
FPGA BASED CONTROLLER FOR
HYDRO-ELECTRIC UNIT

A DISSERTATION
SubmiKed In partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
In

ELECTRICAL ENGINEERING
(With Specialisation In Measurement and Instrumentation)

By

DATLA SKINWVASA RAJU

..1L,.13szs~

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE - 247 667 (INDIA)
JUNE. 2007

t403 f '- 3b/ JV
I.D. No.-'l .T 	.+o.......-..........—

CANDIDATE'S DECLARATION

I here by declare that the work presented in this dissertation entitled,

"FPGA BASED CONTROLLER FOR HYDRO-ELECTRIC UNIT" submitted in

partial fulfillment of the requirement for the award of degree of

MASTER OF TECHNOLOGY with specialization in MEASUREMENT AND

INSTRUMENTATION in the department of Electrical Engineering, Indian
Institute of Technology Roorkee, Roorkee is under the guidance of

Dr. H. K. Verma, Professor, Department of Electrical Engineering, Indian

Institute of Technology, Roorkee.

The matter embodied in this dissertation has not been submitted by

me for the award of any other degree.

D ,S & 4 29fi 6 /o =t .
Dated: June 2007
	

(DATLA SRI
	

RA,7U)

Place: Roorkee

This is to certify that the above statement made by the candidate is

correct to the best of my knowledge and belief.

(Dr.H.K.Verma~ 7 ~I

Professor,

Deptt. of Electrical Engg,

I.I.T Roorkee,
Roorkee-247667.

1

ACKNOWLEDGEMENT

I express my sincere gratitude towards my guide Dr.H.K.Verma,

Professor, Department of Electrical Engineering, I.I.T. Roorkee, for guidance,

advice, support and encouragement during the whole span of the work.

I convey my deep sense of gratitude to the Head of Electrical

Engineering department, I.I.T. Roorkee for providing the facilities of the

department for this work.

I appreciate and thank the entire laboratory and official staff of

Department of Electrical Engineering, who directly or indirectly helped me

during the work.

It is difficult for me to express my gratitude to my parents for their

affection and encouragement; I continuously received from them, whenever I

needed it in crucial and depressing moments.

Special and sincere thanks go to my friends whose support and

encouragement has been a constant source strength to me.

(DATLA SRINIVASA RAJU)

ii

ABSTRACT

Active and reactive power demands are never steady and they

continually change with the demand. Water input to hydro-generators must,

therefore, be continuously regulated to match the active power demand,

failing which the machine speed will vary with consequent change in

frequency, which may be highly undesirable.

A PID (proportional, integral and derivative) controller has been

developed in VHDL to control the speed of the hydroelectric turbine. The.

Matlab/Simulink environment is used for modeling, simulation and evaluation

of the performance of the hydro-electric unit. Modelsim is used to run the

VHDL programming for the PID controller. "Link for ModelSim'r is used to

interface the two simulators to achieve the objective.

iv

CONTENTS

Page No

CANDIDATE DICLARATION

ACKNOWLEDGEMENT 	 ii

ABSTRACT 	 iv

CHAPTER-1 INTRODUCTION 	 1

1.1 Field Programmable Gate Array (FPGA) 	 1

1.2 VHSIC Hardware Description Language (VHDL) 	2

1.3 Link for Modelsim 	 2

1.4 Hydro-Electric Unit 	 3

1.5 Statement of Problem 	 3

1.6 Dissertation Layout 	 4

CHAPTER-2 PID CONTROLLER 5

2.1 Introduction 5

2.2 Algorithm for PID Controller 8

2.3 Implementation in V.H.D.L 11

2.3.1 Adder 11

2.3.2 Subtractor 12

2.3.3 Register 12

2.3.4 Multiplier 12

2.3.5 PID Controller 14

2.3.6 Loop Holes in the Original Algorithm 14

CHAPTER-3 INTERFACING THE TWO SIMULATORS

(MATLAB Simulink AND MODEL SIM) 	 15

3.1 Introduction 	 15

3.1.1 Typical Applications 	 15

3.1.2 Key Features 	 17

3.1.3 The Cosimulation Environment 	 17

0A

3.1.4 Modes of Communication 	 20

3.2 Installation and Setup 	 20

3.2.1 Deciding on a Configuration 	 20

3.2.2 Modes of Communication 	 22

3.2.3 Identifying a Server in a Network Configuration 23

3.2.4 Installing Related Application Software 	24

3.2.5 Setting up ModelSim for use with 	 24

Link for ModelSim

3.3 Configuration Procedure for Interfacing

the Simulink and ModelSim 	 26

CHAPTER-4 CONTROLLER FOR HYDRO-ELECTRIC UNIT 	29

4.1 Introduction 	 29

4.2 Hydraulic Channel Model 	 31

4.3 Governor Model 	 32

4.3.1 PID governor 	 33

4.3.2 Procedure for linking the two simulators 	33

4.4 Governor Control using Link for Modelsim 	 39

4.4.1 Setting up ModelSim for Use with Simulink 	40

4.4.2 Loading Instances of the VHDL Entity for

Cosimulation with Simulink 	D 	40

4.4.3 Running the Simulation 	 40

4.4.4 Shutting Down the Simulation 	 41

CHAPTER-5 RESULTS AND DISCUSSIONS 	 . 42

5.1 Starting from standstill 	 42

5.2 Loading the Machine 	 42

5.2.1 Rotor Speed 	 42

5.2.2 Electric Power Output 	 42.

5.3 Waveforms 	 43

vi

CHAPTER-6 CONCLUSION AND SCOPE FOR FUTURE WORK 	48

6.1 Conclusion

6.2 Scope for Future Work

REFERECES
	

50

vii

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

CHAPTER-1

INTRODUCTION

1.1 Field Programmable Gate Array (FPGA):

A field-programmable gate array is a semiconductor device

containing programmable logic components and programmable

interconnects. The programmable logic components can be programmed to

represent the functionality of basic logic gates. These logic gates may be a

simple such as AND, OR, XOR, NOT or more complex combinational functions

such as decoders or simple mathematical functions. In most FPGAs, these

programmable logic components also include memory elements, which may

be simple flip-flops or more complete blocks of memories.

The application range of FPGA based designs Increases every day. This

is -mainly due to the flexibility and capability to perform parallel tasks. - The

industry is adopting massively the. core-based design methodology for

system integration using FPGAs, which leads to the appearance of the

System-on-Programmable-Chip (SoPC) platforms .These capabilities have

been increased with the addition of microprocessors inside the FPGAs, either

embedded in specific hardware or synthesized and included in general logic.

