing the nonradial modes of 

oscillations of a differentially rotating and tidally distorted polytropic model, can 

be expressed as 

+ B14  4. (132  + B32 )1 
 + 8

2  
dx 	 co 	co 
chi 4. (ri

LC1
2 

+
_ 	 dO 

1-4 	+E 2 k E3 + I-,
p 

 4 	dx  - 
dr 
and 

d2  + 	+F, 4-  F317 + F40 ° dx 2 	cbc  

(8.15) 
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where 

1+1 N+1  1 de, 
Bl = 	+ 	( 	) 

x 	y Ov  dx 

(N +1g„21.03,x 1+  2b1 2rOr 3 x3  32bI b2 rOs 5x5 [ 36q2 +12b12q\ + 16 b2 2 1-Os 7 x7  
B2 = 	  

	

2242 9w 	 15z 	
k 5z 2 	5z2 	

21 

+(
55q 2 

 + 
88b,b2q

) 	D, x
8
'I

8 
 + (

26 q 2 	124b,b2q)x 10 to 
ros  +... 

7z 2 	21z 2 	 3z 2 	35z 2  

31(1 +1)r0,4  p 	4b1 2 ros 3x3 	8b,b2 x5 r0c 5 	28q 2 	28b1 2 q 	6 B3 = 	+ 	• +( 	, + 	)r0 +. 

	

2k  3X . ( p ) 1+ 	3z 	 5z 	 5z- 	15z2 	s  

64b2 2 x7 rOs '  +( 45q2  24bI b2q)xs 8ro 8 + ( 	+ 
22  q 2 	22b1 b2q 10 10  + 

105z 	+( 7z2 
+ 
 7z2 	 3z2 	35z Z )x  

2 k 3  p 	2b 2 x3r 3  16kb xs  r 5 	4q 2  4b,2q 	6  16b 2  x7  r 7  4   ( 	) 1  4. 	 I 	Os  + 	2 	Os  +( 	v6 ros  + 	2 	Os  E, = 	 + 	 + 
3ros  x Pc 	3z 	15z 	z 2 	3z2 1 	

35z 

5q 2  8b,b2 q 8 8  6q2  18b1 b2q 10 10 
+(- 

z 2 + 	
3z 2 	 Z 

)x ros  +( 2  + 
35Z2 

 )x ros  +... 

_ 2k 2 	N+1 1 de 	1 	21)1 2 x3r0,3  32 bi b2 x5r0,5 	,36q 2 	12 bi 2q  E2 	(N 	
y ) 
	

dx 
vi )2 

ros 3 x 	 15z 	5z 2 	5z 2 	 ( 	+ 	)x6  r 6os  +. 

16 
b22x7/.0, 

7 —( 	+ 
55q 2  88b,b2q

)x
g
ros

8 
 ( 	+ 

26q2  26b,b2q 10  10 
	)x ros  +.. 

21z 	 7z2 	21z 2 	 3z2 	35z2  

	

E =!-+(N 
N+1 	dO 

3 	
) ew  

dx, 

x 

2 2b, 	16b,b2x5 r0,5 	24q 2 	8b 1 2 q 	 6 6 F =-1  [2 (I +1) 	2x3ros3  	 + ( 	)x ros  + 
x 	 3z 	z 2 	z 2 

112 b2 2 X 7  ro  7 	40q 2 	448b,b2 q 
)x 

8 
 ro,

g 
 + ( 

60 q 2 	36b,b2q to 10 s  +( 	 

35z 	 z 2 	21z2 	 z
2 7z2 
	)x ros  +... 
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F2  = 
2 

(N 
N+1 	N._1 di 9  ip 2b1 2 x3r0,3  

1+ 
16b,b2x 5r0,5  

(
4q 2  4b,2 q

) 	6 	6 r 
t,

x 
ro ,x 

)9 y, 
dx 3z 15z z 2 3Z2 

16 b22x7r0,7 + (5q2  + 8102  q
)x ro, + (6q 2 	18b,b2q lo 10 +)xro,)+... 

