
FPGA BASED FLOATING POINT ARITHMETIC UNIT FOR
TURBINE EFFICIENCY MEASUREMENT

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

ELECTRICAL ENGINEERING
(With Specialization in Measurement £t Instrumentation)

By

LOKESi SHARMA
TP

W&5L WOS-

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE-247 667 (INDIA)

JUNE, 2006

Dedicated to my Grandfather, Shri Shiv kumar Sharma

CANDIDATE'S DECLARATION

I hereby declare that the work which is being presented in this dissertation
entitled, "FPGA BASED FLOATING POINT ARITHMETIC UNIT FOR
TURBINE EFFICIENCY MEASUREMENT", submitted towards the partial
fulfillment of the requirements for the award of the degree of Master of Technology in
Electrical Engineering, with specialization in Measurement & Instrumentation, I.I.T.

Roorkee, India is an authentic record of my own work carried out from June 2005 to June
2006 under the supervision of Dr. H. K. Verma, Professor, Electrical Engineering
Department, Indian Institute of Technology, Roorkee, India and Dr. R. S. Anand,
Associate Professor, Electrical Engineering Department, Indian Institute of Technology,
Roorkee, India.

The matter embodied in this dissertation report has not been submitted by me for
the award of any other degree or diploma.

Place: Roorkee
Dated: JL~. .3c:, 2 ° 6

	
LOKESH SHARMA

CERTIFICATE.

This is to certify that the above statement made by the candidate is correct to the

best of our knowledge.

Dr. R. S. Anand
Associate Professor

Electrical Engineering Department

11T Roorkee

Roorkee-247667 (India)

Verm
Professor

Electrical Department

IIT Roorkee

Roorkee-247667 (India)

111

ABSTRACT

Due to inherent limitations of Fixed-point representation, it is sometimes
desirable to perform arithmetic operations in the floating-point format. Although
an established standard for floating-point arithmetic operations exist, the growing
demand for high-performance computing platforms has pushed the computing
community to work upon new architectures and algorithms for floating point
arithmetic operations. Performing the arithmetic operations on IEEE Floating-
point numbers imposed challenges beyond the challenges of Fixed-Point
arithmetic. These challenges particularly include the task of normalization and
IEEE compliant rounding. For some time now the researchers have been working
on use of FPGAs to solve the problem. The presented work is also exploring an
application area of FPGA to develop independent System on Programmable Chip
(SOPC) design. This work describes the implementation of Floating-point
arithmetic unit in FPGA chip, using VHDL programming on Xilinx ISE 7.1

platform supported by Modelsim and Aldec Active HDL simulation environment.
Besides implementing the addition, subtraction, multiplication, division, square
root, and absolute unit, some other supporting units like general purpose registers,
control registers, tag register, status register etc are also implemented to make it
work in stand-alone mode. This feature also provides flexibility of writing
programs to the end user. The input/output number format confirms IEEE-754

standard single precision real numbers. Internally, calculations are performed
according to IEEE-754 standard double-extended precision real numbers (as
incorporated in Intel Pentium4 processor). This inherited feature assists floating-
point arithmetic unit in enhancing the accuracy. A special care has been taken
through the tag word. The tag register checks the validity of number before

performing a complex arithmetic computation and thereby saves clock cycles in
case the data register is empty or contains zero, infinity or invalid number. I also

iv

implemented the normalization unit and all four possible rounding modes. In
essence, this dissertation presents a well thought FPGA implementation of all the

basic arithmetic operations and a successful attempt has been made to save silicon

area and reduce overall latency. , An implementation of turbine efficiency

measurement is presented, illustrating the use of Floating-point arithmetic unit.

Simulation and Synthesis results of all sub-components within the FPU and the

efficiency measurement are also presented.

v

ACKNOWLEDGEMENTS

At the outset,. I express my deepest sense of gratitude to Dr. H. K. Verma,
for giving me the opportunity to work on an exciting project in my area of interest

and for his support throughout the dissertation. I remember with great emotion,

the constant encouragement and help extended to me by him that went even
beyond the realm of academics.

I would like to thank Dr. R. S. Anand, for all the effort and support he has

given me throughout my dissertation work. All his technical insight and motivation

through my work has been very helpful. His guidance in writing this dissertation

was indispensable. I owe him a great debt of gratitude.

My sincere thanks are due to all the faculty members of the department for

the voluntary help, direct and indirect, extended to me during the course of the
work.

Special thanks to my friends at IIT Roorkee for making my post graduation

life a memorable experience.

Finally, I am indebted to my mother who have built my educational

foundation, encouraged me throughout my studies and given me the choice

and chance to pursue what I desired. Through the course of my studies, I have

been fortunate to enjoy unwavering support and encouragement of my little sister,

Charu Sharma. My relatives have always been at my side in all the vicissitudes of

my M. Tech life. To them I owe a debt of gratitude that can scarcely be contained
in this acknowledgement.

LOKESH SHARMA

vi

CONTENTS

CANDIDATE'S DECLARATION
ABSTRACT

ACKNOWLEDGEMENTS
CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1: INTRODUCTION 	 1-8
1.1 Motivation

1.2 Research Focus

1.3 Literature Review

1.4 Study Approach

1.5 Organization of Report

CHAPTER 2: TURBINE EFFICIENCY MEASUREMENT 	 9-14.
2.1 Turbine Efficiency Measurement: An Application

2.2 Elements of Hydroelectric Power Station

2.3 Method used for Turbine Efficiency Measurement

CHAPTER 3: IEEE 754: STANDARD FOR BINARY FLOATING-POINT

ARITHMETIC 	 15-20
3.1 Formats

3.2 Normalization

3.3 Special Values

3.4 Exceptions

3.4.1 Invalid Operation

3.4.2 Division by Zero

3.4.3 Overflow

3.4.4 Underflow

Electrical (M&I) 	 vii
UT Roorkee

Contents

3.4.5 Inexact

3.5 Rounding Modes

3.5.1 Round to Nearest Number

3.5.2 Round to Zero
3.5.3 Round Up

3.5.4 Round Down

CHAPTER 4: HARDWARE MODULES OF FLOATING-POINT ARITHMETIC
UNIT 	 21-66

4.1 Architecture of Floating-Point Arithmetic Unit

4.1.1 FPU Interfaces

4.1.2 Specifications

4.2 Data Registers

4.3 Control Register

4.4 Status Register

4.5 Tag Register

4.6 Decode Unit

4.7 Precision Converter

4.7.1 Conversion of Single Precision to Extended-Double Precision

4.7.2 Conversion of Extended-Double Precision to Single Precision

4.8 Addition/Subtraction Unit

4.8.1 Use of Tag Word

4.8.2 Algorithm

4.8.3 Different Types of Integer Adders and their Comparative Study

4.9 Multiplication Unit

4.9.1 Use of Tag Word

4.9.2 Algorithm

4.9.3 Different Types of Integer Multipliers and their Comparative Study

4.10 Division Unit

4.10.1 Use of Tag Word

4.10.2 Algorithm

Electrical (M&I) 	 viii
IIT Roorkee

Contents

4.10.3 Different Types of Integer Dividers and their Comparative Study
4.10.4 Division Parameters

4.11 Square Root Unit

4.11.1 Use of Tag Word

4.11.2 Algorithm

4.11.3 Different Types of Integer Square Root Algorithms and their
Comparative Study

4.12 Absolute Unit

4.13 Exception Generation Unit

CHAPTER 5: DESIGNING WITH FPGAs 	 67-76
5.1 Introduction to FPGAs

5.2 Basic Architectures

5.3 Programming with FPGAs

CHAPTER 6: EXPERIMENTAL RESULTS AND VERIFICATION 	77-102
6.1 Introduction to Experimental Approaches

6.1.1 Design Environment

6.1.2 FPGA Design Flow

6.2 Simulation Results

6.2.1 Data Registers

6.2.2 Control Register

6.2.3 Tag Register

6.2.4 Precision Converter

6.2.5 Addition/Subtraction Unit

6.2.6 Multiplication Unit

6.2.7 Division Unit

6.2.8 Square Root Unit

6.2.9 Absolute Unit

6.2.10 Exception Generation Unit

6.2.11 Turbine Efficiency Measurement

Electrical (M&I) 	 IX
IIT Roorkee

Contents

6.3 Verification of Simulation Results

CHAPTER 7: CONCLUSION AND FUTURE WORK 	 103-104
7.1 Conclusion
7.2 Suggestions for Future Work

REFERENCES
	

105-110

APPENDIX A Glossary 	 111-124

APPENDIX B Design Customized Instruction and their usage 	 125-130

APPENDIX C Synthesis Report 	 131-133

Electrical (M&I) 	 X
UT Roorkee

LIST OF FIGURES

Name 	 Page

Figure 1.1 Study Approach 6

Figure 2.1 Elements of Hydroelectric Power Station 10
Figure 2.2 Efficiency Measurement 13
Figure 4.1 (a) Architecture of Floating-point arithmetic unit 21
Figure 4.1 (b) Execution unit 22
Figure 4.2 Data register stack 25
Figure 4.3 Control register 26
Figure 4.4 Status register 27
Figure 4.5 Tag Register 28
Figure 4.6 Addition/Subtraction algorithm 33
Figure 4.7 Ripple Carry Adder 35
Figure 4.8 Carry Look Ahead Adder 38
Figure 4.9 Carry Select Adders 39
Figure 4.10 Multiplication Algorithm 42
Figure 4.11 (a) Basic Cell 46
Figure 4.11 (b) Shift-Add Multiply 46

Figure 4.12 Architecture of the Booth multiplier 47

Figure 4.13 Partial Product Generation 49
Figure 4.14 Wallace Tree 50

Figure 4.15 Division Algorithm 52

Figure 4.16 Square root unit Algorithm 60

Figure 4.17 Absolute unit Algorithm 65

Figure 5.1 FPGA Architecture 67

Figure 5.2 Simple Logic Block Structure 69

Figure 5.3 The Four FPGA Architectural Classes 71

Electrical (M&I) 	 xi
IIT Roorkee

List of Figures

Figure 5.4 Typical CAD system design flow for FPGAs 	 72

Figure 5.5 Designing with FPGA 	 74
Figure 6.1 FPGA Design Flow 	 78

Figure 6.1 Simualtion Waveform for Stack operation 	 80
Figure 6.3 Simulation Waveform for Conrol word 	 81

Figure 6.4 Simulation Waveform for Tag word 	 82

Figure 6.5 Simulation Waveform of Single Precision to Extended-Double Precision

82

Figure 6.6 Simulation Waveform of Extended-Double Precision to Single Precision

83

Figure 6.7 Simulation Waveform of Addition 83

Figure 6.8 Simulation Waveform for Multiplication 85

Figure 6.9 Simulation Waveform of Division 86

Figure 6.10 Simulation Waveform of Square Root 87

Figure 6.11 Simulation Waveform for Absolute Unit 88

Figure 6.12 Simulation Waveform for Exception Generation 	 89-90

Figure 6.13 Simulation Waveform of Unit Efficiency Measurement 	 93-98

Figure 6.13 Simulation Waveform of Unit Efficiency Measurement 	 100-101

Electrical (M&I) 	 xii
IIT Roorkee

LIST OF TABLES

Name 	 Page

Table 3.1 Summary of Format parameters 17
Table 3.2 (a) Special values 18

Table 3.2 (b) Example: Special values 18
Table 4.1 FPU interface 23

Table 4.2 Booth Multiplication 48
Table 6.1 Example of Test Vectors 101

Table C.1 Device utilization for FPU 131

Table C.2 Device utilization for Stack Register 132

Table C.3 Device utilization for Store (part of stack) 132

Table C.4 Device utilization for Load (part of stack) 132

Table C.5 Device utilization for Decoder Unit 132

Table C.6 Device utilization for Addition Unit 132

Table C.7 Device utilization for Multiplication Unit 133

Table C.8 Device utilization for Division Unit 133

Table C.9 Device utilization for Absolute Unit 133

Electrical (M&I) 	 xiii
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

CHAPTER 1

INTRODUCTION

A floating-point number is a digital representation for a number in a certain subset
of the rational numbers, and is often used to approximate an arbitrary real number on a
computer. The term floating point is derived from the fact that there is no fixed number
of digits before and after the decimal point; that is, the decimal point can float. There are
also representations in which the number of digits before and after the decimal point is
set, called fixed-point representations. In general, floating-point representations are

slower and less accurate than fixed-point representations, but they can handle a larger
range of numbers.

The Floating Point Arithmetic Unit (FPU), designed in this dissertation, is a
specialized computation unit that manipulates numbers more quickly than the basic
microprocessor circuitry. The FPU does this by means of instructions that focus entirely
on large mathematical operations.

System-on-a-chip .(SoC) is a new insight of integrating all components of a
computer system into a single chip [21]. This chip may contain digital, analog, mixed-
signal all on the same dye. These chips are rapidly replacing more sophisticated computer
systems in many applications [41], especially when the silicon space available is a
concern. The presented FPU offers programming flexibility to the end user.

Digital systems are either conventional -hard-core systems (application specific

integrated circuits — ASICs) which have limited hardware programming (customization)
capability, or soft-core systems (Field Programmable Gate Array — FPGA based systems)
which are fully programmable and customizable.

Each of these systems has their own pros and cons discussed as below,

• Hard-core Systems (ASICs):
An ASIC is an integrated circuit (IC) customized for a particular use, rather than

intended for general-purpose use. These systems have portability problems, and using a
full fledged microprocessor for every task is not feasible. Thus, hard-core systems are

Electrical (M&I)
IlT Roorkee

Introduction

generally ordered by the customer to the manufacturer to do a specific task. Also, the
development time and NRE cost for ASICs is very high.

• Soft-core Systems (FPGA based systems):
FPGA based processors are fully programmable (customizable) systems. Any
general FPGA based system can be programmed in two levels: Low level and
High level using HDL [191 [201. FPGAs have almost zero NRE cost and available
in the market all the time. The FPGA core can be programmed to be any digital
system one can . think of, from a simple logic AND gate to a full fledged
microprocessor. The same FPGA core can be reprogrammed (re-customized)
later, to serve other purposes.

Thus, because of the "hardware customization" concept that is introduced by the
FPGA based systems, two entirely different systems can be constructed using the same
chip with different HDL files. This is a relatively new technology, and limited numbers

of soft-core FPUs exist in the market.
In today's processing-power hungry applications, the extended dynamic range and

precision offered by floating-point arithmetic is quickly becoming a requirement in

numerous signal processing algorithms that are being used in graphics, advanced wireless
communications, instrumentation, industrial control, audio and medical imaging
applications. This growing use of floating-point arithmetic places a requirement for area

efficient and high performance solutions on hardware engineers. One such application is
turbine efficiency computation. To calculate unit efficiency, one needs to process large
number of variables acquired from different locations of hydro power stations. An
independent Floating-point arithmetic unit is designed that is supported by eight general
purpose registers, tag register, control register, and status register. These supporting
registers make FPU to work in stand-alone mode.

1.1 Motivation
For the most part, the digital design companies have resolved to FPGA design

instead of ASICs due to its effective time to market, adaptability and most importantly,

2 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

its low cost. Floating-point arithmetic unit is one of the most important custom
applications needed in most hardware designs as it adds accuracy and ease of use. A lot of
work has been done on floating-point operations and FPGAs that is summarized in
section 1.3. However, to the best of my knowledge, there is no work which gives
implementation of Floating-point arithmetic unit in FPGA with a facility to program it
and a detailed analysis of architectural implementation of sub operations for floating-

point arithmetic unit in FPGA. Since the area occupied by floating-point unit in FPGA is
well known to be very large, I investigated several approaches/algorithms to reduce the

area and execution time of Floating-point arithmetic unit. A successful implementation of
turbine efficiency measurement is presented, illustrating the use of floating-point unit.

1.2 Research Focus

The main contribution and objective of our work is to implement and analyze
algorithms for floating-point operations and hardware modules used to compute

these algorithms. These algorithms and modules are implemented using Very .High
Speed Integrated Circuit (VHS IC) Hardware Description Language (VHDL), and then
are synthesized using Xilinx ISE 7.1 platform supported by Modelsim and Aldec Active
HDL simulation environment [15][1]. These implementations are placed and routed in
the FPGA device. Area and timing information for each design approach and algorithm
is analyzed.

1.3 Literature Review

One of the earliest investigations into using FPGAs to implement floating-
point arithmetic was done by Fagin et al. [4] who in 1994 showed that implementing
IEEE single precision operators was possible, but also impracticable on then current
FPGA technology. The circuits designed by the author were an adder and a

multiplier and both had full implementation of all four rounding modes specified by
IEEE 754 standard. Area was the critical constraint, with the authors reporting that
no device in existence could contain a single precision multiplier circuit. Therefore,

Electrical (M&I)
	 3

IlT Roorkee

Introduction

the authors purpose adopting smaller, custom formats which may be more

appropriate to FPGA architectures than the full IEEE formats.

This line of thought was expanded on by the significant work of Shirazi et al.

[5] who suggested application specific formats in width of 16(1-6-9) and 18(1-7-10)
bits, as opposed to full 32(1-8-23) bits in the IEEE 754 standard. Modules for

additiontsubtraction, multiplication, and division were presented, though no work
was done on implementing rounding or error-handling.

Another significant work came from Louca et al. [6] in which the authors,
building on the work of Shirazi and others, abstract the normalization operation
away from the actual arithmetic operators, in an effort to conserve area. No

rounding capability was implemented by the authors, due to area constraints.

Ligon et al. [7] presented IEEE single precision adder and multiplier circuits

on the then newly available Xilinx 4000 series FPGAs. Both circuits supported
rounding to nearest, but didn't used a separate normalizing unit. Similar work by

Stamoulis et al. [8] presented IEEE single precision adder/subtractor, multiplier and
division circuits. However, the authors don't present any rounding capability and

normalizing unit.

Work by Sahin et al [9] present adder/subtractor, multiplier and accumulator

circuits, but again only in IEEE single precision format. Also rounding capability is

not implemented. Dido et al. [10] discusses flexible floating point formats which

were different from IEEE 754 standard, but they successfully implemented the

hardware modules without support for rounding. Their format contains no sign bit

or bias of exponent.

Work by Y. Li et al. [22] present single precision square root algorithm and

its VLSI implementation. Although the design was targeted for CMOS technology,
it gives good implementation details of Non-Restoring method. In 2003, Xiaojun

Wang et al. -[23] provided the tradeoffs of implementing division and square root on

Virtex FPGAs.

4 	 Electrical (M&I)
nT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Ling Zhuo et al. [29] presented FPGA based area reduction circuits. Using
Xilinx's Virtex II pro as the targeted device, Ling Zhuo and others implemented floating
point adder circuits.

One of the most recent works published related to my work is published by G.
Govindu, L. Zhuo, S. Choi, and V. Prasanna [11] on the analysis of high-performance

floating-point arithmetic on FPGAs. This paper has been an excellent resource for our
implementation and discussions throughout the research process, and provides possible
explanations. All the implementations are done with the latest Xilinx Virtex 2p FPGA.

Another recent work by A. Malik et al. [12] discusses an effective implementation of
floating-point adder using the pipelined version of Leading One Predictor (LOP).

Work by Prof. H. K. Verma et al. [2] shows that efficiency test on turbine-
generator unit in a hydro power station needs simultaneous measurement of a number of

variables located in different places in the station using suitable instruments placed close
to respective variables. The measurement data from these instruments can be acquired

simultaneously by connecting them in a network using RS-485 serial data standard. I
have designed the FPGA based Floating point arithmetic unit capable to further process

the accumulated data. The Floating-Point Arithmetic unit in my work is the generalized
superset of all these works. It not only supports the IEEE 754 format while implementing
all arithmetic operations viz, addition/subtraction, multiplication, division, square root,
and absolute value of a number but also provides the programming flexibility to the end
user. Also, I abstract normalization as well as rounding functionality with a choice of all
four rounding modes: My Floating-Point unit also provides Status register, Control
register, eight General Purpose registers and a lot more. All this will be discussed in
subsequent chapters. In essence, the features are taken from Intel Pentium4 [14].

1.4 Study Approach

The approach towards this dissertation is to study, implement and analyze different

existing algorithms and selects the one which gives the best performance in terms of area

and latency.

Electrical (M&I)
	 5

IlT Roorkee

Introduction

Problem Definition

Behavioral Design
and Simulation

Fixed Point
Partitioning

Structural VHDL
Design

Synthesis

Map, Place and
Route on FPGA

Modify
Architecture, if
needed

Turbine Efficiency
measurement

Figure 1.1 Study Approach

To facilitate the design process, a solid problem definition was defined.

Problem Definition

✓ Main aim of this dissertation is to explore some new application areas of FPGA to

develop independent System on Programmable Chip (SOPC).

6 	 Electrical (M&I)
I1T Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

✓ To develop a FPGA based Floating-Point Arithmetic unit capable of performing
all arithmetic operations such as addition/subtraction, division, multiplication, square root
and absolute value of a number. The unit should provide programming functionality to
the end user.

