
WASTE WATER MINIMIZATION USING WATER PINCH TECHNOLOGY

A DISSERTATION

Submitted in partial fulfilment of the requirements for the award of the degree of MASTER OF TECHNOLOGY in CHEMICAL ENGINEERING (With Specialization in Industrial Pollution Abatement)

By

DAKWALA MIHIR DUSHYANT

DEPARTMENT OF CHEMICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE -247 667 (INDIA) JUNE, 2008 I hereby declare that the report which is being presented in this dissertation work "WASTE WATER MINIMIZATION USING WATER PINCH TECHNOLOGY" in partial fulfillment of the requirements for the award of the degree of Master of Technology in Chemical Engineering, specialization in Industrial Pollution Abatement submitted in Chemical Engineering Deptt., Indian Institute of Technology, Roorkee is an authentic record of my own work carried out during a period from July 2007 to June 2008 under the supervision of Dr. Bikash Mohanty, Professor, Chemical Engineering Dept. Indian Institute of Technology, Roorkee.

I have not submitted the matter embodied in this report for the award of any other degree or diploma.

DATE: JUNE 22, 2008

M.D.Dakwab (DAKWALA MIHIR DUSHYANT)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

ah dlohan Dr. BIKASH MOHANTY)

Professor Chemical Engg. Deptt. Indian Institute of Technology-Roorkee Roorkee- 247667

i

If one is more concerned in human beings than in econometrics, this acknowledgment is doubtlessly more exciting to read than the remaining chapters of this thesis as it enlighten (a little bit) more about the interpersonal interaction of me and the way in which I experiences the world.

This thesis represents not only my work at the keyboard; it is a milestone of two year of work at IIT Roorkee, specifically within the department of chemical engineering and heat transfer research laboratory (HTRL). My experience at IITR has been nothing short of amazing.

Since my first day on July 26, 2006 I have felt at home at **IITR**. I have been given unique opportunities and taken advantage of them. This includes working at the **HTRL** for over one and half years. This thesis has been a brain stimulating experience for me. The knowledge gain by me during M.Tech course will stand me in good stead in future.

First and foremost I wish to thank my advisor and great philosopher, professor **Bikash Mohanty.** He has been supportive since the days I began working on the dissertation work. I remember he used to say "*There is no short cut for hard work and those who follow this golden rule always grow in their life.*" He has been a significant presence in my life. His ability to probe beneath the text is a true gift, and his insights have strengthened this study significantly. I will always be thankful for his wisdom, knowledge, and deep concern for me. It has been an honor to work with him. He helped me come up with the thesis topic and guided me over almost one and half year of development. And during the most difficult times when writing research papers and this thesis, he gave me the moral support and precious guidance.

I am deeply indebted to **Dr. R. Bhargava** whose help, stimulating suggestions and encouragement helped me in all the time of writing research papers and this thesis.

My special thanks to Dr I.D. Mall and Dr. C.B. Majumdar for their precious supports and encouragement all the way throughout my M.TECH specialization course in Industrial Pollution Abatement. I am also thankful to **Dr Shri Chand**, Head chemical engineering department for providing me various facilities during two year course.

I wish to acknowledge the generous financial support from the **government of INDIA**, in the form of scholarships from the **MHRD**.

Since the dissertation work has been based on real industrial problem, I would like to convey my sincere thanks to Mr. P B Mehta and Mr Amit Shah for allowing me to report their plant data in my dissertation work. I am highly thankful to Mr P.L.Safaya, Mr S.Ganjoo, Mr. D.Mishra, Mr Sudhir of M/S Ashai India Glass Limited (Float glass unit-Roorkee) to provide me an opportunity to visit their plant and permit me to take necessary data for this thesis work. These practical data and real word problems makes this dissertation work as priceless. Furthermore, Mr. Kishore Vyas always had been a constant source of encouragement during my job tenure.

The burden of writing this thesis was lessened substantially by the support and humor of my friends. I really have to thank **Gopal**, **Ganesh**, **Saurabh**, **Tapan**, **Joyal**, **Dankesh**, **Chirag**, **Rajesh**, **Keshav**, **Mohit**, **Srinivas**, **Padmini** and **Gatha** for their prayers and unbroken relationships with me. My special thanks to **Bidya and Divya** for their unremitting supports all through my working HTRL.

To my **Parents, brother and Priti**, all I can say is it would take another thesis to express my deep love for you. Your patience, worship and encouragement have upheld me, particularly in those many months in which I spent more time with my computer than with you.

Finally, I owe my lifelong thanks to my living Lord. He gave me life, health, motivation, and all the means necessary to live and work. Sometimes it is difficult to see how writing a thesis like this contributes to His coming kingdom. You have made my life more bountiful. May your name be exalted, honored, and glorified.

Always remember "We are soldiers, We fight where we are told, and we will win where we fight."

DAKWALA MIHIR DUSHYANT

22nd June-2008

ABSTRACT

Water is a vital component for many industrial operations, and is utilized for a wide range of purposes in industrial processes. The rapid growth in population, coupled with industrialization and urbanization, resulted in an increased demand for water, leading to serious consequences on the environment. The cost and scarcity of water beside stricter regulations on industrial effluents have become a significant factor in commodity material manufacturing. As water supply and treatment costs increase, there will be increasing pressure on the chemical process industries to reduce water consumption.

There are many types of technologies/methodologies available to save fresh water and reduce waste water generation. Water Pinch is one of the most important technologies for wastewater minimization, treats the water utilization processes of an industry as an organic whole, and considers how to allocate the water quantity and quality to each water using unit, so that water reuse is maximized within the system and simultaneously the wastewater generation is minimized.

In this dissertation, sincere efforts had been put to demonstrate, the potential of water pinch technology at real world of industries. Different case studies are discussed in detail. All cases had been considered as retrofitting problems and had been solved very meticulously considering existing piping and plant layouts, present cost of power and recent market price of different sizes of pipes.

Two industries mainly targeted due to accessibility of data: (1) Starch Industry from Gujarat and (2) Glass Industry from Uttarakhand. Four different cases of starch industry had been solved which are based on conventional water pinch problems. The case of glass industry is based on special case of water conservation through energy management.

The first problem is viewed as a single contaminant problem and all the three modes of water integration i.e. *reuse, regeneration-reuse, regeneration –recycling* are demonstrated. The DM water consumption is 50 tph before modification and after modification using water pinch it reduces to 31.9 tph (*reuse*), 21.6 tph (*regeneration-reuse*) and 12 tph (*regeneration-recycling*). The results obtained from the present analysis are compared well with the results obtained from well established software ASPEN WATER which uses mathematical programming approach based on MINLP. The cost benefit analysis illustrates that the profit obtained in the case of reuse is 22,01,914 INR per year and the pay back period for the *regeneration-reuse* and *regeneration –recycling* are 2.5 and 2.3 month.

The second problem is also viewed as a single contaminant problem and all the three modes of water integration i.e. *reuse, regeneration-reuse, regeneration –recycling* are applied. The DM water consumption is 69 tph before modification and after modification using water pinch it reduces to 59.8 tph (*reuse*), 34.5 tph (*regeneration-reuse*) and 30 tph (*regeneration-recycling*). The cost benefit analysis illustrates that the profit obtained in the case of reuse is 17,63,914 INR per year and the pay back period for the *regeneration-reuse* and *regeneration –recycling* are 1.8 and 1.1 month.

The third problem is tackled as a single contaminant problem which involves ten operations and only approach of water *reuse* is applied. The DM water consumption is 337 tph before modification and after modification using water pinch it reduces to 221.5 tph *(reuse)*. The cost benefit analysis illustrates that the profit obtained in the case of reuse is 5,43,120 INR per year.

The fourth problem is identified as a multi contaminant, *reuse* problem. The fresh water consumption and DM water consumption are 100 tph and 51 tph respectively before modification and the network is dealing with three major contaminant such as total organic content (TOC), total dissolved solids (TDS) and total suspended solids (TSS). The improved water using network designed for the present work consumed less DM & fresh water. The reductions are of the tune of 28% and 64.38 % for DM and fresh water respectively. Due to alteration in piping, there will be a saving of 4,06,026 INR per year, which will be utilized for development of efficient environment policy for the company.

v

The concept of water-pinch coupled with thermal analysis is applied on cooling water networks of different sections, namely, furnace melting, neck- refining & spout and tin bath, of a Glass industry of India commissioned in the year 2006. The analysis takes in to account mixing of multiple intermediate cooling water streams to satisfy the constraints of the network. Different proposal had been worked out and different strategies had been proposed for summer and winter season. The results are very encouraging and there will be huge benefit in terms of power and fresh water consumption, if the proposed modified networks have been put into real operations. Two different operational strategies have been proposed to achieve maximum *reuse* of water. The maximum projected savings will be of 11,55,978 INR for summer season and 14,16,846 INR for winter season operations.

CONTENTS

CANDIDATE'S DECLARATION					i
ACKNOWLEDGEMENT					
ABSTRACT	Γ				iv
CONTENTS	5				vii
LIST OF TA	ABLI	ES			xi
LIST OF FI	GUR	ES			xiv
NOMENCL	ATU	RF	2		xviii
CHAPTER	1	:	INTR	ODUCTION	1
	1.0		Necess	sity of water minimization	1
	1.1		Proces	s Integration methods	2
	1.2		Object	ive of present study	3
CHAPTER	2	:	LITE	RATURE REVIEW	6
	2.1		Conce	pt of Water Pinch Technology	6
			2.1.1	Strategies for industrial water reuse and waste water minimization	7
	2.2		Chrone	ological development of Water-Pinch Technology	8
			2.2.1	Hierarchical Design Procedures	8
			2.2.2	Graphical Techniques	10
			2.2.3	Mathematical Programming Approach	10
			PROB	OBLEM STATEMENTS	
CHAPTER	(INDUSTRIAL CASE STUDI	JSTRIAL CASE STUDIES	23		
	2 1	Water minimization in Starch Plant 3.1	23		
	5.1		Single	Contaminant System (PROBLEM 3.1)	رہے

.

vii

2.0		Water minimization in Starch Plant	mization in Starch Plant	24	
3.2		Single Con	taminant System (PROBLEM 3.2)	24	
2.2		Water mini	mization in Glucose Plant	25	
3.3		Single Con	taminant System (PROBLEM 3.3)	23	
3.4		Water mini	mization in Starch Plant	26	
5.4		Multi contaminant System (PROBLEM 3.4)		20	
3.5		Water mini	mization in Glass Industry	28	
5.5		Cooling to	wer system design (PROBLEM 3.5)	20	
CHAPTER 4	:	SOLUTIO	N TECHNQIUES IMPLEMENTED	30	
4.1		Solution Te	echniques	31	
4.2		Approach	of Wang and Smith (1994,1995)	32	
		4.2.1	Solution methodology	33	
		4.2.2	regeneration-reuse technique	37	
		4.2.3	regeneration-recycling technique	42	
4.3		Approach	of Maan and Liu	47	
4.5		(Using con	cept developed by Wang and Smith)	7/	
		4.3.1	Graphical technique	47	
		4.3.2	Design equations for finding the minimum	51	
		4.3.2	freshwater flow rate.	51	
		4.3.3	Pinch interval water reuse	52	
4.4		Approach	of Kim and Smith (2001)	56	
CHAPTER 5	:	RESULT	S AND DISCUSSION	59	
5.1		Salient res	sults of problem 3.1	59	
		5.1.1	Water reuse technique	59	
		5.1.2	Water regeneration-reuse technique	61	
		5.1.3	Water regeneration-recycling technique	63	
5.2		Salient res	sults of problem 3.2	65	

.

viii

5.3		Salient results	s of problem 3.3	72
5.4		Salient results	s of problem 3.4	75
5.5		Salient results	s of problem 3.5	82
		5.1	Construction of CWCC for different sections of the network	82
		5.2	Design procedure	83
CHAPTER 6	:	COST BENEF	IT ANALYSIS	90
6.1		Cost Analysis		90
6.2		Salient results	s of cost analysis of <i>PROBLEM 3.1</i>	91
		6.2.1	Benefit analysis	91
		6.2.2	Cost Analysis	92
6.3		Salient result	s of cost analysis of <i>PROBLEM 3.2</i>	95
		6.3.1	Benefit analysis	95
		6.3.2	Cost Analysis	95
6.4		Salient result	s of cost analysis of <i>PROBLEM 3.3</i>	98
		6.4.1	Benefit analysis	98
		6.4.2	Cost Analysis	99
6.5		Salient result	s of cost analysis of <i>PROBLEM 3.4</i>	101
		6.5.1	Benefit analysis	101
		6.5.2	Cost Analysis	101
6.6		Salient result	s of cost analysis of <i>PROBLEM 3.5</i>	103
CHAPTER 7	•	SUMMARY	SHEETS FOR ALL PROBLEM	105
	•	STATEMEN		
		7.1	Result summary for PROBLEM 3.1	105
		7.2	Result summary for PROBLEM 3.2	106
		7.3	Result summary for PROBLEM 3.3	107
		7.4	Result summary for PROBLEM 3.4	108

٠

ix

	7.5Result summary for <i>PROBLEM 3.5</i>	109
CHAPTER 8 :	CONCLUSION AND RECOMMENDATIONS	110
8.1	Conclusions	110
8.2	Recommendations	112
REFERENCES		113
APPENDIX A :	EXISTING WATER NETWORKS FOR PROBLEM	119
	STATEMENTS	
APPENDIX B :	IMPORTANT DATA FOR COST ESTIMATION FOR	126
	PROBLEM STATEMENTS	
APPENDIX C	COMPUTER PROGRAM and MICROSOFT EXCEL	131
AFFENDIAC .	CHEFTC	1,51

SHEETS

.

138 LIST OF RESEARCH PAPERS SUBMITTED

Page Table Description No No. 4 Summary of Process Integration design tools 1.1 19 2.1 Summary of Literature review (Major papers referred during dissertation work) Limiting Process Data for problem- 3.1 23 3.1 Limiting Process data for problem- 3.2 24 3.2 25 3.3 Limiting Process data for problem 3.3 26 Limiting Process data for problem 3.4 3.4 (a) 27 3.4 (b) The constraints associated with the water using networks Limiting process data for different sections of water using operations of a 29 3.5 glass industry (Problem 3.5) 60 5.1 CID for water reuse technique (Problem 3.1) 62 5.2 CID for regeneration technique 64 5.3 CID for regeneration-recycling technique CID of DM water using operations, representing limiting water flow rate 5.4 66 & water pinch point (Problem 3.2) 68 CID of DM water network representing limiting water flow rate & water 5.5 pinch point (full regeneration at regenerated water pinch (Co=5 ppm) 71 CID of DM water network, representing limiting water flow rate at 5.6 regeneration recycle & regenerated water pinch, Co = 5 ppm CID of DM water network, representing limiting water flow rate (reuse 72 5.7 technique) 79 Comparison of Operation wise water consumption pattern 5.8 Useful Table to compute cost benefit analysis 90 6.1 91 Benefits of water pinch technology (Problem 3.1) 6.2 Power consumption comparison of different modified water network 92 6.3 with existing water network 93 Cost comparison of different modified network with exiting network 6.4 94 Fixed cost, operating cost, profits and payback periods of different modes 6.5 of water conservation 95 Benefits of water pinch technology (Problem 3.2) 6.6

LIST OF TABLES

Table No.	Description	Page No
6.7	Power consumption comparison of different modified water network	96
	with existing water network	
6.8	Cost comparison of different modified network with exiting network	96
6.9	Fixed cost, operating cost, profits and payback periods of different modes	98
	of water conservation	
6.10	Benefits of water pinch technology (Problem 3.3)	98 ·
6.11	Power consumption comparison of different modified water network	99
	with existing water network	
6.12	Cost comparison of different modified network with exiting network	100
6.13	Benefits of water pinch technology (Problem 3.4)	101
6.14	Power consumption comparison of different modified water network	102
	with existing water network	
6.15	Cost comparison of different modified network with exiting network	102
6.16	Cost benefit analysis due to reduction in fresh water and power	104
	consumption for different proposals (Problem 3.5)	
B.3.1.1	Detail piping layout of existing water network (Problem 3.1)	126
B.3.1.2	Details of pump and power consumption of existing water network	126
B. 3.1.3	Distance from new proposed regeneration unit to existing units	126
B.3.2.1	Detail piping layout of existing water network (Problem 3.2)	127
B.3.2.2	Details of pump and power consumption of existing water network	127
B. 3.2.3	Distance from new proposed regeneration unit to existing units	127
B.3.3.1	Detail piping layout of existing water network (Problem 3.3)	128
B.3.3.2	Details of pump and power consumption of existing water network	128
B. 3.3.3	Distance between existing units	128
B.3.4.1	Detail piping layout of existing water network (Problem 3.4)	129
B.3.4.2	Details of pump and power consumption of existing water network	129
B. 3.4.3	Distance from new proposed regeneration unit to existing units	129
B.3.5.1	Cost of Power and Make up water (Problem 3.5)	130
B.1	Piping cost per unit m length for different sizes	130
B.2	Accessories cost and erection and commissioning cost of piping layout	130
	for different modified networks	
C.1	Details of computer program	131

.

Table No.	Description ,	Page No
C.2	Cold composite curve for Problem 3.5	134
C.3	TAC Calculation (Problem 3.3)	135
C.4	TAC Calculation (Problem 3.1)	136

LIST OF FIGURES

•

Fig. No.	Description	Page No
2.1	Typical water uses in the chemical process industries: Process uses, utility	7
	uses, other uses	
2.2	Efficient approach of water minimization in chemical process industries	9
4.1	Stepwise approach to tackle water minimization problems	30
4.2	Schematic diagram explaining different approaches for water minimization	33
4.3	Pre selection strategies for different approaches to solve water minimization problems	34
4.4	Stepwise procedure to solve water minimization problems using graphical technique	36
4.5	The relationship between the limiting water profile and the water supply line	37
4.6(a)	Graphical approach to construct CCC (Concentration composite curve)	37
4.6(b)	CCC (Concentration composite curve)	37
4.7(a)	CCC for regenerating below fresh water pinch concentration	39
4.7(b)	CCC for regenerating above fresh water pinch	39
4.7(c)	CCC for regenerating at fresh water pinch concentration	39
4.7(d)	General CCC employing full regeneration	39
4.8(a)	CCC employing full regeneration that creates driving force violation	40
4.8(b)	CCC employing full regeneration creating excess driving force	40
4.8(c)	CCC requiring partial regeneration	.40
4.9(a)	CCC with full regeneration at the fresh water pinch concentration	40
4.9(b)	CCC (Full regeneration and regenerated water pinch)	42
4.10	Partial regeneration and driving force violation at fresh water pinch concentration	42
4.11	General CCC and water supply line when partial regeneration creates regenerated water pinch	42
4.12	Water using network with Regeneration-recycle	43

Fig. No.	Description	Page No
4.13(a)	General CCC and water supply lines (Regeneration-recycling)	43
4.13(b)	General CCC and water supply line	43
	(Regeneration-recycling and regenerated water pinch)	
4.14(a)	Algorithm for different regeneration approaches (Full regeneration and fresh	44
	water pinch and full regeneration and regenerated water pinch	
4.14(b)	Algorithm for different regeneration approaches (Partial regeneration and	45
	fresh water pinch and partial regeneration and regenerated water pinch	
4.15	Algorithm for regeneration-recycling approach	46
4.16	A general representation of the notations for the proportional mass transfer	50
	assumption in a multiple contaminant system	
4.17(a)	Limiting water profiles for contaminant A before inlet concentration shift	50
4.17(b)	Limiting water profiles for contaminant A after inlet concentration shift	50
4.18(a)	Limiting water profiles for contaminant A before outlet concentration shift	51
4.18(b)	Limiting water profiles for contaminant A after outlet concentration shift	51
4.19	General concentration interval boundary below the pinch interval boundary	52
4.20	General concentration interval boundary below the pinch interval	52
	boundary with pinch internal reuse	
4.21	Temperature Enthalpy diagram of different streams involved in a network	58
4.22	Cooling water composite curve targeting for minimum supply of water	58
5.1	CCC and Composite water supply line (reuse technique) (Problem 3.1)	60
5.2	Modified water network (reuse technique)	61
5.3	CCC and composite water supply line (regeneration -reuse technique)	62
5.4	Modified Water Network (regeneration -reuse technique)	63
5.5	CCC for Modified Water Network (regeneration –recycling technique)	64
5.6	Modified Water Network (regeneration – recycling technique)	65
5.7	CCC for Modified Water Network (<i>reuse</i> technique) (<i>Problem 3.2</i>)	67
5.8	Modified Water Network (<i>reuse</i> technique)	67
5.9	CCC for Modified Water Network (regeneration-reuse technique)	69
5.10	Modified Water Network (regeneration-reuse technique)	69
5.11	CCC (regeneration-recycling technique)	70

•

Fig. No.	Description	Page No		
5.12	Modified Water network (regeneration-recycling technique)			
5.13	CCC (reuse technique) (Problem 3.3)	73		
5.14	Modified water network (reuse technique)	74		
5.15	Limited Water Profiles for each operation prior to concentration shifts (<i>Problem 3.4</i>)	76		
5.16	Determination of the concentration of the contaminant Solids for reusing water from outlet of Reactor 1 (R-1) to other water using operations	76		
5.17	Determination of the concentration of the contaminant Solids for reusing water from outlet of Separators (S) to other water using operations	77		
5.18	Determination of the concentration of the contaminant Solids for reusing water from outlet of Grinding (G) to other water using operations	.77		
5.19	Determination of the concentration of the contaminant Solids for reusing, water from outlet of Starch washing screen (SWS) to other water using operations	78		
5.20	Modified water network (reuse technique)(results of graphical technique)	80		
5.21	Modified water network (results of ASPEN WATER)	81		
5.22	CWCC for combining Furnace melting, Neck and Refining-spout section(<i>Problem 3.5</i>)	82		
5.23	CWCC for combining Tin bath section	83		
5.24	Proposal 1-A: Modification of water network based on utilization of cooling tower directly to process plant section and reuse from one section to another section	84		
5.25	Proposal 2-A: Modification of water network based on water pinch technology	84		
5.26	Proposal 2 A (Special Case 1): Modification of water network based on water pinch technology and utilization of cooling tower directly to process plant section and reuse from one section to another section	85		

.

.

Fig. No.	Description	Page No				
5.27	Proposal 2A (Special Case 2):					
	Modification of water network based on water pinch technology and					
	utilization of cooling tower directly to process plant section and reuse from					
	one section to another section and simultaneous operation of two cooling					
	towers					
5.28	Proposal 1-B:	86				
	Modification of water network based on utilization of cooling tower directly					
	to process plant section and reuse from one section to another section					
5.29	Proposal 2 B: Modification of water network based on water pinch	86				
	technology					
5.30	Proposal 2 B (Special Case 1): Modification of water network based on water	87				
	pinch technology and reuse from one section to another section					
5.31	Proposal 2 B (Special Case-2)	87				
	Modification of water network based on water pinch technology and					
	utilization of cooling tower directly to process plant section and reuse from					
	one section to another section					
5.32	Existing water network for furnace melting, neck and refining -spout section	88				
5.33	Modified water network for furnace melting, neck and refining –	88				
	spout section					
5.34	Existing water network for tin bath section	89				
5.35	Modified water network for tin bath section	89				
A.1	Existing water network for Problem 3.1	119				
A.2	Existing water network for Problem 3.2	120				
A.3	Existing water network for Problem 3.3	122				
A.4	Existing water network for Problem 3.4	123				
A.5.1	Existing Water Network (Summer Season) for Problem 3.5	124				
A.5.2	Existing Water Network (Winter Season) for Problem 3.5	125				

• • •

.

•

NOMENCLATURES

$C_{i,in}^{\lim}$	limiting inlet concentration of operation i ,ppm
$C_{i,out}^{\lim}$	limiting outlet concentration of operation i ,ppm
$C^w_{i,in}$	water supply inlet contaminant concentration of operation i, ppm
$C_{i,out}^{w}$	water supply outlet contaminant concentration of operation i ,ppm
C_{in}^{w}	overall water supply contaminant concentration of operation i, ppm
C_k^*	contaminant concentration at interval boundary k, ppm
C^{*}_{pinch}	contaminant concentration at each pinch interval boundary, ppm
$f_i^{\rm lim}$	limiting flow rate ,tph
f_{\min}	overall minimum fresh water flow rate ,tph
$f_{\min,i}$	minimum fresh water flow rate for operation i, tph
$\Delta m_{i,total}$	total contaminant mass load to be transferred from operation i, kg /h
Δm_k	contaminant mass load to be transferred below the pinch interval
	boundary, kg /h
Δm_{total}	total contaminant mass load transferred to all operation i, kg /hr
Δm_{pinch}	contaminant mass load transferred below the pinch interval boundary, kg /h
$f_{i,k}$	fresh water flow rate to process i in interval k, tph
$f_{i,k}^{\textit{total}}$	total water flow rate to process i in interval k, tph
$m_{i,k}$	contaminant Mass load transferred in process i in interval k, kg /h
C_o	regeneration outlet concentration, ppm
C_{out}	average outlet concentration, ppm
$C_{\it pinch}$	fresh water pinch concentration, ppm
C_{regen}	regeneration inlet concentration, ppm
$C^{*}_{\it pinch}$	regenerated water pinch concentration, ppm

xviii

f_i^{\lim}	limiting flow rate, tph
$f_{\min,j}$	minimum flow rate for operation j, tph
$f_{recycle}$	recycle flow rate, tph
f_{regen}	regeneration flow rate, tph
$f_{unregen}$	flow rate of water not regenerated, tph
Δm_{regen}	mass load of contaminant transferred prior to regeneration, kg /h
Δm^*_{pinch}	mass load of contaminant transferred below the regenerated water
	pinch concentration, kg /h
$N_{ m int}$	number of mass intervals in the CID
N_o	number of operations,
i	number of operations
INR	Indian Rupees
REG	Regeneration unit
$C_{i,j,in}$	Limiting inlet concentration of contaminant J for operation i , ppm
$C_{i,j,n}$	Actual concentration of contaminant J in operation i at concentration interval
.,,,,.	boundary n, ppm
$C_{i,j,out}$	Limiting outlet concentration of contaminant J for operation i , ppm
$C^{*}_{i,in}$	Reference concentration at the inlet of operation <i>i</i> , ppm
$C^{*}_{i,n}$	Reference concentration at the outlet of operation <i>i</i> , ppm
f_i	Limiting flow rate of operation <i>i</i> , ppm
$F_{i,n}$	Fresh water flow rate to operation i at concentration interval boundary n, tph
$f^{*}_{i,n}$	The total flow rate to operation i at concentration interval boundary n, tph
$q_{li,m\leq n}$	Reuse flow rate from operation l at concentration interval boundary n to
	operation <i>i</i> at concentration interval boundary n (m \leq n), tph
$T_{i,n}$	Water flow rate available for reused within operation <i>i</i> at concentration
<i>i</i> , <i>n</i>	interval boundary n, tph
$T_{i,n+1}$	Water flow rate available for reuse within operation i at concentration
· • • • • • • • • • • • • • • • • • • •	interval boundary n+1, tph

xix

- $W_{lj,m\leq n}$ Concentration of contaminant J in water available for reuse from operation l at concentration interval boundary m to operation J at concentration interval boundary n (m \leq n), tph
- $W_{ij,n}$ Concentration of contaminant J in water available for reuse within operation *i* at concentration interval boundary n ,ppm
- $W_{ij,n+1}$ Concentration of contaminant J in water available for reuse within operation *i* at concentration interval boundary n +1 ,ppm
- $W_{avgij,n}$ Average Concentration of contaminant J in water available for reuse within operation *i* at concentration interval boundary n ,ppm

XX

INTRODUCTION

1.0 Necessity of water minimization

The rapid growth in population, coupled with industrialization and urbanization, has resulted in an increase in the demand for water leading to serious environment Several industrial processes, such as, stripping, liquid-liquid consequences. extraction and washing operations, among the many processes present in refineries and chemical plants, require extensive utilization of water. It may contain various hazardous or toxic pollutants that need to be strictly controlled. Apart from waste water generation, the amount of water used in manufacturing varies significantly from industry to industry as well as process to process. As a rough estimate, in chemical manufacturing, total process and cooling water usage is 0.0045-0.045 m³ per kg of product. Scarcity of water and stringent regulations for industrial effluents has led to a paradigm shift in thinking about water usage. Further, the cost of water is becoming a significant factor in commodity material manufacturing. As water supply and treatment costs increase, there will be increasing pressure in the chemical process industries to reduce water consumption.

There are many types of technologies/methodologies available to save fresh water and reduce waste water generation. Water system integration, one of the important methodologies of wastewater minimization, treats the water utilization processes of an industry as an organic whole, and considers how to allocate the water quantity and quality to each water using unit, so that water reuse is maximized within the system and simultaneously the wastewater generation is minimized. This method shows excellent effectiveness in saving freshwater and reducing wastewater.

Therefore, much research has been devoted to the three approaches on water system integration, including water reuse, regeneration-reuse and regeneration- reuserecycle. The developing field of water-pinch technology evolved out of the broader concept of process integration.

1.1 Process integration methods

Process Integration is a fairly new term that emerged in the 80's and has been extensively used in the 90's to describe certain systems oriented activities related primarily to process design. Process integration can be described as "a holistic approach to process design, retrofitting, and operation which emphasizes the unity of the process", differently to a design approach that optimizes at the unit operation level. Process integration enables the designer to see "the big picture first, and the details later". Based on this approach, it is not only possible to identify the optimal process development strategy for a given task, but also to uniquely identify the most cost-effective way to accomplish that task. The implementation of PI methods can lead to significant energy savings and waste reduction (primary wastewater minimization). Some of research centers reported that "PI is probably the best approach that can be used to obtain significant energy and water savings as well as pollution reductions for different kind of industries". This potential exceeded the results obtained by than traditional audits, based on separate optimization of individual process units. Today Process integration can be broadly categorized into mass integration and energy integration. Energy integration deals with the global allocation, generation, and exchange of energy throughout the process. Mass integration creates the picture of the global flow of mass within the process and optimizing the allocation, separation, and generation of streams and species. It has been developed and applied to the environmental and mass processing problems of the processes. A review of some process integration design tools for addressing energy conservation and waste reduction is provided in Table 1.