FPGA is an integrated circuit that can be configured by the user in

order to implement digital logic functions of varying complexities. FPGA can

be very effectively used for control purposes in processes demanding very

high loop cycle time. The implementation of a digital controller in a FPGA can

be parallel, resulting in very high speeds of operation. This fact enables

FPGAs to score over general-purpose computing chips like DSP chips, which

have a' limited number of Multiplier ACcumulator (MAC) units that can be

used for the controller design 111 .

1

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

1.2 VHSIC Hardware Description Language (VHDL):

VHSIC. Hardware Description Language is an industry standard

language used to describe hardware from the abstract to the concrete level.

Moreover, it is commonly used as a design-entry language for field-

programmable gate arrays and application-specific integrated circuits in

electronic design automation of digital circuits

VHDL Descriptions consist of primary design units and secondary

design units. The primary design units are the entity and the package. The

secondary design units are the architecture and the package Body.

Secondary design units are always related to a primary design unit. Libraries

are collections of primary and secondary design units. A typical design

usually contains one or more libraries of design units X33.

1.3 Link for Mode['sim 1sl:

Link for ModelSim is a cosimulation interface between ModelSim and

Matlab SimLink. It integrates MathWorks tools into the Electronic Design

Automation (EDA) workflow for field programmable gate array (FPGA) and

application-specific integrated circuit (ASIC) development. The interface

provides a fast bidirectional link between the Mentor Graphics hardware

description language (HDL) simulator, ModelSim SE/PE, and the MathWorks

products MATLAB and Simulink for direct hardware design verification and

cosimulation. The integration of these tools allows applying each product to

the tasks it does best.

The "Link for. ModelSim" is a collection of Simulink blocksets that

permit interaction between hardware description language, which is

implemented in ModelSim and modeled systems in Simulink. The toolboxes

include a series of blocks, such as cosimulation block that can be used to

build a system. With the help of these blocksets, test bench can be built to

estimate the performance of our VHDL code. Moreover, the response in both

2

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

the Simulink by using scope block and in ModelSim by using a wave

generator can be traced

1.4 Hydro-Electric Unit:

Hydroelectric unit is a generating unit, which generates electric power

from Hydropower. In the generating process, active and reactive power

demands are never steady and they continually change with the rising or

falling trend. 	water input to hydro-generators must, therefore, be

continuously regulated to match the active power demand, failing which the

machine speed will vary with consequent change in frequency which may be

highly undesirable (maximum permissible change in power frequency is +-

0.5 Hz)163.

In modern large interconnected systems, manual regulation is not

feasible and therefore automatic generation and voltage regulation

equipment is installed on each generator. The controllers are set for a

particular operating condition and they take care of small changes in load

demand without frequency and voltage exceeding the prescribed limits. With

the passage of time, as the change in load demand becomes large, the

controllers must be reset either manually or automatically 1:7].

1.5 Statement of Problem:

The objective of this work is to develop a suitable FPGA based

controller for hydroelectric unit. The basic PID controller is used to control

the valve of the governor system of the hydroelectric unit to maintain the

speed as well the active power is constant.

The PID controller is developed in a VHDL, which is a hardware

description language and is compiled in ModelSim simulator. In addition, the

hydroelectric unit 'is simulated in MATLAB Simulink environment. The PID

controller in ModelSim is incorporated in governor control in Simulink by

using powerful cosimulation environment "Link for ModelSim".

3

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

1.6 Dissertation Layout:

This dissertation is organized into six chapters. They are briefly introduced

here.

In Chapter-1, a brief description of FPGA, VHDL, Link for ModelSim and

Hydroelectric unit including the objective of this dissertation work.

Chapter-2 presents the algorithm and implementation in VHDL of the

controller, which is developed for hydroelectric unit.

Chapter-3 describes the procedure for the interfacing the two simulators

ModelSim and Matlab Simulink.

Chapter-4 presents the development and working of the controller for

hydroelectric unit.

Chapter-5 gives the results and discussion of the dissertation work

Finally, Chapter-6 presents the conclusion and scope for the future work

9

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

• CHAPTER-2

PID CONTROLLER

2.1 Introduction:

PID (Proportional-Integral-Derivative) is the most common control

methodology in industrial control. It is a continuous feedback loop that keeps

the process flowing by taking corrective action whenever there is any

deviation from the desired value ("set point") of the process variable (rate of

flow, temperature, voltage, etc.). The deviation from the desired value is

called the "error". An "error" occurs when an operator manually changes the

set point. or when an event (valve opened, closed, etc.) or a disturbance

changes the load, thus causing a change in the process variable (7] .

The PID controller receives signals from sensors and computes

corrective action to the actuators from a computation based on the error

(proportional), the sum of all previous errors (integral) and the rate of

change of the error (derivative).

The controller takes a measured value from a process or other

apparatus and compares it with a reference setpoint value. The difference (or

"error" signal) is then used to adjust some input to the process in order to

bring the process's measured value to its desired setpoint. Unlike simpler

controllers, the PID can adjust process outputs based on the history and rate

of change of the error signal, which gives more accurate and stable control.

In contrast to more complex algorithms such as optimal control theory, PID

controllers can often be adjusted without advanced mathematics.

5

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

Setpoin put—►

Fig 2.1 Basic Block Diagram of a PID controller (7]

The PID control scheme - is named after its three correcting terms, whose

sum constitutes the output.

Proportional - To handle the immediate error, the error is multiplied by a
constant K. Note that when the error is zero, a proportional . controller's
output is zero. However, the proportional controller will not reach the,

setpoint if a non-zero output is required to maintain the setpoint. This is
called a "steady state error". To eliminate this error an Integral component
must be added to the controller.

Integral - To find out from the past, the error is integrated and multiplied by
a constant K. The integral term allows a controller to eliminate a steady state
error if the process requires a non-zero input to produce the desired setpoint.
An integral controller will react to the error by accumulating a value that is
added to the output value. While this will force the controller to approach the
setpoint faster than a proportional controller alone and eliminate steady state
error, it also guarantees that the process will overshoot the setpoint since
the integral value will continue to be added to the output value.

0

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

Derivative - To predict the future, the first derivative of the error is

multiplied by a constant Kd. This can be used to reduce the magnitude of the

overshoot produced by the integral component, but the controller will be a bit

slower to reach the setpoint initially.

The output of the controller (i.e. the input to the process) is given by

Output (t) =Pcontrib+Icontrib+Dcontrib•............•............2.1

Where Pcontrib, Icontrib, Dcontrib are:

Pcontrib= K pe(t)

It
Icontrib= — f e(z)d r

T o

de
Dcontrib= Td -

dt

Where e(t) = Setpoint - Measurement(t), is the error signal, and Kp, T;, Td

are constants that are used to tune the PID control loop:

KP: Proportional Gain - Larger Kp typically means faster response since the

larger the error, the larger the feedback to compensate.