35z 	z 2 	3z 	 z 2 	35z2 
 

F3 = 
(N + „ 2  N-1 2 

r , 
0' 

8b, 2 x3 r0 .3 	16b1 b2 x5 r0,5 	568 2  
1 	 • + 	+ 	 + ( 

56b,2q 	6 	6 

k 2  3z 	5z 	5z 2  
+ 	)x ros  

15z 2  

128b2 2 x 7  ros.7 
+( 	+ 

90q 2 	48b,b2q
)x ros

8 
 + (

44q 2 	44b,b,q 	10  
	)x 	+... 

105z 	7z 2 	7z 2 	3z 2 	35z 2  

b 2 ,x 3  r0,3 8b,b, x5 r0 ,5 	168q 2 	56b, 2q 	448 b,2 x7 r 
	+ 	+   	)x  6 r 	 Os  

z 	 z 	5z 2 	5z 2 	os 105z 

360q 2 	576b,b,q 8 	8 	220g 2 	44b1  b2 
 q l° 10 + ( 	

2 
 + 

 21z2 
 - )x ro, +(  3z2 	7z2  + 	)x r, } +1  2b,2X3r0,3 + 8b,b2x5r0,5 

z 	3z 

48q 2 	1661 2 q 	6 6 112  b2 2 X7 r0,7 	80q 2 	128b b, q 8  8 
ro  + 	+( 	+ 	;  )x ro, 

5z 2  5z2 	s  105 z 	7z2  21z- 

40 q 2  8b,b,q 	 }] 
+ 	+ 	) 	osx r 	+ ...  

3 z 2 	7 z2  

and 

2 D3  r 3  a 2  OS  = 
G M 0  

co being the nondimensional form of the eigenfrequency o- . As mentioned in 

the radial case values of the parameters u , pc  and p are to be taken from the 

original undistorted polytropic model. 

The boundary conditions (8.9) at the centre (x=0) for the case of 

distorted polytropic models become 

2w2  
71+0= 31ro4, pc) 

(8.16) 
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and 

dO _ 0  
dx 

(8.17) 

On substituting the values of Py, , and pv  from (3.17) in the boundary 

conditions (8.10) at the free surface (x=1), the boundary conditions at the free 

surface in the case of polytropic models become 

[ 3 	2 /il l  2  r 3 	32b b r 5 	36q 2 r 6 	16b2 2ro: 	55q 2 r0,8 	26q 2roc m  Os  + 	I 	2 0s  4. 	0  ro, 1+ 	 + 	+ 	+ 	 

	

z 	15z 	5z 2 	21z 	7z2 	3z 2  

k 2  cle9 v  

	

+ 2-- 	= 0, 
U 

2 dx  

(8.18) 
d0 + 0 [ (1+1) 	

b 3 r 	4b  b r 	24er 6  56b2 2r„7  40q 2 roc g  1+ 	 + 	2 06  + 	Os  	 

dx 	 3z 	5 z 2 	105z 	7 z 2  

20q 2 m  ro  , 
	. + .1 =0, 

3z2  
(8.19) 

The system of differential equations (8.15) together with the boundary 

conditions (8.16-8.19) constitutes the eigenvalued boundary value problem 

determining the effects of differential rotation and tidal distortions on the 

eigenfrequencies of nonradial modes of oscillations of polytropic models. 

In the absence of any distortion (i.e. z =1, 1)1 = b2  = 0 ), the system of 

differential equations (8.15) along with the boundary conditions (8.16-8.19) 

reduce to the usual eigenvalued boundary value problem determining the 

eigenfrequencies of nonradial modes of oscillations of undistorted polytropic 

models. By setting z=1, 	=0 we can also study the effects of solid 

body rotation on the eigenfrequencies of nonradial modes oscillations of the 

polytropic models. 
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8.6 NUMERICAL EVALUATION AND ANALYSIS OF RESULTS 