✓ To test the system for Turbine Efficiency measurement.

The Behavioral VHDL modules undergo simulation using Active -HDL Tools to
provide the level of correctness before the synthesize stage. Synthesize is done using
Xilinx ISE 7.1 and the design is mapped, placed and routed on the Xilinx FPGA board.
Timing reports are also generated and changes made to the architecture are back annotated

to the structural design and synthesized to be placed and routed. Figure 1.1 depicts the
methods to be used in this research.

1.5 Organization of Report

Chapter 2 (Turbine Efficiency measurement) discusses the method used for turbine
efficiency measurement. Basic elements of hydro power station have also been
discussed in this chapter.

Chapter 3 (IEEE 754: Standard for Binary Floating-Point Arithmetic) presents the
introduction to IEEE 754 standard • for binary floating-point arithmetic. It gives the
details of basic and extended floating-point number, exception generation and their

handling, normalization and rounding units.

Chapter 4 (Hardware Modules of Floating-Point Arithmetic unit) presents the
architecture and specifications of Floating-point arithmetic unit. Internal hardware
modules of FPU including their functions and structures are described in detail. The
simulation and synthesis results of these modules are presented in Chapter 6 and

Appendix C respectively.

Electrical (M&I)
	 7

IIT Roorkee

Introduction

Chapter 5 (Designing with FPGAs) gives overview of FPGA which is followed by
design flow of FPGAs. The chapter also presents the detailed architecture of Xilinx'
Virtex II Pro FPGA kit (targeted device in this dissertation).

Chapter 6 (Experimental Results and Verification) presents the experimental results
of all subunits and test bench written for turbine efficiency measurement. Software and
Hardware Environments used during the various phases of dissertation are also
presented.

Chapter 7 (Conclusion and Future Work) concludes and suggests the future work

which can be done in this area.

8 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

CHAPTER 2

TURBINE EFFICIENCY MEASUREMENT

2.1 Turbine efficiency measurement: An application
Efficiency test on turbine-generator unit in a hydro power station needs

simultaneous measurement of a number of variables located in different places in the

station using suitable instruments placed close to respective variables [2]. The
measurement data from these instruments was acquired simultaneously by connecting
them in a network using RS-485 serial data standard and was -finally collected in a
computer for further processing. Now devoting the whole computer or Laptop for
processing of this data is a costly affair. So I believe that FPGA is best suited for such an
application as it is reconfigurable, allows parallel processing, cost effective, and offers

many other advantages. In this thesis, I. have developed a FPGA -based Floating-point
arithmetic unit for turbine efficiency measurement. This is a system on chip design which

accepts the real numbers at its input ports, does calculation as programmed by the end
user, and provides the output at its output port. A successful attempt is made to save
silicon space and reduce latency. I believe this project will help in saving thousands of
bucks while providing efficient results.

I have taken it for granted that these variables are already measured and the

measurement data from different instruments can be acquired easily. This chapter
discusses the method employed for the computation of turbine efficiency. Before going

into the depth of the matter, I would like to discuss elements of hydroelectric system.

2.2 Elements of Hydroelectric Power Station
Hydropower plants harness water energy and use simple mechanics to convert

water energy into electric energy. Hydroelectric systems are actually based on a rather
simple concept — water flowing through a dam turns a turbine, which turns a generator.

The basic components of a conventional hydroelectric system are shown in Figure 2.1.

Electrical (M&I)
	

E
HT Roorkee

Turbine Efficiency Measurement

• Dam: Most hydropower plants rely on a dam that holds back water, creating a
large reservoir.

• Intake: Intake is the highest point of hydroelectric system where the gravity pulls

the water through the penstock, a pipeline that feeds the turbine, when the gates
on the dam open. Water builds up pressure as it flows through the pipe.

Figure 2.1 Elements of Hydroelectric Power Station [50]

• Penstock: Penstock, the pipeline not only moves the water to the turbine, but is

also the enclosure that creates head pressure as the vertical drop increases.

• Turbine: The water strikes and turns the large blades of a turbine, which is
attached to generator above it by way of a shaft. In essence, the turbine is the

heart of hydroelectric system, where the water power is converted into rotational
force that drives generator. For maximum efficiency, turbine should be designed

to match head and flow of the hydroelectric system. Turbines can be divided into
two major types:

Reaction Turbines use runners that operate fully immersed in water, e.g.,

Francis, Propeller, and Kaplan etc.

10 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Impulse Turbines use runners that .operate without being immersed in water,
e.g., Pelton, Turgo etc.

• Generators: As the turbine blades turn, so do a series of magnets inside the
generator. Giant magnet rotate the copper coils, producing alternating current
(AC) by moving electrons.

• Drive system: Drive system couples the turbine to the generator, which converts
the rotational energy from the turbine into electricity.

• Powerhouse: Powerhouse is simply a building that houses turbine, generator and
other necessary system components.

• Transformer: The transformer inside the power house takes the AC and converts
it to higher voltage current.

• Power Lines: Out of every power plant come four wires: three phases of power
being produced simultaneously plus a neutral or ground common to all three.

• Outflow: Used water is carried through pipelines, called tailraces, and reenters
the river downstream.

2.3 Method used for Turbine Efficiency measurement
Determination of turbine efficiency requires measurement of hydraulic power

input to the turbine and electric power output from the turbine-generator unit, and
calculation of the ratio of two quantities.

The hydraulic power input to the turbine, Pi is given by

Pi = pgHQ
where, g is the acceleration due to. gravity, m/s2,

p is the density of water, kg/m3,

H = H1 — H2 is the net water head, m,
Hl is water head at inlet, m,

H2 is water head at outlet, m,
Q is the water discharge through the turbine, m3/s.

Electrical (M&I)
	 11

HT Roorkee

Turbine Efficiency Measurement

The international standard value of g is 9.806 m/s2. However, its actual value at a
given location is a function of the latitude and altitude of the location. Values of g are
given in IEC-60041 [3] that shall be used for achieving higher accuracy.

The density of water is approximately 1000 kg/m3 and it is a function of
temperature and pressure. Values for density of water, p are given in IEC-60041 [3].

There are number of methods available to find the net water head, H and
discharge, Q. Details of these methods are available in IEC-60041 manual [3].

The electrical output from the turbine-generator unit can be measured by using a
wattmeter. Let the output from turbine-generator unit be represented by Pe.

The following figure 2.2 gives an idea of the method used to measure turbine
efficiency.

Unit efficiency is given by

Generator _ Output, PQ UnitEfficiency,71,, = 	 X100%
Hydraulic _Input, P

Knowing the value of the generator efficiency, qg, the turbine efficiency can be
calculated by the following relation:

TurbineE cien 	= Unit - Efficiency,tgg X100%
~' ~T Generator — Efficiency, 17g

So efficiency measurement based on the above concepts requires the
measurement of following parameters:
1 	Water density, p
2 	Gravity, g
3 	Water head at inlet, HI
4 	Water head ateiitlet, H2
5 	Discharge, Q
6 	Generator output, Pe.

To learn about acquiring the measurement data simultaneously; please refer to [2].

12 	 Electrical (M&I)
IIT Roorkee

CO

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

--I

bri) - -
0 -

11!
I

El

I-.

Electrical (M&I)
	

13
11T Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

CHAPTER 3

IEEE 754:

STANDARD FOR BINARY FLOATING-POINT ARITHMETIC

Floating Point is a representation of real (fractional) numbers. In this
representation, the location of the fractional point -can be moved from one position to
another according to the precision. In the early days of computers, vendors start

developing their own floating-point representations and methods of calculations. These
different approaches lead to different results in calculations. So the IEEE organization

defined in the IEEE-754 standard a representation of the floating point numbers and the
operations [131. The standard specifies:

• Basic and extended floating-point number formats

• Add, subtract, multiply, divide, square root, remainder, and compare operations

• Conversions between integer and floating-point formats

• Conversions between different floating-point formats

• Conversions between basic format floating-point numbers and decimal strings

• Floating-point exceptions and their handling, including non numbers (NaNs)

3.1 Formats
IEEE Floating-point representation divides the number of bits into three groups:

• Sign bit: The sign bit is as simple as it gets. 0 denotes a positive number; 1
denotes a negative number. ' Flipping the value of this bit flips the sign of the

number.

• The Biased-Exponent part: The exponent is that component of the binary
floating-point number that normally signifies the integer power to which two is

raised in determining the value of the represented number. And the biased-

Electrical (M&I) 	 15
IIT Roorkee

IEEE 754: Standard for Binary Floating-Point Arithmetic

exponent is the sum of the exponent and a constant (bias) chosen to make the
biased-exponent range non-negative.

Biased-Exponent, e = E + bias

The range of the unbiased exponent E shall include every integer between two
values E,, and E„,, inclusive and also two other reserved values E-1 to
encode ±0 and denormalized numbers, E,,,,,+1 to • encode .±oo and NaNs. The
foregoing parameters are given in Table 3.1.

• The Fractional part (also known as mantissa): The field of the significant that
lies to right of its implied binary point.

Fraction, f = .blb2...bp_I

The numbers are of the form (-I)s2E(bo•b1b2...by-1)

where, s =0 or 1;
E = any integer between Emig and E,,, ;
by =0 or 1;

The IEEE 754 standard defines five floating-point formats in two groups, basic
and extended [13]. The basic format is further divided into single-precision with 32-bits

wide, double-precision with 64-bits wide and quad-precision with 128-bits wide. Then
there is single-extended precision format and double-extended precision format.

Extended format is implementation dependent and does concerns my project. The inputs
to Floating-point unit are single-precision real numbers but internally, all the calculations
are carried out in double-extended format to enhance the.accuracy of result.

16 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Table 3.1 Summary of Format parameters

Parameter Single
Single

Extended Double
Double

Extended
Quad

Precision

Total bits 32 2:43 ' 64 2:79 128
Precision

bits, p

24 2:32 53 264 113

Sign bits, s 1 1 1 1 1
Fraction

bits, f
23 2:32 52 2:64 112

Exponent
bits, e

8 2:11 11 2:15 15

Emax +127 >+1023 +1023 2+16383 +16383
Emin -126 <-1022 -1022 <-16382 -16382

Exponent
bias

+127 Unspecified +1023 Unspecified +16383

3.2 Normalization
Normalization is the act of shifting the fractional part in order to make the most

significant bit of the fractional part one. During this shifting, the exponent is incremented.
In essence normalized numbers have their MSB 1 in the most left bit of the fractional part
and denormalized numbers are just the opposite of normalized numbers.

Some operations like addition/subtraction require that the exponent field should
be same for all operands. In such a case, one of the operand should be denormalized. I
have done denormalization of the smaller operand.

Denormalized numbers have important use in some operations and numbers. For
example, assume minimum exponent of some format is -88, and the number of digits is 3.
It is required to perform x —y where x = 5.87x10-87 and y = 5.81x10-87. The result of
this operation is 0.06x10-89 which is too small to be represented as a normalized number.
If we try to represent it as normalized number, the result becomes zero which is incorrect
but if it is denormalized we will get the correct result.

Electrical (M&I)
	 17

IIT Roorkee

IEEE 754: Standard for Binary Floating-Point Arithmetic

3.3 Special values
The IEEE 754 standard supports some special values -viz positive zero, negative

zero, positive infinity, negative infinity and Not a Number (NaN) as given in Table 3.2.

Table 3.2 (a) Special values
Name Exponent Fraction Sign Exp bits Fract bits

+0 Min —1 =0 + All zeros All zeros
-0 Min --1 =0 - All zeros All zeros

Number Min < e < Max Any Any Any . Any
+oo Max + 1 =0 + All ones All zeros
-Co Max + 1 =0 - All ones All zeros

NaN Max + 1 A0 Any All ones Any

Below is a table with the corresponding values for a given- representation (single
precision, in this case) to help better understand the above table.

Table 3.2 (b) Example: Special values
Sign Exponent Fraction Value

0 00000000 00000000000000000000000 +0
1 00000000 00000000000000000000000 -0
1 00000000 10000000000000000000000 . -2° 'x0.(2')
0 00000000 00000000000000000000001 +2" 	x0.(2)
0 10000000 00000000000000000000000 +00

1 10000000 00000000000000000000000 -0o

0 10000000 10000000000000000000000 NaN

18 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

3.4 Exceptions
There are five types of exceptions that shall be signaled when detected. For each

type of exception the implementation will provide a bit in the status register that will be
set on any occurrence of the corresponding exception. The presented implementation of
Floating-pint arithmetic unit will provide the end user a way to read and write the status
register.

3.4.1 Invalid Operation
The invalid operation exception is signaled if an operand is invalid for the

operation on to be performed. The invalid operations are:

• Any operation on a NaN

• Addition or subtraction: oo + (-oo)

• Multiplication: ±0 x ± co

• Division: ±0/ ± 0 or ± oo/ ± oo

• Square root: if the operand is less than zero

3.4.2 Division by zero
If the divisor is zero and the dividend is a finite nonzero number, then the division

by zero exception shall be signaled. The result will be correctly signed co.

3.4.3 Overflow
The overflow exception is signaled whenever the result exceeds the maximum

value that can be represented due to the restricted exponent range. It is not signaled when

one of the operands is infinity, because infinity arithmetic is always exact. Division by
zero also doesn't trigger this exception.

3.4.4 Underflow
Two events cause the underflow exception to be signaled, tininess and loss of

accuracy. Tininess is detected after or before rounding when a result lies between ±2".
Loss of accuracy is detected when the result is simply inexact or only when a
denormalization loss occurs. The implemented FPU core signals an underflow exception

Electrical (M&I)
	 19

IlT Roorkee

IEEE 754: Standard for Binary Floating-Point Arithmetic

whenever tininess or denormalization loss is detected after rounding and at the same time
the result is inexact.

3.4.5 Inexact
This exception will be signaled whenever the result of an arithmetic operation is

not exact due to the restricted exponent and/or precision range.

3.5 Rounding Modes
Rounding takes a number regarded as infinitely precise and, if necessary, modifies

it to fit in the destination's format. To increase the precision of the result and to make best
use of rounding modes, all the internal calculations are carried out in double-extended
format The IEEE 754 standard specifies four rounding modes and my FPU supports all
these rounding modes:

3.5.1 Round to nearest number
This is the standard default rounding. The value is rounded up or down to the

nearest infinitely precise result. If the value is. exactly halfway between two infinitely
precise results, then it should be rounded up to the nearest infinitely precise number.
e.g., 3.4 will be rounded to 3.0 and 3.5 to 4.0.

3.5.2 Round-to-Zero

Basically in this mode the number will not be rounded. The excess bits will
simply get truncated, e.g. 3.47 will be truncated to 3.4.

3.5.3 Round-Up
The number will be rounded up towards +ao, e.g. 3.2 will be rounded to 4.0, while

-3.2 to -3.

3.5.4 Round-Down
The opposite of round-up, the number will be rounded up towards -oo, e.g. 3.2 will

be rounded to 3.0, while -3.2 to -4.

20 	 Electrical (M&I)
ITT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

CHAPTER 4

HARDWARE MODULES OF
FLOATING-POINT ARITHMETIC UNIT

This chapter presents the architecture and specifications of Floating-point

arithmetic unit. Internal hardware modules of FPU including their functions and

structures are described in detail.

4.1 Architecture of Floating-point Arithmetic unit

FLOATING-POI 7T 	'i'dC T T

32

data ®U

dais frame a t

stylus word
co Irol_word
taword

zeta flag
.inva1i4Ja

stark oveer ow
mark. unc ow

iaic_ove~flow
amelic undeiflow
4ivid _byjero

A4. 	DE DDR

i
A7 	 b`iwi for

	

_ __ 	chip sel~cf'

clk

Figure 4.1 (a) Architecture of Floating-point arithmetic unit

Electrical (M&I
IIT Roorkee

21

Hardware Modules of Floating-Point Arithmetic Unit

Inside of execution unit is as shown below in Figure 4.1 (b).

P4
0
Co

32 lines
from Hex

to Single
precision
converter

p

c

Q
0
a

d
I)

16 lines
from 	 a :0

decoder 	 0

ri

16

16

ADDITION
UNIT

SUBTRACTION
UNIT .

MULTIPLICATION
T rr

DIVISION
r

SQUARE ROOT
UNIT

ABSOLUTE
UNIT

EXCEPTION
GENERATION
UNIT

zero flag

invalid flag

infnity_flag

stack overflow

stack underflow

numeric _overflow

numeric_underflow

divide by_zero

Figure 4.1 (b) Execution unit

22
	

Electrical (M&I)
HT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement ,

4.1.1 FPU interfaces
The following table gives the description of the interfaces of floating-point

arithmetic unit.

Table 4.1 FPU interface
Name Direction Size Description

data_int in Input [31:0] Integer part of real number given to FPU. Its

MSB is taken to find the sign of this number.
data_fract in Input [31:0] Fractional part of real number given to FPU.

A Input [7:0] Address bus predicts which operation is to be

performed and on which register.
clk Input 1 Clock (-eve edge trigger)

reset Input 1 Reset all data to zero.
data int out Output [31:0] Integer part of real number given to FPU. Its

MSB is taken to find the sign of this number
data_fract out Output [31:0] Integer part of real number given to FPU. Its

MSB is taken to find the sign of this number
Status_word -Output [15:0] Gives the status of FPU

Control_word Output [15:0] Controls the rounding method used and
masks the exceptions.

Tag_word Output [15:0] Gives information about validity of data in
register stack.

Zero_flag Output 1 Tells whether the data is zero
invalid_flag Output 1 Tells whether the data is invalid
infinity_flag Output 1 Tells whether the data is invalid

stack overflow Output 1 Tells if the stack is full
stack_underflow Output 1 Tells if the stack is empty

numeric_overflow Output 1 Tells whether result of some operation has
crossed the maximum limit

numeric_underflow Output 1 Tells whether result of some operation has
gone below the minimum limit

divide_by_zero Output 1 Tells whether division by zero is attempted

Electrical (M&1) 	 23
IlT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

4.1.2 Specifications
Following are the system specifications of Floating-Point Arithmetic unit which

were keeping in mind while designing:
➢ The core should be complaint with the IEEE-754 standard.
➢ Although the core is an execution unit, it should work in the stand alone mode.
> The FPU works has storage registers and the result data or intermediate results can be

stored in that. No need for CPU (works in stand alone mode)
> The end user will issue instructions to FPU.

➢ The core should provide the status of FPU.'
> The core should provide the functionality to mask the exceptions as described in

IEEE 754 standard and control the rounding modes.
> One instruction is executed at a time.

➢ The user should have ability to read all interfaces.

4.2 Data Registers
Data registers incorporated in Floating-point unit is similar to that of x87 FPU

data registers in Intel processor. It consists of eight 80-bit registers. Values are stored in
these registers in the double-extended precision floating-point format (IEEE 754

standard) [13].
On execution of Load instruction, the single precision number from memory or

external world is loaded into data register. Here, the value is automatically converted into
double-extended precision format. Similarly, on execution of Store instruction, the
double-extended precision number (content of data register) is converted into single

precision format and transferred back into memory or external world.
The FPU instructions treat the• eight data register as a register stack. All

addressing of the data registers is relative to the register on the top of the stack. The
register number of the current top-of-stack is stored in the TOP (stack TOP) field in the.
FPU status word. Load operations decrement TOP by one and load a value into the new
top-of-stack register, and store operations store the value from the current TOP register in

memory (or external world) and then increment TOP by one.

24 	 Electrical (M&I)
nT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Data Rester

Growth
Stack

1

7
6
5
4
3
2
1
0

ST(4)
ST(3)
ST(2)
ST(1)

ST(0) 'Top
0B

Figure 4.2 Data register stack

If a load operation is performed when TOP is at bottom of the stack (i.e. at 0),
register wraparound occurs and the new value of TOP is set to 7. The floating-point
stack-overflow exception (see exception generation unit 4.13) indicates when
wraparound might cause an unsaved value to be overwritten. Internally, assembler
supports register addressing mode to operate on the top of the stack, using the expression
RO to represent the current stack top and Ri to specify the ith register from the TOP in
the stack (0 <= i <=7) . For example, if TOP contains 010B (assume, register 2 in the top
of the stack), the following instruction would multiply the contents of two registers in the

stack (register 2 and 6):

FMUL ST(4);

4.3 Control Register
The 16 bit FPU control word (see Figure 4.3) controls the rounding method used.

It also contains the exception mask bits. The contents of this register can be loaded with

the load control word instruction.
When the FPU is initialized with the either an initialization instruction or upon

reset the control word is set to OCOOH which unmask all floating-point exceptions and

sets rounding to nearest.
The exception flag mask bits (bit 0 through 4 of the control word) mask the five

floating point exception in the FPU status word. When one of these mask bits is set, its

corresponding exception is blocked from being generated.

Electrical (M&I) 	 25
UT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

The bits 10 and 11 of the control register controls how the results of FPU are
rounded. Rounding control is designed as per IEEE 754 standard [13].

