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ABSTRACT 

Many industrial control problems are nonlinear and multivariable in nature. It is common for 

dynamic models of industrial processes to have strong interactions between the loops. 

Distillation columns also exhibit elegantly complex dynamics which include strong 

interactions and large dead times. Though product quality control of simple binary distillation 

columns somewhat easy, it is challenging job for control engineer to control product quality 

of complex distillation columns like crude distillation columns. This is due to strong 

interactions among sidestream product quality control loops and large input-output delays. 

Significant economic benefits can result from improved control of crude distillation towers 

because of their large throughput. Present work is about control of crude tower product 

quality and it is a 4 x 4 control problem which include strong interactions and large dead 

times. It is common for crude towers to change products quality on market specifications. So 

controller should maintain product quality on specification. Leo Hsie and McAvoy (1991) 

worked on product quality control of crude distillation tower. Both conventional PI control 

and model based QDMC control were applied to crude tower product quality variables. They 

had used old guide lines in tuning QDMC controller. This tuning involves trial and error 

procedure in selecting move suppression coefficients. 

Present work includes redesign of conventional PI controller, redesign of QDMC with old 

tuning guidelines and design of QDMC with Novel tuning strategy for product quality control 

of crude distillation column. Present study considers the transfer function models and 

operating conditions (i.e. constraints on manipulated and controlled variables) given by Leo 

Hsie and McAvoy (1991). We have followed multiloop BLT tuning method proposed by 

Luyben (1986) in redesigning conventional PI controller and old tuning guidelines given in 

Cutler and Ramaker (1980) in redesigning QDMC for product quality control. Present work 

also followed tuning strategy proposed by Shridhar and Cooper (1998) in designing QDMC 

with novel tuning strategy. MATLAB simulink and MPC Toolbox are used for simulating 

results for PI and QDMC respectively. Finally performance of QDMC with Novel tuning 

strategy is compared with results of conventional PI and QDMC with old tuning guidelines. It 

was found that the QDMC with Novel tuning strategy performs better than other two control 

structures. 
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Chapter-1 

INTRODUCTION 

The model-based control strategy that has been most widely applied in the process industries 

is Model Predictive Control (MPC). It is a general method that is especially well suited for 

difficult Multi-Input, Multi-Output (MIMO) control problems where there are significant 

interactions between the manipulated inputs and the controlled outputs. Unlike other model-

based control strategies, MPC can easily accommodate inequality constraints on input and 

output variables. In the last decades several model predictive control algorithms have been 

proposed. Dynamic Matrix Control (DMC) is the most popular Model Predictive Control 

(MPC) Algorithm currently used in the chemical process industry. Although one of the 

earliest formulations of MPC, DMC represents the industry's standard for MPC today. The 

technique was developed in Shell as part of its process computer control activities. The 

objective of a DMC controller is to drive the output as close to the set point as possible in a 

least-squares sense with a penalty term on the manipulated variable moves and this technique 

provides a degree of robustness to model error. DMC algorithm has been used extensively in 

the process industry mainly because of its ability to handle input and output constraints, 

process delays and variable interactions encountered in many multivariable systems. 

Control techniques such as dynamic matrix control, model algorithmic control, internal 

model control and inferential controls explicitly use a process model. Of these, undoubtedly 

the most popular with the process industry is dynamic matrix control (DMC). This algorithm 

has been successfully applied in many cases where the conventional control is unsuitable for 

various reasons. The modelling philosophy and the ability of DMC in handling complex 

control problems commonly encountered in multivariable systems have made it a very 

popular control algorithm. One major contributor to the success of DMC is the ability to 

handle constraints in an optimal fashion. The optimization-based procedure is intuitive and 

is also a natural way of handling multi variable systems. A key feature of DMC is that future 

process behaviour is predicted using a dynamic model and available measurements. The 

controller outputs are calculated so as to minimize the difference between the predicted 

process response and the desired response. At each sampling instant, the control calculations 

are repeated and the predictions updated based on current measurements. Constraints on the 
1 



controlled and manipulated variables can be routinely included in both the DMC and 

optimization calculations. 

1.1 ADVANTAGES OF DMC 

Dynamic Matrix Control offers a number of important advantages: 

• It is a general control strategy for MIMO processes with inequality constraints on 

input and output variables. 

• It can easily accommodate difficult or unusual dynamic behaviour such as large time 

delays and inverse responses. 

• Since the control calculations are based on optimizing control system performance, 

MPC can be readily integrated with on-line optimization strategies to optimize plant 

performance. 

• The control strategy can be easily updated on-line to compensate for changes in 

process conditions, constraints, or performance criteria 

Crude distillation units are the first separation units in any petroleum refinery. They are used 

to separate the crude oil into various fractions. These fractions can be products or feed stocks 

to the following processing units. These are high volume, high energy-consuming distillation 

columns in which any upset will propagate to downstream processing units and raise the total 

cost of refining. As a result, it is desirable to maintain crude tower operation as steady as 

possible. Control of crude tower product qualities represents a control problem with the 

characteristics of long dead times and strong interaction. The fundamental difference between 

the design of a multivariable control system and a single-input single-output (SISO) control 

system is the interaction caused by the closed control loops. In a multivariable feedback 

control system, each manipulated variable will affect more than one controlled variable when 

the loops are closed. 

1.2 OBJECTIVE OF THESIS 

• To redesign conventional PI controller and QDMC with old tuning guidelines for 

product quality control of crude distillation column. 

• To design QDMC with Novel tuning for product quality control of same crude 

distillation column. 
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• To compare the performance of QDMC with Novel tuning strategy with the 

conventional PI controller and QDMC with old tuning guidelines for the system of 

crude distillation end point control of four products. 

1.3 ORGANISATION OF THESIS 

The thesis has been organised in seven chapters. Chapter-2 describes literature review on 

DMC and its application for product quality control of distillation columns. Chapter-3 

presents process description and process models identification. Chapter-4 describes basic 

DMC and QDMC algorithms. Chapter-5 describes tuning of DMC and tuning by Novel 

tuning strategy. Results and discussion have been given in chapter-6. Finally chapter-7 

highlights the main conclusions of the thesis and provides the recommendations for future 

work. 
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Chapter-2 

LITERATURE ERATURE REVIEW 

Dynamic Matrix Control (DMC) is the most popular Model Predictive Control (MPC) 

Algorithm currently used in the chemical process industry. Although one of the earliest 

formulations of MPC, DMC represents the industry's standard for MPC today. The technique 

was developed by Shell Oil Company as part of its process computer control activities. 

Engineers at Shell Oil developed their own independent MPC technology in the early 1970's, 

with an initial application in 1973. Cutler and Ramaker (1980) presented details of an 

unconstrained multivariable control algorithm, which they named Dynamic Matrix Control 

(DMC) at the 1980 Joint Automatic Control Conference. 

In a companion paper at the 1980 meeting Prett and Gillette (1980) described an application 

of DMC technology to an FCCU reactor/regenerator in which the algorithm was modified to 

handle non-linearities and constraints. The objective of a DMC controller is to drive the 

output as close to the set point as possible in a least-squares sense with a penalty term on the 

manipulated variable moves. Prett and Gillette formalized this concept mathematically by 

defining move suppression factors designed to penalize excessive input movement. Move 

suppression factors also provide an important numerical benefit in that they can be used to 

directly improve the conditioning of the numerical solution. Prett and Gillette described 

additional modifications to the DMC algorithm to prevent violation of absolute input 

constraints. When a predicted future input came sufficiently close to an absolute constraint, 

an extra equation was added to the process model that would drive the input back into the 

feasible region. These were referred to as time variant constraints. 