In order to determine eigenfrequencies of pseudo-radial modes of 

oscillations of rotationally and tidally distorted composite models, computations 

were started for some trial value of cr 2  . For this chosen value of 62  starting 

from points near the centre (x=0.02), outward integration was performed right 

up to the interface for the pulsation equation (8.13) using the difference method 

earlier used by Aggarwal (2) (The details of this method are given in Aggarwal 

(2)) with a step length h=0.02. Again using the same value of 0-2 , inward 

integration of this equation was performed up to the interface starting from 

points near the surface (x=0.98) using a step length 0.2 and the same 

difference formula. In outward in inward integrations we need the value of 

z, and ze  , respectively. These values were earlier obtained in chapter IV. The 

value of c 1(dcicbc) obtained from the core integrations and the envelope 

integrations were matched at the interface. Trials with different values of cr 2  

were continued till the value of c 1(c14-  I dx) at the interface from the core and 

envelope integrations agreed to the desired accuracy (the difference in the 

values of this ratio obtained from two solutions was required not to exceed 

0.0001). 

Computations have been performed to determine the eigenfrequencies 

of pseudo-radial modes of oscillations of the fundamental, the first and the 

second mode for each distorted composite models, for different sets of the 

values of the input parametersn,q, yv 

▪ .

• and r = 
5 . The results are presented in 
3 

Table 8.2 (a, b, c). 	Results presented in the first row of this Table for 

n=0.1, q =0 depict the eigenvalues for the fundamental, the first and the second 
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mode of radial oscillations of the corresponding rotationally distorted model. We 

also present in this table results for the eigenfrequencies of the fundamental, 

the first and the second mode of pseudo-radial oscillations of the primary 

components of certain synchronously rotating binary systems obtained by 

setting n= 
(q +1)  

2 

The eigenvalue problem of section 8.4 is of Sturm-Liouville type. For 

determining the eigenfrequencies of small adiabatic pseudo-radial modes of 

oscillations of differentially rotating and tidally distorted polytropic models, 

equation (8.14) is to be integrated numerically subject to the boundary 

conditions which require 77 being finite at points corresponding to the centre 

and the free surface of the model. The numerical integration can be performed 

using the approach suggested in Section 8.1. The values of z, 0, and 

de 
	needed at various points are to be taken from the numerical solution of 
dx 

the equation (5.38a) obtained in Chapter V. 

In order to determine the eigenfrequencies of pseudo-radial modes of 

oscillations of differentially rotating and tidally distorted polytropic models, 

computations are started with some trial value ofco 2 . For this chosen value of 

w 2  at the points very near the centre series solution is first developed and this 

solution is then used to carry outward integration of the pulsation equation 

(8.14) using fourth order Runge-Kutta method. Again using the same value 

of , series solution is first developed at points near the surface and this 

solution is then used to carry inward integration of the equation (8.14). Again, 

we need the value of z at each point in the outward in the inward integrations 

these values were earlier obtained in chapter V. 	The value of 
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0—d  
d x

) obtained from the outward integration and the inward integration of 

(8.14), is matched at some preselected .point in the interior of the model. To 

start integrations from points near the centre and the surface series solutions 

were developed at x=0.01 and x=0.99. Outward and inward integrations were 

performed using Runge-Kutta method of order four using a step length x=0.01. 

Trials with different values of co' were continued till the absolute difference in 

the value 41(—d ) at the preselected point in the interior of the model from the 
d x 

outward and inward integrations was found to be less than 0.0005. 

Computations have been performed to compute the fundamental and 

the first mode of pseudo-radial oscillations of differentially rotating and tidally 

distorted polytropic models of indices 1.5, 3.0 and 4.0 for those values of 

distortion parameters z, b, ,b2  ,q for which equilibrium structures were earlier 

obtained in Chapter V. The results are presented in Table 8.3 

The eigenfrequencies of the nonradial modes of oscillations of some of 

these differentially rotating and tidally distorted polytropic models have also 

been computed using Chebyshev polynomial expansion technique earlier used 

by Mohan, Saxena and Agarwal (92). The essential details of the method are 

given in Saxena (124).The boundary condition (8.18) was used as the 

discriminaii condition and 	=1 at the centre was used as the normalization 

d 
condition. The values of z, Ow  and 

	

	 needed at various points in the interior 
d 

of the model were obtained from the solutions of the structure equation (5.38 a) 

