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ABSTRACT 

Due to inherent limitations of Fixed-point representation, it is sometimes 
desirable to perform arithmetic operations in the floating-point format. Although 
an established standard for floating-point arithmetic operations exist, the growing 
demand for high-performance computing platforms has pushed the computing 
community to work upon new architectures and algorithms for floating point 
arithmetic operations. Performing the arithmetic operations on IEEE Floating-
point numbers imposed challenges beyond the challenges of Fixed-Point 
arithmetic. These challenges particularly include the task of normalization and 
IEEE compliant rounding. For some time now the researchers have been working 
on use of FPGAs to solve the problem. The presented work is also exploring an 
application area of FPGA to develop independent System on Programmable Chip 
(SOPC) design. This work describes the implementation of Floating-point 
arithmetic unit in FPGA chip, using VHDL programming on Xilinx ISE 7.1 

platform supported by Modelsim and Aldec Active HDL simulation environment. 
Besides implementing the addition, subtraction, multiplication, division, square 
root, and absolute unit, some other supporting units like general purpose registers, 
control registers, tag register, status register etc are also implemented to make it 
work in stand-alone mode. This feature also provides flexibility of writing 
programs to the end user. The input/output number format confirms IEEE-754 

standard single precision real numbers. Internally, calculations are performed 
according to IEEE-754 standard double-extended precision real numbers (as 
incorporated in Intel Pentium4 processor). This inherited feature assists floating-
point arithmetic unit in enhancing the accuracy. A special care has been taken 
through the tag word. The tag register checks the validity of number before 

performing a complex arithmetic computation and thereby saves clock cycles in 
case the data register is empty or contains zero, infinity or invalid number. I also 
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implemented the normalization unit and all four possible rounding modes. In 
essence, this dissertation presents a well thought FPGA implementation of all the 

basic arithmetic operations and a successful attempt has been made to save silicon 

area and reduce overall latency. , An implementation of turbine efficiency 

measurement is presented, illustrating the use of Floating-point arithmetic unit. 

Simulation and Synthesis results of all sub-components within the FPU and the 

efficiency measurement are also presented. 
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FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement 

CHAPTER 1 

INTRODUCTION 

A floating-point number is a digital representation for a number in a certain subset 
of the rational numbers, and is often used to approximate an arbitrary real number on a 
computer. The term floating point is derived from the fact that there is no fixed number 
of digits before and after the decimal point; that is, the decimal point can float. There are 
also representations in which the number of digits before and after the decimal point is 
set, called fixed-point representations. In general, floating-point representations are 

slower and less accurate than fixed-point representations, but they can handle a larger 
range of numbers. 

The Floating Point Arithmetic Unit (FPU), designed in this dissertation, is a 
specialized computation unit that manipulates numbers more quickly than the basic 
microprocessor circuitry. The FPU does this by means of instructions that focus entirely 
on large mathematical operations. 

System-on-a-chip .(SoC) is a new insight of integrating all components of a 
computer system into a single chip [21]. This chip may contain digital, analog, mixed-
signal all on the same dye. These chips are rapidly replacing more sophisticated computer 
systems in many applications [41], especially when the silicon space available is a 
concern. The presented FPU offers programming flexibility to the end user. 

Digital systems are either conventional -hard-core systems (application specific 

integrated circuits — ASICs) which have limited hardware programming (customization) 
capability, or soft-core systems (Field Programmable Gate Array — FPGA based systems) 
which are fully programmable and customizable. 

Each of these systems has their own pros and cons discussed as below, 

• Hard-core Systems (ASICs): 
An ASIC is an integrated circuit (IC) customized for a particular use, rather than 

intended for general-purpose use. These systems have portability problems, and using a 
full fledged microprocessor for every task is not feasible. Thus, hard-core systems are 
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generally ordered by the customer to the manufacturer to do a specific task. Also, the 
development time and NRE cost for ASICs is very high. 

• Soft-core Systems (FPGA based systems): 
FPGA based processors are fully programmable (customizable) systems. Any 
general FPGA based system can be programmed in two levels: Low level and 
High level using HDL [191 [201. FPGAs have almost zero NRE cost and available 
in the market all the time. The FPGA core can be programmed to be any digital 
system one can . think of, from a simple logic AND gate to a full fledged 
microprocessor. The same FPGA core can be reprogrammed (re-customized) 
later, to serve other purposes. 

Thus, because of the "hardware customization" concept that is introduced by the 
FPGA based systems, two entirely different systems can be constructed using the same 
chip with different HDL files. This is a relatively new technology, and limited numbers 

of soft-core FPUs exist in the market. 
In today's processing-power hungry applications, the extended dynamic range and 

precision offered by floating-point arithmetic is quickly becoming a requirement in 

numerous signal processing algorithms that are being used in graphics, advanced wireless 
communications, instrumentation, industrial control, audio and medical imaging 
applications. This growing use of floating-point arithmetic places a requirement for area 

efficient and high performance solutions on hardware engineers. One such application is 
turbine efficiency computation. To calculate unit efficiency, one needs to process large 
number of variables acquired from different locations of hydro power stations. An 
independent Floating-point arithmetic unit is designed that is supported by eight general 
purpose registers, tag register, control register, and status register. These supporting 
registers make FPU to work in stand-alone mode. 

1.1 Motivation 
For the most part, the digital design companies have resolved to FPGA design 

instead of ASICs due to its effective time to market, adaptability and most importantly, 
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its low cost. Floating-point arithmetic unit is one of the most important custom 
applications needed in most hardware designs as it adds accuracy and ease of use. A lot of 
work has been done on floating-point operations and FPGAs that is summarized in 
section 1.3. However, to the best of my knowledge, there is no work which gives 
implementation of Floating-point arithmetic unit in FPGA with a facility to program it 
and a detailed analysis of architectural implementation of sub operations for floating-

point arithmetic unit in FPGA. Since the area occupied by floating-point unit in FPGA is 
well known to be very large, I investigated several approaches/algorithms to reduce the 

area and execution time of Floating-point arithmetic unit. A successful implementation of 
turbine efficiency measurement is presented, illustrating the use of floating-point unit. 

1.2 Research Focus 

The main contribution and objective of our work is to implement and analyze 
algorithms for floating-point operations and hardware modules used to compute 

these algorithms. These algorithms and modules are implemented using Very .High 
Speed Integrated Circuit (VHS IC) Hardware Description Language (VHDL), and then 
are synthesized using Xilinx ISE 7.1 platform supported by Modelsim and Aldec Active 
HDL simulation environment [15][1]. These implementations are placed and routed in 
the FPGA device. Area and timing information for each design approach and algorithm 
is analyzed. 

1.3 Literature Review 

One of the earliest investigations into using FPGAs to implement floating-
point arithmetic was done by Fagin et al. [4] who in 1994 showed that implementing 
IEEE single precision operators was possible, but also impracticable on then current 
FPGA technology. The circuits designed by the author were an adder and a 

multiplier and both had full implementation of all four rounding modes specified by 
IEEE 754 standard. Area was the critical constraint, with the authors reporting that 
no device in existence could contain a single precision multiplier circuit. Therefore, 
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Introduction 

the authors purpose adopting smaller, custom formats which may be more 

appropriate to FPGA architectures than the full IEEE formats. 

This line of thought was expanded on by the significant work of Shirazi et al. 

[5] who suggested application specific formats in width of 16(1-6-9) and 18(1-7-10) 
bits, as opposed to full 32(1-8-23) bits in the IEEE 754 standard. Modules for 

additiontsubtraction, multiplication, and division were presented, though no work 
was done on implementing rounding or error-handling. 

Another significant work came from Louca et al. [6] in which the authors, 
building on the work of Shirazi and others, abstract the normalization operation 
away from the actual arithmetic operators, in an effort to conserve area. No 

rounding capability was implemented by the authors, due to area constraints. 

Ligon et al. [7] presented IEEE single precision adder and multiplier circuits 

on the then newly available Xilinx 4000 series FPGAs. Both circuits supported 
rounding to nearest, but didn't used a separate normalizing unit. Similar work by 

Stamoulis et al. [8] presented IEEE single precision adder/subtractor, multiplier and 
division circuits. However, the authors don't present any rounding capability and 

normalizing unit. 

Work by Sahin et al [9] present adder/subtractor, multiplier and accumulator 

circuits, but again only in IEEE single precision format. Also rounding capability is 

not implemented. Dido et al. [10] discusses flexible floating point formats which 

were different from IEEE 754 standard, but they successfully implemented the 

hardware modules without support for rounding. Their format contains no sign bit 

or bias of exponent. 

Work by Y. Li et al. [22] present single precision square root algorithm and 

its VLSI implementation. Although the design was targeted for CMOS technology, 
it gives good implementation details of Non-Restoring method. In 2003, Xiaojun 

Wang et al. -[23] provided the tradeoffs of implementing division and square root on 

Virtex FPGAs. 
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Ling Zhuo et al. [29] presented FPGA based area reduction circuits. Using 
Xilinx's Virtex II pro as the targeted device, Ling Zhuo and others implemented floating 
point adder circuits. 

One of the most recent works published related to my work is published by G. 
Govindu, L. Zhuo, S. Choi, and V. Prasanna [11] on the analysis of high-performance 

floating-point arithmetic on FPGAs. This paper has been an excellent resource for our 
implementation and discussions throughout the research process, and provides possible 
explanations. All the implementations are done with the latest Xilinx Virtex 2p FPGA. 

Another recent work by A. Malik et al. [12] discusses an effective implementation of 
floating-point adder using the pipelined version of Leading One Predictor (LOP). 

Work by Prof. H. K. Verma et al. [2] shows that efficiency test on turbine-
generator unit in a hydro power station needs simultaneous measurement of a number of 

variables located in different places in the station using suitable instruments placed close 
to respective variables. The measurement data from these instruments can be acquired 

simultaneously by connecting them in a network using RS-485 serial data standard. I 
have designed the FPGA based Floating point arithmetic unit capable to further process

the accumulated data. The Floating-Point Arithmetic unit in my work is the generalized 
superset of all these works. It not only supports the IEEE 754 format while implementing 
all arithmetic operations viz, addition/subtraction, multiplication, division, square root, 
and absolute value of a number but also provides the programming flexibility to the end 
user. Also, I abstract normalization as well as rounding functionality with a choice of all 
four rounding modes: My Floating-Point unit also provides Status register, Control 
register, eight General Purpose registers and a lot more. All this will be discussed in 
subsequent chapters. In essence, the features are taken from Intel Pentium4 [14]. 

1.4 Study Approach 

The approach towards this dissertation is to study, implement and analyze different 

existing algorithms and selects the one which gives the best performance in terms of area 

and latency. 
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Problem Definition 

Behavioral Design 
and Simulation 

Fixed Point 
Partitioning 

Structural VHDL 
Design 

Synthesis 

Map, Place and 
Route on FPGA 

Modify 
Architecture, if 
needed 

Turbine Efficiency 
measurement 

Figure 1.1 Study Approach 

To facilitate the design process, a solid problem definition was defined. 

Problem Definition 

✓ Main aim of this dissertation is to explore some new application areas of FPGA to 

develop independent System on Programmable Chip (SOPC). 
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✓ To develop a FPGA based Floating-Point Arithmetic unit capable of performing 
all arithmetic operations such as addition/subtraction, division, multiplication, square root 
and absolute value of a number. The unit should provide programming functionality to 
the end user. 

✓ To test the system for Turbine Efficiency measurement. 

The Behavioral VHDL modules undergo simulation using Active -HDL Tools to 
provide the level of correctness before the synthesize stage. Synthesize is done using 
Xilinx ISE 7.1 and the design is mapped, placed and routed on the Xilinx FPGA board. 
Timing reports are also generated and changes made to the architecture are back annotated 

to the structural design and synthesized to be placed and routed. Figure 1.1 depicts the 
methods to be used in this research. 

1.5 Organization of Report 

Chapter 2 (Turbine Efficiency measurement) discusses the method used for turbine 
efficiency measurement. Basic elements of hydro power station have also been 
discussed in this chapter. 

Chapter 3 (IEEE 754: Standard for Binary Floating-Point Arithmetic) presents the 
introduction to IEEE 754 standard • for binary floating-point arithmetic. It gives the 
details of basic and extended floating-point number, exception generation and their 

handling, normalization and rounding units. 

Chapter 4 (Hardware Modules of Floating-Point Arithmetic unit) presents the 
architecture and specifications of Floating-point arithmetic unit. Internal hardware 
modules of FPU including their functions and structures are described in detail. The 
simulation and synthesis results of these modules are presented in Chapter 6 and 

Appendix C respectively. 
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Chapter 5 (Designing with FPGAs) gives overview of FPGA which is followed by 
design flow of FPGAs. The chapter also presents the detailed architecture of Xilinx' 
Virtex II Pro FPGA kit (targeted device in this dissertation). 

Chapter 6 (Experimental Results and Verification)  presents the experimental results 
of all subunits and test bench written for turbine efficiency measurement. Software and 
Hardware Environments used during the various phases of dissertation are also 
presented. 

Chapter 7 (Conclusion and Future Work) concludes and suggests the future work 

which can be done in this area. 
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CHAPTER 2 

TURBINE EFFICIENCY MEASUREMENT 

2.1 Turbine efficiency measurement: An application 
Efficiency test on turbine-generator unit in a hydro power station needs 

simultaneous measurement of a number of variables located in different places in the 

station using suitable instruments placed close to respective variables [2]. The 
measurement data from these instruments was acquired simultaneously by connecting 
them in a network using RS-485 serial data standard and was -finally collected in a 
computer for further processing. Now devoting the whole computer or Laptop for 
processing of this data is a costly affair. So I believe that FPGA is best suited for such an 
application as it is reconfigurable, allows parallel processing, cost effective, and offers 

many other advantages. In this thesis, I. have developed a FPGA -based Floating-point 
arithmetic unit for turbine efficiency measurement. This is a system on chip design which 

accepts the real numbers at its input ports, does calculation as programmed by the end 
user, and provides the output at its output port. A successful attempt is made to save 
silicon space and reduce latency. I believe this project will help in saving thousands of 
bucks while providing efficient results. 

I have taken it for granted that these variables are already measured and the 

measurement data from different instruments can be acquired easily. This chapter 
discusses the method employed for the computation of turbine efficiency. Before going 

into the depth of the matter, I would like to discuss elements of hydroelectric system. 

2.2 Elements of Hydroelectric Power Station 
Hydropower plants harness water energy and use simple mechanics to convert 

water energy into electric energy. Hydroelectric systems are actually based on a rather 
simple concept — water flowing through a dam turns a turbine, which turns a generator. 

The basic components of a conventional hydroelectric system are shown in Figure 2.1. 
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Turbine Efficiency Measurement 

• Dam: Most hydropower plants rely on a dam that holds back water, creating a 
large reservoir. 

• Intake: Intake is the highest point of hydroelectric system where the gravity pulls 

the water through the penstock, a pipeline that feeds the turbine, when the gates 
on the dam open. Water builds up pressure as it flows through the pipe. 

Figure 2.1 Elements of Hydroelectric Power Station [50] 

• Penstock: Penstock, the pipeline not only moves the water to the turbine, but is 

also the enclosure that creates head pressure as the vertical drop increases. 

• Turbine: The water strikes and turns the large blades of a turbine, which is 
attached to generator above it by way of a shaft. In essence, the turbine is the 

heart of hydroelectric system, where the water power is converted into rotational 
force that drives generator. For maximum efficiency, turbine should be designed 

to match head and flow of the hydroelectric system. Turbines can be divided into 
two major types: 

Reaction Turbines use runners that operate fully immersed in water, e.g., 

Francis, Propeller, and Kaplan etc. 
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Impulse Turbines use runners that .operate without being immersed in water, 
e.g., Pelton, Turgo etc. 

• Generators: As the turbine blades turn, so do a series of magnets inside the 
generator. Giant magnet rotate the copper coils, producing alternating current 
(AC) by moving electrons. 

• Drive system: Drive system couples the turbine to the generator, which converts 
the rotational energy from the turbine into electricity. 

• Powerhouse: Powerhouse is simply a building that houses turbine, generator and 
other necessary system components. 

• Transformer: The transformer inside the power house takes the AC and converts 
it to higher voltage current. 

• Power Lines: Out of every power plant come four wires: three phases of power 
being produced simultaneously plus a neutral or ground common to all three. 

• Outflow: Used water is carried through pipelines, called tailraces, and reenters 
the river downstream. 

2.3 Method used for Turbine Efficiency measurement 
Determination of turbine efficiency requires measurement of hydraulic power 

input to the turbine and electric power output from the turbine-generator unit, and 
calculation of the ratio of two quantities. 

The hydraulic power input to the turbine, Pi is given by 

Pi = pgHQ 
where, g is the acceleration due to. gravity, m/s2, 

p is the density of water, kg/m3, 

H = H1 — H2 is the net water head, m, 
Hl is water head at inlet, m, 

H2 is water head at outlet, m,  
Q is the water discharge through the turbine, m3/s. 
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The international standard value of g is 9.806 m/s2. However, its actual value at a 
given location is a function of the latitude and altitude of the location. Values of g are 
given in IEC-60041 [3] that shall be used for achieving higher accuracy. 

The density of water is approximately 1000 kg/m3 and it is a function of 
temperature and pressure. Values for density of water, p are given in IEC-60041 [3]. 

There are number of methods available to find the net water head, H and 
discharge, Q. Details of these methods are available in IEC-60041 manual [3]. 

The electrical output from the turbine-generator unit can be measured by using a 
wattmeter. Let the output from turbine-generator unit be represented by Pe. 

The following figure 2.2 gives an idea of the method used to measure turbine 
efficiency. 

Unit efficiency is given by 

Generator _ Output, PQ UnitEfficiency,71,, = 	 X100% 
Hydraulic _Input, P 

Knowing the value of the generator efficiency, qg, the turbine efficiency can be 
calculated by the following relation: 

TurbineE cien 	= Unit - Efficiency,tgg X100% 
~' ~T Generator — Efficiency, 17g 

So efficiency measurement based on the above concepts requires the 
measurement of following parameters: 
1 	Water density, p 
2 	Gravity, g 
3 	Water head at inlet, HI 
4 	Water head ateiitlet, H2 
5 	Discharge, Q 
6 	Generator output, Pe. 