Ti: Integral Time - Smaller Ti implies steady state errors are eliminated

quicker. The tradeoff is larger overshoot: any negative error integrated

during transient response must be integrated away by positive error before

reaching the steady state.

Td: Derivative Time - Larger Td decreases overshoot, but slows down

transient response.

7

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

Normally the controller is implemented with the Kp gain applied to the Icontrib,

and Dcoitrib terms as well in the following form, also called the standard form.

u(t) = K p [e(t) + 1 f e(-r)d r + Td
de (t)]2.2

T~ 	 dt

In the ideal parallel form, the standard parameters K, Ti and Td are replaced

with (Kr, K; and Kd).

u(t) = K p e(t) + K~ t e(z)d z + Kd de(t)
2.3)

dt 	
.....2.3

In this, notation the gain parameters are related to the parameters of the

standard form through Kp = K, and Kd = K * Td.

2.2 Algorithm for PID Controller:

In this project, the PID algorithm is applied for closed-loop control.

This is the most commonly used control law and has been demonstrated to

be effective for FPGA implementation. The PID controller is described in a

differential equation from equation 2.3. as [8]:

u(t) = Kp [e(t) + f~ e(t)dt + Td de(t)

Where Kp is the proportional gain, Ti is the integral time constant and Td is

the derivative time constant.

For a small sample interval T, this equation can be changed into a

difference equation by discretization. A difference equation can be

implemented by a digital system, either in hardware or software easily. The

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

derivative term is simply replaced by a first-order difference expression and

the integral by a sum, thus the difference equation 2.3 can be written as:

n
 2.4T

~=0

Equation (2.4) can be rewritten as:

n
u(n) = Kpe(n) + K; I e(i) + Kd (e(n) — e(n —1)) 2.5

j=0

Where K; = KT/TI is the integral coefficient,

Kd =KpTd/T is the derivative coefficient.

To compute the sum, all past errors, e (0)...e (n), have to be stored.

This algorithm is called the "position algorithm". An alternative recursive

algorithm can be derived from the calculation of the control output, u (n),

based on u(n-1) and the correction term 1u(n). To derive the recursive

algorithm, first calculate u (n — 1) based on Eq. (2.5):
n

u(n-1) = Kpe(n-1)+K; Ieo)+Kd(e(n-1)—e(n-2))2.6
j=0

Then calculate the correction term as:

Au(n) = u(n) — u(n —1)

= Koe(n) + Kle(n —1) + K2e(n — 2)2.7

Where K0 = K +K; +Kd,K, = —K —2Kd,K2 = Kd

Equation (2.7) is called the "incremental algorithm". The control output is

calculated as:

u(n) = u(n —1) + Koe(n)+ Kie(n —1) + K2e(n — 2) 2.8

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

In the software implementation, the incremental algorithm (Eq.2.8)

can avoid accumulation of all past errors e (n) and can realize smooth

switching from manual to automatic operation, compared with the position

algorithm (Eq.2.5).

Fig 2.2 Algorithm for PID controller (83

Where e(n) =error signal

p0 = Ko xe(n)

Pi =K1 xe(n -1)

P2 =K2Xe(n -2)

sl = Po + Pl

s2 = P2 +u(n-1)

u(n) =s1+s2

10

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

Figure 2.2 shows parallel design of the PID control algorithm. The

design requires 4 adders and 3 multipliers, corresponding to the basic

operations. In the figure .bold signals are I/O ports, while others are internal

signals. The clock signal cik is used to control sampling frequency. At the

rising edge of control, signal e (n) of the last cycle is latched at register

REG1, thus becomes e (n-1) of this cycle. In the same manner, e (n-2) and

u (n — 1) are recorded at REG3 and REG4 by latching e (n — 1) and u (n)

respectively.

2.3 Implementation in VHDL:

VHDL, or VHSIC Hardware Description Language, is commonly used

as a design-entry language for field-programmable gate arrays and

application-specific integrated circuits in electronic design automation of

digital circuits.

The figure 2.2 which is implemented from the algorithm consists of

three 8-bit multipliers, three 16-bit adders, three registers in which two are

8-bit, one is 16-bit and one subtractor of 16-bit. So, implementation of

adder, multiplier, register and subtractor is described in brief as follows.

2.3.1 Adder:

Implementation of n-bit adder in Hardware Description Language is

different implementing' in digital design. In digital design n-bit adder can be

constructed from a full adder by input carry, augend and addend bits. In this

way n number of full adders has to be added for n-bit adder. But in VHDL, n-

bit adder can be designed in a simple manner with a simple logic as follows.

isum(i) := a(i) xor b(i) xor carry;

carry := (a(i) and b(i)) or (a(i) and carry) or (b(i) and carry);

11

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

These two relations used in the loop of n for n-bit adder for getting

the n-bit sum and carry. For further clarification see Appendix-source code

for PID controller.

2.3.2 Subtractor:

The subtractor can be designed in V.H.D.L by modifying the adder. In

digital system subtraction can be replaced by the adding of minuend to the

2's complement of subtrahend. By changing the augend of the adder as the

NOT of subtrahend and input carry as '1' adder itself acts as subtractor.

2.3.3 Register:

The register can be designed with a simple logic as if clock input is '1'

then output is equal to input.

2.3.4 Multiplier:

With simple logic in a loop of n, which is the order, multiplier can be

designed. From the figure 2.3 and figure 2.4 gives the clear idea of the

multiplier and logic design.

12

Q x "00"

p(15 down to 8) 	p(3) P(2) P(1) p(0)

b(0)

b(1)

b(2)

b(7)

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

Fig 2.3 Algorithm for multiplier [41

a 	 X "00"

im_in (7 down to 0)

n (7 down to 0)

sum_out (7 down to 0)

cout (7 down to 0)
8

Fig 2.4 schematic for fadd [41

13

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

2.3.5 PID Controller:

By connecting the-each component as in the figure 2.2 with the help of

signals pid controller can get the final design.

2.3.6 Loop Holes in the Original Algorithm:

In the actual process the multiplier3 output is added to u(n-1). For the

first clock pulse input to the register is 'U', which is undefined then the

output also becomes undefined `U'. If both the values are added the ultimate

output is undefined 'U'.

To avoid this problem, different ways have been tried such as

initializing, the 'output as "0' and usage of multiplexer. In VHDL, it cannot be

possible to initialize the output port. And then attempt has been made with

multiplexer, where inputs are '0' and u(n). If the output port is 'U' then '0'

input has been selected otherwise u(n). But this also gives the same

undefined output as `U'.