The original DMC algorithms provided excellent control of unconstrained multivariable 

processes. Constraint handling, however, was still somewhat ad-hoc. Engineers at Shell Oil 

addressed this weakness by posing the DMC algorithm as a Quadratic Program (QP) in which 

input and output constraints appear explicitly. Garcia and Morshedi (1986) first published a 

more comprehensive description on QDMC. Garcia and Morshedi began with a clear and 

concise presentation of the unconstrained DMC algorithm, including an interesting discussion 

of tuning. Their experience showed that the DMC algorithm was closed loop stable when the 

prediction horizon was set long enough to include the steady-state effect of all computed 
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input moves. This is supported by a rigorous proof presented by Garcia and Morari (1989), 

which shows that the DMC algorithm is nominally stabilizing for a sufficiently large 

prediction horizon. Garcia and Morshedi then showed that how the DMC objective function 

can be re-written in the form of a standard QP. Future projected outputs can be related 

directly back to the input move vector through the dynamic matrix; this allows all input and 

output constraints to be collected into a matrix inequality involving the input move vector. 

Although the QDMC algorithm is a somewhat advanced control algorithm, the QP itself is 

one of the simplest possible optimization problems that one could pose. The Hessian of the 

QP is positive definite for any reasonable problem and so the resulting optimization problem 

is convex. This means that a solution can be found readily using standard commercial 

optimization codes. 

Garcia and Morshedi wrapped up their paper by presenting results from a Pyrolysis furnace 

application. The QDMC controller adjusted fuel gas pressure in three burners in order to 

control stream temperature at three locations in the furnace. Their test results demonstrated 

dynamic enforcement of input constraints and decoupling of the temperature dynamics. They 

reported good results on many applications within Shell on problems as large as 12x12 (12 

process outputs and 12 process inputs). They stated that above all, the QDMC algorithm had 

proven particularly profitable in an on-line optimization environment, providing a smooth 

transition from one constrained operating point to another. The QDMC algorithm can be 

regarded as representing a second generation of MPC technology, comprised of algorithms, 

which provide a systematic way to implement input and output constraints. This was 

accomplished by posing the MPC problem as a QP, with the solution provided by standard 

QP codes. 

Wood and Berry (1973) proposed use of the ratio control system for product quality of 

distillation column in which the overhead composition is controlled by manipulation of the 

reflux flow to adjust the overhead vapor rate to reflux flow ratio resulted in excellent control 

performance. The significant improvement in the control behaviour compared to that 

obtained using conventional two-point control, particularly in the case of the overhead 

composition, since this scheme provides an effective means of reducing the interaction effect 

of the steam flow on the overhead composition. 
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Marchetti et al (1983) presented a detailed sensitivity analysis of adjustable parameters and 

their effect on DMC performance. Maurath et at (1988) Proposed the M=1 controller 

configuration of DMC, it worked well for simple SISO systems but not for MIMO systems. 

Sigurd Skogestad and Manfred Morari (1988a) studied dynamic modelling of distillation 

columns. The dynamic behavior of a distillation column was approximated with a two time 

constant model. The response to changes in the external flows was approximately first order. 

This dominant time constant can be estimated by using a simple mixing tank model for the 

column. Skogestad and Morari (1988b) also worked on LV control of high purity distillation 

column. They concluded that, a single linear controller was able to give satisfactory control 

of high-purity column at widely different operating conditions. One reason for this was the 

use of logarithmic compositions, which effectively counteracts the non-linearity in the plant. 

However, even if absolute compositions were used, a single linear controller performs 

satisfactory if the deviations from steady state are reasonably small. Using the composition in 

the overhead vapor, as a controlled output makes the system less sensitive to variations in the 

condenser hold up. A simple diagonal controller was found to be robust with respect to 

model-plant mismatch, but gives a sluggish return to steady state. This particular part of the 

response was improved using the p-optimal controller. Inverse-based controllers, and in 

particular those based on a steady-state decoupler, are very sensitive to model-plant mismatch 

and should not be used with the LV-configuration for this high-purity column. 

A mathematical model for the rigorous, non-linear dynamic simulation of a crude tower was 

presented by Leo Hsie and McAvoy (1990). The modeling equations of the crude tower form 

a very large set of stiff ordinary differential and algebraic equations. The large dimension and 

stiffness make the simulation very time consuming. A new approach, which is based on a 

"separated component" concept, was shown to reduce the dimension and stiffness of the 

system. Hence the computation cost was considerably reduced. It was found that the bubble 

point distillation algorithm (BPA) is extremely sensitive to error in liquid compositions of the 

light components in a crude tower system. This sensitivity causes numerical problems with 

the algorithm. The sum of rates algorithm was shown to be more suitable for computing the 

steady state conditions of a crude tower than the bubble point algorithm. Once an initial 

steady-state is reached, the transient responses of the crude tower can be obtained by the 

bubble point approach. The dynamic crude tower simulation predicted the expected 

strong,one-way interaction among the product quality control loops. Through dynamic 
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simulation, it was shown that the interaction can be eliminated by a simple, steady state 

decoupler. 

Leo Hsie and Thomas J. McAvoy (1991) presented a comparison of single loop PI and 

QDMC based control of crude oil distillation towers. A detailed, non-linear, dynamic tower 

simulation was used to test control approaches. To tune the various controllers used, a 

linearized dynamic model was developed from step testing the non-linear model. Traditional 

thinking on crude tower control has held that interactions propagate only down the tower. 

Their results indicated that significant two-way dynamic interaction occurs. This interaction 

required that the PI controllers be detuned substantially from Ziegler-Nichols settings. At 

steady state the interaction is essentially one way, i.e. down the column. The BLT tuning 

method was found to give unsatisfactory results for the 4 x 4 problem treated. When 

compared with the best PI tuning that they could find, QDMC produced better transient 

performance. When a decoupler was added to their best PI controller, it improved the 

response. However, QDMC again gave faster setpoint responses but at the expense of 

increased loop interaction. Their work is used in present study for comparison. 

Lee and Yu (1994) integrated the latest developments in MPC with the frequency-domain 

robust control to develop a set of tuning guidelines for MPC controllers applied to both SISO 

and MIMO systems. It was shown that, for SISO systems and MIMO systems with output 

uncertainty, quantitative tuning rules based on robust performance analysis can be developed 

using the parameters of the state observer only. In addition to the precise knowledge of their 

effects on the closed-loop robustness, these parameters offer an additional advantage over the 

traditional tuning parameters in that the robustness is maintained even in the presence of 

active output constraints. It was also demonstrated through analysis and a numerical example 

that simple SISO tuning rules do not lead to robust controllers in general for MIMO systems 

with input uncertainty. It was suggested that, in the presence of significant input uncertainty, 

the input weight instead of the observer parameters are used to achieve robustness. A one-

parameter tuning rule was proposed, which should work adequately for most problems. 

Charos and Arkun (1993) had presented a decentralized version of the quadratic dynamic 

matrix control algorithm. It was shown that under a certain assumption the original quadratic 

programming can be decomposed to smaller QPs, which can be solved independently and in 

parallel. Simulations have shown performances comparable to the centralized QDMC with 
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less demanding CPU times. However, it was not obvious how to determine a priori the 

dynamic performance of the proposed algorithm, as this is very much problem dependent. 

One should weigh the computational benefits against the performance loss carefully before 

accepting this algorithm for a particular problem in hand. More research in quantifying the 

performance differences between centralized QDMC, decentralized QDMC and fully 

decentralized IMC and additional computational experience with larger problems are needed. 

Lundstrom and Skogestad (1995) applied MPC controller for 5 x 5 distillation control. The 

main advantages with 5 x 5 distillation control were the improved disturbance detection by 

indirect use of the level and pressure measurements, and the explicit input constraint 

handling. One difficulty was the tuning of the controller, but in their example they were able 

to tune the MPC scheme quite easily to get acceptable robustness. Meziou et al (1995) 

applied the servo and regulatory performance of DMC to an industrial steam gas reformer. 

