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ABSTRACT 

Mammography is currently the best technique for reliable early detection of breast 
cancer. Mammography is a procedure of obtainning mammogram i.e. X-Ray image of 
breast strctures. Among all the mammogram abnormalities, microcalcifications are the 
most difficult type of tumour to detect. Area of thesis is mammogram image analysis 
for extraction of diagnostic information from it. 

Thesis work proposed a scheme which focuses on enhancement of mammogram mak-
ing use of morphological operators, segmentation of microcalcification using minimum 
cross entropy thresholding technique and extraction of number of diagnostic features 
for classification of mammogram into malignant or benign case. 

Enhancement algorithms are developed using top-hat and h-dome filters. Both 
makes use of morphological operators. Top-hat filtering is dependent on selection of 
structuring element so is prone to be image feature dependent while h-dome extracts 
microcalcification irrespective of shape variation in microcalcifications present on mam-
mogram. Traditional CLAHE enhancement algorithm is used for comparison. For the 
evaluation of . the performance of enhancement algorithms; detail variance to back-
ground variance ratio and contrast improvement index these two performance indices 
are used. 

After enhancement image background almost -become uniform. Minimum Cross en-
tropy based algorithm is developed for thresholding and extracting microcalcifications 
from the mammogram. This algorithm segments image for different thresholds and 
after each thresholding checks cross entropy between original image and segmented im-
age. Threshold giving least cross entropy value is taken as final threshold. Qualitataive 
analysis of enhancement as well as segmentation alorithms are done by presenting pro-
cessed images to expert radiologist. It is found that h-dome enhancement is the best 
method among all stated methods for enhancement of microcalcifiactions without dis-
torting the background parencymal tissue. 

Shape and texture of an image objects gives most of information about the nature 
of objects. Therefore we extracted 44 features providing diagnostic information based 
on shape and texture of image for classification. 

SVM is used for classification as it is outperforming other conventional techniques 
as stated in literature. SVM with Radial Basis Function kernel with tuned parameters 
gave 82 % accuracy of classification. McGill University database images are used for 
quantitative and qualitative analysis with the assistance of radiologist. 
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Chapter 1 

Introduction 

1.1 Introduction 

This chapter gives brief introduction of basics of mammography, it also highlights gaps 
in the current research and states aims of this thesis. 

The brief overview of mammography which is best technique for early detection of 
breast cancer is cited. Important definitions and* terminology used in mammography 
are described. Later an attempt is made to give an idea to reader about the intricacies 
involved in interpretation of mammograms. Mammogram abnormalities are discussed 
in detail and where this thesis work contributes in improvement of interpretation of 
mammogram is cited. 

1.2 Basics of mammography 

Mammography is acknowledged as a single most effective method for screening 'for 
breast cancer. Mammography is a technique that uses X-rays to provide an image of 
the breast structures. These images are known as mammograms which are used to find 
potential signs of breast cancer like tumours, small clusters of calcium deposits and 
abnormal changes in the skin. 

1.2.1 Anatomy of female breast 

The anatomy of the adult female breast consists of 12 - 20 conical lobes. The base 
of a lobe lies on top of the pectoral muscles and ribs, and its apex is at the areola 
and nipple. Lobular (glandular) and ductal tissue . lie within each lobe supported by 
intralobular connective tissue and adipose tissue.' There is also extralobular connective 
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Figure 1.1: Schematic Diagram of the Female Breast [1] 

tissue which binds the lobes together as well as extralobular adipose tissue. Adipose 
tissue is radiolucent, and the radiographically visible densities on a mammogram are 
the images of lobular elements, ducts, and fibrous connective tissue. Ducts may be 
seen as thin linear structures emanating from the nipple. Lobules and their ducts are 
often superimposed with connective tissue structures. Whether the mammographic 
appearance of a breast will appear more or less radiolucent will depend for the most 
part on the quantity of extralobular connective tissue [1]. 

1.2.2 Symptoms of breast cancer 

Breast cancer in early stages usually, does not cause pain. In fact, when breast cancer 
first develops, there may be no symptoms at all. But as the cancer grows, the following 
symptoms generally occur [2] 

— A lump or thickening in or near the breast or in the underarm area. 

-- A change in the size or shape of the breast. 

— Nipple discharge or tenderness, or the nipple pulled back (inverted) into the 
breast. Ridges or pitting of the breast (the skin looks like the skin of an orange). 
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— A change in the way the skin of the breast, areola, or nipple looks or feels (for 
example, warm, swollen, red, or scaly) . 

1.2.3 Mammography 
It is a technique, used to visualize normal and abnormal structures within the breasts. 
Mammography, therefore, can help in identifying cysts, calcifications, and tumors 
within the breast. 

Mammography is currently the most effective way to detect early breast cancer. 
Breast self- examination (BSE) on a monthly basis and examination by a doctor are 
still important, but physical examinations typically find breast cancers when they are 
much larger than those detected by mammography. While mammography can find 
cancers at early stage, when they are small and most responsive to treatment. Breast 
cancer is detected on the basis of four types of signs observed on the mammograms: 

1. The characteristic morphology of a tumor mass. 

2. Certain presentations of mineral deposits as specks called microcalcifications. 

3. Architectural distortion of normal tissue patterns caused by disease. 

4. Asymmetry between corresponding regions of images of the left and the right 
breast. 

1.2.4 Definitions & terms associated with mammography 

Mammogram- X-ray image of breast structures. 
Calcifications- These are the small tiny calcium deposits on breast tissue which 

looks as bright spots on mammogram image. 
Micro calcifications - Calcifications of size 0.5 mm or less are known to be micro-

calcifications as an agreement by most of radiologist. 
Macro calcifications - Calcifications of size 2.0 mm or greater are known to be 

macrocalcifications as an agreement by most of radiologist. 
Suspicious or malignant - A breast abnormality that may indicate breast cancer. 

On a mammogram, these abnormalities may be lesions such as spiculated masses or 
pleomorphic microcalcifications. 

Benign - A breast abnormality that is not an indication of breast cancer. 
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1.2.5 Mammogram abnormalities 

A radiologist looks for certain signs and characteristics- indicative of cancer when eval-
uating a mammogram. Masses and calcifications are most common abnormalities on 
mammograms. A mass is a space-occupying lesion seen in at least two mammographic 
projections. A calcification is .deposit of calcium salt on tissue. Both can be associated 
with either benign or malignant abnormalities, and can have a variety of appearances. 
The American College of Radiology (ACR) formulated Breast Imaging Reporting and 
Data System (BI-RADS), which contains a guide to standardized mammographic re-
porting, including a breast-imaging lexicon of terminology, a report organization and 
assessment structure and coding system, to help in standardized reporting.The lexicon 
used for describing mammographic abnormalities is organized by mass and calcifica-
tions. Masses are described by their geometry, border characteristics, and density. 
Calcifications are described by their size morphology and distribution. The ACR 
BIRADS has classified findings of calcifications into three categories: (1) Typically 
benign; (2) Intermediate concern; and (3) Higher probability of malignancy. 

Masses 

Masses are three-dimensional lesions which may represent a localizing sign of breast 
cancer. They are described by their location, size, shape, margin characteristics, x-ray 
attenuation (radiodensity), effect on surrounding tissue, and any other associated find-
ings (i.e. architectural distortion, associated calcifications, skin changes). Depending 
on the morphologic criteria of the mass, the likelihood of malignancy can be established. 

Location - The location of the mass may be established from the physical exami-
nation if the mass is palpable. Otherwise, its location can be determined from several 
different mammographic views. It is important to realize that the mass seen on a 
mammogram may not correspond to a palpable lump. Because breast cancer tends to 
develop in the peripheral zone of the breast's parenchymal cone, a mass location can 
raise suspicion of malignancy. 

Size - Size alone does not predict malignancy. Nonetheless, the size of a malignant 
mass is indicative of its progression. Needless to say, the objective of mammography 
is to detect breast cancer in its earliest stage of development. 

Shape - A mass shape may have one of five characteristics: Round, Oval, Lobular, 
Irregular, and Architectural distortion. The descriptions are fairly self-explanatory, 
and a schematic picture of each shape is shown below. Architectural distortion is not 
technically a mass since there is no definite mass visible. It can be identified by dis- 
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Figure 1.2: Mass shapes and margins [1] 

tortion in the normal breast architecture, including spiculations radiating from a point 
and focal retraction or distortion of the parenchyma edge. Architectural distortion can 
also be an associated finding of a mass. 

Margins - The margin is the border of a mass, and it should be examined carefully, 
sometimes using magnification view for clarity. It is one of the most important criteria 
in determining whether the mass is likely to be benign or malignant. There are five 
type of margins as defined by BIRADS: Circumscribed, Obscured, Micro-lobulated, 
Ill-defined, and Spiculated. Circumscribed margins are well defined and sharply de-
marcated with an abrupt transition between the lesion and the surrounding tissue. 
Microlobulated margins have small undulating circles along the edge of the mass. Ob-
scured . margins are hidden by superimposed or adjacent normal tissue. Ill-defined 
margins are poorly defined and scattered. Spiculated margins are marked by radiating 
thin lines. If there is no visible mass, the basic description of architectural distortion 
with spiculation as a modifier is used. 

Calcifications 

Calcifications are often important and common findings on a mammogram.. They can 
appear with or without an associated lesion, and their morphologies and distribution 
provide clues as to. their etiology as well as whether they can be associated with a 
benign or malignant process. 

Calcifications are analyzed according to their size, shape, number, and distribution. 
The general rule is that larger, round or oval shaped calcifications uniform in size has 
a higher probability of being associated with a benign process and smaller, irregular, 
polymorphic, branching calcifications heterogeneous in size and morphology are more 
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often associated with a malignant process. 
Size - Generally speaking, microcalcifications are associated with a malignant pro-

cess and macro calcifications are associated with a benign process. All calcifications 
start out imperceptably small and radiographically invisible. Most radiologists place 
calcifications 0.5 mm or less to have a high probability of association with cancer; and 
calcifications of 2.0 mm or larger are typical of a benign process. The smallest visible 
calcifications on a mammogram is approximately 0.2 - 0.3 mm. 

Number - The number of calcifications that make up a cluster has been used as 
an indicator of benign and malignancy. While the actual number itself is arbitrary, 
radiologists tend to agree that the minimum number of calcifications be either four, 
five, or six to be of significance. 

Morphology - The morphology of calcifications is considered to be the most impor-
tant indicator in differentiating benign from malignant. As noted earlier, round and 
oval shaped calcifications that are also uniform in shape and size are more likely to be 
on the benign end of the spectrum. Calcifications that are irregular in shape and size 
fall closer to the malignant end of the spectrum. 

1.2.6 ACR BIRADS Classification of calcifications 

The American College of Radiology (ACR) Breast Imaging Reporting and Data System 
(BIRADS) has classified findings of calcifications into three categories [1]: 

Typically benign 
Intermediate concern 
Higher probability of malignancy 

Typically benign 

Skin Calcifications - Skin calcifications have a typical lucent center and polygonal 
shape. 

Vascular Calcifications - Vascular calcifications can be seen as parallel tracks or 
linear tubular calcifications that run along a blood vessel. 

Coarse, or Popcorn-like Calcifications 
Rod-Shaped Calcifications - Large rod-like calcifications are typical of secretory 

disease but not of breast cancer. They are usually >1mm, are occasionally branching, 
and may have lucent centers. 

Round Calcifications - Smooth round calcifications are associated with a benign 
process. They may vary- in size in a cluster. 
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Figure 1.3: Typically benign: a. Skin calcifications b.Vascular calcifcatifications 
c.Coarse or popcorn calcifications d. Rod-shaped calcifications [1] 

Punctuate Calcifications - Round or oval calcifications <0.5mm are called punctu-
ate. They appear as sharply defined, pinpoint deposits. Punctuate calcifications are 
rarely associated with cancer, but if they are found together with other heterogeneously 
shaped calcifications, greater suspicion is warranted. 