After so many attempts, finally the architecture of the adder has been

changed such that if any of the inputs is undefined 'U' then the output is

forced to `0'. Due to change in the architecture, output of the adder for the

first clock pulse. becomes '0'. Then onwards, as the u(n-1) is defined correctly•

output becomes actual value.

14

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

CHAPTER-3

INTERFACING THE SIMULATORS

(MODELSIM AND MATLAB SIMULINK)

3.1 Introduction:

Link for ModelSim is a cosimulation interface between ModelSim and

Matlab SimLink. It integrates MathWorks tools into the Electronic Design

Automation (EDA) workflow for field programmable gate array (FPGA) and

application-specific integrated circuit (ASIC) development. The interface

provides a fast bidirectional link between the Mentor Graphics. hardware

description language (HDL) simulator, ModelSim SE/PE, and the MathWorks

products MATLAB and Simulink for directR̀ hardware design verification and

cosimulation. The integration of these tools allows applying each product to

the tasks, it does best 151:

a) ModelSim — hardware modeling in HDL and simulation

b) MATLAB — numerical computing, algorithm development, and

visualization

c) Simulink — simulation of system-level designs and complex models

The Link for ModelSim interface consists of MATLAB functions and

ModelSim commands for establishing the communication links between

ModelSim and the MathWorks products. In addition, a library of Simulink

blocks is available for including ModelSim HDL designs in Simulink models for

cosimulation.

3.1.1 Typical Applications:

Link for ModelSim streamlines FPGA and ASIC development by

integrating tools available for

1. Developing specifications for hardware design reference models

15

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

2. Implementing a hardware design in HDL based on a reference model

3. Verifying the design against the reference design

The figure 3.1 shows how ModelSim and MathWorks products fit into this

hardware design scenario.

Develop Specification

Implement Design
MATLAB 	 Verify Design L4

Signal Processing Toolbox 	 ModelSim
Simulink 	 Link for ModelSim

VHDL
Simulink Fixed Point Verlog

Signal Processing Blockset
Communication Blockset

Fig 3.1 Basic Block Diagram for Link for ModelSim 151

As the figure shows, Link for ModelSim connects tools that traditionally

have been used discretely to accomplish specific steps in the design process.

By connecting the tools, Link for ModelSim simplifies verification by allowing

to cosimulate the implementation and original specification directly. The end

result is significant time savings and the elimination of errors inherent to

manual comparison and inspection.

In addition to the preceding design scenario, Link for ModelSim allows to use

1. MATLAB or Simulink to create test signals and software test benches

for HDL code

2. MATLAB or Simulink to provide a behavioral model for an HDL

simulation

3. MATLAB analysis and visualization capabilities for real-time insight into

an HDL implementation

4. Simulink to translate legacy HDL descriptions into system-level views

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

3.1.2 Key Features:

Key features of Link for ModelSim include

i. Ability to link ModelSim to MATLAB and Simulink for bidirectional

cosimulation, verification, and visualization

2. Support for PE and SE versions of ModelSim

3. Support for Window and Unix platforms (see the MathWorks Link for

ModelSim requirements page for specific platforms supported)

4. Support for shared memory and TCP/IP socket modes of

communication between MATLAB and Simulink and ModelSim

5. - A Simulink block for cosimulating HDL models (VHDL or Verilog) in

Simulink

6. A Simulink block for exporting test vectors and results as value change

dump (VCD) files

7. Support for multiple simultaneous ModelSim instances, and multiple

HDL entities from within one Simulink model or MATLAB function

8. Interactive or batch mode cosimulation, debugging, testing, and

verification of HDL code (VHDL or Verilog) from within MATLAB

9. MATLAB test bench functions that support verification of the

performance of a VHDL or Verilog model, or of components within the

model

10. MATLAB component functions that simulate the behavior of entities in

a VHDL or Verilog model

3.1.3 The Cosimulation Environment 151:

Link for ModelSim is a client/server test bench and cosimulation

application. The role that ModelSim plays in a Link for ModelSim simulation

environment depends on whether ModelSim links to MATLAB or Simulink.

17

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

I. MATLAB and ModelSim Links

When linked with MATLAB, a ModelSim function as the client, as the

figure 3.2 shows.

	

Uu 	 in
ModelSim Client I 	Res onse 	Out MATLAB Server

Fig 3.2 MATLAB and ModelSim Links [5]

In this scenario, a MATLAB server function waits for service requests

that it receives from a ModelSim simulator session. After receiving a request,

the server establishes a communication link, and invokes a specified MATLAB

function- wrapper . that computes data for, verifies, or visualizes the HDL

model (coded in VHDL or Verilog) that is under simulation in ModelSim.

The MATLAB server can service multiple simultaneous ModelSim

sessions and HDL entities. However, The figure 3.3 shows a multiple-client

scenario connecting to the server at TCP/IP socket port 4449.

MATLA
Server

ModelSim Link Port

	

Client 	 4449

ModelSim)Link

Client

Fig 3.3 MATLAB and ModelSim Links in a Network Environment (53

18

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

ii. Simulink and ModelSim Links

When linked with Simulink, ModelSim functions as the server, as

shown in the figure 3.4.

ModelSim Server
	 S imulinkClient

Fig 3.4 Simulink and ModelSim Links 151

In this case, ModelSim responds to simulation requests it receives

from cosimulation blocks in a Simulink model. Once the cosimulation session

is initiated, it can be used Simulink and ModelSim to monitor simulation

progress and results. For example, to monitor simulating timing diagrams,

the signal has to be added to a ModelSim Wave window.

As the figure 3.5 shows, multiple cosimulation blocks in a Simulink

model can request the service of multiple instances of ModelSim, using

unique TCP/IP socket ports.

port 	Link
4449 	 S i unlink

port I 	Link .- 	Client

4448

S

Fig 3.5 Simulink and ModelSim Links in a Network Environment 151

19

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

3.1.4 Modes of Communication:

The mode of communication that Link for ModelSim uses for a link

between ModelSim and MATLAB or Simulink somewhat depends on whether

the simulation application runs in a local, single-system configuration or in a

network configuration. If ModelSim and the MathWorks products can run

locally on the same system and the application requires only one

communication channel, it has the option of choosing between shared

memory and TCP/IP socket communication. Shared memory communication

provides optimal performance and is the default mode of communication.

3.2 Installation and Setup:

This section explains how to define the Link for ModelSim application

environment.

Environment Requirements:

1. Configurations

2. Mode of Communication

3. Network Configurations

4. Related Software

5. ModelSim Setup

3.2.1 Deciding on a Configuration:

For various configurations of an application:

i. Shared memory communication is an option for configurations that

require only one communication link on a single computing system.

ii. TCP/IP socket communication is required for configurations that use

multiple communication links on one or more computing systems.

Unique TCP/IP socket ports distinguish the communication links.