Simulation results indicated the potential improvement of the closed-loop responses, 

compared with the multiloop design. 

Balachandran and Chidambaram (1997) designed decentralized PI controllers by the method 

of inequalities. It gave lesser interactions among the four control loops of a crude distillation 

tower. The interactions were lesser than that of BLT method. Since the desired specifications 

of the closed loop responses and interactions can be easily incorporated in the method of 

inequalities, it is easier to get the diagonal settings by this method than by the BLT method. 

Hovd. et al (1997) worked on the project of designing and implementing model based 

predictive control on the vacuum distillation column at the Nyriashamn Refinery of Nynas 

AB. They described in detail the modeling for the model based control, covered the controller 

implementation, and documented the benefits gained from the model based controller. 

A novel tuning strategy for multivariable DMC, with a novel expression that computes the 

move suppression coefficients was presented by Shridhar and Cooper (1998). The application 

of easy to use and reliable tuning strategy was demonstrated both for constrained SISO and 

MIMO processes. The compact form for the analytical expression that computes the move 

suppression coefficients was derived as a function of a first order plus dead time (FOPDT) 

model approximation of the process dynamics. This tuning strategy was validated for 2 x 2 

and 3 x 3 distillation product quality control problem and proven to be getting good 

performance than old tuning. 
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Abou Jayab et al (2001) applied constrained model predictive control to distillation column. 

They used a simplified model predictive control algorithm using Linear Programming for 

control of industrial distillation column to solve problem without decomposition. Their 

approach involved very small size optimization problem and required very modest 

computational resources. The control algorithm eliminated the large cycling in the product 

composition. This resulted in a 2.5% increase in production rate, a 0.5% increase in product 

recovery and a significant increase in profit. 

Wojsznis et al (2003) presented the results of a heuristic approach for developing model 

predictive control tuning rules. The tuning has been applied and tested in easy-to-use MPC. 

Process modeling in this MPC uses normalized input/ output range. As a result there was no 

need for tuning outputs, a procedure known as adjusting equal concern error. Penalties on 

moves are set as a function of process dead time as the primary factor, with some correction 

from process gain. The default calculation delivers robust control, which tolerates up to triple 

increase in process static gain. If control is too aggressive, further on-line adjustment can be 

done by setpoint reference trajectory. Test results showed that this tuning was robust for 

process gain change; however, it was much less efficient in compensating for process dead-

time changes. It was found that dead-time mismatch is much better compensated with the 

model correction filter. Combining the three handles, i.e., penalties on moves, reference 

trajectory, and model filter, easy and intuitively understandable MPC tuning was achieved. 

The findings were illustrated by numerous MPC simulated tests. 

Qin and Badgwell (2003) presented excellent review on development of MPC. Their survey 

data show that the number of MPC applications has approximately doubled in 4 years from 

1995 to 1999. MPC applications showed a solid foundation in refining and petrochemicals, 

and significant penetration into a wide range of application areas from chemicals to food 

processing. The MPC technology landscape has changed dramatically in recent years, making 

it difficult for us to keep track of the swift progress in academic research and industrial 

applications. 
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Chapter-3 

PROCESS DESCRIPTION AND TRANSFER FUNCTION 
MODELS IDENTIFICATION 

The Crude distillation unit is the mother unit of any refinery. They are used to separate the 

crude oil into various fractions. These fractions can be products or feed stocks to the 

following processing units. Typically, the crude distillation system involves a main tower 

linked to several side strippers. 

3.1 PROCESS DESCRIPTION 

The desalted crude feedstock is preheated using recovered process heat. The feedstock then 

flows to a direct-fired crude charge heater. Then it is fed into the vertical distillation column 

just above the bottom, at pressures slightly above atmospheric and at temperatures ranging 

from 343.4 to 371.1° C (above these temperatures undesirable thermal cracking may occur). 

The crude oil fractionator does not produce products having a single boiling point, rather, it 

produces fractions having boiling ranges. All but the heaviest fractions flash into vapor. As 

the hot vapor rises in the tower, its temperature is reduced. Heavy fuel oil or asphalt residue 

is taken from the bottom. At successively higher points on the tower, the various major 

products including heavy gas oil, light gas oil, kerosene, naphtha, gasoline and uncondensed 

gases (which condense at lower temperatures) are drawn off. Then, side streams from certain 

trays are taken off to obtain the desired fractions. Products ranging from uncondensed fixed 

gases at the top to heavy gas oils at the bottom can be taken continuously from a fractionating 

tower. Steam is often used in towers to lower the vapor pressure and create a partial vacuum. 

The distillation process separates the major constituents of crude oil into so-called straight-

run products. Schematic diagram for process involved in atmospheric distillation of crude oil 

is shown below figure 3.1. 

Crude distillation towers are high capacity, side stream distillation columns consuming large 

amounts of energy in which any upset will propagate to downstream processing units 

disturbing the quality and quantity of final products. Hence, it is desirable to maintain crude 

distillation tower operation very close to steady state. For this reason, operators may attempt 

to control the tower with large safety margin between actual and specified end points. This 

conservative operation results in a loss of more valuable material into a lower valued stream, 
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Figure 3.1: Schematic diagram for process involved in atmospheric distillation of crude oil. 

and it thus conflicts with the company's profit objective. Side stream product quality is 

normally represented by a total boiling point (TBP) temperature curve or an ASTM 

distillation curve. For control purposes, a 90% TBP distilled point, or so-called 'end point' 

(EP) is usually chosen as the product specification and control variable of a side stream 

quality control loop. The 90% TBP point is the temperature at which 90% of a sample has 

distilled under heat. 

Schematic product quality diagram for a crude tower is shown in figure 3.2. Product quality 

control is characterized by strong interaction among the sidestream control loops. Thus, 

adjusting a sidestream withdrawal rate for the purpose of affecting a change in the sidestream 

EP can bring undesired changes in the other product qualities. This adjustment requires 

subsequent adjustments of the other sidestream flow rates. Since the operator often makes 

these changes sequentially, it can take considerable time to bring the tower to steady state 

after a process upset or a crude switch. Near steady state interaction tends to be one-way, 

with disturbances propagating mainly downward. Based on a simplified crude tower model 
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Figure 3.2: Diagram of product quality control scheme. 

that assumed perfect stream separation, it has been shown that the steady gain matrix for a 

crude tower has a triangular form indicative of one way interaction. The primary control 

objectives for a crude tower can be summarized as follows: 

• Maintain product quality on specification. 
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• Maximize the yield of every product by controlling the pumparounds to remove heat 

from the tower under the operating constraints and equipment limits. These 

constraints include tray flooding, minimum flow rate of pumparounds, and maximum 

heat duty of pumparounds. 

Product quality control is usually applied only to the side streams of a crude tower. The 

overhead distillate is normally fed to a stabilizer and a splitter to further process this stream to 

liquefied petroleum gas (LPG), light naphtha, and medium naphtha. It is not necessary to 

control the end point of the distillate stream. At the tower bottom, the crude residue has no 

end point specification. The naphtha side stream is treated further to make jet fuel, which is a 

valuable product. The flash point of the naphtha is related to its initial boiling point, and it is 

usually controlled by adjusting the overhead temperature of the crude tower. The cloud point 

of the light gas oil and pour point of the heavy gas oil are useful in estimating the relative 

amount of wax in these product streams, and they can be controlled by controlling the 

streams EP. Therefore, each side draw product stream must meet an EP specification. The EP 

of a sidestream is typically controlled by manipulating its own flow. 