Spherical or Lucent - Centered Calcifications Spherical or lucent-centered calcifica-
tions can range from <1mm to >1cm. 

Rim or Egg - shell Calcifications These are thin calcifications that surround all or 
part of the margin of a mass. 

Suture Calcifications - They typically appear as linear or tubular and knots may 
be visible. 

Dystrophic Calcifications -. These calcifications are irregular in shape but they are 
usually large, i.e. >0.5mm in size. 

Intermediate concern calcification 

Calcifications that are of immediate concern are indistinct or amorphous microcalcifi-
cations. They may appear as round or flake-shaped calcifications that are sufficiently 
small or hazy such that a their morphology cannot be reliably ascertained. 

Higher probability of malignancy 

Pleomorphic or Heterogeneous Calcifications - Heterogeneous or pleomorphic calci-
fications in and of themselves are not associated with a benign or malignant process. 

16 



Figure 1.4: Typically benign: a.Round calcfications b.Punctuate calcifications 
c.Spherical or lucent [1] 
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Figure 1.5: Typically benign: a. Rim or Egg calcification b.Suture calcifications c. 
Dystrophic calcifications [1] 
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Figure 1.6: Intermediate concern calcifications [1] 

However, a cluster of calcifications irregular in shape, size, and tend to be <0.5mm 
raises suspicion. 

Fine Linear or Branching Calcifications - These are thin, irregular calcifications 
that appear linear from a distance. Closer examination reveals that they are distinct 
and <1mm in width. 

1.2.7 Problems in interpretation of micro calcifications on mam-
mograms 

Microcalcifications are considered to be important signs of breast cancer. It has been 
reported that 30-50 % of breast cancer detected rediographically show microcalcifi- 
cations on mammograms. The high correlation between the presence of microcalcifi-
cations and the presence of the breast cancer suggest that the accurate detection of 
microcalcification will improve the efficacy of mammography as a diagnostic feature. 

• 1. Microcalcifications are very small. According to literature , the sizes of microcal-
cifications vary from 0.1mm to 1mm with an average diameter of about 0.3mm. 
Small microcalcifications,Iranging 0.1mm to 0.2mm, can hardly be seen on image 
due to their superimposition on the breast parenchymal textures and noise. 

2. Microcalcifications often appear in an inhomogeneous background describing the 
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Figure 1.7: Higher probability of malignancy calcifications [1] 

structure of breast tissue. Some parts of the background , such as dense tissue, 
may be brighter than the microcalcifications in the fatty part of the breast. 

3. Some microcalcifications have low contrast to the background. 

Due to above reasons it becomes too difficult to detect microcalcifications even for ex-
perienced radiologist. Consequently, computer assisted detection of microcalcification 
has aroused a great deal of interest. 

1.3 ' Motivation for the thesis 

The presence of micro calcification clusters (MCCs) is an important sign for the de-
tection of early breast carcinoma. An early sign of of breast cancer detected mam-
mographically is the appearance of clusters of fine, granular microcalcification, and 
most of breast carcinomas reveal MCCs upon histological examinations. Despite of its 
proven effectiveness, screening still misses about 20% of cancers. Several studies have 
shown that double reading of mammograms (by second radiologist) improves the ac-
curacy of mammogram interpretation. The desire to use computers in place of second 
radiologist, or as a prescreener to separate out clearly normal mammograms, is the 
motivations for computer aided detection system development 
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1.4 Literature survey 

Diagnostic features in mammograms vary widely in size and shape. Classicalimage en-
hancement techniques cannot adapt to the varying characteristics of such features. An 
adaptive method for enhancing the contrast of mammographic features of varying size 
and shape is presented in this paper [4] [3].Dongming Zhao et.al. proposed detection 
algorithm based on adaptive thresholding by making use of morphology [5].Tomislav 
Stojic et.al. [6] proposed local contrast enhancement and background texture suppres-
sion algorithm based on morphology. This shows to phat results on some images but 
still it fails for different databases. Adaptive histogram equalization has been shown to 
enhance contrast in radiological images, which in general have a large global dynamic 
range, but small local feature gray level variations [7]. 

Locally adaptive histogram equalization performs histogram equalization indepen-
dently over different segments of the image. In these methods, determination of local 
neighborhood dimensions is a critical step. A given neighborhood size and shape may 
not be equally effective in enhancing all areas of an image. Enhancement by background 
removal [4] is a direct method of reducing the slowly varying portions of an image, to 
allow increased gray level variations in the image details. It is usually performed by 
subtracting the low pass filtered version of the image from itself. Unsharp masking is a 
simple version of this procedure. Spline filtering and gray scale morphological process-
ing are two methods of estimating the image background. The background extraction 
technique should be adaptive to the local image characteristics to truly identify the 
image background. 

Morphological operations can be employed for many image processing purposes, in-
cluding edge detection, segmentation, and enhancement of images [5]. The simplicity 
of the mathematical morphology comes from the fact that a large class of filters can be 
represented as the combination of two simple operations on the image; the erosion and 
dilation the top-hat transform is used for enhancement of microcalcifications.Many 
digital image enhancement algorithms have been developed and were reviewed in [4]. 
These techniques generally enhance image contrast, but they simultaneously amplify 
noise and artifacts. In interpreting mammograms, noise and artifacts are undesir-
able and can potentially lead to false diagnoses. Michael Wirth et.al. [8] presented 
an approach to enhancing the contrast of microcalcifications in mammograms using 
a contrast enhancement algorithm based on a combination of morphological enhance-
ment and non-flat structuring elements. Given that microcalcifications appear as small. 
domes on a 3D relief of a mammogram, enhancement is achieved by using structuring 
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elements which have a 3D form. 
Entropy thresholding forms another class of algorithms widely used in thresholding. 

It has also been used in detection of MCCs in mammograms. Moti Melloul and Melloul 
et al. [9] have for the first time used a three dimensional co-occurrence matrix for 
threshold calculation. 

The threshold selection problem is solved by minimizing the cross entropy [10] 
between the image and its segmented version. The cross entropy is formulated in a 
pixel-to-pixel basis between the two images and a computationally attractive algorithm 
employing the histogram is developed. Without making a priori assumptions about 
the population distribution,, this method provides an unbiased estimate of a binarized 
version of the image in an information theoretic sense. 

Most systems extract features from the texture, spatial and spectral domains.Textural 
features represent properties of the object's surface.Haralick et al. [11] developed 
a graytone spatial-dependence matrix method (known as the co-occurrence matrix 
method) to describe patterns of graylevel repetition. Statistics derived from the co-
occurrence matrix are used to characterize the textural pattern. The co-occurrence 
matrix method is widely used in biomedical image processing [12].Spatial domain fea-
tures encode shape, pixel intensity, and other object characteristics. Zheng et al. [13] 
calculate the pixel intensity variance and energy variance of each image block. Zheng et 
al. (1996) calculated the discrete cosine transform (DCT) of X-ray images and derived 
the block activity and spectral entropy from the DCT coefficients [12]. 

Back-propagation neural networks (BPNN) were once commonly used for micro-
calcification classification [14]. However, a major disadvantage of BPNNs is that they 
lack a scheme for choosing training parameters such as the transfer function, number 
hidden layer nodes, and convergence algorithm. General regression neural networks 
(GRNNs) were later introduced to replace the. BPNN [12]. "Unlike BPNNs, the GRNN 
is based on non-linear regression theory for function estimation. One major advantage 
of a GRNN is the simplicity of the network training, which does not require time-
consuming procedures based on trial-and error. The drawback of GRNN's is that large 
data sets increase network size and computational load. In addition to the problem of 
dimensionality, the GRNN does not generate the optimal boundary for problems such 
as microcalcification classification, which have two classes (microcalcification present 
and microcalcification absent). For two-class problems, an optimal classifier should in 
principle seek the hyperplane that produces the largest margin of separation (struc-
tural risk minimization) instead of minimizing learning error alone [16]. Support 
Vector Machines (SVMs) minimize the structural risk by using non-linear mapping to 

21 



H1aiceme
~L......~'  

transform the input space to a high dimensional feature space, where a hyperplane 
is constructed to maximize the separation margin. SVM has recently been employed 
in mammographic microcalcification classification. Though experimental results show 
that SVM outperforms other types of neural networks, the impact of relevant feature 
selection on classification performance has not been addressed. 

1.5 Area of thesis 

The basic objective of computer-aided diagnosis (CAD) is to provide a second opinion 
on radiologist's image readings, with a view to improve the quality and productivity 
by improving the accuracy of radiological diagnosis and reducing the image reading 
time.As enhancement and detection of micro calcification are most important and cru-
cial from development of CAD system for early detection of breast cancer.The main 
goal of this work is to make contributions to a computer aided diagnosis system, which 
can provide a second opinion to radiologists on a routine clinical basis. Proposed CAD 
system is as shown in figure 1.8 

Figure 1.8: Block diagram of a typical computer-aided diagnosis (CAD) system 

In the proposed method, first step is selection or marking of region of interest (ROI) 
on mammogram. Then, the ROT selected from the digitized mammogram is de-noised 
and enhanced. The next stage is designed to find suspicious areas containing MCCs, 
and to separate the MCCs from the background that will be used for extracting features 
of MCCs. Next the features of MCCs are extracted and selected, and finally MCCs 
are classified into benign and malignant. 
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1.6 Organization of thesis 

Chapter 1. 

gives an introduction to basics of mammography, mammogram abnormalities on the 
mammogram, Problems in interpretation of the mammogram. It also gives a brief 
literature review and also list area of thesis work done. 

Chapter 2 

describes preprocessing of mammograms, morphological enhancement algorithms stud-
ied and implemented nad finally formation of synthetic images for evaluation and re-
sults. 

Chapter 3 

describes different evaluation indices such as Contrast Improvement Index (CII), and 
detail variance to background variance (DV/BV) ratio, used for evaluating different 
enhancement techniques along with this image profiles is also described. 

Chapter 4 

describes minimum cross entropy thresholding applied to synthetic mammogram im-
ages for segmentation of the microcalcifications. 

Chapter 5 

describes features extracted from microcalcifications and 

chapter 6 

describes labelling and object reduction techniques and finally basics of Support vector 
machine (SVM) used for classification along with results. 

Chapter 7 

summarizes the results, conclusions and describes directions of future work. 
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Chapter 2 

Mammogram enhancement 

2.1 Introduction 

Image enhancement refers to attenuation or sharpening of image features of interest 
such as edges, boundaries or contrast to make the enhanced image more useful for 
analysis. In our case as we are interested in microcalcifications i.e bright spots of 
higher intensities on the mammogram image. There are two -approaches by which we 
can enhance contrast of mammogram image. First one is by increasing contrast of 
suspicious areas of mammogram. Second one involves the removal of background noise 
from the mammogram image [15]. 

This chapter gives brief overview of traditional contrast enhancement techniques, 
basics of morphology. Finally describes two methods used in our thesis work by removal 
of background for enhancement of mammogram. 

2.2 How to increase contrast of image 

Contrast of an gray scale image is difference in gray level values of foreground and 
background of an image in a vague language. 

Low contrast image means image pixel intensity values concentrated near a narrow 
range (mostly dark, or mostly bright, or mostly medium values) 

to enhance the contrast of an image means change the image value distribution to 
cover a wide range. 
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Figure 2.1: How to increase contrast of image 

2.3 Preprocessing of mammogram 

Images from McGill University database where region of interest are marked by ex- 
perienced radiologist used for• analysis. We cropped region of interest from original 
mammogram. 

Cropping cuts of the unwanted portions of the image, thus all the unnecessary 
background information and most of noise are eliminated. An example of the cropping 
that eliminates the unwanted black background is given in figure. By clipping large 
number of background pixels from the images, storage requirements, I/O time, and 
image processing time is significantly reduced. Cropping operation is as shown in figure 
2.2. 

2.4 Mammogram enhancement techniques 

In thesis work we have implemented CLAHE traditional technique for comparison and 
two morphological enhancement methods which make use of background removal for 
enhancement. 