Rounding. Control

15-
RC

Exception Masks

Underflow
Overflow
Zero
Denorrnali ed
operand
Invalid operation

Figure 4.3 Control register

4.4 Status Register
The 16-bit FPU status register (see Figure 4.4) indicates the current state of the

FPU. The flags in the status register include the busy flag, top-of-stack (TOP) pointer,
condition code flags, stack fault flag, and exception flags. The FPU sets the flags in this
register to show the results of operations. The contents of the status register can be stored
in memory or external world using the FRSW instruction.

• Busy Flag: Indicates FPU is busy i.e. executing an instruction.

• Top of Stack (TOP) Pointer: A pointer to the FPU data register that is currently
at the top of the register stack is contained in bits 11 through 13 of the FPU status
word. This pointer, which is commonly referred to as TOP (for top-of-stack), is a
binary value from 0 to 7.

• Condition Code Flags: It consist of zero flag, infinity flag, and sign flag for
indicating different conditions after executing asked operation.

• FPU Exception Flags: The four exception, flags (bits 0 and 2 through 4) of the
FPU status word indicate that one or more have been detected since the bits were
last cleared. The individual exception flags (IE, ZE, OE and UE) are described in

26 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

detail in Section 4.13. Each of the exception flags can be masked by an exception
mask bit in the FPU control word.

• Stack Fault: The stack fault flags (bit 6 and 7 of the status register) indicate that
stack overflow and stack underflow has occurred with data in the data register
stack.

15
	

0
BO TOP C2C!` Ssb U 0201

O1L EEEl E

INVALID EXCEPTION
RESEIWED
ZEROEXCEPTIoN
O FLOW.EXCEP` ION

•UI 7FR LOv EXCE O
R!SE1tVBD
STACK TJNDE1FLc w
STACK OVE1FLQV

TOP-Off'-5TAt K

Figure 4.4 Status register

4.5 Tag Register
The 16-bit Tag register gives the information about validity of contents of FPU

data register stack (one 2-bit tag per register). The tag indicates whether a register

contains a valid number, zero or a special floating number (NaN, infinity), or whether it
is empty [14]. On reset, FPU tag word is set to FFFFH, which marks all the FPP data
register as empty. Each tag in the tag word corresponds to a physical register (number 0

to 7).
Instruction FADD, FSUB, FMUL, FDIV, FSQRT, FABS use this tag information

to check the content of data register before performing their operations, this assist FPU
to prevent from performing complex operation and allows save clock cycles.

Electrical (M&I)
	 27

IlT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

15: IM
TAG(7) TAG(6) TAG(5) TAG(4) TAC(3) TAG(2) TAG(i) TAG(0)I

TAG Values
00— Vakd

:01 —Zero
10— Special rnvalid (NaN. unsupported), infinity or--d' enorm l
11—Empty

Figure 4.5 Tag Register

Tag in the tag word changes only when the write operation is performed on the
FPU data registers. Tag word marks empty the appropriate tag (top of stack) after read

operation. End user cannot directly load or modify the tags in the tag register.

4.6 Decode unit

A7 6 AsA2A1

Don't 	Instruction Register numberwith
care 	opcode 	reference to top-of-stack

Figure 4.6 address lines to decoder

The address bus consists of eight address lines. These address lines are distributed

as shown below in Figure 4.6.
The instruction decoder logic is 4:16 lines i.e. input to the decoder is 4 address

lines (A6A5A4A3) and output from the decoder is 16 1-bit signal. Each of the lines either
activate or deactivate chip select signal. At a time, only one chip is activated. The
remaining address lines (A2A1A0) identifies the register number with reference to top-of-
stack for arithmetic operations.

For example,
FMUL ST(3)

28. 	 Electrical (M&I)
11T Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Assuming that top-of-stack is ST(2).

The opcode for this operation is 00100011

where, 3-LSB bits i.e. 011 represents ST(3) and next four bits i.e. 0100 represents
multiplication bit. MSB does not have any meaning, that is don't care.

4.7 Precision converter

4.7.1 Conversion of Single precision to Extended-Double precision
The input number format is in accordance to the IEEE 754 standard single

precision real number, and to enhance the accuracy of FPU result, internally the floating-

point calculations are carried out in IEEE-754 standard extended-double precision
format.

Algorithm
The Algorithm to convert single precision number to extended-double precision

format is as follows:

Step 1: Place 31st bit (sign bit) of single precision to 79th of extended-double
precision.

Step 2: Set the 63Fd bit of extended-double precision to 1 (normalizing).
Step 3: Add 16383 -127 = 16256 to exponent field of single precision and place it
in the exponent field of extended-double precision.

Step 4: Place 23 bits of mantissa part'7.,of single precision to MSB 23 bits of

mantissa part of extended-double precision. Place the trailing zeros in the mantissa
part of extended-double precision.

4.7.2 Conversion of Extended Double precision to Single precision
The output number is single precision floating-point format and as discussed in

the previous section, the internal calculations are carried out in extended double precision

format. Hence, the reverse conversion is also necessary. The conversion from extended-

double precision of single precision is a trivial task. Here we need to consider the

Electrical (M&I)
	 29

UT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

rounding mode of the mantissa part of number and overflow and underflow of the

exponent part of the number.

Algorithm

The Algorithm to convert extended-double number to single precision format is as

follows:
Step 1: If the extended-double precision number corresponds to zero, NaN or

infinite, replace with corresponding format of zero, NaN and infinite in single

precision.
Step 2: If the number is valid number, subtract 16256 from the exponent field of

extended-double precision and place it into exponent field of single precision. In case

of overflow, place infinite number into single precision. In case of underflow, place

zero number into single precision.

Step 3: Place MSB 22 bits of mantissa field of extended-double precision in the

MSB 22bits of mantissa field of single precision. 23rd bit of mantissa field of single

precision depends on the selected rounding mode.

Step 4: 	Place `0' in 231d bit of mantissa field of single precision if the selected

rounding mode is round to down. Place `1' in 23rd bit of mantissa field of single

precision if the selected rounding mode is round to up. Place 40th bit of extended-

double precision into 23' bit of mantissa field of single precision if the selected

rounding mode is round to zero. Place 39 h̀ bit of extended-double into 23rd bit of

mantissa field of single precision if the selected rounding mode is round to nearest.

4.8 Addition/Subtraction unit

In this section, we will discuss the floating-point addition algorithm architecture
and the hardware modules designed as part of this algorithm including their function,

structure and use. The 80-bit FP adder/subtractor has a latency of 18 clock cycles (see

simulation result in Figure 6.7).

30 	 Electrical (M&I)
IlT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

4.8.1 Use of Tag word
The two operands are checked for their validity using tag word. If the Tag word

for any operand contains any value other than 00, one of the following operations will be
performed:

• If tag word for any operand is 01 or 11, the result is replaced with other number as
these tag words represent zero and empty registers.

• If tag word for any operand is 10, the result is replaced with infinity as these tag
words represent that infinity is contained in the corresponding register.

In above cases, the clock cycles consumed are 7. Thereby, tag register helps in
saving the clock cycles and reduce latency.

4.8.2 Algorithm
Let Si; El; F1 and S2; E2; F2 be the signs, exponents, and mantissas of two input

floating-point operands. Given these two numbers, Figure 4.6 shows the flowchart of the
floating-point adder. algorithm. A description of the algorithm is as follows.

Stage 1: Unpacking Operands
- The two sign, exponent and mantissa bits for operand A and operand B are

latched in registers which are 1-bit, 15-bits, and 64-bits in length. The inputs are checked
for special values: Infinity, Not a Number and, Zero and the appropriate flags are set

which is passed on through all stages.

Stage 2: Exponent Difference Module
The second stage in the adder uses comparator logic to place the larger of the two

operands as operand A. The combinational VHDL process compares the exponents. If the
exponents are equal, the logic then compares the mantissa values. The comparator is left

to the synthesis tool. Sign bits of the two operands are XOR'ed. Sign bits do not affect the

comparison.

Electrical (M&I)
	 31

LIT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

Stage 3: Shift Mantissa Stage
In order to add two floating-point values in scientific notation, the two values

must have the same exponent in both sign and magnitude. The adder must perform this

operation by shifting one of the operands and making adjustments to the operand

exponent value. Stage 2 has taken the difference of the two operand exponents to

determine how many shifts are needed on operand B . and accordingly exponent of

operand b is adjusted. By shifting to the right, the operand stands to lose only lower

significant bits. The maximum number of shifts needed is 64.

Stage 4: Mantissa Addition Stage
In this stage, the additiontsubtraction of the two mantissa integer values is

performed in accordance with the sign bits. Note that since operand A is greater than

operand B, a borrow cannot happen in subtraction, and thus, the carry-out bit of the result

is cleared. The carry-out bit becomes important in the next stage which may indicate the

result needs no further normalization or exponent adjustment. If an addition took place

with a carry-out, an immediate adjustment to the exponent must be done prior to the

normalization stage since the bit does not take part in the 64-bit mantissa result vector. To

do so, the stage must shift the result vector to the right by one to accommodate the carry-

out bit as the new leading-one.

Different fixed-point adders are studied to determine which gives the best

performance. The different kinds of integer adder used for comparative study are

1. Ripple Carry adder,

2. Carry Lookahead adder,

3. Carry Select adder and

4. Carry Save adder.

All adders are implemented at the logic-level and the working of each adder is

explained in Section 4.8.3. The exponent and sign bits are stored in delay registers.

32 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

	

STAGE —1 	I 	UNPACK OPERANDS

Compare both the operands such that El >= E2 and Ml >= M2

	

STAGE 2. 	
Si 	S2 	

El 	E2 	Ml 	M2

XOR
	 Exp Jiff

•

	

.11f/l.✓.///ifi /i/ff//f/i 	 i '

----- 	 -------Ml 	[M2
SOUT 	 E_OUT

STAGE —4
WW 	 FIXED—POINT

ADDER

	

s_OUT 	 E OUT
M OUT

	

STAGE — 5 	 EXPONENT ADJUST 	NORMALIZER

	

S-OUT 	 E OUT 	 M OUT

	

STAGE —6 	 ROUNDING UNIT

	

4S OUT 	 E OUT 	 M OIJT

	

STAGE —7 	 PACK OPERANDS

Figure 4.6 Addition/Subtraction algorithm

Stage 5 and Stage 6: Leading One Detector and Normalization Shift stage
After the addition, the next step is to normalize the result. The first step is

to identify the leading or first one in the result [25] [35] [36]. Comparator logic is used
here to find the first leading-one digit from the MSB. A counter maintains the number of
comparisons made which is the equal to the number of shifts needed. The shift value is

Electrical (M&I) 	 33
11T Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

used to normalize the mantissa such that the leading-one in the mantissa resides in the
most significant bit location. This stage also uses the shift value to adjust the exponent to
the number of shifts required. Shifter in this stage is left to the synthesis tool.

Stage 7: Pack operands
Finally sign, exponent and mantissa are concatenated to form the 80-bits results

and passed as an output from the FPU. The special condition flags are checked and if any
of the flags are set high, then the result vary accordingly. The result is stored back in a

80-bit register.

4.8.3 Different types of integer adders and their comparative study
Different fixed-point adders are studied to determine which gives the best

performance. Each adder chosen in this study has its own advantage of either having a
simple design or high speed [29]. After a careful analysis, Block Carry Look Ahead adder

is chosen for FPU design.

1 Ripple Carry Adder

The implementation of a ripple carry adder for two operands x1,_1, x„-Z, ..., xo and

yR-i, yn-2, • • •, yo is through the use of n basic units of full adder. A full adder (FA) is a

logical circuit that accepts two operand bits, say xi and yl and an incoming carry, denoted

by C1. The outgoing carry, C1+1 is also the incoming carry for the subsequent FA, which

has xi+1 and yi+l as input bits. The FA is a combinatorial digital circuit implementing the

binary addition of three bits through the following Boolean equations:

A RCA consisting of FA's for n = 4 is depicted in following figure. In parallel

arithmetic unit, all 2n input bits (xi and yi) are usually available to the adder in the same

time. However, the carries have to propagate from the FA in the position 0 (the position

34 	 Electrical (M&I)
UT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

of the FA whose inputs are xo and yo) to position i in order for the FA in that position to

produce the correct sum and carry-out bits. That is, we need to wait until the carries

ripple through all n FAs before we can claim the sum outputs are correct.

B3 A3 	B.. 	Bi AT B6,Ao.

Co

C4 	S3 	 $2 	 Si 	 ' p
Figure 4.7 Ripple Carry Adder

The FA in position i has a combinatorial circuit with an incoming carry cE = 0 at

the beginning of the operation, and will accordingly produce a bit si. Ripple effect can be

observed at the sum outputs of the adder as well, continuing until the carry propagation is.

done. The incoming carry in at position 0, co, is always zero.

Disadvantage:
The obvious disadvantage of a RCA is the long carry propagation time. The worst

case delay for a RCA is n. Td, where n is the number of bits and Td is the operation time

(delay) of an FA, assuming that the delays associated with generating the sum output and
the carry-out are equal.

Advantage:
The advantage of this adder is the simplicity of the design and area occupied by

the adder which is not very high.

Electrical (M&I)
	 35

IlT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

2 Carry-Look-Ahead Adders
The main idea behind carry-look-ahead addition is an attempt to generate all

incoming carries in parallel (for all n-1 high order FAs) and avoid the need to wait until

the correct carry propagates from the stage (FA) of the adder where it has been generated.
This is possible since the carries generated and the way they propagate depend only on

the digits of the original numbers xn_ j, xn_2, .. •, xo. and Yn-1, Yn-2, •.., yo. These digits are
available simultaneously to all stages of the adder and consequently each stage can have
all the information it needs in order to calculate the correct value of the incoming carry

and compute the sum bit accordingly. This leads to large inputs which may be reduced at
each stage by extracting the information from the input digits needed to determine
whether new carries will be generated and whether they will be propagated.

There are stages in the adder where xi = y = 1, in which a carry-out is generated

regardless of the incoming carry, and as a result, no additional information on the
previous input digits is required. Other stages are only capable of propagating the

mcoming carry.
Following logic functions are defined to assimilate the information regarding

generation and propagation of carries, using logic functions OR and AND operation. Let

Gi = xt • yi denote the generated carry and let PI = x• + yj denote the propagated carry.

Hence the boolean expression for carry out is:

Replacing c1 = G_I + ci_1P1_I in the above expression

Further substitutions allows us to calculate all the carries in parallel from the

original digits x,~_l, xn_2, ..., x0 and y,-1, Yn-2, • • •, Yo and forced carry co. For example, for

a 4-bit adder, the carries are

ci 	Go+coFb.

36 	 Electrical (M&I)
IlT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

C2 = O fir` G0 	„co,Po

The following figure depicts the working of 4-bit CLA.

More generally for anyj with i < f, j + 1 <k, we have the recursive relations

Ck I..I a G.k +.1 kc2

The above equation says that carry is generated out of the block consisting of bits

i through j inclusive if it is generated in the high-order part of the block (j+1, k) or if it is

generated in the low-order part of the block (i, j) and then propagated through the high

part.

Advantage:

The bits in a CLA must pass through about log2n logic levels, compared with 2n

for a ripple-carry adder. This is a substantial speed improvement, especially for a large n.

Disadvantage:

Comparing area, ripple carry adder had n cells, whereas the CLA has 2n cells.

The point is that a small investment in size pays off in a dramatic improvement in
speed.

Electrical (M&I)
	

37
IlT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

B3 ,12 -Bi `8O. 	A3 A2 A ` AD.

53 S2 	SI SO

Figure 4.8 Carry Look Ahead Adder

3 . Carry Select Adders

Carry select adder is another fast adder that provides a logarithmic speed-up [27].

The principle behind this scheme is to generate two sets of outputs for a given group of

operand bits, say k bits.

38 	 Electrical (M&I)
Irr Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

AO- A3 -BO,-B3, 	A4-A'7 B4-B7 	A8-All

Prop: 	i} ,.. 	Fop 	 Frog
4;bits. 	 4 bids: 	 41n c

(carry-Beet):. 	 ferry-select}'

SQ=S3; •S4-S7 	 : SR-S1I

Figure 4.9 Carry Select Adders

Each set includes k sum bits and an outgoing carry. One set assumes that

eventually incoming carry will be zero, while the other assumes that it will be one. Once
the incoming carry is known, we need only to select the correct set of outputs (out of the

two sets) without waiting for the carry to further propagate through the k positions.

This idea should not be applied to all n operand bits at the beginning of the add

operation, since we will then have to wait until the carry propagates through all n
positions before making the selection. Therefore the above idea has to be applied after

given n bits is divided into smaller groups. This allows serial carry-propagation inside the

individual groups to be performed in parallel which reduces the overall execution time.
Each group generates two sets of sum bits and an outgoing carry bit. The incoming carry

selects one of these two sets. The working of a 12-bit CSA is shown in above figure.

Comparison with previous two adders:
In general CSAs require more gates than CLAs and CSA have almost the same

speed as CLA. The design of CSA is however less modular than CLA and this is the main

reason for higher popularity of CLA. The delay of CSA is proportional to 'r , which is
lesser than the delay for RCAs but greater than CLAs.

4 Block Carry-Look-Ahead Adder
As we discussed earlier in this section, CLA needs an extremely large number of

gates and more importantly, gates with high fan-in are required. This can be compensated

Electrical (M&I)
IIT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

by reducing the span of the look-ahead at the expense of speed. For this, we have to
divide the n stages into groups and have a separate carry lookahead in each group.

The groups can be interconnected by the ripple carry method. By dividing the
adders into 'equal sized groups, modularity increases. A group size of 4 is chosen, as it is
a common factor of most word sizes, and also - because of technology dependent
constraints (example, the available number of input/output pins).

For n bits and groups of size 4, there are n14 groups. To propagate a carry through

a group once the Pi's, Gl's and Co are available, we need 2TG time units. Thus, 1TG is

needed to generate all Pj and G and 2TG is needed to generate the sum outputs, for a

total of

This is almost fourfold reduction in delay compared to the 2nTG of a ripple carry

adder. Group-generated carry, G* and a group-propagated carry, P, for a group of size 4

are as follows:

G* = 1 if a carry-out is generated internally and P = 1 if a carry-in is

propagated internally to produce a carry-out. The Boolean equations for these carries are

:G 	021' +' 	' P s - GUPLP2F3-:'

The group-generated and group-propagated carries for several groups can now be
used to generate carry-ins in a manner similar to single-bit carry-ins in above equation. A
combinatorial circuit implementing these equations is called a carry look-ahead

generator. As the number of bits, n, increases, More levels of carry lookahead generators

can be added in order to speed up the addition. The overall addition time of a carry

lookahead adder is therefore proportional to login, where b is the blocking factor.

All the above integer adder units were simulated and tested to meet the desired
specifications. Based on the simulation results, I selected Block Carry Look Ahead adder
because of its high speed and area efficient characteristics.

40 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

4.9 Multiplication unit
The second basic arithmetic operation needed to perform FPU operations in this

thesis is the multiplication. Constructing a fast multiplier in an FPGA presents a challenge
due to the shear amount of logic required. Traditional integer multiplier has been studied
and number of stages has been modified to give the best performance and area.

According to [16], floating-point multiplication is inherently, easier to design than
floating-point addition. Multiplication requires integer addition of operand exponents and

integer multiplication of significands which facilitate normalization when multiplying
normalized significands. These independent operations within a multiplier make it ideal
for pipelining.

The fixed point multipliers used in multiply mantissa stage can be non-pipelined,
partially pipelined or fully pipelined. In this thesis, study of pipelined and non-pipelined
fixed point multipliers has been done. The pipeline latency remains the only drawback

which is not a concern in this study as the FPU is receives operands every clock cycle. By
using a pipelined multiplier, the resource consumption not only decreases but the speed
actually increase.

4.9.1 Use of Tag word
The two operands are checked for their validity using tag word. If the Tag. word

for any operand contains any value other than 00, one of the following operations will be
performed:

• If tag word for any operand is 01, the result is replaced with zero as this tag word
represent zero in the corresponding register.

• If tag word for any operand is 11, the result is replaced with another operand as
this tag word represents empty registers.

• If tag word for any operand is 10, the result is replaced with infinity as these tag
words represent that infinity is contained in the corresponding register.

In above cases, the clock cycles consumed are 7. This allows save clock cycles in
certain case.

Electrical (M&I)
	

41
UT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

4.9.1 Algorithm
The following section describes the different stages of floating point

multiplication algorithm. The 80-bit FP multiplier has a latency of e! clock cycles. All
symbols have usual meaning.

stye I 	 UNPACK OPERANDS

Ml 	 ~I Z
Stage 2 	 XOR. 	 ADDER

BI4
S_OUT 	 TRACT 	 OUT

Stage 3 Ii I EI3. POINT
DIVIDER

E_4[IT S_QUT BIAS 	M OUT

Stage EXPONENT [NRIALIZER
ADJUST

S OUT M_OIJT
-- ~ ALIT

stage 5 PACK OPERANDS I

Figure 4.10 Multiplication Algorithm

Stage 1: Unpacking Operands
The two sign, exponent and mantissa bits for operand A and operand B are

latched in registers which are 1-bit, 15-bits, and 64-bits in length. The inputs are checked
for special values: Infinity, Not a Number and Zero and the appropriate flags are set
which is passed on through all stages.