3.2 TRANSFER FUNCTION MODELS IDENTIFICATION 

This model, which is used here, involves a large number of differential equations and 

algebraic equations. These equations, based on fundamental physical and thermodynamical 

principles, represent the time-dependent behaviour of the system. In control system analysis 

and design where complicated sets of subsystems must be analysed and tested, the use of a 

differential equation model is rather inconvenient and time consuming. To overcome this 

problem, transfer function approximations are used to design controllers. These controllers 

are then tested on the complete dynamic model. These transfer function models are taken 

from Leo Hsie and McAvoy (1991). As the system involves four products namely, naphtha, 

kerosene, light gas oil (LGO) and heavy gas oil (HGO) as controlled variables and their 

respective flows as manipulated variables, hence the control system is a 4 x 4 MIMO system 

and sixteen transfer functions required are given below. 

Transfer Functions: 

1.064e .4s 
g11 - 40.5s2 + 7.94s +1.0 
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0.627e-2.7s  
g21  48.0s2  +16.9s +1.0 

0.695e-1 8s 
g31 45.0s +1.0 

1.556e-6.66s  

g41 .= 46.1s2 +14.9s +1.0 

- 0.2806(-57.5s + 1)e 5.94s 
g12 182.7s2  + 27.7s +1.0 

0.441C-4  68s  

	

g22 - 30.2s2 	+14.1s+1.0 

0.649e-1.98s 
g32 

41.9s ± 1 .0 

1.556e-6  66s  
g42  - 36.1 s2  + 14.9s + 1.0 

- 0.1593(-98.7s +1)e-768s 
g13 - 173.0s2  +33.1s+1.0 

- (22.9s2  -1.39s + 0.04)  
g23 = 1539.5s3  +365s2  +34.9s +1.0 

0.541C3'84s  
g33 - 2.38s2 + 37.4s +1.0 

1.591  c6.84s 

	

g43 - 28.2s2 	+14.2s +1.0 

- (38.7s2  -6.48s+ 0.217)  
g14 -= 893.6s3  +243.5s2  +30.84s +1.0 

-(18.5s2  -0.338s + 0.066) 
g24 = 1260s3 

 +308.6s2  +31.58s +1.0 

- 0.0324(25.2s +1.0)e-i Os 

g34 19.1s2  + 8.88s +1.0 
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0.969(-4.31s +1.0)e-2 6s 
g44 = 27.6s2  +12.4s +1.0 

Process gain units are °C/ (kmol h). 

In transfer function gij  subscripts i and j correspondence to variables is given in table 3.1. 

Table 3.1: Correspondence of i and j to variables. 

Subscripts Variable 

i 

1 Naphtha flow 

2 Kerosene flow 

3 Light gas oil flow 

4 Heavy gas oil flow 

j 

1 Naphtha EP 

2 Kerosene EP 

3 Light gas oil EP 

4 Heavy gas oil EP 

3.3 CONSTRAINTS VARIABLES 

The constraints for the manipulated variables are summarized in table 3.2. The lower limits 

are set to avoid negative side draw rates. The upper limits are used for preventing dry out of 

the side draw trays. Draw rate is the rate of change of flow. QDMC controller takes these 

constraints into consideration and takes the control action without violating these constraints 

using Quadratic Programming. Where, this consideration is not there in case of standard 

DMC controller. The constraints in the table 3.2 are taken from Leo Hsie and McAvoy 

(1991). Negative sign on draw rate signifies down rate and positive sign for up rate. There are 

constraints on manipulated variables and manipulated rate variable and not for the controlled 

variables for product quality control of crude distillation tower. 
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Table 3.2: Constraints on the manipulated variables manipulated variable rates 

Variable 

High limit 
(draw: kmol/min) 

(draw rate: kmol/min2) 

Low limit 
(draw: kmol/min) 

(draw rate: kmol/min2) 

S1  draw 1.512 0 

S2 draw 1.512 0 

S3 draw 1.512 0 

S4 draw 1.512 0 

Si draw rate 0.00315 -0.00315 

S2 draw rate 0.00315 -0.00315 

S3 draw rate 0.00315 -0.00315 

S4 draw rate 0.00315 -0.00315 
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Chapter-4 

CONTROL ALGORITHM 

4.1 STANDARD DMC ALGORITHM 

Let a = [al, a2, a3 ....ad a represent the unit step response function of a dynamical system, 

i.e., the elements of a represent the change observed in the system output, at P, consecutive, 

equally spaced, discrete time instants after implementing a unit change in the input variable. 

Now, let x, represent the change in the input variable at time instant i. Initially, before the 

implementation of any control moves, let the predicted system output be Y°  = [Y°1, y02, Y°3 

T  where Y°, need not be equal to Y°J for i, j = 1, 2„P. 

Let an arbitrary sequence of m control moves be x = [xi, x2 	 Xm]T. It will cause the 

system to change from the initial Y°  to some new state Y. Linearity is assumed and principle 

of superposition is applied, the new state Y= [Y1, Y2. . .Yp] T  i given by the following 

equations: 

Y1  = Yi°  +aixi 

Y2 = Y2°  + a2xi +a1x2 

Ym  = 	+amx, + am _lx2  + 	+ al xM 

Ym+1 = Ym°  + am+ix +amx2 + 	 + a2x m  

Yp  = Yp°  +apx, +a p_1x2  + 	+ a 	x P-M+1 M 

This may be rewritten as 

y = Ax 

Where y = Y — Y°  is system output in deviation variable form and 
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al 	0 0 	 0 
a2 	a1 0 	 .0 

A= a 	a m 	M-1 aM-2 	 a1  

aM+1 am am-i 	 a2  

a _ P 	aP-1 	aP-2 	aP-M+1 

is a P x M matrix and is called the system's "dynamic matrix". 

Assuming that system dynamics are adequately represented by y = Ax, the control problem 

then becomes that of judiciously choosing, and implementing the sequence of control moves 
(xi, x2. . . xm) such that the system output is as close as possible to the desired value Y*. 

The DMC approach to the above stated control problem is outlined as given below; 

• In the absence of control moves, the system output is predicted to remain as (Y°1, Y°2, 
Y°3....Y°p) over the prediction horizon of P time intervals. However, the desired 

situation is Y, to be Y* for all i. The difference between the desired and currently 

predicted outputs (in the absence of control action) is termed E, the "error prediction 
vector", i.e., E = [ei, e2, 	, ep], with 

e, = Y* - Y, 

• Given E, if x is chosen such that, Ax = E holds exactly, the system output would be 
transformed from Y°  to Y*, since Y becomes Y°+ E, which by definition of E is Y*. 

• However, Ax = E usually contains an over determined set of equations (since M<P, 

usually), i.e., has fewer unknowns than equations, so that no unique solution exists. 

nevertheless vector x is determined to minimize the vector norm (120 

min (13 = [Ax - E] T  [Ax - E] 

• A control sequence x thus chosen minimizes the sum of squared deviations of the 

system output from the desired state over the P-interval, prediction horizon. 

• In practice, penalty against excessive control action is often incorporated into the 

optimization objective to reach min: 

min S = [Ax - E] T  y T  y[Ax - E] + x T  X T  ax 
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Thus for given A, the system model, E, information about the system state, y , weights on 

controlled variables, and X., move suppression coefficients represents the "control law" 

utilized by the DMC scheme. 

4.2 QUADRATIC DMC ALGORITHM 

The dynamic matrix control technique presented in the previous section is based on an 

unconstrained optimization of current and future control moves. The combination of a linear 

model and quadratic objective function lead to an analytical solution for the control moves. 

In practice, constraints on manipulated inputs (control moves) can be very important. 

Fortunately, dynamic matrix control is easily formulated to explicitly handle constraints by 

using Quadratic Programming (QP); the method is known as Quadratic Dynamic Matrix 

Control (QDMC). 