In this section we will study these techniques in detail. 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

Histogram equalization (HISTEQ) method is a well-known gray scale manipulation 
technique. In histogram equalization, the goal is to map the input image to the out-
put image so that gray values in the output image are uniformly distributed. For most 
practical images, gray values need to be redistributed. In histogram equalization we try 
to spread gray values uniformly over the full gray-scale range. It increases the contrast 
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Figure .2.2: Case2.jpg from (McGill University database) a.Original image b.Cropped 
image 

range in an image by increasing the dynamic range of gray levels. Another varia-
tion of conventional histogram equalization is Contrast-Limited Adaptive Histogram 
Equalization (CLAHE) algorithm. 

Contrast-limited adaptive histogram equalization operates on small data regions 
(tiles) rather than the entire image. Each tile's contrast is enhanced so that the his-
togram of each output region approximately matches the specified histogram (uniform 
distribution by default). The contrast enhancement can be limited in order to avoid 
amplifying the noise, which might be present in the image. The histogram -filter per-
forms a • so-called contrast limited adaptive histogram equalization (CLAHE) on the 
data set. The CLAHE algorithm partitions the images into contextual regions -and 
applies the histogram equalization to each one. This evens out the distribution of used 
gray values and thus makes hidden features of the image more visible. 

Top-hat filtering 

Morphological contrast enhancement is based on the notion of morphological top-hats 
which were first proposed by Meyer [5]. A top-hat is a residual filter which preserves 
those features in an image that can fit inside the structuring element (SE) and removes 
those that cannot. 

The top-hat transform is used to segment objects that differ in brightness form the 
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Figure 2.3: Tophat filtering [17] 

surrounding background in the images with uneven background intensity. 
The high-intensity regions, i.e. features that cannot accommodate the structuring 

element are removed from an image by performing a structural opening. The top-hat 
by opening, , is defined as the difference between the original image, and its grayscale 
opening using structuring element SE. 

TopHat transform = Original image-Opened Image 

B = A — [(A.ø SE) ® SE] 	 (2.1) 

. In top-hat filtering for microcalcifications, the selection of structuring element is 
crucial and plays a central role in enhancement of microcalcifications in the mam-
mogram. But as microcalcifications vary in shape and size, it becomes too difficult 
to decide structuring element for morphological operators. In . literature previous ap-
proaches used small square or disk shaped flat structuring element [18], which may 
be inappropriate for natural shape of microcalcifications. Some has also used non-flat 
structuring element for enhancement by taking care of intensity along with shape of 
micro calcifications [8] 

H-dome transformation [19] 

Considering each mammogram as a topographic representation, each microcalcifica-
tion appears as an elevation or dome constituting a regional maximum.So problem of 
enhancement reduces to enhancement of domes from the mammogram. It makes use 
of morphological reconstruction. 

Morphological reconstruction is part of a set of image operators often referred to as 
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geodesic. In the binary case, reconstruction simply extracts the connected components 
of a binary image I (the mask) which are "marked" by a (binary) image J contained in 
I . This transformation can be extended to the grayscale case, where it turns out to be 
extremely useful for several image analysis tasks. 

Geodesic distance 

Given a set X (the mask), the geodesic distance between two pixels p and q is the 
length of the shortest paths joining p and q which are included in X. Note that the 
geodesic distance between two pixels within a mask is highly dependent on the type of 
connectivity which is used. 

Geodesic dilation 

Geodesic dilation is defined as: 
Let X E Z2 be a discrete set of Z2and Y C X. The geodesic dilation of size n >= 0 

of Y is subset of X is the set of the pixels of X whose geodesic distance to Y is smaller 
or equal to n.: 

01nl (Y) = {p E X }dx( p,y) <= n} 	 (2.2) 

From this definition, it is obvious that geodesic dilations are extensive transforma-
tions. In addition, geodesic dilation of a given size n can be obtained by iterating n 
elementary geodesic dilations. 

The elementary geodesic dilation can itself be obtained via a standard dilation of 
size one followed by an intersection 

	

aXl~ _ (YEDB)nX 
	

(2.3) 

The reconstruction of X from Y C X is obtained by iterating elementary geodesic 
dilations of Y inside X until stability. 

In other words 

	

Px(Y) = U ax(Y) 
	

(2.4) 

Just like binary reconstruction extracts those connected components of the mask 
which are marked, grayscale reconstruction extracts the peaks of the mask which are 
marked by the marker-image. As stated in earlier chapters that micro calcifications 



Figure 2.4: Morphological reconstruction [20] 

are regional maximum in mammogram if we consider mammogram as a topographic 
representation. 

The grayscale reconstruction 

Grayscale reconstruction p j(J)of I from J is obtained by iterating grayscale dilations 
of J under I until stability is reached. 

pi(J) = n> ~ aln )(J) 
	

(2.5) 

Reconstruction provides a very efficient method to extract regional maximum from 
grayscale images. This technique extends to the determination of "maximal structures", 
which we call h-domes. 

Figure 2.5: Block diagram of H-dome transformation mammogram enhancement 

Regional maximum M of grayscale image I is a connected components of pixels with 
a given value h ,such that pixel in the neighborhood of M has strictly lower value. 
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h-dome Transformation 

h-dome transformation (h-dome) of the image is given by 

h — dome(I) = I — p(I — h) 	 (2.6) 

where 
p = reconstruction of image which removes peaks from the image 
Thus after subtracting morphologically reconstructed image from the original image 

we get peaks of the image. h-dome is independent of size and shape of domes in the 
images. 

2.5 Results and discussions 

2.5.1 Synthetic images 

One of the fundamental problems in evaluating the performance of algorithms for de-
tection of microcalcifications is that one is never certain if a false positive is not an 
actual calcification. This is because the radiologist is prone to human error. While 
most of the research has concentrated on detection methods little attention has been 
devoted to defining a gold standard for an objective evaluation of computerized de-
tection accuracy. Some authors compare their results to the locations indicated by 
an experienced radiologist while others confirm the presence of microcalcification by 
biopsy or magnification. Biopsy and magnification are able to confirm the presence of 
microcalcifications and can accurately evaluate the rate of false positives when the aim 
is to detect clusters of microcalcifications on the whole mammogram. However these 
tools are not able to determine the number of microcalcifications and to localize them 
individually. 

Therefore for evaluating and analysing different enhancement algorithms applied on 
mammogram, synthetic images are created with known microcalcifications on them. 
While preparing different synthetic images we have taken care of shapes and sizes of 
microcalcifications. Some of the synthetic images are shown in figure 2.6.In first image 
microcalcifications are shown by arrows. 
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Figure 2.6: Synthetic images : a.Testl b.Test2 c.Test3 d.Test4 d.Test5 

In test1 image microcalcifications are indicated by arrows. Testl image contains 5 
microcalcifications as shown. Test2,Test3,Test4,Test5 images contains 13,5,10,10 mi-
crocalcifications respectively. In all images we induced simulated microcalcifications 
with different sizes and varying shapes as shown in above figure 2.6. 

2.5.2 Image Database 

After getting confidence of performance of different algorithms on test synthetic im-
ages, these are algorithms applied on standard mammogram images from the Mcgill 
University database with known region of interest ROT 

Because of the minute sizes of the microcalcification, the image resolution needs 
to be very high. The image size in database has been clipped and padded to become 
1,024*1,024 pixels. The dynamic range of the pixel is eight bit- that is, a gray scale of 0 
to 255. Background tissues included in this database include fatty, fatty glandular, and 
dense glandular. The database yields abnormalities such as calcification, well defined 
circumscribed masses, masses with speckles, ill defined masses, architectural distortion, 
asymmetry and normal. The ground truth of each mammogram is also included in the 
database, which provides the location where the abnormality is present by marking a 
circle marked around it. 
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2.5.3 Results 

Algorithms stated applied on test synthetic and after getting confidence applied on 
standard database, results are shown as below. 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

Figure 2.7: CLAHE : Testl Original image & enhanced Image 

Figure 2.8: CLAHE : Test2 Original image & enhanced Image 

As shown in above figures 2.7 & .2.8 ,CLAHE technique enhances simulated mi-
crocalcifications along with background noise which is not desirable. Clearly, in Testl 
image it can be seen that background noise is also enhanced along with simulated micro-
calcifications, which makes it difficult to detect microcalcifications in dense structures. 
Even for the Test2 image where background is smooth it shows noise around microcal-
cifications.This is not suitable for micro calcification enhancement.All synthetic images 
are tested for this and showing similar enhancement. 

Tophat filtering 

As stated in literature most of the researcher tried and used disk and square shaped 
structuring element for tophat filtering. But as microcalcifications are of different sizes 
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Figure 2.9: Tophat filtering with square SE with side=50,100 Test1 image 

Figure 2.10: Tophat filtering with square SE with side=50,100 Test2 image 

and shapes it becomes too difficult to choose structuring element. 
We have tested tophat with different structuring element enlisted in literature,proposed 

to be better than other structuring elements. 
From the above two figures 2.9 & 2.10 we can see the effect of the structuring 

element in tophat filtering. Even though if some structuring element works for one 
image it may happen that it will not give good result on other images.This is drawback 
of tophat filtering in enhancement of mammograms. 

Figure 2.11: Tophat filtering with disk with radious 100 for Testl image 
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Figure 2.12: Tophat filtering with disk with radious 100 for Testl image 

In literature some researchers also used non-flat structuring element for enhance-
ment [8], we have also tested non-flat structuring element on our images. 

Figure 2.13: Tophat filtering with ball SE (non-flat) with height=50,radious=17, Testl 
image 

It seems that this structuring element works. for some images but when we tested 
on other images it shows similar effect of dependency on structuring element. 

From above we can conclude that tophat filtering technique can be used for par-
ticular sets with specific structuring element. Clearly it is dependent on structuring 
element , choice of which is most difficult. 

Now we will move to h-dome transform and will see how it overcomes this drawback. 

h-dome filtering 

h-dome transformation is applied to test images with different values of h. As stated 
in [20] The choice of h turns out not to be a critical operation, since a range of values 
yield correct results. 
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Figure 2.14: Tophat filtering with ball SE with height=50,radious=17, Test2 image 

Figure 2.15: h-dome filtering Test1 image 

Figure 2.16: h-dome filtering Test2 image 

In h-dome it removes completely background portion in image. This can be very 
clear if we give close look on details in Test2 image, original image is having uniform 
background, which is completely removed by h-dome in enhanced image. As seen from 
both the images shapes and sizes of microcalcifications are preserved after enhance-
ment. 
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Results of applying proposed algorithms on standard database images are shown in 
figure 2.17. 

;a 	 b. 	 c 

Figure 2.17: o.Cropped case25Lmlo.jpg (Mcgill database)a.CLAHE enhanced b.top-
hat enhanced c.h-dome enhanced 

From the figure 2.17 (a) , if we closely observe, it can be noted that noise enhance-
ment is more in CLARE as compared to other techniques. So though it seems that 
it is increasing contrast of image. But it from microcalcifications point of view, it is 
making image difficult for detecting microcalcifications. 

In figure 2.17(b), tophat filtered image is shown , which clearly indicates good 
enhancement, but if we take a close look it can be found that tophat has changed 
shapes of some of microcalcifications. 

In figure 2.17(c), h-dome enhanced image shows clearly removal of background 
without affecting shapes and sizes of micro calcifications. 

It can be observed that the H-dome transformation gives better results as 
compared to tophat and CLAHE irrespective of structuring element used. 
Occasionally tophat may give better results for particular image but overall 
h-dome outperforms tophat filtering method. 
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Chapter 3 

Quantitative analysis of mammogram 
enhancement algorithms 

3.1 Introduction 

This chapter addresses the various quantitative measures for evaluation of enhancement 
algorithms used to improve quality the image. 

In this chapter, comparison of our proposed algorithms using two of the evaluation 
indices listed in literature i.e. CII(Contrast Improvement Index) and DV/BV ratio 
is done. Finally we used image profiles of a mammogram for visual inspection of 
performance of enhancement. 