To learn about acquiring the measurement data simultaneously; please refer to [2]. 
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CHAPTER 3 

IEEE 754: 

STANDARD FOR BINARY FLOATING-POINT ARITHMETIC 

Floating Point is a representation of real (fractional) numbers. In this 
representation, the location of the fractional point -can be moved from one position to 
another according to the precision. In the early days of computers, vendors start 

developing their own floating-point representations and methods of calculations. These 
different approaches lead to different results in calculations. So the IEEE organization 

defined in the IEEE-754 standard a representation of the floating point numbers and the 
operations [131. The standard specifies: 

• Basic and extended floating-point number formats 

• Add, subtract, multiply, divide, square root, remainder, and compare operations 

• Conversions between integer and floating-point formats 

• Conversions between different floating-point formats 

• Conversions between basic format floating-point numbers and decimal strings 

• Floating-point exceptions and their handling, including non numbers (NaNs) 

3.1 Formats 
IEEE Floating-point representation divides the number of bits into three groups: 

• Sign bit: The sign bit is as simple as it gets. 0 denotes a positive number; 1 
denotes a negative number. ' Flipping the value of this bit flips the sign of the 

number. 

• The Biased-Exponent part: The exponent is that component of the binary 
floating-point number that normally signifies the integer power to which two is 

raised in determining the value of the represented number. And the biased- 
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exponent is the sum of the exponent and a constant (bias) chosen to make the 
biased-exponent range non-negative. 

Biased-Exponent, e = E + bias 

The range of the unbiased exponent E shall include every integer between two 
values E,, and E„,, inclusive and also two other reserved values E-1 to 
encode ±0 and denormalized numbers, E,,,,,+1 to • encode .±oo and NaNs. The 
foregoing parameters are given in Table 3.1. 

• The Fractional part (also known as mantissa): The field of the significant that 
lies to right of its implied binary point. 

Fraction, f = .blb2...bp_I  

The numbers are of the form (-I)s2E(bo•b1b2...by-1 ) 

where, s =0 or 1; 
E = any integer between Emig  and E,,, ; 
by  =0 or 1; 

The IEEE 754 standard defines five floating-point formats in two groups, basic 
and extended [13]. The basic format is further divided into single-precision with 32-bits 

wide, double-precision with 64-bits wide and quad-precision with 128-bits wide. Then 
there is single-extended precision format and double-extended precision format. 

Extended format is implementation dependent and does concerns my project. The inputs 
to Floating-point unit are single-precision real numbers but internally, all the calculations 
are carried out in double-extended format to enhance the.accuracy of result. 
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Table 3.1 Summary of Format parameters 

Parameter Single 
Single 

Extended Double 
Double 

Extended 
Quad 

Precision 

Total bits 32 2:43 ' 64 2:79 128 
Precision 

bits, p 

24 2:32 53 264 113 

Sign bits, s 1 1 1 1 1 
Fraction 

bits, f 
23 2:32 52 2:64 112 

Exponent 
bits, e 

8 2:11 11 2:15 15 

Emax +127 >+1023 +1023 2+16383 +16383 
Emin -126 <-1022 -1022 <-16382 -16382 

Exponent 
bias 

+127 Unspecified +1023 Unspecified +16383 

3.2 Normalization 
Normalization is the act of shifting the fractional part in order to make the most 

significant bit of the fractional part one. During this shifting, the exponent is incremented. 
In essence normalized numbers have their MSB 1 in the most left bit of the fractional part 
and denormalized numbers are just the opposite of normalized numbers. 

Some operations like addition/subtraction require that the exponent field should 
be same for all operands. In such a case, one of the operand should be denormalized. I 
have done denormalization of the smaller operand. 

Denormalized numbers have important use in some operations and numbers. For 
example, assume minimum exponent of some format is -88, and the number of digits is 3. 
It is required to perform x —y where x = 5.87x10-87 and y = 5.81x10-87. The result of 
this operation is 0.06x10-89 which is too small to be represented as a normalized number. 
If we try to represent it as normalized number, the result becomes zero which is incorrect 
but if it is denormalized we will get the correct result. 
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3.3 Special values 
The IEEE 754 standard supports some special values -viz positive zero, negative 

zero, positive infinity, negative infinity and Not a Number (NaN) as given in Table 3.2. 

Table 3.2 (a) Special values 
Name Exponent Fraction Sign Exp bits Fract bits 

+0 Min —1 =0 + All zeros All zeros 
-0 Min --1 =0 - All zeros All zeros 

Number Min < e < Max Any Any Any . Any 
+oo Max + 1 =0 + All ones All zeros 
-Co Max + 1 =0 - All ones All zeros 

NaN Max + 1 A0 Any All ones Any 

Below is a table with the corresponding values for a given-  representation (single 
precision, in this case) to help better understand the above table. 

Table 3.2 (b) Example: Special values 
Sign Exponent Fraction Value 

0 00000000 00000000000000000000000 +0 
1 00000000 00000000000000000000000 -0 
1 00000000 10000000000000000000000 . -2° 'x0.(2') 
0 00000000 00000000000000000000001 +2" 	x0.(2 	) 
0 10000000 00000000000000000000000 +00 

1 10000000 00000000000000000000000 -0o 

0 10000000 10000000000000000000000 NaN 
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3.4 Exceptions 
There are five types of exceptions that shall be signaled when detected. For each 

type of exception the implementation will provide a bit in the status register that will be 
set on any occurrence of the corresponding exception. The presented implementation of 
Floating-pint arithmetic unit will provide the end user a way to read and write the status 
register. 

3.4.1 Invalid Operation 
The invalid operation exception is signaled if an operand is invalid for the 

operation on to be performed. The invalid operations are: 

• Any operation on a NaN 

• Addition or subtraction: oo + (-oo) 

• Multiplication: ±0 x ± co 

• Division: ±0/ ± 0 or ± oo/ ± oo 

• Square root: if the operand is less than zero 

3.4.2 Division by zero 
If the divisor is zero and the dividend is a finite nonzero number, then the division 

by zero exception shall be signaled. The result will be correctly signed co. 

3.4.3 Overflow 
The overflow exception is signaled whenever the result exceeds the maximum 

value that can be represented due to the restricted exponent range. It is not signaled when 

one of the operands is infinity, because infinity arithmetic is always exact. Division by 
zero also doesn't trigger this exception. 

3.4.4 Underflow 
Two events cause the underflow exception to be signaled, tininess and loss of 

accuracy. Tininess is detected after or before rounding when a result lies between ±2". 
Loss of accuracy is detected when the result is simply inexact or only when a 
denormalization loss occurs. The implemented FPU core signals an underflow exception 
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whenever tininess or denormalization loss is detected after rounding and at the same time 
the result is inexact. 

3.4.5 Inexact 
This exception will be signaled whenever the result of an arithmetic operation is 

not exact due to the restricted exponent and/or precision range. 

3.5 Rounding Modes 
Rounding takes a number regarded as infinitely precise and, if necessary, modifies 

it to fit in the destination's format. To increase the precision of the result and to make best 
use of rounding modes, all the internal calculations are carried out in double-extended 
format The IEEE 754 standard specifies four rounding modes and my FPU supports all 
these rounding modes: 

3.5.1 Round to nearest number 
This is the standard default rounding. The value is rounded up or down to the 

nearest infinitely precise result. If the value is.  exactly halfway between two infinitely 
precise results, then it should be rounded up to the nearest infinitely precise number. 
e.g., 3.4 will be rounded to 3.0 and 3.5 to 4.0. 

3.5.2 Round-to-Zero 

Basically in this mode the number will not be rounded. The excess bits will 
simply get truncated, e.g. 3.47 will be truncated to 3.4. 

3.5.3 Round-Up 
The number will be rounded up towards +ao, e.g. 3.2 will be rounded to 4.0, while 

-3.2 to -3. 

3.5.4 Round-Down 
The opposite of round-up, the number will be rounded up towards -oo, e.g. 3.2 will 

be rounded to 3.0, while -3.2 to -4. 
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CHAPTER 4 

HARDWARE MODULES OF 
FLOATING-POINT ARITHMETIC UNIT 

This chapter presents the architecture and specifications of Floating-point 

arithmetic unit. Internal hardware modules of FPU including their functions and 

structures are described in detail. 

4.1 Architecture of Floating-point Arithmetic unit 

FLOATING-POI 7T 	'i'dC T T 

32 

data ®U 

dais frame a t 

stylus word 
co Irol_word 
taword 

zeta flag 
.inva1i4Ja 

stark oveer ow 
mark. unc ow 

iaic_ove~flow 
amelic undeiflow 
4ivid _byjero 

A4. 	DE DDR 

i 
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_ __ 	chip sel~cf' 

clk 

Figure 4.1 (a) Architecture of Floating-point arithmetic unit 
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Inside of execution unit is as shown below in Figure 4.1 (b). 
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Figure 4.1 (b) Execution unit 
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4.1.1 FPU interfaces 
The following table gives the description of the interfaces of floating-point 

arithmetic unit. 

Table 4.1 FPU interface 
Name Direction Size Description 

data_int in Input [31:0] Integer part of real number given to FPU. Its 

MSB is taken to find the sign of this number. 
data_fract in Input [31:0] Fractional part of real number given to FPU. 

A Input [7:0] Address bus predicts which operation is to be 

performed and on which register. 
clk Input 1 Clock (-eve edge trigger) 

reset Input 1 Reset all data to zero. 
data int out Output [31:0] Integer part of real number given to FPU. Its 

MSB is taken to find the sign of this number 
data_fract out Output [31:0] Integer part of real number given to FPU. Its 

MSB is taken to find the sign of this number 
Status_word -Output [15:0] Gives the status of FPU 

Control_word Output [15:0] Controls the rounding method used and 
masks the exceptions. 

Tag_word Output [15:0] Gives information about validity of data in 
register stack. 

Zero_flag Output 1 Tells whether the data is zero 
invalid_flag Output 1 Tells whether the data is invalid 
infinity_flag Output 1 Tells whether the data is invalid 

stack overflow Output 1 Tells if the stack is full 
stack_underflow Output 1 Tells if the stack is empty 

numeric_overflow Output 1 Tells whether result of some operation has 
crossed the maximum limit 

numeric_underflow Output 1 Tells whether result of some operation has 
gone below the minimum limit 

divide_by_zero Output 1 Tells whether division by zero is attempted 
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4.1.2 Specifications 
Following are the system specifications of Floating-Point Arithmetic unit which 

were keeping in mind while designing: 
➢ The core should be complaint with the IEEE-754 standard. 
➢ Although the core is an execution unit, it should work in the stand alone mode. 
> The FPU works has storage registers and the result data or intermediate results can be 

stored in that. No need for CPU (works in stand alone mode) 
> The end user will issue instructions to FPU. 

➢ The core should provide the status of FPU.'  
> The core should provide the functionality to mask the exceptions as described in 

IEEE 754 standard and control the rounding modes. 
> One instruction is executed at a time. 

➢ The user should have ability to read all interfaces. 

4.2 Data Registers 
Data registers incorporated in Floating-point unit is similar to that of x87 FPU 

data registers in Intel processor. It consists of eight 80-bit registers. Values are stored in 
these registers in the double-extended precision floating-point format (IEEE 754 

standard) [13]. 
On execution of Load instruction, the single precision number from memory or 

external world is loaded into data register. Here, the value is automatically converted into 
double-extended precision format. Similarly, on execution of Store instruction, the 
double-extended precision number (content of data register) is converted into single 

precision format and transferred back into memory or external world. 
The FPU instructions treat the• eight data register as a register stack. All 

addressing of the data registers is relative to the register on the top of the stack. The 
register number of the current top-of-stack is stored in the TOP (stack TOP) field in the.  
FPU status word. Load operations decrement TOP by one and load a value into the new 
top-of-stack register, and store operations store the value from the current TOP register in 

memory (or external world) and then increment TOP by one. 
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Figure 4.2 Data register stack 

If a load operation is performed when TOP is at bottom of the stack (i.e. at 0), 
register wraparound occurs and the new value of TOP is set to 7. The floating-point 
stack-overflow exception (see exception generation unit 4.13) indicates when 
wraparound might cause an unsaved value to be overwritten. Internally, assembler 
supports register addressing mode to operate on the top of the stack, using the expression 
RO to represent the current stack top and Ri to specify the ith register from the TOP in 
the stack (0 <= i <=7) . For example, if TOP contains 010B (assume, register 2 in the top 
of the stack), the following instruction would multiply the contents of two registers in the 

stack (register 2 and 6): 

FMUL ST(4); 

4.3 Control Register 
The 16 bit FPU control word (see Figure 4.3) controls the rounding method used. 

It also contains the exception mask bits. The contents of this register can be loaded with 

the load control word instruction. 
When the FPU is initialized with the either an initialization instruction or upon 

reset the control word is set to OCOOH which unmask all floating-point exceptions and 

sets rounding to nearest. 
The exception flag mask bits (bit 0 through 4 of the control word) mask the five 

floating point exception in the FPU status word. When one of these mask bits is set, its 

corresponding exception is blocked from being generated. 
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The bits 10 and 11 of the control register controls how the results of FPU are 
rounded. Rounding control is designed as per IEEE 754 standard [13]. 

Rounding. Control 

15-  
RC 

Exception Masks 

Underflow 
Overflow 
Zero 
Denorrnali ed 
operand 
Invalid operation 

Figure 4.3 Control register 

4.4 Status Register 
The 16-bit FPU status register (see Figure 4.4) indicates the current state of the 

FPU. The flags in the status register include the busy flag, top-of-stack (TOP) pointer, 
condition code flags, stack fault flag, and exception flags. The FPU sets the flags in this 
register to show the results of operations. The contents of the status register can be stored 
in memory or external world using the FRSW instruction. 

• Busy Flag: Indicates FPU is busy i.e. executing an instruction. 

• Top of Stack (TOP) Pointer: A pointer to the FPU data register that is currently 
at the top of the register stack is contained in bits 11 through 13 of the FPU status 
word. This pointer, which is commonly referred to as TOP (for top-of-stack), is a 
binary value from 0 to 7. 

• Condition Code Flags: It consist of zero flag, infinity flag, and sign flag for 
indicating different conditions after executing asked operation. 

• FPU Exception Flags: The four exception, flags (bits 0 and 2 through 4) of the 
FPU status word indicate that one or more have been detected since the bits were 
last cleared. The individual exception flags (IE, ZE, OE and UE) are described in 
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detail in Section 4.13. Each of the exception flags can be masked by an exception 
mask bit in the FPU control word. 

• Stack Fault: The stack fault flags (bit 6 and 7 of the status register) indicate that 
stack overflow and stack underflow has occurred with data in the data register 
stack. 

15 
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Figure 4.4 Status register 

4.5 Tag Register 
The 16-bit Tag register gives the information about validity of contents of FPU 

data register stack (one 2-bit tag per register). The tag indicates whether a register 

contains a valid number, zero or a special floating number (NaN, infinity), or whether it 
is empty [14]. On reset, FPU tag word is set to FFFFH, which marks all the FPP data 
register as empty. Each tag in the tag word corresponds to a physical register (number 0 

to 7). 
Instruction FADD, FSUB, FMUL, FDIV, FSQRT, FABS use this tag information 

to check the content of data register before performing their operations, this assist FPU 
to prevent from performing complex operation and allows save clock cycles. 
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Figure 4.5 Tag Register 

Tag in the tag word changes only when the write operation is performed on the 
FPU data registers. Tag word marks empty the appropriate tag (top of stack) after read 

operation. End user cannot directly load or modify the tags in the tag register. 

4.6 Decode unit 

A7 6 AsA2A1 

Don't 	Instruction Register numberwith 
care 	opcode 	reference to top-of-stack 

Figure 4.6 address lines to decoder 

The address bus consists of eight address lines. These address lines are distributed 

as shown below in Figure 4.6. 
The instruction decoder logic is 4:16 lines i.e. input to the decoder is 4 address 

lines (A6A5A4A3) and output from the decoder is 16 1-bit signal. Each of the lines either 
activate or deactivate chip select signal. At a time, only one chip is activated. The 
remaining address lines (A2A1A0) identifies the register number with reference to top-of-
stack for arithmetic operations. 

For example, 
FMUL ST(3) 
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Assuming that top-of-stack is ST(2). 

The opcode for this operation is 00100011 

where, 3-LSB bits i.e. 011 represents ST(3) and next four bits i.e. 0100 represents 
multiplication bit. MSB does not have any meaning, that is don't care. 

4.7 Precision converter 

4.7.1 Conversion of Single precision to Extended-Double precision 
The input number format is in accordance to the IEEE 754 standard single 

precision real number, and to enhance the accuracy of FPU result, internally the floating-

point calculations are carried out in IEEE-754 standard extended-double precision 
format. 

Algorithm 
The Algorithm to convert single precision number to extended-double precision 

format is as follows: 

Step 1: Place 31st  bit (sign bit) of single precision to 79th  of extended-double 
precision. 

Step 2: Set the 63Fd  bit of extended-double precision to 1 (normalizing). 
Step 3: Add 16383 -127 = 16256 to exponent field of single precision and place it 
in the exponent field of extended-double precision. 

Step 4: Place 23 bits of mantissa part'7.,of single precision to MSB 23 bits of 

mantissa part of extended-double precision. Place the trailing zeros in the mantissa 
part of extended-double precision. 

4.7.2 Conversion of Extended Double precision to Single precision 
The output number is single precision floating-point format and as discussed in 

the previous section, the internal calculations are carried out in extended double precision 

format. Hence, the reverse conversion is also necessary. The conversion from extended-

double precision of single precision is a trivial task. Here we need to consider the 
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rounding mode of the mantissa part of number and overflow and underflow of the 

exponent part of the number. 

Algorithm 

The Algorithm to convert extended-double number to single precision format is as 

follows: 
Step 1: If the extended-double precision number corresponds to zero, NaN or 

infinite, replace with corresponding format of zero, NaN and infinite in single 

precision. 
Step 2: If the number is valid number, subtract 16256 from the exponent field of 

extended-double precision and place it into exponent field of single precision. In case 

of overflow, place infinite number into single precision. In case of underflow, place 

zero number into single precision. 

Step 3: Place MSB 22 bits of mantissa field of extended-double precision in the 

MSB 22bits of mantissa field of single precision. 23rd  bit of mantissa field of single 

precision depends on the selected rounding mode. 