Key features of the QDMC algorithm include: 

• Linear step response model for the plant 

• Quadratic performance objective over a finite prediction horizon 

• Future plant output behaviour specified by trying to follow the setpoint as closely as 

possible subject to a move suppression term 

• Solution to Quadratic Programming problem gives the optimal inputs 

QP Solution of the DMC Equations (QDMC) 

Three types of process constraints are usually encountered: Manipulated variable constraints: 

valve saturation. Controlled variable constraints: overshoots in the controlled variables past 

allowable limits must be avoided. Associated variables constraints: key process variables 

which are not directly controlled but that must be kept within bounds. The controller must be 

able to predict future violations and prescribe moves that would keep these variables within 

bounds. Constraints on controlled variables can be expressed mathematically as a system of 

linear inequalities: 

Y min 	Y Ymax 

The matrix y contains dynamic information on the constraints. Also, in practice, limits on 

individual moves are usually needed: 
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X < X < X min — — max 

One can express the least-squares solution of the DMC equations as the following quadratic 

minimization problem: 

	

min S = 1 	 1 —[Ax - El yT y[Ax - El + — x T  Xx x 	2 	 2 
Subjecting this problem to the linear inequality constraints, the following QP problem results: 

Determine X, so as to 

min F = 1x T Hx - g x 
x  2 

Subjected to 

Ymm < Y  < Ymax 

Xmin < x< x. 

Where: 

H = ATyTyA + yTy 	(The QP Hessian matrix) 

And, 
g ATiryE  (The QP gradient vector) 

Solution by a QP algorithm at each sampling interval k produces an optimal set of moves x(k) 

which satisfies the constraints. Any commercially available QP algorithm could be used for 

solving the above problem. 

4.3 BASIC DESCRIPTION OF DMC 

At each time step, k, an optimization problem is solved by linear or quadratic programming 

(depend on nature of objective function and constraints). An objective function (usually 

quadratic) based on output predictions over a prediction horizon of P time steps is 

minimized by a selection of manipulated variable moves over a control horizon of M control 

moves. Although M moves are optimized, only the first move is implemented. After x(k) 

is implemented, the measurement at the next time step, yk+1 is obtained. A correction for 

model error is performed, since the measured output will, in general, not be equal to the 
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model predicted value. A new optimization problem is then solved, again, over a prediction 

horizon of P steps by adjusting M control moves. This approach is also known as receding 

horizon control. Block diagram for DMC is given in the following figure 4.1. 

d (k) 

Process 	► Y (k) 

• • 
Y*(k) Storage of past 

inputs 

Set 
point 

Control Law 
X (k 

4 

Model 

Figure 4.1: Block diagram for DMC controller. 
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Chapter-5 

TUNING OF DMC 

The adjustable parameters that affect closed loop performance of DMC include the prediction 

horizon, P; control horizon, M; sample time, T; controlled variable weights, y ; and move 

suppression coefficients, X . Practical limitations often restrict the availability of sample time, 

T, as a tuning parameter. Model horizon, N; is number of time instants required for the 

response of model to reach steady state. Model horizon is also not an appropriate tuning 

parameter since truncation of model horizon misrepresents the effect of past moves in the 

predicted output and leads to unpredictable closed loop performance. The choice of 

prediction horizon, P, is dependent on the sample time, T. Although a large P does not 

significantly improve performance, it does improve nominal stability of the closed loop. For 

this reason, P Should be selected such that it includes the steady state effect of all past 

computed manipulated input moves, i.e., it should be fixed as the open loop settling time of 

the process. Hence, P should not be used as the primary DMC tuning parameter. M is also not 

well suited as the primary DMC tuning parameter. The controlled variable weights, serve a 

dual purpose in multivariable DMC. These weights can be appropriately chosen by the user 

to scale measurements of the R number of measured outputs to comparable units. Also, it is 

possible to achieve tighter control of a particular measured output by selectively increasing 

the relative weight of the corresponding least square residual. Hence, controlled variable 

weights are usually specified by the user for a certain application and should not be employed 

as the primary tuning parameters for multivariable DMC. For a control horizon (M) of 1, the 

set point step response is sluggish and move suppression coefficients, greater than 0 will only 

further slow the process response. With M > 1, the lack of move suppression results in 

aggressive control effort and a significantly under damped measured output response. An 

intermediate response can be achieved by an appropriate choice of suppression coefficient. 

However, further increasing suppression coefficient can lead to an undesirable sluggish 

response for most applications. Consequently, suppression coefficient is a continuous 

parameter that has a significant impact on closed loop performance. Furthermore, its choice is 

critical to the performance achieved by DMC. Therefore, the move suppression coefficients 

are the best suited for primary multivariable DMC tuning parameters. 
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5.1 OLD TUNING GUIDELINES FOR TUNING DMC [Cutler and Ramaker (1980)] 

• The sampling time should be chosen as small as possible based on practical 

limitations. (0.1 i Or 0.5 0 whichever is smaller). Where i and 0 are the time 

constant and dead time of system. 

• The sampling period T and prediction horizon P should be chosen so that PT= Ts  

where Ts is the open loop settling time. This choice ensures that the model reflects the 

full effect of a change in an input variable over time required to reach steady state. 

• As control horizon increases, the DMC controller tends to become more aggressive 

from 2 to 6, beyond 6, there is no significant effect of control horizon on DMC 

performance. 

• The output variables to be weighted individually, with the most important variables 

having the largest weights. 

• Input variables to be weighted according to their relative importance, these provide 

convenient tuning parameters because increasing the value of move suppression 

coefficients tends to make the DMC controller more conservative by reducing the 

magnitude of input moves. We have to follow trial error procedure in selecting move 

suppression coefficients. 

5.2 NOVEL TUNING STRATEGY 

Novel tuning strategy is proposed by Shridhar and Cooper (1998). Its step wise 

implementation is as follows: 

• Approximate the process dynamics of all manipulated input-measured output pairs 

with first order plus dead time (FOPDT) models: 

y (s) = K 
su ( ) 	T S + 1 

(i =1,2, 	S ; j =1,2,....R) 

• Select the sample time as close as possible to: 

T = 0.1tii  Or T =0.56,ii  whichever is smaller (i = 1,2,...., S; j = 1,2, 	, R) 
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• Compute the prediction horizon, P, and the model horizon, N, as the process settling 

time in samples (rounded to the next integer): 

	

5t; 	
u  

. 	 0 
P = N = 	T + k..) where k;. = T + 1) (i = 1,2,...., S; j = ,2,...., R) 

• Select the control horizon, M, as an integer (usually in the range 1 to 6). 

• Select the controlled variable weights, to scale measurements to similar magnitudes. 

• Compute the move suppression coefficients 

Mii[y2K2(13 —k, — 2-L- +2 (M-11 
= 	

(i =1,2,....,S) 
J.1  	2 T 	2 

Where C, is the condition number of i th  diagonal matrix. 

An approximation of the multivariable DMC system matrix, ( ATyTyA ), is obtained using a 

FOPDT model approximation of the process. This (M. S x M. S) matrix is comprised of S2  

matrix blocks, each of dimensions (M x M). Interestingly, all the diagonal blocks are Hankel 

matrices (Hankel matrices are square matrices with constant skew-diagonals) with the 

additional feature that the elements of each row decrease from left to right by a constant 

quantity. Hence, the i th diagonal block in ATyTyA has the form: 

i th Diagonal Block in ATyTyA 

Where 

R,=E.4K,;  
J=1 

0, 	13  —ai 	13;  

13 — ai 	13;  — 2a; 	131 
13;  —2a; 	3ai 	13;  

3 T P—k, ---L+2 
2 T 

and 

—2a; 	 

— 3ai 	 
—4a; 	 

J=1 ce  = 
2 

Condition number is then obtained as the ratio of maximum to minimum Eigen values of 
. diagonal block. 
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Chapter-6 

RESULTS AND DISCUSSION 

The transfer function models and operating conditions (i.e. constraints on manipulated and 

controlled variables) given in Chapter-3 are used after minor modification. The models given 

in chapter-3 are having gain units of °C / (kmol h). Those units are converted to °C / (kmol 

min) to get the simulation time in minute. By using these models and operating conditions, a 

Quadratic Dynamic Matrix Controller is designed for the atmospheric crude distillation 

column sidestream product quality control. Novel tuning strategy proposed by Shridhar and 

Cooper (1998) is used in calculating tuning parameters for DMC. This tuning strategy 

requires models in the form of First Order Plus Dead Time (FOPDT) transfer functions. 