20

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

iii. In any configuration, an instance of MATLAB can run only one

instance of the Link for ModelSim MATLAB server (hdldaemon) at a

time.

iv. In a TCP/IP configuration, the MATLAB server can handle multiple

client connections to one or more ModelSim sessions.

v. HDL Cosimulation blocks in a Simulink model can connect to the

same or different ModelSim sessions.

vi. When using both MATLAB and Simulink, different TCP/IP ports must

be used for links between these products and ModelSim.

21

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

Determine application
environment requirements

Decode on configuration

Use Shared No 	Simulink with ModelSim No Identify host name or Internet
Memory? 	 on same computer 	 address for Server systems

Yes Yes

choose TCP/IP ports

Product 	 No
requirements met ? 	 Install related software

+Yes

Install link for ModelSim

	

t No 	Set up Modelsim

Fig 3.6 flow chart for installation and setup 151

The scenarios apply whether ModelSim is running on the same or

different computing system as MATLAB or Simulink. In a network

configuration, an Internet address in addition to a TCP/IP socket port to

identify the servers in an application environment.

3.2.2 Modes of communication 151:

The mode of communication that the Link for ModelSim uses for a link

between ModelSim and MATLAB or Simulink somewhat depends on whether

22

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

the simulation application runs in a local, single-system configuration or in a

network configuration. If ModelSim and the MathWorks products can run

locally on the same system and the application requires only one

communication. channel, it has the option of choosing between shared

memory and TCP/IP socket communication. Shared memory communication

provides optimal performance and is the default mode of communication.

To use the TCP/IP socket communication, it has to choose a TCP/IP

socket port number that is available in computing environment for use by the

Link for ModelSim client and server components. The two components use

the port number to establish a TCP/IP connection. Port numbers are

particularly important for applications that implement multiple clients and

servers and use TCP/IP socket communication on a single node. The port

numbers uniquely identify each client and server and enable connections only

between components sharing the same port number. For remote network

configurations, the Internet address helps distinguish multiple connections.

In MATLAB, checking the server status at this point indicates that the server

is running with no connections:

x=hdidaemon ('status')

HDLDaemon server is running with 0 connections

x= 4449

3.2.3 Identifying a Server in a Network Configuration:

• If there is a need to set up a Link for ModelSim application such that

ModelSim and the MathWorks products reside on different systems, it has to

set up the systems to use

I. TCP/IP networking protocol

ii. Link for ModelSim TCP/IP socket mode of communication

23

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

As part of the application setup, it has to identify

i.. The Internet address or host name of the computer running the

server component of our application

ii. The TCP/IP socket port number or service name (alias) to be used

for Link for ModelSim connections

3.2.4 Installing Related Application Software:

Based on the configuration decisions and the software required for our

Link for ModelSim application, identify software the need to install and where

is the requirement to install it. For details on how to install ModelSim, see the

installation ' instructions for that product. For information on installing

Math Works products, see the MATLAB installation instructions [5].

Based on the configuration decisions, identify systems on which it has

to install Link for ModelSim. Install Link for ModelSim on each system

running MATLAB that requires a communication channel for ModelSim and

MATLAB or Simulink cosimulation.

For details on how to install Link for ModelSim, see the MATLAB

installation instructions.

3.2.5 Setting Up ModelSim for Use with Link for ModelSim:

There is a choice to have ModelSim run on the same machine as

MATLAB or on a separate machine:

i. If the same machine has been chosen, then no additional

° installation instructions are necessary. However, when ModelSim is

run on the same machine as MATLAB, it has the option to configure

ModelSim to be able to work with Link for ModelSim when invoked

from outside of MATLAB. To enable this feature, follow the

instructions in Setting Up ModelSim on the Same Machine as

MATLAB for configuring ModelSim for use with MATLAB.

24

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

ii. 	If different machine has been chosen, follow the instructions in

Setting Up ModelSim on a Separate Machine from MATLAB.

After all the required software is installed, it has to set up ModelSim so

that it is always ready for use with MATLAB and Simulink. It can be complete

this setup immediately after installing the software (or later), either

interactively or programmatically from scripts.

To configure ModelSim for use with Link for ModelSim when ModelSim

is invoked outside of MATLAB, use the MATLAB function configuremodelsim:

Configuremodelsim

Identify the ModelSim installation to be configured for MATLAB

and Simulink

Do you want configuremodelsim to locate installed ModelSim executables

[y]/n? n

Please enter the path to your ModelSim executable

file (modelsim.exe or vsim.exe): C:\Modeltech_6.0b\win32

Modelsim successfully configured to be used with MATLAB and

Simulink

The configuremodelsim function registers new MATLAB- and Simulink-

related Tcl commands for the ModelSim simulator by creating the file

.\tcl\ModelSimTclFunctionsForMATLAB.tcl within in the ModelSim installation

directory. This command. does not select the configured ModelSim executable

as the default simulator to be used by the vsim command (that selection is

done instead by the vsimdir property of the vsim command).

If ModelSim is running, on a machine that does not have MATLAB, it

has to provide. ModelSim with the libraries and configuration information it

25

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

needs to communicate with MATLAB: Every. time ModelSim is started, and

want it to communicate with MATLAB, it has to run vsim with the 'startup file

that created as part of this setup.

3.3 Configuration Procedure for Interfacing the Simulink and

ModelSim 15':

The basic steps for setting up a Link for ModelSim session that uses

Simulink and the HDL Cosimulation block to verify an HDL model. The HDL

Cosimulation block cosimulates a hardware component by applying input

signals to and reading output signals from an HDL model under simulation in

ModelSim. The HDL Cosimulation block supports simulation of either VHDL or

Verilog models. These are the following steps:

i. Developing the VHDL Code:

A typical Simulink and ModelSim scenario is to create a model for a

specific hardware component in ModelSim that need to integrate into a larger

Simulink model. The first step is to design and develop a VHDL model in

ModelSim.

ii. Compiling the VHDL File:

Set up a design library and compile pid.vhd by giving the command. in

ModelSim

ModelSim> vcom pid.vhd

iii. Creating the Simulink Model:

1. Configure the Constant block, which is the model's input source:

I. change the parameter values in the Main pane:

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

II. Click the Signal data types tab. The dialog box now displays the

Output data type mode menu. Select appropriate Output data

type mode menu.