Stage 2: Calculate exponent and sign

42 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

The exponents of operand A and operand B are added together and the bias is
subtracted from the result which gives the resultant biased exponent. The sign bits of the
two operands are XOR'ed to give the resultant sign bit. The sign and exponent output are
passed on through all stages.

Stage 3: Multiply mantissa
The mantissa fields of operand A and operand B are multiplied. The output of the

fixed-point multiplier is double the mantissa length.

The different kinds of fixed-point multipliers used for comparative study are
1. Shift-Add multiplier,
2. Booth multiplier

All multipliers are implemented at the logic-level and the working of each adder

is explained in Section 4.9.3. The exponent and sign bits are stored in delay registers.

Stage 4: Normalization Shift stage
After the multiplication, the next step is to normalize the result. The first step is to

identify the leading or first one in the result. In multiplication, leading one is either

available at MSB or next to MSB. Comparator logic is used here to find the first leading-
one digit from the MSB. The shifting is used to normalize the mantissa such that the

leading-one in the mantissa resides in the mostsignificant bit location and accordingly
the exponent is adjusted. The upper 64 bits of the result are retained as mantissa.

Stage 5: Pack operands
Finally sign, exponent and mantissa are concatenated to form the 80-bits results

and passed as an output from the FPU. The special condition flags are checked and if any
of the flags are set high, then the result vary accordingly. The result is stored back in a

64-bit register.

Electrical (M&I) 	 43
UT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

4.9.3 Different types of integer multipliers and their comparative study
Different fixed point multipliers are studied to finalize the fixed-point multiplier

which gives the best performance in terms of area and delay. On the basis of simulation
results, obtained using Active HDL 6.1, Booth's algorithm is found to be the best suitable
algorithm available for my FPU design. High speed multipliers can be classified as
parallel, sequential and array multipliers. The first generates all partial products in parallel
and uses a high-speed adder to accumulate them, whereas the second generates the partial

products sequentially and adds them together. Array multipliers are made up of identical
cells that generate new partial products and accumulate them simultaneously. After a vast
study of previous work the following multipliers are studied which either have reduced

execution time or less hardware complexity.
1. Shift add multiplier (SA)

2. Booth multiplier

Multiplications are essentially a series of additions. The different integer multiplier
discussed deals with two main operations: generating partial products and different ways of
adding partial products. There are different methods to encode the multiplicand which can
mainly be classified as non-booth and booth encoding. Hence two an adder from each
category has been chosen for this study being Shift-Add multiplier and Booth multiplier.

How to speed up the addition/subtraction?
There are two ways that the additions can be speeded up:

1. Speeding up each addition.
To speed the addition the one of the fast adders which has already been studied can

be used.

2. Reducing the number of additions required.
The number of additions can be reduced in two ways. One is to shift over strings

of 0's and 1's without doing any addition and the other is to scan two or more multiplier
digits each cycle and hence add larger multiples of the multiplicand in each cycle. After the
partial products are produced they can be added using a fast adder like carry save adder.

44 	 Electrical (M&I)
ITT' Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

1 Shift Add Multiplier
The first and simplest method for encoding is non-Booth. This algorithm is

simply a'shift and add algorithm where the multiplicand is conditionally added to produce
the final result. Shift-add multiplier uses the concept of an array multiplier which is
described in detail in this section. An array multiplier is constructed by an array of

identical elementary processor units, each of which processes single-bit data. The basic
unit usually consists of a partial-product bit generator and a full adder. A new partial-
product bit is generated and added to the previous accumulated partial product in one cell
[37].

To illustrate the operation of a shift-add multiplier, consider a 4 x 4

multiplication shown in following figure, which contains all 16 partial-product bits
in the form of X,YJ. The array adds the first two levels of partial product bits e.g.
X3Yo to XoYo and X3Y1 to XoYI together in the second row of array (first row of the
array adds the partial products from previous stage and the first level of partial

product bits together if it is in multiple length multiplication) after proper

alignment. The results of the second row are then transferred to the third row and

added to the third level of partial product bits X3Y2 to XOY2, and so on. All additions are
done using a Block Carry lookahead adder.

3 	 x1 : Na'
3 Y2 Yl YO

	

XY3 	Y:
{

S7 	S6 	S5 	S4: 	S3 	S2 	$1 	S0

The block diagram of the basic processor cell and the 4 x 4 array multiplier is

depicted in following figure 4.11.

Electrical (M&I)
	 45

IIT Roorkee

Yo
0

Y1
0

Y2
0

Y3
0

Hardware Modules of Floating-Point Arithmetic Unit

suIThn
	 x

Yout

tout

Yin

C;n

xout 	Sumo

Figure_4.11(a) Basic'cell

0 X3 0 X 2 0 X1 0 X0

S7 	S4 	55 	54 	S3 	S2 	S 	So

Figure°4.1.1 (b)- Shift :Add Multiply

46 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Advantages:

The simple and regular structure of the shift-add multiplier makes the design

and layout processes easy and suitable for automatic generation.

Disadvantages:

It requires a large amount of silicon area and the speed is low since the delay

depends on the depth of the array. It is also inefficient because as the number

propagates through the array, each row of the processor units is used only once.

Unfortunately, there is no reduction in the number of multiplicands that need to be
summed to produce the final result. Although it is easy to pipeline which

increases the throughput and utilization greatly, the additional latches needed
increase both the hardware and latency.

2 Booth algorithm for multiplication

The high-level block diagram of the multiplier is shown in figure 4.12. It consists
of four distinct components. They are the Booth Encoder, Partial Product Generator,
Carry Save adder, and the Carry Lookahead adder.

64
	

.64

nlod+t`y 	 oo c t
Generator ene€ t r 	ys 	 X32

3X32.

Tre

64 f +GLA A ldei ` 	I

Figure 4.12 Architecture of the Booth multiplier

Electrical (M&I)
	 CY7

IIT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

There are two main techniques that can be used to increase the speed of the
multiplication process [29]. First technique is to reduce the number of partial product
and the second is to increase the speed at which the partial products, are added. The
proposed architecture employs both of these techniques in the design. The individual
components are shown and explained in detail below.

a) Booth encounter
This module encodes the 64-bit multiplier using radix 4 Booth's algorithm. Radix

4 encoding reduces the total number of multiplier digits by a factor of two, which means

in this case the number of multiplier digits will reduce from 64 to 32.

Table 4.2 Booth Multiplication

"i11uItir ,Bits Output bits =Operation on
;.

<f.

Multiplicand licand NEC"= 2 1,

gip : 1 = 0 0 1> •i l x

f 1 -1. 0 1. 0 -} 2x 1
00 1: 1 0 -2x

1 0 1 1 01' =1x:

=1 1 1, 000x

This algorithm groups the original multiplier into groups of three consecutive
digits where the outermost digit in each group is shared with the outermost digit of the
adjacent group. Each of these groups of three binary digits then corresponds to one of the
numbers from the set {2, 1, 0, -1, -2). Each encoder produces a 3-bit output where the

first bit represents the number 1 and the second bit represents the number 2., The third
and final bit indicates whether the number in the first or second bit is negative. Since
there are 64 input bits, there will be a total of 32 Booth encoder modules in the overall
multiplier architecture. The way the outputs are determined is shown in Table 4.2.

48 	 Electrical (M&I)
IlT Roorkee

~o' 	a

PpI 2x Baoth Ityo
Encoder

ITEEC

TtO, Booth

I 	 yi'

S

S

ooth B 2x -. 	 g14
NECr 	 _ £ACOder `.y15

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

b) Partial Product Generation(PPG)
The output from the Booth encoder is used in this module to generate the partial

products. Since there are 32 Booth encoders there will be a total of 32 partial products.
The multiplication by two is implemented by shifting the multiplicand left one bit and the
negation is implemented by taking the two's complement of the multiplicand. The
architecture of the partial product generator (for a 16-bit number) is shown in Figure4.13.

Figure 4.13 Partial Product Generation

Each row of the diagram corresponds to one partial product. Even though the
diagram does not show it, there are eight such rows corresponding to eighty partial
products. Also, each partial product is shifted two bits .to the left relative to the partial

product above it to account for the radix 4 Booth encoding of the multiplier.

c) Wallace Tree
This module is responsible for adding the partial products that were generated in

the PPG module. This module uses 3 to 2 carry save adders (CSA) to implement the
Wallace Tree. The individual CSAs are nothing more than full adders except for the

Electrical (M&I) 	 V 	 49
IIT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

fact that the carry-ins and the carry-outs are handled in a special way. Each column of
numbers in the partial product is added using this method. Figure 4.14 below shows
how this method works for adding 8 bits. The carry-outs generated in each stage of
addition are transferred to the Wallace Tree of the column of bits of partial products on
the left and the carry-ins comes from the column to the right.

Figure 4.14 Wallace Tree

The advantage of using a Wallace Tree structure for addition is that for adding
eight bits the result is available only after four full adder delays. If the same addition
were to be performed using a ripple carry adder, it would have required seven full adder

50 	 o~ 	 Electrical (M&I)
~ 	.f , 	m 	 IIT Roorkee

G.)

Y.

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

delays. Therefore, although the structure of the adder might be a little complicated, it
greatly increases the speed of addition.

d) Carry Lookahead adder
This unit is used to add the final sum and carry vectors generated by the Wallace

Trees for each column of bits from the partial products. Only a 64 bit CLA is needed,
instead of full 128 bits, because some of the bits of the final result are already available
from the Wallace Trees.

4.10 Division unit
Division is the most time-consuming and infrequent operation amongst the

arithmetic operations. Many algorithms have been developed for implementing division in
hardware. These algorithms differ in many aspects, including quotient convergence rate,
fundamental hardware primitives, and mathematical formulations. Division algorithms are
divided into classes based upon the differences in the hardware operations used in their

implementations, such as multiplication, subtraction, and table look-up.
Division algorithms can be divided into five classes: digit recurrence, functional

iteration, very high radix, table look-up, and variable latency. In this work, I have
considered three algorithms which are simulated using Active HDL 6.1. Of these digit-
recurrence division algorithm is chosen for my design because of its low latency.
Performance of the divider is very important in this study as the output of the divider

shall be the input to the multiplier/subtracter or some other unit of FPU [23]. The 80-bit

floating point divider has a latency of 18 clock cycles.

4.10.1 Use of Tag word
The two operands are checked for their validity using tag word. If the Tag word'

for any operand contains any value other than 00, one of the following operations will be

performed:

• If tag word for divider is 01, the result is set with infinity as this tag word
represent zero in the corresponding register. And if the tag word for divisor is 01,

then the result is set to zero.

Electrical (M&1)
	 51

IlT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

• If tag word for any operand is 11, the result is unknown as this tag word represent
empty registers.

• If tag word for divider is 10, the result is set with zero as this tag word represent
infinity in the corresponding register. And if the tag word for divisor is 10, then
the result is set to infinity.
In above cases, the clock cycles consumed are 7. This allows save clock cycles in

certain case.

4.10.2 	Algorithm
This section describes the algorithm implemented.

Stage I UNPACK OPERANDS

Si S2 	El F 	MI 	 M2
Stage 2 	 XOR SUBTRACT

BIAS
ADDER S 0,UT M_QUT

Stage 3 FIND POINT
DIVIDED

I OUT
E QUT

 — M OUT

Stage 4 EXPONENT I 	 NOR viALIZER
ADJUST

S_QUT M OUT
E OUT

Stage 5 	I PACK OPERANDS

Figure 4.15 Division Algorithm

Stage 1: Unpacking Operands
The two sign, exponent and mantissa bits for operand A and operand B are

latched in registers which are 1-bit, 15-bits, and 64-bits in length. The inputs are checked

52 	 Electrical (M&I)
I1T Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

for special values: Infinity, Not a Number and Zero and the appropriate flags are set

which is passed on through all stages.

Stage 2: Calculate exponent and sign
The exponent of operand B * is subtracted from that of operand A and the bias is

added to the result which gives the resultant biased exponent. The sign bits of the two

operands are XOR'ed to give the resultant sign bit. The sign and exponent output are

passed on through all stages.

Stage 3: Divide mantissa

The mantissa field of operand A is divided by that of operand B.

The different integer dividers studied and simulated are:

1. Storing and non-restoring division

2. SRT division

All dividers are implemented at the logic-level and the working of each divider is

explained in Section 4.10.3. The exponent and sign bits are stored in delay registers.

Stage 4: Normalization Shift stage

After the division, the next step is to normalize the result. The first step is to

identify the leading or first one in the result. In division, leading one is either available at

MSB or next to MSB. Comparator logic is used here to find the first leading-one digit

from the MSB. The shifting is used to normalize the mantissa such that the leading-one in

the mantissa resides in the most significant bit location and accordingly the exponent is

adjusted. The upper 64 bits of the result are retained as mantissa.

Stage 5: Pack operands
Finally sign, exponent and mantissa are concatenated to form the 80-bits results

and passed as an output from the FPU. The special condition flags are checked and if any

Electrical (M&I)
	

53
UT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

of the flags are set high, then the result vary accordingly. The result is stored back in a
80-bit register.

4.10.3 	Different types of integer dividers and their comparative

study
Following are the algorithms studied and simulated using Active HDL 6.1. It is

found that Digit Recurrence algorithm is easy to design, occupies less space and has low
latency.

a) Digit Recurrence Algorithm

The simplest and most widely implemented class of division algorithms is

digit recurrence [42]. Digit recurrence algorithms retire a fixed number of quotient

bits in every iteration. Implementations of digit recurrence algorithms are typically
of low complexity, utilize small area, and have relatively large latencies. The

fundamental choices in the design of a digit recurrence divider are the radix, the
allowed quotient digits, and the representation of the partial remainder. The radix

determines how many bits of quotient are retired in an iteration. Larger radices can

reduce the latency, but increase the time for each iteration. This section introduces
the principles of digit recurrence division, along with an analysis of methods for

increasing the performance of digit recurrence implementations.

b) Restoring and non-restoring division

Given a dividend I and a divisor D, the quotient Q and remainder R are defined
by:

I_Q-D+ with0

The division is performed by a sequence of subtractions and

multiplications, as described by the following recursion formula.

where, r is the radix. Pl is the new partial remainder after the ith iteration, qj is the
ith quotient digit which is determined by comparing P,-1 and D. The comparison process is

54 	 Electrical (M&I)
HT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

usually done by subtracting q j • D from r • P. If the result of the subtraction is positive,
q j, will be increased and the subtraction process will be repeated until the result becomes

negative. When P, is negative, q; is decreased by 1 and the partial remainder Pi must to be

restored to its previous value by adding one divisor D to it. Therefore, this method is

called restoring division [45].

Non-restoring division also based on above equation, but the quotient digit is not
corrected and the remainder is not restored immediately if it is negative. The correcting
operations are postponed to later steps. By allowing the quotient digit to be negative,

the restoring operation can be avoided. In restoring division, qi can be only 1 or 0, but in

non-restoring division, q j belongs to the digit set {-1,1}. Notice that 0 is not allowed in

non-restoring division. When the shifted partial remainder 2P1_, equal to 0, the division

process terminates.

c) SRT division

Each step in the division is dependent on previous ones, so the next step cannot

begin unless the current remainder is ' known. The quotient digits are obtained from the
current partial remainder. If the quotient digit-selection process in each step. can be
simplified, the time to complete each step can be shortened and the speed of division can be
increased [30]: In radix-2 restoring/non-restoring division, the quotient digits are obtained

by comparing . the divisor and the partial remainder in full precision. If the comparison
process can be speed up, then the division process can be accelerated. To achieve this

goal, the precision used in the comparison must be reduced. This is the idea of SRT
division:

SRT division is the most common implementation of digit recurrence division in modem mi-
croprocessors, taking its name from the initials of Sweeney, Robertson and Tocher, who
developed the algorithm independently at approximately the same time. We analyze the

algorithm for an n-bit number. The input operands are assumed to be represented in a

normalized floating-point format with n bit significands in sign and magnitude

representation. The quotient is defined to comprise k radix-r digits with

Electrical (M&I)
	 55

IIT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

where a division algorithm that retires b bits of quotient in each iteration is said to

be a radix-r algorithm. Such an algorithm requires k iterations to compute the

final n bit result and thus has a latency of k cycles. The cycle time of the divider

is defined as the maximum time to compute one iteration of the algorithm. In this

thesis, we analyze radix-2 SRT algorithm, hence k, no of iterations is equal to the

number of bits in the mantissa.

4.10.4 	Division Parameters

a) Radix Selection
The fundamental overall method of decreasing the latency of the

algorithm is to increase the radix r of the algorithm, typically chosen to be a power
of 2. However, as the radix increases, the quotient digit selection becomes very

complicated, which may increase the cycle time. Moreover the generation of all
-required divisor multiples may become impractical- for higher radices. Oberman

shows that the delay of quotient selection tables increases linearly with increasing

radix, while the area increase quadratically. Pre-scaling of the input operands

reduces the table complexity at the expense of additional latency. The limitation in

generating all of the required divisor multiples for radix-8 and higher limits

practical divider implementations to radix-2 and radix-4.

b) Quotient Digit Set

For a given choice of radix r, some range of digits is decided upon for the allowed

values of the quotient in each iteration. The simplest case is where, for radix r, there
are exactly r allowed values of the -quotient. However, to increase the performance of

the algorithm, a redundant digit set is used. This allows a quotient digit to be selected
based upon an approximation of the partial remainder representation as discussed in

the next section. Such a digit set is composed of symmetric signed-digit consecutive

56 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

integers, where the maximum digit is a. The digit set is made redundant by having more
than r digits, the complexity and latency of the quotient selection function is reduced.

However choosing a smaller number of allowed digits for the quotient simplifies the
generation of the multiple of the divisor. Quotient digit-set is said to be canonical is 0 <
q; < r - 1. Whereas it is said to be redundant when, aj E Da = (-a, -a + 1, ..., - 1, 0, 1, ..., a),
where the redundancy factor p = a/r -1(p > 1/2). Specifically for radix 2, the digit set is {-
1,0,1}.

c) Partial-Remainder Representation

The partial remainder can also be represented in two different forms, either
redundant or non-redundant. Each iteration of the algorithm requires a subtraction to

compute the next partial remainder. If this partial remainder is in a non-redundant form,
then this operation requires a time-consuming full width carry propagate adder, increasing

the cycle time. Therefore the partial remainder is typically stored in redundant form so that
a fast carry save adder, can be used in the partial remainder calculation.

Quotient digit selection and remainder representation in radix-2
By allowing 0 to be one of the quotient digit choices, the radix-2 quotient digit

selection is changed to equation shown below.

Note that the regions overlap. This is good as it means we have freedom to pick a

digit even if we don't know exactly what P and D are. For binary SRT, it's particularly

easy, as we can get away with just looking at the sign bit of P. If it's 0, we know 0 <P, so

we can pick D = 1. If it's 1, we know P < 0, so we can pick D = -1. In other words, non-
restoring division is a special case of SRT division. If D is a normalized fractional

number, such that 1/2 < IDI < 1, the thresholds in above equation can be reduced from

Electrical (M&I)
	

57
UT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

IDI to 1/2. This is because if IDI is larger than or equal to 1/2, then the range [—D, DI
must include the range [-1/2, 1/2]. That means 1_ l. -i/2 _1 	IDI

Therefore, the comparison operation (in above equation) can be reduced to the
following simplified form.

1

qj = 	{ 	if`--1, 2 2 . R1 <1/2

Now the partial remainder 2 • Rj_I can be compared to either 1/2 or -1/2, instead of
D or -D. This reduces the time required to generate quotient digits. A binary fraction is

larger than or equal to 1/2 if it starts with (0.1). Similarly, a binary fraction is smaller
than -1/2 if it starts with (1.0). That means, only the first two bits of 2 • Rt_I need to be
examined to determine the quotient digit, instead of full comparison.

This is the basis of radix-2 SRT division. The following rules need to be followed for

the selection process when D is normalized for a radix-2 SRT division.

1 If 2P1+1 < -1/2, q j+1 = -1 and P~+i = 2P~ + D
2 If -1/2 < P j+ j < 112, q;+i = 0 and Pj+r = 2P j

3 If 2P +1 >1/2, qj+j = 1 and Pj+1 = 2PP – D
The number of iterations required for SRT division decreases as the radix increases.

Therefore, for high-radix SRT division, the complexity of the quotient selection process

increases may eliminate the advantage of the reduction in number of iterations. This

makes SRT division impractical for high radices, such as 256 or 512.

4.11 Square root unit
Square root algorithm is hard to implement on FPGAs because of complexity of

the algorithms. In this thesis, I worked upon three algorithms and finally implemented a
non-restoring square root algorithm. The operation latency is 66 clock cycles.