Models given in chapter-3 have been approximated to FOPDT by two methods, half rule and 

Process reaction curve fitting using sigma plot. The FOPDT models from two methods are 

compared using sum of square of errors in response to unit step. Error is in comparison to 

models given by Leo Hsie and McAvoy (1991). Finally process reaction curve fitting 

approximations are chosen as they give lesser sum of square errors as reported in table Al in 

appendix-A. FOPDT approximate models by both techniques are given in Appendix-A. 

Proportional integral (PI) controller and QDMC with old tuning guidelines are also 

redesigned for this product quality control. Substantial improvement in the performance of 

QDMC with Novel tuning strategy is observed when compared with conventional PI 

controller and QDMC with old tuning strategy for step change in setpoints. 

6.1 RELATIVE GAIN ARRAY 

As a first step of a multiloop control system design paring of controlled variable with which 

manipulated variable is performed. The relative gain array (RGA) has been widely accepted 

as a useful tool to solve this pairing problem. From the definition of the relative gain, it is 

clear that the steady state interaction is minimized for those pairs of variables with relative 

gains are close to unity. The process transfer functions that relate the sidestream flow rates 

(S) to the sidestream end points of the simulated tower are given in Chapter-3. The steady 

state gain matrix of the tower's product quality control system as obtained from the transfer 

functions as is given below form which we can obtain Relative Gain Array for product 
quality control of crude distillation column. 
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1.064 —0.2806 —0.1593 —0.217 
0.627 0.441 —0.04 —0.066 

P(0) = 
0.695 0.649 0.541 —0.0324 
1.556 1.556 1.591 0.969 

The RGA is computed by multiplying the corresponding elements in the P (0) and (P-1(0)) T  

matrices to give 

0.769 	0.279 — 0.0422 — 0.0055 
RGA 0.151 0.776 0.116 —0.0437 

—0.242 0.130 1.023 0.0888 
0.322 — 0.185 — 0.0968 	0.960 

This RGA indicates that a sidestream flow rate should be used to control its own product end 

point. 

6.2 REDESIGN OF PI CONTROLLER 

Luyben proposed the biggest log modulus tuning (BLT) method for the design of multiloop 

PID control systems. The method is an extension of the SISO Nyquist stability criterion 

method. Time domain simulations were carried out on the full non-linear model by Leo Hsie 

and McAvoy [1991] to test the performance of the BLT settings. The transient responses of 

the sidestream end point to a + 10 °F step change of the setpoint in the naphtha sidestream 

were presented. They got unsatisfactory performance with BLT factor four for all control 

loops. Later they tried with different BLT factor for each loop. By trial and error and dynamic 

simulation, they determined controller settings given in table-A2 with somewhat satisfactory 

performance. These detuned Z-N settings are used in redesigning conventional PI controller 

for product quality control. 

Time domain simulations are carried out on the full non-linear model to test the performance 

of conventional PI controller. MATLAB Simulink is used in simulating results for multiloop 

PI controller. Simulink diagram is shown in figure 6.1 for PI controller and in figure 6.2 for 

QDMC controller. The transient responses of the sidestream end point to a +10 °C step 

change of the set point in the naphtha and kerosene sidestream are presented in Figure 6.3 to 

6.10. From figure 6.3 to 6.10, settling times and peak responses for each EP are tabulated in 

table 6.1. This simulation shows that the conventional PI controller give stable but somewhat 

unsatisfactory responses. The settings for the PI controller of the naphtha EP loop are tight, 
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Figure 6.3: Response of Naphtha EP to +10 °C step change in Naphtha EP setpoint using PI 
controller. 

Simulation Time (min) 

Figure 6.4: Response of Kerosene EP to +10 °C step change in Naphtha EP setpoint using PI 
controller. 
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Figure 6.5: Response of Light gas oil EP to +10 °C step change in Naphtha EP setpoint using 
PI controller. 
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Figure 6.6: Response of Heavy gas oil EP to +10 °C step change in Naphtha EP setpoint 
using PI controller. 
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Figure 6.7: Response of Naphtha EP to +10 °C step change in Kerosene EP setpoint using PI 
controller. 
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Figure 6.8: Response of Kerosene EP to +10 °C step change in Kerosene EP setpoint using 
PI controller 
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Figure 6.9: Response of Light gas oil EP to +10 °C step change in Kerosene EP setpoint 
using PI controller. 
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Figure 10: Response of Heavy gas oil EP to +10 °C step change in Kerosene EP setpoint 
using PI controller. 
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which causes undesired overshoot and oscillation in this loop. Furthermore, the oscillation is 

propagated down to all other loops. However, the settings for the other three PI controllers 

resulted in transient responses that approached steady state very slowly. The reset times of 

these three controllers can be decreased to improve the sluggish responses. From the results 

given in figure 6.3 to figure-6.10, it can be said that, there is two-way interaction among the 

control loops. Though interaction is more from naphtha loop to heavy gas oil loop to the 

downwards, there is significant interaction in the upward direction also. This interaction is 

more between the upper loops. A substantial reduction in control action of loop 1 and 2 is 

necessary to prevent the control system from being overly affected by dynamic interaction. 

Therefore, there is margin for improving the performance achieved by conventional PI 
controller with proper tuning. 

Table 6.1: Settling times and peak amplitudes of conventional PI controller for product 

quality control of crude tower. 

Response 

Step change in Naphtha EP setpoint Step change in Kerosene EP setpoint 
Settling time (min) Peak amplitude Settling time(min) Peak amplitude 

EP-1 170 10.4 250 -0.9 

EP-2 140 4.4 160 10.6 

EP-3 200 0.6 255 7 

EP-4 250 -3.5 175 -3.5 

6.3 REDESIGN OF QDMC WITH OLD TUNING GUIDELINES 

Design of QDMC requires constraints on variables and tuning parameters. The upper and 

lower boundaries of all variables are specified in chapter-3. Several parameters of the QDMC 

controller require tuning. These tuning parameters include: sample time, input horizon, output 

horizon, control move suppression factors, output weighting factors. Literature (cutler) 

presents guidelines for selecting DMC parameters for an SISO system. These guidelines can 

be applied to MIMO systems. These tuning guidelines are followed in redesigning QDMC. 

The tuning parameters obtained are shown in Appendix-C. 