1.2 Objective of present study

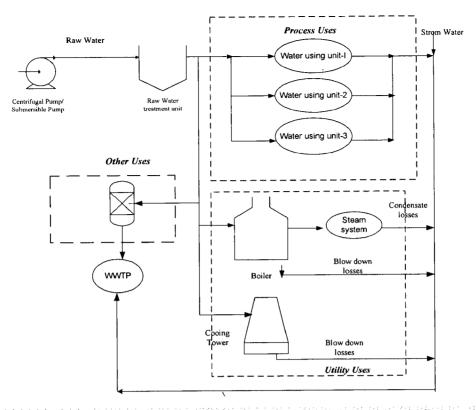
- 1. To apply water pinch technology to determine water conservation opportunities in different sections of a Starch industry in the state of Gujarat, India. Four different case studies have been viewed as a single and multiple contaminant systems. The aims of study is to minimize the consumption of fresh & DM water and the production of wastewater and to design optimal targets for water use so that the plant's outdated water network could be updated, while accounting for current economic and technical restrictions.
- 2. To apply graphical technique to solve different problems and establishment of graphical technique as easiest methods to prepare preliminary water minimization strategies.
- To compute detail cost benefits analysis and establish the potential of water pinch technology as one of the important source to govern economy of an industry.
- 4. To analyze potential of water conservation through energy management in a glass industry.
- 5. To develop MATLAB based computer program and excel based computational sheets for operation 1 to 5.

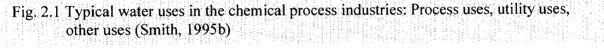
PI	Schematic Description	Short Description	Technology
Methodology	r	L. L.	targeted
Heat	Hot Stream In	The identification of	(1)Heat
Integration		heat recovery options,	Exchangers
systems or	Stream Dut	devices that minimize	(2) Heat Pumps
Heat	Hot Stream Out	environmental	(3) Cooling towers
Exchanger		emissions resulting	
Networks		from utility generation	
(HENs)		systems.	
Mass Exchange	Lean Streams (MSA's)	A network of process	(1) Adsorption
Networks	Rich Environmental	units that removes	(2) Absorption
(MENs) and	(Waste) MEN y Streams Acceptable Emissions	pollutants from end of	(3)Liquid-Liquid
reactive mass	Regenerated/Re cycled Streams	pipe streams via the use	Extraction
exchange		of physical or chemical,	(4) Ion Exchange
networks		direct contact, mass	
(REAMENs)		separating	
		agents.(MSAs)	
Heat Induced	Environmentally Acceptable	A network of process	(1)Condensation
Separation	Waste HISEN	units that removes	(2) Evaporation
networks(HISE	Streams	pollutants from end of	(3)Drying
Ns) and energy	Indirect contact via phase change	pipe streams via the use	(4) Crystallization
induced	energy separating agents	of indirect contact	(5)Compressors
separation		energy separating	(6)Vacuum Pumps
networks		agents (ESAs),	
(EISENs)		including stream	
		pressurization and/or	
		depressurization.	L

 Table 1.1 Summary of Process Integration design tools

•

In plant	Mass Separating Environmentally	A network of process	(1)Direct recycle
separation	Agents (MSAs) Out Acceptable gaseous Emissions	units that removes	opportunities
design via	Raw Materials WIN	pollutants from end of	(2)Adsorption
waste	By-Products	pipe streams via the use	(3) Absorption
interpretation	Mass Separating Agents (MSAs) In Aqueous Emissions	of physical or reactive	(4)Ion-Exchange
and allocation		direct contact mass	
networks		separating agents and/or	
(WINs)		rerouting of in-plant	
		process streams.	
In plant	Energy Separating Agents (ESAs) Out Pollution	A network of process	(1) Direct recycle
separation	prevention	units that removes	opportunities
design via heat	Raw Materials HIWAMIN EIWAMIN By-Products By-Products	pollutants from in plant	(2) heat
induced waste	Environmentally	systems via the use of	exchanger./ heat
minimization	Energy Separating Agents (ESAs) In Acceptable Aqueous Emissions	indirect -contact ESAs	integration
networks		with stream	(3) Condensation
(HIWAMINs)		pressurization and/or	(4) Evaporation
and energy		depressurization and/or	
induced waste		rerouting of in-plant	
minimization		process streams. Full	
networks(EIW		Site integration is	×
AMINs)		addressed by this	
		technique.	
Waste water	ية (A design strategy for	(1) Direct recycle
minimization	A set to the set of th	reuse, regeneration	Regeneration-
problems	e network ä	reuse and	reuse
		regeneration-recycling	opportunities.
	3	of waste water streams	
		that minimize water	
		usage.	·
Membrane		A network of process	(1) Reverse
networks		units that removes	osmosis
separations	Reject	pollutants from end of	(2) Pervaporation
		pipe streams via the use	
	<u> </u>	of membranes.	<u> </u>


LITERATURE REVIEW


This section begins by presenting brief outlines of the literature on the topic from several points of view (Sections 2.1), and then review in more detail approaches which were found to be particularly useful for the case studies involved in this project (Sections 2.2).

2.1 Concept of Water Pinch Technology

Three main uses of water in a manufacturing facility in chemical process industries are process uses, utility uses and other uses. **Fig.2.1** represents the most common water uses within a manufacturing facility in chemical process industries. Following preliminary water treatment, water is directed to (1) process uses, (2) utility uses and (3) other uses. **Fig.2.1** also illustrates common sources of waste water, including process uses, condensate losses, boiler blow down, cooling tower blow down and waste water from other uses such as storm-water runoff, housekeeping etc.

Conceptually, water pinch technology is a type of mass exchange integration involving water-using operations; it does not, involve the same practical problems that hinder the real world implementation of mass exchange networks, simply because the water-pinch technology represents existing class of manufacturing operations. It is a simple and practical model for representing the mass transfer of contaminants in water-using operations is the countercurrent contracting of a contaminant-rich process stream and a contaminant-lean water stream. This model provides the conceptual framework for analyzing, synthesizing, ad retrofitting water-using operations. As a result, water-pinch technology enables practicing engineers to answer a number of important questions when retrofitting existing facilities and designing new water-using networks in manufacturing processes.

Those questions include:

- (1) What are the maximum water-reuse target and the minimum waste water generation target for a manufacturing process?
- (2) How do we design a new water-using network, or retrofit an existing network, to meet these targets?
- (3) What is the minimum treatment-flow rate target in an effluent treatment system for a manufacturing process?
- (4) How should we modify a manufacturing process to maximize water reuse and minimize waste water generation?

2.1.1 Strategies for industrial water reuse and Waste water minimization

The goals of conventional water-reuse projects are to reduce fresh water consumption, minimize effluent discharge, and achieve zero liquid discharge. The conventional approach to water reuse involves the following steps: (1) establishing the boundary limits for the project, (2) identifying water sources and sinks, (3) identifying and evaluating the factors that limit water reuse, and (4) preparing an engineering design and economic evaluation of a water-using

network. Water –pinch technology can contribute significantly to the fourth step in conventional water-reuse design. The steps involved in applying water-pinch technology to industrial processes are (1) water use survey (2) data extraction, (3) targeting and design and (4) project economics and detailing. As shown in **Fig.2.2**, the solution strategy is divided into several steps to cover the various demands of the design problem.

2.2 Chronological Development of Water-pinch technology

The search for optimal wastewater reuse solutions was addressed by industry itself more than 28 years ago.

The hierarchy of methodologies used for the design of water reuse networks is much the same as that for retrofit designs aimed at waste minimization, these being as follows:

- Hierarchical design procedures
- Graphical techniques
- Mathematical programming approach

2.2.1 Hierarchical design procedures

Hierarchical design procedures consist of a series of heuristic rules, based on engineering knowledge and experience, aimed at screening process alternatives. Their usefulness has its limitations.

Liu (1999) presented a few interesting heuristic rules. Although some of them are incorrect, the solution procedure has remarkable simplicity and provides good sub-optimal (and sometimes optimal) solutions.

Zhi-Yong Liu *et.al* (2004) introduced a two-stage procedure is proposed for the minimization of wastewater. In the first stage, heuristic rules are used to find the initial feasible flow sheet; in the second stage, the flow rates of streams in the initial flow sheet are determined by mass balance of the contaminants.

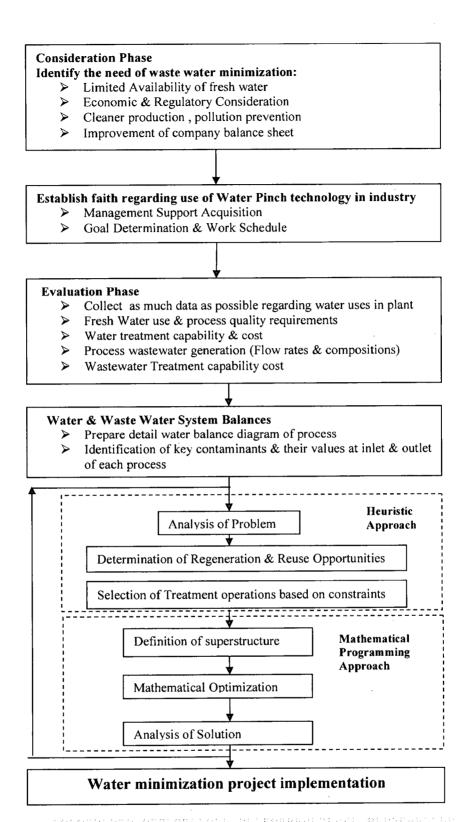
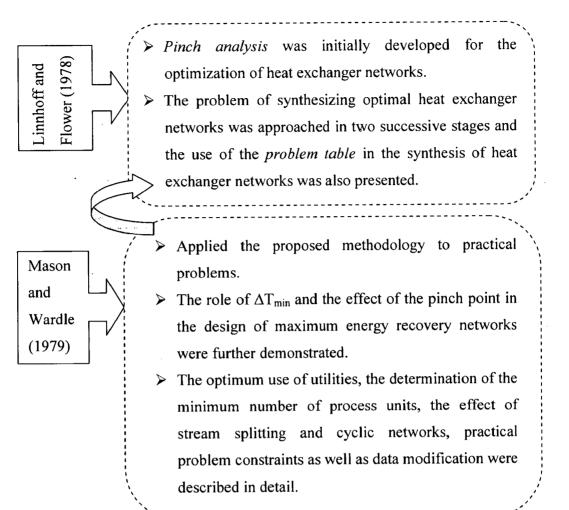
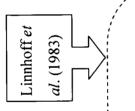


Fig. 2.2 Efficient approach of water minimization in chemical process industries

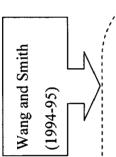

Gomes *et.al* (2007) presents a heuristic algorithmic procedure, water source diagram procedure (WSD), to synthesize water mass-exchange networks for the following different situations: (i) water reuse; (ii) availability of multiple external water sources in the industrial plant; (iii) water losses along the process; (iv) flow rate constraints; (v) regeneration before reuse in other operations; and (vi) regeneration followed by recycling.


2.2.2 Graphical techniques

Process synthesis systematically guides the designer in the rapid screening of the various process options in order to identify the optimum or near optimum design. It also allows the assessment of the design possibilities before detailed design is initiated. The first application of these new design techniques involved the conservation of energy through the optimization of heat exchanger networks. This has led to the development of Pinch Technology as applied to energy conservation. In the dissertation work, main emphasis has been given to graphical techniques.

2.2.3 Mathematical programming approach

Heuristic procedures and graphical methods offer the advantage that they do not require specialized computer software packages or computer programming. The techniques are however unlikely to produce the optimal water management solution when it comes to larger problems involving multiple contaminants. In addition, the economic aspects of the problem, which is usually the criteria against which the pinch problem is to be optimized, cannot be dealt with in much detail resulting in solutions, which appear good from a water-reuse perspective, but are costly to implement. Mathematical programming techniques offer greater flexibility in terms of problem size, number of contaminants and economic analysis of the problem, but these techniques are generally only accessible through computer packages that are often expensive and require some experience in order to use. The benefits of these packages are however that the water reuse strategy produced is more likely to be economically viable. The chronological development of graphical approach has been discussed in details in following section:


A graphical approach was proposed in which a heat exchange system is represented by a plot of temperature as a function of enthalpy.

- The streams that require cooling generate the hot composite curve and those that require heating generate the cold composite curve.
- ➤ The cold composite curve is below the hot composite curve. The point at which these curves come in the closest contact is the point at which there is a minimum heat transfer driving force. This point is known as the pinch point. The pinch point is then used to find the minimum process requirement and then the optimal network design.

11

The design method was proposed which was based on the location of the pinch point. This method entailed splitting the problem into two distinct regions, namely the *above pinch* and *below pinch* regions. This methodology emphasized the significance of the pinch in heat exchanger network (HEN) design by the introduction of threshold problems.

In 1988-94, the analogies between heat conservation and wastewater minimization had been used by various people to extend the pinch concept to waste water minimization.

 \triangleright

innhoff and

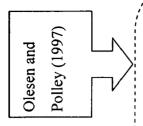
Hindmarsh

1983)

They presented a conceptually based approach, in which targets are set that maximize water reuse. Both single and multi-contaminant cases were addressed, along with the identification of regeneration opportunities.

Procedures were presented for the design of networks,
which allow the minimum target to be achieved. In their
methodology different minimum concentration
differences can be allowed throughout the network,
together with constraints due to corrosion limitations
etc.

A composite curve similar to the temperature enthalpy curves introduced in thermal pinch analysis. They then matched this composite curve to a straight line through the origin. This minimum water supply line touches the composite curve at a minimum of two points i.e. the origin and one other. The points other than the origin are known as the Pinch Points.


Wang and Smith (1994, 95)

➤ They presented two methods to achieve this minimum flow rate design. The first is referred to as the maximum driving force method, which uses concentration differences between the various streams to target the minimum flow rate. The second method is referred to as the minimum number of water sources method and uses load intervals.

- > In each interval only enough water is used to maintain network feasibility, the remainder is bypassed and used later.
- ➤ They also considered the case where more than one contaminant is present and extended their methodology to deal with this situation. Apart from that, the implications of regeneration of wastewater were also considered.
- ➤ Wang and Smith (1994b) presented a conceptually based approach of designing of distributed effluent treatment plant.
- ➢ In a later paper, Wang and Smith (1995a) discussed single and multiple operations with fixed flow rate and processes with multiple sources of water of varying quality. Water loss in processes is also taken into account as well as the possibility of several sources of water of varying quality. New design rules allow novel water flow schemes to be developed based on local recycling and splitting of

Although this approach has been a major step in understanding water system design, it has several limitations.

Kuo and Smith

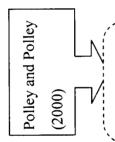
1998)

They reviewed the procedures introduced by Wang and Smith concerning single contaminants.

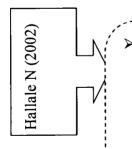
- They introduced a new network designing procedure in which they classify operations into distinct types, each of which has distinct design implications. This method is based on the use of a load table, which tabulates the distribution of duties in the region of the pinch and the minimum water needs for each operation.
- They considered the case of simple reuse, water draws and regenerated water reuse.
- They also recognized the complexity of the evolutionary design procedure proposed earlier by Wang and Smith (1994a).
- In an effort to simplify the previous method, the authors introduced a new graphical approach. In addition, they addressed the optimal allocation of fresh water in combination with the distribution of quality of the wastewater that is to be treated.
- The method consists on identifying the pockets that can be created by successively bending the water supply line upwards. The next step is to create a water 'main' at the end of each pocket and identify processes that should be fed by these mains.
- This method has some limitations. For example, when several processes below the pinch have maximum inlet concentration larger than zero, it is not quite simple to identify which process needs to be fed using fresh water first and to what process each wastewater has to be sent..

They clarified the limitation of Kim and Smith work by introducing the concept of monotonicity in the process-toprocess connections. In addition, Gómez, Savelski & Bagajewicz (2000) provided an algorithmic procedure to address this matter.

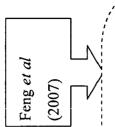
Mann and Liu (1999)


(1999 a,b, 2000 a

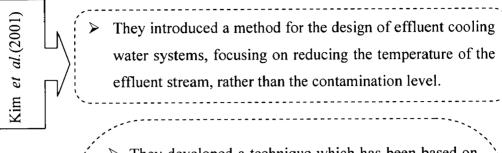
Savelski & Bagajewicz


They have found that when considering water regeneration recycling, some systems had another pinch point, regeneration pinch, which is higher than the normal pinch for freshwater targeting.

How to determine the optimal regeneration concentration and whether the optimal regeneration concentration relates to the normal pinch concentration need further study.


They also introduced graphical techniques to determine minimum water flow rate in case of multi contaminant systems.

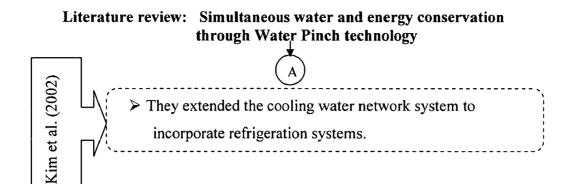
They noted that unless the correct stream mixing system is identified, the apparent targets could be substantially higher than the true minimum fresh water and wastewater flow rates.

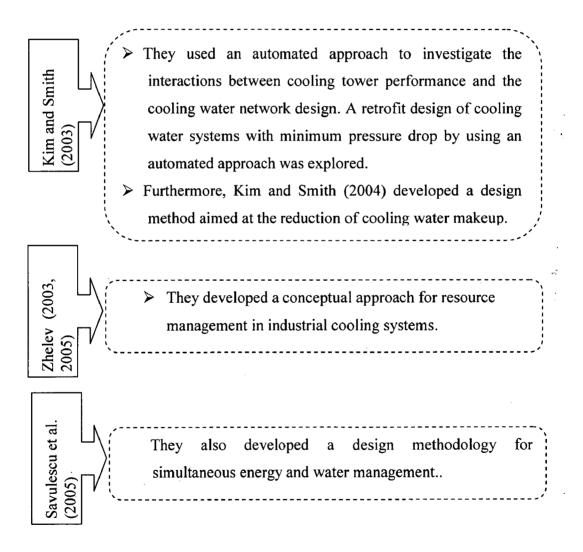

He introduced a new graphical targeting method for water minimization. The new approach is based upon a new representation of water composite curves and the concept of water surplus. This is used to construct a water surplus diagram, which is similar to the grand composite curve in heat pinch analysis.

They introduced use of graphical method to determine the targets of single-contaminant regeneration recycling water systems, by analyzing the limiting composite curve of a singlecontaminant water system.

- A method was proposed to construct the optimal water supply line for regeneration recycling.
- Accordingly the targets for regeneration recycling water systems were obtained. The targets in sequence are the minimum freshwater consumption (the minimum wastewater discharge), the minimum regenerated water flow rate, and the optimal regeneration concentration.
- The results showed that for a single-contaminant regeneration recycling water system, the minimum freshwater consumption is determined by the shape of the limiting composite curve below the postregeneration concentration.
- The optimal regeneration concentration is defined as the minimum regeneration concentration at the minimum freshwater consumption and the corresponding minimum regenerated water flow rate.

Literature review: Simultaneous water and energy conservation through Water Pinch technology




They developed a technique which has been based on to analyze the regeneration of thermally contaminated water. They assess the cooling water system as a holistic entity.

That is, the design and analysis of the cooling towers is done with consideration of the cooling water network. To optimize such a cooling water network, the network interactions must be defined and the relationships between them applied to the simultaneouc design of each component.

Kim and Smith

- They suggested that a combined water and energy analysis should be used to investigate the interaction for the overall system. A cooling tower model was developed as well as a method for the design of cooling water systems that accounts for the interactions and process constraints.
- They also looked at the interactions between the cooling water network and the cooling tower performance. The main advantage of the cooling water system design technique is that it investigated the interactions between the cooling tower and the cooling water network.

Table: 2.1	I UNC 1.2	nary oi literatu	re review (Major Faper	Summary of Literature review (Major Paper referred during dissertation work)	
Title Paper	of	Authors	Aim	Brief Methodology	Results
	Pinch	B. Linnhoff	/elop_a_r	The method was the first to combine sufficient simplicity to be used	Pioneer work. This methodology
design methods heat	for	and E.Hindmarsh	method of heat exchanger networks based on the location	by nand with near certainty to tuching best designs, even for large problems. "Best" designs feature the highest degree of energy recovery possible with a given number of capital items.	in HEN design.
exchangers	ers		of pinch point.		
Optimal water allocation a	n ir	N. Takama, T. Kuriyama, K. Shiroko and	To develop a method for solving the planning problem of optimal water	All the alternative systems were combined into an integrated system by employing structure variables or split ratios at the point where a water stream was split into more than two streams.	The method was applied here to a simple but practical problem of optimizing water allocation in a petroleum refinery.
Petroleum refinery	E	T. Umeda	allocation.		
Wastewater Minimization	zation	Wang Smith	To develop methods to target and design for minimum wastewater for the above three cases.	To addresses the minimization of wastewater in the process industries. Targets were first set which maximize water re-use. The approach used allows individual process constraints relating to minimum mass transfer driving force, fouling, corrosion limitations, etc. to be easily incorporated. Both single and multiple contaminants were addressed. The multiple-contaminant case allows multiple constraints relating to the multiple contaminants to be allowed for. Water regeneration opportunities were also identified at the targeting stages which distinguish between re-use and recycling. Two simple design methods were presented which allow targets both with and without regeneration to be achieved in design. The first design procedure maximizes driving forces in individual processes whilst the second minimize the number of water sources for each process. The approach adopted was entirely conceptually based.	A method had been presented which allows both freshwater and wastewater to be minimized in a wide range of processes. This minimization was brought about through maximizing water re-use and the identification of regeneration opportunities. Targets were first set for freshwater, regeneration and wastewater flow rates using limiting water profiles. These profiles allow constraints due to minimum mass transfer driving forces, equipment fouling, corrosion limitations, etc. to be included in the problem formulation. Both single and multiple contaminants can be addressed.
Waste wa minimizati with fl rate constraints	Waste water minimization with flow rate constraints	Wang and Smith	To address water and waste water minimization through water re-use where there are fixed flow rate constraints.	Water losses from operations and situations with multiple sources of fresh water with different quantities were considered.	The design methods allowed novel water flow schemes to be developed based on local recycling and splitting of operations.

(

Ico l Paper Autors Autors Autors Autors Autors Autors Autors Brief Methodology Results multi-contantiant A. Aiva Waar Pinch with Be per complies insights from For wast water minimization, Answ conceptual model was presented for tageting model accordance of development of ultify zarges for model and wast multi-contantiants was employed. The two wast change wastewater minimization problems. Its multiples contaminants was anthorantiant transityment of charabyter integrity model accordance of development of development of distribution, wastewater minimization problems. Its multiples contaminants was proper and multiple accordance of development of development of development of development. Results Results Results initiation A water the process network was not yet development. Answ conceptual model accordance accordaccordaccordace accordance accordaccordace accordance acc	Rei No.	-	57	26
PaperAuthorsAimFaperAuthorsAimi-contaminantA.Alva-mentmodelArga'ez,AreatA.Alva-mentmodelArga'ez,AreationArga'ez,A.sexchangeVallianatos,areationArga'ez,A.KokossismentmodelsAreationA.A.KokossisareationA.A.KokossisareationA.A.KokossisareationA.A.KokossisareationA.A.KokossisareationA.A.KokossisareationA.A.KokossisA.KokossisA.MarianoofWaterMarianoTo illustrate necessary conditions ofofNaterMarianoTo illustrate necessary conditions ofof waterMarianoBagajewiczusing networks in process plants.procedure forJulianaAnew methodology known as WSDastewaterGomes,Bestoa*Had been proposed.Fernando L.P.Pessoa*Pessoa*	Results	A new conceptual model was presented for targeting minimum utility costs. The conceptual model takes the form of a multi-contaminant transshipment model, and was formulated as a mixed-integer linear programming problem. The targeting tools described in this paper allow the screening of options in an automated fashion and can be used to identify opportunities for a more efficient use of both water resources and mass separating agents in the process industries. It was also possible to generate alternative solutions that may result in different networks achieving the same target.	Necessary conditions of optimality in water allocation problems had been presented. These conditions state that optimal structures satisfy monotonicity of the outlet concentrations when one process sends its wastewater to another.	It was applied in a single contaminant example case, and it can easily be extended to multiple contaminant processes. This new procedure had advantageous features when compared to other available methodologies.
PaperAuthorsPaperAuthorsi-contaminantA. Alva-mentmodelArga'ez, A.s exchangeVallianatos,s exchangeVallianatos,s exchangeA. KokossisaterA. KokossisaterSavelski and,ofwaterblants with aMiguelplants with aMiguelprocedure forJulianarastewaterGomes,cation:singlebrocedure forJulianafermandoL.P.Pessoa*	Brief Methodology	For wastewater minimization, the concept of the limiting water profile was employed. The development of utility targets for multiple contaminants was developed as a mixed integer linear transshipment formulation that enables easy screening and scoping ahead of the network development.	These necessary conditions correspond to the optimal water allocation planning (WAP) problem that considers wastewater reuse on the basis of a single contaminant and where the objective was to minimize the total water intake. The conditions under which degenerate solutions were possible were also identified. Examples were discussed. A method that can be implemented by hand was also provided.	A heuristic algorithmic procedure, water source diagram procedure (WSD), to synthesize water mass-exchange networks for the different situations.
Paper Authors i-contaminant A. ment model Arga 'ez, s exchange Vallianato s exchange Vallianato is A. Kokoss ater A. Kokoss ater A. Kokoss ater A. Kokoss is A. Kokoss ater A. Kokoss is A. Kokoss ater A. Kokoss ater A. Kokoss is A. Kokoss ater A. Kokoss inant Bagajewic procedure for Juliana astewater Gomes, cation: Single procedure for Juliana inant Pessoa*	Aim	paper combines insights Pinch with mathen umming. The approach app exchanger network water minimization probler se was the developme ing models at a conceptual the process network was r oped.	To illustrate necessary conditions of optimality for single component water- using networks in process plants.	
Paper i-contar s s exchain s atter zation is of on syste plants plants plants in ant in ant i	Authors	ga ez, Kokos Kokos	vic	, o % 9 *
Tit Tit Dee Con waa Con production Con waa Con miniminin	Title of Paper	A multi-contaminant transhipment model for mass exchange networks and wastewater minimization problems	s sto	Design procedure for water/wastewater minimization: single contaminant
7 6 5 Sr	Sr No	S	Q	7

.

.

С

Re Re	30	33	56 A	
Results	This paper had presented a new, graphical approach to targeting the minimum fresh water and wastewater flow rates for a system of water-using operations. only considered problems with one contaminant. Although experience had shown that good results can be often obtained by initially modeling problems as being single-contaminant systems, there may be cases where multiple- component considerations were important.	A new approach based on distributed effluent cooling systems had been introduced to cope with problems of thermal pollution. Distributed cooling systems were optimized to target and design for effluent temperature reduction.	The new method provides the understanding for design problems in simultaneous water and energy minimization and had led to a systematic procedure that takes into account targets for efficient use of water and energy.	÷
Brief Methodology	The new approach was based upon a new representation of water composite curves and the concept of water surplus. This was used to construct a water surplus diagram, which was similar to the grand composite curve in heat pinch analysis. The method had several advantages over existing techniques, such as being able to deal with a wider range of water-using operations as well as having more convenient and familiar representations. Also, the targets were unique and were not dependent on any assumed mixing arrangement. The paper briefly discusses network design and also considers two areas process modifications and water regeneration, where the insights obtained from the graphical tools were most valuable.	A new systematic method was introduced for the segregation strategy for effluents to deal with effluent temperature problems most effectively by a combination of heat recovery and effluent cooling. This can lead to distributed effluent cooling systems. The design procedure sets targets before design. A design procedure then allows the targets to be achieved by following design rules for distributed cooling. An optimization model had been developed to search for the most economic design of cooling systems.	Using this new approach, the design of a water system for maximum energy recovery can be achieved, taking into account the mixing opportunities offered by water networks, while maintaining the water quality to processes in terms of contamination. Direct and indirect energy recovery were analyzed and a strategy developed to decrease the number of heat transfer units based on the generation of separate systems and non-isothermal stream mixing. Initially, the analysis was restricted to no water re-use.	· · · · · · · · · · · · · · · · · · ·
Aim	To develop a new graphical method for targeting fresh water and wastewater minimization.	To introduces methods for the design of effluent cooling systems.	To develop new systematic methodology for targeting and design that simultaneously minimizes the requirements of energy and water.	
Authors	N. Hallale	Jin-Kuk Kim, Luciana Savulescu and Robin Smith	Luciana Savulescu, Jin-Kuk Kim ^a and Robin Smith	
Title of Paper	A new graphical targeting method for water Minimization	Design of cooling systems for effluent temperature reduction	Studies on simultaneous energy and water minimization— Part I: Systems with no water re-use	•
Sr No			10	

	в %	is no	32	
	New design procedure had been developed to achieve both water and energy targets for systems using water at different temperatures and re-use of water. This procedure involves two stages. In the first stage, re-use options within the water system were exploited not only from the point of view of contaminant concentration, but also considering energy. A new grid representation (the two- dimensional grid diagram) had been introduced.	- particularly water-pinch technology - ith abundant charts, tables, and real-life	A mathematical model of cooling systems had been developed to predict the tower performance and to provide design guidelines for cooling water system design. A new methodology for the design of cooling water networks had been developed to satisfy any supply conditions for the cooling tower. Design can be carried out with any target temperature by introducing the concepts of pinch migration and temperature shift.	
Brief Methodology	A two-dimensional grid diagram was proposed to exploit different options within water systems and also enable reduced complexity of the energy and water network. Isothermal and non-isothermal stream mixing between water streams were introduced to create separate systems between hot and cold water streams in the energy composite curves and provide a design basis for a better structure with fewer units for the heat exchanger network. In addition to allowing re-use of water, issues about heat losses inside unit operations had also been incorporated in the simultaneous management of water and energy.	Relatively easy to use and surprisingly inexpensive, the methods one find in this important guide - particularly water-pinch technology -is no only ecologically sound, but significantly lower manufacturing costs. Concepts are illustrated with abundant charts, tables, and real-life cas studies.	A model of cooling tower performance allows interactions between the performance of the cooling tower and the design of cooling water networks to be explored systematically. In debottlenecking situations, better design of the cooling network using the new method, including increasing cooling tower blow down, taking hot blow down and strategic use of air coolers, can all be used to avoid investment in new cooling tower in a systematic way.	· · · · · · · · · · · · · · · · · · ·
Aim	To develop new systematic design methodology for the simultaneous management of energy and water systems that also feature maximum re-use of water.	Relatively easy to use and surprisingly only ecologically sound, but significan studies.	To develop methodology for the design of cooling networks to satisfy any supply conditions for the cooling tower.	
Authors	Luciana Savulescu, Jin-Kuk Kim' and Robin Smith	James Mann and Liu	Jin-Kuk Kim and Robin Smith	
Title of Paper	Studies on simultaneous energy and water minimization— Part II: Systems with maximum re-use of water	Book : Industrial water reuse and Waste water minimization	Cooling water system design	
Sr No		12	13	1

•

•

.