of these models earlier obtained in Chapter V. For polytropic indices 1.5 and 

3.0 we ordinarily used 10 and 15 collocation points, respectively. However, for 
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determining the eigenfrequencies of certain higher modes of nonradial 

oscillations, the number of collocation points was increased to achieve the 

desired accuracy of 0.0001 for the polytropic models of indices 1.5 and 3.0 in 

getting the discriminant condition satisfied. The number of collocation points 

used in determining a specific mode of nonradial oscillation of a distorted 

polytropic model was same as used in determining this mode for the 

corresponding undistorted model. The numerical results are presented in 

Tables 8.4 (a), to (b) for polytropic indices 1.5 and 3.0, respectively. The 

number of nodes appearing in the eigenfunctions 	and 77 are also shown in 

parenthesis in these tables. 

Table 8.1 shows the values of ros  for certain differentially rotating and 

tidally distorted model with polytropic indices 1.5, 3.0 and 4.0 The results in 

tables 8.2 (a) -(c) present the eigenfrequencies of the fundamental, the first 

and the second pseudo radial modes of oscillations of rotationally and/ or 

tidally distorted composite models for y=-5 with interfaces b= 0.3, 0.5, and 0.7. 

The results shown in parenthesis in these tables are the corresponding results 

earlier obtained by Aggarwal (2). A comparison of the results for b= 0.3 with the 

corresponding results shown in parenthesis shows that values obtained by us 

are generally smaller in comparison to the respective values results shown in 

parenthesis. However, for the fundamental modes of models 

(v=5.0, n=0.0,q =0.2, v=10.0, n=0.1,q=0, v=10.0, n=0, q=.1,.2, n=.1,q=.5) 
and first mode of models (w =2, n =0.2, q =0.0) the values obtained by us are 

larger than earlier obtained values. The amount of increase or decrease in the 

value varies from model to model. For distorted composite models with 

interfaces b= 0.5, it is noticed that eigenvalues for the fundamental mode 
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increase. The first mode decrease and for second mode again increases in 

comparison to the results shown in brackets. For the rotationally or tidally 

distorted composite model with interfaces b=0.7, our results for various models 

are larger compared to the earlier obtained value in some cases and smaller in 

other cases. No specific trend of increase or decrease in the values of 

eigenfrequencies of the fundamental, the first and the second modes of 

oscillations of such type of composite models has been noticed. 

The results presented in table 8.3 show that eigenfrequencies for the 

fundamental and the first mode of pseudo-radial oscillations of differentially 

rotating and tidally distorted polytropic models with indices 1.5, 3.0 and 4.0. 

The value (4 and (012  shown in parenthesis are corresponding values earlier 

obtained by Lal (69). A comparison of our results with the corresponding results 

presented in parenthesis for models 1 and 2 shows that values obtained by us 

are generally smaller in comparison to earlier obtained values while these are 

larger for model 3 for all the polytropic models with indices 1.5, 3.0 and 4.0. 

The model 4 represents differentially rotating and tidally distorted model which 

is rotationally stable. However, Model 5 and 6 represent differentially rotating 

and tidally distorted models which are rotationally unstable. Our results show 

that eigenfrequencies for the fundamental and the first modes for model 4 are 

larger for models 5 and 6 these are smaller in comparison to tidally distorted 

models. 

The results presented in table 8.4 (a) show the eigenfrequencies of 

nonradial modes of oscillations of various types of differentially rotating and 

tidally distorted polytroipic models with index 1.5. On comparing our results for 

f, p1, p2, p3 modes with the corresponding results shown in parenthesis earlier 

obtained by Lal (69), it is noticed that values of eigenfrequencies obtained by 
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us are smaller. These are also smaller for differentially rotating and tidally 

distorted polytropic models in comparison to tidally distorted polytropic models. 