The simulated EP responses for QDMC are shown in Figure 6.11 to 6.14 for a 10 °C step 

change in the naphtha EP and Figure 6.15 to 6.18 for a 10 °C step change in the kerosene 
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Figure 6.11: Response of Naphtha EP to +10 °C step change in Naphtha EP setpoint using 
QDMC with old tuning guidelines. 
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Figure 6.12: Response of Kerosene EP to +10 °C step change in Naphtha EP setpoint using 
QDMC with old tuning guidelines. 
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Figure 6.13: Response of Light gas oil EP to +10 °C step change in Naphtha EP setpoint 

using QDMC with old tuning guidelines. 
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Figure 6.14: Response of Heavy gas oil EP to +10 °C step change in Naphtha EP setpoint 

using QDMC with old tuning guidelines. 
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Figure 6.15: Response of Naphtha EP to +10 °C step change in Kerosene EP setpoint using 

QDMC with old tuning guidelines. 
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Figure 6.16: Response of Kerosene EP to +10 °C step change in Kerosene EP setpoint using 
QDMC with old tuning guidelines. 
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Figure 6.17: Response of Light gas oil EP to +10 °C step change in Kerosene EP setpoint 

using QDMC with old tuning guidelines. 
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Figure 6.18: Response of Heavy gas oil EP to +10 °C step change in Kerosene EP setpoint 

using QDMC with old tuning guidelines. 
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EP. Significant two-way interaction is there in this case also. A comparison of Figure 6.11 to 

6.18 with Figure 6.3 to 6.10 shows the following. QDMC control brings the EPs to their new 

setpoints faster than the conventional PI controller. There is no overshoot in Naphtha control 

loop but there is overshoot in case of conventional PI controller. From peak responses given 

in table 6.1 and table 6.2, one can say that interaction is more with conventional controller 

than with QDMC. It also can be concluded that IAE, ISE and ITAE are more in case 

conventional PI controller than QDMC with old tuning guidelines from their figures. 

Table 6.2: Settling times and peak amplitudes of QDMC with old tuning guidelines for 
product quality control of crude tower. 

Response 

Step change in Naphtha EP setpoint Step change in Kerosene EP setpoint 

Settling time (min) Peak amplitude Settling time (min) Peak amplitude 

EP-1 90 10 90 1.4 

EP-2 75 0.8 120 10 

EP-3 100 0.2 75 1.1 

EP-4 50 -1 105 -0.8 

6.4 DESIGN OF QDMC WITH NOVEL TUNING STRATEGY 

Now Novel tuning strategy proposed by Shridhar and Cooper (1998) is used in calculating 

tuning parameters for DMC instead of old tuning guidelines. This tuning strategy requires 

models of form First Order Plus Dead Time (FOPDT). They have been approximated to 

FOPDT by two methods, half rule and Process reaction curve fitting using Sigma Plot. 

Finally process reaction curve fitting approximations have been selected as they have lesser 

sum of square errors as given in Table Al. Approximated FOPDT models by process reaction 

curve fitting with Sigma Plot are given in Appendix-A. Calculation of tuning parameters is 

given in Appendix-B. 

The simulated EP responses for QDMC are shown in Figure 6.19 to 6.22 for a 10 °C step 

change in the naphtha EP and Figure 23 to 26 for a 10 °C step change in the kerosene EP. 

Settling times and peak responses for each EP are tabulated in Table 6.3 from figure 6.19 to 

6.26. Interaction among the control loops is two-way and more in case of this controller than 

conventional PI and QDMC with old tuning guidelines. A comparison of Figure 6.11 to 6.18 
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Figure 6.19: Response of Naphtha EP to +10 °C step change in Naphtha EP setpoint using 

QDMC with Novel tuning strategy. 
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Figure 6.20: Response of Kerosene EP to +10 °C step change in Naphtha EP setpoint using 
QDMC with Novel tuning strategy. 
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Figure 6.21: Response of Light gas oil EP to +10 °C step change in Naphtha EP setpoint 
using QDMC with Novel tuning strategy. 
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Figure 6.22: Response of Heavy gas oil to +10 °C step change in Naphtha EP setpoint using 
QDMC with Novel tuning strategy. 
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Figure 6.23: Response of Naphtha EP to +10 °C step change in Kerosene EP setpoint using 
QDMC with Novel tuning strategy. 
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Figure 6.24: Response of Kerosene EP to +10 °C step change in Kerosene EP setpoint using 
QDMC with Novel tuning strategy. 
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Figure 6.25: Response of Light gas oil EP to +10 °C step change in Kerosene EP setpoint 

using QDMC with Novel tuning strategy. 
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with Figure 6.19 to 6.26 shows the following. Naphtha EP has taken 90 min to reach steady 

state for 10 C step change in Naphtha EP setpoint where it is 65 min in the present case. IAE, 

ISE and ITAE are also more in case of QDMC with old tuning guidelines than the present 

case. But there is negligible offset in present case. Similarly, there are substantial 

improvements in settling times in the present case with expense of interaction. Settling times 

and peak amplitudes are tabulated in Table 6.3. Though ITAE is less for all responses in the 

present case, ISE and IAE are more for some responses. In case of responses of Naphtha and 

Light gas oil to step change in kerosene EP, QDMC with old tuning guidelines is given better 

response than present case with less peak amplitude and small IAE, ISE and ITAEs. Finally 

overall performance of QDMC with novel tuning strategy is better than that of QDMC with 

old tuning guidelines. 

Table 6.3: Settling times and peak amplitudes for QDMC with Novel tuning strategy for 
product quality control. 

Response 

Step change in Naphtha EP setpoint Step change in Kerosene EP setpoint 

Settling time (min) Peak amplitude Settling time (min) Peak amplitude 

EP-1 65 9.9 90 2.3 

EP-2 60 1.7 120 10 

EP-3 90 0.53 75 1.2 

EP-4 40 -0.9 105 -1 

43 



Chapter-7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 CONCLUSIONS 

> There exists significant two-way interaction among the control loops of the crude 

distillation column treated. This interaction is more between the upper loops. 

➢ This interaction is one way at steady state i.e. down the column. 

> Conventional PI controller gives unsatisfactory performance for systems having 

strong interactions like crude distillation columns. They should be detuned properly 

for satisfactory performance. 

> QDMC gives better performance than traditional PI controller for control problems 

having strong interactions like crude distillation columns. 

➢ Performance of QDMC is purely depending on tuning parameters. 

➢ QDMC with Novel tuning strategy is giving better performance than QDMC with old 

tuning strategy. 

7.2 RECOMMENDATIONS 

> Yield of every product can be maximized by controlling the pumparounds to remove 

heat from the tower under the operating constraints and equipment limits. These 

constraints include tray flooding, minimum flow rate of pumparounds, and maximum 

heat duty of pumparounds. 

➢ The effect of feed rate on product quality has not been considered. The feed rate can 

be treated as a disturbance to product quality control. 

➢ These will require more modelling in addition to present available models. 

➢ Interaction can be reduced by using PI controller with decoupers, so that performance 

of conventional PI controller can be improved. 
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APPENDIX-A 

APPROXIMATION OF PROCESS TRANSFER FUNCTION MODELS GIVEN IN 

CHAPTER-3 TO FOPDT MODELS 

Half Rule Approximation [Skogestad (2003)]: 

1.064e— 0'4s 
g11 = 

0.627e-4'505s 
g21 = 	  15.08s +1 

0.695e-1'8s 
g31 

1.556e-8'85s 
g41 = 

 

12.71s +1 

g12 

g22 

g32 

g42 

g13 

— 0.229e-68'85s 

22.28s +1 

0.441e-5'99s  
12.78s +1 

0.649e-1'98s 

41.9s +1 

1.556e-8'18s 

13.37s +1 

— 0.1593e-109'63s 

29.85s +1 

0.049e-48.63s 
g23 21s +1 

0.541e-3'87s 
g33 	  37.37s +1 

1.519e-8'03s 
g43 = 	 13s +1 

7.94s +1 

45s +1 
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- 0.265e-39'3" 
g14 	  21.41s+1 

—0.066e-18'04s 
g24 

—0.1568e-1s  
g34 = 3.66s+1 

0.969e-8'36s 
g44 = 	 10.95s+1 

Process Reaction Curve Approximation: 

1.1196e-1'87s 
gig = 	 8.739s+1 

0.6512e 2.99s 
g21 = 18.8s+1 

0.695e-1.8s 
g31 = 45s+1 

1.752e-4'46s 
g41 

—0.2677e-32'2s 
g12 = 

0.4683e-3'41s 
g22 18.41s +1 

0.649e-1'98s 
g32 = 41.9s+1 

1.67e-4'3s 
g42 	 21.35s+1 

—0.1558e-46'9s 
g13 = 

18.66s+1 

23.42s +1 

18.93s+1 

25.55s+1 
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-0.0476e-24.7S  
g23 - 	  24.08s +1 

0.5425e-2'89s  
g33 = 	 38.69s +1 

1.623e-4'2s 
g43 - 20.56s+1 

—0.2614e-25'7s  
g14 = 

 

19.04s+1 

—0.0802e-16'7s 
g24 - 	  18.75s+1 

-0.034C-MS  
g34 - 	 1.39s+1 

' g44  = 1.092e-4'73s 

19.63s+1 
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s•61-11k..a. 