CHAPTER 3

PROBLEM STATEMENTS

[INDUSTRIAL CASE STUDIES]

In this Chapter, five water system design problems, which have been taken from different industries (mainly from starch and glass), are formulated which will be targeted and designed by graphical approach based on Water Pinch Technology.

3.1 WATER MINIMIZATION IN STARCH PLANT Single Contaminant System (PROBLEM 3.1)

The detailed description of this problem is given in section A.1 of appendix-

А.

Existing Network:

The Stream data is shown in the Table 3.1 given below:

Process	Max. Limiting Inlet Concentration C _{i,in} (ppm)	Max. Limiting Outlet Concentration C _{i,out} (ppm)	Limiting Flow Rate (tph)	∆m ⁱ (kg/h)
FWM	1	20	120	2.28
S	10	40	140	4.20
SCR	20	300	100	28
GR	5	30	140	3.50

Table 3.1: Limiting Process Data for problem 3.1

Required Results:

To design water-reuse network for this problem and make a benefit analysis of the selected water *reuse regeneration-reuse and regeneration-recycling* techniques. The solution of this problem is given in section 5.1 of chapter 5. The cost benefit analysis is shown in section 6.2 of chapter 6.

3.2 WATER MINIMIZATION IN STARCH PLANT Single Contaminant System (PROBLEM 3.2)

The detailed description of this problem is given in section A.2 of appendix-

А.

Existing Network:

The Stream data is shown in the Table 3.2 given below:

Operation	Limiting Water Flow rate f _i ((tph)	Max. Limiting Inlet Concentration C _{i,in} (ppm)	Max. Limiting Outlet Concentration C _{i,out} (ppm)
DM water using o	perations	• • • • • • • • • • • • • • • • • • • •	
Primary	30	1 *	60
Separators(PSI)			
Primary	10	5	200
Separators(PSII)			
Process Reactor	12	10	480
(R)			
Dewatering	12	15	350
section(DW)			
Screen-4(S-4)	5	25	50

Table 3.2 Limiting Process data for problem 3.2

Required Results:

To design water-reuse network for this problem and make a benefit analysis of the selected water *reuse regeneration-reuse and regeneration-recycling* techniques. The solution of this problem is given in section 5.2 of Chapter 5. The cost benefit analysis is shown in section 6.3 of chapter 6.

3.3 WATER MINIMIZATION IN GLUCOSE PLANT

Single Contaminant System (PROBLEM 3.3)

The detailed description of this problem is given in section A.3 of appendix-A.

Existing Network:

The Stream data is shown in the Table 3.3 given below:

Operation	Limiting Water Flow rate f _i ((tph)	Max. Limiting Inlet Concentration C _{i,in} (ppm)	Max. Limiting Outlet Concentration C _{i,out} (ppm)
DM water using	operations		
Operation 1	31	20	85
Operation 2	43	31	95
Operation 3	23	25	205
Operation 4	55	55	110
Operation 5	40	55	810
Operation 6	13	400	810
Operation 7	09	400	620
Operation 8	10	1	100
Operation 9	68	55	350
Operation 10	45	175	320

Table 3.3 Limiting Process data for problem 3.3

Required Results:

To design water-reuse network for this problem and make a benefit analysis of the selected water *reuse* technique. The solution of this problem is given in section 5.3 of Chapter 5. The cost benefit analysis is shown in section 6.4 of chapter 6.

3.4 WATER MINIMIZATION IN STARCH PLANT-Multicontaminant System (PROBLEM 3.4)

The detailed description of this problem is given in section A.4 of appendix-A.

Existing Network:

The Stream data is shown in the Table 3.4 (a) & (b) given below:

Operation	Contaminant Type	Limiting Water Flow rate f _i (tph)	Max. Limiting Inlet Concentration C _{i,in} (ppm)	Max. Limiting Outlet Concentration C _{i,out} (ppm)
Reactor I(R-1)	Solids (TDS)	15	1	140
	Soluble(TSS)		7	105
	TOC(TOC)		2	15
Separators(S)	Solids (TDS)	15	1	205
	Soluble(TSS)		7	55
	TOC(TOC)		2	40
Grinding (G)	Solids (TDS)	10	1	410
,	Soluble(TSS)		7	205
	TOC(TOC)		2	55
Washing (W)	Solids (TDS)	11	1	5
	Soluble(TSS)	_	7	10
	TOC(TOC)		2	5
Scrubbers(SCR)	Solids (TDS)	25	50	600
× ,	Soluble(TSS)		220	230
	TOC(TOC)	_	30	35
Starch Washing Screens(SWS)	Solids (TDS)	30	50	70
	Soluble(TSS)		220	300
	TOC(TOC)		30	45
Cooling Tower I	Solids (TDS)	20	50	250
(CT-1)	Soluble(TSS)	-	220	1100
. /	TOC(TOC)	-	30	150
Cooling Tower II	Solids (TDS)	25	50	150
(CT-2)	Soluble(TSS)		220	660
· /	TOC(TOC)		30	90

Table 3.4 (a) Limiting Process data for problem 3.4

Unit	Min. Water Flow rate (tph)	WaterContaminantflowConcentration			aminant entration	_	New Connections (After water pinch application)		
			TDS	TSS	TOC	TDS	TSS	TOC	
Fresh Water	2	130	50	220	30	50	220	30	Allowed
DM Water	4	75	1	7	2	1	7	2	Allowed
R-1	15	15	1	7	2	5	7	5	Not allowed
S	15	15	1	7	2	5	7	5	Not allowed
G	5	10	5	7	2	25	100	15	Allowed
,W	5	11	1	7	2	30	130	20	Allowed
SCR	20	30	50	220	30	200	210	50	Allowed
SWS	4	31	50	220	30	150	100	20	Allowed
CT1	8.5	8.5	50	220	30	475	300	100	Allowed
CT2	25	25	50	220	30	200	120	40	Allowed

Table 3.4 (b) The constraints associated with the water using networks.

Required Results:

To design water-reuse network for this problem and make a benefit analysis of the selected water *reuse* techniques. The solution of this problem is given in section 5.4 of Chapter 5. The cost benefit analysis is shown in section 6.5 of chapter 6.

3.5 WATER MINIMIZATION IN GLASS INDUSTRY Cooling Tower system design (PROBLEM 3.5)

The detailed description of this problem is given in section A.5 of appendix-

А.

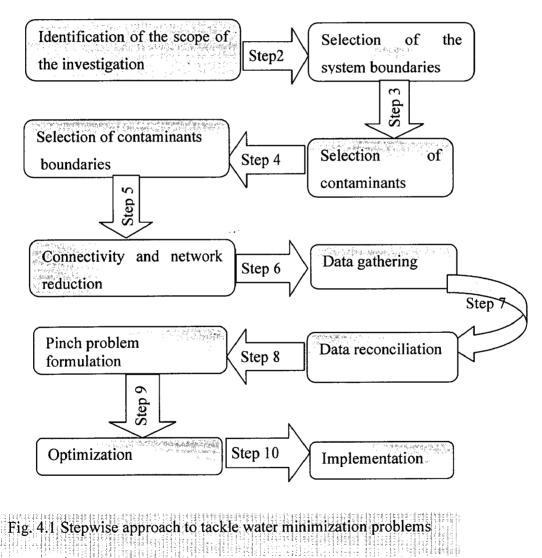
Existing Network:

The Stream data is shown in the Table 3.5 given below:

Required Results:

To design water-reuse network for this problem and make a benefit analysis of the selected cooling water network. The solution of this problem is given in section 5.5 of Chapter 5. The cost benefit analysis is shown in section 6.6 of chapter 6.

		ss industr		cm 5.5)			
	Outlet Temp (°C)	Total Heat kW	Total Flow tph	Equipment Description	Outlet Temp (⁰ C)	Total Heat kW	Total Flow tph
Equipment Description		KVV	_ up n	Description			<u>tpn</u>
Furnace Melting Section						6.050	
Oil Burners with jacket(1.1)	41	586.04	100.8	Carbon Face (4.3)	37.5	6.279	3.0
Damwell (1.2)	39	83.72	24	Head Coolers (4.4)	40	781.387	16
				Down Stream			
Bubblers (1.3)	46	383.71	33	Coolers (4.5)	40	948.827	20
				Down Stream		1004.64	
Cameras of fusion end (1.4)	37	6.97	6	Coolers (4.6)	40	1004.64	21
Bath Chargers Camera Top				Banjo Coolers (Tin	40.5	276.74	-
(1.5)	37	6.97	6	Bath Shoulder) (4.7)	40.5	376.74	7
Suspended Crown R/L Dog	27	11.17		Banjo Coolers (Tin	20	175 59	3
house (1.6)	37	11.16	9.6	Bath Exit) (4.8)	39	125.58	
Flat Bridge R/L Dog House	37	19.53	16.8	Radiation Pyrometers (Bay 3) (4.9)	37	1.395	1.
(1.7) Curtain Bridge R/L Dog		19.55	10.0	Radiation Pyrometers	57	1.595	1.
house (1.8)	37	8.372	7.2	(Bay 5) (4.10)	37	1.395	1.
Dust Cover R/L Dog House		0.572	1.2	Radiation Pyrometers		1.575	
(1.9)	37	19.53	16.8	(Bay 7) (4.11)	37	1.395	1.
(1.7)		17.55	10.0	Radiation Pyrometers			
				(Bay 13) (4.12)	37	1.395	1.
				Radiation Pyrometers			
Neck Section				(Bay 21) (4.13)	37	4.186	3.
				Cameras at the hot			
Waist Coolers (2.1)	43	781.38	96	end of tin bath (4.14)	37	3.488	
Stirrer /Glass Homogenizer				Cameras of top			
(2.2)	44	781.38	84	rollers (4.15)	42	52.325	
				Cameras at tin bath			
				(roof cameras) (4.16)	37	6.98	
				Cameras at tin bath		2.40	
Refining & Spout Section				exit (4.17)	37	3.49	
Glass Level Measurement	27.5	()7	20	Cameras at tin bath $and (4, 18)$	37	16.744	14.
(3.1)	37.5	6.27	3.6	end (4.18) Tin Cooler sized Lift		10./44	14.
(1, 1, 2, 2)	205	24.41	8.4	Out Rolls (4.19)	38.5	10.465	3.
Spout Cut off box (3.2)	38.5	24.41	0.4		30.5	10.405	<u>_</u>
	20.5	00.02		Empty lip casing	37	48.84	4
Spout Casing (3.3)	38.5	20.93	7.2	(4.20)			
TIN Bath Section				Exit lip casing (4.21)	40	29.30	8.
				Glass thickness			
Top rolls main CT (4.1)	38.5	87.20	30	measured (4.22)	40	4.186	1.
Top rolls SCW (4.2)	39.5	195.34	48				
* Inlet temperature of cooling	water $= 36$	⁶ ^o C Cooling	o tower wa	ter supply temperature =	= <u>36 ° C (S</u>	Summer Sease	on)


Table 3.5 Limiting process data for different sections of water using operations of a glass industry (Problem 3.5)

.

.

SOLUTION TECHNIQUES IMPLEMENTED

In this dissertation, a number water pinch investigations were undertaken at industrial sites in order to promote the concept to Indian industries and to build local capacity to use it effectively. In this chapter an attempt is made to distil the lessons learned into a guide which will assist someone who wishes to conduct such an investigation. **Fig.4.1** represents the stepwise approach to tackle water minimization problems at industry level.

It is seldom possible to proceed in a neat linear fashion through these steps, as later steps may expose issues which require earlier ones to be revisited. Furthermore, despite water pinch analysis being a rigorous and technical approach towards the rationalization of freshwater use and effluent production within a factory, the success or failure of the investigation relies heavily on the interactions between people of the investigation.

4.1 SOLUTION TECHNIQUES

Once the pinch problem has been formulated, a number of techniques are available which can be used to solve the problem. These techniques may be divided into three categories - heuristic procedures, graphical methods and mathematical programming techniques. The hierarchy of solution methods is as follows: heuristic procedures, graphical methods and mathematical programming techniques. Heuristic procedures and graphical methods offer the advantage that they do not require specialized computer software packages or computer programming. The techniques are however unlikely to produce the optimal water management solution when it comes to larger problems involving multiple contaminants. In addition, the economic aspects of the problem, which is usually the criteria against which the pinch problem is to be optimized, cannot be dealt with in much detail resulting in solutions which appear good from a water-reuse perspective, but are costly to implement. Mathematical programming techniques offer greater flexibility in terms of problem size, number of contaminants and economic analysis of the problem, but these techniques are generally only accessible through computer packages which are often expensive and require some experience in order to use. The benefits of these packages are however that the water reuse strategy produced is more likely to be economically viable. Different approaches are used in this dissertation to solve different real world case studies. These approaches are discussed in this chapter in detail as outline below:

- (1) Approach of Wang and Smith(1994,1995) (Single Contaminant System-Graphical techniques
- (2) Approach of Maan and Liu (1999) (Multi Contaminant System-Graphical and Mathematical Programming Approach)
- (3) Approach of Kim and Smith(2001)(Water conservation through energy management)

4.2. Approach of Wang and Smith (1994, 1995)

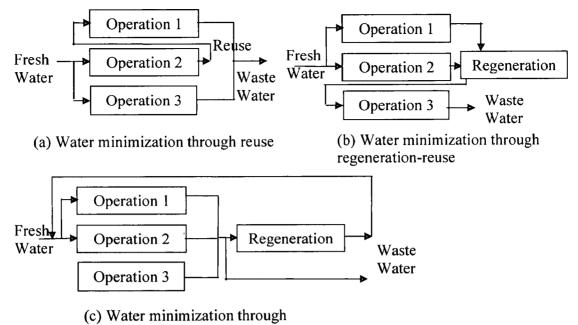
This series of papers has been very influential in shaping the theory of water pinch analysis. There are four general approaches to waste water minimization (Wang and Smith, 1994):

(i) Re-use:

Wastewater can be re-used directly in other operations providing the level of previous contamination does not interfere with the process. Re-use might require wastewater being blended with wastewater from other operations and/or freshwater. (Note that there may be recycling within an individual operation but here we consider only the net input and output from operations.)

(ii) Regeneration re-uses:

Wastewater can be regenerated by partial treatment to remove the contaminants, which would otherwise prevent its re-use, and then re-used in other operations. Again, re-use after regeneration might require blending with wastewater from other operations and/or freshwater. Let us emphasize that when water is re-used after regeneration, in this case it does not re-enter processes in which it has previously been used.


(iii) Regeneration recycling:

Wastewater can be regenerated to remove contaminants which have built up and then the water recycled. In this case water can re-enter processes in which it has previously been used.

(iv) Process Changes:

Process Changes can reduce the inherent demand of water.

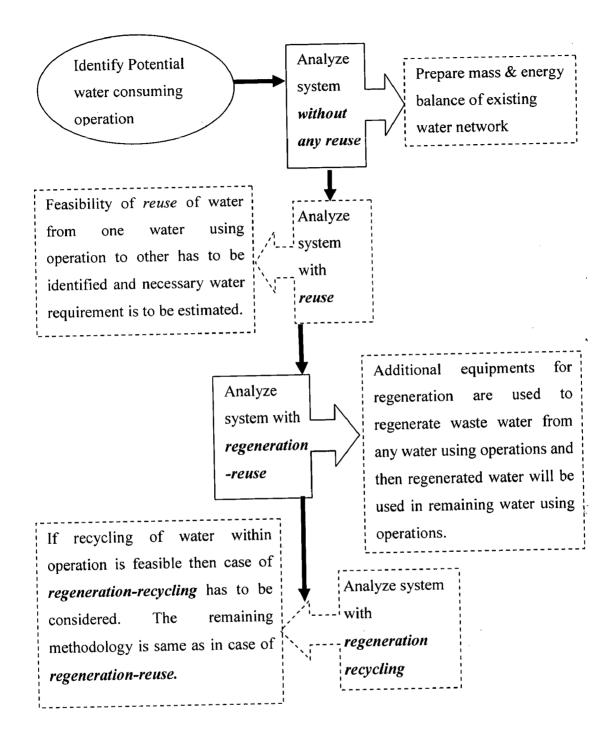
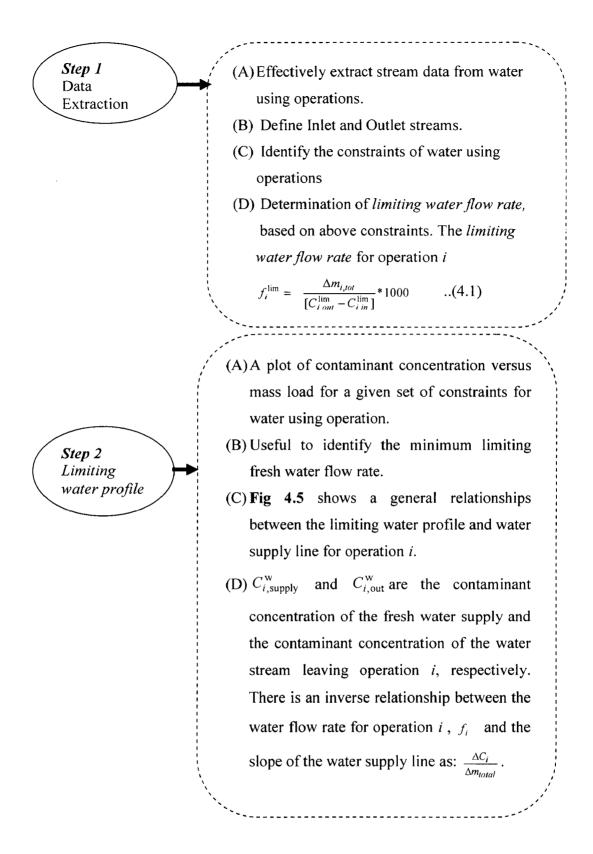
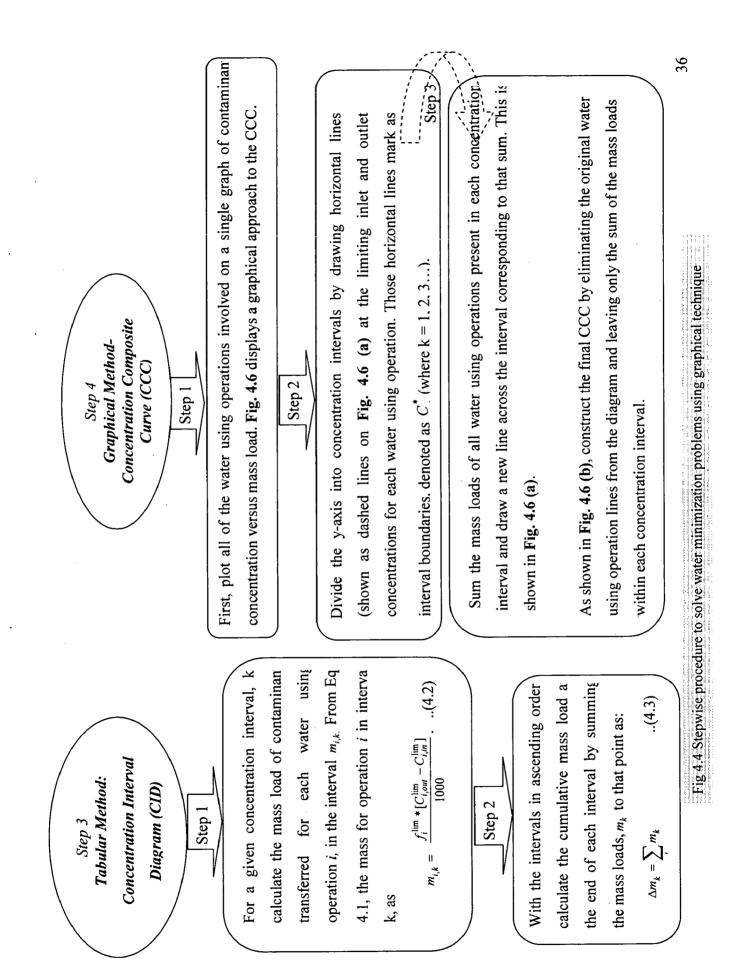
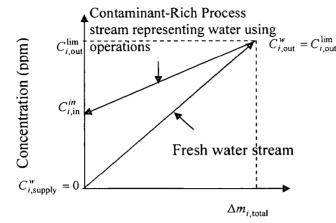
Fig. 4.2 (a) to (c) represents the schematic representation of three approaches of water Pinch technology [Smith, 1995].

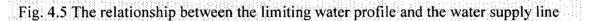
regeneration-recycle

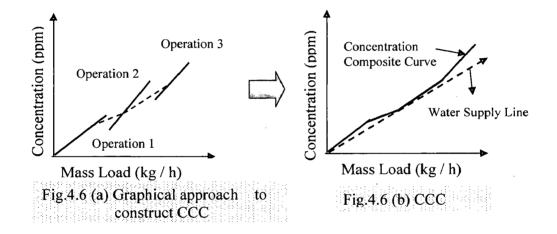
Fig 4.2 Schematic diagram explaining different approaches for water minimization

4.2.1 Solution Methodology

In this section of the chapter, the solution technique required for waste water minimization problems is discussed. Fig.4.3 represents the pre-selection strategically approach to solve water minimization problems using different approaches. Since this dissertation report considers only retrofitting problems and hence approach of process changes is not considered to obtain the modified water networks. The stepwise procedure is presented in Fig. 4.4. The first step is to identify potential water consuming operations along with stream data including constraints for different water using operations. The next step is to analyze the system without any water reuse. And then different approaches of water pinch technology such as reuse, regeneration-reuse and regeneration-recycling should be investigated. For the water reuse, feasibility of reuse of water from one water using operation to other has been identified and necessary water requirement is to be estimated. In second approach of regeneration-reuse, additional equipments for regeneration are used to regenerate waste water from water using operation. Then distribution of regenerated water is carried out for other water using operations. If recycling of water within operation is feasible then case has been considered as regeneration-recycling. The above approaches are discussed step wise in detail:

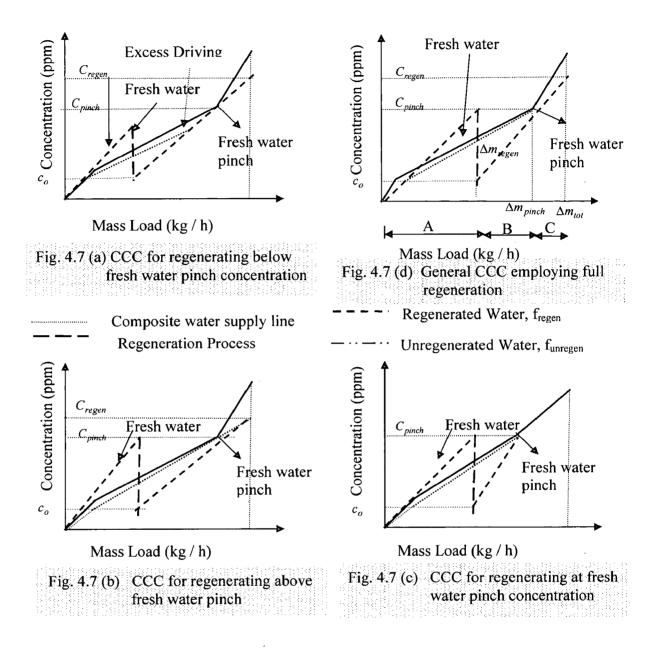






Fig. 4.3 Pre selection strategies for different approaches to solve water minimization problems



Mass Load (kg / h)

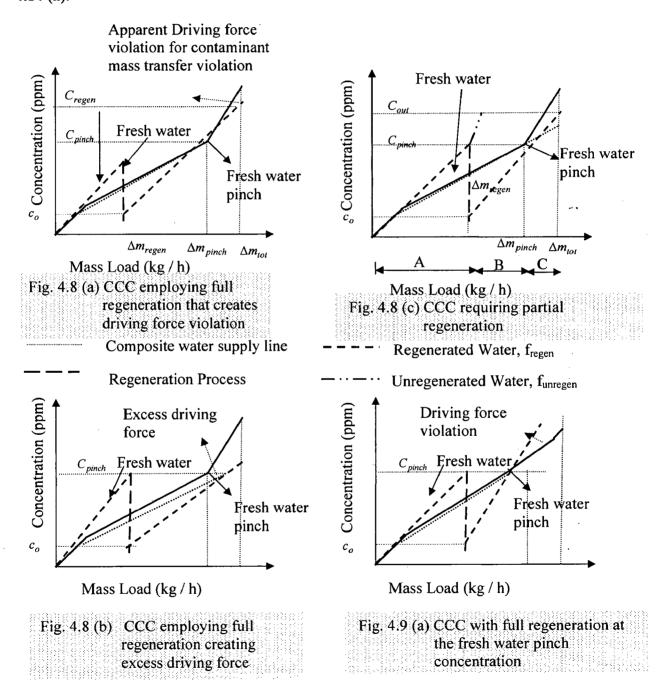
Once the CCC has been established, the minimum fresh water flow rate can be obtained by drawing the water supply line on the CCC curve as shown in Fig. 4.6 (b). A MATLAB program is developed to generate CID and CCC. The programming code and necessary algorithm is shown in APPENDIX C.


4.2.2 Regeneration-reuse technique

The concept of *regeneration reuse* is divided in to four categories depending on water-using operations and is discussed in different sections. These are, *full regeneration & fresh water pinch, partial regeneration & regenerated water pinch, full regeneration & regenerated water pinch* and *Partial regeneration & fresh*

water pinch. The first category *full regeneration* & *fresh water pinch* refers to a process that increases the opportunities for water reuse through regeneration of all streams once these reach the optimal regeneration concentrations. All streams enter the regeneration process at the concentration of C_{regen} & this concentration is reduced to the minimum outlet concentration C_0 . The second category uses the concept of *partial regeneration* & *regenerated water pinch*, when it is not possible to use full regeneration due to driving force violation that prevents the mass transfer of the contaminant from the water-using-operation to the fresh water. In some cases, the use of regenerated water may cause a portion of the CCC to lie below the regenerated water stream line. In this scenario the use of *full regeneration* & *regenerated water pinch* is recommended. The fourth category *Partial regeneration* & *regenerated water pinch is* used where full regeneration is impossible as the CCC falls below the regeneration concentration.

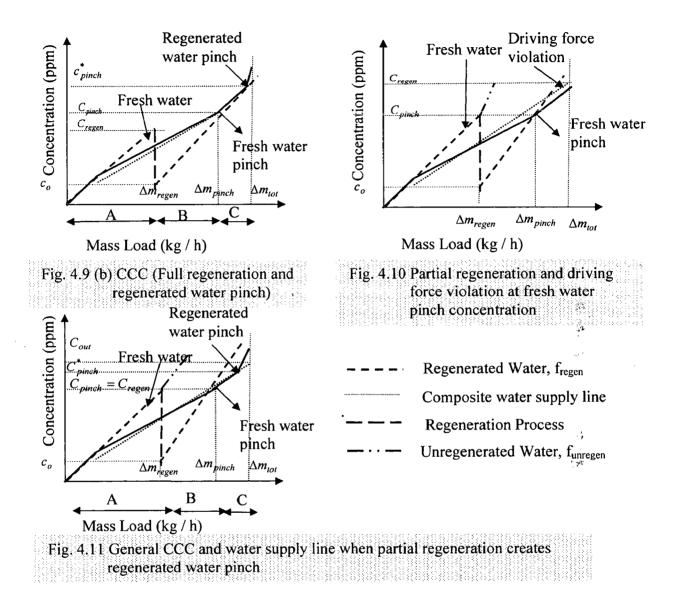
(A) Full Regeneration & fresh water pinch


Full regeneration refers to a process that increases the opportunities for water reuse through regeneration of all streams once they reach the optimal regeneration concentration. All the streams enter the regeneration process at a concentration of C_{regen} . This concentration is reduced to the minimum outlet concentration of the regeneration process C_{o} . All streams exit at the same flow rate. The flow rate is constant before and after regeneration. In this thesis, the water stream prior to regeneration is referred as fresh water stream and water stream after regeneration process, is referred as regenerated water streams. Wang and Smith (1994) concluded that, for simple regeneration problems, the optimal regeneration concentration is the fresh water pinch concentration. Fig. 4.7 (a) to (c) explains three different scenarios when streams are regenerated below, above and at fresh water pinch concentration. To determine the optimal fresh water flow rate while keeping the regeneration concentration constant at the fresh water pinch concentration, the mass loads of contaminant labeled as "A", "B" and "C" in Fig. 4.7(d) are added and transferred to water stream which together forms the fresh water supply. The detail computational steps are shown in Fig. 4.14 (a). Fig.4.7 (d) also represents the CCC when full regeneration with fresh water pinch is applied.