2. Configure the HDL Cosimulation block, which represents the pid model

written in VHDL.

i. In the Ports pane, give signal data path in the full HDL name.
edit field.

ii. In the Connection pane, select the shared memory.
iii. Configure the Clocks pane by adding clock properties.
iv. Enter some simple Tcl commands to be executed before and

after simulation in the Tcl tab:
v. View the Timescales pane to make sure it is set to its default

parameters.
vi. The final step is to connect the blocks, configure model-wide

parameters, and save the model it has been shown in Fig 3.7

Fig 3.7 Schematic of PID controller in Simulink

3. Configure the Simulink solver options for a fixed-step, discrete simulation;

this is required for correct cosimulation operation.

iv.. Setting Up ModelSim for Use with Simulink:

27

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

Now it has a VHDL representation of a PID and a Simulink model that

applies the PID. To start ModelSim such that it is ready for use with Simulink,

enter the following command line in the MATLAB Command Window:

>>vsim

v. Loading Instances of the VHDL Entity for Cosimulation with Simulink:

The vsimulink command is a Link for ModelSim variant of the

ModelSim vsim command. It is made available as part of the ModelSim

configuration. To load an instant enter the following vsimulink command:

ModelSim> vsimulink work.pid

vi. Running the Simulation:

Running and monitoring a cosimulation session is achieved by adding a

wave window by entering the following ModelSim command:

VSIM n> add wave /pid/*

vii. Shutting down the Simulation:

Shut down a simulation in an orderly way by selecting Simulate > End

Simulation.

28

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

CHAPTER-4

CONTROLLER FOR HYDRO-ELECTRIC UNIT

4.1 Introduction:

Active and reactive power demands are never steady and they

continually change with the rising or falling trend. water input to hydro-

generators must, therefore, be continuously regulated to match the active

power demand, failing which the machine speed will vary with consequent

change In frequency which may be highly undesirable (maximum permissible

change in power frequency is +- 0.5 Hz). In addition, the excitation of

generators must be continuously regulated to match the reactive power

demand with reactive generation; otherwise, the voltages at various system

buses may go beyond the prescribed limits [9].

In modern - large interconnected systems, manual regulation is not

feasible and therefore automatic generation and voltage regulation

equipment is installed on each generator. Fig 4.1 gives the schematic

diagram of load frequency and excitation voltage regulators of a turbo-

generator. The controllers are set for a particular operating condition and

they take care of small changes in load demand without frequency and

voltage exceeding the prescribed limits. With the passage of time, as the

change in load demand becomes large, the controllers must be reset either

manually or automatically (61.

For small changes, active power is dependent on internal machine

angle b and is independent of bus voltage. While bus voltage is dependent on

machine excitation (therefore on reactive generation Q) and is independent

of machine angle b change in angle 5 is caused by momentary change in

generator speed. Therefore, load frequency and excitation voltage controls

are non-interactive for small changes and can be modeled and analyzed

independently. Furthermore, excitation voltage control is fast acting in which

the major time constant encountered is that of the generator field; While the

29

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

power frequency control is slow acting with major time constant contributed

by the turbine and generator moment of inertia. This time constant is much

larger than that of the generator field. Thus, the transients in excitation

voltage control vanish much faster and do not affect the dynamics of power

frequency control.

Changes in load demand can be identified as: (i) slow varying changes

in mean demand and (ii) fast random variations around the mean. The

regulators must be designed to be insensitive to fast random. changes,

otherwise the system will be prone to hunting resulting in excessive wear and

tear of rotating machines and control equipment.

Load frequency
water 	 Controller te

APGi +jLQGi

Frequency
Sensor

Main
water valve

Valve Control
Mechanism

Generator
Turbine

Controllable
Excitation

QV
Controller

Voltage
Sensor

Fig 4.1 Basic Block Diagram for the Excitation and Governor control

for an Hydro-Electric unit (6]

30

d

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

4.2 Hydraulic Channel Model:

Hydraulic turbines are of two basic types: impulse turbine and reaction

turbine. The impulse turbine (also known as pelton wheel) is used for high

heads 300m or more and the runner is at atmospheric pressure. In a reaction

turbine, the pressure within the turbine is above the atmospheric pressure.

The Francis turbine is used for heads up to 360m and the propeller turbine is

for low heads up to 45meters F9].

Model without Surge Tank:

In order to simplify the model following assumptions are made

i. The hydraulic resistance is negligible.

ii. The penstock pipe is inelastic and water is incompressible.

iii. The velocity of water varies directly with the gate opening and with the

square root, of the net head.

iv. The turbine output is proportional to the product of the head and

volume flow. -

The Simulink diagram represents.a simple nonlinear hydraulic channel

configuration with unrestricted head, tailrace and without surge tank.

Moreover, the model is. achieved from the following relations.

t
Ideal gate opening is given by, 	

G=A *g

1

Where At is the gain of the turbine, 	 At gfl -gn1

No-load water velocity, 	
Unl = Atgnl Ho

H= G * G
Hydraulic head at Gate,

31

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

T_ LUr
Water starting time,

W agHr

Mechanical power output is given by, 	 Pm = P — PL

Where PL represents the fixed power loss of the turbine, 	PL = U„1*H

H

gate 	eft 	 K" 	 U

[L X

Fig 4.2 Hydraulic Channel Model in Simulink

Per unit conversion factor,
P

= turbineMWrating
r 	baseMVA

So, per unit turbine power on generator MVA base is expressed as:

'm = (IJ —Un1)1

4.3 Governor Model:

Water turbine governors are supplied for the basic purpose of

governing the speed.. In modern power plant, the role of governor is to

accept and react to external signals and to combine them to achieve a

desired operating mode. This governor can be either (i) electro-hydraulic

type or (ii) PID type [9].

In the following section mathematical treatments for these are given .

32

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

4.3.1 PID governor:

The power frequency control is slow acting with major time constant

contributed by the turbine and generator moment -of inertia. This time

constant is much larger than that of the generator field. Some 'electro-

hydraulic governors are provided with three-term controllers proportional-

integral-derivative (PID) actions. This allows the possibility of higher

response speeds by providing both transient. gain reduction and transient

gain increase.

The derivative actions beneficial for isolated operation and particularly

for plants with large water starting time. However, the use of a high

derivative gain or transient gain increase will result in excessive oscillations

and possibly instability when the generation unit is strongly connected to an

interconnected system. Therefore derivative gain is usually set to zero.

Without the derivative action, the transfer function of a PID (now PI)

governor is equivalent to that of the mechanical hydraulic governor. Fig

shows PID governor model. with PID block in_ ModelSim.

4.3.2 Procedure for linking the two simulators :5]:

Procedure for linking the two simulators is explained as follows:

a. Developing the VHDL Code

The VHDL entity for the PID controller model will represent 8-bit

streams of input and 16-bit output signal values with an IN port and

OUT port of type STD_LOGIC_VECTOR. An 'input clock signal of type

STD_LOGIC will trigger the registers when set:

1. Start ModelSim

2. Change to the writable directory "project", which have been

created earlier.