58 	 Electrical (M&I)
IlT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

	

4.11.1 	Use of Tag word
The operand is checked for its validity using tag word. If the Tag word contains

any value other than 00, one of the following operations will be performed:

• If tag word is 01, the result is set with zero as this tag word represent zero in the

corresponding register.

• If tag word is 11, the result is unknown as this tag word represents empty registers.

• If tag word is 10, the result is set with zero as this tag word represents zero in the
corresponding register.
In all of the above cases, the clock cycles consumed are seven. The above mentioned

work of tag helps in saving the clock cycles and thus reduces latency.

	

4.11.2 	Algorithm
This section describes the algorithm of square root unit.

Stage 1: Unpacking Operands

The sign, exponent and mantissa bits of the operand are latched in register which

are 1-bit, 15-bits, and 64-bits in length. The inputs are checked for special values:
Infinity, Not a Number and Zero and the appropriate flags are set which is passed on
through all stages.

Stage 2: Check Exponent Module
The second stage in the adder uses comparator logic to check whether the

exponent is odd. If yes, mantissa is shifted only one place towards right and

"000000000000001" is added to exponent to compensate. If exponent happens to be

even, mantissa is shifted to . right by two places and "000000000000010" is added to,

exponent to compensate. The combinational VHDL process compare the exponent's LSB

with V. The comparator is left to the synthesis tool.

Electrical (M&I) 	 59
UT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Satge 6

UNPACK OPERANDS

\L_____

Check whether Exponent is odd

BIAS 	
4,

ADJUST 	MANTISSA
EXPONENT 	SHIFTER

__ I___
EXPONENT 	FIND-PONT
SHIFTER 	SQUARE ROOT

BIAS

I2 (VA 	EXPONENT 	NORMALIZER
AJUST 4, 	

1. _

PACK OPERANDS

Figure 4.16 Square root unit Algorithm

Stage 3: Mantissa Shifter
As explained in stage 2, 1-bit or 2-bit right shifting on mantissa is performed

depending on whether exponent is odd or even respectively. The maximum number of
shifts required is two. The bias is subtracted from the exponent in this stage.

Stage 4: Mantissa Square root Stage
In this stage, the square root of mantissa is taken using non-restoring square root

algorithm [21][22][23] which is explained in detail in next section. This algorithm does

60 	 Electrical (M&I)
. IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

not restore the remainder [21]. This stage consumes maximum number of clock cycles
and so it is area of research in my algorithm.

Different fixed-point square root algorithms are studied to determine which gives
the best performance. The different kinds of algorithms used for comparative study are

1. Newton-Raphson method
2. SRT-Redundant method
3. Non-Redundant method

All methods are implemented at the logic-level and the working of each algorithm is
explained in Section 4.11.3. The sign bits are stored in delay registers.

Stage 5: Normalization Shift stage

After the square root, normalization is the next step. Since shifting has already
been performed on mantissa before taking square root, normalization shall be required in

case if MSB is non-zero. So, the first step is to identify the leading or first one in the
result. Comparator logic is used here to find the first leading-one digit from the MSB. A
counter maintains the number of comparisons made which is the equal to the number of

shifts needed. I would like to make a point that this value can not be greater than two.
The shift value is used to normalize the mantissa such that the leading-one in the

mantissa resides in the most significant bit location. This stage also uses the shift value to
adjust the exponent to the number of shifts required. The bias is also added to the
exponent in this stage. Shifter in this stage is left to the synthesis tool.

Stage 6: Pack operands

Finally sign, exponent and mantissa are concatenated to form the 80-bits result
and passed as an output from the FPU. The special condition flags are checked and if any

of the flags are set high, then the result vary accordingly. The result is stored back in a
80-bit register.

Electrical (M&I)
	

61
IlT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

4.11.3 	Different types of fixed point square root algorithms and

their comparative study
Following algorithms are studied and finally, Non-redundant method is used [23]

and based on simulation results, Non-Redundant method is used because it provides

lowest latency (66 clock cycles) and consumes least possible silicon space. Its algorithm

is. described in detail.

a) Newton-Raphson method

The Newton-Raphson method has been adopted in many applications. In order to

calculate Y = NG , an appropriate value is calculated by iterations. For example, Newton-

Raphson method can be used on

f(T)=1112 —x

to derive the iteration equation

T1+1 = Ti x (3— TT2 x x)/2

where, Ti is an approximate value of 1/ 	.

After an n iterations, an approximate square root can be obtained by equation

Y= =T.,xx

This method needs a ROM . Table for generating To. At each iteration,

multiplication and addition/subtractions are needed.

Disadvantage:

Although the fast multipliers are available, this design is costly because the multipliers

require large number of gate counts.

b) SRT-Redundant method

This method is based on the recursive relationship

Xi+l = 2 xi — 2Yiyi+l — yi+122-(i+l)

Yi+l = Yi +

where, xi is the ith partial remainder,

Y, is the ith partially developed square root with Yo = 0, .

62 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

yl is the ith square root bit,

and y1 a (-1, 0, +1].

The yt is obtained by applying the digit selection method. In each iteration, there

are four sub-computations:

1. One digit shift of xi to produce 2xi.

2. Determination of yi+1.
3. Formation of F = -2Yiyi+1-- yi+122-(`+I)

4. Addition of F and 2xi to produce x,+1.

Disadvantage:

A CSA can be used be used to speed up the addition of F and 2x4 but F needs to

be converted to the two's complemented represented before feeding to CSA. Moreover,
the selection function is also complex.

c) Non-Redundant method
This method does not restore the remainder [23]. There is no need to do the F

conversion and the calculation of Y; — 2-(t+' that appear in SRT method.

The radicand (in stack register) is in extended-double precision i.e. 80-bit format
and the mantissa is of 64-bits:

Mantissa, D = D63D62D61...DIDo. 	r

For each pair of bits of the radicand, the integer part of the square root has one bit. Thus
the integer part of square root for a 64-bit radicand has 32-bits:

Q = Q31 Q30Q29... QIQO

The remainder, R = D — Q x Q has 33 bits:

R = R15RI5R14...R1R0.

Reason of 33-bits in R:
D=QxQ+R<(Q+1)x(Q+1).

=> R <(Q+1)x(Q+1)—QxQ

Electrical (M&I) 	 63
]IT Roorkee

Hardware Modules of Floating-Point Arithmetic Unit

=> 	=2xQ+1
i.e. R<-2xQ
because the remainder R is an integer. It means that the remainder has atmost one

binary bit more than the square root.

Algorithm
Step,1: 	Set qi6 = 0, r16 = 0 and then iterate from k = 15 to 0.

Step 2: 	If rk+1 ? 0, rk = rk+1D2k+ID2k — qk+101,
Else 	rk = rk+ID2k+ID2k + qk+111,.

Step 3: 	If rk >_ 0, qk = qk+l1 (i.e. Qk = 1),

Else 	qk = gk+1O (i.e. Qk = 0),

Step 4: 	Repeat steps 2 and 3, until k = 0.

If r0 <0,ro=ro +qol.

Where, qk = Q31 Q30Q29• • • Qk has (31 — k) bits,

rk has (17—k) bits.

In this method, I do not need multiplications, instead shift operations do the
necessary work.

4.12 Absolute unit

Absolute unit performs the conversion of floating point number to integer

number. This unit has the latency of 3 clock cycles.

4.12.1 	Algorithm
This section describes the algorithm implemented.

Stage 1: Unpacking Operands
The sign, exponent and mantissa bits for, operand are latched in registers which

are 1-bit, 15-bits, and 64-bits in length. - The inputs are checked for special values:

64 	 Electrical (M&I)
III' Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Infinity, Not a Number and Zero and the appropriate flags are set which is passed on
through all stages.

Stage 2: Conversion into integer
The Exponent and mantissa bits are retained as it is and passed on to the next

stages. The sign bit is set to 0 to make the number positive.

Stage 1

SI
Stage 2 	I 	SIGNBIT

S_OUT

Stage 3

UNPACK OPERANDS

E

CHECK 	 ROUND
EXPONENT 	 MANTISSA

E_OUT I 	 M_OUT

PACK OPERANDS

Figure 4.17 Absolute unit Algorithm

Stage 3: Packing Operands

Finally sign, exponent and mantissa. are concatenated to form the 80-bit result and

passed as an output from the FPU. The special condition flags are checked and if any of

the flags are set high, then the result vary accordingly. The result is stored back in 80-bit
register.

4.13 Exception Generation unit
This section describes the various conditions that cause a floating point exception

to be generated by the FPU [13][14].

• Stack Overflow Exception: Occurs when Load instruction attempts to load a

non-empty data register. A non-empty register is defined as a register containing a

zero (tag value of 01), a valid value (tag value of 00), or a special value (tag value

Electrical (M&I)
	

65
HT Roorkee

1

Hardware Modules of Floating-Point Arithmetic Unit

of 10). When this exception occurs, its sets the bit 5 in the status register and FPU
data register wraparound occurs and the new value of TOP is set to 7.

• Stack Underfiow Exception: Occurs when Store instruction references an empty
data register as a source operand, including attempting to write the contents of an
empty register to memory or external world. An empty register has a tag value of
11. When this exception occurs, its sets the bit 6 in the status register and FPU
data register wraparound occurs and the new value of TOP is set to 0.

• Invalid Arithmetic Operand Exception: Occurs when an arithmetic instruction
attempts to operate on empty data registers. When this exception occurs, its sets
the bit 0 in the status register and the set the output value to NaN.

• Divide by Zero Exception: Occurs when an instruction attempts to divide a finite
non-zero operand by 0. When this exception occurs, its sets the bit 2 in the status
register and the set the output value to infinite.

• Numeric Overflow Exception: Occurs whenever the rounded result of an
arithmetic instruction exceeds the largest allowable finite value that will fit into
the floating-point format of the destination operand (32 bit). When this exception
occurs, its sets the bit 3 in the status register and the set the output value to
infinite.

• Numeric Underflow Exception: Occurs whenever the rounded result. of an
arithmetic instruction is tiny; that is, less than the smallest possible normalized,
finite value that will fit into the floating-point format of the destination operand.
When this exception occurs, its sets the bit 4 in the status register and the set the

output value to zero.

66 	 Electrical (M&I)
Ur Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

CHAPTER 5

DESIGNING WITH FPGAs

Field Programmable Gate Arrays are a relatively new class of integrated circuit;
first introduced by the Xilinx company in 1985. Since that time, the FPGA market has

expanded dramatically with many different competing designs developed by companies

including, Actel, Advanced Micro Devices, Algotronix, Altera, Atmel, AT&T,

Crosspoint' Solutions, Cypress, Intel, Lattice, Motorola, QuickLogic, and Texas

Instruments. A field-programmable gate array (FPGA) is kind of like a CPLD turned
inside out[1]]17].

DO DD DO DD Logic
Block

1IG Block. --*o

E

I
e

H
I

n❑ ❑❑ ❑❑ ❑❑
Figure 5.1 FPGA Architecture

As shown in Fig. 5.1, the logic is broken into large number of programmable

logic blocks that are individually smaller than a PLD. They are distributed across the

entire chip in a sea of programmable interconnections which can be configured by the

Electrical (M&I)
	 67

IN Roorkee

Designing with FPGAs

user at the point of application, & the entire array is surrounded by programmable 1/O
blocks. User programming specifies both the logic function of each block and the
connections between the blocks. An FPGA's programmable logic block is less capable
than a typical PLD, but an FPGA chip contains a lot more logic blocks than a CPLD of

the same die size has PLDs.

5.1 Introduction to FPGAs
The FPGA is an integrated circuit that contains numerous (over 10,000) identical

logic cells that can be viewed as standard components. Each logic cell can independently
take on any one of a limited set of personalities. The individual cells are interconnected
by a programmable interconnect (matrix of wires and programmable switches). A user's
logic design is implemented by specifying the simple logic function for each cell and

selectively closing the switches in the programmable interconnect matrix. The cell's
combinatorial logic is physically implemented as a small look-up table memory (LUT) or
as a set of multiplexers and gates. LUT devices tend to be a bit more flexible and provide
more inputs per cell than multiplexer cells at the expense of propagation delay. The array
of logic cells and interconnects form a fabric of basic building blocks for logic circuits
(also named as Logic elements - LE). Complex designs are formed by combining these

Logic elements to build the desired circuit.
Field Programmable means that the FPGA's function is defined by a user's

program rather than by the manufacturer of the device. A typical integrated circuit
performs a particular function defined at the time of manufacture. In contrast, a program
written by someone other than the device manufacturer defines the FPGA's
function. Depending on the particular device, the program is either'burned' in
permanently or semi-permanently as part of a board assembly process, or is loaded from
an external memory each time the device is powered up. This user programmability gives
the user access to complex integrated designs without the high engineering costs
associated with application specific integrated circuits.

Figure 5.2 shows an example of a logic block consisting of a 3-LUT, and a flip-
flop. An 8-to-1 multiplexer in a LUT is implemented using 2-to-1 multiplexers.
Therefore, the propagation delay from inputs to the output is not the same for all the

68 	 Electrical (M&I)
HT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

inputs. Input IN 1 experiences the shortest propagation delay, because the signal passes

through fewer multiplexers than signals IN 2 and IN 3. Since a LUT can implement any
function of its input variables, inputs to the LUTs should be mapped in such a way that
the signals on a critical path pass through as few multiplexers as possible. Logic blocks
also include a flip-flop to allow the implementation of sequential logic. An additional

multiplexer is used to select between the LUT and the flip-flop output. Logic blocks in

modern FPGAs are usually more complex than the one presented here.

Each logic block can implement only small functions of several variables.

Programmable interconnection, also called routing, is used to connect logic blocks into
larger circuits performing the required functionality. Routing consists of wires that span

one or more logic blocks. Connections between logic blocks and routing, 110 blocks and

routing, and among wires themselves is programmable, which allows for the flexibility of
circuit implementation. Routing is a very important aspect of FPGA devices, because it
dominates the chip area and most of the circuit delay is due to the routing delays.

'NI ,

9W

IN3

OUT

Fig 5.2 Simple Logic Block Structure
Electrical (M&I)
UT Roorkee

Designing with FPGAs

• 1/0 blocks in an FPGA connect the internal logic to the outside pins. Depending
on an actual device, most pins can be configured as either input, output, or bidirectional.
Devices supporting more than one I/O standard allow configuration of different pins for
different standards.

Programmability of FPGAs is commonly achieved using one of three
technologies: SRAM cells, antifuses, and floating gate devices. Most devices use SRAM
cells. The SRAM cells drive pass transistors, multiplexers, and tri-state buffers, which in
turn control the configurable routing, logic and I/O blocks . Since the content of SRAM

cells is lost when the device is not powered, the configuration needs to be reloaded into
the device on each power-up. This is done using a configuration device that loads the
configuration stored in some form of non-volatile memory.

Programmability of FPGAs comes at a price. Resources necessary for the
programmability take up chip area and consume power. Therefore, circuits implemented
in FPGAs take up more area and consume more power than in equivalent ASIC
implementations. Furthermore, since the routing in FPGAs is achieved using
programmable switches, as opposed to metal wires in ASICs, circuit delays in FPGAs are
higher. Because of that, care has to be taken to. exploit the resources in an FPGA

efficiently. Circuit speed is important for high-throughput applications like Digital Signal
Processing (DSP), while power is important for embedded applications. CAD tools are
used by the designer to meet these requirements.

5.2 Basic Architectures

FPGAs are commercially available in many different architectures and
organizations. Although each company's offerings have unique characteristics, FPGA
architectures can be generically classified into one of four categories:

A Symmetrical Array.
B Row Based.
C Hierarchical PLD.
D Sea of Gates.

70 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Figure 5.3 illustrates this classification based on the general internal organization of
the design.

A SYMME1RiCAL ARRAY

.. 	ire ,

f 5

....■■.■■.
HIERARCHICAL PLD C.

D- SEA-OF-GATES

Figure 5.3 The Four FPGA Architectural Classes

The target FPGA kit in the dissertation is Xilinx's Virtex II Pro whose architecture

is similar to that of Symmetrical Array (see figure5.3 (a)). All the synthesis results are
generated for Virtex II Pro only.

Electrical (M&I)
	

71
IIT Roorkee

Designing with FPGAs

5.3 Programming with FPGAs
Although early PLD and FPGA designs were generated largely by hand, access to

today's complex programmable logic devices requires the use of an integrated Computer-

Aided Design (CAD) system.

Cadence, Mento , 	 SCHEMATIC 	
3Et.1AVIORAL vewrLagic, orCAD 	 CAPTURE

t, AL etc 	 &.Sirrtulation 	 SPECIFICATION
-..... ..._4Q1
	

&;Simulation

PLACEMENT

Circuit Mappedto
target FPGA Image

Automatic ROUTING

FPGA Physical Design Complete.
critical path timing anatysis.and
back-annotation to simulation

DOWNLOAD.
PROGMM FPGA

VNDL, Verilog
PALASM,AHEL,
PLDesigner,,.etc.

Evaluate Design
in Target Application

Figure 5.4 Typical CAD system design flow for FPGAs

Figure 5.4 illustrates the typical sequence of operations needed to go from

concept to programmed chip. Both commercial CAD tool vendors and FPGA companies

offer appropriate tools. For example, traditional Electronic Design Automation (EDA)

vendors such as Cadence, Mentor Graphics, Synopsys, and ViewLogic all offer tools to

72 	 Electrical (M&I)
UT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

support FPGA design. These tools are typically used for the front-end design, entry and
simulation operations and provide the necessary interfaces to vendor-specific back-end
tools for chip placement and routing.

Examples of vendor specific tools are the Xilinx XST system and the Alters
Quartus II software. It is worth noting that Altera's Quartus II software supports the entire
design flow illustrated in Figure 5.4 on either PC or workstation platforms. I have used
Aldec' Active HDL 6.1 and Mentor's Modelsim for simulation and Xilinx ISE 7.1 for

Synthesize the design. A detailed discussion of available FPGA CAD tools is outside the
scope of this chapter. Rather, the following discussion is meant to be indicative of the
general operations and steps required in FPGA design. Where appropriate, examples are

taken from the Xilinx and Altera CAD design flows to illustrate the generic operations.
The starting point in any logic or digital system design is a set of architectural or

behavioral specifications. Traditionally, a designer uses schematic capture tools for
graphical entry of a logic design which has been manually generated to meet the

architectural or behavioral specifications. The upper left hand arrow in Figure 5.4.
identifies some of the commercial CAD tools available for FPGA schematic capture. One
of the more significant recent innovations in the EDA industry is the development of
tools which allow the designer to move from the gate level to the behavioral level for
design entry. A behavioral design specification is created using a Hardware Description

Language (HDL) [19][20], and then a synthesis tool automatically compiles the gate level
schematic or netlist from the behavioral description. The upper right hand arrow in

Figure5.4 indicates some of the HDLs currently' being used for FPGA behavioral
modeling.

Options for behavioral description of designs include the VHSIC Hardware
Description Language "(VHDL), the Verilog hardware description language, timing
diagrams, logic state diagrams, and PLD description languages such as ABEL. As an

example of how pervasive the behavioral design style has become, the PC-based Xilinx
ISE 7.1 software provides multiple options for behavioral design entry. In addition to

traditional schematic capture it will accept VHDL, text design description in the Xilinx
Hardware Description Language (including truth tables and Boolean expressions), and
Timing Diagrams which describe the desired input and output waveforms. Whichever

Electrical (M&I)
	 73

IIT Roorkee

Designing with FPGAs

behavioral design entry method is chosen, the design system provides logic synthesis,
which automatically creates gate-level schematics.

Figure 5.5 Designing with FPGA

74 	 Electrical (M&I)
UT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

No matter what method is used for initial design entry, the next step in FPGA
design is to translate the entire .design into a standard form which can be processed by a
logic optimization tool. The goal of logic optimization is to perform minimization of the
Boolean expressions and eliminate redundancy, thus minimizing the area of the final
circuit. The tool may also be constrained to maximize speed at the expense of area by
.limiting the number of logic levels between clocked registers. This optimization process
is usually merged with the logic synthesis step when behavioral design entry is employed.
Simulation is performed both before and after the logic optimization steps to verify that
the design meets the original system requirements for functionality and timing. The next
step is to convert the generic gate level design into one which uses the FPGA circuit
building blocks of the target technology.

Let me take a concrete example, the Xilinx XST design system flow is used (in
dissertation) to illustrate the steps needed to go from logic design to programmed FPGA.
In the Xilinx design flow, the native format of the logic design (Aldec's Active HDL,'
Modelsim etc.) must first be translated into the Xilinx Netlist Format (XNF) which is
understood by the Xilinx tools. Next, the XNF circuit description must be mapped into
Xilinx Configurable Logic Blocks (CLBs). This is the technology mapping step referred
to in Figure 5.4. Xilinx calls this step "partitioning", and the XST tools also attempt to
optimize the circuit during this step. For example, circuitry associated with unused logic

block inputs or outputs is eliminated from the design. In addition, the partitioning
program attempts to minimize either the total number of CLBs used or the number of
logic stages in the critical delay path.