(B) Partial Regeneration and Fresh water pinch

In some cases, the shape of the portion of the CCC below the regeneration concentration may influence the targeted minimum flow rate of fresh water. As shown in **Fig. 4.8 (a),** CCC employing a full regeneration process creates a driving force violation that prevents mass transfer of the contaminants. For such cases, enough fresh water is to be supplied, to achieve the contaminant removal below C_{o} , the region below C_{o} has been treated as separate problem. If the water stream at the

pinch concentration has been fully regenerated at the pinch concentration, then excess driving force is available as shown in Fig. 4.8(b). This excess driving force allows reducing the cost of regeneration process by partially regenerating water stream. Fig.4.8 (c) is a general CCC when partial regeneration is optimal. The flow rate of water to be regenerated is determined by the concentration interval between C_o and the pinch concentration. The detail computational steps are shown in Fig. 4.14 (a).


(C) Full Regeneration & regenerated water pinch

In some cases, the use of regenerated water may cause a portion of the CCC above the fresh water pinch to lie below the regenerated water stream. Here, fresh water pinch has been referred as the pinch point created when fresh water is used and regeneration in not allowed. **Fig.4.9(a)** represents the CCC & water supply lines with full regeneration, at the fresh water pinch concentration, it can be seen that a driving force violation above fresh water pinch concentration occur. To eliminate this driving force violation, the fresh water flow rate increases until the regenerated water stream just intersects the CCC above the fresh water pinch. This intersection point represents a new pinch, called the regenerated water pinch. **Fig.4.9 (b)** represents CCC and water supply line with full regeneration and regenerated water pinch concentration. The detail computational steps are shown in **Fig. 4.14** (**b**)

(D) Partial Regeneration & fresh water pinch

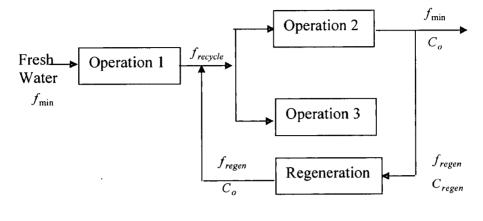
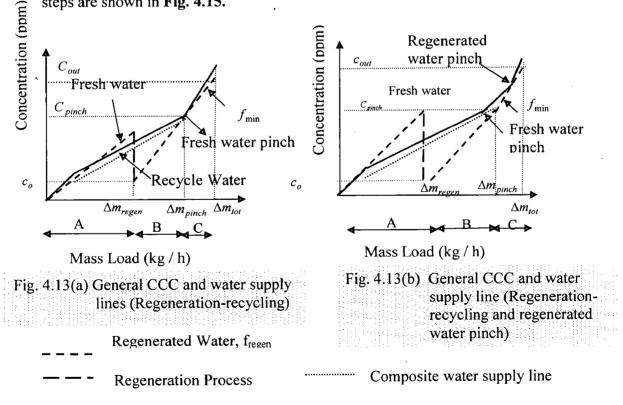
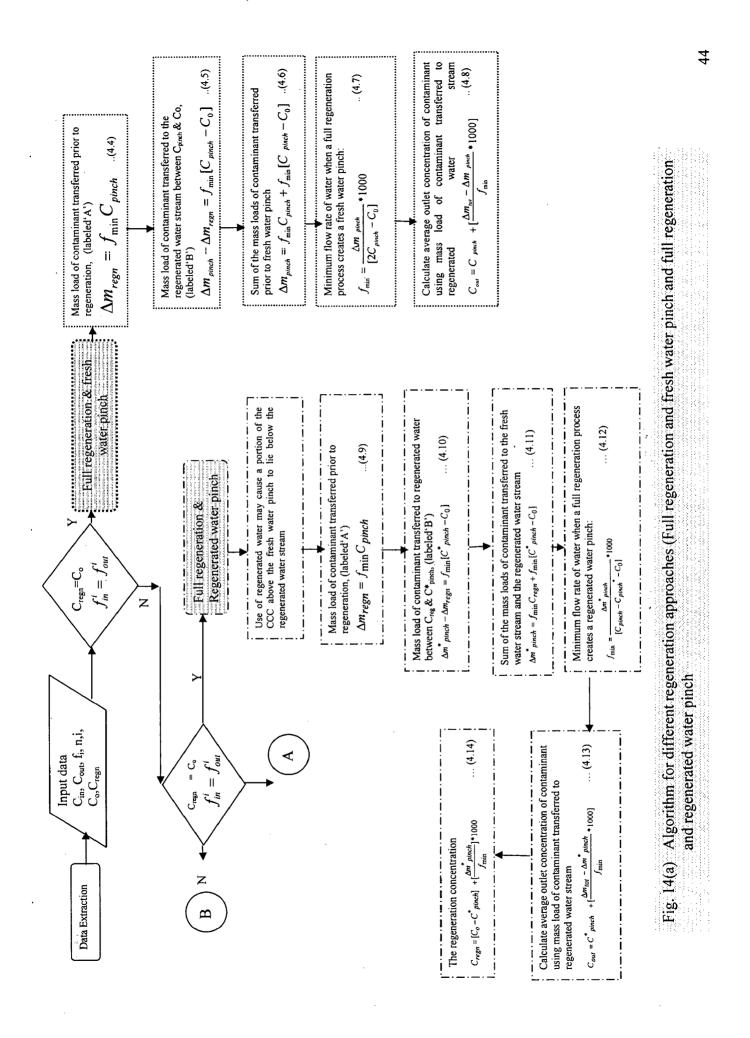
As discussed in case of (C), where full regeneration is impossible due to the shape of the CCC below the regeneration concentration, greater flow rate of fresh water will be required. It also requires to partially regenerating the fresh water stream. However, in some cases there will be a possibility of driving force violation as shown in **Fig.4.10**. In such cases, regeneration flow rate is required to increase to eliminate a driving force violation above the fresh water pinch concentration.

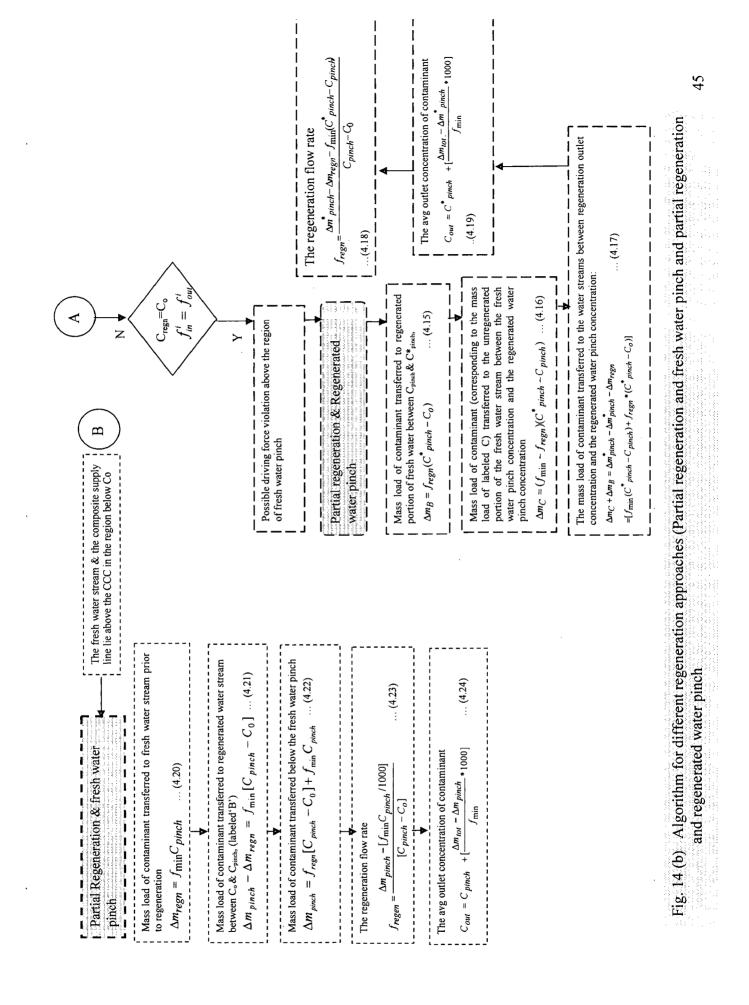
As shown in Fig. 4.11, the fresh water stream, at a flow rate f_{\min} , is regenerated from the fresh water pinch concentration to the regeneration outlet concentration. The regeneration flow rate f_{regen} is just sufficient to the cause a regenerated water pinch, at C_{pinch}^{*} and Δm_{pinch}^{*} , above the fresh water pinch concentration. The flow rate of the unregenerated portion of fresh water stream is $f_{unregen}$. The detail computational steps are shown in Fig. 4.14 (b).

4.2.3 Regeneration-Recycling technique

Fig 4.12 illustrates a water using network with *regeneration recycle*. Fig.4.13 (a) represents a general CCC and optimal water supply line when regeneration recycle is allowed. The fresh water flow rate continues at a flow rate, f_{min} , to the fresh water pinch concentration $C_{regen} = C_{pinch}$, prior to regenerating to the regeneration outlet concentration, C_o . With recycle it is possible to supply a wide range of flow rates of regenerated water to the region above the regeneration outlet concentration.

This recycle flow rate can be larger than the minimum fresh water flow rate that is determined by the CCC in the region below C_o . The regenerated water flow rate to be selected exactly equal to that required to pinch at the fresh water pinch.


Fig. 4.12 Water using network with Regeneration-recycle

(A) Regeneration-recycling and regenerated water pinch

Fig. 4.13(b) represents a general CCC where regeneration recycle causes a regenerated water pinch. In the figure, the regeneration flow rate is chosen to create a regenerated water pinch above the fresh water pinch. The detail computational steps are shown in Fig. 4.15.

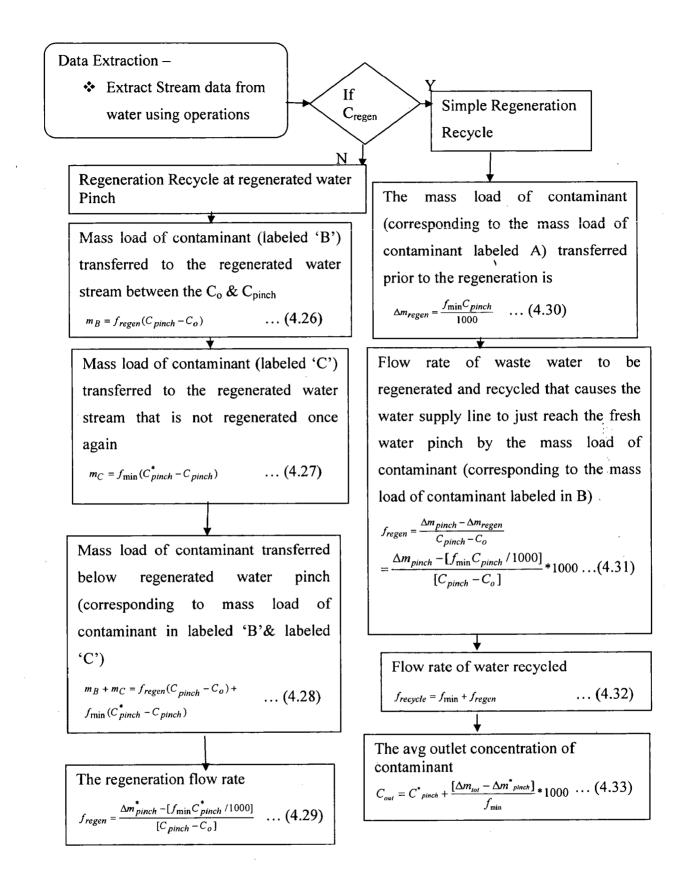
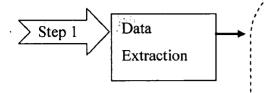


Fig. 15 Algorithm for regeneration-recycling approach


4.3 Approach of Maan and Liu (Using concept developed by Wang and Smith)

When dealing with the multiple-contaminant problems, the design methodology for single contaminant cannot be used anymore. In multiple contaminant system, the key contaminant of each unit is different which is related to the water source to the unit. So the inlet and outlet flow rate allocation of each unit is difficult to specify because its freshwater consumption is close related to the choice of its sources. Due to the complexity, the design for water networks with single contaminants based on internal mains cannot be extended to that of multiple-contaminant systems.

The road map is first to identify the limitations of the single contaminant approach to multiple contaminant systems. Using concentration interval diagram (CID), concentration composite curve and water supply line to find the minimum fresh water flow rate in a multiple contaminant system. The next step is to investigate whether feasibility of reusing water leaving one water using operation within another operation with respect to secondary contaminant is possible or not. This procedure involves shifting the inlet and /or outlet concentration. The necessary design equations and methodology has been adapted from Mann & Liu (1999). In solving waste water minimization involving multi contaminants system, there are two well known schools of thoughts, i.e. the conceptual approach based on graphical analysis and mathematical programming approach based on MINLP. Both approaches discussed in following sections briefly:

4.3.1 Graphical technique

The graphical approach involves tools of concentration interval diagram, concentration composite curve and water supply lines to find the minimum fresh water flow rate in a multiple contaminant systems. The stepwise procedure is explained below:

Limiting

water profiles

Step 2

A set of *i* water-using processes involving a set of *J* contaminants. The problem formulation starts by defining for each process the limiting water flow rate f_i , the inlet concentration limits C_{in} and outlet concentration limits C_{out}

$$C_{i,in} = \{C_{i1,IN}, C_{i2,IN}, C_{i3,IN}, \dots, C_{iJ,IN}\} \dots (4.4)$$
$$C_{i,out} = \{C_{i1,out}, C_{i2,out}, C_{i3,out}, \dots, C_{iJ,out}\} \dots (4.5)$$

Where $C_{ij,IN}$ and $C_{ij,out}$ are the inlet and outlet concentration limits of process *i* with respect to contaminant *J*.

The limiting water profiles useful to determine the concentration level at which contaminant B limits water reuse. The limiting water profile is a plot of concentrations of contaminant A at the inlet and outlet of each operation versus the total mass of A transferred. Fig 4.16 shows the general representation of limiting water profiles. Fig 4.16 the concentrations of shows contaminants A & B at each CIB (concentration interval boundary) in brackets for each operation. For two contaminants A, B, the water supply line gives the proportional mass transfer relationship:

$$\frac{C_{iA,n} - C_{iB,n}}{C_{iA,out} - C_{iB,in}} = \frac{C_{iB,n} - C_{iB,n}}{C_{iB,out} - C_{iB,in}} \quad ... (4.34)$$

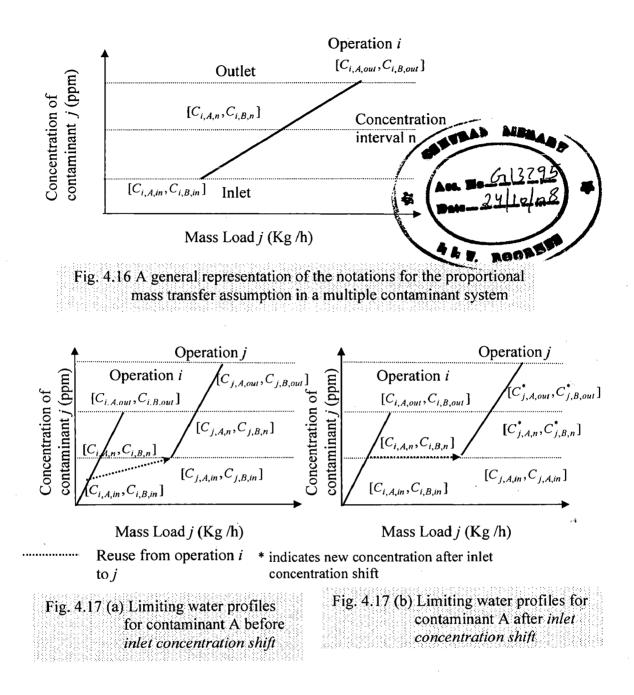
Step 3

Method of concentration shift

Inlet Concentration shift & water reuse and feasibility

In order to maintain the feasibility of reuse of water from one operation to another operation, sometimes it is necessary to perform *inlet concentration shift* of contaminant as shown in **Fig. 4.17**. As shown in it, consider two operations *i* and *j*, involving two contaminants A and B.

Fig.4.17 (a) represents the limiting water profiles for contaminant A prior to an internal concentration shift and **Fig. 4.17(b)** represents the same following an inlet concentration shift on operation *j*.


Outlet Concentration shift & water reuse feasibility

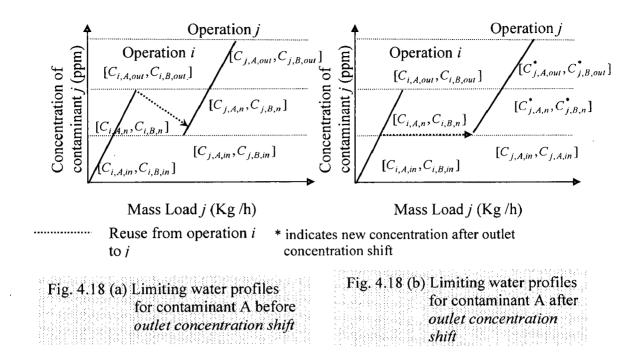

The next step is to investigate the feasibility of reusing the water from the outlet of operation i within operation j. Fig.4.18 (a) represents the limiting water profiles for contaminant A prior to an internal concentration shift.

Fig. 4.18(b) shows the limiting water profiles for operation *i* and *j* to aid in determination of the reference concentration of the contaminant at the outlet of operation *j*, $C_{j,out}^*$ assuming A to be limiting. Eq.4.8 is used to determine the reference concentration.

 $\frac{C^{*}_{j,n} - C^{*}_{j,nin}}{C^{*}_{j,out} - C^{*}_{j,in}} = \frac{C_{j,A,n} - C_{j,A,in}}{C_{j,A,out} - C_{j,A,in}}$

..(4.35)

4.3.2 Design Equations for finding the minimum freshwater flow rate.

This section first develops the design equations for finding the minimum fresh water flow rate. As shown in **Fig.4.19**, consider the general concentration –interval boundary. There are three types of operations existing at this interval. In **Fig.4.20**, $T_{i,n}$ and $T_{i,n+1}$ represent the flow rate of water available for reuse within the operation *i* at the concentration interval boundaries n & n+1 respectively. $W_{ij,n}$ and $W_{ij,n+1}$ denote the concentrations (ppm) of contaminant j in operation i in water streams available for water reuse within operation *i* with flow rate $T_{i,n}$ and $T_{i,n+1}$ respectively. $F_{i,n}$ is the flow rate of fresh water supplied to operation *i* at the concentration interval boundary *n*. $q_{ii,m\leq n}$ is the flow rate of water from operation *i* at the concentration interval boundary *n* that is supplied by (or reused from) operation *l* at a concentration interval boundary *m* smaller than *n* and $W_{ij,m\leq n}$ is the corresponding concentration of the contaminant *j* in the water stream with flow rate $q_{li,m\leq n}$.

Stepwise procedure to calculate the fresh water requirement of each operation at each concentration-interval boundary as follows (Wang and Smith (1994)):

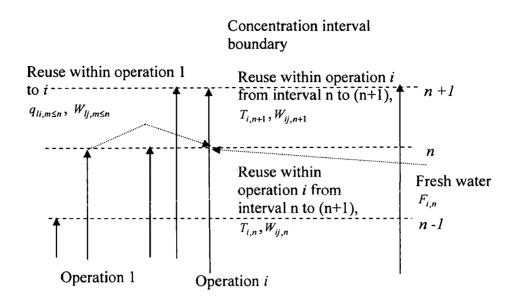
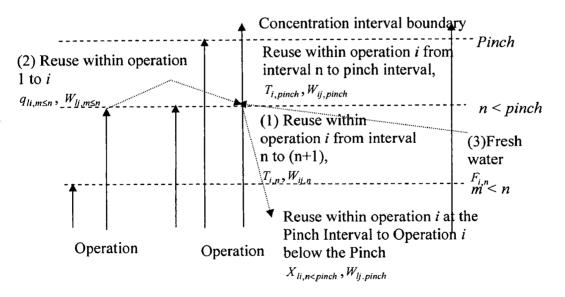
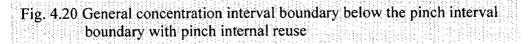




Fig. 4.19 General concentration interval boundary below the pinch interval boundary

4.3.3 Pinch Interval Water reuse

In some cases, the design equations for multiple contaminant targeting will not be appropriate for concentration interval boundary below the pinch. This is because of the possibility of reusing water that has reached the pinch interval boundary at the preceding interval boundaries. In such cases, it is necessary to consider the possibilities of reusing water that has reached the pinch interval boundary in other operations in previous intervals (Wang & Smith, 1994). The problem is solved by using Eq.36 to 45 as given below:

Define the fraction $\phi_{i,n}$ as the ratio of the actual flow rate to operation i at $\phi_{i,n} = \frac{f_{i,n}}{f_i}$... (4.36) Step 1 concentration interval boundary *n*, $f_{i,n}^*$ to the limiting flow rate to operation *i as* ..(4.37) The required flow rate for $f_{i,n}^* = \phi_{i,n} f_i$ operation *i* is then The fresh water requirement, outlet concentrations and outlet flow rates Step 2 of each operations that begins at the $\phi_{i,1} = \max_{j} \left[\frac{C_{ij,2} - C_{ij,1}}{C_{ij,2}} \right] \cdots (4.38)$ first concentration-interval boundary (n = 1) using Eq.4.9 and Eq. 4.10. It possible to identify which is contaminant requires the greatest fraction of the limiting flow rate for each operation through Eq.4.11. After identifying the limiting in each operation, contaminant calculate the freshwater requirement Step 3 for each operation through Eq.4.10 $\phi_{i,1}f_i = F_{i,1} = T_{i,2}$.. (4.39) or 4.12, which also provides the flow rate of water available for water reuse in the same operation at the second concentration interval boundary: The change in concentration $W_{ij,2} = W_{ij,1} + \frac{f_i(C_{ij,2} - C_{ij,1})}{T_{i,2}} \dots (4.40)$ in the water passing through each operation is obtained through Eq. 4.13

Evaluate the fresh water requirement, outlet concentrations, and outlet flow rates of each operation at the next concentration-interval boundary. Any operation that ends at this concentration interval boundary is eligible for reuse in other operations existing at this concentration interval boundary. Eq. 4.14 to 4.16 solve simultaneously for the freshwater requirement.

$$f_{i^*,n} = T, n_i + q_{l,i} + F_{i,n} = \phi_{i,n} f_i \qquad ...(4.41)$$

$$\phi_{i^*,n} = \max[\frac{C_{ij,n+1} - C_{ij,n}}{2}] \qquad ...(4.42)$$

$$\frac{\varphi_{i,n} - \max_{j} C_{ij,n+1} - W_{avgij,n}}{T W_{in} + \sum_{j} a_{ij} - W_{ij}}$$

$$W_{avgij,n$$

Calculate the flow rate and concentrations of water available for reuse in the next

Step 4

$$T_{i,n+1} = F, n_i + T_{i,n} + \sum_i q_{ii,m < n} \dots (4.44)$$
$$W_{ij,n+1} = W_{avgij,n} + \left[\frac{f_i * (C_{ij,n+1} - C_{ij,n})}{T_{i,n+1}}\right] \dots (4.45),$$

Fig. 4.20 illustrates the general concentration -interval boundary
immediately below the pinch. When considering concentration interval
boundaries below the pinch (
$$n < pinch$$
), the total flow rate to an
operation *i* at this interval by Eq. 4.46

 $f^*_{i,n

Where the new water sources $X_{i_i,n h is the flow rate returned from
operation 1 at the pinch interval boundary to operation *i* at the n^{th}
concentration interval boundary ($n < pinch$). The flow rate weighted
concentration of contaminant *j* in operation *i* at the n^{th} concentration
interval boundary, based on four water sources by Eq.4.20
Calculate the flow rate and concentrations of water available for reuse in
the next concentration interval from
 $W_{men:nexm} = \frac{T_{i,nym}W_{i,nym} + \sum_{i}q_{i,nx} + \sum_{i}X_{i,nym}W_{i,nx} + \sum_{i}X_{i,nym}W_{i,nx}} \dots (4.47)$
The Eq. 4.37, 4.39 and 4.43 reduces to following Eq. 4.48, 4.49, 4.50
when no fresh water is allowed:
 $f_{i,r,pinch} = T_{i,pinch} + q_{h,m
 $\psi_{upinch} = max[\frac{C_{u,pinch+1} - C_{u,pinch}}{C_{U,pinch+1}} - \frac{C_{u,pinch}}{T_{i,pinch}}W_{u,m, ...(4.50)$$$$

٩

•

,

.

.

Evaluate the possibility of reusing each water stream available at the pinch interval into each operation that exists at the previous concentration intervals.

$$\phi_{i,n

$$T_{i,n$$$$

$$W_{avgij,n$$

The highest ranking reuse option is made and the concentrations at the pinch interval are updated for operation i.

Reevaluate the potential fresh water savings for each stream involved in the reuse options made in step 5 and repeat until no other reuse options

4.4. Approach of Kim and Smith (2001)

Step 4

Step5

Step6

Designing steps for cooling water networks

The current practice for cooling water network design most often follows parallel network configurations, where cooling water with the same temperature is supplied to all coolers. However, coolers do not always require cooling water at the same cooling water supply temperature when inlet cooling water temperature conditions are not too sensitive to the thermal performance of coolers. Appropriate manipulations of cooling water conditions to the coolers might allow the cooling water network to be changed from a parallel to a series design and/or combined series-parallel design. Cooling water configurations with cooling water reuse will return cooling water with a higher

temperature and lower flow rate, where the cooling tower removes more heat from the water and allows a higher heat load for the tower. Based on this idea, retrofit design methods for cooling systems had been developed by Kim & Smith as shown below:

Step 1: Define a limiting cooling water profile

"A limiting cooling water profile" is defined as the inlet and outlet temperatures for a cooling water stream that features the maximum allowable temperatures. These are chosen to comply with the thermal performances of an existing cooler in retrofit cases. These limiting conditions are limited by the "minimum temperature difference" (ΔT_{min}) or other process constraints. Fig. 4.21 represents the temperature-enthalpy curve (limiting cooling water profile) for each individual stream.

Step 2: Construct a cooling water composite curve (CWCC)

A "cooling water composite curve" is constructed by combining individual limiting profiles as shown in **Fig. 4.22**. This single composite curve is created by adding all enthalpy changes within the same temperature interval and representing it as a single line. The design of the cooling water network will be based on the cooling water composite curve, which represents overall limiting conditions of the whole network.

Step 3: Identification of feasible design region for cooling water supply

The cooling water supply line can be drawn against the composite curve. An increase in slope of a supply line indicates a decrease in a flow rate and increase in temperature for cooling water return to the tower. A lower bound of flow rate corresponds with a parallel network design of coolers, while an upper bound of flow rate is limited by the composite curve creating a pinch. As shown in **Fig.4.22**, the cooling water supply line is a straight line matched against the cooling water composite curve to represent the overall cooling water flow rate and maximum rise in temperature achieved by the said flow rate. Maximizing the outlet temperature of the cooling water supply line is maximizing the flow rate of cooling water by maximizing cooling water re-use.

The procedure of cooling water networks is divided into two parts: targeting and design.

Step 4: Targeting cooling water supply conditions to cooling tower

As different cooling water streams can have different exit (return) temperatures, it will affect the performance of the cooling tower, where the desired heat removal from the cooling water is achieved. The maximum input temperature and cooling water flow rate to cooling tower is fixed by the cooling water supply line for maximum reuse (upper bound).

Step 5: Design of cooling water network

The implementation of limiting water flow rate and maximum discharge temperature from cooling water network, determined in step 4, requires that a new configuration of coolers be designed to achieve the target conditions.

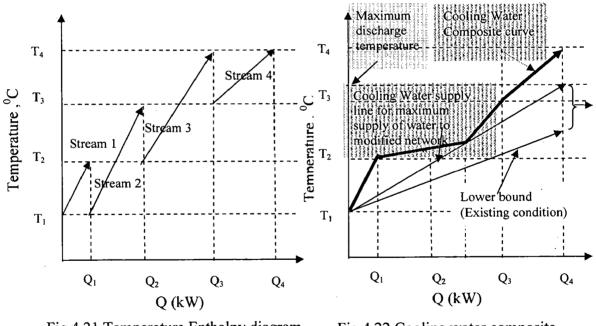


Fig.4.21 Temperature Enthalpy diagram of different streams involved in a network

Fig.4.22 Cooling water composite curve targeting for maximum reuse

CHAPTER 5

RESULTS AND DISCUSSIONS

This Chapter discusses the results obtained by solving different water system design problems (as defined in chapter 3 as problem 3.1 to 3.5). The stream input data for these problems are given in Table 3.1, Table 3.2, Table 3.3 (a) & 3.3 (b), Table 3.4 and Table 3.5. The description, of these problems, is provided in Appendix-A (A.1 to A.5). These water system design problems are analyzed and optimum designs of water using networks were developed by different solution techniques as explained in detail in Chapter 4.