3.2 Evaluation Indices 

The improvement in images after enhancement is often very difficult to measure. A 
processed image can be said to be an enhanced over the original image if it allows the 
observer to better perceive the desirable information in the image. In mammograms, 
the improved perception is difficult to quantify. Use of statistical measures of gray 
level distribution as measures of local contrast enhancement (for example, variance or 
entropy) have not been particularly meaningful for mammogram images. A number 
of images which clearly showed improved- contrast showed no consistency, as a class, 
using these statistical methods. 
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3.2.1 Contrast Improvement Index (CII) 

Laine et al. [21] proposed the contrast improvement index CII as the measure of the 
enhancement performance: 

CII = Cprocessed/Coriginal 	 (3.1) 

Where Cprocessed and Coriginal are the contrasts for a ROI in the processed and 
the original images, respectively. The contrast C of a region is defined by 

C=  f —b 
f +b 

(3.2) 

where f is the mean gray-level value of a particular object in the image, called 
the foreground, and b is the mean gray-level value of a surrounding region called the 
background.This definition of contrast has the advantage of being independent of the 
actual range of gray 1 levels in the image. The bigger the value of CII, the better the 
performance. 

3.2.2 Background and detail region variance 

Even if direct visual inspection remains the most effective way for evaluating the quali-
ties of an enhancement scheme, it can be useful to assign them some objective measure; 
a simple but fitting method has been devised in order to make the comparison among 
the processed images easier. It is based on the separate estimate of the local variance 
on the image details (detail variance) and in uniform areas (background variance). 

First, we define such two regions in the ideal image; for each pixel we evaluate the 
variance in a n x n window: if the variance is larger than a fixed threshold, the pixel 
belongs to the detail region; otherwise, it belongs to the background region. In this 
way, a binary map image is generated where, say, white pixels indicate details and 
black ones indicate background. Then, we evaluate the variance in a n x n window 
centered on each pixel of the processed image: if the corresponding pixel in the binary 
map image is white, this variance is accumulated in a detail region variance register, 
otherwise in a background region register. We end up with two numbers: the average 
background variance (BV), obtained dividing the detail region variance register by the 
number of pixels in the detail region, and the average detail variance (DV), obtained 
in an analogous way [22]. 

Reasonably enhancement techniques should yield for the processed image a DV 
value larger than the . one of the original image, while the BV value should remain 



unchanged or, if possible, slightly decrease. In order to apply this method, one has 
to choose two parameters, i.e. the size n of the window and the detail/background 
threshold. Of course, the absolute values of DV and BV depend on such parameters; 
nevertheless, their relative values remain very similar in a wide range of choice, indi-
cating that they represent two reliable quality factors when it is needed to compare 
the performance of different operators. 

3.2.3 Results and discussions 

First Index used for evaluation of enhancement algorithms is Contrast Improvement 
Index(CII).As we have seen higher the value of CII, better is the enhancement of 
mammogram.CII is calculated for images in the database explained in section 2.5.2. A 
graph of McGill Images vs CII is plotted as shown in figure 3.1. It can be observed that 
CII profile for H-dome algorithm has maximum area under the curve as compared to 
two other techniques used for comparison i.e.tophat filtering and CLAHE. From graph 
it can be concluded that H-dome seems to better than other two methods. 

Second evaluation index used is DV/BV ratio.Graph of Detail variance(DV) vs 
McGill Images ,Background variance(BV) vs McGill Images and finally combining 
DV/BV ratio vs McGill Images are plotted. By looking at figure 3.2 , it can be 
observed that DV profile for CLAHE shows maximum area under curve.That means 
CLAHE enhances detail portion of image in better way as compared to other two 
techniques. But as we have seen it also enhances noise so it is not suitable. H dome 
shows least area under DV curve, means it enhances detail portion comparatively less 
effectively than other methods. 

By looking at figure 3.3, it can be observed that BV profile for CLAHE shows max-
imum area under curve, as we have seen it also enhances noise so it is not suitable. H 
dome shows least area under BV curve that indicates it rejects slow varying background 
better than other two methods. 

Finally by looking at figure 3.4 , it can be observed that DV/BV profile for h-dome 
shows maximum area under curve , from which we can conclude that h-dome is best 
amongst these three methods. 



Table 3. 
tec 

name of image CLAHE to hat hdome 

casellLcc small ans.jpg 0.493 1.2987 5.6131 
casellLmlo small ans.jpg 2.7793 0.5437 1.9579 
casellRcc small ans..jpg 0.1079 2.2725 8.7316 
casellRmlo small ans.jpg 27.1092 13.0023 58.1538 
casell lLcc small ans.jpg 184.6198 61.48 6.8459 
casell lRmlo small ans.jpg 0.1241 3.2574 8.7838 
casel5Lcc small ans.jpg 0.6527 1.2991 2.2072 
casel5Lmlo small ans.jpg 1.3765 1.8636 5.6711 
casel5Rcc small ans.jpg 0.481 4.5599 5.2196 - 
casel5Rmlo small ans.jpg 0.6418 1.833 2.392 
casel5 1Lcc small ans.jpg 0.2499 5.0706 4.918 
casel5 ILmlo small ans.jpg 0.6932 1.498 1.8621 
casel5 lRmlo small ans.jpg 0.0547 0.1008 6.2143 
case22Lcc small.-jpg 0.8216 0.9868 0.596 
case25Lcc small ans.jpg 1.2564 1.1051 5.9704 
case25Lmlo small ans.jpg 2.2343 1.559 12.5288 
case25Rcc small ans.jpg 3.1077 0.8041 7.2974 
case25Rmlo small ans.jpg 13.0431 5.0641 116.1576 
case37Lcc ans small.jpg 2.5223 1.5354 2.7563 
case37Lmlo ans small.jpg 0.9028 1.1311 2.4467 
case37Rcc ans small.jpg 1.9805. 2.3513 15.2404 
case37Rmlo ans small.jpg 1.3164 -1.3675 3.8337 
case46Lcc small.jpg 0.4639 0.8848 2.8152 
case46Lmlo small.jpg 0.7666 0.7883 3.5919 
case46Rcc small.jpg 0.8822 1.0089 1.3031 
case46Rmlo_small.jpg 0.4022 0.6451 3.2164 
case49Lcc small.jpg 0.9036 1.7152 6.4065 
case49Lmlo small.jpg 7.0585 5.499 60.241 
case49Rcc small.jpg 	- 1.2976 0.8067 12.9275 
case49Rmlo small.jpg 1.1905 2.3978 '5.208 
case6Lcc ans small.jpg 0.2116 1.1966 3.3881. 
case6Lmlo ans small.jpg 0.4271 1.1629 1.7586 
case7Lcc small ans.jpg 0.8138 1.1458 1.9992 
case7Lmlo small ans.jpg 0.9706 1.1872 2.3027 
case7Rcc small ans.jpg 0.858 1.1433 0.4832 
case7Rmlo small ans.jpg 0.8328 1.1995 0.2002 
casel7rmlo.jpg 0.5289 1.2171 0.5787 
casel9Rcc.jpg 5.9842 1.0575 2.2162 
case2.jpg 0.7273 1.1058 0.3297 
case2lLcc.jpg 3.3547 0.4764 .55.5751 
case2lLmlo.jpg -2.1772 1.5631 13.3021 
case24Lcc.jpg 1.1596 0.8069 8.3485 
case24Lmlo.jpg 0.8293 0.6032 5.3621 

Comparison of Contrast Enhancement Index (CII) for different enhancement 
hni ues a lied on ROIs of mammograms containing  p ~' g 



ca5e26Lcc.jpg 1.1631 0.7045 9.2249 
case26Lmlo.jpg 1.7403 3.4294 70.565 
case27Rcc.jpg 0.6366 0.9595 0.975 
case27Rmlo.jpg 0.2922 0.8349 3.3956 
case2lmlo.jpg 0.7183 1.0391 0.0819 
case36Lcc.jpg 5.7666 0.7903 94.6143 
case36Lmlo.jpg 0.7396 1.2465 13.0567 
case39Lcc.jpg 0.8749 1.07 1.0026 
case39Lmlo.jpg 0.7471 1.314 0.9289 
case44Rcc.jpg 0.1877 0.9878 3.7911 
case44Rmlo.jpg 0.4768 1.1194 5.0349 
case5lcc.jpg 0.6757 0.8759 8.4431 
case5lmlo.jpg 0.8292 1.0102 1.0968 
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Figure 3.1: Comparison of Contrast Improvement Index(CII) for different enhancement 
methods as applied to some ROIs of digital mam-,mograms containing microcalcifications. 

obtained from McGill database. 

41 



Table 3.2 Comparison of detail variance (DV) for different enhancement techniques 
applied on ROIs of mammograms containing microcalcifications. 

Name of file CLAHE to hat hdome 
casellLcc small ans.jpg 119.776 86.3368 38.7288 
casellLmlo small ans.jpg 126.182 89.4503 44.1579 
casellRcc small ans.jpg 112.814 89.9484 72.9425 
casellRmlo small ans.jpg 132.411 99.9194 42.0985 
casell 1Lcc small ans.jpg 129.036 95.5496 36.4984 
casell lRmlo small ans.jpg 135.842 93.8154 57.5082 
casel5Lcc small ans.jpg 124.678 111.813 82.6724 
casel5Lmlo small ans.jpg 117.135 80.4082 43.4477 
casel5Rcc small ans.jpg 128.954 92.0032 47.0946 
casel5Rmlo small ans.jpg 112.421 86.1503 36.1243 
casel5 lLcc small ans.jpg 126.169 94.3014 59.7354 
casel5 lLmlo small ans.jpg 127.263 114.6 78.4887 
casel5 1Rmlo small ans.jpg 125.435 72.7343 43.543. 
case22Lcc small.jpg 117.872 112.971 78.3867 
case25Lcc small•ans.jpg 117.816 86.4123 26.976 
case25Lmlo small ans.jpg 115.205 91.9685 24.772 
case25Rcc small ans.jpg 122.352 84.3921 14.6501 
case25Rmlo small ans..jpg 124.89 90.0429 23.3756 
case37Lcc ans small.jpg 119.728 79.9616 36.5203 
case37Lmlo ans small.jpg 10.6.264 45.7874 28.2992 
case37Rcc ans small.jpg 99.1138 57.2457 18.5983 
case37Rmlo ans small.jpg 100.519 56.3781 21.6777 
case46Lcc small.jpg 88.2482 46.48 19.4532 
case46Lmlo small.jpg 96.8439 62.4293 31.5731 
case46Rcc small.jpg 110.611 104.838 55.2147 
case46Rmlo small.jpg 100.819 65.7743 38.9152 
case49Lcc small.jpg 83.0532 50.2534 43.7349 

case49Lmlo small.jpg 116.52 96.2095 86.1048 
case49Rce small.jpg 95.248 86.3938 64.2145 
case49Rmlo small.jpg 117.333 90.1161 -83.643 
case6Lcc ans small.jpg 112.273 57.627 28.0965 
case6Lmlo ans small.jpg 116.902 44.7081 39.3306 
case7Lcc small ans.jpg 115.199 92.8786 22.7526 
case7Lmlo small ans.jpg 111.276 86.8622 30.4011 
case7Rcc small ans.jpg 126.971 109.583 38.5841 
case7Rmlo small ans.jpg 117.142 99.9647 22.9932 
casel7rmlo.jpg 109.631 67.2741 26.879 
casel9Rcc.jpg 119.856 77.3274 28.8286 
case2.jpg 115.571 92.2304 52.313 

case2lLcc.jpg 104.615 62.8795 28.7914 
case2lLmlo.jpg 116.117 71.629 42.3082 
case24Lcc.jpg 109.219 52.1466 47.756.9 
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case24Lmlo.jpg 134.275 111.611 47.2136 

case26Lcc.jpg 110.472 43.2295 14.108 
case26Lmlo.jpg 98.2392 56.3716 16.8233 

case27Rcc.jpg 94.6747 69.4211 36.7046 
case27Rmlo.jpg 98.7278 72.7195 36.5211 

case2lmlo.jpg 114.111 96.4431 59.1301 
case36Lcc.jpg 118.198 62.3338 17.6813 
case36Lmlo.jpg 103.522 39.0239 7.4051 
cas'e39Lcc.jpg 94.3056 61.3534 .19.0714 
case39Lmlo.jpg 105.372 69.9173 18.2997 
case44Rcc.jpg 108.137 64.0485 29.3574 
case44Rmlo.jpg 122.717 83.7531 44.946 
case5lcc.jpg 109.869 62.2445 29.2852 
case5lmlo.jpg 114.791 108.552 65.5999 

PU Ill :l ages 
Figure 3.2: Comparison of Detail Variance(DV) for different enhancement methods as 

applied to some ROIs of digital mamrrnograms containing micro calcifications obtained 
from McGill database. 
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Table 3.3 Comparison of Background variance (BV) for different enhancement 
techniques applied on ROIs of mammograms containing microcalcifications. 