The eigenfrequencies of different modes of non radial oscillations of 

differentially rotating and tidally distorted polytropic models of stars with index 

3.0 are presented in table 8.4(b). On comparing the results for different modes 

of differentially rotating and tidally distorted polytropic models with the, 

corresponding values depicted in parenthesis it is observed that the values 

obtained by us are smaller in comparison to the values earlier obtained by Lal 

(69) and shown in parenthesis. While eigenfrequencies of gl ,g2 ,g3  modes of 

differentially rotating and tidally distorted polytropic models 4 and 5 are smaller, 

in comparison to corresponding eigenvalues of tidally distorted polytropic 

model eigenfrequencies f,PI ,P2 ,P3  modes of these models increase. It is also 

noticed that the eigenfrequencies of gi ,g2 ,g3  modes of differentially rotating 

and tidally distorted models increase and those of f,P1 , P2  , P3  modes decrease 

in comparison to these of tidally distorted polytropic models. However amount 

of increase or decrease in these eigenvalues varies from model to model. No 

specific trend in variation of the values of eigenfrequencies of these modes of 

differentially rotating and tidally distorted polytropic models has been noticed. 
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( 	
a  2 ) 

Table 8.2(a) : Eigenfrequencies co' = 
2 1z-  Gp 

of the fundamental, the first 
, 

and the second pseudo-radial modes of oscillations of 
rotationally and/or tidally distorted models of the 
composite series for y = 5/3 

b= 0.3 
q W 	rl 

 
co  2 

0 
co  2 

I (0 
2 
2 

2 0.1 0.0 - - 2.5782 
(0.2259) (1.3979) ((3.4179) 

2 0.2 0.0 0.16230 1.88131 1.62278 
(0.2232) (1.3965) (3.4833) 

2 0.0 0.1 0.192492 0.6151851 2.38009 
(0.2301) (1.4076) (3.3831) 

2 0.0 0.2 0.180213 - 2.06986 
(0.2299) (1.4065) (3.3839) 

2 0.1 0.1 ., 	.. 0.187757 1.31467 
(0.2252) (1.3971) (3.4194) 

2 0.1 0.5 - - 2.31878 
(0.1992) (1.2950) (3.4245) 

5 0.1 0.0 0.185471 0.736950 2.20825 
(0.2298) (1.4068) (3.3832) 

5 0.2 0.0 - 0.791353 - 
(0.2296) (1.4058) (3.3842) 

5 0.0 0.1 0.220214 0.631686 1.7848 
(0.2301) (1.4078) (3.3823) 

5 0.0 0.2 .232320 0.651950 1.87023 
(0.2301) (1.4076) (3.3823) 

5 0.1 0.1 0.181136 0.594009 1.9085 
(0.2298) (1.4078) (3.3847) 

5 0.1 0.5 - 0.778640 2.31878 
(0.22) (1.4064) (3.3835) 

10 0.1 0.0 0.238511 0.739072 1.72344 
(0.2301) (1.4076) (3.3824) 

10 0.2 0.0 0.22852 0.655952 1.48745 
(0.2300) (1.4075) (3.3825) 

10 0.0 0.1 0.240369 0.6615078 1.36303 
(0.2301) (1.4078) (3.3823) 

10 0.0 0.2 0.249330 0.662567 1.39183 
(0.2301) (1.4078) (3.3823) 

10 0.1 0.1 0.229939 0.816056 1.9959 
(0.2301) (1.4076) (3.3824) 

10 0.1 0.5 0.230548 0.762350 2.43559 
(0.2297) (1.4064) (3.3835) 
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2 
0" Table 8.2(b) : Eigenfrequencies c0 2  = 	 of the fundamental, the first 

27rG pc  
and the second pseudo-radial modes of oscillations of 
rotationally and/or tidally distorted models of the composite 
series for r = 5/3 

b= 0.5 
Vf 1 q W  02 CO 2  I 

co  2 
2 

2 0.1 0.0 - 2.6679 - 
(0.2259) (2.7001) (3.4119) 

2 0.2 0.0 - - - 
(0.2232) (2.6976) (3.4373) 

2 0.0 0.1 0.262870 2.48996 9.4085 
(0.2301) (1.4076) (3.5831) 

2 0.0 0.2 - 2.4896 - 
(0.2299) (1.4065) (3.3839) 

2 0.1 0.1 - 0.815780 2.6505 
(0.2252) (1.3971) (3.4194) 