5.1 SALIENT RESULTS OF PROBLEM 3.1

In the present case study the saving of DM water and decrease of waste water can be done through several means, which includes *reuse, regeneration-reuse* and regeneration-recycling.

5.1.1 Water *Reuse* technique

The first step in the present investigations is to save DM water by allowing reuse of it. Using the computer program developed in MATLAB, the CID has been generated and tabulated in Table 5.1. Accordingly the CCC for the problem has been plotted and shown in Fig. 5.1.

Table 4 which is prepared to find out the extent of reuse shows that minimum fresh water requirement is 31.9 tph when reuse is allowed in the network and freshwater pinch concentration is 30 ppm. It can be seen that before the application of water pinch the DM water consumption was 50 tph. Fig.5.1 shows how the minimum fresh water flow (31.9 tph) rate is arrived at using

the CCC. Fig. 5.2 shows the block diagram of the modified network which can facilitate water reuse.

Concen. (ppm)	1	2	3	4	Mass Load (kg/h)	Cumul. Mass Load (kg/h)	Flow rate (tph)
1	≜					0	0
					0.05		
5						0.05	9.6
					0.13		
10		▲				0.18	1.78
					0.4		
20			▲			0.58	28.9
	••••••••••••••••••••••••••••••••••••••				0.38		
30						0.96	31.93
					0.24		
40	1					1.2	29.95
	• •				2.6		
300						3.8	12.66

 Table 5.1 CID for water reuse technique

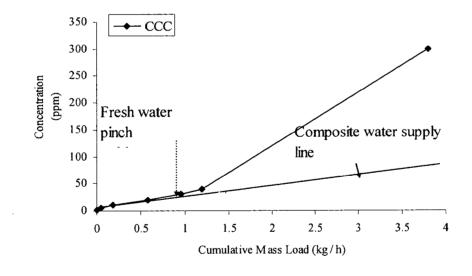
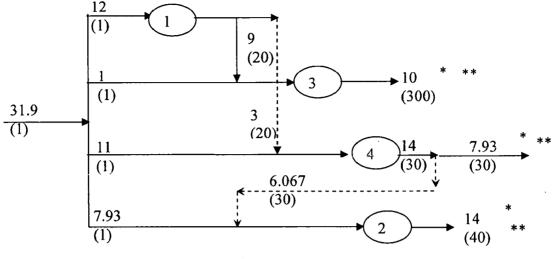



Fig.5.1 CCC and Composite water supply line (reuse technique)

* Total Discharge: Waste Water 31.9 tph, Concentration of Solids: 118.94 ppm

** Total Solids in discharge = 3.8 kg / h

Fig. 5.2 Modified water network (reuse technique)

5.1.2 Water regeneration-reuse technique

The second step in the further reduction of DM water and waste water is to go for *full* regeneration & *regenerated water pinch*. For this purpose **Table 5.2** is generated. It shows that the DM water flow rate can be further decreased to 307.2 tph. In this case also the fresh water pinch remains at 30 ppm. **Fig.5.3** shows how the fresh water consumption in the case of *full regeneration* & *regenerated water pinch* .is arrived at. **Fig. 5.4** shows the block diagram of the modified network which can facilitate *full regeneration* & *regenerated water pinch* to decrease the fresh water consumption

Note: Values shown without brackets are flow rates of DM water in tph where as value within small brackets are concentration of contaminants in ppm.

61

÷2

Concen. (ppm)	1	2	3	4	Mass Load (kg/h)	Cumul. Mass Load (kg/h)	Flow rate (tph)
1	1					0	0
					0.05		
5				↑		0.05	9.6
					0.13		
10		†				0.18	17.80
,					0.4		
20			≜			0.58	28.90
					0.38		
30	*****					0.96	31.93
				· · · ·	0.24		
40						1.2	29.95
					2.6		
300						3.8	12.66

 Table 5.2 CID for regeneration technique

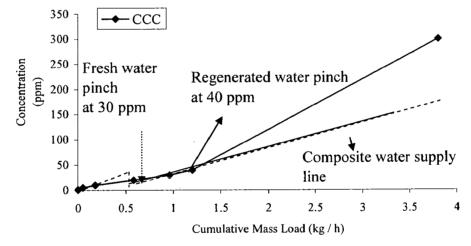


Fig. 5.3 CCC and composite water supply line (regeneration -reuse technique)

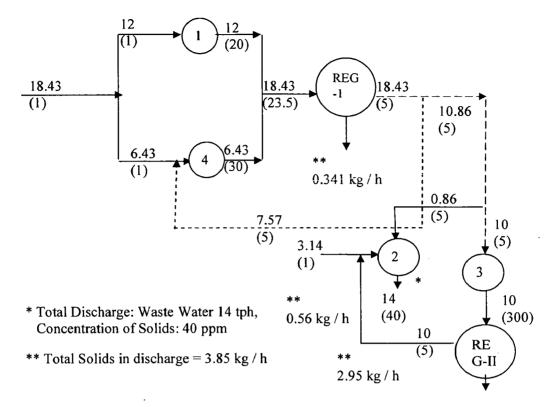
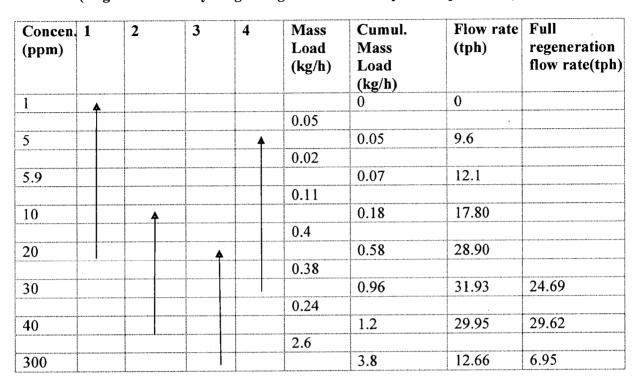
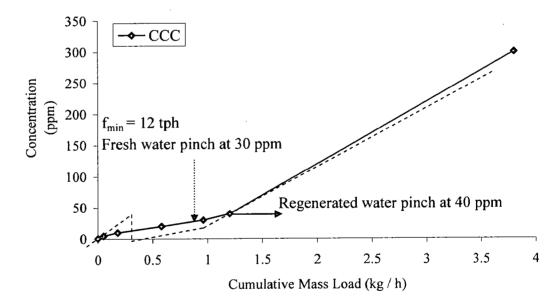



Fig. 5.4 Modified Water Network (regeneration -reuse technique)


5.1.3 Water regeneration-recycling technique

In the third step the fresh water content is further decreased by using the concept of *regeneration-recycle*. For this purpose **Table 5.3** is generated. It clearly shows that the fresh water consumption has further been decreased to 120 tph. The methodology of determination of fresh water consumption using the concept of *regeneration-recycle* is shown in **Fig. 5.5**. The modified network which based on the above concept is given in **Fig. 5.6**.

Note: Values shown without brackets are flow rates of DM water in tph where as value within small brackets are concentration of contaminants in ppm.

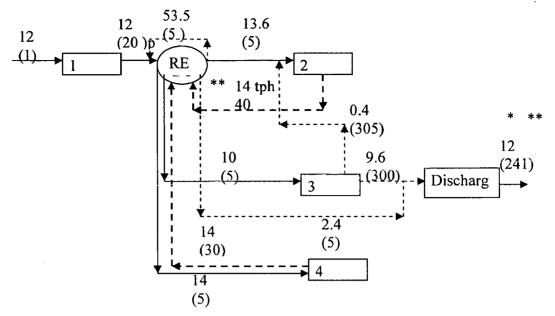


Table 5.3 CID for regeneration-recycling technique

(Regeneration recycling at regenerated water pinch is provided.)

Fig. 5.5 CCC for Modified Water Network (regeneration -recycling technique)

* Total Discharge: Waste Water 12 tph, ** Total Solids in discharge = 3.8 kg / h Concentration of Solids: 241 ppm

Fig. 5.6 Modified Water Network (regeneration -recycling technique)

Note: Values shown without brackets are flow rates of DM water in tph where as value within small brackets are concentration of contaminants in ppm.

The detail calculation of cost benefit analysis has been explained in section 6.2 of chapter 6.

5.2 SALIENT RESULTS OF PROBLEM 3.2

The first step in the present investigations is to save DM water by allowing reuse of these in their respective networks. Using Algorithm and program developed in MATLAB, the CID of DM water using operations has been generated and tabulated in **Table 5.4**. **Table 5.4** which was prepared to find out the extent of reuse of DM water shows that minimum DM water requirement is 59.8 tph when reuse is allowed in the network and DM water pinch concentration is 60 ppm. It can be seen that before the application of water pinch the DM water consumption was 69 tph. **Fig. 5.7** shows how the minimum DM water flow (59.3 tph) rate is arrived at using the CCC. **Fig. 5.8** shows the block diagram of the modified network which can facilitate DM water reuse to decrease the DM water consumption.

The second step in the further reduction of DM water and waste water is to go for *full* regeneration & regenerated water pinch. Using Algorithm shown and program developed in MATLAB, the CID of DM water using operations has been generated and tabulated in **Table 5.5**. It shows that the DM water flow rate can be further decreased to 34.5 tph. In this case also the DM water pinch remains at 60 ppm and regenerated water pinch occurs at 200 ppm. Fig. shows how the DM water consumption in the case of full regeneration & regenerated water pinch is arrived at. **Fig. 5.9** shows the block diagram of the modified network which can facilitate *full* regeneration & regenerated water consumption

 Table 5.4 CID of DM water using operations, representing limiting water flow rate & water pinch point

Concen. (ppm)	PS- I	PS- II	R	DW	S-4	Mass Load (kg/h)	Cumulative Mass Load (kg/h)	Flow rate (tph)
1	A						0	0
						0.12		
5		4					0.12	24
		T				0.2		
10			A				0.32	32
						0.26	1	
15				A '	••••••	araa (maa araa ahaa ahaa ahaa ahaa ahaa ka maa ahaa ah	0.58	38.67
						0.64		
25					≜		1.22	48.80
						1.73	41.61.61.61.61.61.61.61.61.61.61.61.61.61	, , , , , , , , , , , , , , , , , , ,
50							2.95	59.00
						0.64		
60							3.59	59.83
						4.76		
200				1			8.35	41.75
			<u> </u>			3.60		
350				H			11.95	34.14
			1			1.56		
480			++				13.51	28.15

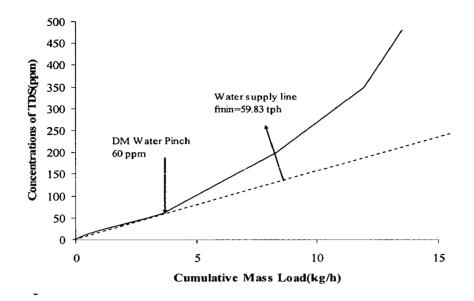


Fig. 5.7 CCC for Modified Water Network (reuse technique)

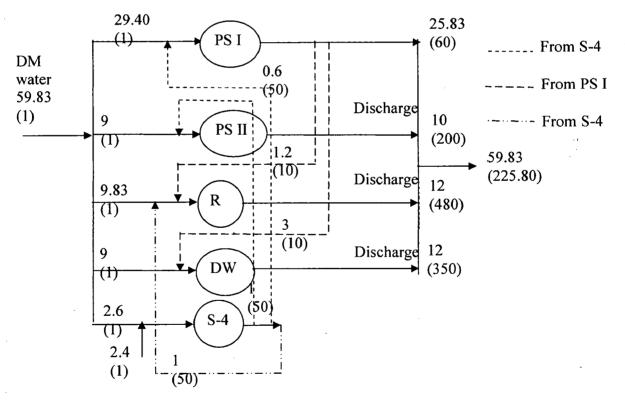


Fig. 5.8 Modified Water Network (reuse technique)

Note: Values shown without brackets are flow rates of DM water in tph where as value within small brackets are concentration of contaminants in ppm.

Concen. (ppm)	PS- I	PS- II	R	D W	S-4	Mass Load (kg/h)	Cumulative Mass Load (kg/h)	Flow rate (tph)	Full Regeneration flow rate (tph)
1	≜						0	0	
						0.12			
5							0.12	24	
						0.2			
10			1	-			0.32	32	
				1		0.26			
15				≜			0.58	38.67	
						0.64			
25							1.22	48.80	
						1.73			
50							2.95	59.00	
						0.64		n (, , , , , , , , , , , , , , , , , ,	
60							3.59	59.83	31.22
						4.76			
200		1				f	8.35	41.75	32.75
						3.60			
350	1	1	1	11	1		11.95	34.14	29.51
	1	 		1		1.56			
480			1	1			13.51	28.15	25.55

Table 5.5 CID of DM water network representing limiting water flow rate & water pinch point (full regeneration at regenerated water pinch (Co=5 ppm)

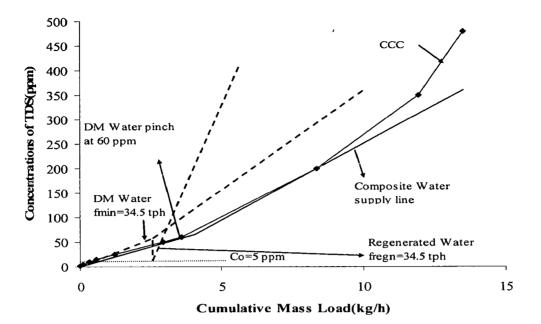


Fig. 5.9 CCC for Modified Water Network (regeneration-reuse technique)

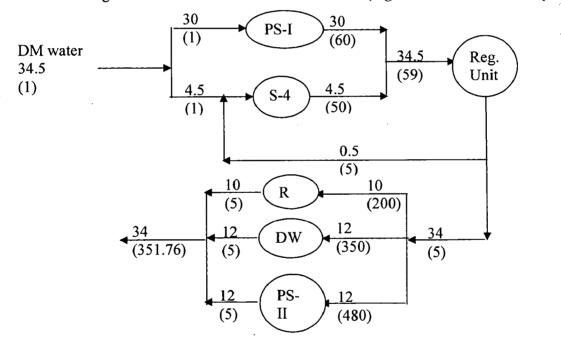


Fig. 5.10 Modified Water Network (regeneration-reuse technique)

Note: Values shown without brackets are flow rates of DM water in tph where as value within small brackets are concentration of contaminants in ppm.

In the third step the DM water content is further reduced by using the concept of *regeneration-recycling*. Using Algorithm shown and program developed in

MATLAB, the CID of DM water using operations has been generated and tabulated in **Table 5.6**. It shows that the DM water flow rate can be further reduced to 24 tph. In this case also the DM water pinch remains at 60 ppm. **Fig. 5.10** shows how the DM water consumption in the case of *regeneration recycling & regenerated water pinch*. is arrived at. **Fig. 5.10** shows the block diagram of the modified network which can facilitate *regeneration-recycle & regenerated water pinch* to decrease the DM

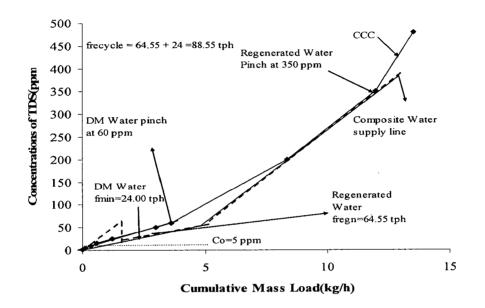


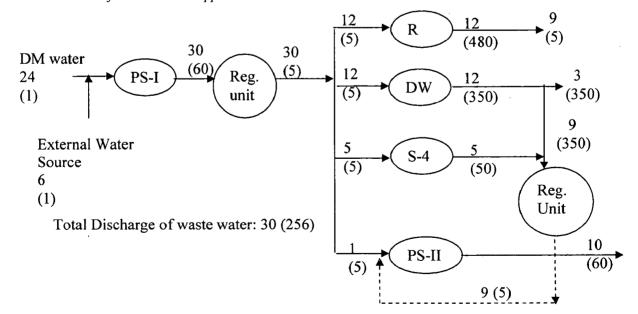
Fig. 5.11 CCC (regeneration-recycling technique)

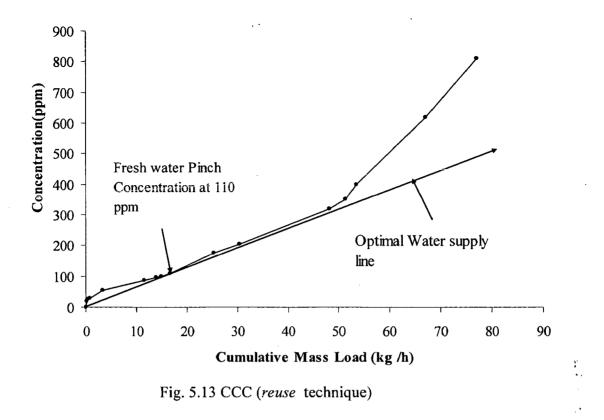
The detail calculation of cost benefit analysis has been explained in section 6.3 of chapter 6.

Concen.	PS-	PS-	R	DW	S-4	Mass	Cumulative	Flow rate	Regeneration
(ppm) I	I	II				Load	Mass	(tph)	Recycle
						(kg/h)	Load	· –	flow
							(kg/h)		rate (tph)
1	≜						0	0	
						0.12			
5							0.12	24	-
						0.2			
10							0.32	32	
a present d'anna da stat a da fair a participante da segun da fair da fair da fair da fair da fair da fair da f						0.26			
15			1				0.58	38.67	
						0.64		nangen af sen an	
25							1.22	48.80	
						1.73			
50							2.95	59.00	
						0.64			ennen sin ander ander en
60	† 						3.59	59.83	39.09
						4.76			
200						8.35	41.75	64.55	
	1					3.60			
350	1						11.95	34.14	64.55
	İ		1	 		1.56			
480			†- 	*** ***			13.51	28.15	36.18

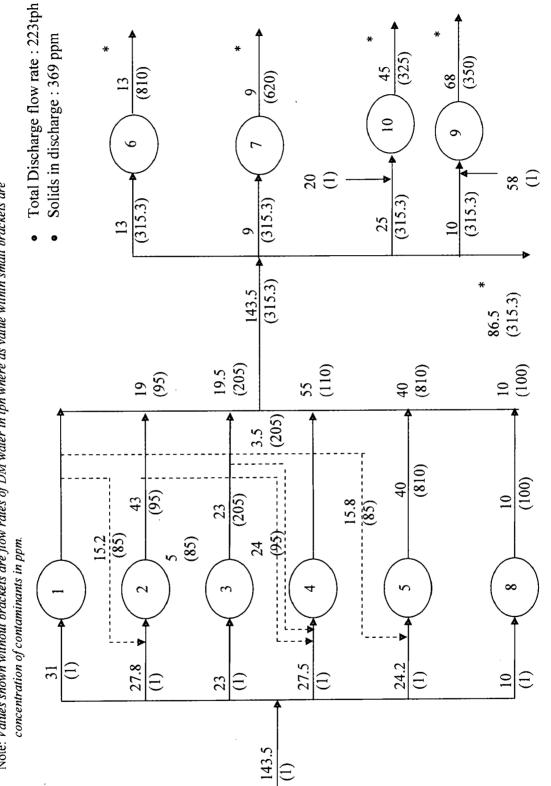
Table 5.6CID of DM water network, representing limiting water flow rate at
regeneration recycle & regenerated water pinch, Co = 5 ppm

Note: Values shown without brackets are flow rates of DM water in tph where as value within small brackets are concentration of contaminants in ppm.




Fig. 5.12 Modified Water network (regeneration-recycling technique)

5.3 SALIENT RESULTS OF PROBLEM 3.3


The first step in the present investigations is to save DM water by allowing reuse of these in their respective networks. Using Algorithm and program developed in MATLAB, the CID of DM water using operations has been generated and tabulated in **Table 5.7**. **Fig. 5.13** shows how the minimum DM water flow rate is arrived at using the CCC. **Fig. 5.14** shows the block diagram of the modified network which can facilitate DM water reuse to decrease the DM water consumption.

Concentration (ppm)	Mass Load (kg/h)	Cumulative Mass Load (kg/h)	Flow rate (tph)
·• - ·	Loud (Ng/N)		
0		0	0
	0.2		
20		0.2	10
	0.21		
25		0.41	16.22
	0.32 ,		
30		0.73	24.19
	2.68		
55	ſ	3.40	61.90
	8.11	- - - - - - - - - - - - - - - - - - -	
85		11.51	135.43
***************************************	2.39		
95		13.90	146.35
	0.98		
100		14.88	148.84
	1.86		
110		16.75	152.23
	8.52		
175		25.26	144.34
	5.28		
205		30.54	148.98
	17.6		
320	1 () () () () () () () () () (48.14	150.44
	3.24		
350		51.38	146.8
	2		
400		53.38	133.45
	13.64		
620		67.02	108.10
~-~	10.07		
810		77.09	95.17

 Table 5.7
 CID of DM water network, representing limiting water flow rate (reuse technique)

The detail calculation of cost benefit analysis has been explained in section 6.4 of chapter 6.

Note: Values shown without brackets are flow rates of DM water in tph where as value within small brackets are

74.

Fig. 5.14 Modified water network (reuse technique)

5.4 SALIENT RESULTS OF PROBLEM 3.4

Results & discussion

The initial study of the problem shows that by using the concept of reuse and recycle the water utilization can improve to a great extent and thus can decrease the waste water load on effluent treatment plant. The concept of regeneration has not been considered in the present study as it will require additional equipments.

The first step is to prepare water balance diagram of existing water using network. The next step is to use a heuristic approach to solve the problems using tools of concentration interval diagram, concentration composite curves and water supply lines to establish the minimum water flow rate in a multiple contaminant system. The next step is to investigate the feasibility of reusing the water leaving from one operation into another operation within the system. This involves shifting of the inlet & outlet concentration of operation in the plot of limiting water profiles as shown in **Fig. 5.15 to 5.19. Fig. 5.15** represents the limited water profiles for solid contaminant prior to concentration shifts where as **Fig. 5.16 to 5.19** shows how to determine concentrations of the contaminant (TDS) for reuse of water from outlets of Reactor 1 (R-1), Separators (S), Grinder (G) and Starch washing screen (SWS) respectively to other water using operations. Similar procedure is adopted for other contaminants such as TOC and TSS.

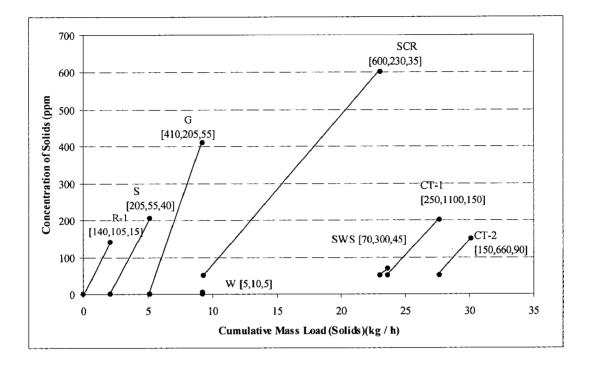


Fig. 5.15 Limited Water Profiles for each operation prior to concentration shifts

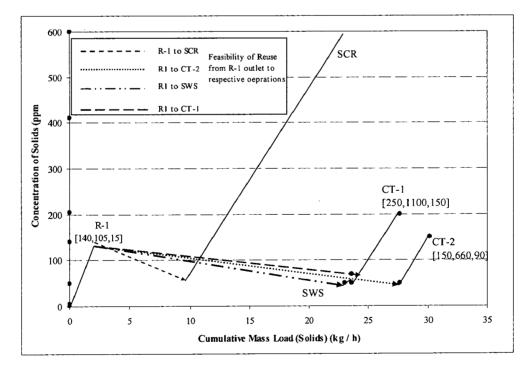


Fig. 5.16 Determination of the concentration of the contaminant Solids for reusing water from outlet of Reactor 1 (R-1) to other water using operations

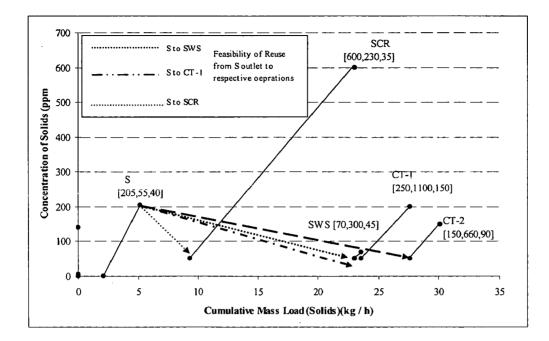


Fig.5.17 Determination of the concentration of the contaminant Solids for reusing water from outlet of Separators (S) to other water using operations

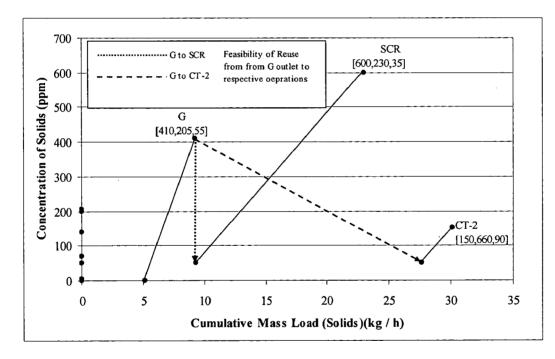


Fig. 5.18 Determination of the concentration of the contaminant Solids for reusing water from outlet of Grinding (G) to other water using operations

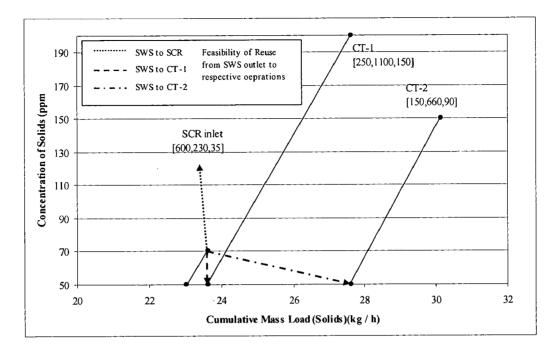
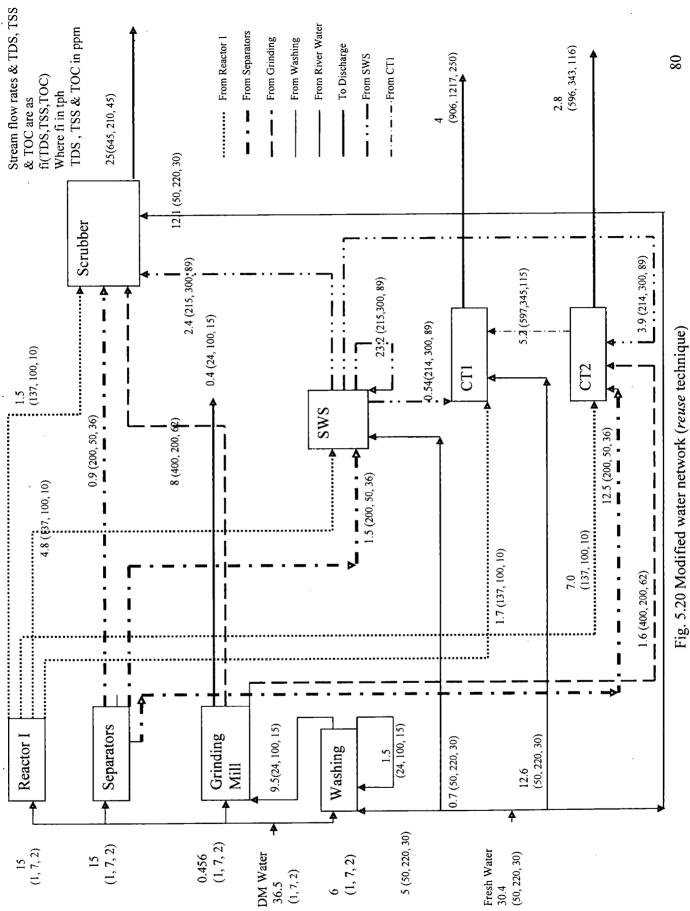
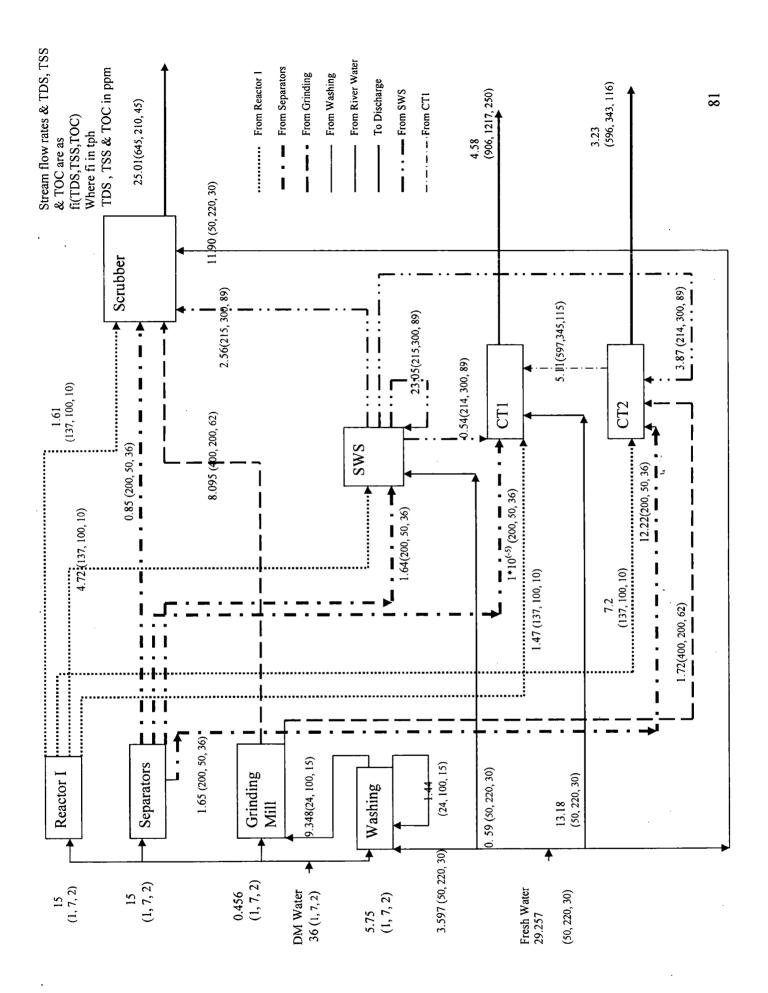


Fig. 5.19 Determination of the concentration of the contaminant Solids for reusing water from outlet of Starch washing screen (SWS) to other water using operations

Mass load and concentrations of contaminant (TDS) are determined for stream (R1, S, G and SWS) when these were reused in other operation as given in **Table 5.8**. Computed flow rates of different reused streams along with flow rates of other streams which were revised due the above reuse are shown in **Table 5.8**.