Step 4: 	Place `0' in 231d  bit of mantissa field of single precision if the selected 

rounding mode is round to down. Place `1' in 23rd  bit of mantissa field of single 

precision if the selected rounding mode is round to up. Place 40th  bit of extended-

double precision into 23' bit of mantissa field of single precision if the selected 

rounding mode is round to zero. Place 39 h̀  bit of extended-double into 23rd  bit of 

mantissa field of single precision if the selected rounding mode is round to nearest. 

4.8 Addition/Subtraction unit 

In this section, we will discuss the floating-point addition algorithm architecture 
and the hardware modules designed as part of this algorithm including their function, 

structure and use. The 80-bit FP adder/subtractor has a latency of 18 clock cycles (see 

simulation result in Figure 6.7). 
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4.8.1 Use of Tag word 
The two operands are checked for their validity using tag word. If the Tag word 

for any operand contains any value other than 00, one of the following operations will be 
performed: 

• If tag word for any operand is 01 or 11, the result is replaced with other number as 
these tag words represent zero and empty registers. 

• If tag word for any operand is 10, the result is replaced with infinity as these tag 
words represent that infinity is contained in the corresponding register. 

In above cases, the clock cycles consumed are 7. Thereby, tag register helps in 
saving the clock cycles and reduce latency. 

4.8.2 Algorithm 
Let Si; El; F1 and S2; E2; F2 be the signs, exponents, and mantissas of two input 

floating-point operands. Given these two numbers, Figure 4.6 shows the flowchart of the 
floating-point adder. algorithm. A description of the algorithm is as follows. 

Stage 1: Unpacking Operands 
- The two sign, exponent and mantissa bits for operand A and operand B are 

latched in registers which are 1-bit, 15-bits, and 64-bits in length. The inputs are checked 
for special values: Infinity, Not a Number and, Zero and the appropriate flags are set 

which is passed on through all stages. 

Stage 2: Exponent Difference Module 
The second stage in the adder uses comparator logic to place the larger of the two 

operands as operand A. The combinational VHDL process compares the exponents. If the 
exponents are equal, the logic then compares the mantissa values. The comparator is left 

to the synthesis tool. Sign bits of the two operands are XOR'ed. Sign bits do not affect the 

comparison. 
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Stage 3: Shift Mantissa Stage 
In order to add two floating-point values in scientific notation, the two values 

must have the same exponent in both sign and magnitude. The adder must perform this 

operation by shifting one of the operands and making adjustments to the operand 

exponent value. Stage 2 has taken the difference of the two operand exponents to 

determine how many shifts are needed on operand B . and accordingly exponent of 

operand b is adjusted. By shifting to the right, the operand stands to lose only lower 

significant bits. The maximum number of shifts needed is 64. 

Stage 4: Mantissa Addition Stage 
In this stage, the additiontsubtraction of the two mantissa integer values is 

performed in accordance with the sign bits. Note that since operand A is greater than 

operand B, a borrow cannot happen in subtraction, and thus, the carry-out bit of the result 

is cleared. The carry-out bit becomes important in the next stage which may indicate the 

result needs no further normalization or exponent adjustment. If an addition took place 

with a carry-out, an immediate adjustment to the exponent must be done prior to the 

normalization stage since the bit does not take part in the 64-bit mantissa result vector. To 

do so, the stage must shift the result vector to the right by one to accommodate the carry-

out bit as the new leading-one. 

Different fixed-point adders are studied to determine which gives the best 

performance. The different kinds of integer adder used for comparative study are 

1. Ripple Carry adder, 

2. Carry Lookahead adder, 

3. Carry Select adder and 

4. Carry Save adder. 

All adders are implemented at the logic-level and the working of each adder is 

explained in Section 4.8.3. The exponent and sign bits are stored in delay registers. 
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Figure 4.6 Addition/Subtraction algorithm 

Stage 5 and Stage 6: Leading One Detector and Normalization Shift stage 
After the addition, the next step is to normalize the result. The first step is 

to identify the leading or first one in the result [25] [35] [36]. Comparator logic is used 
here to find the first leading-one digit from the MSB. A counter maintains the number of 
comparisons made which is the equal to the number of shifts needed. The shift value is 
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used to normalize the mantissa such that the leading-one in the mantissa resides in the 
most significant bit location. This stage also uses the shift value to adjust the exponent to 
the number of shifts required. Shifter in this stage is left to the synthesis tool. 

Stage 7: Pack operands 
Finally sign, exponent and mantissa are concatenated to form the 80-bits results 

and passed as an output from the FPU. The special condition flags are checked and if any 
of the flags are set high, then the result vary accordingly. The result is stored back in a 

80-bit register. 

4.8.3 Different types of integer adders and their comparative study 
Different fixed-point adders are studied to determine which gives the best 

performance. Each adder chosen in this study has its own advantage of either having a 
simple design or high speed [29]. After a careful analysis, Block Carry Look Ahead adder 

is chosen for FPU design. 

1 Ripple Carry Adder 

The implementation of a ripple carry adder for two operands x1,_1, x„-Z, ..., xo and 

yR-i,  yn-2, • • •, yo is through the use of n basic units of full adder. A full adder (FA) is a 

logical circuit that accepts two operand bits, say xi  and yl  and an incoming carry, denoted 

by C1. The outgoing carry, C1+1 is also the incoming carry for the subsequent FA, which 

has xi+1 and yi+l  as input bits. The FA is a combinatorial digital circuit implementing the 

binary addition of three bits through the following Boolean equations: 

A RCA consisting of FA's for n = 4 is depicted in following figure. In parallel 

arithmetic unit, all 2n input bits (xi  and yi) are usually available to the adder in the same 

time. However, the carries have to propagate from the FA in the position 0 (the position 
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of the FA whose inputs are xo and yo ) to position i in order for the FA in that position to 

produce the correct sum and carry-out bits. That is, we need to wait until the carries 

ripple through all n FAs before we can claim the sum outputs are correct. 

B3  A3 	B.. 	Bi AT  B6,Ao. 

Co 

C4 	S3 	 $2 	 Si 	 ' p 
Figure 4.7 Ripple Carry Adder 

The FA in position i has a combinatorial circuit with an incoming carry cE  = 0 at 

the beginning of the operation, and will accordingly produce a bit si. Ripple effect can be 

observed at the sum outputs of the adder as well, continuing until the carry propagation is. 

done. The incoming carry in at position 0, co, is always zero. 

Disadvantage: 
The obvious disadvantage of a RCA is the long carry propagation time. The worst 

case delay for a RCA is n. Td, where n is the number of bits and Td  is the operation time 

(delay) of an FA, assuming that the delays associated with generating the sum output and 
the carry-out are equal. 

Advantage: 
The advantage of this adder is the simplicity of the design and area occupied by 

the adder which is not very high. 
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2 Carry-Look-Ahead Adders 
The main idea behind carry-look-ahead addition is an attempt to generate all 

incoming carries in parallel (for all n-1 high order FAs) and avoid the need to wait until 

the correct carry propagates from the stage (FA) of the adder where it has been generated. 
This is possible since the carries generated and the way they propagate depend only on 

the digits of the original numbers xn_ j, xn_2, .. •, xo. and Yn-1, Yn-2, •..,  yo. These digits are 
available simultaneously to all stages of the adder and consequently each stage can have 
all the information it needs in order to calculate the correct value of the incoming carry 

and compute the sum bit accordingly. This leads to large inputs which may be reduced at 
each stage by extracting the information from the input digits needed to determine 
whether new carries will be generated and whether they will be propagated. 

There are stages in the adder where xi = y = 1, in which a carry-out is generated 

regardless of the incoming carry, and as a result, no additional information on the 
previous input digits is required. Other stages are only capable of propagating the 

mcoming carry. 
Following logic functions are defined to assimilate the information regarding 

generation and propagation of carries, using logic functions OR and AND operation. Let 

Gi = xt • yi denote the generated carry and let PI = x• + yj denote the propagated carry. 

Hence the boolean expression for carry out is: 

Replacing c1 = G_I + ci_1P1_I in the above expression 

Further substitutions allows us to calculate all the carries in parallel from the 

original digits x,~_l, xn_2, ..., x0 and y,-1, Yn-2, • • •, Yo and forced carry co. For example, for 

a 4-bit adder, the carries are 

ci 	Go+coFb. 
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C2 = O fir` G0 	„co,Po  

The following figure depicts the working of 4-bit CLA. 

More generally for anyj with i < f, j + 1 <k, we have the recursive relations 

Ck I..I a G.k +.1 kc2 

The above equation says that carry is generated out of the block consisting of bits 

i through j inclusive if it is generated in the high-order part of the block (j+1, k) or if it is 

generated in the low-order part of the block (i, j) and then propagated through the high 

part. 

Advantage: 

The bits in a CLA must pass through about log2n logic levels, compared with 2n 

for a ripple-carry adder. This is a substantial speed improvement, especially for a large n. 

Disadvantage: 

Comparing area, ripple carry adder had n cells, whereas the CLA has 2n cells. 

The point is that a small investment in size pays off in a dramatic improvement in 
speed. 
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B3 ,12 -Bi `8O. 	A3 A2 A ` AD. 

53 S2 	SI SO 

Figure 4.8 Carry Look Ahead Adder 

3 . Carry Select Adders 

Carry select adder is another fast adder that provides a logarithmic speed-up [27]. 

The principle behind this scheme is to generate two sets of outputs for a given group of 

operand bits, say k bits. 
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AO-  A3 -BO,-B3, 	A4-A'7 B4-B7 	A8-All 

Prop: 	i} ,.. 	Fop 	 Frog 
4;bits. 	 4 bids: 	 41n c 

(carry-Beet):. 	 ferry-select}' 

SQ=S3; •S4-S7 	 : SR-S1I 

Figure 4.9 Carry Select Adders 

Each set includes k sum bits and an outgoing carry. One set assumes that 

eventually incoming carry will be zero, while the other assumes that it will be one. Once 
the incoming carry is known, we need only to select the correct set of outputs (out of the 

two sets) without waiting for the carry to further propagate through the k positions. 

This idea should not be applied to all n operand bits at the beginning of the add 

operation, since we will then have to wait until the carry propagates through all n 
positions before making the selection. Therefore the above idea has to be applied after 

given n bits is divided into smaller groups. This allows serial carry-propagation inside the 

individual groups to be performed in parallel which reduces the overall execution time. 
Each group generates two sets of sum bits and an outgoing carry bit. The incoming carry 

selects one of these two sets. The working of a 12-bit CSA is shown in above figure. 

Comparison with previous two adders: 
In general CSAs require more gates than CLAs and CSA have almost the same 

speed as CLA. The design of CSA is however less modular than CLA and this is the main 

reason for higher popularity of CLA. The delay of CSA is proportional to 'r  , which is 
lesser than the delay for RCAs but greater than CLAs. 

4 Block Carry-Look-Ahead Adder 
As we discussed earlier in this section, CLA needs an extremely large number of 

gates and more importantly, gates with high fan-in are required. This can be compensated 
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by reducing the span of the look-ahead at the expense of speed. For this, we have to 
divide the n stages into groups and have a separate carry lookahead in each group. 

The groups can be interconnected by the ripple carry method. By dividing the 
adders into 'equal sized groups, modularity increases. A group size of 4 is chosen, as it is 
a common factor of most word sizes, and also - because of technology dependent 
constraints ( example, the available number of input/output pins). 

For n bits and groups of size 4, there are n14 groups. To  propagate a carry through 

a group once the Pi's, Gl's and Co  are available, we need 2TG  time units. Thus, 1TG  is 

needed to generate all Pj  and G and 2TG  is needed to generate the sum outputs, for a 

total of 

This is almost fourfold reduction in delay compared to the 2nTG  of a ripple carry 

adder. Group-generated carry, G* and a group-propagated carry, P, for a group of size 4 

are as follows: 

G* = 1 if a carry-out is generated internally and P = 1 if a carry-in is 

propagated internally to produce a carry-out. The Boolean equations for these carries are 

:G 	021' +' 	' P s  - GUPLP2F3-:' 

The group-generated and group-propagated carries for several groups can now be 
used to generate carry-ins in a manner similar to single-bit carry-ins in above equation. A 
combinatorial circuit implementing these equations is called a carry look-ahead 

generator. As the number of bits, n, increases, More levels of carry lookahead generators 

can be added in order to speed up the addition. The overall addition time of a carry 

lookahead adder is therefore proportional to login, where b is the blocking factor. 

All the above integer adder units were simulated and tested to meet the desired 
specifications. Based on the simulation results, I selected Block Carry Look Ahead adder 
because of its high speed and area efficient characteristics. 
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4.9 Multiplication unit 
The second basic arithmetic operation needed to perform FPU operations in this 

thesis is the multiplication. Constructing a fast multiplier in an FPGA presents a challenge 
due to the shear amount of logic required. Traditional integer multiplier has been studied 
and number of stages has been modified to give the best performance and area. 

According to [16], floating-point multiplication is inherently, easier to design than 
floating-point addition. Multiplication requires integer addition of operand exponents and 

integer multiplication of significands which facilitate normalization when multiplying 
normalized significands. These independent operations within a multiplier make it ideal 
for pipelining. 

The fixed point multipliers used in multiply mantissa stage can be non-pipelined, 
partially pipelined or fully pipelined. In this thesis, study of pipelined and non-pipelined 
fixed point multipliers has been done. The pipeline latency remains the only drawback 

which is not a concern in this study as the FPU is receives operands every clock cycle. By 
using a pipelined multiplier, the resource consumption not only decreases but the speed 
actually increase. 

4.9.1 Use of Tag word 
The two operands are checked for their validity using tag word. If the Tag. word 

for any operand contains any value other than 00, one of the following operations will be 
performed: 

• If tag word for any operand is 01, the result is replaced with zero as this tag word 
represent zero in the corresponding register. 

• If tag word for any operand is 11, the result is replaced with another operand as 
this tag word represents empty registers. 

• If tag word for any operand is 10, the result is replaced with infinity as these tag 
words represent that infinity is contained in the corresponding register. 

In above cases, the clock cycles consumed are 7. This allows save clock cycles in 
certain case. 
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4.9.1 Algorithm 
The following section describes the different stages of floating point 

multiplication algorithm. The 80-bit FP multiplier has a latency of e! clock cycles. All 
symbols have usual meaning. 

stye I 	 UNPACK OPERANDS 

Ml 	 ~I Z 
Stage 2 	 XOR. 	 ADDER 

BI4 
S_OUT 	 TRACT 	 OUT 

Stage 3 Ii I EI3. POINT 
DIVIDER 

E_4[IT S_QUT BIAS 	M OUT 

Stage  EXPONENT [ NRIALIZER 
ADJUST 

S OUT M_OIJT 
-- ~ ALIT 

stage 5 PACK OPERANDS I  

Figure 4.10 Multiplication Algorithm 

Stage 1: Unpacking Operands 
The two sign, exponent and mantissa bits for operand A and operand B are 

latched in registers which are 1-bit, 15-bits, and 64-bits in length. The inputs are checked 
for special values: Infinity, Not a Number and Zero and the appropriate flags are set 
which is passed on through all stages. 

Stage 2: Calculate exponent and sign 
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The exponents of operand A and operand B are added together and the bias is 
subtracted from the result which gives the resultant biased exponent. The sign bits of the 
two operands are XOR'ed to give the resultant sign bit. The sign and exponent output are 
passed on through all stages. 

Stage 3: Multiply mantissa 
The mantissa fields of operand A and operand B are multiplied. The output of the 

fixed-point multiplier is double the mantissa length. 

The different kinds of fixed-point multipliers used for comparative study are 
1. Shift-Add multiplier, 
2. Booth multiplier 

All multipliers are implemented at the logic-level and the working of each adder 

is explained in Section 4.9.3. The exponent and sign bits are stored in delay registers. 

Stage 4: Normalization Shift stage 
After the multiplication, the next step is to normalize the result. The first step is to 

identify the leading or first one in the result. In multiplication, leading one is either 

available at MSB or next to MSB. Comparator logic is used here to find the first leading-
one digit from the MSB. The shifting is used to normalize the mantissa such that the 

leading-one in the mantissa resides in the mostsignificant bit location and accordingly 
the exponent is adjusted. The upper 64 bits of the result are retained as mantissa. 

Stage 5: Pack operands 
Finally sign, exponent and mantissa are concatenated to form the 80-bits results 

and passed as an output from the FPU. The special condition flags are checked and if any 
of the flags are set high, then the result vary accordingly. The result is stored back in a 

64-bit register. 
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4.9.3 Different types of integer multipliers and their comparative study 
Different fixed point multipliers are studied to finalize the fixed-point multiplier 

which gives the best performance in terms of area and delay. On the basis of simulation 
results, obtained using Active HDL 6.1, Booth's algorithm is found to be the best suitable 
algorithm available for my FPU design. High speed multipliers can be classified as 
parallel, sequential and array multipliers. The first generates all partial products in parallel 
and uses a high-speed adder to accumulate them, whereas the second generates the partial 

products sequentially and adds them together. Array multipliers are made up of identical 
cells that generate new partial products and accumulate them simultaneously. After a vast 
study of previous work the following multipliers are studied which either have reduced 

execution time or less hardware complexity. 
1. Shift add multiplier (SA) 

2. Booth multiplier 

Multiplications are essentially a series of additions. The different integer multiplier 
discussed deals with two main operations: generating partial products and different ways of 
adding partial products. There are different methods to encode the multiplicand which can 
mainly be classified as non-booth and booth encoding. Hence two an adder from each 
category has been chosen for this study being Shift-Add multiplier and Booth multiplier. 

How to speed up the addition/subtraction? 
There are two ways that the additions can be speeded up: 

1. Speeding up each addition. 
To speed the addition the one of the fast adders which has already been studied can 

be used. 

2. Reducing the number of additions required. 
The number of additions can be reduced in two ways. One is to shift over strings 

of 0's and 1's without doing any addition and the other is to scan two or more multiplier 
digits each cycle and hence add larger multiples of the multiplicand in each cycle. After the 
partial products are produced they can be added using a fast adder like carry save adder. 
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1 Shift Add Multiplier 
The first and simplest method for encoding is non-Booth. This algorithm is 

simply a'shift and add algorithm where the multiplicand is conditionally added to produce 
the final result. Shift-add multiplier uses the concept of an array multiplier which is 
described in detail in this section. An array multiplier is constructed by an array of 

identical elementary processor units, each of which processes single-bit data. The basic 
unit usually consists of a partial-product bit generator and a full adder. A new partial-
product bit is generated and added to the previous accumulated partial product in one cell 
[37]. 