Name of file CLAHE to hat hdome 
casellLcc small ans.jpg 65.7407 15.8149 5.2828 
casellLmlo small .ans.jpg 91.2847 25.8385 12.9519 
casellRcc small ans.jpg 109.925 16.4882 5.3785 
casellRmlo small ans.jpg 114.537 39.9862 13.9527 
casell lLcc small ans.jpg 101.205 23.8829 12.1611 
casell lRmlo small ans.jpg 115.94 39.8565 12.4973 
casel5Lcc small ans.jpg 87.8566 26.4083 8.8012 
casel5Lmlo small ans.jpg 85.3867 23.3267. 7.1336 
casel5Rcc small ans.jpg 114.358 18.3642 5.5138 
casel5Rmlo small ans.jpg 99.7888 30.4593 9.5311 
casel5 lLcc small ans.jpg 115.791 22.3212 8.5519 
casel5 lLmlo small ans.jpg 102.121 40.2307 12.9579 
casel5 lRmlo small ans.jpg 115.033 185551 7.7475 
case22Lcc small.jpg 23.1572 7.1073 2.9518 
case25Lcc small ans.jpg 52.3913 12.2884 4.6665 
case25Lmlo small ans.jpg 61.3048 14.6129 4.8919 
case25Rcc small ans.jpg. 54.9611 12.3586 3.9521 

case25Rmlo small ans.jpg 64.2992 14.315 4.8156 

case37Lcc ans small.jpg 71.9347 15.7604 7.4904 

case37Lmlo ans small.jpg 63.1592 7.3134 3.0754 
case37Rcc ans small.jpg. 66.488 14.7954 4.9113 

case37Rmlo-  ans small.jpg 44.5239 9.1136 2.629 
case46Lcc small.jpg 48.3099 8.8642 3.9508 
case46Lmlo small.jpg 56.6193 11.4309 3.6581 
case46Rcc small.jpg 45.3557 9.857 2.247 
case46Rmlo small.jpg 64.1948 15.0134 5.7276 

case49Lcc small.jpg 48.8262 8.2752 5.1027 
case49Lmlo small.jpg 54.0595 11.916 5.8115 
case49Rcc small.jpg 45.2983 6.6021 1.3718 
case49Rmlo small.jpg 53.707 10.1534 6.0692 
case6Lcc ans small.jpg 51.9116 9.534 4.4319 
case6Lmlo ans small.jpg 71.6962 7.5438 5.209 
case7Lcc small ans.jpg 47.1428 15.318 4.9046 

case7Lmlo small ans.jpg 54.3043 18.2928 6.1598 

case7Rcc small,.ans.jpg 	- 61.8618 24.6397 8.4048 

case7Rmlo small ans.jpg 64.2621 25.1122 8.5309 

casel7rmlo.jpg 83.3709 26.0836 9.1561 

casel9Rcc.jpg 77.103 15.7121 10.1174 

case2.jpg 59.7236 21.5586 7.1512 

case2lLcc.jpg 86.6151 22.2302 5.8418 



ca5e2lLmlo.jpg 84.494 29.7057 9.6538 

case24Lcc.jpg 49.463 4.2826 2.2734 
case24Lmlo.jpg 98.2403 30.589 16.1846 
case26Lcc.jpg 59.6111 8.4871 3.5104 
case26Lmlo.jpg 51.1466 8.8898 3.3563 
case27Rcc.jpg 55.5713 18.5925 9.3226 
case27Rm1o.jpg 61.8729. 23.6434 12.4143 

case2lmlo.jpg 59.7656 25.8374 8.3435 
case36Lcc.jpg 48.4189 10.5125 4.0835 
case36Lmlo.jpg 56.1102 9.602 3.628 

case39Lcc.jp.g 73.4592 17.5956 7.6439 
case39Lmlo.jpg 73._4274 23.692 6.8882 
case44Rcc.jpg 56.5989 16.0424 7.76 

case44Rmlo.jpg 75.1761 23.5834 10.5149 
case51cc.jpg 65.1534 14.314 4.5944 

case5lmlo.jpg 28.2253 4.6292 1.4759 
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Figure 3.3: Comparison of Background Variance(BV) for different enhancement methods 
as applied to some ROIs of digital mammograms containing microcalcifications obtained 

from McGill database. 
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Table 3.4 Comparison of Detail variance(DV) / Background variance (BV) for different 
enhancement techniques applied on ROIs of mammograms containing microcalcifications. 

Name of file CLAHE to hat hdome 
casellLcc small ans.jpg 1.8219 5.4592 7.3312 
casellLmlo small ans.jpg 1.3823 3.4619 3.4094 

casellRcc small ans.jpg 1.0263 5.4553 13.5619 

casellRmlo small ans.jpg 1.1561 2.4988 3.0172 
casell 1Lcc small ans.jpg 1.275 4.0008 3.0012 

casell 1Rmlo small ans.jpg 1.1717 2.3538 4.6016 

casel5Lcc small ans.jpg 1.4191 4.234 9.3933 

casel5Lmlo small ans.jpg 1.3718 3.447 6.0906 

casel5Rcc small ans.jpg 1.1276 5.0099 8.5412 

casel5Rmlo small ans.jpg 1.1266 2.8284 3.7901 

casel5 1Lcc small ans.jpg 1.. 0896 4.2247 6.9851 

casel5 lLmlo small ans.jpg 1.2462 2.8486 6.0572 

casel5 1Rmlo small ans.jpg 1.0904 3.9199 5.6203 

case22Lcc small.jpg 5.0901 15.8951 26.5558 

case25Lcc small ans.jpg 2.2488 7.032 5.7807 

case25Lmlo small ans.jpg 1.8792 6.2937 5.0638 

case25Rcc small ans.jpg 2.2262 6.8286 3.7069 

case25Rmlo small ans.jpg 1.9423 6.2901 4.8542 

case37Lcc ans small.jpg 1.6644 5.0736 4.8756 

case37Lmlo ans small.jpg 1.6825 6.2.607 9.2017 

case37Rcc ans small.jpg 1.4907 3.8692 3.7868 

case37Rmlo ans small.jpg 2.2576 6.1862 8.2456 

case46Lcc small.jpg 1.8267 •5.2436 4.9238 

case46Lmlo small.jpg 1.7104 5.4614 8.6311 

case46Rcc small.jpg 2.4387 10.6359 24.573 

case46Rmlo small.jpg 1.5705 4.381 6.7943 

case49Lcc small.jpg 1.701 6.0728 8.571 

case49Lmlo small.jpg 2.1554 8.074 14.8162 
case49Rcc small.jpg 2.1027 13.0858 46.8117 

case49Rmlo small.jpg 2.1847 8.8755 13.7816 

case6Lcc ans small.jpg 2.1628 6.0444 6.3396 
case6Lmlo ans small.jpg 1.6305 5.9265 7.5506 
case7Lcc small ans.jpg 2.4.436 6.0634 4.639 
case7Lmlo small ans.jpg 2.0491 4.7484 4.9354 
case7Rcc small ans.jpg 2.0525 4.4474 4.5907 
case7Rmlo small ans.jpg 1.8229 3.9807 2.6953 

casel7rmlo.jpg 1.315 2.5792 2.9356 
casel9Rcc.jpg 1.5545 4.9215 2.8494 
case2.jpg 1.9351 4.2781 7.3153 

case2lLcc.jpg 1.2078 2.8286 4.9285 
case2lLmlo.jpg 1.3743 2.4113 4.3826 



ca5e24Lcc.jpg 2.2081 12.1763 21.0072 
case24Lmlo.jpg 1.3668 3.6487 2.9172 
case26Lcc.jpg 1.8532 5.0935 4.0189 

case26Lmlo.jpg 1.9207 6.3411 5.0125 
case27Rcc.jpg 1.7037 3.7338 3.9372 
case27Rmlo.jpg 1.5957 3.0757 2.9419 
case2lmlo.jpg 1.9093 3.7327 7.087 

case36Lcc.jpg 2.4412 5.9295 4.3299 
case36Lmlo.jpg 1.845. 4.0641 2.0411 
case39Lcc.jpg 1.2838 3.4869 2.495 
case39Lmlo.jpg 1.4351 2.9511 2.6567 
case44Rcc.jpg 1.9106 3.9924 3.7832 
case44Rmlo.jpg 1.6324 3.5514 4.2745 
case5lcc.jpg 1.6863 4.3485 6.3741 
case51m1o.jpg 4.067 23.4492 44.4479 
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Figure 3.4: Comparison of Detail Variance(DV) / Background Variance(BV) for different 
enhancement methods as applied to some ROIs of digital mammograms containing 

microcalcifications obtained from McGill database. 
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Figure 3.5: Mammogram ROI image:case5lcc.jpg [1] 

Figure 3.6: Image profiles of case5lcc.jpg [1] 

3.3 Image Profiles 

The effect of enhancement can be visualized using a series of profiles taken across a 
series of microcalcifications from the ROI in Figure 3.5 . The resulting profiles for 
the original, CLAHE, Tophat, h-dome are shown in Fig. As clear from figure 3.6 , it 
has been noticed that images enhanced with h-dome exhibit deep valleys, separating 
the peaks of the microcalcifications more effectively than the two other enhancement 
methods. Fig. shows that the h-dome method is only enhancing the microcalcifications 
but other methods enhances the background also, which is undesirable. 

Figure 3.5 below shows a ROI of the mammogram indicating the line along which 
image profile is taken. 

This study measures the CII 4 DV/BV of processed results' to eluci-
date the enhancement, of an image. In this simulation, it is found that the 
h-dome transformation can be used to enhance clinically acquired digital 
mammograms without distortion and can therefore provide more detailed 



image information. The promising results of this work suggest that the 
proposed technique can be .routinely used and the proposed method extended 
to computer-assisted diagnosis of breast diseases in a clinical environment. 



Chapter 4 	'~,I~00 
0 

Detection of micro calcifications 

4.1 Introduction 

Mammogram image ,enhanced by h-dome transformed image, is used as input image 
for segmentation algorithm. This chapter describes the way to extract microcalcifica-
tions from the mammograms. 

Entropy thresholding forms another class of algorithms widely used in thresholding. 
It has also been used in detection of MCC's in mammograms. Minimum cross entropy 
method applied for segmentation of mammograms for extracting microcalcifications. 

4.2 Basics of entropy of an image 

Shannon defined the entropy of a system as a function of the probability of 
occurrence of different states of the system. If a system has n different states with. 
probability of occurrence p2,i=1,2.....n.E 1 pi = 1.then the gain in information from 
the occurrence of the event i is defined as DI = —log2 p2. The expected value of such 
a gain in information is defined as the entropy of the system. 