For other contaminants such as TSS and TOC similar computation were carried out and the corresponding concentrations of these contaminants in different streams are shown directly in **Fig. 5.20** which shows the new modified water using network. **Fig.5.21** represents the modified water network obtained through ASPEN WATER. The results obtained through ASPEN WATER are similar to those obtained through graphical techniques.


The detail calculation of cost benefit analysis has been explained in section 6.5 of chapter 6.


Flow of water from res unit to corresponding u		Flow rate after modification (tph)	Flow rate after modification (tph)	Flow rate before modification (tph)
		(Graphical & Heuristic Approach)	(ASPEN WATER)	
DM water	Reactor 1	15	15	15
	Separators	15	15	15
	Grinding	0.5	0.46	9.804
·. · ·	Washing	6	5.75	10.784
	Total	36.5	36.21	50.00
Fresh Water	Washing	5	3.597	0.000
	SWS	0.7	0.59	30.000
	CT-1	12.6	13.18	20.000
	CT-2	0	0	25.000
······	Scrubber	12.1	11.90	25.000
	Total	30.4	29.267	100.000
Reactor1 Outlet	Sewer	0	0.000	15
	SWS	4.8	4.72	0.000
	CT-1	1.7	1.47	0.000
	CT-2	7	7.2	0.000
· •••,••,•,•,••,••,•••,••	Scrubber	1.5	1.61	0.000
	Total	15	15	15
Separators Outlet	Sewer	0	0.000	15
	SWS	1.5	1.643	0.000
	CT-1	0	0	0
<u> </u>	CT-2	12.5	12.22	0.000
	Scrubber	0.9	0.85	0.000
	Total	15	14.71	15
Grinding Mill Outlet	Sewer	0.4	0.000	10
	CT-2	1.6	1.715	0.000
<u></u>	Scrubber	8	8.095	0.000
	Total	10	9.810	10
Washing Outlet	Grinding	9.5	9.348	0.000
	Washing	1.5		
	Recirculation		1.437	0.000
	Sewer	0	0.000	11
	Total	11	10.784	11
SWS Outlet	Sewer	0	0.000	30
	SWS	23.2	1	
	Recirculation		23.052	0.000
	CT-1	0.5	0.529	0.000
	СТ-2	3.9	3.866	0.000
	Scrubber	2.4	2.556	0.000
	Total	30	30.003	30
CT-1 Blow down	Sewer	4	4.58	4.58
	Total	4	4.58	4.58
CT-2 Blow down	Sewer	2.8	3.226	8.5
	CoolTowl	5.2	5.107	0.000
	Total	10	8.333	8.5
Scrubber Outlet	Sewer	25	25.03	25
	Total	25	25.03	25

,

Table 5.8 Comparison of Operation wise water consumption pattern

79

5.5 SALIENT RESULTS OF PROBLEM 3.5

The initial observations of the case study shows that by properly integrating cooling tower with the cooling water network and readjusting the flow rates and inlet and exit temperatures individual units under the given constraints, the water utilization can be improved to a great extent and thus the fresh water consumption can be decrease considerably. The salient results obtained are discussed below:

5.1 Construction of CWCC for different sections of the network

The CWCC for all sections namely Furnace melting, neck section, refining and spout section and tin bath section are shown in **Fig. 5.23 and 5.24** respectively. During computation, three sections, namely, furnace melting, neck and refining-spout sections are merged together and a single composite curve and a single modified water network has been developed for these sections. The allowable discharge temperature from the network is 41 °C. This is the temperature at which the warm water enters the cooling tower. The targeted maximum flow rate of cooling water computed based on pinch temperature of the three sections namely, furnace melting, neck - refining -spout section and tin bath section are 380.2, and 588 tph respectively.

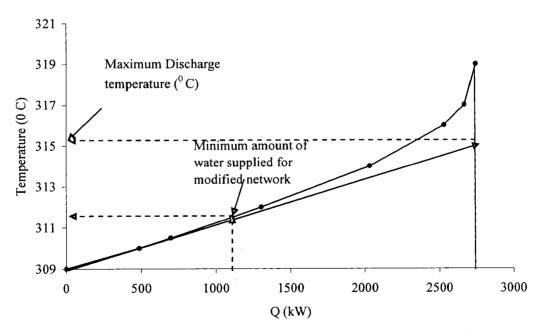


Fig.5.22 CWCC for combining Furnace melting, Neck and Refining-spout section

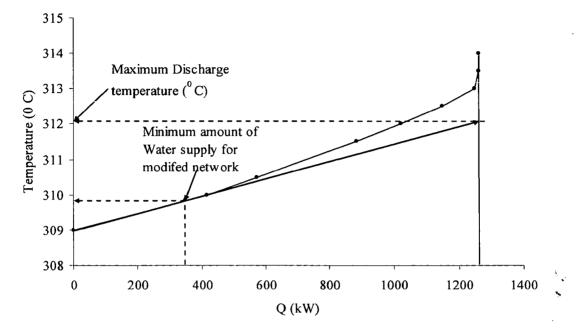


Fig. 5.23 CWCC for combining Tin bath section

5.2 Design Procedure

The design procedure described by Kim and Smith (2001) is applied to all the three section, taking in to account the constraints of minimum water supply line and discharge water temperature. Two different strategies had been worked out considering variation of fresh water supply temperature in summer and winter. The cost benefit analysis has been explained in Chapter 6. Fig. 5.25 to 5.28 represents the modified water network for different proposals in case of summer season. Fig.5.29 to 5.32 represents the modified water network for different proposals in case of summer season. Fig.5.29 to 5.32 represents the modified water network for different proposal in case of winter season. Fig.5.33 and Fig.5.34 represents the existing and modified water networks for furnace melting, neck and refining-spout section. Fig. 5.35 and Fig. 5.36 represents the existing and modified water networks for tin bath section.

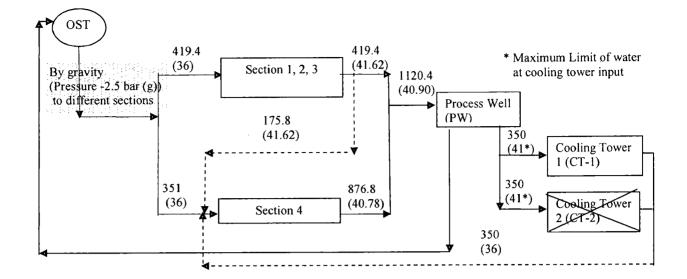
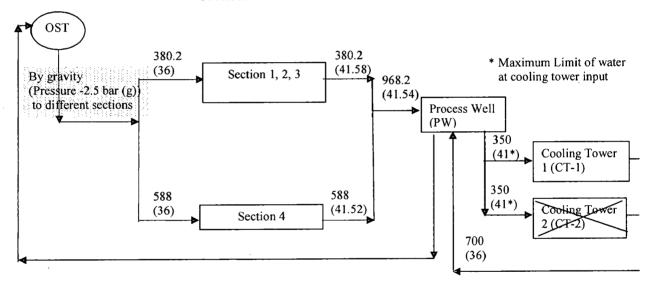



Fig. 5.24 Proposal 1-A: Modification of water network based on utilization of cooling tower directly to process plant section and reuse from one section to anothe section

Note: Values shown without brackets are flow rates of cooing water in tph where as value within small brackets are temperature in $\binom{0}{C}$

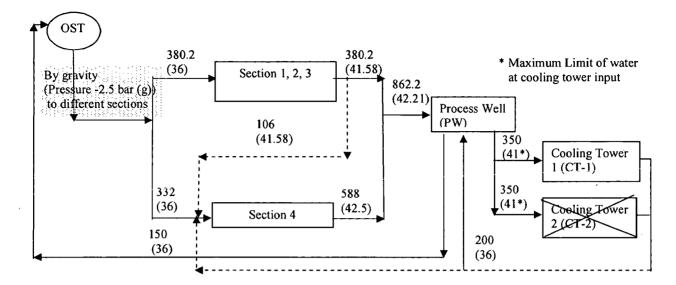


Fig. 5.26 Proposal 2 A (Special Case 1):

Modification of water network based on water pinch technology and utilization of cooling tower directly to process plant section and reuse from one section to another section

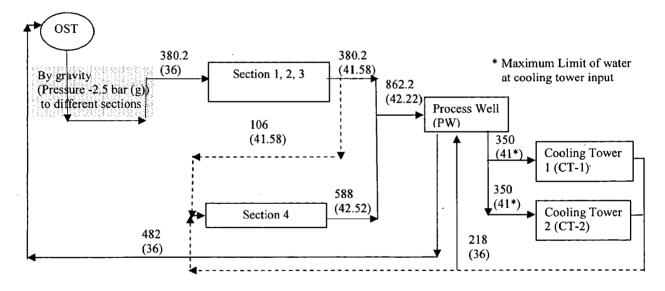


Fig. 5.27 Proposal 2A (Special Case 2):

Modification of water network based on water pinch technology and utilization of cooling tower directly to process plant section and reuse from one section to another section and simultaneous operation of two cooling towers.

Note: Values shown without brackets are flow rates of cooing water in tph where as value within small brackets are temperature in $\binom{0}{C}$

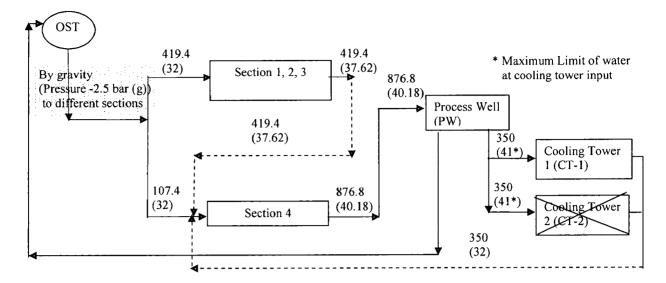


Fig. 5.28 Proposal 1-B: Modification of water network based on utilization of cooling tower directly to process plant section and reuse from one section to another section

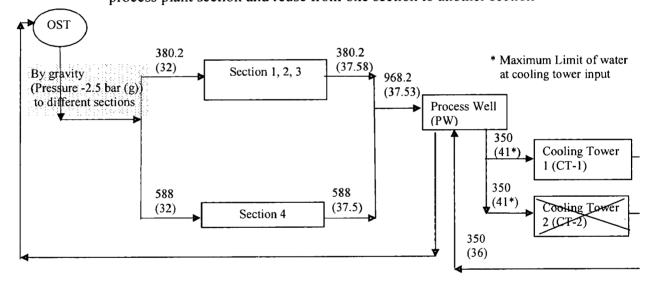


Fig. 5.29 Proposal 2 B: Modification of water network based on water pinch technology

Note: Values shown without brackets are flow rates of cooing water in tph where as value within small brackets are temperature in $\binom{0}{C}$

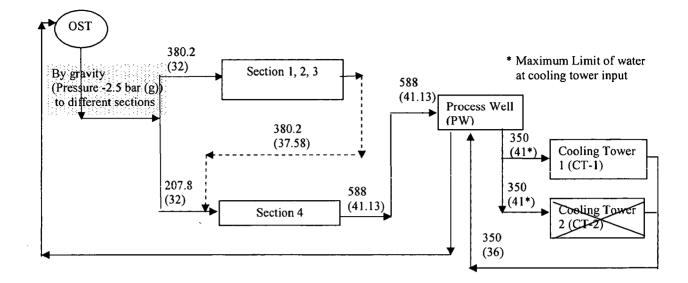


Fig. 5.30 Proposal 2 B (Special Case 1): Modification of water network based on water pinch technology and reuse from one section to another section

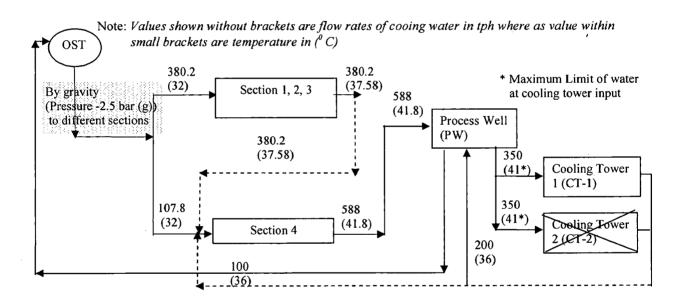
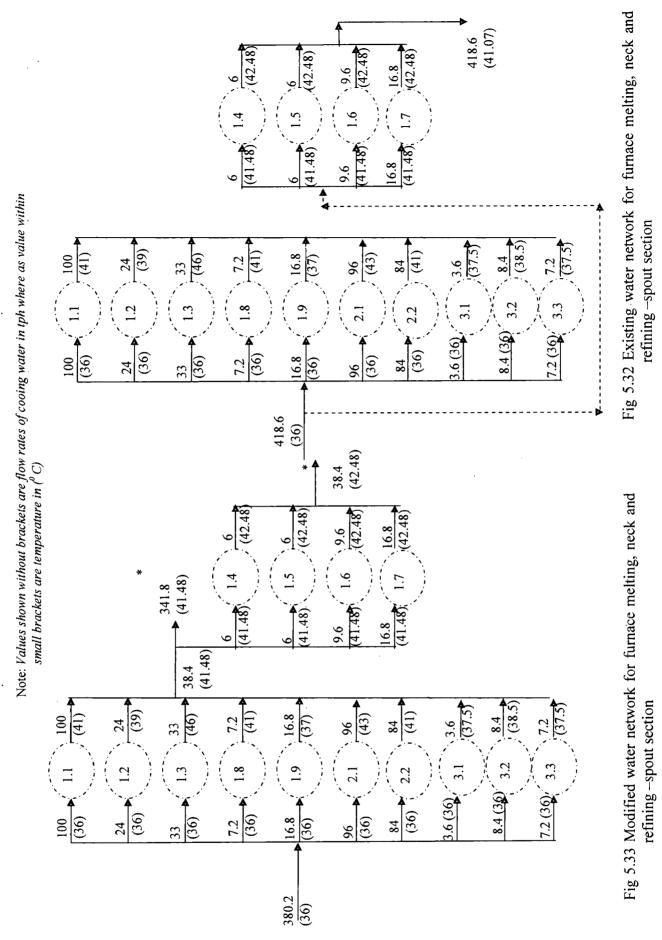
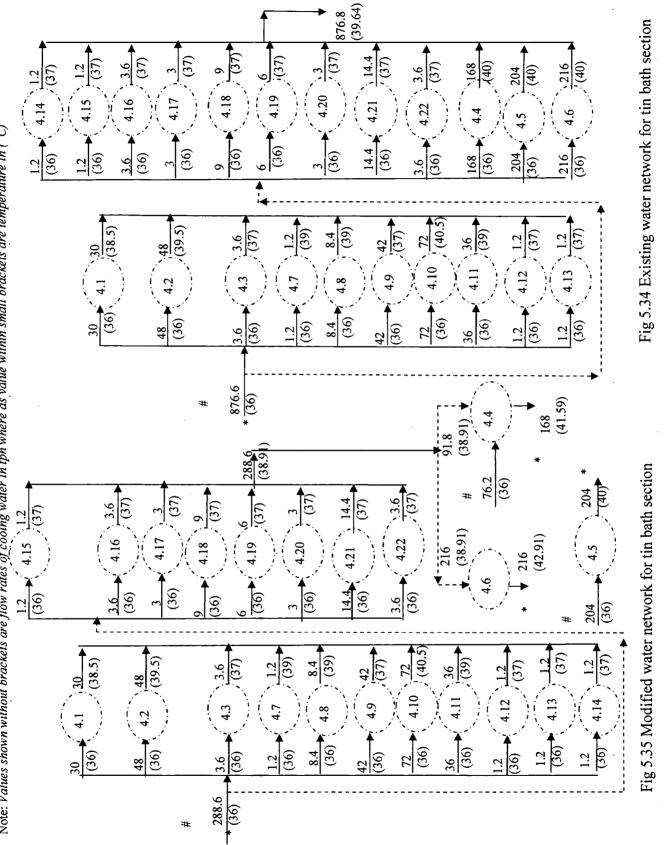




Fig. 5.31 Proposal 2 B (Special Case-2) Modification of water network based on water pinch technology and utilization of cooling tower directly to process plant section and reuse from one section to another section

Note: Values shown without brackets are flow rates of cooing water in tph where as value within small brackets are temperature in $\binom{0}{C}$

The detail calculation of cost benefit analysis has been explained in section 6.6 of chapter 6.

Note: Values shown without brackets are flow rates of cooing water in tph where as value within small brackets are temperature in $\binom{n}{2}$ C)

CHAPTER 6

COST- BENEFIT ANALYSIS

6.1 Cost Analysis

The cost analysis is an important part before implementation of any modification in the existing water network. This section of paper explains detail cost computation of existing water networks as well as modified water network as discussed in previous chapters. Since the concept of water pinch technology requires alteration in existing piping lay out and installation of new equipment for *regeneration-reuse and regeneration recycling* techniques, the basic information are required to be gathered from existing piping network are presented in APPENDIX B:

Table 6.1 Useful Table to compute cost benefit analysis						
Specifications	Problem	Problem	Problem	Problem	Problem	
	3.1	3.2	3.3	3.4	3.5	
Detail piping layout of existing water network	B.3.1.1	B.3.2.1	B.3.3.1	B.3.4.1	B.3.5.1	
Details of pump and power consumption of existing water transfer pump	B.3.1.2	B.3.2.2	B.3.3.2	B.3.4.2	B.3.5.2	
Piping cost per unit m length for different sizes	Table B.1	L	▲, <u>,,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,	4		
Fittings, accessories and erection commissioning cost	Table B.2					
Distance from new proposed regeneration unit to existing units	B.3.1.3	B.3.2.3	-	B.3.4.3	-	
Distance between existing units	-	-	B.3.3.3	-	-	

6.2 Salient Results of Cost Analysis of Problem 3.1

6.2.1 Benefit Analysis

Table 6.2 represents the benefit of water pinch technology. It compares modified water using networks with that of existing ones for present case study. It also represents the net savings in water based on the modifications. It can be observed that the water-pinch analysis reduced the consumption of DM water to a considerable extent. ASPEN WATER has been used to evaluate the selected network. ASPEN WATER uses mathematical programming approach based on MINLP. The results obtained from ASPEN WATER for all three cases i.e. *reuse*, *regeneration-reuse* and *regeneration –recycling* are reported in Table 6.2. The results obtained from graphical method and that from ASPEN WATER are almost similar. It should be noted that the optimal networks suggested by ASPEN WATER are slightly different than those suggested by Graphical Technique in terms of water flow rates in different units.

Thus it can be safely concluded that Graphical approach provides accurate results and comparable with the results obtained from ASPEN WATER software and thus can be implemented in the industry.

	Before Analysis	After A	Analysis				-
		reuse	reuse (ASPEN WATER)	regeneration -reuse	regeneration -reuse (ASPEN WATER)	regeneration - recycling	regeneration - recycling (ASPEN WATER)
DM Water (tph)	50	31.9	31.2	21.57	22	12	12
% Savings in DM Water	0	36.1	37.58	56.82	56	76	76
Waste Water generation (tph)	50	31.9	31.2	14	14	12	12
Concentration of Solids (ppm)	76	118.9	107	40	40	241	259

Table 6.2 Benefits of water pinch technology (Problem 3.1)
--

The basis of costing is very important for carrying out cost analysis. **Table 6.3** presents the power comparison of different modified water network with existing water network. **Table 6.4** represents piping cost per unit m length for different sizes. **Table 6.4** shows the cost of different modified water networks such *reuse*, *regeneration-reuse* and *regeneration-recycling* along with existing water network. It has been prepared by considering various data presented as shown in Appendix B. **Table 6.4** represents the comparison of cost of water networks based on changes in flow rate of DM water, changes in pipe sizes and thus necessary cost associated with piping layout (i.e. civil, structural, erection and commissioning cost).

Specifications	Existing	Reuse	Regeneration- Reuse	Regeneration- Recycling
Pump Capacity (delivered) (m^3/h)	50	31.9	21.57	12
Pump Head (delivered) (m)	30	30	30	30
Efficiency of pump (%)	60	65	65	65
Power consumption (kW)	6.81	4.02	2.72	1.51 +43
Power consumption (hp)	9.12	5.39	3.64	2.02
Motor efficiency (%)	90	90	90	90
Current drawn at full capacity (amp)	19.1	11.29	7.62	4.23
Power consumption (kW)	7.56	4.47	3.01	1.68
No. of unit per hour (kW-h)	7.56	4.47	3.01	1.68
Cost of power (INR / unit)	4	4	4	4
Total cost of power consumption (INR per hour)	2,64,902	1,56,628	1,05,470	58,867
Operating hours	24	24	24	24
No. of operating days	365	365	365	365

Table 6.3Power consumption comparison of different modified water
network with existing water network

Total Cost of network	Existing	Reuse	Regeneration- Reuse	Regeneration- Recycling
Fixed cost of centrifugal pump	35,000	25,000	25,000	31,000
Fixed cost of electric motor	10,000	8,000	7,000	12,000
Fixed cost of Base plate + accessories	10,000	8,000	7,000	12,000
+Civil foundation of centrifugal pump	5,000	4,500	4,000	8,000
Fixed cost of piping layout from DM	3,000	4,500	4,000	0,000
water storage tank to plant storage				
tank	14,700	14,700	3,675	14,700
Fixed cost of accessories for piping	11,700	11,700		
layout	1,470	1,470	368	1,470
Break up of erection and	1,170	1,170		
commissioning cost of piping layout				
(1) Cost of civil work	1,470	1,470	368	1,470
(2) Cost of welding work	1,176	1,176	294	1,176
(3) Cost of piping layout work	2,205	2,205	551	2,205
(4) Support Structure for pipeline	2,205	2,200		2,200
layout	368	368	92	367
Total cost of electrical panel, cables				
etc.	28,000	25,000	18,000	19,000
Total cost of piping layout from			10,000	
FWM to other units as per existing				
and modified networks	1,94,04	19,404	19,404	19,404
Total cost of piping layout from D to				
other units as per existing and				
modified networks	32,340	38,808	29,106	25,872
Total cost of piping layout from SCR				
to other units as per existing and				
modified networks	48,510	40,425	38,808	64,680
Total cost of piping layout from G to				
other units as per existing and				
modified networks	25,872	42,042	42,042	23,931
Fixed cost of discharge header from				
plant to ETP sump	14,250	14,250	19,000	19,000
Fixed cost of valves	9,000	9,000	9,000	9,000
Fixed cost of instrumentation	1,29,500	1,29,500	1,29,500	1,29,500
Total Cost of existing network (INR)	3,78,265	3,77,318	3,46,207	3,82,775
Cost of regeneration			7.05.000	0 50 000
equipments(INR)	-	-	7,85,000	8,50,000

Further, it can observed that due to the decrease in flow rate of DM water consumption, load on DM water plant has also been decreased and this will result in decrease in operating cost of DM water plant. However the present problem is a retrofit case this decrease in fixed cost of DM water plant is not considered. **Table 6.5** illustrates the fixed capital investment, cost of additional equipment, profit incurred in operating cost in case of base case (existing network), *regeneration-reuse* and *regeneration-recycling*. For the case of *reuse* there is no extra fixed cost involved as it will use the hardware existing network. However, due to the changes made in the flow of water it will save an amount 22, 01,914 INR per year. From the **Table 6.5** it is clear that the computed payback period for the case of *regeneration-recycling are* merely 2.5 and 2.3 months respectively which is very attractive.

 Table 6.5: Fixed cost, operating cost, profits and payback periods of different modes of water conservation

Specifications	Existing water network	Modified water network based on <i>regeneration-reuse</i> technique	Modified water network based on <i>regeneration-</i> <i>recycling</i> technique
Fixed Capital Investments	3,78,265		
(INR)		11,31,707	8,54,512
Operating Cost per year			
(INR/year)	53,01,902	18,00,180	9,52,387
Service Life (years)	10	10	10
Total additional cost of			
capital investment due to			
installation of regeneration			
equipments (INR)		7,53,443	8,54,512
Total annual profit in			
operating cost per year			
(INR/year)		35,01,722	43,49,515
Payback period (months)		2.5	2.3

6.3 Salient results of cost analysis of PROBLEM 3.2

6.3.1 Benefit Analysis

Table 6.6 represents the benefit of water pinch technology. It compares modified water using networks with that of existing ones for present case study. It also represents the net savings in water consumption. It can be observed that the water-pinch analysis reduced the consumption of DM water to a considerable extent.

	Before Analysis	reuse	regeneration- reuse	regeneration- recycling
DM Water (tph)	69	59.83	34.5	30
% Savings in DM Water		13.3 %		27.5%
Concentration of Solids (ppm)	76	225.8	351.76	296.4

Table 6.6 Benefits of water pinch technology (Problem 3.2)

6.3.2 Cost Analysis

The basis of costing is very important for carrying out cost analysis. **Table 6.7** presents the power comparison of different modified water network with existing water network. **Table 6.8** shows the cost of different modified water networks such *reuse, regeneration-reuse* and *regeneration-recycling* along with existing water network. It has been prepared by considering various data presented as shown in Appendix B. **Table 6.8** represents the comparison of cost of water networks based on changes in flow rate of DM water, changes in pipe sizes and thus necessary cost associated with piping layout (i.e. civil, structural, erection and commissioning cost).

Specifications	Existing	Reuse	Regeneration-	Regeneration-
			Reuse	Recycling
Pump Capacity (delivered)	69	59	34.5	30
(m^{3}/h)				
Pump Head (delivered) (m)	30	30	30	30
Efficiency of pump (%)	65	65	65	65
Power consumption (kW)	8.8	7.42	4.33	3.77
Motor efficiency (%)	90	90	90	90
Current drawn at full capacity	28	21	13	11
(amp)				
Power consumption (kW)	9.8	8.3	4.9	4.1
No. of unit per hour (kW-h)	9.8	8.3	4.9	4.1
Cost of power (INR / unit)	4	4	4	4
Total cost of power	3,43,392	2,90,832	1,71,696	1,43,364
consumption				
(INR per hour)				
Operating hours	24	24	24	24
No. of operating days	365	365	365	365

Table: 6.7 Power consumption comparison of different modified water network with existing water network

•

.

.

.

Table 6.8 Cost comparison of different modified network with exiting network

Total Cost of network	Existing	Reuse	Regeneration- Reuse	Regeneration- Recycling
Fixed cost of centrifugal pump	45,000	45,000	28,000	28,000
Fixed cost of electric motor	15,000	15,000	7,000	7,000
Fixed cost of Base plate + accessories +Civil foundation of centrifugal pump	7,500	7,500	4,000	4,000
Fixed cost of piping layout from DM water storage tank to plant storage tank	14,700	980	980	14,700
Fixed cost of accessories for piping layout	1,470	14,700	14,700	1,470
Break up of erection and commissioning cost of piping layout				
(1) Cost of civil work	1,470	1,470	1,470	1,470
(2) Cost of welding work	1,176	1,176	1,176	1,176
(3) Cost of piping layout work	2,205	2,205	2,205	2,205
(4) Support Structure for pipeline layout work	368	368	368	368
Total cost of electrical panel, cables etc.	26,000	25,000	18,000	18,000
Total cost of piping layout from PS-I to other units as per existing and modified networks		38,808	29,106	29,106
Total cost of piping layout from PS-II to	32,340	42,042	32,340	32,340

Cost of regeneration equipments(INR)	-		7,85,000	8,50,000
Total Cost of existing network (INR)	4,87,408	5,10,173	4,39,766	4,40,256
Fixed cost of instrumentation	1,69,500	1,69,500	1,69,500	1,69,500
Fixed cost of valves	11,000	11,000	11,000	11,000
Fixed cost of discharge header from plant to ETP sump	19,000	19,000	18,050	18,050
Total cost of piping layout from S-4 to other units as per existing and modified networks		12,936	12,936	12,936
Total cost of piping layout from DW to other units as per existing and modified networks		25,872	25,872	25,872
networks Total cost of piping layout from R to other units as per existing and modified networks	F [77,616	63,063	63,063
other units as per existing and modified				

Further, it can observed that due to the decrease in flow rate of DM water consumption, load on DM water plant has also been decreased and this will result in decrease in operating cost of DM water plant. However the present problem is a retrofit case this decrease in fixed cost of DM water plant is not considered. **Table 6.9** illustrates the fixed capital investment, cost of additional equipment, profit incurred in operating cost in case of base case (existing network), *regeneration-reuse* and *regeneration-recycling*. For the case of *reuse* there is no extra fixed cost involved as it will use the hardware existing network. However, due to the changes made in the flow of water it will save an amount 17, 63,914 INR per year. From the **Table 6.9** it is clear that the computed payback period for the case of *regeneration-reuse* and *regeneration-recycling* are merely 1.8 and 1.1 months respectively which is very attractive.