To illustrate the operation of a shift-add multiplier, consider a 4 x 4 

multiplication shown in following figure, which contains all 16 partial-product bits 
in the form of X,YJ. The array adds the first two levels of partial product bits e.g. 
X3Yo to XoYo and X3Y1 to XoYI together in the second row of array (first row of the 
array adds the partial products from previous stage and the first level of partial 

product bits together if it is in multiple length multiplication) after proper 

alignment. The results of the second row are then transferred to the third row and 

added to the third level of partial product bits X3Y2 to XOY2, and so on. All additions are 
done using a Block Carry lookahead adder. 

3 	 x1 :  Na' 
3 Y2 Yl YO 

	

XY3 	Y: 
{ 

S7 	S6 	S5 	S4: 	S3 	S2 	$1 	S0 

The block diagram of the basic processor cell and the 4 x 4 array multiplier is 

depicted in following figure 4.11. 
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Figure°4.1.1 (b)-  Shift :Add Multiply 
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Advantages: 

The simple and regular structure of the shift-add multiplier makes the design 

and layout processes easy and suitable for automatic generation. 

Disadvantages: 

It requires a large amount of silicon area and the speed is low since the delay 

depends on the depth of the array. It is also inefficient because as the number 

propagates through the array, each row of the processor units is used only once. 

Unfortunately, there is no reduction in the number of multiplicands that need to be 
summed to produce the final result. Although it is easy to pipeline which 

increases the throughput and utilization greatly, the additional latches needed 
increase both the hardware and latency. 

2 Booth algorithm for multiplication 

The high-level block diagram of the multiplier is shown in figure 4.12. It consists 
of four distinct components. They are the Booth Encoder, Partial Product Generator, 
Carry Save adder, and the Carry Lookahead adder. 

64 
	

.64 

nlod+t`y 	 oo c t 
Generator ene€ t r 	ys 	 X32 

3X32. 

Tre 

64 f +GLA A ldei ` 	I 

Figure 4.12 Architecture of the Booth multiplier 
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There are two main techniques that can be used to increase the speed of the 
multiplication process [29]. First technique is to reduce the number of partial product 
and the second is to increase the speed at which the partial products, are added. The 
proposed architecture employs both of these techniques in the design. The individual 
components are shown and explained in detail below. 

a) Booth encounter 
This module encodes the 64-bit multiplier using radix 4 Booth's algorithm. Radix 

4 encoding reduces the total number of multiplier digits by a factor of two, which means 

in this case the number of multiplier digits will reduce from 64 to 32. 

Table 4.2 Booth Multiplication 

"i11uItir ,Bits Output bits =Operation on 
;. 

<f. 

Multiplicand licand NEC"= 2 1, 

gip : 1 = 0 0 1> •i l x 

f  1 -1. 0 1. 0 -} 2x 1 
00 1: 1 0 -2x 

1 0 1 1 01' =1x: 

=1 1 1, 000x  

This algorithm groups the original multiplier into groups of three consecutive 
digits where the outermost digit in each group is shared with the outermost digit of the 
adjacent group. Each of these groups of three binary digits then corresponds to one of the 
numbers from the set {2, 1, 0, -1, -2). Each encoder produces a 3-bit output where the 

first bit represents the number 1 and the second bit represents the number 2.,  The third 
and final bit indicates whether the number in the first or second bit is negative. Since 
there are 64 input bits, there will be a total of 32 Booth encoder modules in the overall 
multiplier architecture. The way the outputs are determined is shown in Table 4.2. 
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b) Partial Product Generation(PPG) 
The output from the Booth encoder is used in this module to generate the partial 

products. Since there are 32 Booth encoders there will be a total of 32 partial products. 
The multiplication by two is implemented by shifting the multiplicand left one bit and the 
negation is implemented by taking the two's complement of the multiplicand. The 
architecture of the partial product generator (for a 16-bit number) is shown in Figure4.13. 

Figure 4.13 Partial Product Generation 

Each row of the diagram corresponds to one partial product. Even though the 
diagram does not show it, there are eight such rows corresponding to eighty partial 
products. Also, each partial product is shifted two bits .to the left relative to the partial 

product above it to account for the radix 4 Booth encoding of the multiplier. 

c) Wallace Tree 
This module is responsible for adding the partial products that were generated in 

the PPG module. This module uses 3 to 2 carry save adders (CSA) to implement the 
Wallace Tree. The individual CSAs are nothing more than full adders except for the 
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fact that the carry-ins and the carry-outs are handled in a special way. Each column of 
numbers in the partial product is added using this method. Figure 4.14 below shows 
how this method works for adding 8 bits. The carry-outs generated in each stage of 
addition are transferred to the Wallace Tree of the column of bits of partial products on 
the left and the carry-ins comes from the column to the right. 

Figure 4.14 Wallace Tree 

The advantage of using a Wallace Tree structure for addition is that for adding 
eight bits the result is available only after four full adder delays. If the same addition 
were to be performed using a ripple carry adder, it would have required seven full adder 
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delays. Therefore, although the structure of the adder might be a little complicated, it 
greatly increases the speed of addition. 

d) Carry Lookahead adder 
This unit is used to add the final sum and carry vectors generated by the Wallace 

Trees for each column of bits from the partial products. Only a 64 bit CLA is needed, 
instead of full 128 bits, because some of the bits of the final result are already available 
from the Wallace Trees. 

4.10 Division unit 
Division is the most time-consuming and infrequent operation amongst the 

arithmetic operations. Many algorithms have been developed for implementing division in 
hardware. These algorithms differ in many aspects, including quotient convergence rate, 
fundamental hardware primitives, and mathematical formulations. Division algorithms are 
divided into classes based upon the differences in the hardware operations used in their 

implementations, such as multiplication, subtraction, and table look-up. 
Division algorithms can be divided into five classes: digit recurrence, functional 

iteration, very high radix, table look-up, and variable latency. In this work, I have 
considered three algorithms which are simulated using Active HDL 6.1. Of these digit-
recurrence division algorithm is chosen for my design because of its low latency. 
Performance of the divider is very important in this study as the output of the divider 

shall be the input to the multiplier/subtracter or some other unit of FPU [23]. The 80-bit 

floating point divider has a latency of 18 clock cycles. 

4.10.1 Use of Tag word 
The two operands are checked for their validity using tag word. If the Tag word' 

for any operand contains any value other than 00, one of the following operations will be 

performed: 

• If tag word for divider is 01, the result is set with infinity as this tag word 
represent zero in the corresponding register. And if the tag word for divisor is 01, 

then the result is set to zero. 
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• If tag word for any operand is 11, the result is unknown as this tag word represent 
empty registers. 

• If tag word for divider is 10, the result is set with zero as this tag word represent 
infinity in the corresponding register. And if the tag word for divisor is 10, then 
the result is set to infinity. 
In above cases, the clock cycles consumed are 7. This allows save clock cycles in 

certain case. 

4.10.2 	Algorithm 
This section describes the algorithm implemented. 

Stage I UNPACK OPERANDS 

Si S2 	El F 	MI 	 M2 
Stage 2 	 XOR SUBTRACT 

BIAS 
ADDER S 0,UT M_QUT 

Stage 3 FIND POINT 
DIVIDED 

I OUT 
E QUT 

 — M OUT 

Stage 4 EXPONENT I 	 NOR viALIZER 
ADJUST 

S_QUT M OUT 
E OUT 

Stage 5 	I PACK OPERANDS 

Figure 4.15 Division Algorithm 

Stage 1: Unpacking Operands 
The two sign, exponent and mantissa bits for operand A and operand B are 

latched in registers which are 1-bit, 15-bits, and 64-bits in length. The inputs are checked 
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for special values: Infinity, Not a Number and Zero and the appropriate flags are set 

which is passed on through all stages. 

Stage 2: Calculate exponent and sign 
The exponent of operand B * is subtracted from that of operand A and the bias is 

added to the result which gives the resultant biased exponent. The sign bits of the two 

operands are XOR'ed to give the resultant sign bit. The sign and exponent output are 

passed on through all stages. 

Stage 3: Divide mantissa 

The mantissa field of operand A is divided by that of operand B. 

The different integer dividers studied and simulated are: 

1. Storing and non-restoring division 

2. SRT division 

All dividers are implemented at the logic-level and the working of each divider is 

explained in Section 4.10.3. The exponent and sign bits are stored in delay registers. 

Stage 4: Normalization Shift stage 

After the division, the next step is to normalize the result. The first step is to 

identify the leading or first one in the result. In division, leading one is either available at 

MSB or next to MSB. Comparator logic is used here to find the first leading-one digit 

from the MSB. The shifting is used to normalize the mantissa such that the leading-one in 

the mantissa resides in the most significant bit location and accordingly the exponent is 

adjusted. The upper 64 bits of the result are retained as mantissa. 

Stage 5: Pack operands 
Finally sign, exponent and mantissa are concatenated to form the 80-bits results 

and passed as an output from the FPU. The special condition flags are checked and if any 
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of the flags are set high, then the result vary accordingly. The result is stored back in a 
80-bit register. 

4.10.3 	Different types of integer dividers and their comparative 

study 
Following are the algorithms studied and simulated using Active HDL 6.1. It is 

found that Digit Recurrence algorithm is easy to design, occupies less space and has low 
latency. 

a) Digit Recurrence Algorithm 

The simplest and most widely implemented class of division algorithms is 

digit recurrence [42]. Digit recurrence algorithms retire a fixed number of quotient 

bits in every iteration. Implementations of digit recurrence algorithms are typically 
of low complexity, utilize small area, and have relatively large latencies. The 

fundamental choices in the design of a digit recurrence divider are the radix, the 
allowed quotient digits, and the representation of the partial remainder. The radix 

determines how many bits of quotient are retired in an iteration. Larger radices can 

reduce the latency, but increase the time for each iteration. This section introduces 
the principles of digit recurrence division, along with an analysis of methods for 

increasing the performance of digit recurrence implementations. 

b) Restoring and non-restoring division 

Given a dividend I and a divisor D, the quotient Q and remainder R are defined 
by: 

I_Q-D+ with0 

The division is performed by a sequence of subtractions and 

multiplications, as described by the following recursion formula. 

where, r is the radix. Pl is the new partial remainder after the ith iteration, qj is the 
ith quotient digit which is determined by comparing P,-1 and D. The comparison process is 
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usually done by subtracting q j  • D from r • P. If the result of the subtraction is positive, 
q j, will be increased and the subtraction process will be repeated until the result becomes 

negative. When P, is negative, q;  is decreased by 1 and the partial remainder Pi  must to be 

restored to its previous value by adding one divisor D to it. Therefore, this method is 

called restoring division [45]. 

Non-restoring division also based on above equation, but the quotient digit is not 
corrected and the remainder is not restored immediately if it is negative. The correcting 
operations are postponed to later steps. By allowing the quotient digit to be negative, 

the restoring operation can be avoided. In restoring division, qi can be only 1 or 0, but in 

non-restoring division, q j  belongs to the digit set {-1,1}. Notice that 0 is not allowed in 

non-restoring division. When the shifted partial remainder 2P1_, equal to 0, the division 

process terminates. 

c) SRT division 

Each step in the division is dependent on previous ones, so the next step cannot 

begin unless the current remainder is ' known. The quotient digits are obtained from the 
current partial remainder. If the quotient digit-selection process in each step. can be 
simplified, the time to complete each step can be shortened and the speed of division can be 
increased [30]: In radix-2 restoring/non-restoring division, the quotient digits are obtained 

by comparing . the divisor and the partial remainder in full precision. If the comparison 
process can be speed up, then the division process can be accelerated. To achieve this 

goal, the precision used in the comparison must be reduced. This is the idea of SRT 
division: 

SRT division is the most common implementation of digit recurrence division in modem mi-
croprocessors, taking its name from the initials of Sweeney, Robertson and Tocher, who 
developed the algorithm independently at approximately the same time. We analyze the 

algorithm for an n-bit number. The input operands are assumed to be represented in a 

normalized floating-point format with n bit significands in sign and magnitude 

representation. The quotient is defined to comprise k radix-r digits with 
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where a division algorithm that retires b bits of quotient in each iteration is said to 

be a radix-r algorithm. Such an algorithm requires k iterations to compute the 

final n bit result and thus has a latency of k cycles. The cycle time of the divider 

is defined as the maximum time to compute one iteration of the algorithm. In this 

thesis, we analyze radix-2 SRT algorithm, hence k, no of iterations is equal to the 

number of bits in the mantissa. 

4.10.4 	Division Parameters 

a) Radix Selection 
The fundamental overall method of decreasing the latency of the 

algorithm is to increase the radix r of the algorithm, typically chosen to be a power 
of 2. However, as the radix increases, the quotient digit selection becomes very 

complicated, which may increase the cycle time. Moreover the generation of all 
-required divisor multiples may become impractical- for higher radices. Oberman 

shows that the delay of quotient selection tables increases linearly with increasing 

radix, while the area increase quadratically. Pre-scaling of the input operands 

reduces the table complexity at the expense of additional latency. The limitation in 

generating all of the required divisor multiples for radix-8 and higher limits 

practical divider implementations to radix-2 and radix-4. 

b) Quotient Digit Set 

For a given choice of radix r, some range of digits is decided upon for the allowed 

values of the quotient in each iteration. The simplest case is where, for radix r, there 
are exactly r allowed values of the -quotient. However, to increase the performance of 

the algorithm, a redundant digit set is used. This allows a quotient digit to be selected 
based upon an approximation of the partial remainder representation as discussed in 

the next section. Such a digit set is composed of symmetric signed-digit consecutive 
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integers, where the maximum digit is a. The digit set is made redundant by having more 
than r digits, the complexity and latency of the quotient selection function is reduced. 

However choosing a smaller number of allowed digits for the quotient simplifies the 
generation of the multiple of the divisor. Quotient digit-set is said to be canonical is 0 < 
q;  < r - 1. Whereas it is said to be redundant when, aj E Da  = (-a, -a + 1, ..., - 1, 0, 1, ..., a), 
where the redundancy factor p = a/r -1(p > 1/2). Specifically for radix 2, the digit set is {-
1,0,1}. 

c) Partial-Remainder Representation 

The partial remainder can also be represented in two different forms, either 
redundant or non-redundant. Each iteration of the algorithm requires a subtraction to 

compute the next partial remainder. If this partial remainder is in a non-redundant form, 
then this operation requires a time-consuming full width carry propagate adder, increasing 

the cycle time. Therefore the partial remainder is typically stored in redundant form so that 
a fast carry save adder, can be used in the partial remainder calculation. 

Quotient digit selection and remainder representation in radix-2 
By allowing 0 to be one of the quotient digit choices, the radix-2 quotient digit 

selection is changed to equation shown below. 

Note that the regions overlap. This is good as it means we have freedom to pick a 

digit even if we don't know exactly what P and D are. For binary SRT, it's particularly 

easy, as we can get away with just looking at the sign bit of P. If it's 0, we know 0 <P, so 

we can pick D = 1. If it's 1, we know P < 0, so we can pick D = -1. In other words, non-
restoring division is a special case of SRT division. If D is a normalized fractional 

number, such that 1/2 < IDI < 1, the thresholds in above equation can be reduced from 
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IDI to 1/2. This is because if IDI is larger than or equal to 1/2, then the range [—D,  DI 
must include the range [-1/2, 1/2]. That means 1_  l. -i/2 _1 	IDI 

Therefore, the comparison operation (in above equation) can be reduced to the 
following simplified form. 

1 

qj = 	{ 	if`--1, 2 2 . R1 <1/2 

Now the partial remainder 2 • Rj_I can be compared to either 1/2 or -1/2, instead of 
D or -D. This reduces the time required to generate quotient digits. A binary fraction is 

larger than or equal to 1/2 if it starts with (0.1). Similarly, a binary fraction is smaller 
than -1/2 if it starts with (1.0). That means, only the first two bits of 2 • Rt_I need to be 
examined to determine the quotient digit, instead of full comparison. 

This is the basis of radix-2 SRT division. The following rules need to be followed for 

the selection process when D is normalized for a radix-2 SRT division. 

1 If 2P1+1 < -1/2, q j+1 = -1 and P~+i = 2P~ + D 
2 If -1/2 < P j+ j < 112, q;+i = 0 and Pj+r = 2P j 

3 If 2P +1 >1/2, qj+j = 1 and Pj+1 = 2PP – D 
The number of iterations required for SRT division decreases as the radix increases. 

Therefore, for high-radix SRT division, the complexity of the quotient selection process 

increases may eliminate the advantage of the reduction in number of iterations. This 

makes SRT division impractical for high radices, such as 256 or 512. 

4.11 Square root unit 
Square root algorithm is hard to implement on FPGAs because of complexity of 

the algorithms. In this thesis, I worked upon three algorithms and finally implemented a 
non-restoring square root algorithm. The operation latency is 66 clock cycles. 
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4.11.1 	Use of Tag word 
The operand is checked for its validity using tag word. If the Tag word contains 

any value other than 00, one of the following operations will be performed: 

• If tag word is 01, the result is set with zero as this tag word represent zero in the 

corresponding register. 

• If tag word is 11, the result is unknown as this tag word represents empty registers. 

• If tag word is 10, the result is set with zero as this tag word represents zero in the 
corresponding register. 
In all of the above cases, the clock cycles consumed are seven. The above mentioned 

work of tag helps in saving the clock cycles and thus reduces latency. 

	

4.11.2 	Algorithm 
This section describes the algorithm of square root unit. 

Stage 1: Unpacking Operands 

The sign, exponent and mantissa bits of the operand are latched in register which 

are 1-bit, 15-bits, and 64-bits in length. The inputs are checked for special values: 
Infinity, Not a Number and Zero and the appropriate flags are set which is passed on 
through all stages. 