Thus the entropy H of the system is: 

H= 	l pZ 	 (4.1) 

Let F = [f (x, y)]p Qwhere f (x, y) is gray value at (x, y); f (x, y) e GL = {1, 2,3.........., L-
1}, the set of gray levels. 
• Ni be the frequency of gray level i. >t1 N = N 

Following Shannon's definition of entropy, entropy of the image histogram can be 
defined as: 
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L-1 

H = - E P;log2PI; P; = Ni/N 
	

(4.2) 

for the image segmentation problem. 
Cross Entropy of the system 
The cross entropy was proposed by Kullback under the name of directed diver-

gence. The cross entropy measures the information theoretic, distance between two 
distributions.p = { pi, p2, ...pN }and Q = { g1,q2..........qN} by 

N 
D(1', Q) _ > gklo92(qk/pk) 

	 (4.3) 

formula can be interpreted as the expectation of the change in the information 
content when we are using Q instead of P. The minimum cross entropy method can be 
seen as an extension of the maximum entropy method by setting equal initial estimates 
for all pi  when no prior information is available.Cross entropy gives a measure of how 
close two distributions are. 

4.3 Algorithm 
For a histogram h defined on the gray level range [1, L], the zeroth and the first 

moments of the foreground and background portions of the thresholded histogram are 
respectively, [10] 

t-i 

moat) _ 	h(i) 	 (4.4) 
i=1 

L 

mob(t) = 	 (4.5) 
i=t 

mla(t) _ E i * h(i) 	 (4.6) 
i=1 

L 

mlb(t) = 	i * h(2) 	 (4.7) 
i=t 

The portion's means are defined as 

µa(t) = mla(t) 	 (4.8) 
Oa( ) 
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Figure 4.1: Original and segmented output image Testl from synthetic images 

11b(t) = rnm(t) 
mob(t) 

(4.9) 

The minimum cross entropy [23] method selects the threshold which minimizes the 
cross entropy of the image and its segmented version. The criterion function is found 
to be 

7~(t) = — rn1Q(t) * log(IZ,,(t)) — ml b(t) * log(µb(t)) 	 (4.10) 

The optimal threshold t is given by the minimizer of Eq.4.10., 

topt = argmint7](t) 
	

(4.11) 

The calculation of the optimal threshold involves the evaluation of ht. for all pos-
sible threshold values. Minimum cross entropy means distributions of original image 
and segmented image is maintained as close as possible after thresholding. 

4.3.1 Results and discussions 

Segmentation algorithm is applied on test synthetic images as described in section 
2.5.1. 

As shown in figure 4.1,original image Test1 with 5 simulated microcalcifications , 
after applying proposed segmentation algorithm proposed we get a segmented image 
with 5 microcalcifications as in original without distoring shapes and sizes of microcal-
cifications. 

As shown in figure 4.2, original image Test2 with 13 microcalcifications , after 
applying proposed segmentation algorithm we get segmented image with 13 microcal-
cifications with some small dark details added in microcalcifications. Which is taken 
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Figure 4.2: Original and segmented output image Test2 from synthetic images 

Figure 4.3: Original and. segmented output image Test3 from synthetic images 

care by object reduction techniques stated in next chapter in section 5.2. 
As shown in figure 4.3, original image with 10 simulated microcalcifications on it, 

after applying proposed segmentation algorithm.we get segmented image with all 10 
microcalcifications without noticeable distortion in sizes and shapes of microcalcifica-
tions. 

After testing this algorithms on all of our generated synthetic images, we found 
that most of the cases are segmenting all microcalcifications in segmented images as in 
original image without any noticeable loss. 

After getting confidence on synthetic images , we applied our proposed segmentation 
algorithm on some typical cases from Mcgill Databse which is described in detail in 
section 2.5.2. 

Figure 4.4 , containing calcifications of having Pleomorphic/Heterogeneous char-
acteristics(malignant case). Which needs further evaluation as per [1].Figure clearly 
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Figure 4.4: Original Image case2.jpg(McGill Database) 

Figure 4.5: Cropped ,segmented,superimposed output image(McGill Database) 
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indicates that it extracts microcalcification which are small bright spots present in the 
image. But it is noticeable that along with microcalcifications it is abstracting some 
of the regions with similar intensity values in background. In object reduction step 
we have taken care of this unwanted parts.-  We may call this as false positives, but 
one thing is noticeable and most important is that it is not missing any true positive 
microcalcifications. This is validated by expert radiologist by taking feedback from 
him. 

Figure 4.6: Original Image case 19rcc.jpg(McGill Database) 
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Figure 4.7: Cropped, segmented output image and superimposed image casel9rcc.jpg 
(Mcgill Database). 

As shown in figure 4.6, it contains pleomorphic microcalcifications as per [1].In 
this case microcalcifications are spreading through ducts, after segmenting we observe 
similar response as in earlier case. 

Figure 4.8: Original Image case361mlo.jpg(McGill Database) 
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Figure 4.9: Cropped, segmented output image and superimposed image case361mlo.jpg 
(McGill Database). 

As shown in figure 4.8, it contains Punctuate , Indistinct or Amorphous calcifica-
tions which is most difficult to detect for doctors. But as seen from the segmented 
image, we can clearly see that microcalcifications are present and extracted from the 
image. 

From the above results and discussion on test and database images, it 
can be concluded that minimum cross entropy thresholding method gave good 
results as verified and validated by radiologist response. 
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Chapter 5 

Diagnostic features extraction 

5.1 Introduction 

A typical mammogram contains a vast amount of heterogeneous information that de-
picts different tissues, vessels, ducts, chest skin, breast edge, the film, and the X-ray. 
machine characteristics. In order to build a robust diagnostic system towards correctly• 
classifying abnormal. and normal regions of mammograms, there is a need to present 
all the available information that exists in mammograms to the diagnostic system so 
that it can easily discriminate between the abnormal and the normal tissue. However, 
the use of all the heterogeneous information, results to high-dimensioned feature vec-
tors that degrade the diagnostic accuracy of the utilized systems significantly as well 
as increase their computational complexity. Therefore, reliable feature vectors should 
be considered that reduce the amount of irrelevant information thus producing robust 
mammographic descriptors of compact size. 

In this chapter different diagnostic information based features of mammogram are 
extracted such as shape, texture. 

5.2 Labelling & object reduction 

As in last chapter, we obtained segmented image from original. image: Next part is 
giving labels to different regions to analyse them. 

This is done for gaining the ability to handle every single microcalcification. The 
labeling can be done using an efficient method that labels the microcalcifications in 
the image in only two passes. In the first pass, starting at the upper left corner of 
the image, the labeling pixel X (i, j) starts moving from left to right scanning each 



row of the image matrix. By reaching every non-zero value in the image a label is 
assigned to the pixel and this label is propagated to its right and below neighbors in an 
8-connectivity manner. The information about the labels assigned to every pixel and 
also the pixels above and to the left of every pixel is stored and using this information, 
in the second pass every label is translated to its equivalent class, which represents 
the label-  of the connected components that form every individual shape. In the final 
result, every micro calcification is assigned a label that is used for identifying it for 
further processing. The largest label represents the number of microcalcifications on 
the mammogram [25]. 

In order to evaluate the characteristics and the location of every object. Since the 
mammograms are digitized to a spatial resolution of 0.05mm pixel size, we can discard 
objects smaller than 0.1 mm. Also, objects bigger than 2 cm in diameter are discarded. 
As a second object reduction step, objects not located within a 1 cm radius region of 
another object, are also discarded, since malignant microcalcifications are typically 
clustered.. 

5.3 Feature Extraction 

5.3.1 Shape based features 

One of the characteristics of a micro calcification, which can be a sign of their malig-
nancy, is their sizes. We have used the number of pixels in each mirocalcification as a 
measure of its size. 

One - of. the shape features that has proven to be a good measure for classifying 
microcalcifications by their shape is compactness. 

Compactness (C) [25] is defined as the ratio of the squared 'perimeter (P) to the 
area (A), i.e., 

C= Az 	
(5.1) 

Compactness represents the roughness of an object's boundary relative to its area.12 
The smallest value of compactness is 12.56, which is for circle. As circle deviates 
towards a more complicated shape, compactness becomes larger. 

The various shape features extracted from each region are: 

1. Area 

2. Eccentricity 
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3. Major axis length 

4. Minor axis length 

5. Compactness 

5.3.2 Texture based features 

Texture information is used in a wide range of applications including natural scene, 
remotely sensed data, and biomedical modalities. The perception of texture is believed 
to play an important role in human visual system for recognition and interpretation. 
Texture features have been utilized for many medical image applications, including 
mammography, and have proven to be useful in discriminating texture classes in X-
ray mammography, as well as in other modalities for breast cancer detection. So here 
we have extracted texture information from first as well as second order statistics of 
intensity histogram of mammogram. 

First order histogram based features 

Statistical properties of intensity histogram is used for texture analysis. Following prop-
erties of histogram is extracted for texture analysis. 

1. Mean - 
L--1 

m = "E zi * P(zi) 	 (5.2) 

gives a measure of average intensity. 

2. Standard Deviation - 
L-1 

	

Q = (E(zi - m)2p(zi) 	 (5.3) 
z=o 

a measure of average contrast of image. 

3. Smoothness - 
R=1—  [1/(1+o 2)] 	 (5.4) 

measures relative smoothness of the intensity in region. 

4. Skewness - 
L-1 

	

- m)3p(zi) 	 (5.5) 
i=0 



measures skewness of a histogram. 

5. Uniformity - 
L-1 

U= Ep2(zz) 	 (5.6) 
z=o 

measures uniformity of the image. 

6. Entropy - 
L-1 

E _ — > p(zi ) * 1og2p(zz) 	 (5.7) 
Z=o 

a measure of randomness of intensity in the image histogram 

where zZ = random variable indicating intensity 
p(zi) = intensity histogram of an image 

Co-occurrence matrix based features 

In this work, like most published work on microcalcifications classification used co-
occurrence matrices to describe textural properties. The spatial gray level dependence 
(SGLD) matrix or co-occurrence matrix(GLCM) gives us an estimation of the second 
order joint probability density function(i.e. The probability that 2 pixels which are 
located with an intersample distance d and direction 0 having a gray level i & j respec-
tively). In other words, the co-occurrence matrix is a tabulation of how often different 
combinations of pixel brightness values (gray levels) occur in an image. 

n m 1, if I (p, q) = i and l (p + A(x), q+ Dy) = 9 C(i, j) _ E{E 	 (5.8) 
p=1 q=1 0, otherwise 

C(i,j) = entry of GLCM for intensity pair i and j at distance depending on value of 
A specified. 

m ,n = dimensions of original matrix 
let 
0= direction 0 having a gray level i & j respectively 
d = intersample distance 

As shown in figure 5.larrows shows direction of computing of GLCM in angle 0, 
45, 90, 135 degrees. Distance is no.of pixels from the considered central pixel shown 
by black box. 
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Figure 5.1: Co-occurrence matrix-angle0 and distance d 

The parameter values are d =1, and 8= 0, 45, 90 and 135 degree. Haralick [11] 
proposed following features to be extracted from the occurrence matrix to get textural 
information about an image. Following are various texture features extracted for each 
(d,0) pair. 

1. Angular second moment 

2. Contrast 

3. Correlation 

4. Difference entropy 

5. Difference variance 

6. Entropy 

7. Inverse difference moment - 

8. Sum average 

9. Sum entropy 

10. Sum variance 

11. Variance 
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Figure 5.2: Original image: case2.jpg (McGill Database) 

Figure 5.3:.  Cropped, segmented image of case2.jpg 

Difference variance and entropy are measured from difference second-order histogram 
statistics. The difference second-order histogram represents the probability of occur-
rence of differences, I(p + 0 (x), q + Ley) — I(p, q) = i, in the gray-level values of two 
pixels separated by a specific distance vector d. 