Specifications	Existing water network	Modified water network based on <i>regeneration-</i> <i>reuse</i> technique	Modified water network based on <i>regeneration-</i> <i>recycling</i> technique
Fixed Capital	81,71,363		
Investments (INR)		32,51,297	27,85,893
Operating Cost per	*		
year (INR/year)	81,22,622	31,27,30	26,86,867
Service Life (years)	10	10	10
Total additional cost			
of capital investment			
due to installation of			
regeneration		1	
equipments (INR)		7,52,358	50,28,48
Total annual profit in			
operating cost per			
year (INR/year)		49,95,302	54,35,755
Payback period			
(months)		1.8	1.1

Table 6.9 Fixed cost, operating cost, profits and payback periods of different modes of water conservation

6.4 Salient results of cost analysis of P**P**OBLEM 3.3

6.4.1 Benefit Analysis

Table 6.10 represents the benefit of water pinch technology. It compares modified water using networks with that of existing ones for present case study. It also represents the net savings in water consumption and load on effluent treatment plant based on the modifications. It can be observed that the water-pinch analysis reduced the consumption of DM water as well as fresh water to a considerable extent. For the above case study the flow rate of DM water is reduced by 28% and that of fresh water by 64.38 %. This reduction in the DM as well as fresh water has reduced the load of waste water to 27.94 %.

able 6.10 Benefits of water pinch technology (Problem 3.3)
able 6.10 Benefits of water pinch technology (Problem 3.3)

	Before Analysis	After Analysis	Net Savings(tph)
DM Water	337	223	114
Concentration of solids (ppm)	244	369	-

6.4.2 Cost Analysis

The basis of costing is very important for carrying out cost analysis. **Table 6.11** presents the power comparison of different modified water network with existing water network. **Table 6.12** shows the cost of different modified water networks such *reuse, regeneration-reuse* and *regeneration-recycling* along with existing water network. It has been prepared by considering various data presented as shown in Appendix B. **Table 6.12** represents the comparison of cost of water networks based on changes in flow rate of DM water, changes in pipe sizes and thus necessary cost associated with piping layout (i.e. civil, structural, erection and commissioning cost).

 Table: 6.11 Power consumption comparison of different modified water network

 with existing water network

Specifications	DM water	DM water
	(Existing)	Network (reuse)
Pump Capacity (delivered)	340	224
(m^{3}/h)		
Pump Head (delivered) (m)	30	30
Efficiency of pump (%)	65	65
Power consumption (kW)	42.75	28.2
Motor efficiency (%)	90	90
Current drawn at full capacity (A)	120	80
Power consumption (kW)	47.5	32
No. of unit per hour (kW-h)	47.5	32
Cost of power (INR / unit)	4	4
Total cost of power consumption	190	128
(INR per hour)		
Operating hours	24	24
No. of operating days	365	365
Total cost of power consumption per year	16,64,400	11,21,280
Total Savings in Power consumption per year	5,43,120	

Table 6.12 Cost comparison of different modified network with exiting network

.

	DM water	DM water Network (reuse)
Total Cost of network	(Existing)	== 0.00
Fixed cost of centrifugal pump	95,000	75,000
Fixed cost of electric motor	55,000	35,000
Fixed cost of Base plate + accessories +Civil		
foundation of centrifugal pump	7,500	20,000
Fixed cost of piping layout from DM water storage		
tank to plant storage tank	36,750	1,715
Fixed cost of accessories for piping layout	3,675	25,725
Break up of erection and commissioning cost of		
piping layout		
(1) Cost of civil work	3,675	2,573
(2) Cost of welding work	2,940	2,058
(3) Cost of piping layout work	5,513	3,859
(4) Support Structure for pipeline layout work	919	643
Total cost of electrical panel, cables etc.	95,000	65,000
Total cost of piping layout from Operation 1 to		
other units as per existing and modified networks	29,106	29,106
Total cost of piping layout from Operation 2 to		
other units as per existing and modified networks	64,680	80,850
Total cost of piping layout from Operation 3 to		
other units as per existing and modified networks	72,765	72,765
Total cost of piping layout from Operation 4 to		
other units as per existing and modified networks	51,744	87,318
Total cost of piping layout from Operation 5 to		
other units as per existing and modified networks	29,106	97,020
Total cost of piping layout from Operation 6 to		
other units as per existing and modified networks	19,404	29,106
Total cost of piping layout from Operation 7 to		10.404
other units as per existing and modified networks	19,404	19,404
Total cost of piping layout from Operation 8 to		
other units as per existing and modified networks	38,808	25,872
Total cost of piping layout from Operation 9 to	i i	
other units as per existing and modified networks	48,510	48,510
Total cost of piping layout from Operation 10 to	1	
other units as per existing and modified networks	38,808	71,148
Fixed cost of discharge header from plant to ETP	•	
sump	57,000	47,500
Fixed cost of valves	29,000	28,000
Fixed cost of instrumentation	3,95,000	3,60,000
Total Cost of network (INR)	11,99,306	12,28,171

6.5 Salient results of cost analysis OF PROBLEM 3.4

6.5.1 Benefit Analysis

Table 6.13 represents the benefit of water pinch technology. It compares modified water using networks with that of existing ones for present case study. It also represents the net savings in water consumption and load on effluent treatment plant based on the modifications. It can be observed that the water-pinch analysis reduced the consumption of DM water as well as fresh water to a considerable extent. For the above case study the flow rate of DM water is reduced by 28% and that of fresh water by 64.38 %. This reduction in the DM as well as fresh water has reduced the load of waste water to 27.94 %.

 Table 6.13 Benefits of water pinch technology (Problem 3.4)

	Before Analysis	After Analysis	Net Savings(tph)
DM Water	50	36.00	14
Fresh Water	100	35.62	64.38

6.5.2 Cost Analysis

Table 6.14 presents the power comparison of different modified water network with existing water network. **Table 6.15** shows the cost of different modified water networks such *reuse, regeneration-reuse* and *regeneration-recycling* along with existing water network. It has been prepared by considering various data presented as shown in Appendix B. **Table 6.15** represents the comparison of cost of water networks based on changes in flow rate of DM water, changes in pipe sizes and thus necessary cost associated with piping layout (i.e. civil, structural, erection and commissioning cost).

Specifications	DM water (Existing)	Fresh water Network (Existing)	DM water Network (reuse)	Fresh water network (reuse)
Pump Capacity (delivered) (m ³ / h)	51	100	36	31
Pump Head (delivered) (m)	30	30	30	30
Efficiency of pump (%)	65	65	65	65
Power consumption (kW)	6.29	12.57	4.52	3.9
Motor efficiency (%)	90	90	90	90
Current drawn at full capacity (A)	17.64	35.27	12.68	10.94
Power consumption (kW)	6.98	13.96	5.02	4.33
No. of unit per hour (kW-h)	6.98	13.96	5.02	4.33
Cost of power (INR / unit)	4	4	4	4
Total cost of power consumption (INR per hour)	27.92	55.84	20.09	17.32
Operating hours	24	24	24	24
No. of operating days	365	365	365	365
Total cost of power consumption per year	2,44,579	4,89,158	1,75,988	1,51,723
Total Savings in Power consumpti (Combining DM and Fresh Water		NR per year)	4,06,026	

.

Table: 6.14 Power consumption comparison of different modified water network with existing water network

Table 6.15 Cost comparison of different modified network with exiting network

	DM water	Fresh water Network	DM water Network	Fresh water network
Total Cost of network	(Existing)	(Existing)	(reuse)	(reuse)
Fixed cost of centrifugal pump	35,000	40,000	25,000	15,000
Fixed cost of electric motor	10,000	12,000	7,000	7,000
Fixed cost of Base plate + accessories +Civil foundation of centrifugal pump	5,000	5,000	2,500	1,500
Fixed cost of piping layout from DM water storage tank to plant storage tank	24,500	1,470	24,500	29,400
Fixed cost of accessories for piping layout	2,450	44,100	2,450	2,940
Break up of erection and commissioning cost of piping layout				
(1) Cost of civil work	2,450	4,410	2,450	2,940
(2) Cost of welding	1,960	3,528	1,960	2,352

(3) Cost of piping layout	3,675	6,615	3,675	4,410
(4) Support Structure for pipeline layout	6,12.5	1,103	613	735
Total cost of electrical panel, cables etc.	10,500	18,250	6,500	11,000
Total cost of piping layout from Reactor				
1 to other units as per existing and				
modified networks	24,255	32,340	65,489	16,170
Total cost of piping layout from		2		
Separators to other units as per existing				
and modified networks	24,255	16,979	78,425	39,617
Total cost of piping layout from				
Grinding Mill to other units as per				
existing and modified networks	25,872	24,255	57,404	16,170
Total cost of piping layout from				
Washing Section to other units as per				
existing and modified networks	16,170	16,979	42,851	8,085
Fixed cost of discharge header from				
plant to ETP sump	28,500	49,400	0	65,170
Fixed cost of valves	9,600	11,500	9,600	8,100
Fixed cost of instrumentation	1,37,500	1,41,500	1,37,500	1,25,500
Total Cost of network (INR)	3,62,300	4,29,428	4,67,915	3,56,089

6.6 Salient results of cost analysis OF PROBLEM 3.5

.

.

.

Table 6.16 presents the annual cost benefit analysis due to reduction in power and water consumption for different proposals.

Proposal	Fresh water flow rate to	Make up water	Savin gs in	Saving in Make up	Savings in current	Savings Unit	Savings Unit	Savings in unit	Total savings per	
	be supplied from overhead	requirem ent (tph)	fresh water (toh)	water cost (Make up water : 50	drawn by different drives (A)	per Hour (kWh)	per Day	per season	year in cost of power consumpti	per season (A + B)
	storage tank (tph)			% RO water + 50 % fresh water) (A)					on (Rs) (B)	
Summer Season (210 days operation)	(210 days opera	tion)	-							
Existing	1296	10	1	1		-				
Proposal IA	770.4	6.5	525.6	1,36,710	116	46	1104	2,31,840	9,27,360	10,64,070
Proposal 2A	968.2	7.85	327.8	83,979	38.5	15	360	75,600	3.02.400	3,86,379
Proposal 2A	712.2	5.7	583.8	1,67,958	123.9	49	1176	2,46,960	9,87,840	11,55,798
Special Case 1										
Proposal 2A	380.2	3.0	915.8	2,73,420	87	35	840	1,76,400	7,05,600	9,79,020
Special Case 2										
Winter Season (.	Winter Season (155 days operation)	ion)								
Existing	1296	10	1	-						
Proposal 2B	968.2	7.85	327.8	61,985	208	83	1992	3,08,760	12,35,040	12,97,025
Proposal 2B	588	4.7	708	1,52,799	38.5	15	360	55,800	2,23,200	3,75,999
Special Case 2										
Proposal 2B	488	3.9	808	1,75,863	159	63	1512	2,34,360	9,37,440	11,13,303
Special Case 1										
Proposal 1B	526.8	4.21	769.2	1,66,926	211	84	2016	3,12,480	12,49,920	14,16,846

Table 6.16 Cost benefit analysis due to reduction in fresh water and power consumption for different proposals

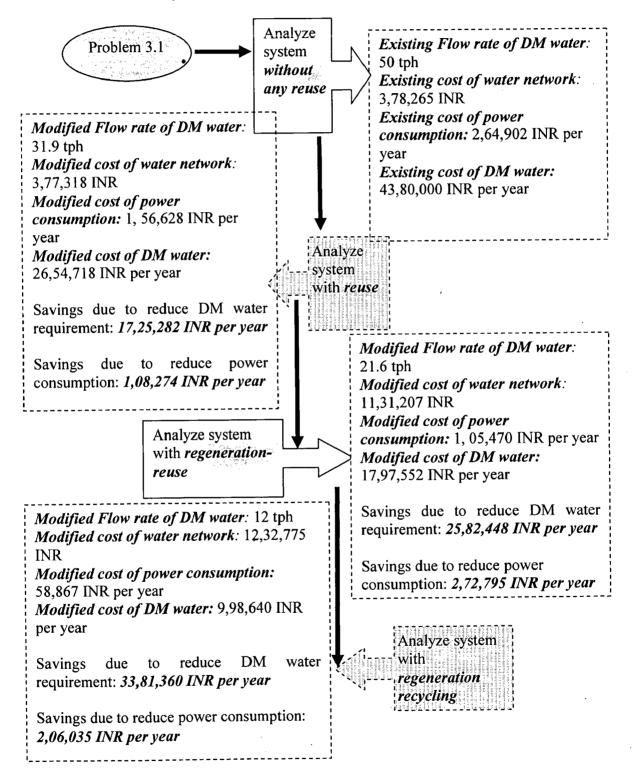
•

.

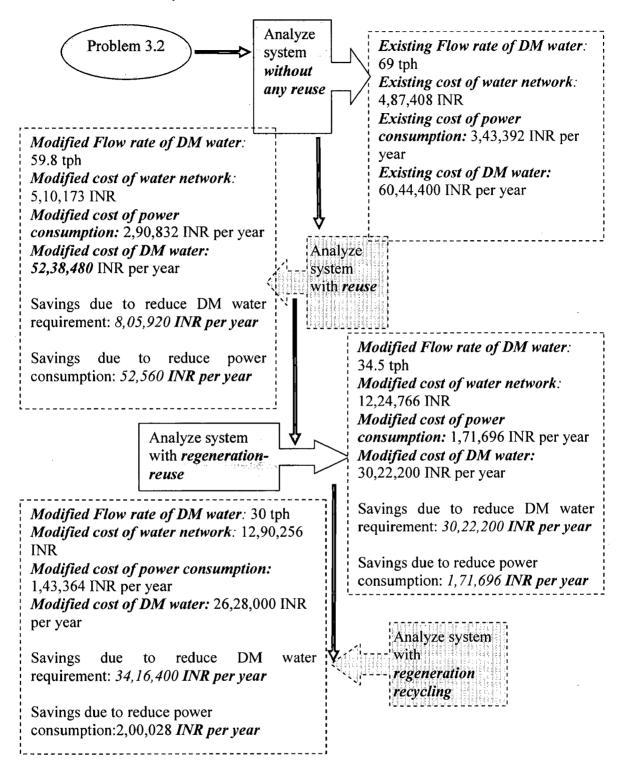
•

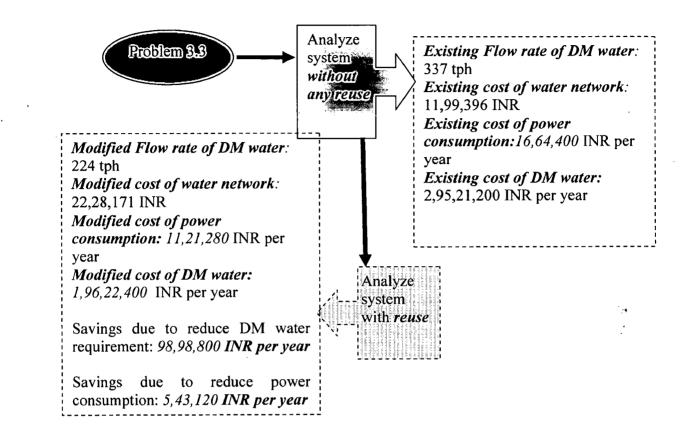
104

:

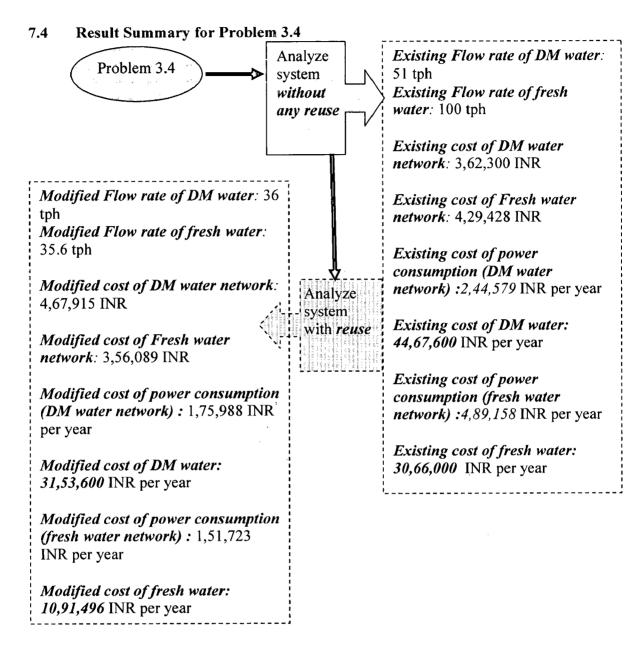

in a Rei a Li in **B**e

.


SUMMARY REPORTS FOR ALL PROBLEM


STATEMENTS

7.1 Result Summary for Problem 3.1



7.2 Result Summary for Problem 3.2

्र दूर २

Savings due to reduce DM water requirement: 13,14,000 INR per year Savings due to reduce fresh water requirement: 19,74,504 INR per year

Savings due to reduce power consumption: 4,06,026 INR per year

•

.

7.5 Result Summary for Problem 3.5

109

.

CONCLUSIONS AND RECOMMENDATIONS

The Guide to Conducting a Water Pinch Analysis Investigation presented in Chapter 4 of the report attempts to summarize the experience gained during these investigations, and is perhaps the chief immediate outcome of this dissertation.

Industrial awareness of the technique in India has been raised through direct interaction with industries involved in the case studies and through conference papers, Workshops and courses presented during the project, however there is a way to go before water pinch analysis can be considered as an accepted and establish practice.

8.1 Conclusions

The following main conclusions can be drawn based on different industrial case studies about the significance of water pinch analysis:

- For the first problem, the DM water consumption is 50 tph before modification and after modification using water pinch it reduces to 31.9 tph (reuse), 21.6 tph (regeneration-reuse) and 12 tph (regeneration-recycling). The results obtained from the present analysis are compared well with the results obtained from well established software ASPEN WATER. The cost benefit analysis illustrates that the profit obtained in the case of reuse is 22,01,914 INR per year and the pay back period for the regeneration-reuse and regeneration-recycling are 2.5 and 2.3 month.
- The second problem is viewed as a single contaminant problem and the DM water consumption is 69 tph before modification and after modification using water pinch it reduces to 59.8 tph (reuse), 34.5 tph (regeneration-reuse) and 30 tph (regeneration-recycling). The cost benefit analysis illustrates that the profit obtained in the case of reuse is 17,63,914 INR per year and the pay back period for the regeneration-reuse and regeneration –recycling are 1.8 and 1.1 month.
- For the third problem, which involves ten operations and only approach of water *reuse* been applied. The DM water consumption is 337 tph before modification and after modification using water pinch it reduces to 221.5 tph

(*reuse*). The cost benefit analysis illustrates that the profit obtained in the case of reuse is 5,43,120 INR per year.

- The fourth problem was identified as a multi contaminant, *reuse* problem. The fresh water consumption and DM water consumption are 100 tph and 51 tph respectively before modification and the network is dealing with three major contaminant such as total organic content (TOC), total dissolved solids (TDS) and total suspended solids (TSS). The improved water using network designed for the present work consumed less DM & fresh water. The reductions are of the tune of 28% and 64.38 % for DM and fresh water respectively. Due to alteration in piping, there will be a saving of 4,06,026 INR per year, which will be utilized for development of efficient environment policy for the company.
- The concept of water-pinch couple coupled with thermal analysis is applied on cooling water networks of different sections, namely, furnace melting, neck-refining & spout and tin bath, of a Glass industry of India commissioned in the year 2006. The analysis takes in to account mixing of multiple intermediate cooling water streams to satisfy the constraints of the network. Different proposal had been worked out and different strategies had been proposed for summer and winter season. The results are very encouraging and there will be huge benefit in terms of power and fresh water consumption, if the proposed modified networks have been put into real operations. There will be a savings in fresh water, make up water and power consumptions. The maximum projected savings will be of 11,55,978 INR for summer season and 14,16,846 INR for winter season operations.

Apart from above case studies, following general conclusions are :

- A water pinch analysis provides a clear and systematic picture of the water requirements of a system of processes, subject to the constraints imposed by the technology of the processes and the environment in which they operate.
- By identifying the factors which limit further reduction in the water requirements, the technique can focus attention on those areas of the process where technologicalimprovements will be most beneficial in improving water efficiency.

- By quantifying the impacts of technological and regulatory limits on a process, water pinch analysis has the potential to provide a rational tool for negotiation between an industry, water authorities and other role players.
- Because India is a water-scarce country, many India industries have responded to pressure to conserve water, and already have processes which use water relatively efficiently when compared to many industrialized countries. This means that dramatic savings in water use, as sometimes claimed in the international literature, are often not as readily available in India.
- There is a need for a scoping technique to provide a rapid assessment of a process to estimate the scope that it offers for improvement as a result of conducting a water pinch analysis.
- Gathering the necessary data on a system is almost always the most difficult and most time-consuming step in a water pinch analysis. It is unlikely that all the required data will be obtained at the first attempt, and so an iterative process which alternates between data gathering and analysis occurs.
- It is difficult, if not impossible, for an effective pinch investigation to be undertaken by a consultant outside the industrial organization concerned, unless it is done with the full commitment and participation of the organization at all stages.

8.2 Recommendations

- 1) Further efforts are required to encourage wider acceptance of water pinch analysis by Indian industry. This should be undertaken in conjunction with industry on a case study basis.
- 2) Further work is needed to extend the water pinch analysis methodology to account for chemically reacting solutes and aqueous reagents.
- 3) Techniques for the early identification of the applicability of water pinch need to be developed, rather than solving it as a retrofitting case.
- 4) Techniques need to be developed to reduce the time and effort required to gather the data needed for a water pinch analysis.
- 5) More explorations should be devoted to mathematical programming approach to obtain optimize results.

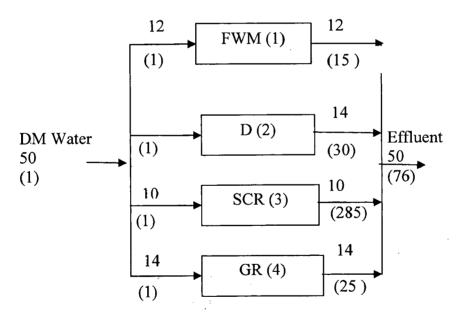
- Alva-Argaez, A., Vallianoatos, A. and Kokossis, A. (1999), "A Multi Contaminant Transshipment Model for Mass Exchange Networks and Wastewater Minimization Problems", *Computers and Chemical Engineering*, 23(15): p.1439–1453.
- Alva-Argáez, A., Kokossis, A. and Smith, R.(1998), "Wastewater minimization of industrial systems using an integrated approach", *Computers and Chemical Engineering*, 22 (1) p:S 741-S744.
- 3. Alva-Argáez, A., Kokossis, A. and Smith, R.(1998), "Automated design of industrial water networks", *AICHE Annual meeting*, Paper 13f, Miami.
- Alva-Argáez, A., Kokossis, A. and Smith, R.(2007), "The design of waterusing systems in petroleum refining using a water-pinch decomposition", *Computers and Chemical Engineering*, 128(1): p. 33-46.
- Bagajewicz, M. (2000), "A Review of Recent Design Procedures for Water Networks in Refineries and Process Plants", *Computers and Chemical Engineering*, 24(9): p. 2093–2115.
- 6. Bagajewicz, M., Savelski, M. and Rodera, H. (1999), "On the effect of heat integration in design of water utilization systems in refineries and process plants", *AICHE Annual Meeting*, Dallas.
- 7. Bagajewicz, M, Savelski, M. and Rodera, H.(2002), "Energy efficient water utilization systems in process plants", *Computers and Chemical Engineering*, 26: p. 59–79.
- Bagajewicz, M. and Manousiothakis, V. (1992), "Mass / Heat Exchanger network representation of distillation networks", *AICHE Journal*, 38: p.1769-1800.
- Bagajewicz, M., Pharm, R. and Manousiothakis, V. (1998), "On the state space approach to mass and heat exchanger network design", *Chemical Engineering Science*, 53(14): p. 2595-2621.
- 10. Belhateche, D, H. (1995), "Choose appropriate wastewater treatment technologies", *Chemical Engineering Progress.*, August, p:32.

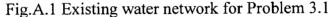
- 11. Buehner and Rossiter (1996), "Minimize Waste by Managing Process Design," Chemtech, 26, No. 4, 64.
- Cao, D., Feng, X., Duan, X. (2004), "Design of Water Network with Internal Mains for Multi-contaminant Wastewater Regeneration Recycle", *Chemical Engineering Research and Design*, 82(10): p. 1331-1336.
- Dhole, V., R., Ramchandani, N., Tainsh, R., A. and Wasilewski, M. (1996),
 "Make your process water pay for itself", *Chemical Engineering*, 103(1),
 p:100-103.
- Doyle, S., J. and Smith, R. (1997), "Targeting water reuse with multiple contaminants", *Chemical Engineering Research and Design (part B)*, 75 : p.181–189.
- 15. Dunn, R., F., Wenzel, H. and Overcash, M. (2001), "Process integration design methods for water conservation and wastewater reduction in industry, Part 2: Design for multiple contaminants", *Clean Products and Processes*, 3: p.319–329.
- Dunn, R., F. and El-Halwagi, M., M. (1993), "Optimal recycle/reuse policies for minimizing wastes of pulp and paper plants", *J Environ Sci Health*, A28: p.217–234.
- 17. El-Halwagi, M., M. and Manousiouthakis, V. (1989), "Synthesis of mass exchange networks", *AIChE J.*, 8(12): p. 1233-1244.
- El-Halwagi, M., M. and Manousiouthakis, V. (1990a), "Simultaneous synthesis of mass-exchange and regeneration networks", *AIChE J.*, 36(8): p. 1209-1219.
- El-Halwagi, M., M. and Manousiouthakis, V. (1990a), "Automatic synthesis of mass exchange networks with single component targets", *Chemical Engineering Science*, 9(19): p. 2813-2831.
- 20. El-Halwagi, M., M. (1997), "Pollution Prevention Through Process Integration : Systematic Design Tools", *Academic Press, San Diego*.
- 21. El-Halwagi, M., M. and Spriggs, H., D. (1998), "Solve design puzzles with mass integration", *Chemical Engineering Progress*, 94: p.25-44
- 22. El-Halwagi, M., M. and Manousiouthakis, V. (1989b), "Design and analysis of multicomponent mass-exchange networks", *AIChE Annual Meeting, San Francisco*.

- El-Halwagi, M., M. and Manousiouthakis, V. (1990b), "Simultaneous synthesis of mass-exchange and regeneration networks", AIChE J., 36: p.1209–1219.
- 24. Feng, X., Bai, J., Wang, H. and Zheng, X., S. (2008), "Grass roots design of regeneration-recycling water networks" *Computers and Chemical Engineering (in press).*
- 25. Feng, X. and Seider, W., D. (2001), "A new structure and design methodology for water networks.", *Industrial Engineering Chemistry Research*, 40: p. 26.
- 26. Gomes, F., S., Eduardo, M., Q. and Pessoa, L., P. and Fernando, (2007),
 "Design procedure for water/wastewater minimization: single contaminant.", *Journal of cleaner production*, 15(5): p.474-485.
- 27. Gómez, J., Savelski, M., and Bagajewicz, M. (2000), "On a systematic design procedure for water utilization systems in refineries and process plants", *Chemical Engineering Communications*, Vol. 186 : p. 183-203.
- Hallale, N. and Fraser, D., M. (1998), "Capital cost targets for mass exchange networks a special case: Water minimization", *Chemical Engineering Science*, 53(2): p. 293-313.
- 29. Hallale, N. and Fraser, D., M. (2000), "Retrofit of mass exchange networks using Pinch Technology", *AICHE J.*, 46 (10): p. 2112-2117.
- 30. Hallale, N. (2002), "A new graphical targeting method for water minimization", Adv. Env. Res., 6: p. 377-290.
- Jegede, F., O. and Polley, G., T. (1992), "Capital cost targets for networks with non-uniform heat exchanger specifications", *Computers and Chemical Engineering*, 16 (5): p.477-495.
- 32. Kim, J., K., Lee, G., C., Zhu, X., and Smith, R (2002), "Cooling Water system design", *Heat Trans. Eng.*, 23 (6): p., 49-61.
- 33. Kim, J., K., Savulescu, L. and Smith, R. (2001), "Design of cooling systems for effluent temperature reduction", *Chemical Engineering Science*, 56: p. 1811-1830.
- 34. Kim, J., K. and Smith R. (2004), "Cooling systems design for water and wastewater minimization", *Ind. Eng. Chem. Res.*, 43:p. 608-613.

- 35. Kim, J., K. and Smith, R. (2001), "Cooling water system design", *Chemical Engineering Science*, 56: p. 3641-3658.
- 36. Kuo, W., C., J. and Smith, R. (1998), "Designing for the interactions between water-use and effluent treatment.", *Chemical Engineering Research and Design(part A)*, 76: p. 287-301.
- 37. Kuo, W., C., J. and Smith, R. (1998), "Design of water-using involving regeneration, *Chemical Engineering Research and Design (part B)* 76: p.94–114.
- Li, B., H. and Yao, P., J. (2001), "A hybrid approach to wastewater minimization", Journal of Dalian University of Technology, 41: p. 159– 164.
- 39. Linnhoff, B. (1998), "Introduction to Pinch Technology", *Linnhoff March*.
- 40. Linnhoff, B. and. Flower, J., R. (1978), "Synthesis of heat exchanger networks, Systematic generation of optimal networks.", *AICHE J.*, 24 (4), 633-642.
- 41. Linnhoff, B. and Hindmarsh, E. (1983) "The Pinch Design Method of Heat Exchanger Networks" *Chemical Engineering Science*, 38 (5): p. 745-763.
- 42. Linnhoff, B., Mason, D., R. and Wardle, I. (1979), "Understanding Heat Exchanger Networks", *Computers and Chemical Engineering*, 3: p. 295-301.
- Linnhoff, B., Townsend, D., W., Donald, D., Hewitt, G., F., Thomas, B.,
 E., A., Guy, A., R. and Marsland, R., H. (1982), "User Guide on Process Integration for efficient Use of Energy" *IchemE*, Rugby, U.K.
- Linnhoff, B. and Polley, G., T. (1988), "General process improvements through Pinch Technology" *Chemical Engineering Progress*, 84 (6): p.51-58.
- 45. Linnhoff, B. (1993), "Pinch analysis—a state of the art overview.", Chemical Engineering Research and Design (part A),71(5): p.503–522.
- 46. Linnhoff, B. (1994), "Use pinch analysis to knock down capital costs and emissions, *Chemical Engineering Progress*, 6: p.32–57.