Stage 2: Check Exponent Module 
The second stage in the adder uses comparator logic to check whether the 

exponent is odd. If yes, mantissa is shifted only one place towards right and 

"000000000000001" is added to exponent to compensate. If exponent happens to be 

even, mantissa is shifted to . right by two places and "000000000000010" is added to, 

exponent to compensate. The combinational VHDL process compare the exponent's LSB 

with V. The comparator is left to the synthesis tool. 
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Figure 4.16 Square root unit Algorithm 

Stage 3: Mantissa Shifter 
As explained in stage 2, 1-bit or 2-bit right shifting on mantissa is performed 

depending on whether exponent is odd or even respectively. The maximum number of 
shifts required is two. The bias is subtracted from the exponent in this stage. 

Stage 4: Mantissa Square root Stage 
In this stage, the square root of mantissa is taken using non-restoring square root 

algorithm [21][22][23] which is explained in detail in next section. This algorithm does 
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not restore the remainder [21]. This stage consumes maximum number of clock cycles 
and so it is area of research in my algorithm. 

Different fixed-point square root algorithms are studied to determine which gives 
the best performance. The different kinds of algorithms used for comparative study are 

1. Newton-Raphson method 
2. SRT-Redundant method 
3. Non-Redundant method 

All methods are implemented at the logic-level and the working of each algorithm is 
explained in Section 4.11.3. The sign bits are stored in delay registers. 

Stage 5: Normalization Shift stage 

After the square root, normalization is the next step. Since shifting has already 
been performed on mantissa before taking square root, normalization shall be required in 

case if MSB is non-zero. So, the first step is to identify the leading or first one in the 
result. Comparator logic is used here to find the first leading-one digit from the MSB. A 
counter maintains the number of comparisons made which is the equal to the number of 

shifts needed. I would like to make a point that this value can not be greater than two. 
The shift value is used to normalize the mantissa such that the leading-one in the 

mantissa resides in the most significant bit location. This stage also uses the shift value to 
adjust the exponent to the number of shifts required. The bias is also added to the 
exponent in this stage. Shifter in this stage is left to the synthesis tool. 

Stage 6: Pack operands 

Finally sign, exponent and mantissa are concatenated to form the 80-bits result 
and passed as an output from the FPU. The special condition flags are checked and if any 

of the flags are set high, then the result vary accordingly. The result is stored back in a 
80-bit register. 
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4.11.3 	Different types of fixed point square root algorithms and 

their comparative study 
Following algorithms are studied and finally, Non-redundant method is used [23] 

and based on simulation results, Non-Redundant method is used because it provides 

lowest latency (66 clock cycles) and consumes least possible silicon space. Its algorithm 

is. described in detail. 

a) Newton-Raphson method 

The Newton-Raphson method has been adopted in many applications. In order to 

calculate Y = NG , an appropriate value is calculated by iterations. For example, Newton- 

Raphson method can be used on 

f(T)=1112 —x 

to derive the iteration equation 

T1+1 = Ti x (3— TT2  x x)/2 

where, Ti is an approximate value of 1/ 	. 

After an n iterations, an approximate square root can be obtained by equation 

Y= =T.,xx 

This method needs a ROM . Table for generating To. At each iteration, 

multiplication and addition/subtractions are needed. 

Disadvantage: 

Although the fast multipliers are available, this design is costly because the multipliers 

require large number of gate counts. 

b) SRT-Redundant method 

This method is based on the recursive relationship 

Xi+l = 2 xi — 2Yiyi+l — yi+122-(i+l) 

Yi+l = Yi + 

where, xi  is the ith partial remainder, 

Y, is the ith partially developed square root with Yo = 0, . 
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yl is the ith square root bit, 

and y1  a (-1, 0, +1]. 

The yt  is obtained by applying the digit selection method. In each iteration, there 

are four sub-computations: 

1. One digit shift of xi to produce 2xi. 

2. Determination of yi+1. 
3. Formation of F = -2Yiyi+1-- yi+122-(`+I) 

4. Addition of F and 2xi  to produce x,+1. 

Disadvantage: 

A CSA can be used be used to speed up the addition of F and 2x4  but F needs to 

be converted to the two's complemented represented before feeding to CSA. Moreover, 
the selection function is also complex. 

c) Non-Redundant method 
This method does not restore the remainder [23]. There is no need to do the F 

conversion and the calculation of Y; — 2-(t+' that appear in SRT method. 

The radicand (in stack register) is in extended-double precision i.e. 80-bit format 
and the mantissa is of 64-bits: 

Mantissa, D = D63D62D61...DIDo. 	r 

For each pair of bits of the radicand, the integer part of the square root has one bit. Thus 
the integer part of square root for a 64-bit radicand has 32-bits: 

Q = Q31 Q30Q29... QIQO 

The remainder, R = D — Q x Q has 33 bits: 

R = R15RI5R14...R1R0. 

Reason of 33-bits in R: 
D=QxQ+R<(Q+1)x(Q+1). 

=> R <(Q+1)x(Q+1)—QxQ 
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=> 	=2xQ+1 
i.e. R<-2xQ 
because the remainder R is an integer. It means that the remainder has atmost one 

binary bit more than the square root. 

Algorithm 
Step,1: 	Set qi6  = 0, r16  = 0 and then iterate from k = 15 to 0. 

Step 2: 	If rk+1 ? 0, rk = rk+1D2k+ID2k — qk+101, 
Else 	rk = rk+ID2k+ID2k + qk+111,. 

Step 3: 	If rk  >_ 0, qk = qk+l1  (i.e. Qk  = 1), 

Else 	qk = gk+1O (i.e. Qk = 0), 

Step 4: 	Repeat steps 2 and 3, until k = 0. 

If r0 <0,ro=ro +qol. 

Where, qk = Q31 Q30Q29• • • Qk has (31 — k) bits, 

rk  has (17—k) bits. 

In this method, I do not need multiplications, instead shift operations do the 
necessary work. 

4.12 Absolute unit 

Absolute unit performs the conversion of floating point number to integer 

number. This unit has the latency of 3 clock cycles. 

4.12.1 	Algorithm 
This section describes the algorithm implemented. 

Stage 1: Unpacking Operands 
The sign, exponent and mantissa bits for, operand are latched in registers which 

are 1-bit, 15-bits, and 64-bits in length. - The inputs are checked for special values: 
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Infinity, Not a Number and Zero and the appropriate flags are set which is passed on 
through all stages. 

Stage 2: Conversion into integer 
The Exponent and mantissa bits are retained as it is and passed on to the next 

stages. The sign bit is set to 0 to make the number positive. 

Stage 1 

SI  
Stage 2 	I 	SIGNBIT 

S_OUT 

Stage 3 

UNPACK OPERANDS 

E 

CHECK 	 ROUND 
EXPONENT 	 MANTISSA 

E_OUT I 	 M_OUT 

PACK OPERANDS 

Figure 4.17 Absolute unit Algorithm 

Stage 3: Packing Operands 

Finally sign, exponent and mantissa. are concatenated to form the 80-bit result and 

passed as an output from the FPU. The special condition flags are checked and if any of 

the flags are set high, then the result vary accordingly. The result is stored back in 80-bit 
register. 

4.13 Exception Generation unit 
This section describes the various conditions that cause a floating point exception 

to be generated by the FPU [13][14]. 

• Stack Overflow Exception: Occurs when Load instruction attempts to load a 

non-empty data register. A non-empty register is defined as a register containing a 

zero (tag value of 01), a valid value (tag value of 00), or a special value (tag value 
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of 10). When this exception occurs, its sets the bit 5 in the status register and FPU 
data register wraparound occurs and the new value of TOP is set to 7. 

• Stack Underfiow Exception: Occurs when Store instruction references an empty 
data register as a source operand, including attempting to write the contents of an 
empty register to memory or external world. An empty register has a tag value of 
11. When this exception occurs, its sets the bit 6 in the status register and FPU 
data register wraparound occurs and the new value of TOP is set to 0. 

• Invalid Arithmetic Operand Exception: Occurs when an arithmetic instruction 
attempts to operate on empty data registers. When this exception occurs, its sets 
the bit 0 in the status register and the set the output value to NaN. 

• Divide by Zero Exception: Occurs when an instruction attempts to divide a finite 
non-zero operand by 0. When this exception occurs, its sets the bit 2 in the status 
register and the set the output value to infinite. 

• Numeric Overflow Exception: Occurs whenever the rounded result of an 
arithmetic instruction exceeds the largest allowable finite value that will fit into 
the floating-point format of the destination operand (32 bit). When this exception 
occurs, its sets the bit 3 in the status register and the set the output value to 
infinite. 

• Numeric Underflow Exception: Occurs whenever the rounded result. of an 
arithmetic instruction is tiny; that is, less than the smallest possible normalized, 
finite value that will fit into the floating-point format of the destination operand. 
When this exception occurs, its sets the bit 4 in the status register and the set the 

output value to zero. 
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CHAPTER 5 

DESIGNING WITH FPGAs 

Field Programmable Gate Arrays are a relatively new class of integrated circuit; 
first introduced by the Xilinx company in 1985. Since that time, the FPGA market has 

expanded dramatically with many different competing designs developed by companies 

including, Actel, Advanced Micro Devices, Algotronix, Altera, Atmel, AT&T, 

Crosspoint' Solutions, Cypress, Intel, Lattice, Motorola, QuickLogic, and Texas 

Instruments. A field-programmable gate array (FPGA) is kind of like a CPLD turned 
inside out[1]]17]. 

 

DO DD DO DD Logic 
Block 

1IG Block. --*o 

 

E 

I 
e 

H 
I 

n❑  ❑❑  ❑❑  ❑❑  
Figure 5.1 FPGA Architecture 

As shown in Fig. 5.1, the logic is broken into large number of programmable 

logic blocks that are individually smaller than a PLD. They are distributed across the 

entire chip in a sea of programmable interconnections which can be configured by the 
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user at the point of application, & the entire array is surrounded by programmable 1/O 
blocks. User programming specifies both the logic function of each block and the 
connections between the blocks. An FPGA's programmable logic block is less capable 
than a typical PLD, but an FPGA chip contains a lot more logic blocks than a CPLD of 

the same die size has PLDs. 

5.1 Introduction to FPGAs 
The FPGA is an integrated circuit that contains numerous (over 10,000) identical 

logic cells that can be viewed as standard components. Each logic cell can independently 
take on any one of a limited set of personalities. The individual cells are interconnected 
by a programmable interconnect (matrix of wires and programmable switches). A user's 
logic design is implemented by specifying the simple logic function for each cell and 

selectively closing the switches in the programmable interconnect matrix. The cell's 
combinatorial logic is physically implemented as a small look-up table memory (LUT) or 
as a set of multiplexers and gates. LUT devices tend to be a bit more flexible and provide 
more inputs per cell than multiplexer cells at the expense of propagation delay. The array 
of logic cells and interconnects form a fabric of basic building blocks for logic circuits 
(also named as Logic elements - LE). Complex designs are formed by combining these 

Logic elements to build the desired circuit. 
Field Programmable means that the FPGA's function is defined by a user's 

program rather than by the manufacturer of the device. A typical integrated circuit 
performs a particular function defined at the time of manufacture. In contrast, a program 
written by someone other than the device manufacturer defines the FPGA's 
function. Depending on the particular device, the program is either'burned' in 
permanently or semi-permanently as part of a board assembly process, or is loaded from 
an external memory each time the device is powered up. This user programmability gives 
the user access to complex integrated designs without the high engineering costs 
associated with application specific integrated circuits. 

Figure 5.2 shows an example of a logic block consisting of a 3-LUT, and a flip-
flop. An 8-to-1 multiplexer in a LUT is implemented using 2-to-1 multiplexers. 
Therefore, the propagation delay from inputs to the output is not the same for all the 
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inputs. Input IN 1 experiences the shortest propagation delay, because the signal passes 

through fewer multiplexers than signals IN 2 and IN 3. Since a LUT can implement any 
function of its input variables, inputs to the LUTs should be mapped in such a way that 
the signals on a critical path pass through as few multiplexers as possible. Logic blocks 
also include a flip-flop to allow the implementation of sequential logic. An additional 

multiplexer is used to select between the LUT and the flip-flop output. Logic blocks in 

modern FPGAs are usually more complex than the one presented here. 

Each logic block can implement only small functions of several variables. 

Programmable interconnection, also called routing, is used to connect logic blocks into 
larger circuits performing the required functionality. Routing consists of wires that span 

one or more logic blocks. Connections between logic blocks and routing, 110 blocks and 

routing, and among wires themselves is programmable, which allows for the flexibility of 
circuit implementation. Routing is a very important aspect of FPGA devices, because it 
dominates the chip area and most of the circuit delay is due to the routing delays. 

'NI ,  

9W 

IN3 

OUT 

Fig 5.2 Simple Logic Block Structure 
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• 1/0 blocks in an FPGA connect the internal logic to the outside pins. Depending 
on an actual device, most pins can be configured as either input, output, or bidirectional. 
Devices supporting more than one I/O standard allow configuration of different pins for 
different standards. 

Programmability of FPGAs is commonly achieved using one of three 
technologies: SRAM cells, antifuses, and floating gate devices. Most devices use SRAM 
cells. The SRAM cells drive pass transistors, multiplexers, and tri-state buffers, which in 
turn control the configurable routing, logic and I/O blocks . Since the content of SRAM 

cells is lost when the device is not powered, the configuration needs to be reloaded into 
the device on each power-up. This is done using a configuration device that loads the 
configuration stored in some form of non-volatile memory. 

Programmability of FPGAs comes at a price. Resources necessary for the 
programmability take up chip area and consume power. Therefore, circuits implemented 
in FPGAs take up more area and consume more power than in equivalent ASIC 
implementations. Furthermore, since the routing in FPGAs is achieved using 
programmable switches, as opposed to metal wires in ASICs, circuit delays in FPGAs are 
higher. Because of that, care has to be taken to. exploit the resources in an FPGA 

efficiently. Circuit speed is important for high-throughput applications like Digital Signal 
Processing (DSP), while power is important for embedded applications. CAD tools are 
used by the designer to meet these requirements. 

5.2 Basic Architectures 

FPGAs are commercially available in many different architectures and 
organizations. Although each company's offerings have unique characteristics, FPGA 
architectures can be generically classified into one of four categories: 

A Symmetrical Array. 
B Row Based. 
C Hierarchical PLD. 
D Sea of Gates. 
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Figure 5.3 illustrates this classification based on the general internal organization of 
the design. 

A SYMME1RiCAL ARRAY 

.. 	ire , 

___ 

f 5  

 

....■■.■■. 
HIERARCHICAL PLD C. 

 

D- SEA-OF-GATES 

Figure 5.3 The Four FPGA Architectural Classes 

The target FPGA kit in the dissertation is Xilinx's Virtex II Pro whose architecture 

is similar to that of Symmetrical Array (see figure5.3 (a)). All the synthesis results are 
generated for Virtex II Pro only. 
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5.3 Programming with FPGAs 
Although early PLD and FPGA designs were generated largely by hand, access to 

today's complex programmable logic devices requires the use of an integrated Computer- 

Aided Design (CAD) system. 

Cadence, Mento , 	 SCHEMATIC 	
3Et.1AVIORAL vewrLagic, orCAD 	 CAPTURE 

t, AL etc 	 &.Sirrtulation 	 SPECIFICATION 
-..... ..._4Q1 
	

&;Simulation 

PLACEMENT 

Circuit Mappedto 
target FPGA Image 

Automatic ROUTING 

FPGA Physical Design Complete. 
critical path timing anatysis.and 
back-annotation to simulation 

DOWNLOAD. 
PROGMM FPGA 

VNDL, Verilog 
PALASM,AHEL, 
PLDesigner,,.etc. 

Evaluate Design 
in Target Application 

Figure 5.4 Typical CAD system design flow for FPGAs 

Figure 5.4 illustrates the typical sequence of operations needed to go from 

concept to programmed chip. Both commercial CAD tool vendors and FPGA companies 

offer appropriate tools. For example, traditional Electronic Design Automation (EDA) 

vendors such as Cadence, Mentor Graphics, Synopsys, and ViewLogic all offer tools to 
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support FPGA design. These tools are typically used for the front-end design, entry and 
simulation operations and provide the necessary interfaces to vendor-specific back-end 
tools for chip placement and routing. 

Examples of vendor specific tools are the Xilinx XST system and the Alters 
Quartus II software. It is worth noting that Altera's Quartus II software supports the entire 
design flow illustrated in Figure 5.4 on either PC or workstation platforms. I have used 
Aldec' Active HDL 6.1 and Mentor's Modelsim for simulation and Xilinx ISE 7.1 for 

Synthesize the design. A detailed discussion of available FPGA CAD tools is outside the 
scope of this chapter. Rather, the following discussion is meant to be indicative of  the 
general operations and steps required in FPGA design. Where appropriate, examples are 

taken from the Xilinx and Altera CAD design flows to illustrate the generic operations. 
The starting point in any logic or digital system design is a set of architectural or 

behavioral specifications. Traditionally, a designer uses schematic capture tools for 
graphical entry of a logic design which has been manually generated to meet the 

architectural or behavioral specifications. The upper left hand arrow in Figure 5.4. 
identifies some of the commercial CAD tools available for FPGA schematic capture. One 
of the more significant recent innovations in the EDA industry is the development of 
tools which allow the designer to move from the gate level to the behavioral level for 
design entry. A behavioral design specification is created using a Hardware Description 

Language (HDL) [19][20], and then a synthesis tool automatically compiles the gate level 
schematic or netlist from the behavioral description. The upper right hand arrow in 

Figure5.4 indicates some of the HDLs currently' being used for FPGA behavioral 
modeling. 

Options for behavioral description of designs include the VHSIC Hardware 
Description Language "(VHDL), the Verilog hardware description language, timing 
diagrams, logic state diagrams, and PLD description languages such as ABEL. As an 

example of how pervasive the behavioral design style has become, the PC-based Xilinx 
ISE 7.1 software provides multiple options for behavioral design entry. In addition to 

traditional schematic capture it will accept VHDL, text design description in the Xilinx 
Hardware Description Language (including truth tables and Boolean expressions), and 
Timing Diagrams which describe the desired input and output waveforms. Whichever 
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behavioral design entry method is chosen, the design system provides logic synthesis, 
which automatically creates gate-level schematics. 