The next step is to place and route the design on the selected chip image. The
XST system allows manual and/or automatic placement and routing. In the automatic
placement operation, each CLB generated during the "partitioning" step is assigned to a
physical location on the chip. Xilinx uses a Simulated Annealing algorithm which starts

with a random placement, and then goes through a series of improvement passes. This

program can be run multiple times with different starting random seeds in an attempt to
generate a more optimal placement. Following placement, interconnections between the
CLBs must be routed using the available interconnect segments and switch matrix
elements. XST uses an automatic Maze Routing Algorithm to perform this operation.

Electrical (M&I) 	 75
UT Roorkee

Designing with FPGAs

With the physical placement and routing completed, exact timing values can now be used

to determine chip performance. The XST tools provide a critical path timing analyzer

which provides delay information on the longest through shortest paths through the chip.

In addition, the physical layout timing information can also be back-annotated to the

schematics to get more accurate functional simulation results. The final step in the Xilinx

or Altera design flow is the creation of the BIT file which contains the binary

programming data needed to configure the SRAM bits of the target chip. This file is then

downloaded to configure the chip for final functional and timing tests of the programmed

chip.

76 	 Electrical (M&I)
nT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

CHAPTER 6

EXPERIMENTAL RESULTS AND VERIFICATION

This chapter presents the experiments conducted to determine the performance of
the FPU.

6.1 Introduction to experimental approaches
I assess the FPU performance by considering each component in turn that is, the

floating point adder, floating point multiplier, floating point divider, floating-point square

root and absolute. My objective was to design the efficient FPU with the least possible

latency and silicon area. The design was targeted on a Xilinx Virtex II Pro FPGA whose

synthesis results are presented in Appendix C.

6.1.1 Design Environment
The software and hardware design environment is presented in this section. It

gives information about the development tools used in this dissertation.

a) Software Environment:

• Operating System

• Processor

• RAM

• Processor Speed

• HDL used

• Simulation Tool

b) Hardware Environment:

• Processor

• RAM

• Processor Speed

Electrical (M&I)
ITT Roorkee

Windows XP-Pro

Pentium 4

256 MB

2.40 GHz.

VHDL

Aldec Active HDL 6.1

Pentium 4

256 MB

2.40 GHz.

0%

Experimental Results and Verifications

• Development Kit 	 : Xilinx

• FPGA Device Family Xilinx Virtex II Pro

• Package xc2vplOO

• Speed Grade -5

• Top-level Module Type. 	 : HDL

• Synthesis Tool Xilinx ISE 7.li (using VHDL)

• Simulator Aldec 	Active 	HDL 	6.1 	and

Modelsim XE 5.7c

• Generated Simulation Language VHDL.

6.1.2 FPGA Design Flow
Since the goal of this dissertation is to create a full custom processor design in

FPGA, for this reason the implementation of embedded processor requires FPGA design

flow steps to be followed. Figure 6.1 shows. a standard design flow for a FPGA design:

Schematic entry

Verification

Synthesis

Verification

Place and Route

Verification

Configuration

Encoding chip

Figure 6.1 FPGA Design Flow

Schematic entry
The design is entered into a synthesis design system using a hardware description

language. The language used here is VHDL.

78 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Synthesis
A netlist is generated using the VHDL code and a logic synthesis tool (Xilinx

ISE 7.1)

Place and Route
The place process decides the best location of the cells in a block based on the

logic and desired performance. The route process makes the connections between the

cells and the blocks. Automatic place and route is done by the synthesis tool after

generating netlist.

Configuration

This is done by loading the configuration data into the internal memory. Synthesis

tool generates a bit stream file after placing and routing, which is -then downloaded in
FPGA. I used Xilinx's JTAG cable to load my design in the FPGA.

Verification

At each step of the design process, I verified my architecture using software

simulation. Initially I used Aldec Active HDL 6.1 software package for simulating my

VHDL code.

6.2 Simulation results
This section shows the simulation results of each kind of hardware module

implemented in the design.

6.2.1 Data registers
Signals data_int_in and data_fract_in are the input data's integer and fractional_

part. Signals data_int_out and data_fract_out are the output data's integer and fractional

part. Bit No. 13, 12, 11 of status register indicates TOP field of stack. In address field

(opcode), 00 is the opcode for Load instruction and 08 is for Store instruction. Signal

cs_main is Chip select.

Electrical (M&I)
	 79

IIT Roorkee

Experimental Results and Verifications

On reset, data registers contains FFFFFFFFH, which marks data registers as

empty. When chip select is active, the decoder decodes the opcode (address field); the

execution unit executes the decoded instruction (i.e. FLOAD). FLOAD instruction

decrements the top by one and loads the input value into the stack (i.e. at 6 h̀ location).

Here, the input data (data int_in and data_fract_in) in hex format is automatically

converted into single precision format and then to the extended double precision format

as shown in Figure 6.2.

To execute the next instruction chip select should be deactivated after the busy

signal goes low and reactivated in the following clock pulse.

When chip select is reactivated, decoder decodes the fresh opcode; the execution

unit executes the decoded instruction (i.e. FSTORE). FSTORE instruction outputs the top

of stack value and increments the top by one. Here, stack content in the extended-double

80 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

precision format is automatically converted into single precision and then to the hex

format as shown in the Figure 6.2

6.2.2 Control Register
As shown in Figure 6.3, on reset, the control word is set to OCOO which marks all

floating-point exception unmasked and sets the rounding to nearest. The content of

control word alters after FLDCW instruction loads it.

Figure 6.3 Simulation Waveform for Conrol word

6.2.3 Tag register
On reset, the tag word is set to FFFFH (i.e. each tag is set to 11) which marks all

FPU data registers are empty.

As shown in Figure 6.4, loading a valid number in the data register stack changes

the corresponding tag value to. 00. Similarly, loading a zero number in the data register

stack changes the tag value to 01 and loading an infinite or invalid number on the FPU

data register stack changes the tag value to 10.

The tag word content D3FF (i.e. 1101001111111111) indicates, the R6 contains

zero number and R5 contains a valid number and rest of the data registers are empty.

Electrical (M&I)
	

81
ITT Roorkee

Experimental Results 'and Verifications

Loading a zero in R6 changed " 	 Loading a valid numberin R5
eorrespondning tag to 01 	 changed corresponding tag to 00

Figure 6.4 Simulation Waveform for Tag word

6.2.4 Precision Converter
The opa represents single precision 32-bit input and opa_80 represents 80-bit

extended-double precision output.

Figure 6.5 Simulation Waveform of Single Precision to Extended-Double Precision

82 	 Electrical (M&I)
IlT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

The result_80 represents 80-bit extended double precision input and result_32

represents single precision 32-bit output, rmode represents rounding mode.

t . 20 	
...•. 	

.40 • r

6.2.5 Addition/Subtraction Unit

_ 	___..._...._..+°_1_ JUUUUUUUUUUUI7UUUUUUUUU.UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
reset 0 	R

w cs math 1 	I C

tdata fn OlAD—w•S=... E OOD7 	 01AD :^

r O 	F- 	0007:.. 	'' 	:; 	•-. 	:: 	.. .:.

+: "r data_int_nut —_ 	_---........._ ~ 00000284 _ ~~ —t _..._..... t 	
— UDUUwuU 	 _—_-__... ..._..__ 	..__....... 	...-__ 	_.. 	...-_ 	— _....__._ _— .—

0o060284
..— _ ~_ 	_ _f —_ __

ardata Tract ou! iD8DDDD0 1uu.uuuuuu r 	o2.eoe000 	;'

iII t 08 06 	 tt: 0s

` 	n* status word 3000 	j <D UoJ000)Q(2800: 	 - 2000 	- 0000 `

}s 	Control Word -- 	— _ 	_.....y— UUUU 	i
--

I UUUU

r - tag word ` C3FF
—

; FFFF

"f stack (FFFFFFFFF.

f 	stack(4)
._..._..... —..—.._........._i
FFFFFFFFF ... j

.... _
FPFFFFF 	~FFF 	 u

__ _

a<Ar stack(5) 400x410 	1 FFFFF 	i007D6806B000000000 	: 4008A100A1 000000000 i

+u stack(6] ! 400607 	A._l 4006D701AF000000¢000

' zero_flag 	1 0

ialinvd flag 	~ 0

N infuity_flag 0
..

ur stack overflow 0 	i

Ar stack undetflow 0 	j

Ar numeric overflow

numeric undetflaw

* dvide byzero

data input to FPU in address 08 loads the top-of-stack with 	address 11 performs address 08 stores the result into
user friendly manner input data in double-extended format 	addition operation output port in user friendly manner

Figure 6.7 Simulation Waveform of Addition

Electrical (M&I)
	

83
IIT Roorkee

Experimental Results and Verifications

The Floating point Addition/Subtraction unit accepts the data in double extended

precision format only. The operands can be available in any of the eight data registers or

stack. All addressing of the data registers is relative to the register on the top of the stack.

The data contained by the top-of-stack is taken as operand-A while the operand-B is

contained in the register whose effective address is given by "top-of-stack + offset given

in instruction". Addition/Subtraction operations keep the 80-bit result in the register as

indicated by the top-of-stack. Please note that the TOP (stack TOP) field is not modified

in this process and as a result, operand-A will be lost.

Consider the following example:

FADD ST (5);

Let the top-of-stack is fourth register (ST(5)) which is containing operand-A and

operand-B is contained in ST(5). The result of addition operation is stored back in ST(4).

Simulation waveforms are shown above.

6.2.6 Multiplication Unit
The Floating point Multiplication unit accepts the data in double extended

precision format only. The operands can be available in any of the eight data registers or

stack. All addressing of the data registers is relative to the register on the top of the stack.

The data contained by the top-of-stack is taken as operand-A while the operand-B is

contained in the register whose effective address is given by "top-of-stack + offset given

in instruction". Multiplication operations keep the 80-bit result in the register as indicated

by the top-of-stack. Please note that the TOP. (stack TOP) field is modified in this process

and as a result, operand-A will be lost.

Consider the following example:

FMUL ST (5);

84 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Let the top-of-stack is fourth register which is containing operand-A and operand-

B is contained in ST(5). The result of Multiplication operation is stored back in ST(4).

Simulation waveforms are shown in figure 6.8.

ad ces QO loads data iii 	add ess 21 itiply R5 with p 	address 08 Wires the
data registers (80-bit Format) 	and stores the result. back in R5 	result at output port

Figure 6.8 Simulation Waveform for Multiplication

6.2.7 Division Unit
The Floating- point Division unit accepts the data in double extended precision format

only. The operands can be available in any of the eight data registers or stack. All

Electrical (M&I)
IIT Roorkee

Experimental, Results and Verifications

addressing of the data registers is relative to the register on the top of the stack. The data

contained by the top-of-stack is taken as operand-A or dividend while the operand-B or

divisor is contained in the register whose effective address is given by "top-of-stack +

offset given in instruction". Division operations keep the 80-bit result in the register as

indicated by the top-of-stack. Please note that the TOP (stack TOP) field is modified in

this process. and as aresult, operand-A will be lost.

The explaination to above Waveforms is similar to previous ones

Figure 6.9 Simulation Waveform of Division

Consider the following example:

FDIV ST (5);

86 	 Electrical (M&I)
UT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Let the top-of-stack is fourth register which is containing operand-A or dividend

and operand-B or divisor is contained in ST(5). The result of Division operation is stored

back in ST(4). Simulation waveforms are shown in figure 6.9.

6.2.8 Square Root Unit

address 00 loads 	Address 38 takes square 	address 0$ stores
data in data register root of R5 and stores the 	the result on the
(80 bit format) 	result into R5 	 output port

Figure 6.10 Simulation Waveform of Square Root

Stack(5) contains the number whose square root is to be taken. The opcode for

square root is 38. When this instruction is executed, square root of top-of-stack i.e. ST(5)

is taken and the result is outputted through address 08. Since square root operation

consumes 66 clock cycles, above waveform is modified so that it can be contained on this

page.

Electrical (M&I) 	 87
IIT Roorkee

Experimental Results and Verifications

6.2.10 	Absolute unit
Address 30 takes the absolute of a number and stores the result in the same

register. The following waveform depicts the operation.
Names 	° 	Yaluex rx SU„_. _ 50 	FQ° 	15° 	24° __,.. 2$0 	.3p°.,..., a° 	 . 4O. 	 tiro 	590 	s o ._

.... 	— 	--
o reset 	10 	1R

o cs main 	1 	jC

+: o- data_it_in 	0006 	<_ _ 6066

:~ o- dsta fracC_in 	0228 	l<=... 0226 _' .. 	- 	 _:: 	. F 	_ 	 ., 	..'

69 data ml_out00000066 	EUuu uUU 	 ::- 00600066

*t-0 data_fract out 	492280000 	i . 	`uww uu. 	 oi?E60°o 	-

*.i o-add ess 	08 	1 	oo ', 	 xo 	 °6 '_._ 	— — 	 — _

~O status_woid 	X3800 	a°°° 	 3000! 	 s°DO 	aoo° 	 _

0 tag.,word 	ICFFF 	l 	FFFF 	:-` X CFFF 	:` 	_. .. 	 ,.. 	-... 	,..-.. 	,.

° ze o Oag
-0 invalid flag 	; 0 	I

. ̀
s
.~._ .i.

s

r_
l

t

a

i_M.y.
_
___.._

f._
l.o.

.

.

.

.

.
g.

_

_ .

.

.

.

.

.

._

..

.

.

.

.

.

_

..

_

.._

.

.

.

~

:1—

...

—.—__

..

.

.

.

.

.

..

.

.

.

.

.

.

t

~

.

.

.

.

.

.

.

.

....:

F
___._.._—

_.
—

. ___
--
._
.
_
.
.
.
.
.
.
:
..
..
.
........

_

.

_

..

.

.

_

..

. 	

: _

.

—

_.

'----
...._

..

.

.

. 	._

...._.-'

_

-

.

-

_

--

_

0
 	 -_

ck

at 	f 	 FFFFFFFFFFFFFFFF 	̀ 	" 	 - ' - 	 ~ 	:. . Pl stack(0) 	~FFFFFFFFFF...I ,

of stack)1) JFFFFFFFFFF... j 	FFFFFF££FFFFFFFFF _.... _.._.i 	 __ 	_ 	-
+I 	stack(2) 	FFFFFFFFFF... 	FFFFFFFFFFFFFFFFF . 	. - '. •:. 	`"

+, nr Stack(3) 	FFFFFFFFFF.-I 	FFFFFFFFFFFFFFFFFFFF 	`--' - -- 	.-.-
.._—.--_._..._ ..—.-----..__....._..._.._..._...____._~..__..._......._—.- ----..._.........--"'_------'----........_.......__.—._. _— — 	--- 	-

tt a+ stackt4) 	jFFFFFFFFFF... 	FFFFFFFFFFFFFFFFFFFF

it? stack(5) 	~ FFFFFFFFFF...l 	I FFFFFFFFFFFFFFFFFFFF 	 - 	 - 	 :. -- '-

tt slck[6) 	14005(x0456... j 	FFFFFFFFFFFFFFFFFFFF : E005 C015600D0000000 	-:, - 4005=04560000000000.. 	 ''-

.i*; w staC 7 	I FFFFFFFFFF... 	I FFFFFFFFFFFFFFFFFFFF 	- 	 - .- 	 _ 	`.• _ 	 —_.•± 	-_ .,. 	 .

Opcode forFABS

Figure 6.11 Simulation Waveform for Absolute Unit

6.2.11, 	Exception Generation Unit
The waveform for each exception is as shown in figure 6.12. On reset, the TOP

field of the stack is set to 7; hence an attempt to read (FSTORE instruction opcode 08)

will lead to stack underflow exception. As shown in figure 6.12 (b) when stack is full i.e.

when TOP field is set to 0, an attempt to write (FLOAD instruction opcode 00) will lead

to stack 'overflow exception. Similarly, Figure 6.12 (c), shows the divide by zero

exception, Figure 6.12 (a) shows numeric overflow exception.

88 	 Electrical (M&I)
IlT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

1° "CI...jUu[jLjUuUJjLjJUuUUUJj.[jIJWjLJ[jIj[J[J
C>- feeet 0 R 	'•1__
01- cs main 1 C 	 j

dat_irit_in 0U6 -------................................... c= 	___ - 	---------------- ------------- -.1-.----..--- .—....................
tJdat_1ract_in 0226 <= ... K022B
+ -o dat_int_ut FFFFFFFF (UUUUUUUU FFFFFFF ._'

- 	data . FFFFFFFF (UUuUUUUU 	 . 	.. 	FFFFFFFF

1±1 °- 	ddres 106 - ------............................ . 	 .,,
status.- word

:0048 cc -

I 	aord ----CFFF f
-------------------- --- -------------- --- --- 	- -

	
-ç- : 	.

nvaIid_lIa 0 . 	. 	. 	1 	
infinity _fI 0 . 	1
stack—overflow 0 .1 	 . -
stack undeifIov. 1 - -------------------[. 	.

-0 numeric_over1kjj 1 I 	 . 	 . 	.
numeric_undartIo 	C

-D divde_b_aero 0

stack 1, FFFFFFFFF... . 	_____[.. fr.-
numeric overflow exception 	Opcode C.fFSTORE 	read data-from stack when

stack is empty

Figure 6.12 (a) Simulated Waveform for Exception Generation

UU dk 	to_iLUU---ULUJJ..U. 	LULU.UU.UllU UWW
0 	 . 	. 	. 	-

- 	C U 11TL 	(LL)iI
dat&jrtjn 	8066 	— 	c66 	 ..4__,7
data 	ractjn 	0220 	...
data 	iuuuuuuuu
dataj 	L 	IJLJ__-- raod 	(UUIJIJUIJ 	&0JUUUWU 	 - 	—\\-._-_

- addies 	00.
statuLwod

.....................
.r..-.-.-..

0 t.g..wcid 	0000 	KFFFFXCFFF3FF 	-.Xco 	CQ3F___30iL .XC003 	JEI
zeioJlag 	0 	- 	. 	. 	.

°invalidI 	
.....__•__•_•_•__.

infinityJag 	..----... .---.-.
0 	act_overtaw 	1
0 stacundr0i 	It
° nun-e,icoverltoa 	0 	 -
-a nurneric_uniJer0ow 0 	________ __________
-0 divtda_byjero 	0
w stack 	l99.:................... 	.- 	-L..,.LiiI

Writing into the stack after 7 write,
stack overflow exception

Figure 6.12 (b) Simulated Waveform for Exception Generation

Electrical (M&I)
IIT Roorkee

Experimental Results and Verifications

an attempt to divide 	second bit of status divide by_zero unmty tlag'sets
a number by zero 	register is high 	exception 	high and register

contains inf pity

Figure 6.12 (c) Simulated Waveform for Exception Generation

6.2.11 Turbine Efficiency Measurement
The formula used for unit efficiency measurement (see chapter 2) is

Generator _ Output, Pe UnitEffaciency, 77u = 	 X100%
Hydraulic _ Input, P,.

where, Hydraulic input, PI = gHQ

g is the acceleration due to gravity, m/s2,
is the density of water, kg/m3,

90 	 Electrical (M&I)
IIT Roorkee

S

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

H = H1 — H2 is the net water head, m,

Hl is water head at inlet, m,

H2 is water head at outlet, m,

Q is the water discharge through the turbine, m3/s

Description of Unit Efficiency Measurement Waveform:

Signals data_int_in and data_fract_in are the input data's integer and fractional

part. Signals data_int_out and data_fract_out are the output data's integer and fractional

part. Bit No. 13, 12, 11 of status register indicates TOP field of stack. Bit 15 of status

register is busy bit as described in chapter 4. In address field (opcode), 00 is the opcode

for Load instruction and 08 is for Store instruction. Signal cs_main is Chip select.

On reset, FPU data registers contains FFFFFFFFH, which marks data registers as

empty. When chip select is active, the decoder decodes the opcode (address field); the

execution unit executes the decoded instruction (i.e. FLOAD). FLOAD instruction

decrements the top by one and loads the. input value (1000.0 (_)) into the stack (i.e. at 6th

location). Here, the input data (data int_in and data fract_in) in hex format is

automatically converted into single precision format and then to the extended double

precision format as shown in figure 6.13 (a).

To execute the next instruction chip select should be deactivated after the busy

signal goes low and reactivated in the following clock pulse.

Similarly, next number (9.806 (=g) in hex format) is loaded into the stack. Then

the address in address field is changed to 21 (opcode of FMUL ST(1)). This instruction

multiplies top of stack (R5 or 5 h̀ location of FPP data register) with content of top + 1 of

stack and stores the result back into top of stack(R5) as shown in figure 6.13 (b).

Again, next data i.e. 16.5 (= H) is loaded into the stack in the same manner. Now

the top of °stack points to 4 h̀ location or R4 as shown in figure 6.13 (c). Multiplication is

performed after loading and the steps are repeated to find Hydraulic input, Pi. This

followed by loading of generator output, Pe into R2, as shown in figure 6.13 (e) followed

by division (opcode 0x29) of result as shown in figure 6.13 (f) which gives the unit

efficiency.