ModelSim>cd C:/project

33

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

3. Open a new VHDL source edit window.

4. Add the VHDL code for PID controller

5. Save the file to project.vhd.

b. Compiling the VHDL File

This section explains how to set up a design library and compile

project.vhd:

1. Verify that the file project.vhd is in the current directory by

entering the Is command at the ModelSim command prompt.

2. Create a design library to hold the compilation results. To create

the library and required _info file, enter the vlib and vmap

commands as follows:

ModelSim> vlib work

ModelSim> vmap work work

If the design library work already exists, ModelSim does not overwrite

the current library, but displays the following warning:

** Warning: (vlib-34) Library already exists at "work".

3. Compile the VHDL file by giving the tcl command

ModelSim> vcom project.vhd

c. Creating the Simulink Model

Now creating our Simulink model ie PID governor control. For this,

first create a simple Simulink model that drives input into a block

representing the VHDL project that coded in Developing the VHDL

Code.

34

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

Start MATLAB, and Open a new model window. Then, open the

Simulink Library Browser. Drag the required blocks from the Simulink

Library Browser to our model window.

Next, configure the Constant block, which is the model's one of the

input source:

i.Double-click the. Constant block icon to open the Constant block

parameters dialog. Enter the following parameter values in the Main

pane:

a. Constant value: 0

b. Sample time: 10

Later it can be possible to change these initial values to see the effect

various sample times have on different simulation runs.

ii.Click the Signal data types tab. The dialog box now displays. the

Output data type mode menu.

Select uint8 from the Output data type mode menu. This data type
A -

specificatioh is supported by Link for ModelSim without the need for a

type conversion. It maps directly to the VHDL type for the VHDL port,

STD_LOGIC_VECTOR(7 DOWNTO 0).

iii.Click OK. The Constant block parameters dialog closes and the value

in the Constant block icon changes to zero.

Next, configure the HDL Cosimulation block, which represents the pid

controller model written in VHDL. Start with the Ports pane:

1. Double-click the HDL Cosimulation block icon. The Block

Parameters dialog for the HDL Cosimulation block appears. Click

the Ports tab.

2. In the Ports pane, select the sample signal /top/sigl from the

signal list in the center of the pane.

35

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

3. In the Full HDL Name edit field, replace the sample signal

pathname /top/sigl with /project/e. - Then click the Update

button. The signal. name in the selected list entry changes.

Similarly change the other signals as per in the VHDL top entity.

4. Select the sample signal /top/sig3. Click the Delete button. The

signal is now removed from the list.

Now configure the parameters of the Connection pane:

1. Click the Connection tab.

2. Select socket from the Connection method list. This option

specifies that Simulink and ModelSim will communicate via a

designated TCP/IP socket port. Observe that two additional fields, Port

number or service and Host name, are now visible.

Note that, because - the ModelSim running on this computer

option is selected by default, the Host name field is disabled. In this

configuration, both Simulink and ModelSim execute on the same

computer, no need to enter a remote host system name.

3. In the Port number or service text, box, enter socket port

number 4449 or, if this port is not available on the system, another

valid port number or service name. The model will use TCP/IP socket

communication to link with ModelSim. Note the entered parameter and

that parameter has to be specified at the same socket port information

when setting up the ModelSim for linking. with Simulink.

4. Leave Connection Mode as Full Simulation.

5. Click Apply.

Now configure the Clocks pane:

1. Click the Clocks tab.

K.

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

2. Click the New button. A new clock signal with an empty signal

name is added to the signal list; the new signal is selected for

editing.

3. In the Full HDL Name text box, enter the signal path

/project/clk. Then select Rising from the Edge list. Set the

Period parameter to 10.

4. Click the Update button.

5. Click Apply.

Next,- enter some simple Tcl commands to be executed before and

after simulation:

1. Click the Tcl tab.

2. In the Pre-simulation commands text box, enter the following
Tcl command:

echo "Running governor control in Simulink!"

3. In the Post-simulation commands text box, enter

echo "Done"

4. Click Apply.

Next, view the Timescales pane to make sure it is set to its default

parameters.

1. Click the Timescales tab.

2. The default settings of the Timescales pane are shown, below.

These settings are required for correct operation of this

example. See Representation of Simulation Time for further

information.

3. Click OK to close the Function Block Parameters dialog box.

37

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

In the same way configure the A/D converter and decoder according to

the system.

The final step is to connect the blocks, configure model-wide

parameters, and save the model:

1. 	Connect the blocks as shown in fig 4.3.

Fig 4.3 PID Governor Model in Simulink

2. Configure the Simulink solver options for a fixed-step, discrete

simulation; this is required for correct cosimulation operation.

a. Select Configuration Parameters from the Simulation

menu in the model window. The Configuration Parameters

dialog box opens, displaying the Solver options pane.

b. Select Fixed-step from the Type menu.

c. Select discrete (no continuous states) from the Solver

menu.

d. Click Apply. The Solver options pane should appear as

shown below.

e. Click OK to close the Configuration Parameters dialog box.

3. Save the model.

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

4.4 GOVERNOR CONTROL:

The governor controller for hydroelectric unit is achieved by using the

developed models of hydraulic channel model without surge tank and PID

governor model. It is shown in the fig 4.4 in the bus bar mode.

Pm

— 	 }̂ r

II 	'I 	B
VS_

Hyem Turbine governor

A

B 	b

V

Syndncneua Mechlne v~~ 	
200 MVA 13.600 	I

~

Three-phase
Trend...r

vtl 	 I 210 MYA 13.B kV/230 kV

Ecdtatlon 	V1(Pu)
Sy4em

Contlnuoue 	150 MW

Fig 4.4 Governor Control of a Hydro-electric Unit

®uce

39

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

4.4.1 Setting Up ModelSim for Use with Simulink:

To start ModelSim such that it is ready for use with Simulink, enter the

.following command line in the MATLAB Command Window:

>>vsim

4.4.2 Loading Instances of the VHDL Entity for Cosimulation with

Simulink:

The vsimulink command is a Link for ModelSim variant of the ModelSim

vsim command. It is made available as part of the ModelSim

configuration.

To load an instance of the project entity,

1. Change the input focus to the ModelSim window.

2. If necessary, change the directory to the location of the project.vhd

file. For example:

-3. ModelSim> cd C:/project

4. Enter the following vsimulink command:

5. ModelSim> vsimulink work.pid

ModelSim starts the vsim simulator such that it is ready to simulate entity

project in the context of the Simulink model.

4.4.3 Running the Simulation:

This section guides scenario of running and monitoring a cosimulation

session.