Table Al: Sum of Square Errors in approximating process transfer function models to 
FOPDT models. 

Half Rule Process Reaction Curve 

gi 1 0.8332 0.4701 

g21 0.0857 0.0398 
g31 - - 
g41 7.8556 0.9866 

g12 14.189 0.6283 

g22 0.1573 0.0412 

g32 - - 

g42 4.7301 0.8339 

g13 23.390 2.3158 

g23 1.1714 0.0767 

g33 0.0028 0.0019 

g43 3.5474 0.7954 
g14 5.1810 1.2531 # 

g24 0.1225 0.0996 1 
g34 0.6210 0.0378 '. 	. 

g44 3.6502 0.5785 ....„ 
---- 

ltraztAIP- 
Table: A2 the detuned Z-N settings for product quality control system (Leo Hsie-and Thomas 

J. McAvoy [1991]). 

Loop no Kc ii 

1 0.52 14.8 

2 1.16 19.4 

3 0.73 12.5 

4 0.15 22.4 
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APPENDIX-B 

CALCULATION OF TUNING PARAMETERS USING NOVEL TUNING 
STRATEGY 

Table Bl: Calculation of sampling time and Prediction horizon 

0.1 tij 
(h) 

0.5 0 u  
(h) 

Max 
(h) 

Prediction Horizon 

gii  0.8739 0.9350 0.9350 10.35 228.82 

g12 1.8930 16.100 16.100 162.0 635.25 
gn  2.5550 23.450 23.450 235.5 874.25 
gi4  1.9040 12.850 12.850 129.5 605.50 
g21 1.8800 1.4950 1.8800 15.95 485.90 
g22 1.8410 1.7050 1.8410 18.05 478.30 

g23 2.4080 12.350 12.350 124.7 726.70 

g24 1.8700 8.3500 8.3500 84.50 553.25 
g31 4.5000 0.9000 4.5000 10.00 1135.0 

g32 4.1900 0.9900 4.1900 10.90 1058.4 
g33  3.8690 1.4450 3.8690 15.45 982.70 
g34 0.1390 0.2000 0.2000 3.000 57.750 
gal 2.3420 2.2300 2.3420 23.30 608.80 
ga2 2.1350 2.1500 2.1500 22.50 556.25 
g43 2.0560 2.1000 2.1000 22.00 536.00 
g44 1.9630 2.3650 2.3650 24.65 515.40 

Diagonal blocks of crude tower Dynamic matrix: 

34946 34933 34920 34907 
34933 34920 34907 34894 [1] = 
34920 34907 34894 34881 
34907 34894 34881 34868 
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59086 59032 58978 58924 
59032 58978 58924 58870 

[2] = 
58978 58924 58870 58816 
58924 58870 58816 58762 

88900 88870 88840 88810 
88870 88840 88810 88780 

[3] = 88840 88810 88780 88750 
88810 88780 88750 88720 

351149 350965 350781 350597 
350965 350781 350597 350413 [4] = 
350781 350597 350413 350229 
350597 350413 350229 350045 

Table B2: Calculation of condition number for each loop. 

Diagonal 
matrix no: 

Eigen values 

Condition number (CO min max 

1 3.5 139600 39885 

2 4 235700 58925 

3 3.7 355240 96011 

4 4 1402400 350600 

From the above Table Bl, Table B2 and tuning formulas given in chapter-5: 

Sampling Time (T) = 12 min 

Prediction Horizon (P) = 1135 

Control Horizon (M) = 6 

Controlled Variable Weights = [1 1 1 1] 

Move Suppression Coefficients = [0.956 1.405 1.312 0.749] 
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APPENDIX-C 

CALCULATION OF TUNING PARAMETERS OF DMC USING OLD TUNING 

GUIDELINES 

Sampling time (T) = 12 min (same as novel tuning) 

Table Cl: Open loop settling times for each system transfer functions. 

system Settling time (min) system Settling time (min) 

gii 2300 g31 10666 

g12 5952 g32 9950 

g13 7800 g33 9000 

g14 6333 g34 1950 

g21 3533 g41  3216 

g22 3150 g42 3400 

g23 6933 g43 3350 

g24 5950 g44 2733 

Form the above Table Cl: 

Maximum settling time (Ts)= 10666 min (for g31) 

Prediction horizon (P) = 10666/12 = 889 

Control Horizon (M) = 6 

Weights on controlled variables = [1 1 1 1] 

Weights on manipulated variables = [1.5 2.4 3.2 1.5] 
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APPENDIX-D 

MATLAB PROGRAM FOR PLANT MODEL OF CRUDE DISTILLATION TOWER 
num11=52.14; 

den11=[145800, 476.4, 1]; 

gll=tf(numll,den11,'iodelay',24); 

num21=30.72; 

den21=[172800, 1014, 1]; 

g21=tf(num21,den21,'iodelay',162); 

num31=34.08; 

den31=[2700, 1]; 

g31=tf(num31,den31,1odelay',108); 

num41=76.2; 

den41=[165960, 894, 1]; 

g41=tf(num41,den41,1odelay',399.6); 

num12=-13.741-3450, 1]; 

den12=[657720, 1662, 1]; 

gl2=tf(num12,den12,'iodelay',356.4); 

num22=21.6; 

den22=[108720, 846, 1]; 

g22=tf(num22,den22,'iodelay',280.8); 

num32=31.8; 

den32=[2514, 1]; 

g32=tf(num32,den32,'iodelay',118.8); 

.num42=76.2; 

den42=[129960, 894, 1]; 

g42=tf(num42,den42,/iodelay',399.6); 

54 



num13=-7.8*[-5922, 1]; 

den13 = [622800, 1986, 1]; 

g13 = tf(num13,den13,'iodelay',460.8); 

num23=[-82440, 83.4, -0.04]; 

den23=[332532000, 1314000, 2094, 1]; 

g23=tf(num23,den23); 

num33=26.52; 

den33=[8568, 2244, 1]; 

g33=tf(num33,den33,'iodelay',230.4); 

num43=74.4; 

den43=[101520, 852, 1]; 

g43=tf(num43,den43,'iodelay',410.4); 

num14=[-139320, 388.8, -0.2171; 

den14=[193017600, 876600, 1850.4, 1]; 

g14=tf(num14,den14); 

num24=[-66600, 20.28, -0.0661; 

den24=[272160000, 1110960, 1894.8, 1]; 

g24=tf(num24,den24); 

num34=-1.59*[1512, 1]; 

den34=[68760, 532.8, 1]; 

g34=tf(num34,den34,'iodelay',60); 

num44=47.46*[-258.6, 1]; 

den44=[99360, 744, 1]; 

g44=tf(num44,den44,1iodelay',156); 

model=[gll g21 g31 g41;g12 g22 g32 g42;g13 g23 g33 g43;g14 g24 g34 g44] 
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