Electrical (M&I)
	

91
IIT Roorkee

Experinental Results and Verifications

Finally, FSTORE instruction outputs the top of stack value and increments the top

by kne. Here, stack content in the extended double precision format is automatically

converted into single precision and then to the hex format as shown in the figure6.13(f)

(data int_out and data_fract_out).

Program:
The assembly language program written to compute the above expression is as

follows:

Assume that initially the top-of-stack is R7.

FLOAD (= 1000 Kg/m3); /*decrements top-of-stack and loads in extended-double

format into R6*/

FLOAD g (= 9.806 m/s2); /*decrements top-of-stack and loads g in extended-double

format into R5*/

FMUL ST(1); /*R5 E- R5 x R6*/

FLOAD H (= 16.5 m); /*decrements top-of-stack and loads H in extended-double

format into R4*/

FMUL ST(1); /*R4 F R4 x R5*/

FLOAD Q (= 0.3125 m3/s); /*decrements top-of-stack and loads Q in extended-double

format into R3*/

FMUL ST(1); /*R3 F R3 x R4*/

FLOAD Pe (= 31.326 kW); /*decrements top-of-stack and loads Pe in extended-double

format into R2*/

FDIV ST(1); /*R2 E- R2 - R3*/

FSTORE; _ . /* stores 	u in output port and increments top-of-stack */

Machine language codes for all operations are given in Appendix B (Design

Customized Instructions and their Usage).

92 	 Electrical (M&I)
UT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Electrical (M&I) 	 93
IIT Roorkee

Experimental Results and Verifications

94 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Electrical (M&I)
	

95
lIT Roorkee

Experimental Results and Verifications

96 	 Electrical (M&I)
UT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Electrical (M&I)
	

97
ITT Roorkee

Experimental Results and Verifications

Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Knowing the value of the generator efficiency, . g, the turbine efficiency can be

calculated by the following relation:

rbineEfficiency,% _ Unit_ Efficiency, 77U X100% Tu
Generator — Efficiency, 17g

Explanation of turbine efficiency measurement waveform is similar to that of unit

efficiency measurement waveform. Let the generator efficiency be 81.25%.

Program:

The following program gives the estimation of turbine efficiency.

FLOAD g (= 0.8125); 	 /*decrements top-of-stack and loads g in extended-

double format into R6*/

FLOAD o (calculated above); 	/*decrements top-of-stack and loads u in extended-

double format into R5*/

FDIV ST(1); 	 /*R2 F R2 + R3*/

FSTORE; 	 /* stores T into output port and increments top-of-

stack */

Machine language codes for the above programs are presented in Appendix B

(Design Customized Instructions and their Usage).

Electrical (M&I)
lIT Roorkee

Experimental Results and Verifications

100 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

3 ? ji it

q € 1 ? 1 I I 1
i-

: III
.....

II II

~ Sao E °°.: - t'. ! t i I'

}III

3 & ua. 	I 	f I

~•te•a..~ s~ - 	iw..El ! lf'y '' [o t: { i- {1

0 ' {s ii

rj
is i i i, c i —I

4 LL7} 1 S

x 4 {

L s - I i 	1 i 	f I i 11 	(l,-

a~ ' 	 .. 	i 	L 	F 	is [`~. 	O 	Li. 	i 	...
U..

LL° 	LL F LL 	 ?
LL 	i M I Ey 	LL

s 	I 	0 	I 	I 	I C{y}
:• 	.

M 	
p 	 LI. 	U-

o 	O S r e O i 0~7 	O i- U£ O E Ci] i O 	? 	i Li. !- Eli 	li { :C~'7 1 'C'~~7 	LPL ! O i. O! O :C
,. 	~.~ 	• 	,.. 	_.. 	: 	= 	m.,x.• 	. •e= 	i 	• 	r 	=n ufm.w„m?muu~

••=• 	 •I W=im

...,...:..,.,... 	° `"el oI 	R 	Y 	'- 	i C
I 	U 	 ~1 E 	T 	_ 	 = { 	I 	I.G 	I 	} 	} 	U { 	I) $ 	E] I ..Q 	I •

n 	 I 	I 	I 	~ 	
!

I 	v 	° 	i 	j~ i 	'a i 	N i 	'a ? 	ro! 	'a 1 yi ! 	1' 	i :•~ r,t ID 	-! 	?~ '
'D 	'D , 'D ; 'D 	!~ 	y 	U 	 i,..0 	~2 	` 	i. £a3 	v~ 3 	N 	 ~ .0

lEC+l:I+1!m.f+'15 	+l=.riIrI 	! 	iRIi

Electrical (M&I)
	

101
IIT Roorkee

Experimental Results and Verifications

6.3 Verification of Simulation Results

Random binary test vectors were generated of length 32-bits, 16-bits for integer

and 16-bits for fractional part, and were used to verify the output of each FP core

element. The vectors used for testing were pre-selected such that it included all exceptions.

The floating-point numbers included zero, maximum/minimum positive and negative

numbers. Special values include positive and negative infinity and Not a Number. The

output of the FP core elements are of IEEE-754 format. Appropriate flags are set for the

special values and on an occurrence of overflow/underflow. The simulation results were

verified both after the behavioral design and the structural design. The results for each

fixed-point unit algorithms were also verified with the standard simulator. The standard

simulator used for verification was Aldec's Active HDL 6.1. The following table will give

idea of what kind of test vectors were generated.

Table 6.1 Example of Test Vectors

4

ZERO - NFGJNF POS...TNF Infini 	flag
:1 N 	S 	1 M me'. MAX_NEG ciftITfff ifififif

M I' POS -'NaN_ NaN NaN lag
MAX_N G - MAXJOS NEGJNF1 Infinity flag -

POs_INF - r G_ENF o _I F infinity flag_
7.5 - 	O _cNF EGA Li ly flag

NEG_TNF 	_T P ZERO Zroiiag
NaNflag Na 	- ZERO NaN

ZERO * 7. ZERO.. Zero flag
P.OS 	''_' ZERO ZERO ero flag
. N 	_NF' ' .3<25 . ZERO: Zcro flag

a 	'*(1 5- .N N Nab' flag
7.5 / .:ZERO) Infinity "Infini 	flag

102 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

This chapter concludes and suggests the future work which can be done in this

area.

7.1 	Conclusion
I presented the design of the Floating-Point Arithmetic unit for FPGAs based on

IEEE 754 standard. Performing the arithmetic operations on IEEE Floating-point

numbers imposed challenges beyond the challenges of Fixed-Point arithmetic. These

challenges particularly include the task of normalization and IEEE compliant rounding. I

implemented both normalization unit and rounding unit (capable of performing all four

rounding modes). Based on simulation and synthesis results, it is concluded that the

design is performing in desired fashion and the purposed design is very suitable for

FPGAs (see Appendix C Synthesis Report, less than 17% of available resources in Virtex

II Pro is used). The Floating-point arithmetic unit is simulated using Aldec's Active HDL

6.1 and synthesized using Xilinx ISE 7.1i supported by ModelSim 5.7. The design is

targeted for Xilinx Virtex II Pro FPGA. The input/output number format confirms IEEE-

754 standard single precision real numbers. Internally, calculations are performed

according to IEEE-754 standard double-extended precision real nuinbers- (as incorporated

in Intel Pentium4 processor). This inherited feature assists floating-point arithmetic unit

in enhancing the accuracy. Besides implementing the . addition, subtraction,

multiplication, division, square root, and absolute unit, some other supporting units like

general purpose registers, control registers, tag register, status register etc are also

implemented to make it independent programmable chip and the FPU works in stand-

alone mode. With that limited exception handling has also been implemented. Although
most of the features are taken into account from Intel's Pentium4 but new things have•

been added to Pentium4's FPU and successfully implemented. One of the most exciting

such thing is the Tag register. Tag register available in Pentium4 needs to be taken care

Electrical (M&I) 	 103
IIT Roorkee

Conclusion and Future Work

of by the end user to check the validity of a number, but here in my design, it is

automatic. The FPU checks,, itself, the validity of a number before and after the

computation. Thereby, it also saves the large number of clock cycles whenever the data

register is empty or contains some invalid number. In essence, my work is superset of all

previous works related to this area. Since the target application was turbine efficiency

measurement which may require lot of computation on number of variables, special

attention has been paid to all kinds of arithmetic algorithms to design best possible core

units for FPU.

7.2 Suggestions for Future Work
Some suggestions are presented in this section which can be considered for future

work.

•:• Apply pipelining to all units/subunits. It helps in reducing latency.

v A few more complex instruction related to trigonometric and logarithmic can be 	_

integrated into the FPU to perk up flexibility.

❖ I implemented Normalization unit within the floating-point arithmetic modules. Area

consumed will decrease if a separate hardware module is designed for Normalization.

❖ Denormalization unit can also be implemented [26][28][32]. I have discussed

advantages of denormalization in Chapter 3.

❖ The work can be extended for quad precision and dual double precision format [38].

❖ Power reduction techniques can also be implemented.

104 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

REFERENCES

[1] Altera Corporation, ham:/ /www.altera.com

[2] Dr. H. K. Verma and Dr. Arun. Kumar, "Instrument Networking for Efficiency

Measurement in Small Hydro-Power Stations", IIT Roorkee.

[3] IEC-60041 (1991): Field acceptance test to determine the hydraulic performance of

hydraulic turbines, storage pumps and storage turbines.

[4] B. Fagin and C. Renard, "Field Programmable Gate Arrays and Floating-Point
Arithmetic", IEEE Transactions on VLSI systems, 2(3), September 1994.

[5] N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of Floating Point

Arithmetic on FPGA based Custom Computing Machines", Proceedings of IEEE
Symposium on FPGAs for Custom Computing Machines, April 1995.

[6] L. Louca, T. A. Cook, and W. H. Johnson, "Implementation of Single Precision

Floating Point addition and multiplication on FPGAs", K. L. Pocek and J. Arnold,
editors, Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines,
pages 107-116, April 1996.

[7] W. B. Ligon III, S. Mcmillan, G. Monn, K. Schonoover, F. Stivers, and K. D.

Underwood, " A Re-evaluation of the Practicality of Floating Point Operations on
FPGAs", Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines,
April 1998.

[8] I. Stamoulis, M. White, and P. F.- Lister, "Pipelined Floating-Point Arithmetic
optimized for FPGA architectures", 9`h International Workshop on Field Programmable
Logic and Applications, volume 1673 of LNCS, pages 365-370, August-September 1999.

Electrical (M&I) 	 105
IIT Roorkee

References 	 -

[9] I. Sahin, C. S. Gloster, and C. Doss, "Feasibility of Floating Point Arithmetic in

reconfigurable computing systems", 2000 MAPLD International Conference, 2000.

[10] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, y. Savaria, and D. Pokier, "A flexible

Floating Point Format for Optimizing Data Paths and operators in FPGA based DSPs",

International Symposium on Filed Programmbale Gate Arrays, pages 50-55, ACM Press,

February 2002.

[11] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna, "Analysis of High-Performance

Floating-Point Arithmetic on FPGAs," International Parallel and Distributed Processing

Symp., pp. 149b, April 2004.

[12] A. Malik and S. Ko, "Efficient Implementation of Floating Point Adder using

pipelined LOP in FPGAs," IEEE Canadian Conference on Electrical and Computer

Engineering, pp. 688-691, May 2005.

[13] IEEE Standard Board and ANSI, "IEEE Standard for Binary Floating-Point

Arithmetic," 1985, IEEE Std 754-1985.

[14] G. Hinton, et al., "The Microarchitecture of the Pentium 4 Processor," Intel

Technology J., 1st quarter 2001 at.

http://www.intel.com/techno1ogv/itj/q.htm

[15] Mentor Graphics corporation, http://w-ww.mentor.com.

[16] John L Henessy and David A Patterson, "Computer Arithmetic — A Quantitative

Approach", Morgan Kaufmann, 2003.

[17] Xilinx corporation, http://www.xilinx.com

106 	 Electrical (M&I)
ITT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

18 Wakerly, J. F. 2000, "Digital Design: Princi les and Practices ", 3 d̀ ed. Upper [] 	Y> 	 g ~ 	~~ 	P 	 pP
Saddle River, NJ: Printice Hall.

[19] Perry, D. L. 2004, "VHDL: Programming By Example", 4th ed. New York: McGraw-
Hill Companies inc.

[20] Bhasker, J. 1997, "A VHDL Primer", Allentown, PA: Star Galaxy Press.

[21] T. S. Hall and J. 0.'- Hamblen, "System on-a-Programmable-Chip, Development

Platforms in the Classroom", To appear in IEEE Transactions on Education, 2004,

[Online Document, Cited 2004 February 29], Available HTTP:

http://www.ece.gatech.edu/—hamblen/papers/SOC top.pdf

[22] Y. Li and W. Chu, "A New Non-restoring Square root algorithm and its VLSI

implementations", Proc. of 1996 IEEE international conference on computer design:

VLSI in computers and Processors, Austin, Texas, USA, October 1996, pp 538-544.

[23] Xiaojun Wang and Brent E. Nelson, "Tradeoffs of Designing Floating-Point
Division• and Square Root on Virtex FPGAs", Proceeding of the 11 h̀ Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 2003.

[24] Taek-Jun Kwon, Joong-Seok Moon, Jeff Sondeen and Jeff Draper, "A 0.18µm

Implementation'of Floating-Point Unit for a Processing-In-Memory system", IEEE, 2003,
pp. 453-456.

[25] Kyung-Nam Han, Sang-Wook Han and Euisik Yoon, "A New Floating-Point

Normalization Scheme by Bit-Parallel Operation of Leading One Position Value", IEEE,
2002, pp. 221-224

[26] Hu He, Zheng Li and Yihe Sun, "Multiply-Add fused Float Point Unit with On-Fly

Denormalized Number Processing", IEEE, 2005, pp.1466-1468.

Electrical (M&I) 	 107
IIT Roorkee

References

[27] Ramyanshu Datta and Jacob A. Abraham, "A Low Latency and Low Power

Dynamic Carry Save Adder", IEEE, 2004, pp. 477-480.

[28] Eric M. Schwarz, "FPU Implementations with Denormalized Numbers", IEEE
Computer Society, May 2005, pp. 825-836.

[29] Ling Zhuo and Viktor K. Prasanna, "High-Performance and Area-Efficient

Reduction Circuits on FPGAs", Proceedings of the 17th International Symposium on
Computer Architecture and High Performance Computing, 2005.

.[30] Guenter Gerwig, Holger Wetter, Eric M. Schwarz and Juergen Haess, "High

Performance Floating-Point Unit with 116-bit wide divider", Proceedings of the 16th

IEEE Symposium on Computer Arthmetic, 2003.

[31] Jian Liang and Russell Tessier and Oskar Mencer, "Floating Point Unit Generation

and Evaluation for FPGAs", Proceedings of the 11th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, 2003.

[32] Li Zheng, He Hu and Sun Yihe, "Floating-Point Unit Processing Denormalized

Numbers", 2003, pp. 90-93.

[33] Alex Panato, Sandro Silva, Flavio Wagner, Marcelo Johann, Ricardo Reis and

Sergio Bampi, "Design of Very Deep Pipelined Multipliers for FPGAs", Proceedings of

the Design, Automation and Test in Europe Conference and Exhibition Designers'

Forum, IEEE, 2004.

[34] Peter-Michael Seidel, "High-radix Implementation of Floating-point Addition",

Proceeding of the 17 h̀ IEEE Symposium on Computer Arithmetic, 2005.

108 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

[35] Haiping Sun and Minglun Gao, "Unified Bit for Leading Zero Anticipatory Logic

for High Speed Floating-Point Addition", Proceedings of IEEE Symposium on FPGAs for
Custom Computing Machines, 2003, pp 786-789.

[36] Steven D. Krueger and Peter-Michael Seidel, "Design of an On-Line IEEE Floating-

Point Addition for FPGAs", Proceeding of the 12th IEEE Symposium on Field-

Programmable Custom Computing Machines, 2004.

[37] Peter-Michael Seidel, "Design of an On-Line IEEE Floating-Point Multiplication

and Division fro Reduced Power Dissipation", Proceedings of IEEE Symposium on

FPGAs for Custom Computing Machines, 2004, pp 498-502.

[38] Ahmet Akkas and Michael J. Schulte, "A Quadruple Precision and Dual Double

Precision Floating-Point Multiplier", Proceedings of the Euromicro Symposium on

Digital System Design, 2003.

[39] He Jing and Han Yue-qiu, "A Pipelined Multiplication Unit", Proceedings of IEEE

Symposium on FPGAs for Custom Computing Machines, 2003, pp. 1247-1250.

[40] C. Chen, L. A. Chen and J. R. Cheng, "Architectural design of a fast floating-point

multiplication-add fused unit using signed-digit addition", Proceedings of IEE

Symposium on Comput. Digit. Tech., Vol. 149, No. 4, July 2002, pp. 113-120.

[41] Nicolas Brissibarre and Jean-Michel Muller, "Accelerating Correctly Rounded
Floating-Point Division when the Divisor is known in advance", IEEE Computing
Society, December 2003, pp. 1069-1072.

[42] Irvin Ortiz and Manuel Jimenez, "Scalable Pipeline Insertion in Floating-Point

Division and Square root units", IEEE, 2004, pp. 225-228.

Electrical (M&I)
	

109
ITT Roorkee

References

[43] Yamin Li and Wanming Chu, "implementation of Single Precision Floating-point

Square root on FPGAs", Proceedings of IEEE Symposium on FPGAs for Custom

Computing Machines, 1997, pp 226-232.

[44] Liang-Kai Wang and Michael J. Schulte, "Decimal Floating-Point Square root using

Newton-Raphson iteration", Proceedings of the 16 6̀ International Conference on

Application-Specific Systems, Architecture and Processors, 2005.

[45] Jose-Alejandro Pineiro, "High-Speed Double Precision computation of Reciprocal,

Division, Square root, and Inverse Square root", IEEE, 2002.

[46] Luo Min, Bai Yong-Qiang, Shen Xu-Bang and Gao-De-Yuan, "The Implementation

of an Out-of-Order Execution Floating-Point unit", IEEE, 2004, pp. 1384-1387.

[47] Claudio Brunelli, Fabio Campi, Jari Nurmi and Julia Kylliainen, "Reconfigurable

FPU as IP component for SoCs", IEEE, 2004, pp. 103-106.

[48] Neil Burgess, "Prenormalization Rounding in IEEE Floating-Point Operations using

a Flagged Prefix Adder", IEEE Transactions on Very Large Scale Integration Systems

(VLSI), Vol. 13, No. 2, February 2005, pp. 266-277.

[49] Gokul Govindu, Ling Zhuo, Seonil Choi and Viktor Prasanna, "Analysis of High-

performance Floating-point Arithmetic on FPGAs", Proceedings of the 18th

International Parallel and Distributed Processing Symposium, IEEE, 2004.

[50] http://www.howstuffwoiks.com/hydro

110
	

Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

APPENDIX A

GLOSSARY

0

ASICs
An ASIC (application-specific integrated circuit) is an integrated circuit (IC)

customized for a particular use, rather than intended for general-purpose use.

Aldec's Active HDL

The Active-HDL from Aldec Inc. suite is a comprehensive and totally integrated

environment for digital IC design and verification that employs hardware description

languages and C/C++ solutions. It provides tools for efficient and vendor independent

design implementation and testing for engineers and design teams. Active-HDL supports
even the most complex FPGA and ASIC designs.

Altera
Altera Corporation is a manufacturer of programmable logic devices.

ASCII
ASCII (American Standard Code for Information Interchange), generally

pronounced [ski], is a character encoding based on the English alphabet. ASCII codes

represent text in computers, communications equipment, and other devices that work

with text.

Electrical (M&I) 	 111
IIT Roorkee

Appendix A Glossary

C

CPLD
CPLD stands for Complex Programmable Logic Device. It is a programmable

logic device with complexity between that of FPGAs and PALs, and architectural

features from both. The building block of a CPLD is the macro cell, which contains logic

implementing disjunctive normal form expressions and more specialized logic operations.

- Computer-aided design (CAD) is the use of a wide range of computer-based tools

that assist engineers, architects and other design professionals in their design activities. It

is the main geometry authoring tool within the Product Lifecycle Management process

and involves both software and sometimes special-purpose hardware.

Compile-Time
In computer science, compile time, as opposed to runtime, is the time when a

compiler compiles code written in a programming language into an executable form.

CLBs, IOBs & Interconnects
The FPGA has three major configurable elements: configurable logic blocks

(CLBs), input/output blocks, and interconnects. The CLBs provide the functional

elements for constructing user's logic. The IOBs provide the interface between the

package pins and internal signal lines. The programmable interconnect resources provide
routing paths to connect the inputs and outputs of the CLBs and IOBs onto the

appropriate networks.