1. Open and add the project signals to a wave window by entering the

following ModelSim command:

40

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

2. VSIM n> add wave /project/*

3. Change the input focus to the Simulink model window.

4. Start a Simulink simulation. Also, note the changes that occur in the

ModelSim wave window. Zoom can be used to get a better view of the

signal data. Note the change in the sample time in the wave window.

4.4.4 Shutting Down the Simulation:

This section explains how to shut down a simulation in an orderly way:

1. In ModelSim, stop the simulation by selecting Simulate > End

Simulation.

2. Quit ModelSim.

3. Close the Simulink model window.

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

CHAPTER-5

RESULTS AND DISCUSSIONS

In this chapter, results of controller for hydroelectric unit, which is

developed in chapter-4, are presented. The rotor speed and output electric

power of the machine for different loads are presented.

5.1 Starting from standstill:

The machine is started from standstill position with a initial load of

0.05 p.u. The oscillations in rotor speed and electric power due to sudden

change are settled in 15 seconds can be observed from the fig 5.1 to fig 5.6.

5.2 Loading the Machine:

The Machine is loaded at 20 seconds after starting the machine from

standstill position. Because the machine is already settled at reference point,

the oscillations due to sudden loading settled in 10 seconds, which is less

than the case in 5.1.

5.2.1 Rotor Speed:

As the load on the machine is increased, the peak value of the

oscillations in the rotor speed is also increasing. It has been observed from

fig 5.1, fig. 5.3 and fig 5.5.

5.2.2 Electric Power Output:

As the load on the machine is increased, the peak value of the

oscillations in the Electric power is also increasing. At the time where the

load is applied, it suddenly goes to that peak value and settles at the load. It

has been observed from fig 5.2, fig 5.4 and fig 5.6.

42

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

5.3 Waveforms:

The waveforms for rotor speed and electric power output for

different- loads are shown below:

For 0.25 p.0 load:

1.03

1.02

1.01

Speed (p.u)

0.99

0.98

0.97
0 5 	10 	15 	20 	25 	30 	35 	40

Time (seconds)

Fig 5.1 speed Vs time for 0.25 pu load

43

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

Fig 5.2 output power Vs time for 0.25 pu load

44

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

For 0.5 p.0 load:

1.03

1.02

1.01

Speed (p.u)
. 	1

0.99

0.98

0.97
5 	10 	15 	20 	25 	30 	35 	40

Time (seconds)

Fig 5.3 speed Vs time for 0.50 pu load

Fig 5.4 output power Vs time for 0.50 pu load

45

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

For 0.75 p.0 load:

1.03

1.02

1.01

Speed (p.u)

1

0.99

0.98

0.97
0
	

5 	10 	15 	20 	25 	30 	35 	40
Time (seconds)

Fig 5.5 speed Vs time for 0.75 pu load

Fig 5.6 output power Vs time for 0.75 pu load

46

Inte.

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

From the fig 5.7, it has been observed how the error signal is tends to

zero and giving the appropriate output value in the Modelsim.

Fig 5.5 Waveform for the PID controller in ModelSim

47

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT
a

CHAPTER-6

CONCLUSION AND SCOPE FOR FUTURE WORK

6.1 Conclusion:

The basic objective of developing a suitable FPGA based controller for

hydroelectric unit is achieved. The basic PID controller is used to control the

valve of the governor system of the hydroelectric unit to maintain the speed

as well the active power at a constant value.

The PID controller is developed in VHDL, which is a hardware

description language and is compiled in ModelSim simulator. In addition, the

hydroelectric unit is simulated in MATLAB Simulink environment. The PID

controller in ModelSim is incorporated in governor control in Simulink by

using powerful cosimulation environment "Link for ModelSim".

Due to above said integration both the high performance of a

hardware implementation and the validation and testing capabilities of a

Simulink design has been achieved.

By proper tuning the PID controller the error signal which is the input

for the PID in VHDL is forced to zero has been observed in waveform. In

addition, by sudden application of load on the system it has been observed

that there is a fluctuation in the speed of the system and it settles in around

10 seconds.

As per the expectations, all objectives and results are achieved.

Anyhow, some of the aspects, which could not be included in the present

development, can be taken up in the future work.

48

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

6.2 Scope for Future Work:

Two suggestions are made below for future work:

1. Further work can be carried out by Implementing above developed
design for the system on a FPGA kit. On successful implementation,
the same can be burnt on to a FPGA chip.

2. Presently the PID controller has been tuned by trial and error method.

An auto-tuning algorithm can be developed in VHDL.

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

REFERENCES

1. Xilinx Corp. Spartan-3 Complete Datasheet Documentation. Xilinx,

http://www.xilinx.com, August 2005.

2. D. L. Perry, "VHDL Programming by Example", TATA McGraw Hill
Publications, 2004

3. J. Bhasker, "A VHDL Primer", PEARSON Education, 2005

4. M. MORRIS MANO, -DIGITAL DESIGN", PEARSON Education, 2004

5. http://www.mathworks.com/products/modelsim/

6. 13 NAGARATH, D P KOTHARI, "Modern Power System Analysis", TATA

McGraw Hill Publication.

7. I.J. Nagarath and M. Gopal, control systems Engineering, New age

International, Third edition,1999

8. W. Zhao, B. H. Kim, A. C. Larson, and R.M. Voyles. "FPGA

Implementation of Closed-Loop Control System for Small-Scale

Robot". In Proceedings of the 12th International Conference on

Advanced Robotics ICAR, 2005.

9. P. Kundur.,"Power System Stability and Control", McGraw Hill

Publication. New York

•1N~.~Sg~~ 	'1 t.

FPGA BASED CONROLLER FOR HYDRO-ELECTRIC UNIT

10. Joao Lima, Ricardo Menotti, Joao M. P. Cardoso, and Eduardo Marques

"A Methodology to Design- FPGA-based PID Controllers"

11.Working Group on Prime Mover and Energy Supply Models for System

Dynamic Performance Studies, "Hydraulic Turbine and Turbine Control

Models for System Dynamic Studies", IEEE Transaction on Power

System, Vol.-7, No. 1, pp. 167-179, February 1992.

12. L. Samet, N. Masmoudi, M.W. Kharrat, and L. Kamoun,, "A Digital PID
Controller for Real Time and Multi Loop Control: a comparative study"-,
in Proceedings of 1998 IEEE International Conference on Electronics,
Circuits and Systems, Vol.1, Sep. 7-10, 1998, pp. 291-296.

13. Jes'us L'azaro, Armando Astarloa, Jagoba Arias, Unai Bidarte, Aitzol

Zuloaga Simulink/Modelsim Simulable VHDL PID Core for Industrial

SoPC Multiaxis Controllers 1-4244-0136-4/06/2006 IEEE pages from
3007-3011

14. Mentor Graphics. ModelSim.

51

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References