2 0.1 0.5 - 0.815780 - 
(0.1992) (1.2950) (3.4245) 

5 0.1 0.0 0.31713 1.3039 - 
(0.2298) (1.4068) (3.3832) 

5 0.2 0.0 0.313886 1.3894 4.09301 
(0.2296) (1.4058) (3.3842) 

5 0.0 0.1 0.306709 1.24598 3.313195 
(0.2301) (1.4078) (3.3823) 

5 0.0 0.2 0.311214 1.25157 3.8991 
(0.2301) (1.4078) (3.3824) 

5 0.1 0.1 0.31339 1.31382 - 
(0.2298) (1.4067) (3.3833) 

5 0.1 0.5 0.313395 1.34296 3.1726 
(0.2297) (1.4064) (3.3835) 

10 0.1 0.0 0.324357 0.685063 - 
(0.2301) 0.4076) (3.3824) 

10 0.2 0.0 0.363307 2.26040 6.3373 
(0.2300) (1.4075) (3.3825) 

10 0.0 0.1 0.393512 0.75337 6.4035 
(0.2301) (1.4078) (3.3823) 

10 0.0 0.2 0.415197 0.793491 6.7683 
(0.2301) (1.4078) (3.3823) 

10 0.1 0.1 0.323089 0.65563 6.6146 
(0.2301) (1.4076) (3.3824) 

10 0.1 0.5 0.505068 0.605637 4.91818 
(0.2297) (1.4076) (3.3835) 
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( 0. 2 
Table 8.2(c) : Eigenfrequencies CO2  = 	 of the fundamental, the first 

27rGp, 
and the second pseudo-radial modes of oscillations of 
rotationally and/or tidally distorted models of the composite 
series for y = 5 / 3 

b=0.7 
W 1 q Cti 02  to, co 2 

2 

2 0.1 0.0 0.35437 0.930719 11.5460 
(0.4125) (3.3845) (8.8415) 

2 0.2 0.0 0.4201 4.91374 12.5913 
(0.4106) (3.3729) (9.4412) 

2 0.0 0.1 0.23240 - 3.7147 
(0.4198) (3.3920) (8.6392) 

2 0.0 0.2 0.22726 1.02482 10.339 
(0.41921 (3.3891) (8.6397) 

2 0.1 0.1 0.3114 0.963990 11.6018 
(0.4112) (3.3864) (8.8936) 

2 0.1 0.5 - - - 
(0.3751) (3.3850) (9.2865) 

5 0.1 0.0 0.292576 3.5343 9.7739 
(0.41941 (3.3911) (8.6374) 

5 0.2 0.0 0.288906 8.9778 4.3692 
(0.41891 (3.3897) (8.6454) 

5 0.0 0.1 0.267831 1.06443 - 
(0.4199) (3.3926) (8.6301) 

5 0.0 0.2 0.258978 - 2.85601 
(0.4199) (3.3926) (8.6301) 

5 0.1 0.1 0.266041 0.826112 3.5444 
(0.4193) (3.3910) (8.6379) 

5 0.1 0.5 - 0.669890 - 
(0.4192) (3.3904) (8.6402) 

10 0.1 0.0 0.515265 1.14959 9.132115 
(0.4198) (3.3924) (8.6309) 

10 0.2 0.0 0.491009 3.8537 - 
(0.4197) (3.3922) (8.6310) 

10 0.0 0.1 - 0.857630 - 
(0.4199) (3.3926) (8.6301) 

10 0.0 0.2 0.612730 0.957635 1.27005 
(0.4199) (3.3926) (8.6301) 

10 0.1 0.1 0.65800 2.6499 1.15065 
(0.4198) (6.3924) (8.6310) 

10 0.1 0.5 1.30089 1.30089 0.69424 
(0.4198) (3.3924) (8.6311) 
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Table 8.3 : Eigenfrequencies ' = 
r
(1
3
s 	
R3 1 

co 	 for the fundamental (w 2 ) and [ 
GM°  

the first (co,2 ) the pseudo-radial modes of oscillations of 
differentially rotating and tidally distorted polytropic models 