Figure 5.5 Designing with FPGA 
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No matter what method is used for initial design entry, the next step in FPGA 
design is to translate the entire .design into a standard form which can be processed by a 
logic optimization tool. The goal of logic optimization is to perform minimization of the 
Boolean expressions and eliminate redundancy, thus minimizing the area of the final 
circuit. The tool may also be constrained to maximize speed at the expense of area by 
.limiting the number of logic levels between clocked registers. This optimization process 
is usually merged with the logic synthesis step when behavioral design entry is employed. 
Simulation is performed both before and after the logic optimization steps to verify that 
the design meets the original system requirements for functionality and timing. The next 
step is to convert the generic gate level design into one which uses the FPGA circuit 
building blocks of the target technology. 

Let me take a concrete example, the Xilinx XST design system flow is used (in 
dissertation) to illustrate the steps needed to go from logic design to programmed FPGA. 
In the Xilinx design flow, the native format of the logic design (Aldec's Active HDL,' 
Modelsim etc.) must first be translated into the Xilinx Netlist Format (XNF) which is 
understood by the Xilinx tools. Next, the XNF circuit description must be mapped into 
Xilinx Configurable Logic Blocks (CLBs). This is the technology mapping step referred 
to in Figure 5.4. Xilinx calls this step "partitioning", and the XST tools also attempt to 
optimize the circuit during this step. For example, circuitry associated with unused logic 

block inputs or outputs is eliminated from the design. In addition, the partitioning 
program attempts to  minimize  either the total number of CLBs used or the number of 
logic stages in the critical delay path. 

The next step is to place and route the design on the selected chip image. The 
XST system allows manual and/or automatic placement and routing. In the automatic 
placement operation, each CLB generated during the "partitioning" step is assigned to a 
physical location on the chip. Xilinx uses a Simulated Annealing algorithm which starts 

with a random placement, and then goes through a series of improvement passes. This 

program can be run multiple times with different starting random seeds in an attempt to 
generate a more optimal placement. Following placement, interconnections between the 
CLBs must be routed using the available interconnect segments and switch matrix 
elements. XST uses an automatic Maze Routing Algorithm to perform this operation. 
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With the physical placement and routing completed, exact timing values can now be used 

to determine chip performance. The XST tools provide a critical path timing analyzer 

which provides delay information on the longest through shortest paths through the chip. 

In addition, the physical layout timing information can also be back-annotated to the 

schematics to get more accurate functional simulation results. The final step in the Xilinx 

or Altera design flow is the creation of the BIT file which contains the binary 

programming data needed to configure the SRAM bits of the target chip. This file is then 

downloaded to configure the chip for final functional and timing tests of the programmed 

chip. 
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CHAPTER 6 

EXPERIMENTAL RESULTS AND VERIFICATION 

This chapter presents the experiments conducted to determine the performance of 
the FPU. 

6.1 Introduction to experimental approaches 
I assess the FPU performance by considering each component in turn that is, the 

floating point adder, floating point multiplier, floating point divider, floating-point square 

root and absolute. My objective was to design the efficient FPU with the least possible 

latency and silicon area. The design was targeted on a Xilinx Virtex II Pro FPGA whose 

synthesis results are presented in Appendix C. 

6.1.1 Design Environment 
The software and hardware design environment is presented in this section. It 

gives information about the development tools used in this dissertation. 

a) Software Environment: 

• Operating System 

• Processor 

• RAM 

• Processor Speed 

• HDL used 

• Simulation Tool 

b) Hardware Environment: 

• Processor 

• RAM 

• Processor Speed 
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Aldec Active HDL 6.1 
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• Development Kit 	 : Xilinx 

• FPGA Device Family Xilinx Virtex II Pro 

• Package xc2vplOO 

• Speed Grade -5 

• Top-level Module Type. 	 : HDL 

• Synthesis Tool Xilinx ISE 7.li (using VHDL) 

• Simulator Aldec 	Active 	HDL 	6.1 	and 

Modelsim XE 5.7c 

• Generated Simulation Language VHDL. 

6.1.2 FPGA Design Flow 
Since the goal of this dissertation is to create a full custom processor design in 

FPGA, for this reason the implementation of embedded processor requires FPGA design 

flow steps to be followed. Figure 6.1 shows. a standard design flow for a FPGA design: 

Schematic entry 

Verification 

Synthesis 

Verification 

Place and Route 

Verification 

Configuration 

Encoding chip 

Figure 6.1 FPGA Design Flow 

Schematic entry 
The design is entered into a synthesis design system using a hardware description 

language. The language used here is VHDL. 
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Synthesis 
A netlist is generated using the VHDL code and a logic synthesis tool (Xilinx 

ISE 7.1) 

Place and Route 
The place process decides the best location of the cells in a block based on the 

logic and desired performance. The route process makes the connections between the 

cells and the blocks. Automatic place and route is done by the synthesis tool after 

generating netlist. 

Configuration 

This is done by loading the configuration data into the internal memory. Synthesis 

tool generates a bit stream file after placing and routing, which is -then downloaded in 
FPGA. I used Xilinx's JTAG cable to load my design in the FPGA. 

Verification 

At each step of the design process, I verified my architecture using software 

simulation. Initially I used Aldec Active HDL 6.1 software package for simulating my 

VHDL code. 

6.2 Simulation results 
This section shows the simulation results of each kind of hardware module 

implemented in the design. 

6.2.1 Data registers 
Signals data_int_in and data_fract_in are the input data's integer and fractional_ 

part. Signals data_int_out and data_fract_out are the output data's integer and fractional 

part. Bit No. 13, 12, 11 of status register indicates TOP field of stack. In address field 

(opcode), 00 is the opcode for Load instruction and 08 is for Store instruction. Signal 

cs_main is Chip select. 
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On reset, data registers contains FFFFFFFFH, which marks data registers as 

empty. When chip select is active, the decoder decodes the opcode (address field); the 

execution unit executes the decoded instruction (i.e. FLOAD). FLOAD instruction 

decrements the top by one and loads the input value into the stack (i.e. at 6 h̀  location). 

Here, the input data (data int_in and data_fract_in) in hex format is automatically 

converted into single precision format and then to the extended double precision format 

as shown in Figure 6.2. 

To execute the next instruction chip select should be deactivated after the busy 

signal goes low and reactivated in the following clock pulse. 

When chip select is reactivated, decoder decodes the fresh opcode; the execution 

unit executes the decoded instruction (i.e. FSTORE). FSTORE instruction outputs the top 

of stack value and increments the top by one. Here, stack content in the extended-double 
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precision format is automatically converted into single precision and then to the hex 

format as shown in the Figure 6.2 

6.2.2 Control Register 
As shown in Figure 6.3, on reset, the control word is set to OCOO which marks all 

floating-point exception unmasked and sets the rounding to nearest. The content of 

control word alters after FLDCW instruction loads it. 

Figure 6.3 Simulation Waveform for Conrol word 

6.2.3 Tag register 
On reset, the tag word is set to FFFFH (i.e. each tag is set to 11) which marks all 

FPU data registers are empty. 

As shown in Figure 6.4, loading a valid number in the data register stack changes 

the corresponding tag value to. 00. Similarly, loading a zero number in the data register 

stack changes the tag value to 01 and loading an infinite or invalid number on the FPU 

data register stack changes the tag value to 10. 

The tag word content D3FF (i.e. 1101001111111111) indicates, the R6 contains 

zero number and R5 contains a valid number and rest of the data registers are empty. 
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Loading a zero in R6 changed " 	 Loading a valid numberin R5 
eorrespondning tag to 01 	 changed corresponding tag to 00 

Figure 6.4 Simulation Waveform for Tag word 

6.2.4 Precision Converter 
The opa represents single precision 32-bit input and opa_80 represents 80-bit 

extended-double precision output. 

Figure 6.5 Simulation Waveform of Single Precision to Extended-Double Precision 
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The result_80 represents 80-bit extended double precision input and result_32 

represents single precision 32-bit output, rmode represents rounding mode. 

t . 20 	
...•. 	

.40 • r  

6.2.5 Addition/Subtraction Unit 
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user friendly manner input data in double-extended format 	addition operation output port in user friendly manner 

Figure 6.7 Simulation Waveform of Addition 
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The Floating point Addition/Subtraction unit accepts the data in double extended 

precision format only. The operands can be available in any of the eight data registers or 

stack. All addressing of the data registers is relative to the register on the top of the stack. 

The data contained by the top-of-stack is taken as operand-A while the operand-B is 

contained in the register whose effective address is given by "top-of-stack + offset given 

in instruction". Addition/Subtraction operations keep the 80-bit result in the register as 

indicated by the top-of-stack. Please note that the TOP (stack TOP) field is not modified 

in this process and as a result, operand-A will be lost. 

Consider the following example: 

FADD ST (5); 

Let the top-of-stack is fourth register (ST(5)) which is containing operand-A and 

operand-B is contained in ST(5). The result of addition operation is stored back in ST(4). 

Simulation waveforms are shown above. 

6.2.6 Multiplication Unit 
The Floating point Multiplication unit accepts the data in double extended 

precision format only. The operands can be available in any of the eight data registers or 

stack. All addressing of the data registers is relative to the register on the top of the stack. 

The data contained by the top-of-stack is taken as operand-A while the operand-B is 

contained in the register whose effective address is given by "top-of-stack + offset given 

in instruction". Multiplication operations keep the 80-bit result in the register as indicated 

by the top-of-stack. Please note that the TOP. (stack TOP) field is modified in this process 

and as a result, operand-A will be lost. 

Consider the following example: 

FMUL ST (5); 
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Let the top-of-stack is fourth register which is containing operand-A and operand-

B is contained in ST(5). The result of Multiplication operation is stored back in ST(4). 

Simulation waveforms are shown in figure 6.8. 

ad ces QO loads data iii 	add ess 21 itiply R5 with p 	address 08 Wires the 
data registers (80-bit Format) 	and stores the result. back in R5 	result at output port 

Figure 6.8 Simulation Waveform for Multiplication 

6.2.7 Division Unit 
The Floating- point Division unit accepts the data in double extended precision format 

only. The operands can be available in any of the eight data registers or stack. All 
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addressing of the data registers is relative to the register on the top of the stack. The data 

contained by the top-of-stack is taken as operand-A or dividend while the operand-B or 

divisor is contained in the register whose effective address is given by "top-of-stack + 

offset given in instruction". Division operations keep the 80-bit result in the register as 

indicated by the top-of-stack. Please note that the TOP (stack TOP) field is modified in 

this process. and as aresult, operand-A will be lost. 

The explaination to above Waveforms is similar to previous ones 

Figure 6.9 Simulation Waveform of Division 

Consider the following example: 

FDIV ST (5); 
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Let the top-of-stack is fourth register which is containing operand-A or dividend 

and operand-B or divisor is contained in ST(5). The result of Division operation is stored 

back in ST(4). Simulation waveforms are shown in figure 6.9. 

6.2.8 Square Root Unit 

address 00 loads 	Address 38 takes square 	address 0$ stores 
data in data register root of R5 and stores the 	the result on the 
(80 bit format) 	result into R5 	 output port 

Figure 6.10 Simulation Waveform of Square Root 

Stack(5) contains the number whose square root is to be taken. The opcode for 

square root is 38. When this instruction is executed, square root of top-of-stack i.e. ST(5) 

is taken and the result is outputted through address 08. Since square root operation 

consumes 66 clock cycles, above waveform is modified so that it can be contained on this 

page. 
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6.2.10 	Absolute unit 
Address 30 takes the absolute of a number and stores the result in the same 

register. The following waveform depicts the operation. 
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Figure 6.11 Simulation Waveform for Absolute Unit 

6.2.11, 	Exception Generation Unit 
The waveform for each exception is as shown in figure 6.12. On reset, the TOP 

field of the stack is set to 7; hence an attempt to read (FSTORE instruction opcode 08) 

will lead to stack underflow exception. As shown in figure 6.12 (b) when stack is full i.e. 

when TOP field is set to 0, an attempt to write (FLOAD instruction opcode 00) will lead 

to stack 'overflow exception. Similarly, Figure 6.12 (c), shows the divide by zero 

exception, Figure 6.12 (a) shows numeric overflow exception. 
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Figure 6.12 (a) Simulated Waveform for Exception Generation 
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Figure 6.12 (b) Simulated Waveform for Exception Generation 
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an attempt to divide 	second bit of status divide by_zero unmty tlag'sets 
a number by zero 	register is high 	exception 	high and register 

contains inf pity 

Figure 6.12 (c) Simulated Waveform for Exception Generation 

6.2.11 Turbine Efficiency Measurement 
The formula used for unit efficiency measurement (see chapter 2) is 

Generator _ Output, Pe  UnitEffaciency, 77u  = 	 X100% 
Hydraulic _ Input, P,. 

where, Hydraulic input, PI  = gHQ 

g is the acceleration due to gravity, m/s2, 
is the density of water, kg/m3, 
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H = H1 — H2 is the net water head, m, 

Hl is water head at inlet, m, 

H2 is water head at outlet, m, 

Q is the water discharge through the turbine, m3/s 

Description of Unit Efficiency Measurement Waveform: 

Signals data_int_in and data_fract_in are the input data's integer and fractional 

part. Signals data_int_out and data_fract_out are the output data's integer and fractional 

part. Bit No. 13, 12, 11 of status register indicates TOP field of stack. Bit 15 of status 

register is busy bit as described in chapter 4. In address field (opcode), 00 is the opcode 

for Load instruction and 08 is for Store instruction. Signal cs_main is Chip select. 

On reset, FPU data registers contains FFFFFFFFH, which marks data registers as 

empty. When chip select is active, the decoder decodes the opcode (address field); the 

execution unit executes the decoded instruction (i.e. FLOAD). FLOAD instruction 

decrements the top by one and loads the.  input value (1000.0 (_ )) into the stack (i.e. at 6th 

location). Here, the input data (data int_in and data fract_in) in hex format is 

automatically converted into single precision format and then to the extended double 

precision format as shown in figure 6.13 (a). 

To execute the next instruction chip select should be deactivated after the busy 

signal goes low and reactivated in the following clock pulse. 

Similarly, next number (9.806 (=g) in hex format) is loaded into the stack. Then 

the address in address field is changed to 21 (opcode of FMUL ST(1)). This instruction 

multiplies top of stack (R5 or 5 h̀  location of FPP data register) with content of top + 1 of 

stack and stores the result back into top of stack(R5) as shown in figure 6.13 (b). 

Again, next data i.e. 16.5 (= H) is loaded into the stack in the same manner. Now 

the top of °stack points to 4 h̀  location or R4 as shown in figure 6.13 (c). Multiplication is 

performed after loading and the steps are repeated to find Hydraulic input, Pi. This 

followed by loading of generator output, Pe  into R2, as shown in figure 6.13 (e) followed 

by division (opcode 0x29) of result as shown in figure 6.13 (f) which gives the unit 

efficiency. 
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Finally, FSTORE instruction outputs the top of stack value and increments the top 

by kne. Here, stack content in the extended double precision format is automatically 

converted into single precision and then to the hex format as shown in the figure6.13(f) 

(data int_out and data_fract_out). 

Program: 
The assembly language program written to compute the above expression is as 

follows: 

Assume that initially the top-of-stack is R7. 

FLOAD (= 1000 Kg/m3); /*decrements top-of-stack and loads in extended-double 

format into R6*/ 

FLOAD g (= 9.806 m/s2); /*decrements top-of-stack and loads g in extended-double 

format into R5*/ 

FMUL ST(1); /*R5 E- R5 x R6*/ 

FLOAD H (= 16.5 m); /*decrements top-of-stack and loads H in extended-double 

format into R4*/ 

FMUL ST(1); /*R4 F R4 x R5*/ 

FLOAD Q (= 0.3125 m3/s); /*decrements top-of-stack and loads Q in extended-double 

format into R3*/ 

FMUL ST(1); /*R3 F R3 x R4*/ 

FLOAD Pe  (= 31.326 kW); /*decrements top-of-stack and loads Pe  in extended-double 

format into R2*/ 

FDIV ST(1); /*R2 E- R2 - R3*/ 

FSTORE; _ . /* stores 	u  in output port and increments top-of-stack */ 

Machine language codes for all operations are given in Appendix B (Design 

Customized Instructions and their Usage). 
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Knowing the value of the generator efficiency, . g, the turbine efficiency can be 

calculated by the following relation: 

rbineEfficiency,% _ Unit_ Efficiency, 77U  X100% Tu  
Generator — Efficiency, 17g  

Explanation of turbine efficiency measurement waveform is similar to that of unit 

efficiency measurement waveform. Let the generator efficiency be 81.25%. 

Program: 

The following program gives the estimation of turbine efficiency. 

FLOAD g  (= 0.8125); 	 /*decrements top-of-stack and loads g  in extended- 

double format into R6*/ 

FLOAD o (calculated above); 	/*decrements top-of-stack and loads u in extended- 

double format into R5*/ 

FDIV ST(1); 	 /*R2 F R2 + R3*/ 

FSTORE; 	 /* stores T  into output port and increments top-of- 

stack */ 

Machine language codes for the above programs are presented in Appendix B 

(Design Customized Instructions and their Usage). 
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6.3 Verification of Simulation Results 

Random binary test vectors were generated of length 32-bits, 16-bits for integer 

and 16-bits for fractional part, and were used to verify the output of each FP core 

element. The vectors used for testing were pre-selected such that it included all exceptions. 

The floating-point numbers included zero, maximum/minimum positive and negative 

numbers. Special values include positive and negative infinity and Not a Number. The 

output of the FP core elements are of IEEE-754 format. Appropriate flags are set for the 

special values and on an occurrence of overflow/underflow. The simulation results were 

verified both after the behavioral design and the structural design. The results for each 

fixed-point unit algorithms were also verified with the standard simulator. The standard 

simulator used for verification was Aldec's Active HDL 6.1. The following table will give 

idea of what kind of test vectors were generated. 

Table 6.1 Example of Test Vectors 

4 

ZERO - NFGJNF POS...TNF Infini 	flag 
:1 N 	S 	1 M me'. MAX_NEG ciftITfff ifififif  

M I' POS -'NaN_ NaN NaN lag 
MAX_N G - MAXJOS NEGJNF1 Infinity flag - 

POs_INF - r G_ENF o _I F infinity flag_ 
7.5 - 	O _cNF EGA Li ly flag 

NEG_TNF 	_T P ZERO Zroiiag 
NaNflag Na 	- ZERO NaN 

ZERO * 7. ZERO..  Zero flag 
P.OS 	''_' ZERO ZERO ero flag 
. N 	_NF' ' .3<25 . ZERO: Zcro flag  

a 	'*(1 5-  .N N Nab' flag  
7.5 / .:ZERO) Infinity "Infini 	flag 
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

This chapter concludes and suggests the future work which can be done in this 

area. 