01

DSP
Digital signal processing (DSP) is the study of signals in a digital representation

and the processing methods of these signals. DSP and analog signal processing are

112 	 Electrical (M&I)
ITT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

subfields of signal processing. DSP has three major subfields: audio signal processing,

digital image processing and speech processing. The microprocessor class of digital

signal processor (DSP) is a specialized microprocessor designed specifically for digital

signal processing, generally in real-time.

E

EDA

Electronic design 'automation (EDA) is the category of tools for designing and

producing electronic systems ranging from printed circuit boards (PCBs) to integrated

circuits. This is sometimes referred to as ECAD (electronic computer-aided design) or

just CAD.

F

FPGA

Field-programmable gate array or FPGA is a semiconductor device containing

programmable logic components and programmable interconnects. The programmable

logic components can be programmed to duplicate the functionality of basic logic gates

(such as AND, OR, XOR, NOT) or more complex combinatorial functions such as

decoders or simple math functions. In most FPGAs, these programmable logic
components (or logic blocks, in FPGA parlance) also include memory elements, which
may be simple flip-flops or more complete blocks~of memories.

Finite State Machine (FSM)

A finite state machine or finite automaton is a model of behavior composed of

states, transitions and actions. A state stores information about the past, i.e. it reflects the

input changes from the system start to the present moment. A transition indicates a state

change and is described by a condition that would need to be fulfilled to enable the

transition. An action is a description of an activity that is to be performed at a given
moment.

Electrical (M&I) 	 113
UT Roorkee

Appendix A Glossary

Front-end and back-end
In their most general meanings, the terms front end and back end refer to the

initial and the end stages of a process flow.

In software design, the front-end is the part of a software system that deals with
the user, and the back-end is the part that processes the input from the front-end. The
separation of software systems into "front ends" and "back ends" is a kind of abstraction

that helps to keep different parts of the system separated.

In compilers, the front-end translates the source language into an intermediate

representation, and the back-end works with the internal representation to produce code

in the output language.

In electronic design automation, front-end stages of the design cycle are logical

and electrical design (e.g., schematic capture, logic synthesis). Sometimes floor planning

is also considered front-end. Back-end are place and route, custom layout design and

physical verification (design rule checking, layout versus schematic, parasitic extraction).

Many programs are divided conceptually into front and back ends, but in most

cases, the "back-end" is hidden from the user. However, sometimes programs are written

which serve simply as a front-end to another, already existing program, such as a

graphical user interface (GUI) which is built on top of a command-line interface. This

type of front-end is common in Unix GUIs, where individual programs are developed on

the design philosophy of many small, tested programs, able to run independently or

together.

Graphical User Interface
A graphical user interface (or GUI, sometimes pronounced "gooey") is a method

of interacting with a computer through a metaphor of direct manipulation of graphical

images and widgets in addition to text. GUIs display visual elements such as icons,

windows and other gadgets.

114 	 Electrical (M&I)
lIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

High-Level Language (HILL)

A programming language such as C, FORTRAN, or Pascal that enables a
programmer to write programs that are more or less independent of a particular type of
computer. Such languages are considered high-level because they are closer to human

languages and further from machine languages. In contrast, assembly languages are
considered low-level because they are very close to machine languages.

Hardware Description Languages (HDLs)

In electronics, a hardware description language or HDL is any language from a

class of computer languages for formal description of electronic circuits. It can describe

the circuit's operation, its design, and tests to verify its operation by means of simulation.

I

1P (IntellectuaI Property)

In electronic design a semiconductor intellectual property core, IP block, IP core,
or core is a reusable unit of logic, cell, or chip layout design. Cores that are the property

of one party may be licensed to another party though cores can also be owned and used

by a single party alone. The term is derived from the licensing of the patent and source

code copyright intellectual property rights that subsist in the design. An uncommon

alternative expansion is "integrated processor block". IP cores can be used as building
blocks within ASIC chip designs or FPGA logic designs.

IDE

An integrated development environment (IDE), also known as integrated design

environment and integrated debugging environment, is a type of computer software that

assists computer programmers to develop software. IDEs normally consist of a source

code editor, a compiler and/or interpreter, build-automation tools, and (usually) a
debugger.

Electrical (M&I) 	 115
IIT Roorkee

Appendix A Glossary

Integrated Circuit

Another name for a chip, an integrated circuit (IC) is a small electronic device

made out of a semiconductor material. Integrated circuits are often classified by the

number of transistors and other electronic components they contain:

SSI (small-scale integration): Up to 100 electronic components per chip

MSI (medium-scale integration): From 100 to 3,000 electronic components per
chip

LSI (large-scale integration): From 3,000 to 100,000 electronic components per

chip

VLSI (very large-scale integration): From 100,000 to 1,000,000 electronic

components per chip

ULSI (ultra large-scale integration): More than 1 million electronic. components

per chip

IA-32

IA-32, sometimes generically called x86-32, is the instruction set architecture of

Intel's most successful microprocessors. Within various programming language directives

it is also referred to as "i386". The term may be used to refer to the 32-bit extensions to

the original x86 architecture, or to the architecture as a whole. The term means Intel

Architecture, 32-bit, which distinguishes it from the 16-bit versions of the architecture

that preceded it.

IEEE

Institute of Electrical and Electronics Engineering.

IEEE-754

IEEE Standard for Binary Floating-point Arithmetic is the most widely used

standard for floating-point computation, and is followed by many CPU and FPU

implementations.

116 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

II

JTAG
JTAG, an acronym for Joint Test Action Group, is the usual name used for the

IEEE 1149.1 standard entitled Standard Test Access Port and Boundary-Scan

Architecture for test access ports used for testing printed circuit boards using boundary

scan.

L

LUT
In digital logic, an n-bit lookup table can be implemented with a multiplexer

whose select lines are the inputs of the LUT and whose inputs are constants. This is an
efficient way of encoding Boolean logic functions, and 4-bit LUTs are in fact the key

component of modern FPGAs.

LE

Logic Elements, FPGA are defined in terms of Les. . The array of logic cells and

interconnects form a fabric of basic building blocks for logic circuits. Complex designs
are formed by combining these Logic elements to build the desired circuit.

M

MicroBlaze

The MicroBlaze is a soft processor core from Xilinx for use in Xilinx FPGAs.
The MicroBlaze is based on a RISC architecture very- similar to the DLX architecture

described in a popular computer architecture book by Patterson and Hennessy. It features

a 3-stage pipeline, with most instructions completing in a single cycle. Both instruction

and data words are 32 bits.

Electrical (M&I) 	 117
IIT Roorkee

Appendix A Glossary

N

Netlist
In Electronic Design domain, a "netlist" describes the connectivity of an

electronic design. Netlists usually convey connectivity information and provide nothing

more than instances, nets, and perhaps some attributes. Netlists can be either physical or

logical; either instance-based or.net-based; and flat or hierarchical.

C

On-Chip Peripheral Bus (OPB)

This is a part of the IBM CoreConnect architecture. A processor (hard or soft)

core accesses low speed and low performance system resources through On-chip

Peripheral Bus (OPB). The OPB is a fully synchronous bus that functions independently

at a separate level of bus hierarchy.

On-Chip/Off-Chip Memory

On-Chip memory refers to a memory tightly coupled to processor, generally on

the same silicon chip. Off-Chip memory refers to a memory which resides outside the

silicon chip where the processor actually resides.

P

PROM
A programmable read-only memory (PROM) or field programmable read-only

memory (FPROM) is a form of digital memory where the setting of each bit is locked by

a fuse or antifuse. Such PROMS are used to store programs permanently. Some of its

types are EPROM, EEPROM etc.,

118 	 Electrical (M&I)
III Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Programmable Logic Devices (PLDs)

Programmable Logic Device or PLD is an electronic component used to build
digital circuits. Unlike a logic gate, which has a fixed function, a PLD has an undefined
function at the time of manufacture. Before the PLD can be used in a circuit it must be
programmed.

Process (in VHDL)

Behavioral descriptions are supported with the process statement. The process
statement can appear in the body of an architecture declaration just as the signal

assignment statement does. The contents of the process statement can include sequential

statements like those found in software programming languages. These statements are

used to compute the outputs of the process from its inputs. Sequential , statements are

often more powerful, but sometimes have no direct correspondence to a hardware

implementation. The process statement can also contain signal assignments in order to

specify the outputs of the process. The body of the process appear between the begin and
end keywords. Example of a process is shown below.

compute_xor: process (b,c)
begin

a<=b xor c;

end process;

Sensitivity List

Next to the keyword process (in VHDL), which starts the definition of a
process there is a list of signals in parenthesis, called the sensitivity list. The signal
sensitivity list is used to specify which signals should cause the process to be re-

evaluated. Whenever any event occurs on one of the signals in the sensitivity list,
the process is re-evaluated.

Run-Time

In computer science, runtime or run time describes the operation of a computer
program, the duration of its execution, from beginning to termination.

Electrical (M&I) 	 119
UT Roorkee

Appendix A Glossary 	 -

Reconfigurable Computing (RC)

Reconfigurable computing is computer processing with highly flexible computing

fabrics. The principal difference when compared to using ordinary microprocessors is the

ability to make substantial changes to the data path itself in addition to the control flow.

Ex: FPGA, CPLD etc.

RTL
Register Transfer Language (RTL) has two meanings in computer science. The

first is an intermediate representation used by the GCC compiler. Register Transfer
Language also refers to a language that defines precisely what each instruction in a

processor does, to a level of detail that allows synthesis of the hardware. The acronym

RTL is also used for register transfer level, an attribute of a hardware description

language.

RAM

Random-access memory (commonly known by its acronym RAM) refers to data

storage formats and equipment that allow the stored data to be accessed in any order --
that is, at random, not just in sequence.

Static Random Access Memory" (SRAM) is a type of semiconductor memory.

The word "static" indicates that the memory retains its contents as long as power

remains applied,

Dynamic random access memory (DRAM) is a type of random access memory

that stores each bit of data in a separate capacitor. As real-world capacitors are not

ideal and hence leak electrons, the information eventually fades unless the

capacitor charge is refreshed periodically. Different variations of DRAMS are:

PSRAM, DDR SDRAM, DRDRAM, SDRAM, QDR SDRAM, SGRAM,

MDRAM, BEDO DRAM, EDO DRAM, WRAM, and VRAM.

120 	 Electrical (M&I)
UT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

RISC (Reduced Instruction Set Computer)
The reduced instruction set computer, or RISC, is a microprocessor CPU design

philosophy that favors a smaller and simpler set of instructions that all take. about the

same amount of time to execute. The most common RISC microprocessors are ARM,

DEC Alpha, PA-RISC, SPARC, MIPS, and IBM`s PowerPC.

RTOS

A real-time operating system (RTOS) is a class of operating system intended for

real-time applications. Examples include embedded applications (programmable

thermostats, household appliance controllers, mobile telephones), industrial robots,

industrial control (SCADA), and scientific research equipment.

SOC

System-on-a-chip (SoC or SOC) is an idea of integrating all components of a

computer or other electronic system into a single chip. It may contain digital, analog,

mixed-signal, and often radio-frequency functions — all on one chip. A, typical application

is in the area of embedded systems.

SOPC

System-on-a-Programmable-chip, Similar to SOC, only difference it is .build in

programmable hardware

SOPC Builder

SOPC Builder is a powerful system development tool developed by AItera for

creating systems based on processors, peripherals, and memories. SOPC Builder enables

you to define and generate a complete SOPC in much less time than using traditional,

manual integration methods

Electrical (M&I) 	 121
IIT Roorkee

Appendix A Glossary

Soft Processor/Soft-core
A soft processor is a processor created out of the configurable logic in a FPGA.

Synthesis
In the world of electronic design automation, synthesis is the process of

converting a digital design written in a hardware description language (HDL) into a low-

level implementation consisting of primitive logic gates. Most large integrated circuits

designed today are written in an HDL and "compiled" using a synthesis product.

Serial Port

In computing, a serial port is an interface on a computer system through which

information transfers in or out one bit at a time

[f

UCF file
The User Constraints File is an ASCII file that you create. You can create this file

by hand or by using the Constraints Editor. The UCF file contains timing and layout

constraints that affect how the logical design is implemented in the target device. The

constraints in the file are added to the information in the output NOD file.

User-defined
User defined items are the one which are developed and implemented by the users

or developers as applicable.

VHDL

VHDL or VHSIC Hardware Description Language, is commonly used as a•

design-entry language for field-programmable gate arrays and application-specific

integrated circuits in electronic design automation of digital circuits.

122 	 Electrical (M&I)
TIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Verilog

Verilog is a hardware description language (HDL) used to model electronic
systems. The language (sometimes called Verilog HDL) supports the design, testing, and
implementation of analog, digital, and mixed-signal circuits at various levels of
abstraction.

Xilinx, Inc.

It is the world's largest developer and manufacturer of the class of reconfigurable

hardware chips known as Field-Programmable Gate Arrays (FPGAs). Xilinx is a

developer of FPGA and CPLD devices that are used in numerous applications within

telecommunications, automotive, consumer, defense, and other fields. Xilinx offers

device families for glue logic (CoolRunner, CoolRunner II), low-cost (Spartan), and
high-end (Virtex) applications in addition to supporting devices such as PROMs.

Xilinx ISE & EDK

Xilinx offers electronic design automation (EDA) tools for use with its devices.
Chief among these is ISE, which offers a complete EDA flow. The other being Xilinx's

Embedded Developer's Kit (EDK), which is aimed primarily at designers wishing to use

the embedded PowerPC 405 core in the Virtex-II Pro and Virtex-4, or Xilinx's own soft

microprocessor/microcontroller (MicroBlaze) in their designs. Other domain-specific

tools include System Generator for DSP, which provides seamless simulation and

implementation of high-performance DSP designs on Xilinx's FPGAs:

X86

x86 or 80x86 is the generic name of a microprocessor architecture first developed
and . manufactured by Intel. The x86 architecture currently dominates the desktop
computer, portable computer, and small server markets.

Electrical (M&I) 	 123
IIT Roorkee

Appendix A Glossary

XS Board
FPGA development board series.

124 	 Electrical (M&I)
ITT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

APPENDIX B

DESIGN CUSTOMIZED INSTRUCTION AND THEIR USAGE

F~-WIXV t
Load real number from the input port into the stack.

Opcode: 0x00

Clock cycles: 5

Description:

It merges the integer and fraction part of the real number and then
converts the number into extended double precision format and decrements the
data register stack by one and stores the converted data into top of stack.

2 	FSTORE instruction

Store real number from the stack into the output port.
Opcode: 0x08.

Clock cycles: 6

Description:
It retrieves the extended double precision number from the top of stack,.

converts it into equivalent real number, and then stores the converted data into
output port

3 	FADD instruction
Add TOP of data register stack to the TOP + X and store the result in TOP

of data register stack.
Opcode: 0x10 + X. (X3 0 to 7)

Clock cycles: 18 (if both numbers are valid)

7 (if one of the number is invalid, zero or infinite)
Description:

It adds the content (extended double precision number) of the top of data
register stack to the content of the top of stack plus X mentioned in instruction-0

Electrical (M&I) 	 125
IlT Roorkee

Appendix B Design Customized Instruction and their Usage

to 7 (extended double precision number) and stores the result (extended double
precision number) into the top of data register stack.

4 	FSUB instruction
Subtract TOP + X of data register stack from the TOP and store the result

in TOP of data register stack.
Opcode: 0x18 + X. (X -~ 0 to 7)
Clock cycles: 18 (if both numbers are valid)

7 (if one of the number is invalid, zero or infinite)

Description:
It subtracts the content (extended double precision number) of the top of

data register stack plus X mentioned in instruction-0 to 7 from the content of the
top of stack (extended double precision number) and stores the result (extended
double precision number) into the top of data register stack.

5 	FMUL instruction
Multiply TOP of data register stack to the TOP + X and store the result in

TOP of data register stack.
Opcode: 0x20 + X. (X - 0 to 7)
Clock cycles: 11 (if both numbers are valid)

7 (if one of the number is invalid, zero or infinite)

Description:
It multiplies the content (extended double precision number) of the top of

data register stack to the content of the top of stack plus X mentioned in
instruction-0 to 7 (extended double precision number) and stores the result
(extended double precision number) into the top of data register stack.

6 	FDIV instruction
Divides TOP + X of data register stack from the TOP and stores the result

in TOP of data register stack.

126 	 Electrical (M&I)
. IlT Roorkee

FPGA Based Floating Point Arithmetic Unitfor Turbine Efficiency Measurement

Opcode: 0x28 + X. (X - 0 to 7)
Clock cycles: 18 (if both numbers are valid)

7 (if one of the number is invalid, zero or infinite)
Description:

It divides the content (extended double precision number) of the top of
data register stack plus X mentioned in instruction-0 to 7 from the content of the
top of stack (extended double precision number) and stores the result (extended
double precision number) into the top of data register stack.

7 	FSQRT instruction
Computes square-root of TOP of data register stack and store the result in

TOP of data register stack.
Opcode: 0x38.
Clock cycles: 66 (if number is valid)

7 (if number is invalid, zero infinite or negative)
Description:

It computes square root of the content (extended double precision
number) of the top of data register stack and stores the result (extended double
precision number) into the top of data register stack.

8 	FCHS instruction
Change sign of TOP of data register stack and store the result in TOP of

data register stack.
Opcode: 0x40.
Clock cycles: 5
Description:

It changes the sign of the content of the top of data register stack
(extended double precision number) and stores the result (extended double
precision number) into the top of data register stack.

Electrical (M&I)
	

127
IIT Roorkee

Appendix B Design Customized Instruction and their. Usage

9 	FABS instruction

Computes the Absolute value of TOP of data register stack and store the

result in TOP of data register stack.

Opcode: 0x30.

Clock cycles: 5

Description:
It computes the absolute value of the content of the top of data register

stack -(extended double precision number) and stores the result (extended double

precision number) into the top of data register stack.

10 	RTI instruction
Round to nearest integer TOP of data register stack. and store the result in

TOP of data register stack.

Opcode: 0x58.

Clock cycles: 5

Description:
It rounds the content of the top of data register stack (extended double

precision number) to the nearest integer and stores the result (extended double

precision number) into the top of data register stack.

11 	LDCW instruction
Load FPU control word

Opcode: 0x60.

Clock cycles: 5

Description:

• Load the immediate input data into the control word register.

12 	FRSW instruction
Store FPU status word into the output port.

Opcode: 0x68

128 	 Electrical (M&I)
IIT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Clock cycles: 5
Description:

Store the status word (different states) into the output port.

13 	FCLEX instruction
Clear floating-point exception flags.

Opcode: 0x70
Clock cycles: 5
Description:

Clears the exception flags in the status word.

14 	NOP instruction
Do nothing.

Opcode: 0x78
Clock cycles: 4
Description:

Do nothing for 4 clock cycles.

Electrical (M&I) 	 129
]IT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

APPENDIX C

SYNTHESIS REPORT

Presented work is simulated using Aldec's Active HDL and the simulation results
obtained in Active HDL simulation environment are available in Chapter 6. Xilinx ISE

7.1i supported by Modelsim [15] is used to synthesize the Floating-point Arithmetic unit.
The target FPGA was Xilinx's Virtex II Pro [17]. This appendix provides the crucial part

of synthesis results.

Device utilization summary:
The following table gives utilization summary of Floating-Point Arithmetic unit

which is synthesized on Xilinx Virtex II Pro FPGA kit using Xilinx ISE 7. li.

Target Device : xc2vp100

Table Cl Device utilization for FPU

Timing Summary:
Speed Grade: -5

Minimum period: 107.329ns (Maximum Frequency: 9.31 7MHz)
Minimum input arrival time before clock: 16.416ns
Maximum output required time after clock: 15.594ns
Maximum combinational path delay: 6.407ns

Electrical (M&I) 	 131
IIT Roorkee

Appendix C Synthesis Report 	 -

Rest of the tables shows utilization summary of sub units of FPU.

• Table C.2 Device utilization for Stack Register
An~r- IIFJH3FIryn' ' 	I IQ6r1 "~Lndahla UIi;;I

776

i`JWt r of 4; input U 	828 	88192 	0i

	

.NlumlWer o1 banded IOBs ` 193 	1040 	18Z
Numi sraf G:CLKs 	:I 	3 	18 	18r

Table

Table C.4 Device utilization for Load (part of stack)
~ogic Utilization . 	1Ua AvailahleFUtlhzet nn'?
Nurcibar of=Slice$ 	r " 24 440981 0%
Numb$r aF Slice Flip-Flaps:. 41 88192 0%
plumber of 4 input LUTs 5 88192 0%
NUfter df t%bh&d'.IQBs _ I 118 10401 11%

Table C.5 Device utilization for Decoder Unit

Table C.6 Device utilization for Addition Unit

132 	 Electrical (M&I)
UT Roorkee

FPGA Based Floating Point Arithmetic Unit for Turbine Efficiency Measurement

Table C.7 Device utilization for Multiplication Unit

61

19%

16

Table C.8 Device utilization for Division Unit

16

Table C.9 Device utilization for Absolute Unit

Electrical (M&I) 	 133
IIT Roorkee

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