Model No. N=1.5 N=3.0 N=4.0 

0)1)2  ) (w) 
21  

(6)  02  ) 
(co 1  ) 

(6)  0 ) 
(co 1  ) 

1. 2.64622 12.50035 9.24115 16.98440 15.00133 24.73604 
(2.69269) (12.51098) (9.26008) (16.95728) 

2 2.63913 12,178095 9.03280 16.45697 14.77951 24.33086 
(2.66545) (12.32704) (9.17380) (16.72728) 

3.  2.70309 12.54682 9.240501 16.98125 14.99890 24.7.3044 
(2.69226) (12.50688) (9.25933) (16.94656) 

4.  2.63136 12.12323 9.09602 16.61996 14.74029 24.24683 

5.  2.68289 12.42983 9.19938 16.88695 14.93174 24.61716 

6.  2.69350 12.49290 9.22428 16.94273 14.97307 24.68189 
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(1-',D'o-2 ) Table 8.4 (a): Eigenfrequencies co2  = 	 of nonradial modes of 
(G 	

of 

oscillations of various types of differential rotating and 
tidally distorted polytropic models of stars with polytropic 
index 1.5. 

Model 
No. 

93 g2 gi  f Pi P2 P3 

1.  - - - 2.01669 10.26798 23.46957 41.02976 
2.4558 (10.2812) (23.4920) (41.2378) 
(0-0) (1-1) (2-2) (3-3) 

2.  - - - 2.120807 9.64289 21.08376 36.96368 
(2.3856) (10.1135) (23.1136) (40.5845) 

3.  - - - 2.11610 10.26426 23.46076 41.00848 
(2.4198) (10.2779) (23.4854) (41.2321) 

4.  - - - 1.99002 9.51642 21.780768 38.3473 

5.  - - - 2.04887 9.86694 22.5644 39.6534 

6.  - - - 2.0773 10.00394 22.95472 40.3310 

r 3 1)3 (3-2  Table 8.4(b): Eigenfrequencies co2  =  " 	of different modes of 
GM°  

nonradial oscillations of differential rotating and tidally 
distorted polytropic models of N = 3.0 

Model 
No. 

93 g2 gj  f Pi P2 P3 

1.  1.8497 2.8296 4.8399 8.0070 14.2672 24.6246 37.98749 
(1.8700) (2.8500) (4.8932) (8.2487) (15.2517) (26.6736) (41.3569) 
(3-3) (2-2) (1-1) 1 (0-0) (1-1) (2-2) (3-3) 

2.  1.8296 2.8370 4.7898 7.9408 14.4533 25.1679 38.91084 
(1.8636) (2.8400) (4.8729) (8.1748) (15.6271) (26.2351) (40.6576) 

3.  1.8475 2.8383 4.8538 8.1910 15.2319 26.6520 41.3223 
(1.8700) (2.8600) (4.8936) (8.2480) (15.2533) (26.6655) (41.3435) 

4.  1.8400 2.7999 4.8130 7.9724 14.4803 25.2145 39.0588 

5.  1.8430 2.8199 4.8227 8.0509 14.7805 25.7928 39.9317 

6.  1.8565 2.8499 4.8378 8.1158 14.9817 26.1723 40.5416 
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CHAPTER - IX 

CONCLUDING OBSERVATIONS 



In the present thesis we have primarily investigated the effectiveness 

of the use of the concepts of Roche equipotentials in determining the equilibrium 

structure and periods of oscillations of rotationally and tidally distorted gas spheres 

which have relevance in problems of stellar structure. In this chapter we critically 

review in brief the work done in the earlier chapters and outline the scope for 

further work in this direction. 

9.1 VALIDITY OF SERIES SOLUTION USED IN A ROCHE COORDINATE 

In chapter II we have tried to check numerically the validity of series 

expansion used by Kopal (65) in one of the Roche coordinates which has been 

used by him and subsequently by Mohan et al. (70, 85, 89, 92) for determining the 

equilibrium structures of rotationally and tidally distorted stars. Since the analytic 

expressions are not possible in closed form for all the three Roche Coordinates, 

series expansions were used in cases where analytic expressions in closed form 

are not possible. However the convergence of these series expansion could not be 

analytically established. 