7.1 	Conclusion 
I presented the design of the Floating-Point Arithmetic unit for FPGAs based on 

IEEE 754 standard. Performing the arithmetic operations on IEEE Floating-point 

numbers imposed challenges beyond the challenges of Fixed-Point arithmetic. These 

challenges particularly include the task of normalization and IEEE compliant rounding. I 

implemented both normalization unit and rounding unit (capable of performing all four 

rounding modes). Based on simulation and synthesis results, it is concluded that the 

design is performing in desired fashion and the purposed design is very suitable for 

FPGAs (see Appendix C Synthesis Report, less than 17% of available resources in Virtex 

II Pro is used). The Floating-point arithmetic unit is simulated using Aldec's Active HDL 

6.1 and synthesized using Xilinx ISE 7.1i supported by ModelSim 5.7. The design is 

targeted for Xilinx Virtex II Pro FPGA. The input/output number format confirms IEEE-

754 standard single precision real numbers. Internally, calculations are performed 

according to IEEE-754 standard double-extended precision real nuinbers- (as incorporated 

in Intel Pentium4 processor). This inherited feature assists floating-point arithmetic unit 

in enhancing the accuracy. Besides implementing the . addition, subtraction, 

multiplication, division, square root, and absolute unit, some other supporting units like 

general purpose registers, control registers, tag register, status register etc are also 

implemented to make it independent programmable chip and the FPU works in stand-

alone mode. With that limited exception handling has also been implemented. Although 
most of the features are taken into account from Intel's Pentium4 but new things have• 

been added to Pentium4's FPU and successfully implemented. One of the most exciting 

such thing is the Tag register. Tag register available in Pentium4 needs to be taken care 
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of by the end user to check the validity of a number, but here in my design, it is 

automatic. The FPU checks,, itself, the validity of a number before and after the 

computation. Thereby, it also saves the large number of clock cycles whenever the data 

register is empty or contains some invalid number. In essence, my work is superset of all 

previous works related to this area. Since the target application was turbine efficiency 

measurement which may require lot of computation on number of variables, special 

attention has been paid to all kinds of arithmetic algorithms to design best possible core 

units for FPU. 

7.2 Suggestions for Future Work 
Some suggestions are presented in this section which can be considered for future 

work. 

•:• Apply pipelining to all units/subunits. It helps in reducing latency. 

v A few more complex instruction related to trigonometric and logarithmic can be 	_ 

integrated into the FPU to perk up flexibility. 

❖ I implemented Normalization unit within the floating-point arithmetic modules. Area 

consumed will decrease if a separate hardware module is designed for Normalization. 

❖ Denormalization unit can also be implemented [26][28][32]. I have discussed 

advantages of denormalization in Chapter 3. 

❖ The work can be extended for quad precision and dual double precision format [38]. 

❖ Power reduction techniques can also be implemented. 

104 	 Electrical (M&I) 
IIT Roorkee 



FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement 

REFERENCES 

[1] Altera Corporation,  ham:/ /www.altera.com 

[2] Dr. H. K. Verma and Dr. Arun. Kumar, "Instrument Networking for Efficiency 

Measurement in Small Hydro-Power Stations", IIT Roorkee. 

[3] IEC-60041 (1991): Field acceptance test to determine the hydraulic performance of 

hydraulic turbines, storage pumps and storage turbines. 

[4] B. Fagin and C. Renard, "Field Programmable Gate Arrays and Floating-Point 
Arithmetic", IEEE Transactions on VLSI systems, 2(3), September 1994. 

[5] N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of Floating Point 

Arithmetic on FPGA based Custom Computing Machines", Proceedings of IEEE 
Symposium on FPGAs for Custom Computing Machines, April 1995. 

[6] L. Louca, T. A. Cook, and W. H. Johnson, "Implementation of Single Precision 

Floating Point addition and multiplication on FPGAs", K. L. Pocek and J. Arnold, 
editors, Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, 
pages 107-116, April 1996. 

[7] W. B. Ligon III, S. Mcmillan, G. Monn, K. Schonoover, F. Stivers, and K. D. 

Underwood, " A Re-evaluation of the Practicality of Floating Point Operations on 
FPGAs", Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, 
April 1998. 

[8] I. Stamoulis, M. White, and P. F.-  Lister, "Pipelined Floating-Point Arithmetic 
optimized for FPGA architectures", 9`h  International Workshop on Field Programmable 
Logic and Applications, volume 1673 of LNCS, pages 365-370, August-September 1999. 

Electrical (M&I) 	 105 
IIT Roorkee 



References 	 - 

[9] I. Sahin, C. S. Gloster, and C. Doss, "Feasibility of Floating Point Arithmetic in 

reconfigurable computing systems", 2000 MAPLD International Conference, 2000. 

[ 10] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, y. Savaria, and D. Pokier, "A flexible 

Floating Point Format for Optimizing Data Paths and operators in FPGA based DSPs", 

International Symposium on Filed Programmbale Gate Arrays, pages 50-55, ACM Press, 

February 2002. 

[11] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna, "Analysis of High-Performance 

Floating-Point Arithmetic on FPGAs," International Parallel and Distributed Processing 

Symp., pp. 149b, April 2004. 

[12] A. Malik and S. Ko, "Efficient Implementation of Floating Point Adder using 

pipelined LOP in FPGAs," IEEE Canadian Conference on Electrical and Computer 

Engineering, pp. 688-691, May 2005. 

[ 13] IEEE Standard Board and ANSI, "IEEE Standard for Binary Floating-Point 

Arithmetic," 1985, IEEE Std 754-1985. 

[14] G. Hinton, et al., "The Microarchitecture of the Pentium 4 Processor," Intel 

Technology J., 1st quarter 2001 at. 

http://www.intel.com/techno1ogv/itj/q.htm 

[15] Mentor Graphics corporation, http://w-ww.mentor.com. 

[16] John L Henessy and David A Patterson, "Computer Arithmetic — A Quantitative 

Approach", Morgan Kaufmann, 2003. 

[ 17] Xilinx corporation, http://www.xilinx.com 

106 	 Electrical (M&I) 
ITT Roorkee 



FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement 

18 Wakerly, J. F. 2000, "Digital Design: Princi les and Practices ", 3 d̀ ed. Upper [ ] 	Y> 	 g ~ 	~~ 	P 	 pP 
Saddle River, NJ: Printice Hall. 

[19] Perry, D. L. 2004, "VHDL: Programming By Example", 4th ed. New York: McGraw-
Hill Companies inc. 

[20] Bhasker, J. 1997, "A VHDL Primer", Allentown, PA: Star Galaxy Press. 

[21] T. S. Hall and J. 0.'- Hamblen, "System on-a-Programmable-Chip, Development 

Platforms in the Classroom", To appear in IEEE Transactions on Education, 2004, 

[Online Document, Cited 2004 February 29], Available HTTP: 

http://www.ece.gatech.edu/—hamblen/papers/SOC top.pdf 

[22] Y. Li and W. Chu, "A New Non-restoring Square root algorithm and its VLSI 

implementations", Proc. of 1996 IEEE international conference on computer design: 

VLSI in computers and Processors, Austin, Texas, USA, October 1996, pp 538-544. 

[23] Xiaojun Wang and Brent E. Nelson, "Tradeoffs of Designing Floating-Point 
Division• and Square Root on Virtex FPGAs", Proceeding of the 11 h̀ Annual IEEE 
Symposium on Field-Programmable Custom Computing Machines, 2003. 

[24] Taek-Jun Kwon, Joong-Seok Moon, Jeff Sondeen and Jeff Draper, "A 0.18µm 

Implementation'of Floating-Point Unit for a Processing-In-Memory system", IEEE, 2003, 
pp. 453-456. 

[25] Kyung-Nam Han, Sang-Wook Han and Euisik Yoon, "A New Floating-Point 

Normalization Scheme by Bit-Parallel Operation of Leading One Position Value", IEEE, 
2002, pp. 221-224 

[26] Hu He, Zheng Li and Yihe Sun, "Multiply-Add fused Float Point Unit with On-Fly 

Denormalized Number Processing", IEEE, 2005, pp.1466-1468. 

Electrical (M&I) 	 107 
IIT Roorkee 



References 

[27] Ramyanshu Datta and Jacob A. Abraham, "A Low Latency and Low Power 

Dynamic Carry Save Adder", IEEE, 2004, pp. 477-480. 

[28] Eric M. Schwarz, "FPU Implementations with Denormalized Numbers", IEEE 
Computer Society, May 2005, pp. 825-836. 

[29] Ling Zhuo and Viktor K. Prasanna, "High-Performance and Area-Efficient 

Reduction Circuits on FPGAs", Proceedings of the 17th International Symposium on 
Computer Architecture and High Performance Computing, 2005. 

.[30] Guenter Gerwig, Holger Wetter, Eric M. Schwarz and Juergen Haess, "High 

Performance Floating-Point Unit with 116-bit wide divider", Proceedings of the 16th 

IEEE Symposium on Computer Arthmetic, 2003. 

[31] Jian Liang and Russell Tessier and Oskar Mencer, "Floating Point Unit Generation 

and Evaluation for FPGAs", Proceedings of the 11th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, 2003. 

[32] Li Zheng, He Hu and Sun Yihe, "Floating-Point Unit Processing Denormalized 

Numbers", 2003, pp. 90-93. 

[33] Alex Panato, Sandro Silva, Flavio Wagner, Marcelo Johann, Ricardo Reis and 

Sergio Bampi, "Design of Very Deep Pipelined Multipliers for FPGAs", Proceedings of 

the Design, Automation and Test in Europe Conference and Exhibition Designers' 

Forum, IEEE, 2004. 

[34] Peter-Michael Seidel, "High-radix Implementation of Floating-point Addition", 

Proceeding of the 17 h̀  IEEE Symposium on Computer Arithmetic, 2005. 

108 	 Electrical (M&I) 
IIT Roorkee 



FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement 

[35] Haiping Sun and Minglun Gao, "Unified Bit for Leading Zero Anticipatory Logic 

for High Speed Floating-Point Addition", Proceedings of IEEE Symposium on FPGAs for 
Custom Computing Machines, 2003, pp 786-789. 

[36] Steven D. Krueger and Peter-Michael Seidel, "Design of an On-Line IEEE Floating-

Point Addition for FPGAs", Proceeding of the 12th  IEEE Symposium on Field-

Programmable Custom Computing Machines, 2004. 

[37] Peter-Michael Seidel, "Design of an On-Line IEEE Floating-Point Multiplication 

and Division fro Reduced Power Dissipation", Proceedings of IEEE Symposium on 

FPGAs for Custom Computing Machines, 2004, pp 498-502. 

[38] Ahmet Akkas and Michael J. Schulte, "A Quadruple Precision and Dual Double 

Precision Floating-Point Multiplier", Proceedings of the Euromicro Symposium on 

Digital System Design, 2003. 

[39] He Jing and Han Yue-qiu, "A Pipelined Multiplication Unit", Proceedings of IEEE 

Symposium on FPGAs for Custom Computing Machines, 2003, pp. 1247-1250. 

[40] C. Chen, L. A. Chen and J. R. Cheng, "Architectural design of a fast floating-point 

multiplication-add fused unit using signed-digit addition", Proceedings of IEE 

Symposium on Comput. Digit. Tech., Vol. 149, No. 4, July 2002, pp. 113-120. 

[41] Nicolas Brissibarre and Jean-Michel Muller, "Accelerating Correctly Rounded 
Floating-Point Division when the Divisor is known in advance", IEEE Computing 
Society, December 2003, pp. 1069-1072. 

[42] Irvin Ortiz and Manuel Jimenez, "Scalable Pipeline Insertion in Floating-Point 

Division and Square root units", IEEE, 2004, pp. 225-228. 

Electrical (M&I) 
	

109 
ITT Roorkee 



References 

[43] Yamin Li and Wanming Chu, "implementation of Single Precision Floating-point 

Square root on FPGAs", Proceedings of IEEE Symposium on FPGAs for Custom 

Computing Machines, 1997, pp 226-232. 

[44] Liang-Kai Wang and Michael J. Schulte, "Decimal Floating-Point Square root using 

Newton-Raphson iteration", Proceedings of the 16 6̀  International Conference on 

Application-Specific Systems, Architecture and Processors, 2005. 

[45] Jose-Alejandro Pineiro, "High-Speed Double Precision computation of Reciprocal, 

Division, Square root, and Inverse Square root", IEEE, 2002. 

[46] Luo Min, Bai Yong-Qiang, Shen Xu-Bang and Gao-De-Yuan, "The Implementation 

of an Out-of-Order Execution Floating-Point unit", IEEE, 2004, pp. 1384-1387. 

[47] Claudio Brunelli, Fabio Campi, Jari Nurmi and Julia Kylliainen, "Reconfigurable 

FPU as IP component for SoCs", IEEE, 2004, pp. 103-106. 

[48] Neil Burgess, "Prenormalization Rounding in IEEE Floating-Point Operations using 

a Flagged Prefix Adder", IEEE Transactions on Very Large Scale Integration Systems 

(VLSI), Vol. 13, No. 2, February 2005, pp. 266-277. 

[49] Gokul Govindu, Ling Zhuo, Seonil Choi and Viktor Prasanna, "Analysis of High-

performance Floating-point Arithmetic on FPGAs", Proceedings of the 18th 

International Parallel and Distributed Processing Symposium, IEEE, 2004. 

[50] http://www.howstuffwoiks.com/hydro 

110 
	

Electrical (M&I) 
IIT Roorkee 



FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement 

APPENDIX A 

GLOSSARY 

0 

ASICs 
An ASIC (application-specific integrated circuit) is an integrated circuit (IC) 

customized for a particular use, rather than intended for general-purpose use. 

Aldec's Active HDL 

The Active-HDL from Aldec Inc. suite is a comprehensive and totally integrated 

environment for digital IC design and verification that employs hardware description 

languages and C/C++ solutions. It provides tools for efficient and vendor independent 

design implementation and testing for engineers and design teams. Active-HDL supports 
even the most complex FPGA and ASIC designs. 

Altera 
Altera Corporation is a manufacturer of programmable logic devices. 

ASCII 
ASCII (American Standard Code for Information Interchange), generally 

pronounced [ski], is a character encoding based on the English alphabet. ASCII codes 

represent text in computers, communications equipment, and other devices that work 

with text. 
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C 

CPLD 
CPLD stands for Complex Programmable Logic Device. It is a programmable 

logic device with complexity between that of FPGAs and PALs, and architectural 

features from both. The building block of a CPLD is the macro cell, which contains logic 

implementing disjunctive normal form expressions and more specialized logic operations. 

- Computer-aided design (CAD) is the use of a wide range of computer-based tools 

that assist engineers, architects and other design professionals in their design activities. It 

is the main geometry authoring tool within the Product Lifecycle Management process 

and involves both software and sometimes special-purpose hardware. 

Compile-Time 
In computer science, compile time, as opposed to runtime, is the time when a 

compiler compiles code written in a programming language into an executable form. 

CLBs, IOBs & Interconnects 
The FPGA has three major configurable elements: configurable logic blocks 

(CLBs), input/output blocks, and interconnects. The CLBs provide the functional 

elements for constructing user's logic. The IOBs provide the interface between the 

package pins and internal signal lines. The programmable interconnect resources provide 
routing paths to connect the inputs and outputs of the CLBs and IOBs onto the 

appropriate networks. 

01 

DSP 
Digital signal processing (DSP) is the study of signals in a digital representation 

and the processing methods of these signals. DSP and analog signal processing are 
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subfields of signal processing. DSP has three major subfields: audio signal processing, 

digital image processing and speech processing. The microprocessor class of digital 

signal processor (DSP) is a specialized microprocessor designed specifically for digital 

signal processing, generally in real-time. 

E 

EDA 

Electronic design 'automation (EDA) is the category of tools for designing and 

producing electronic systems ranging from printed circuit boards (PCBs) to integrated 

circuits. This is sometimes referred to as ECAD (electronic computer-aided design) or 

just CAD. 

F 

FPGA 

Field-programmable gate array or FPGA is a semiconductor device containing 

programmable logic components and programmable interconnects. The programmable 

logic components can be programmed to duplicate the functionality of basic logic gates 

(such as AND, OR, XOR, NOT) or more complex combinatorial functions such as 

decoders or simple math functions. In most FPGAs, these programmable logic 
components (or logic blocks, in FPGA parlance) also include memory elements, which 
may be simple flip-flops or more complete blocks~of memories. 

Finite State Machine (FSM) 

A finite state machine or finite automaton is a model of behavior composed of 

states, transitions and actions. A state stores information about the past, i.e. it reflects the 

input changes from the system start to the present moment. A transition indicates a state 

change and is described by a condition that would need to be fulfilled to enable the 

transition. An action is a description of an activity that is to be performed at a given 
moment. 
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Front-end and back-end 
In their most general meanings, the terms front end and back end refer to the 

initial and the end stages of a process flow. 

In software design, the front-end is the part of a software system that deals with 
the user, and the back-end is the part that processes the input from the front-end. The 
separation of software systems into "front ends" and "back ends" is a kind of abstraction 

that helps to keep different parts of the system separated. 

In compilers, the front-end translates the source language into an intermediate 

representation, and the back-end works with the internal representation to produce code 

in the output language. 

In electronic design automation, front-end stages of the design cycle are logical 

and electrical design (e.g., schematic capture, logic synthesis). Sometimes floor planning 

is also considered front-end. Back-end are place and route, custom layout design and 

physical verification (design rule checking, layout versus schematic, parasitic extraction). 

Many programs are divided conceptually into front and back ends, but in most 

cases, the "back-end" is hidden from the user. However, sometimes programs are written 

which serve simply as a front-end to another, already existing program, such as a 

graphical user interface (GUI) which is built on top of a command-line interface. This 

type of front-end is common in Unix GUIs, where individual programs are developed on 

the design philosophy of many small, tested programs, able to run independently or 

together. 