The angular second moment gives a strong measure of uniformity. Higher nonuni-
formity values provide evidence of higher structural variations.This measure provides 
evidence of how sharp the structural variations in the image are.The correlation fea-
ture is a measure of gray-level linear dependency of the image.The'entropy computed 
from the second order histogram provides a measure of nonuniformity. High values of 
uniformity measures will indicate less structural variations while lower values can be 
interpreted as indicating a higher probability of microcalcification related structures. 
The inverse difference moment is a measure of local homogeneity [24]. 

5.3.3 Results and discussions 

As seen from last chapter, we transformed original image to cropped image first and 
then by applying enhancement & segmentation algorithms stated in last chapters, 
transformed cropped image into segmented image. 

As shown in figures 5.2 & 5.3, we get binary image showing microcalcifications. Now 
next task is to extract each microcalcification from binary image for further analysis. 
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Figure 5.4: Binary image matrix & labeled image matrix 
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Figure 5.5: Labeled image matrix after object reduction 

Labeling 

As stated in section 5.2 after applying labeling procedure we get labeled microcalcifi-
cations in image which is explained in following figures. 

As shown in figure 5.4 , it can be clearly seen this binary image contains five objects. 
After labeling operation it gives labeled image. In labeled image we can see we obtained 
five different classes with numbering. 

Object reduction 

Since the mammograms are digitized to a spatial resolution of 0.05 mm pixel size, we 
can discard objects smaller than 0.1 mm. Also, objects bigger than 2 cm in diameter 
are discarded. So after applying object reduction steps to above labeled figures, it can 
be seen that class labels which are having less number of pixels than 2 are discarded. 
So we get image matrix after object reduction step.as follows. 

It can be clearly seen that object number 1,4,5 class as having only one pixel 
eliminated from the labeled image. 



Figure 5.6: Schematic block diagram of feature extraction process 

Features extraction 

The binary image obtained after labeling and object reduction, is used only for the 
extraction of the exact location and area of every object. However, the original image 
is used for feature extraction, using the binary image as a mask for each object. 

Figure 5.6 shows systematic flow of different operations used for feature extraction. 
Here original image is cropped image as we are interested in region of interest marked 
by clinician. After enhancement as explained in section 2.4, then applying minimum 
cross entropy thresholding algorithm for segmenting image into binary image with 
microcalcifications. After that labeling and object reduction removes objects, of size 
which are of no interest in microcalcifications point of view and labeling remaining for 
further analysis. 

Resulted binary image is used as mask to extract region representing microcalci-
fications from original image. Finally we extracted different shape and texture based 
features from those regions. 

Features extracted are enlisted as follows: 
a) Shape based features 

1. Area 

2. Eccentricity 

3. Major axis length 

4. Minor axis length 

5. Compactness 
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b) First order intensity histogram based features 

1.  Mean 

2.  Standard deviation 

3.  Smoothness 

4.  Skewness 

5.  Uniformity 

6.  Entropy 

c) Co-occurrence matrix based features 

1. Angular second moment 

2. Contrast 

3. Correlation 

4. Difference entropy 

5. Difference variance 

6. Entropy 

7. Inverse difference moment - 

8. Sum average 

9. Sum entropy 

10. Sum variance 

11. Variance 

In co-occurrence matrix we calculated above listed properties for 0, 45, 90, 135 degrees. 
Thus overall we get 55 feature vectors. 

All these features calculated on one sample image from our McGill Database is 
shown in Table 5.1, Table 5.2 & Table 5.3. 

We have chosen d = 1 as for d greater than 1 is not showing any useful information 
in out case. 



The next step is to incorporate the features obtained for different directions (angles 
0, 45, 90, 135) into one summary feature for each offset distance. This is accomplished 
because different directions should be treated the same for microcalcification feature 
extraction. For deriving these summary features, there are two possibilities: averaging 
the co-occurrence matrices over the angles and then calculating the features for each 
distance; or calculating the features for each of the four angles and then averaging 
the results. We have done with averaging the co-occurrence matrices over the angles. 
Minimum and maximum value of these summary vector is also calculated. 

In Table 5.1, Table 5.2, Table 5.3 first column contains the sample image name 
from which features are extracted. In our case we have enlisted for case2.jpg image 
from our standard database of mammograms i.e. McGill University Database. Region 
in the second column in this tables is the region which is labeled and remained after 
object reduction step. In our case distance between central pixel and other is taken as 
d=1 for calculation of co-occurrence matrix as explained in section 5.3.2. 

Table 5.1 enlists all first order statistics based features i.e, mean, standard deviation 
smoothness, skewness, uniformity, entropy. 

Table 5.2 enlists one of the feature extracted from co-occurrence matrix, here i.e. 
Angular Second.  Moment (ASM) , which is calculated for four different values of 0. 
As exlained earlier max, min and average values are calculated to make these features 
independent of direction. 

Table 5.3 enlists the features based on shape of microcalcifications i.e. area, Major 
axis length, Minor axis length, eccentricity, perimeter & compactness as detailed in 
section 5.3.1. 
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For each suspected micro calcification, four (d, B) pairs yields 44 texture features. 
Then the range and maximum and minimum values are taken as features to be used 
for classification of micro calcifications. So the number are features derived from co-
occurrence matrix are reduced to 33. 

This chapter analysed different regions present on the mammogram. Dif-
ferent features of image calculated to extract diagnostic valuable informa-
tion from the mammogram. This feature sets are ready to classier for clas-
sification of region into benign or malignant case. 
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Chapter 6 

Classification of microcalcifications 

6.1 Introduction 

One of the main aim when implementing a robust classifier for recognizing breast tissue 
is the selection of the appropriate features that describe and highlight the differences 
between the abnormal and the normal tissue in an ample way. A great number of 
features and classification methods have already been used to detect and classify the 
masses as malignant or benign. Recently support vector machines (SVMs) have been 
used for classification for mammographic microcalcifications [26].In the present work, 
SVM based classifier has been implemented that uses features which result from the 
shape descriptors extracted from ROI, statistical texture analysis - capable of distin-
guishing between benign and malignant microcalcifications. 

6.2 Support Vector Machines (SVMs) 

Burges [27] has provided an excellent tutorial for Support Vector Machines and explains 
the key concepts in a very lucid language. The description that follows has been 
taken from the same: SVM differ radically from comparable approaches such as neural 
networks: SVM training always finds a global minimum and has simple geometric 
interpretation. The problem which drove the initial development of SVMs occurs in 
several guises- the bias variance trade-off, capacity control, over fitting - but the basic 
idea is the same. For a given learning task with a given amount of training data, 
the best generalization performance will be achieved if the right balance is struck 
between the accuracy attained on that particular training set and the "capacity" of 
the machine. Machine with too much capacity is like a botanist with a photographic 
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memory who when presented with a new tree concludes that it is not a tree because 
it has a different number of leaves from anything he has seen before; a machine with 
too little capacity is like his lazy friend who says that if it is green then it must 
be a tree. Neither can generalize well. The formulation and exploration of these 
concepts led to a path breaking development in the theory of statistical learning theory. 
This theory is the principle of structural risk minimization (SRM) (Vapnik., 1979). It 
grew out of considerations of under what circumstances, and how quickly the mean of 
some empirical quantity converges uniformly to the true mean (that which would be 
calculated from an infinite amount of data), as the number of data points increases. 
We will briefly try to cover this principle since this forms the backbone of SVMs. 

Suppose we have a machine whose task is to learn the mapping xi -- yi.The machine 
is actually defined by a set of possible mappings x --* f (x, a) where the functions 
f (x, a)themselves are labeled by the adjustable Parameter a.The expectation of the 
test error for a trained machine is therefore: 

R(a) = f 2 Iy — .f (x, a) I dP(x, y) 	 (6.1) 

The quantity R(a) is called the expected risk or just the risk and this is the quantity 
that we are ultimately interested in. The "empirical risk" Remp(a)is defined to be just 
the measured error rate on the training set (for a fixed, finite number of observations): 

i 

(6.2) 
a=1 

where 1 is the number of observations. The quantity 	— f (xi , a) is called the 
loss. Suppose we define our problem such that the loss can only be either 0 or 1. Now 
choose some i such that 0 	1Then for losses taking these values with probability 
1— , the following bound holds (Vapnik, 1995): 

R(a) < Remr(a) + 	h  ((log 21/h) +1)—  log(77/4) 	(6.3) 

where h is a non-negative integer called the Vapnik Chervonenkis (VC) dimension 
and is a measure of the notion of capacity above. The second term on the right in is 
called the "VC confidence". It is a monotonically increasing function of h for any value 
of 1 Given some selection of learning machines whose empirical risk is zero, one wants 
to choose that machine whose associated set of functions has minimal VC dimension. 

We can now summarize the principle of SRM. The VC confidence term in equation 
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6.3 depends on the chosen class of functions whereas the empirical risk and actual risk 
depend on the one particular function chosen by the training procedure. We would like 
to find that subset of the chosen functions, such that the risk bound for that subset 
is minimized. One cannot arrange things so that the VCdimension varies smoothly, 
since it is an integer. Instead introduce a "structure" by dividing the entire class of 
functions into nested subsets. For each subset we must be able to compute h, or to 
get a bound on h_ itself. SRM then consists of finding that subset of functions which 
minimizes the bound on the actual risk. This can be done by simply training a series of 
machines one for each subset where for a given subset the goal of training is simply to 
minimize the empirical risk. One then takes that trained machine in the series whose 
sum of empirical risk and VC confidence is minimal. 

6.2.1 Linear SVM 
Consider the problem of separating the set of training vectors belonging to two separate 
classes. Suppose there exist a set S of 1 observations. Each observation consists of a 
pair: a vector is associated with, xi E R,i=1,2.........1 and the associated truth labels 
yz E {-1, 1} provided by a trusted source. If the two classes are linearly separable, the 
objective is to find a hyperplane, which separates the all the points with the same labels 
on the same side of the hyperplane. The_points x which lie on the hyperplane satisfy 
w . x + b = Owhere w is normal to the hyperplane, f b)/I Iwi Jis the perpendicular distance 
from the hyperplane to the origin, and 11w~Jis the Euclidean norm of w. Let d+(d_)be 
the shortest distance from the separating hyperplane to the closest positive (negative) 
example. The "margin" of a separating hyperplane is defined to be d+ + d-.For the 
linearly separable case, the support vector algorithm simply looks for the separating 
hyperplane with largest margin. This can be formulated as follows: suppose that all 
the training data satisfy the following constraints: 

xi . w + b > +1 f or yZ = +1 	 (6.4) 

xi.w+b<-1 foxy =-1 	 (6.5) 

These can be combined as: 

yz (xi - w + b) —1 > 0 for Vi 	 (6.6) 

If the points for which the equality in Eq.6.4 holds are considered then these points 
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Figure 6.1: Linear separating hyperplanes for the separable case. (The support vectors 
are circled.) [27] 

lie on the hyperplane Hz  : xiw + b = lwith normal w and perpendicular distance 
from the origin I1— bI /11wI .Similarly, the points for which the equality 6.5 holds lie on 
the hyperplane H2 : xiw + b = —1,with normal again w, and perpendicular distance 
from the origin I - 1 --- b)/11w)!.Hence d+  = d_ = 1/))w)) and the margin is simply 
2/ 1w)).  The margin is a measure of generalizability. The larger the margin, the better 
the generalization. Among the separating hyperplanes, there must be one from which 
the distance to the closest point is maximal- the optimal separating hyperplane (OSH) 
and which will maximize the margin sometimes also known as maximum margin hy-
perplane (MMH). Note that H1 and H2 are parallel (they have the same normal) and 
that no training points fall between them. Thus a pair of hyperplanes can be found 
which gives the maximum margin by minimizing , subject to constraints in Eq. 6.6. 

Mathematically, such hyperplane can be found by minimizing the following cost 
function, subject to constraints in Eq. 6.6. 