- 47. Linnhoff, B. (1995), "Pinch analysis in pollution prevention", in Waste Minimization Through Process Design, Ed by Rossiter AP, McGraw-Hill, New York, : p.53-56.
- 48. Liu, Z., Y. (1999), "Wastewater minimization using a heuristic procedure" AIChE Spring Meeting, Houston. USA.
- 49. Mann, J., G. and Liu, Y., A. (1999), "Industrial water reuse and wastewater minimization", McGraw-Hill, New York.
- 50. Milos, B., Miguel, J., Bagajewicz, (2007), "Design of non-isothermal process water networks", *Computer Aided Chemical Engineering*, Volume 24: p. 377-382.
- 51. Milos, B., Miguel, J., Bagajewicz, (2008), "Synthesis of non-isothermal heat integrated water networks in chemical processes", *Computers & Chemical Engineering*, In Press, Accepted Manuscript, Available online 27 May 2008.
- 52. Oleson, S., G. and Poley, G., T. (1997), "A Simple Methodology for the Design of Water Networks Handling Single Contaminants," *Trans. Inst. Chem. Eng.*, 75, Part A, 420.
- 53. Papalexandari, K., P., Floudas, C. and Pistikopoulos, E., N. (1994), "Mass exchange networks for waste minimization: a simultaneous approach." *Chemical Engineering Research and Design (part A)*, 72: p.279–294).
- 54. Polley, G., T. and Polley, H., L. (2000), "Design better water networks", *Chemical Engineering Progress*, 96(6): p. 47-52.
- 55. Prakash, R. and Shenoy, U., V. (2005), "Targeting and design of water networks for fixed flowrate and fixed contaminant load operations", *Chemical Engineering Science*, 60(14): p. 255–268.
- 56. Savulescu, L., Kim, J., K. and Smith, R (2005), "Studies on simultaneous energy and water minimization Part II: Systems with maximum re-use of water" Chemical Engineering Science, 60: p. 3291-3308.
- 57. Savelski, M. and Bagajewicz, M. (2000), "Design of water utilization systems in process plants with a single contaminant.", *Waste Management*, 20: p. 659-664.


- 58. Savelski, M. and Bagajewicz, M. (2003), "On the necessary conditions of optimality of water utilization systems in process plants with multiple contaminants, "*Chemical Engineering Science*, 58, Issues 23-24 : p. 5349-536.
- 59. Takama, N., Kuriyam, T., Shiroko, K. and Umeda, T. (1980), "Optimal water allocation in a petroleum refinery" *Computers and Chemical Engineering*, 4: p. 251-258.
- 60. Wang, Y., P. and Smith, R. (1994a), "Wastewater Minimization", *Chemical Engineering Science*, 49(7): p. 981-1006.
- 61. Wang, Y., P. and Smith, R. (1994b), "Design of Distributed Effluent Treatment Systems", *Chemical Engineering Science*, 49(18): p. 3127-3145.
- 62. Wang, Y., P. and Smith, R. (1995), "Wastewater minimization with flow rate constraints", *Chemical Engineering Research and Design*, 73(15): p. 889-904.
- 63. Wang, Y., P. and Smith, R. (1995b), "Time Pinch Analysis", Chemical Engineering Research and Design, 73 (10): p. 905-914.
- 64. Wang, B, Feng, X. and Zhang, Z. (2003), "A design methodology for multiple-contaminants water networks with single internal water main", *Computers and Chemical Engineering*, 27 (7): p. 903–911.
- Zhelev, T., K. (2005), "On the Integrated Management of Industrial Resources Incorporating Finances", *Journal of Cleaner Production*, 13: p.469-474.
- 66. Zheng, P., Feng, X., Qian, F., Cao, D. (2006), "Water system integration of a chemical plant" *Energy Conversion and Management*, 47(15-16): p. 2470-2478.


EXISTING WATER NETWORKS FOR PROBLEM STATEMENTS

A.1

Existing Water Network

Fig A.1 represents the schematic diagram of the water consuming units such as filter washing machine (FWM), Doroclones (D), Screens (SCR) and Grinder (GR) of a typical Chemical Industry producing starch.

Note: Values shown without brackets are flow rates of DM water in tph where as value within small brackets are concentration of contaminants in ppm.

119

Existing Water Network

A water using network has been selected from Starch industry situated in the state of Gujarat of India. The original network is shown in **Fig.A.2.** It represents the schematic diagram of the water consuming units such as primary separators (PS-I & PS-II), reactor (R), washing screens (DW) and fiber separators (S).

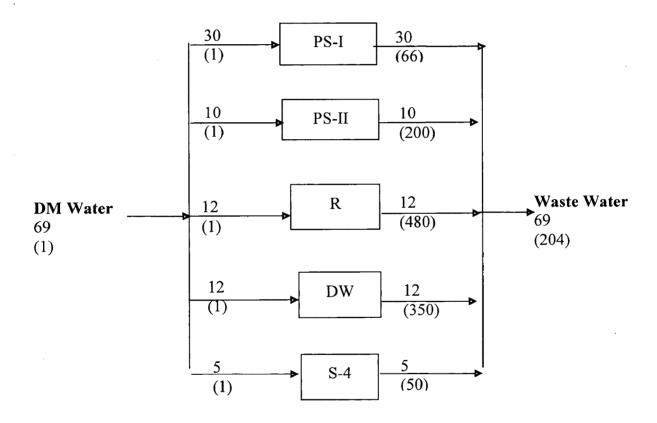


Fig.A.2 Existing water network for Problem 3.2

Note: Values shown without brackets are flow rates of DM water in tph where as value within small brackets are concentration of contaminants in ppm.

A.2

Existing Water Network

A water using network has been selected from glucose section of a starch industry situated in the state of Gujarat of India. The original network is shown in **Fig.A.3**. It represents the distribution of DM water through different operations.

A.4

Existing Water Network

In the present study a water using network has been selected from Starch industry situated in the state of Gujarat of India. The original network is shown in **Fig.A.4.** The fresh water consumption and DM water consumption are 100 tph and 51 tph respectively. Due to process constraints, it has been found that it is not feasible to reuse water from any other water using operations to Reactor (R-1) & Separators (S). There are constraints related to concentration of contaminants for each unit.

A.5

Existing Water Network

Industrial process water system of a nearby glass industry with different water using processes is shown schematically in Fig.A.5.1 and A.5.2.

.mqq ni zinanimatnos ριαςκεις ανε concentration of Ilome nittiw sular en sistem how rates of DM water in this Note: Values shown without brackets are

ı

DM Water 337 tph TDS - 1 ppm

(164)13 (648) (496) 40 (648) <u>68</u> (260) 45 (240) <u>10</u> (76) 43 (76) (88) 23 55 <u>31</u> (68) 6 **Operation 10** Operation 6 Operation 1 Operation 2 **Operation 3 Operation 5 Operation 7 Operation 8** Operation 9 **Operation 4** E 40 (1) 10 68 45 43 Ξ 23 55 13 (1) \exists (1) Ξ \exists Ξ 31 E 6

Fig A 3 Existing water network for Problem 3 3

Waste Water 337 tph TDS - 244 ppm

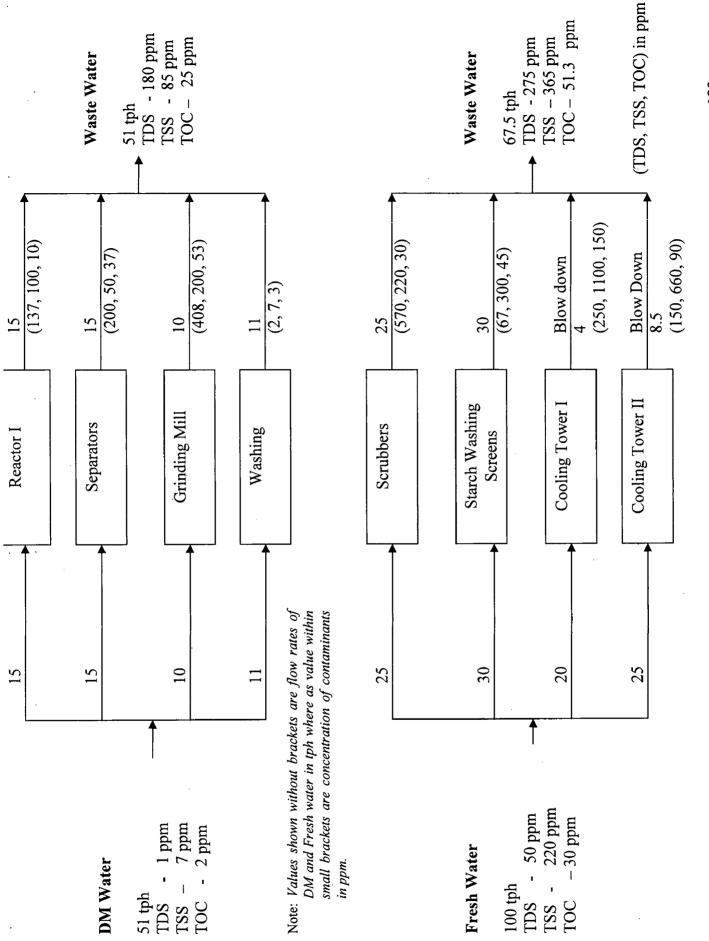
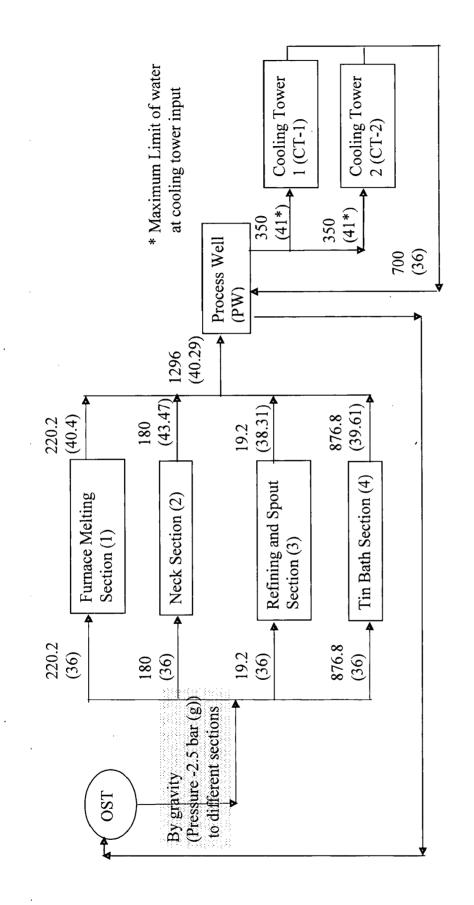
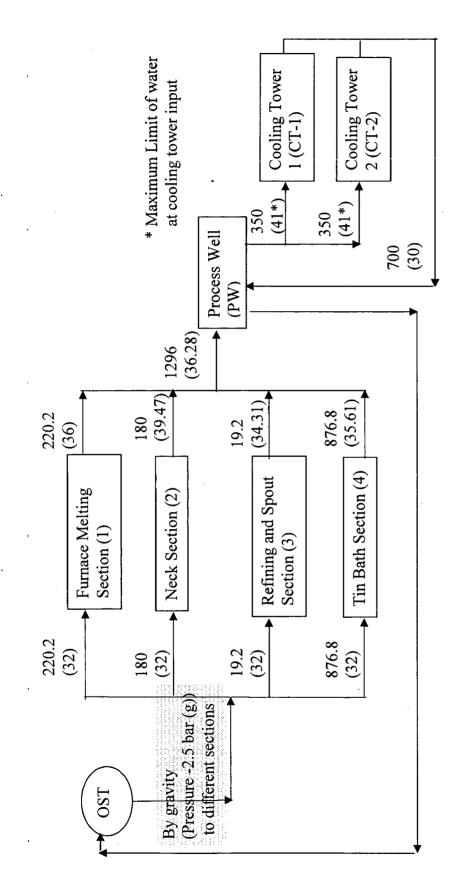




Fig A 4 Existing water network for Problem 3.4

Note: Values shown without brackets are flow rates of cooing water in tph where as value within small brackets are temperature in $\binom{0}{0}$ C)

Note: Values shown without brackets are flow rates of cooing water in tph where as value within small brackets are temperature in $\binom{0}{0}C$

APPENDIX B

IMPORTANT DATA FOR COST ESTIMATION FOR PROBLEM STATEMENTS

Problem 3.1

Table B.3.1.1 Detail piping layout of existing water network

Piping layout from one operation to another	Pipe Length (m)
From DM water storage tank to plant storage tank	100
From plant storage tank to FWM	30
From plant storage tank to D	50
From plant storage tank to SCR	75
From plant storage tank to GR	40

Table B.3.1.2 Details of pump and power consumption of existing water network

Specifications	Value
Pump Capacity (Delivered)	50 m ³ / h
Pump Head (Delivered)	30 m
Efficiency of pump	60 %
Power Consumption	6.81 kW
Motor Efficiency	90 %
Current drawn at full capacity	19.1 A
Distance from main panel to motor	100 m

Table B. 3.1.3 Distance from new proposed regeneration unit to existing units

Distance from new proposed regeneration unit	Distance (m)
(REG) to existing unit	
REG-1 to S	20
REG-1 to SCR	50
REG-1 to GR	25
SCR to REG-2	50

Problem 3.2

Table B.3.2.1 Detail piping la	ayout of existing water network	
--------------------------------	---------------------------------	--

Piping layout from one operation to another	Pipe Length (m)
From DM water storage tank to plant	100
storage tank	
From plant storage tank to PS-I	30
From plant storage tank to PS-II	50
From plant storage tank to R	75
From plant storage tank to DW	40
From plant storage tank to S-4	40

Table B.3.2.2 Details of pump and power consumption of existing water network

Specifications	Value
Pump Capacity (Delivered)	$50 \text{ m}^3/\text{ h}$
Pump Head (Delivered)	30 m
Efficiency of pump	60 %
Power Consumption	6.81 kw
Motor Efficiency	90 %
Current drawn at full capacity	19.1 A
Distance from main panel to motor	100 m

Table B.3.2.3: Distance from new proposed regeneration unit to existing units

Distance from new proposed regeneration unit	Distance (m)
(REG) to existing unit	
REG-1 to R	75
REG-1 to DW	50
REG-1 to PS II	35
REG-1 to PS I	50
REG-1 to S-4	35

Problem 3.3

Table B.3.3.1 Detail piping layout of existing water network

Piping layout from one operation to another	Pipe Length (m)
From DM water storage tank to plant storage tank	25
From plant storage tank to Operation 1	30
From plant storage tank to Operation 2	50
From plant storage tank to Operation 3	75
From plant storage tank to Operation 4	40
From plant storage tank to Operation 5	30
From plant storage tank to Operation 6	30
From plant storage tank to Operation 7	30
From plant storage tank to Operation 8	40
From plant storage tank to Operation 9	30
From plant storage tank to Operation 10	30

Table B.3.3.2 Details of pump and power consumption of existing water network

Specifications	Value
Pump Capacity (Delivered)	$340 \text{ m}^{3}/\text{ h}$
Pump Head (Delivered)	30 m
Efficiency of pump	65 %
Power Consumption	42.75 kW
Motor Efficiency	90 %
Current drawn at full capacity	120 A
Distance from main panel to motor	100 m

Table3.3.3: Distance between existing units

Distance between existing units.	Distance (m)
between operation 1 to operation 2	50
between operation 1 to operation 5	70
between operation 1 to operation 5	70
between operation 2 to operation 4	50
between operation 3 to operation 4	35

Problem 3.4

Piping layout from one operation to another	Pipe Length (m)
From DM water storage tank to plant storage tank	25
From plant storage tank to R-1	25
From plant storage tank to S	25
From plant storage tank to G	40
From plant storage tank to W	25
From Fresh water storage tank to plant storage tank	30
From plant storage tank to SCR	50
From plant storage tank to SWS	35
From plant storage tank to CT1	50
From plant storage tank to CT2	35

Table B.3.4.1 Detail piping layout of existing water network

Table B.3.4.2 Details of pump and power consumption of existing water network

Specifications	Fresh water transfer pump	DM water Transfer pump
Pump Capacity (Delivered)	$100 \text{ m}^3/\text{ h}$	$51 \text{ m}^{3}/\text{ h}$
Pump Head (Delivered)	30 m	30 m
Efficiency of pump	65 %	65 %
Power Consumption	12.57 kW	6.29 kW
Motor Efficiency	90 %	90 %
Current drawn at full capacity	36 A	18 A
Distance from main panel to motor	50 m	50 m
Total Qty of pressure gauge	1 No	1 No

Table B.3.4.3 Distance from new proposed regeneration unit to existing units

Distance between equipments	m	Distance between equipments	m
R-1 to SCR	25	S to CT-2	85
R1- to SWS	30	G to SCR	65
R-1 to CT-1	50	W to G	25
R-1 to CT-2	60	CT-1 to SWS	45
S to SCR	35	CT2 to CT1	25
S to SWS	45		

Pro	blem	3.5

Table B.3.5.1 Cost of Power and Make up water

Specification	Cost
Cost of Power	Rs 4 / kW
Cost of Fresh water	Rs 3.5 / m ³
Cost of RO water	Rs $12 / m^3$
Existing Qty of make up water	$10 \text{ m}^3/\text{h}$

Table B.1 Piping cost per unit m length for different sizes

Specifications	Cost (INR / unit length)
(ASTM A312 TP 304)	
Cost of pipe (0.3 m)	2940 INR / m
Cost of pipe (0.25 m)	2450INR / m
Cost of pipe (0.2 m)	1960 INR / m
Cost of pipe (0.175 m)	1715 INR / m
Cost of pipe (0.15 m)	1470 INR / m
Cost of pipe (0.125 m)	1225 INR /m
Cost of pipe (0.1 m)	980 INR /m
Cost of pipe (0.075 m)	735 INR /m
Cost of pipe (0.050 m)	490 INR /m
Cost of pipe (0.050 m)	245 INR /m

Table B.2Accessories cost and erection and commissioning cost of piping
layout for different modified networks

Total Cost of Accessories (Bend, Flange, Gaskets, Bolts-Nuts, Round Neck)	10 % of total piping cost
Erection cost of pipeline	
(1) Civil Cost	10 % of total piping cost
(2) Welding Cost	8 % of total piping cost
(3) Pipeline laying cost	15 % of total piping cost
(4) Support Structure of pipeline	2.5 % of total piping cost

.

APPENDIX C

COMPUTER PROGRAM and MICROSOFT EXCEL SHEETS

The computer programs to determine the minimum fresh water flow rates based on the limiting concentration composite curve method, proposed by Wang and Smith was developed in the MATLAB programming. Two programs were developed. These programs are described below in Table C.1.

Sr.No.	Name of Programs	Purpose of the programs
1	Program C.MB	This program gives the values of the limiting
		fresh water flow rates. It takes the help of
		different input files to solve different
		problems (3.1 to 3.4)
2	CWCC.xls	This program calculate the construction of
		cold water composite curves for problem 3.5
3	TAC.xls	This program calculates the TAC and other
		profitability analysis for problem 3.1 to 3.4.

Table C.1. The details of the computer programs

Program C1.MB :

Program to construct CID and generation of CCC

```
n=input('Enter the total number of streams');
Sl=input('Enter the sl. no of operation');
f=input('Enter the different flow` rates');
Cin=input('Enter the inlet concentration');
Cout=input('Enter the outlet concentration');
T=[S1; f; Cin ;Cout];
fprintf('Input Data\n');
fprintf('-----\n');
fprintf(' Operation
                       fi(t/h)
                                  Cin(ppm) Cout(ppm)\n');
fprintf('-----
                                               -----\n');
disp(T)
C=[Cin Cout];
a=2*N;
for i=1:a-1
for j=i+1:a
if C(i) = =C(j)
C(j)=0;
end
end
end
Conc=nonzeros(C);
Concl=sort(Conc,'ascend');
[m,n]=size(Conc1);
p=m;
Cj=zeros(m+1,n);
for i=1:p
Cj(i+1)=Conc1(i);
end
fe=f;
F=zeros(m+1,n);
for i=2:m+1
for j=1:N
if Cin(j) \leq Cj(i-1) \& Cout(j) \geq Cj(i)
F(i)=F(i)+fe(j);
end
end
end
dC=zeros(m+1,n);
for i=2:m+1
dC(i)=Cj(i)-Cj(i-1);
```

```
end
FI=F';
dm=zeros(m+1,n);
for i=2:m+1
dm(i)=FI(i)*dC(i)*10^-3;
end
dM=cumsum(dm);
dM1=dM*1000;
CJ1=zeros(m+1,n);
CJ1=Cj-Cj(1);
FW=[];
for i=2:m+1
FW(i)=dM1(i)/CJ1(i);
end
FWs=FW';
F0=FI';
Soltable=[Cj F0 dm dM FWs];
fprintf('Mass Problem Table For Given Problem\n');
fprintf('---\n');
fprintf(' Cj(ppm)
                      fi(tph)
                                dmj(kg/h)
                                             dmc(kg/h)
                                                           fws(tph)\n');
disp(Soltable);
A=max(FWs);
fprintf('The minimum water flow rate in t/h=%15f,A);
```

133

CP (kW /^oC) 1.39533 1.39533 6.97667 251.16 34.8833 55.8133 237.207 1.39533 10.465 1.39533 3.48833 195.347 41.86 4.186 4.186 83.72 0 0 1.39533 87.2083 1004.64 1.39533 948.827 1.39533 195.347 781.387 376.74 125.58 1.39533 3.48833 52.325 6.97667 Q (kW) 6.279 4.186 0 0 Shifted Tout (° C) 38.5 39.5 37.5 40.5 37 40 40 40 40 39 37 37 37 37 37 37 37 41 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 Tout (° C)(° C) 36 Tin Bath Section 39.5 38.5 37.5 40.5 40 40 40 40 39 37 37 37 37 37 37 37 37 41 Tin (° C) 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 117.208 CP (kW /⁰ C) 111.626 97.6725 27.9067 11.16 9.764 8.372 38.371 19.53 8.372 19.53 4.18 6.97 6.97 781.38 781.38 586.04 11.16 19.53 19.53 8.372 20.93 83.72 383.71 24.41 6.97 6.97 6.27 Q (kW) (Furnace melting, Neck and Refining -Spout Section) Shifted Tout (° C) 38.5 38.5 37.5 43 39 46 37 37 37 37 37 44 41 37 Qcum (kW) 4074.292 2740.372 Shifted Tin (° C) 36 36 36 36 36 36 36 36 36 36 36 36 36 36 0 Q (kW) 2740.37 1333.92 Tout (° C) 37.5 38.5 38.5 43 44 41 46 39 37 37 37 37 37 37 T (° C) 37.5 Tin (° C) 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 37

Table C.2 Cold composite curve for Problem 3.5

134

3.48833

17.4417

41

36

41

36 36 36 36

6735.862 8043.977

2661.57

38.5

1308.12 5065.02 3892.94

39

17001.94

43

41

13109

16.744

16.744 6.279

37

48.8367

48.8367

4.186

37.5 37

36 36

37.5

37

44	1165.09	18167.03		36	39	36	39	29.302	9.76733
46	767.42	18934.45	3	36	39	36	39	4.186	1.39533
			T (⁽	T (° C) Q (Q (kW)	Qcum (kW)			
			3	36		0			
			3	37 101	1019.29	1019.291			-
			37	37.5 466	466.739	1486.03			
				39 138	1387.66	2873.689			
			4	40 89(890.223	3763.912			
			4(40.5 41	418.6	4182.512	n man a la manager de la const de la const de la const de la const de		
			4	41 388	388.949	4571.461			
Table C.3	TAC Calculation	ulation (Problem 3.3)							والمستعلم
AC= Fixed	cost / Serv	[AC= Fixed cost / Service life + Operating cost per year							****
Service Life			10	10 Years					
BASE CASE	F 4				Reuse				
fixed cost			1199306		fixed cost	cost		122	[228171
fixed cost / service life	ervice life	·	119931	Rs / yea	r fixed (119931 Rs / year fixed cost / service life		12	122817Rs / year
erating co	operating cost per year	5-1			opera	operating cost per year	١٢		
power cost per year	er year		1664400	Rs / yea	r power	1664400 Rs / year power cost per year		. 15	156629 Rs / year
Cost of DM Water	Water		99	60 Rs / m ³	Cost c	Cost of DM Water			48 Rs / m ³
Capacity of DM Water	DM Water		340	340 m ³ / hr	Capac	Capacity of DM Water			223 m ³ / hr
st of DM	Cost of DM water per Hour	lour	20400	20400 Rs / hr	Cost c	Cost of DM water per Hour	Hour		10704Rs / hr
Annual Operating Cost	ating Cost		178704000	Rs / yea	c Annue	178704000 Rs / year Annual Operating Cost		9376	93767040 Rs / year
stal annual	Fotal annual opearing cost		180368400		Total	Total annual operating cost	cost	9392	93923669
TAC			180488331 Rs / year TAC	Rs / yea	rTAC			9404	94046486 Rs / year

.

٠

.

135

able C.4 TAC Calculation (Problem 3.1)

service life	10	years			
BASE CASE			Reuse		
fixed cost	378265		fixed cost	377318	
fixed cost / service life	37826	Rs / year	fixed cost / service life	37732	Rs / yea
operating cost per year			operating cost per year		
ower cost per year	264902	Rs / year	power cost per year	156629	Rs / yea
ost of DM Water	11.5	Rs/m^3	Cost of DM Water	10.5	Rs/m^3
apacity of DM Water	50	m ³ / hr	Capacity of DM Water	32	m ³ /hr
ost of DM water per Hour	575	Rs / hr	Cost of DM water per Hour	336	Rs / hr
nnual Operating Cost	5037000	Rs / year	Annual Operating Cost	2943360	Rs / yea
otal annual operating cost	5301902		Total annual operating cost	3099989	
ТАС	5339729	Rs / year	TAC	3137721	Rs / year
Regeneration-reuse			Regeneration- recycling		
xed cost	1131707		fixed cost	1232776	
xed cost / service life	113171	Rs / year	fixed cost / service life	123278	Rs / yea

AC= fixed cost / service life + operating cost per year

				operating cost per		
operating cost per year				year		
/er cost per year	105120	Rs / year		power cost per year	58867	Rs / year
t of DM Water	9	Rs/m^3		Cost of DM Water	8.5	Rs/m^3
acity of DM Water	21.5	m ³ / hr		Capacity of DM Water	12	M^3 / hr
t of DM water per Hour	193.5	Rs / hr		Cost of DM water per Hour	102	Rs / hr
ual Operating Cost	1695060	Rs / year		Annual Operating Cost	893520	Rs / year
al annual operating cost	1800180			Total annual operating cost	952387	
TAC	1913351	Rs / year		ТАС	1075665	Rs / year
yback Period Calculations		Reuse	Regeneration- reuse	Regeneration- recycling		
al additional cost of fixed						
ital investment =Fixed Cost						
base case – Fixed cost for						
lified approach (a)			753443	854512		
vice life (years)			10	10		
'age values			0	0		
ings in operating cost= al operating cost of base e – Total operating cost for			2501722	4349515		
dified approach (b)			3501722	4349313		
ings in operating cost/ Total itional cost of fixed capital estment (c)			75344.263	85451.16	· · · · · · · · · · · · · · · · · · ·	
		·	13344.203	03431.10	· · · · · · · · · · · · · · · · · · ·	
'ayback periods in years = (a / (b +c))			0.2106314	0.192676005		
ayback periods in months			2.527577	2.312112059		

.

.

			r	· · · · · · · · · · · · · · · · · · ·
Date of submission	11 ^m June- 2008	28 th May- 2008	20 th June- 2008	17 th December- 207
Status As on 23 rd June-2008	Forwarded by Managing Special Issue Guest Editor Jiri Klemes, PhD. to reviewers	Forwarded by Editor Prof. Dr. Donald Huisingh, Ph.D to reviewers	Submitted to journal	Original paper submitted to <i>Journal of</i> <i>Chemical</i> <i>Engineering</i> <i>Science</i>
Submitte d to Journal	Resources , Conservati on & Recycling	Journal of Cleaner Productio n	Water Research	GLS-8 IIT Delhi
Authors	Mihir Dakwala Bikash Mohanty R.Bhargava	Mihir Dakwala Bikash Mohanty R.Bhargava	Mihir Dakwala Bikash Mohanty R.Bhargava	Mihir Dakwala Bikash Mohanty R.Bhargava
Title of Paper	A process integration approach to industrial water conservation: A case study for an Indian Starch industry	"A process integration approach to industrial water conservation for multicontaminant system: A case study for an Indian Starch industry"	3 WR-S-08- "Waste Water Minimization Of Starch Industry Using 01429 Water Pinch Technology" Poster presentation at international conference Poster presentation at international conference	d Glucose Hydrogenation using Raney Nickel Catalysts in Batch Hydrogenators of Different Capacities
Ref. No. /Manuscript No.	RECYCL-D- 08-00131	JCLEPRO-D- 08-00095	WR-S-08- 01429 r presentation at	Poster selected
Sr. No.		7	3 Postel	

LIST OF RESEARCH PAPERS SUBMITTED