Graphical User Interface 
A graphical user interface (or GUI, sometimes pronounced "gooey") is a method 

of interacting with a computer through a metaphor of direct manipulation of graphical 

images and widgets in addition to text. GUIs display visual elements such as icons, 

windows and other gadgets. 
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High-Level Language (HILL) 

A programming language such as C, FORTRAN, or Pascal that enables a 
programmer to write programs that are more or less independent of a particular type of 
computer. Such languages are considered high-level because they are closer to human 

languages and further from machine languages. In contrast, assembly languages are 
considered low-level because they are very close to machine languages. 

Hardware Description Languages (HDLs) 

In electronics, a hardware description language or HDL is any language from a 

class of computer languages for formal description of electronic circuits. It can describe 

the circuit's operation, its design, and tests to verify its operation by means of simulation. 

I 

1P (IntellectuaI Property) 

In electronic design a semiconductor intellectual property core, IP block, IP core, 
or core is a reusable unit of logic, cell, or chip layout design. Cores that are the property 

of one party may be licensed to another party though cores can also be owned and used 

by a single party alone. The term is derived from the licensing of the patent and source 

code copyright intellectual property rights that subsist in the design. An uncommon 

alternative expansion is "integrated processor block". IP cores can be used as building 
blocks within ASIC chip designs or FPGA logic designs. 

IDE 

An integrated development environment (IDE), also known as integrated design 

environment and integrated debugging environment, is a type of computer software that 

assists computer programmers to develop software. IDEs normally consist of a source 

code editor, a compiler and/or interpreter, build-automation tools, and (usually) a 
debugger. 
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Integrated Circuit 

Another name for a chip, an integrated circuit (IC) is a small electronic device 

made out of a semiconductor material. Integrated circuits are often classified by the 

number of transistors and other electronic components they contain: 

SSI (small-scale integration): Up to 100 electronic components per chip 

MSI (medium-scale integration): From 100 to 3,000 electronic components per 
chip 

LSI (large-scale integration): From 3,000 to 100,000 electronic components per 

chip 

VLSI (very large-scale integration): From 100,000 to 1,000,000 electronic 

components per chip 

ULSI (ultra large-scale integration): More than 1 million electronic. components 

per chip 

IA-32 

IA-32, sometimes generically called x86-32, is the instruction set architecture of 

Intel's most successful microprocessors. Within various programming language directives 

it is also referred to as "i386". The term may be used to refer to the 32-bit extensions to 

the original x86 architecture, or to the architecture as a whole. The term means Intel 

Architecture, 32-bit, which distinguishes it from the 16-bit versions of the architecture 

that preceded it. 

IEEE 

Institute of Electrical and Electronics Engineering. 

IEEE-754 

IEEE Standard for Binary Floating-point Arithmetic is the most widely used 

standard for floating-point computation, and is followed by many CPU and FPU 

implementations. 
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II 

JTAG 
JTAG, an acronym for Joint Test Action Group, is the usual name used for the 

IEEE 1149.1 standard entitled Standard Test Access Port and Boundary-Scan 

Architecture for test access ports used for testing printed circuit boards using boundary 

scan. 

L 

LUT 
In digital logic, an n-bit lookup table can be implemented with a multiplexer 

whose select lines are the inputs of the LUT and whose inputs are constants. This is an 
efficient way of encoding Boolean logic functions, and 4-bit LUTs are in fact the key 

component of modern FPGAs. 

LE 

Logic Elements, FPGA are defined in terms of Les. . The array of logic cells and 

interconnects form a fabric of basic building blocks for logic circuits. Complex designs 
are formed by combining these Logic elements to build the desired circuit. 

M 

MicroBlaze 

The MicroBlaze is a soft processor core from Xilinx for use in Xilinx FPGAs. 
The MicroBlaze is based on a RISC architecture very- similar to the DLX architecture 

described in a popular computer architecture book by Patterson and Hennessy. It features 

a 3-stage pipeline, with most instructions completing in a single cycle. Both instruction 

and data words are 32 bits. 
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N 

Netlist 
In Electronic Design domain, a "netlist" describes the connectivity of an 

electronic design. Netlists usually convey connectivity information and provide nothing 

more than instances, nets, and perhaps some attributes. Netlists can be either physical or 

logical; either instance-based or.net-based; and flat or hierarchical. 

C 

On-Chip Peripheral Bus (OPB) 

This is a part of the IBM CoreConnect architecture. A processor (hard or soft) 

core accesses low speed and low performance system resources through On-chip 

Peripheral Bus (OPB). The OPB is a fully synchronous bus that functions independently 

at a separate level of bus hierarchy. 

On-Chip/Off-Chip Memory 

On-Chip memory refers to a memory tightly coupled to processor, generally on 

the same silicon chip. Off-Chip memory refers to a memory which resides outside the 

silicon chip where the processor actually resides. 

P 

PROM 
A programmable read-only memory (PROM) or field programmable read-only 

memory (FPROM) is a form of digital memory where the setting of each bit is locked by 

a fuse or antifuse. Such PROMS are used to store programs permanently. Some of its 

types are EPROM, EEPROM etc., 
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Programmable Logic Devices (PLDs) 

Programmable Logic Device or PLD is an electronic component used to build 
digital circuits. Unlike a logic gate, which has a fixed function, a PLD has an undefined 
function at the time of manufacture. Before the PLD can be used in a circuit it must be 
programmed. 

Process (in VHDL) 

Behavioral descriptions are supported with the process statement. The process 
statement can appear in the body of an architecture declaration just as the signal 

assignment statement does. The contents of the process statement can include sequential 

statements like those found in software programming languages. These statements are 

used to compute the outputs of the process from its inputs. Sequential , statements are 

often more powerful, but sometimes have no direct correspondence to a hardware 

implementation. The process statement can also contain signal assignments in order to 

specify the outputs of the process. The body of the process appear between the begin and 
end keywords. Example of a process is shown below. 

compute_xor: process (b,c) 
begin 

a<=b xor c; 

end process; 

Sensitivity List 

Next to the keyword process (in VHDL), which starts the definition of a 
process there is a list of signals in parenthesis, called the sensitivity list. The signal 
sensitivity list is used to specify which signals should cause the process to be re-

evaluated. Whenever any event occurs on one of the signals in the sensitivity list, 
the process is re-evaluated. 

Run-Time 

In computer science, runtime or run time describes the operation of a computer 
program, the duration of its execution, from beginning to termination. 
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Reconfigurable Computing (RC) 

Reconfigurable computing is computer processing with highly flexible computing 

fabrics. The principal difference when compared to using ordinary microprocessors is the 

ability to make substantial changes to the data path itself in addition to the control flow. 

Ex: FPGA, CPLD etc. 

RTL 
Register Transfer Language (RTL) has two meanings in computer science. The 

first is an intermediate representation used by the GCC compiler. Register Transfer 
Language also refers to a language that defines precisely what each instruction in a 

processor does, to a level of detail that allows synthesis of the hardware. The acronym 

RTL is also used for register transfer level, an attribute of a hardware description 

language. 

RAM 

Random-access memory (commonly known by its acronym RAM) refers to data 

storage formats and equipment that allow the stored data to be accessed in any order --
that is, at random, not just in sequence. 

Static Random Access Memory" (SRAM) is a type of semiconductor memory. 

The word "static" indicates that the memory retains its contents as long as power 

remains applied, 

Dynamic random access memory (DRAM) is a type of random access memory 

that stores each bit of data in a separate capacitor. As real-world capacitors are not 

ideal and hence leak electrons, the information eventually fades unless the 

capacitor charge is refreshed periodically. Different variations of DRAMS are: 

PSRAM, DDR SDRAM, DRDRAM, SDRAM, QDR SDRAM, SGRAM, 

MDRAM, BEDO DRAM, EDO DRAM, WRAM, and VRAM. 
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RISC (Reduced Instruction Set Computer) 
The reduced instruction set computer, or RISC, is a microprocessor CPU design 

philosophy that favors a smaller and simpler set of instructions that all take. about the 

same amount of time to execute. The most common RISC microprocessors are ARM, 

DEC Alpha, PA-RISC, SPARC, MIPS, and IBM`s PowerPC. 

RTOS 

A real-time operating system (RTOS) is a class of operating system intended for 

real-time applications. Examples include embedded applications (programmable 

thermostats, household appliance controllers, mobile telephones), industrial robots, 

industrial control (SCADA), and scientific research equipment. 

SOC 

System-on-a-chip (SoC or SOC) is an idea of integrating all components of a 

computer or other electronic system into a single chip. It may contain digital, analog, 

mixed-signal, and often radio-frequency functions — all on one chip. A, typical application 

is in the area of embedded systems. 

SOPC 

System-on-a-Programmable-chip, Similar to SOC, only difference it is .build in 

programmable hardware 

SOPC Builder 

SOPC Builder is a powerful system development tool developed by AItera for 

creating systems based on processors, peripherals, and memories. SOPC Builder enables 

you to define and generate a complete SOPC in much less time than using traditional, 

manual integration methods 
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Soft Processor/Soft-core 
A soft processor is a processor created out of the configurable logic in a FPGA. 

Synthesis 
In the world of electronic design automation, synthesis is the process of 

converting a digital design written in a hardware description language (HDL) into a low-

level implementation consisting of primitive logic gates. Most large integrated circuits 

designed today are written in an HDL and "compiled" using a synthesis product. 

Serial Port 

In computing, a serial port is an interface on a computer system through which 

information transfers in or out one bit at a time 

[f 

UCF file 
The User Constraints File is an ASCII file that you create. You can create this file 

by hand or by using the Constraints Editor. The UCF file contains timing and layout 

constraints that affect how the logical design is implemented in the target device. The 

constraints in the file are added to the information in the output NOD file. 

User-defined 
User defined items are the one which are developed and implemented by the users 

or developers as applicable. 

VHDL 

VHDL or VHSIC Hardware Description Language, is commonly used as a•

design-entry language for field-programmable gate arrays and application-specific 

integrated circuits in electronic design automation of digital circuits. 
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Verilog 

Verilog is a hardware description language (HDL) used to model electronic 
systems. The language (sometimes called Verilog HDL) supports the design, testing, and 
implementation of analog, digital, and mixed-signal circuits at various levels of 
abstraction. 

Xilinx, Inc. 

It is the world's largest developer and manufacturer of the class of reconfigurable 

hardware chips known as Field-Programmable Gate Arrays (FPGAs). Xilinx is a 

developer of FPGA and CPLD devices that are used in numerous applications within 

telecommunications, automotive, consumer, defense, and other fields. Xilinx offers 

device families for glue logic (CoolRunner, CoolRunner II), low-cost (Spartan), and 
high-end (Virtex) applications in addition to supporting devices such as PROMs. 

Xilinx ISE & EDK 

Xilinx offers electronic design automation (EDA) tools for use with its devices. 
Chief among these is ISE, which offers a complete EDA flow. The other being Xilinx's 

Embedded Developer's Kit (EDK), which is aimed primarily at designers wishing to use 

the embedded PowerPC 405 core in the Virtex-II Pro and Virtex-4, or Xilinx's own soft 

microprocessor/microcontroller (MicroBlaze) in their designs. Other domain-specific 

tools include System Generator for DSP, which provides seamless simulation and 

implementation of high-performance DSP designs on Xilinx's FPGAs: 

X86 

x86 or 80x86 is the generic name of a microprocessor architecture first developed 
and . manufactured by Intel. The x86 architecture currently dominates the desktop 
computer, portable computer, and small server markets. 
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XS Board 
FPGA development board series. 
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APPENDIX B 

DESIGN CUSTOMIZED INSTRUCTION AND THEIR USAGE 

F~-WIXV t 
Load real number from the input port into the stack. 

Opcode: 0x00 

Clock cycles: 5 

Description: 

It merges the integer and fraction part of the real number and then 
converts the number into extended double precision format and decrements the 
data register stack by one and stores the converted data into top of stack. 

2 	FSTORE instruction 

Store real number from the stack into the output port. 
Opcode: 0x08. 

Clock cycles: 6 

Description: 
It retrieves the extended double precision number from the top of stack,. 

converts it into equivalent real number, and then stores the converted data into 
output port 

3 	FADD instruction 
Add TOP of data register stack to the TOP + X and store the result in TOP 

of data register stack. 
Opcode: 0x10 + X. (X3 0 to 7) 

Clock cycles: 18 (if both numbers are valid) 

7 (if one of the number is invalid, zero or infinite) 
Description: 

It adds the content (extended double precision number) of the top of data 
register stack to the content of the top of stack plus X mentioned in instruction-0 
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to 7 (extended double precision number) and stores the result (extended double 
precision number) into the top of data register stack. 

4 	FSUB instruction 
Subtract TOP + X of data register stack from the TOP and store the result 

in TOP of data register stack. 
Opcode: 0x18 + X. (X -~ 0 to 7) 
Clock cycles: 18 (if both numbers are valid) 

7 (if one of the number is invalid, zero or infinite) 

Description: 
It subtracts the content (extended double precision number) of the top of 

data register stack plus X mentioned in instruction-0 to 7 from the content of the 
top of stack (extended double precision number) and stores the result (extended 
double precision number) into the top of data register stack. 

5 	FMUL instruction 
Multiply TOP of data register stack to the TOP + X and store the result in 

TOP of data register stack. 
Opcode: 0x20 + X. (X -  0 to 7) 
Clock cycles: 11 (if both numbers are valid) 

7 (if one of the number is invalid, zero or infinite) 

Description: 
It multiplies the content (extended double precision number) of the top of 

data register stack to the content of the top of stack plus X mentioned in 
instruction-0 to 7 (extended double precision number) and stores the result 
(extended double precision number) into the top of data register stack. 

6 	FDIV instruction 
Divides TOP + X of data register stack from the TOP and stores the result 

in TOP of data register stack. 
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Opcode: 0x28 + X. (X - 0 to 7) 
Clock cycles: 18 (if both numbers are valid) 

7 (if one of the number is invalid, zero or infinite) 
Description: 

It divides the content (extended double precision number) of the top of 
data register stack plus X mentioned in instruction-0 to 7 from the content of the 
top of stack (extended double precision number) and stores the result (extended 
double precision number) into the top of data register stack. 

7 	FSQRT instruction 
Computes square-root of TOP of data register stack and store the result in 

TOP of data register stack. 
Opcode: 0x38. 
Clock cycles: 66 (if number is valid) 

7 (if number is invalid, zero infinite or negative) 
Description: 

It computes square root of the content (extended double precision 
number) of the top of data register stack and stores the result (extended double 
precision number) into the top of data register stack. 

8 	FCHS instruction 
Change sign of TOP of data register stack and store the result in TOP of 

data register stack. 
Opcode: 0x40. 
Clock cycles: 5 
Description: 

It changes the sign of the content of the top of data register stack 
(extended double precision number) and stores the result (extended double 
precision number) into the top of data register stack. 
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9 	FABS instruction 

Computes the Absolute value of TOP of data register stack and store the 

result in TOP of data register stack. 

Opcode: 0x30. 

Clock cycles: 5 

Description: 
It computes the absolute value of the content of the top of data register 

stack -(extended double precision number) and stores the result (extended double 

precision number) into the top of data register stack. 

10 	RTI instruction 
Round to nearest integer TOP of data register stack. and store the result in 

TOP of data register stack. 

Opcode: 0x58. 

Clock cycles: 5 

Description: 
It rounds the content of the top of data register stack (extended double 

precision number) to the nearest integer and stores the result (extended double 

precision number) into the top of data register stack. 

11 	LDCW instruction 
Load FPU control word 

Opcode: 0x60. 

Clock cycles: 5 

Description: 

• Load the immediate input data into the control word register. 

12 	FRSW instruction 
Store FPU status word into the output port. 

Opcode: 0x68 
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Clock cycles: 5 
Description: 

Store the status word (different states) into the output port. 

13 	FCLEX instruction 
Clear floating-point exception flags. 

Opcode: 0x70 
Clock cycles: 5 
Description: 

Clears the exception flags in the status word. 

14 	NOP instruction 
Do nothing. 

Opcode: 0x78 
Clock cycles: 4 
Description: 

Do nothing for 4 clock cycles. 
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APPENDIX C 

SYNTHESIS REPORT 

Presented work is simulated using Aldec's Active HDL and the simulation results 
obtained in Active HDL simulation environment are available in Chapter 6. Xilinx ISE 

7.1i supported by Modelsim [15] is used to synthesize the Floating-point Arithmetic unit. 
The target FPGA was Xilinx's Virtex II Pro [17]. This appendix provides the crucial part 

of synthesis results. 

Device utilization summary: 
The following table gives utilization summary of Floating-Point Arithmetic unit 

which is synthesized on Xilinx Virtex II Pro FPGA kit using Xilinx ISE 7. li. 

Target Device : xc2vp100 

Table Cl Device utilization for FPU 

Timing Summary: 
Speed Grade: -5 

Minimum period: 107.329ns (Maximum Frequency: 9.31 7MHz) 
Minimum input arrival time before clock: 16.416ns 
Maximum output required time after clock: 15.594ns 
Maximum combinational path delay: 6.407ns 
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Rest of the tables shows utilization summary of sub units of FPU. 

• Table C.2 Device utilization for Stack Register 
An~r- IIFJH3FIryn' ' 	I IQ6r1 "~Lndahla UIi;;I 

776 

i`JWt r of 4; input U 	828 	88192 	0i 

	

.NlumlWer o1 banded IOBs ` 193 	1040 	18Z 
Numi sraf G:CLKs 	:I 	3 	18 	18r 

Table 

Table C.4 Device utilization for Load (part of stack) 
~ogic Utilization . 	1Ua AvailahleFUtlhzet nn'? 
Nurcibar of=Slice$ 	r " 24 440981 0% 
Numb$r aF Slice Flip-Flaps:. 41 88192 0% 
plumber of 4 input LUTs 5 88192 0% 
NUfter df t%bh&d'.IQBs _ I 118 10401 11% 

Table C.5 Device utilization for Decoder Unit 

Table C.6 Device utilization for Addition Unit 
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Table C.7 Device utilization for Multiplication Unit 

61 

19% 

16 

Table C.8 Device utilization for Division Unit 

16 

Table C.9 Device utilization for Absolute Unit 
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