Our numerical results presented in Chapter II show that the series expansion 

(2.7) shows a converging trend as the value of percentage difference between the 

value computed from (2.2) decreases (except on account of truncation errors in 

certain cases) as more and more terms are included in its expansion. Even this 

small percentage difference is expected to reduce further if higher terms are 

included in the series expansions 2.7 ( as has been done by Mohan et al. and us 

also in certain cases). 
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9.2 EFFECT OF INCLUDING MASS VARIATION INSIDE THE STARS ON ITS 
EQUIPOTENTIAL SURFACES IN DETERMINING THE EQUILIBRIUM 
STRUCTURE OF ROTATIONALLY AND TIDALLY DISTORTED GAS 
SPHERES 

In chapter III we modified approach of Mohan et al. to include effects of 

mass variation inside the star on its Roche equipotentials to determine more 

accurately the equilibrium structure of rotationally and tidally distorted gas 

spheres. Subsequently, we used this approach in chapters IV to VII to determine 

the equilibrium structures of rotationally and tidally distorted gas spheres of 

different varieties such as Prasad model, composite models, polytropic models 

and white dwarf models. Our results have shown that this improvement in analysis 

modifies to different extents the value of various structure parameters in different 

cases. However, no specific trend has been observed which could summarize the 

effects in general except that as expected, the changes are more in case of 

gaseous spheres which are less centrally condensed compared to gaseous 

spheres which are more centrally condensed and in whose case Roche 

approximation is more justified. 

9.3 EFFECT OF INCLUDING MASS VARIATON INSIDE THE GAS SPHERE 
ON ITS EQUIPOTENTIAL SURFACES ON THE PERIODS OF 
OSCILLATIONS 

In chapter VIII we have developed a method for determining 

eigenfrequencies of radial and nonradial modes of oscillations of rotationally and 

tidally distorted gas spheres when effect of mass variation inside the star on its 

equipotential surfaces is included in the analysis. We have also applied this 

methodology in this chapter to determine the eigenfrequencies of radial modes of 

composite models with interfaces b=0.3, 0.5 and 0.7 and radial and nonradial 
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modes of oscillations of polytropic models with polytropic indices 1.5 and 3.0. Our 

results show that even though the values of eigenfrequencies get modified and are 

now expected to be more accurate, no specific trend is observed in these 

changes. 

9.4 SCOPE FOR FUTURE WORK 

In the present thesis our effort has been to develop a methodology with 

which equilibrium structures and periods of oscillations of rotationally and tidally 

distorted gas spheres could be determined more accurately. However our results 

show that with these modifications the analysis becomes too unwieldy. Even 

though efforts have been made to develop in series form analytic expressions 

where closed from solutions have not been possible, even these series 

expansions do not provide any analytic expression which could provide some 

result of physical significance. It, may, therefore, be of interest to see if instead of 

developing detailed series expansions of distortion parameters u,v,w,fp  and fT  

etc. required in determining the equilibrium structures and periods of oscillations of 

rotationally and tidally distorted stars as discussed in sections 2.4 of Chapter II 

and section 8.1 and section 8.2 of chapter VIII direct numerical evaluations of 

these distortion parameter be done numerically during computations is done. This 

does not now seem to be a difficult proposition in view of availability of fast 

computing machines. 

While investigating the problems of differentially rotating stars in binary 

system in chapter V, the companion star has been assumed to be a point mass 

star whose mass is much smaller than the mass of the primary star. It is also 
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assumed that the axis of rotation is perpendicular to the line joining the mass 

centers of the two stars. It may be of interest to analyze the problems in which the 

axis of rotation is not perpendicular but inclined at some angle to the line joining 

the mass centres and companion star is not assumed to be a point mass. 

From the astrophysical view point, it will be worth while to incorporate the 

present methodology into certain available computer codes for stellar structure 

and stellar pulsations and apply it to determine the equilibrium models and trace 

the evolutionary tracks of certain realistic models of differentially rotating stars and 

stars in binary system. 
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