J(W) = 1  W • w = 2 IIwI12 	 (6.7) 

Thus the expected solution for a typical two dimensional case would have the form 
shown in Fig. 6.17. Those training points for which the equality in Eq. 6.6 holds 
(i.e. those which wind up lying on one of the hyperplanes H1, H2), and whose removal 
would change the solution found, are called support vectors; they are indicated in 
Fig.6.7 by the extra circles. This is a quadratic programming problem, solved by the 
Karush-Kuhn-Tucker (KKT) theorem. 
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6.2.2 Lagrangian Formulation of the Problem 

According to the property that w H H2is convex, this can be minimized under the con-
straints in Eq.6.6 by means of classic method of Lagrange multipliers. There are two 
reasons for doing this. The first is that the constraints in Eq.6.6 will be replaced by 
constraints on the Lagrange multipliers themselves, which will be much easier to han-
dle. The second is that in this reformulation of the problem, the training data will 
only appear (in the actual training and test algorithms) in the form of dot products 
between vectors. 

Hence if ai , i = 1, ...1 are 1 non negative Lagrange multipliers associated with con-
straints in Eq.6.6, the solution to the problem is equivalent to determining the solution 
of the Wolfe dual problem: 

LD =Eai  — 2 E azajyzyjXj - xj 	 (6.8) 
z  z,~ 

I aiyi= 0 ceti>o 	 (6.9) 

The solution for w reads 

w =  Ciyixi 
 (6.10) 

Support vector training (for the separable, linear case) therefore amounts to maxi-
mizing LD with respect to the , subject to constraints (Eq. 6.9) and positivity of the 
with solution given by (Eq. 6.10). Notice that there is a Lagrange multiplier for every 
training point. In the solution, those points for which are called "support vectors", and 
lie on one of the hyperplanes H1, H2. These vectors are termed support vectors and 
they are the only vectors of S needed to determine the maximum margin hyperplane. 
All other training points have and lie either on H1, H2 (such that the equality in Eq. 
6.6 holds), or on that side of H1 or H2 such that the strict inequality in Eq.6.6 holds. 
For these machines, the support vectors are the critical elements of the training set. 
They lie closest to the decision boundary; if all other training points were removed 
(or moved around, but so as not to cross H1 or H2), and training was repeated, the 
same separating hyperplane would be found. Once a Support Vector Machine has been 
trained, the problem of classifying a new data vector x is now simply to determine on 
which side of the decision boundary (that hyperplane lying half way between H1 and 
H2 and parallel to them) a given test pattern x lies and assign the corresponding class 
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label, i.e. the class of x is taken to be with b obtained from the Karush-Kuhn-Tucker 
(KKT) conditions. 

6.2.3 Non-Separable Case 

In case the set S cannot be separated by any hyper surface, due to the partial over-
lapping of the two classes, the previous analysis can be generalized by introducing non 
negative slack variables _ ( i , e2........, ~l)such that 

yz(xi . w + b) > 1— ~i , f or d(i = 1, 2, ......1) 	(6.11) 

The solution to minimize the following modified cost function subject to the con-
straints in Eq. 6.11is called Soft Margin Separating Hyperplane (SMSH). 

J(w,6) = 2I(wIJ2 +CEei 	 (6.12) 
i 

where C is the regularization parameter. If the parameter C is small the separating 
hyperplane (i.e. SMSH) tends to maximize the distance 1/ )w1 awhile the larger C 
will cause SMSH to minimize the number of misclassified points. Again the vectors 
satisfying the constraints above with the equality sign are termed as support vectors 
and the only vectors needed to determine the decision surface. Similarly to the linearly 
separable case, the dual formulation requires the solution of a quadratic problem with 
linear constraints: 

Maximize: 
1 

LD - 	ai — 2 	cx c,yiy3x 	 (6.13) 

subject to: 

0<ai <C 
	

(6.14) 

E aiyi = 0 	 (6.15) 
i 

The solution is again given by 

Ns 

W =  aiyixi  (6.16) 

where NS is the number of support vectors. The only difference from the optimal 
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S 

Figure 6.2: Linear separating hyperplanes for the non-separable case. (The support 
vectors are circled) [271 

hyperplane case is that ainow have the upper bound of C. The Fig. 6.9' depicts an 
example of a set of non-separable vectors belonging to two classes. 

6.2.4 Nonlinear SVM Classifier 

The linear SVM can be readily extended to a nonlinear classifier by first using a non-
linear operator or mapping function q(x)to map the input pattern x into higher di-
mensional space H.The nonlinear SVM classifier so obtained is defined as 

.f(x) =w- (x)+b 
	 (6.17) 

which is linear in terms of the transformed data 1(x), but non linear in terms of 
the original data xi E RI, i = 1. ....1. 

Following nonlinear transformation, the parameters of decision function f(x)the 
minimization of following cost function: 

J(w, 0) = 2 I IwI I2 + C > ez 	 (6.18) 

subject to 

y2(O(xi).w+b)> 1— ~z, Cz>_0; i=1,2....1. 	 (6.19) 

The solution to minimize above cost function subject to the constraints in Eq. 6.19 
from the following dual: 

Maximize: 

cA 



— 2 J aia jyiyj(D( xy) - (D(XJ) _ E ai — 2 E ceiajyiyjK(xi, xJ) (6.20) 
i 	 2,j 	 i 	 a,j 

where K(x,y) known as kernel is a nonlinear function and is defined as 

K(x,y) - ,I(x) • lb(y) 	 (6.21) 

subject to: 

	

0 < ai  < C 	 (6.22) 

(6.23) 

The solution is again given by. 

NS. 

w _ 	aiyi4)(xi) 	 (6.24) 

where NS  is the number of support vectors. The only, difference from the optimal 
hyperplane case is that now have the upper bound of C. The KKT optimality conditions 
for (Eq. 6.20) will lead to the following three cases for each ai: 

1. ai  = O.This corresponds to yi f (x;) > 1 In this case, the data elementxiis outside 
the decision margin of the function f (x) and is correctly classified. 

2. 0 < ai < C.In this case, yi  f (xi) = I.The data element xiis strictly located on 
the decision margin of the function f (x).Hence xicalled a margin support vector 
of f (x). 

3. ai = C.In this case, yi f (xi) < 1.The data element xiis inside the decision margin 
(though it may still be correctly classified). Accordingly, xi called error support 
vector of 1(x). 

6.2.5 SVM Kernel Functions 

The kernel function in an SVM plays the central role of implicitly mapping the input 
vector (through an inner product) into a high-dimensional feature space. 

1. Polynomial kernel: 
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K(x, y) _ (x • Y + 1)' 	 (6.25) 

2. Gaussian RBF kernel: 

K(x, y) = exp (—'Y jjX — YJI2) where -y = 2ff2 	
(6.26) 

6.3 Results and discussions 

6.3.1 Input data 

Mammograms containing microcalcifications form McGill University database have 
been used in this work. Total number of 1444 samples are obtained from mammograms 
containing microcalcifications from McGill University database [1].Out of which 544 
samples are from malignant class and remaining 900 samples are from benign class. 
These are divided into two sets: training and testing. The training-set contained 
900 samples of which 600 are benign and 300 are of malignant nature respectively. 
Remaining 544 samples are used for testing of SVM classifier. Testing-set contained 
300 cases of benign and 244 cases of malignant calcifications respectively. 

6.3.2 Feature selection 

Of course not all the features are important in the classification and some of them are of 
no significance. Features are selected by observing variation in their values and ability 
of feature to discriminate between two class. Each feature vector is applied to SVM 
and accuracy is observed and those features giving better accuracy of 'classification 
are taken for final classification. The feature's values for true and false clusters of 
microcalcifications are analysed separately [28]. 

The final feature set chosen for classification are Table 6.1. 

6.3.3 Parameter Selection and Training 

Once the training samples are obtained, the next step is to determine the optimal 
parametric settings of SVM. In this process, the following variables: the type of kernel 
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1. Min ASM 16. Min entropy 
2. Max ASM 17. Max entropy 
3. Entropy 18. Min IDM 
4. Area 19. Max IDM 
5. Major Axis length 20. Min information correlation) 
6. Minor axis length 21. Min information correlation2 
7. Eccentricity 22. Max information correlation) 
8. Min contrast 23. Max information correlation2 
9. Max contrast 24. Min Sum average 
10. Min correlation 25. Max Sum average 
11. Max correlation 26. Min Sum entropy 
12. Min difference entropy ' 27. Max Sum entropy 
13. Max difference entropy 28. Min Sum variance 
14. min difference variance 29. Max Sum variance 
15. max difference variance 30.  Min variance 

31.  Max variance 

Table 6.1: List of extracted features 

function, its associated parameter, and the regularization parameter C must be decided. 
To optimize these parameters, sixfold cross validation has been applied to the training-
set. This procedure consists of the following steps. First, divide randomly all the 
available samples in training-set into six equal-sized subsets. Second, for each model-
parameter setting, train the SVM classifier six times; during each time one of the. 
subsets is held out in turn while all the rest of the subsets are used to train the SVM. 
The trained SVM classifier is then tested using the held-out subset, and its classification 
error. 

In this work we used Radial Basis Function kernel (RBF). Various parameters for 
the SVM like regularization parameter C, sigma of RBF etc. are varied as: C from 
1 to 10000, and Gamma from 0.1 to 4 to choose the best parameters for SVM. After 
observing accuracy of classification it is found that for C=10, ry=2 it gives 82 % accuracy 
•of classification. 

This chapter shows application of SVM for classification of mammo-
grams using feature vectors extracted in last chapter. In initial training 
and testing SVM gave 82 % classification accuracy. 
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Chapter 7 

Conclusions and scope of future work 

7.1 Conclusions 

This work proposed a new algorithm for the detection of microcalcifications on mam-
mograms. The basic idea was to evaluate the dynamics of microcalcifications, since 
each calcification appears as an elevation if we view each mammogram as a topographic 
map. Every suspicious object was marked using a binary image, which was used as 
a mask for object extraction from the original image. The features of the extracted 
objects were classified using support vector machine. 

This thesis work proposed enhancement algorithms based on morphological op-
erators & traditional Contrast Limited Adaptive Histogram Equalization(CLAHE). 
CLAHE is used for comparison purpose. CLAHE when applied on synthetic test 
images clearly indicated good contrast enhancement, but major problem is, this tech-
nique enhances noise equally along with microcalcifications. As per literature tophat 
enhancement is used by many researcher for enhancement of mammograms, but we 
proved that how this technique is structuring element dependent & how, the choice of 
structuring element becomes crucial in this enhancement algorithm. The h-dome makes 
use of morphological reconstruction for extracting high intensity peaks i.e. microcal-
cifications from the mammogram. The proposed h-dome filtering technique clearly 
indicated a better performance than other two techniques. 

Qualitative analysis is done by presenting all enhanced images to expert radiologist. 
Radiologist gave positive feedback for our proposed method. In some of the cases 
tophat outperformed h-dome enhanced image. Which is clearly due to matching of 
structuring element in that case. From quantitative analysis, which used two evaluation 
indices i.e.CII and DV/BV, it can be concluded that h-dome is better technique for 
enhancement of mammograms as compared to other stated techniques. 



In next part of thesis work, we presented minimum cross entropy based thresholding 
algorithm for segmentation of microcalcifications. This algorithm is tested first on 
synthetic images with known simulated micro calcifications. It is also gave a good 
segmentation results on McGill University Database as validayed by radiologist. 

Shape, textural statistical features have been extracted from each region containing 
suspected microcalcification. This feature sets are used for classification. In last part 
of thesis work we used these features for classification using SVM. SVM for Radial 
Basis Function kernel with C=10, a=2 gave 82 % accuracy of classification. 

7.2 Scope of future work 

The performance of enhancement method depends on the imaging properties of database. 
As the imaging properties of the selected mammograms may affect the performance of 
stated method, further evaluation of the performance of the proposed algorithm using 
different databases is prompted. 

In feature selection we used our judgement and variation in values of feature vectors 
for choosing particular feature set for classification. Further statistical analysis may 
improve selection of relevant features for classification. We tried our feature sets on 
SVM for classification with radial basis function kernel, there is scope for classification 
using SVM with different kernels and with selected relevant features. 
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