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ABSTRACT 

Distillation is the most widely used industrial separation technology and distillation units 

are responsible for a significant part of the total heat consumption in the world's process 

industry. The reduction of energy consumption in distillation has become a need of the 

hour. 

In this work we focus on Petlyuk distillation column for separation of 

multicomponent mixtures. The general analytic solution has been derived for minimum 

energy consumption in Petlyuk distillation column for multicomponent mixtures and the 

derivation is based on Underwood's classical methods. The Vmin-diagram has been 

introduced as a useful tool for assessment of any multicomponent separation task. The 

total required energy consumption and the vapor load and separation carried out in all 

parts in a directly integrated column arrangement (i.e. Petlyuk Column) can be obtained 

by just a glance at the Vmin-diagram. 

Two extra degree of freedom can be used in Petlyuk distillation column for 

optimization purposes. The concept of self-optimizing control has been used for control 

structure design and in particular to propose that should be controlled to a set point and at 

the same time, this ensures close to optimal operation. We have studied the some 

performance of some self-optimizing control configurations for the Petlyuk column in the 

presence of disturbances and uncertainties. 

It has been calculated, energy saving of 36% is achieved for ternary mixture of 

methanol, isopropanol and n-propanol with a Petlyuk distillation column, as compared to 

conventional distillation arrangements. 
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NOTATION AND NOMENCLATURE 

It is attempted to define the notation used for equations in the text. However, the most 

important nomenclature used for distillation columns are summarized: 

V 	Vapour flow rate 

L 	Liquid flow rate 

D, B, S Product flows (, or net flow (D=V-L) 

Net component flow through a section (positive upwards) 

Feed component recovery 

Br/ 	Vapour split ratio at vapour draw stage 

RL 	Liquid split ratio at liquid draw stage 

x 	Mole fraction in liquid phase 

y 	Mole fraction in vapour phase 

z 	Mole fraction in feed 

q 	Liquid fraction (feed quality) 

A, B 	Component enumeration 

T 	Temperature 

P 	Pressure 

pi 	Partial pressure of component i 

Vapour pressure 

a 	Relative volatility, referred to a common reference component 

0 	Underwood root in a top section 

yt 	Underwood root in a bottom section 

Common (minimum energy) Underwood root 



Specific heat of vaporization 

MI 	Enthalpy change 

Entropy change 

R 	The universal gas constant (8.31 PK/mole) 

Superscripts 

Cxy Column address in a complex arrangement: column array number x, array row 

number y. unless it is obvious from the context, the column position is given as the 

first superscript to the variables. The column address may be omitted for the First 

column (Cl) 

i/j 	Denotes sharp split between components i and j. 

Subscripts 

T, B 	 ,.Top or bottom section 

F, D, B, S.... Streams 

min 	.Minimum energy operation for a given column feed 

j, A, B.... Component enumeration 

xi 



CHAPTER 1 

INTRODUCTION 

As the distillation columns call for energy consumption and huge capital outlays, 

the reduction of energy consumption in distillation has become a need of the hour. This 

work is focus on directly (fully thermally) coupled column arrangements for separation of 

multicomponent mixtures. These systems are also denoted Petlyuk arrangements, where a 

particular implementation is the dividing wall column. An important motivation for 

studying integrated distillation column arrangements is to reduce the energy 

consumption. On a global basis, distillation columns consume a large portion of the total 

industrial heat consumption, so even small improvements which become widely used, 

can save huge amounts of energy. Savings in the magnitude of 30-40% reboiler duty can 

be obtained if a three-product integrated Petlyuk column is operated at its optimum, 

instead of using a conventional column sequence. In addition to energy savings, such 

integrated units have also a potential for reduced capital cost, making them extra 

attractive. 

From the point of view of energy requirements, separation sequences using 

conventional columns (a single feed with two product streams, condenser and reboiler) 

suffer from an inherent inefficiency produced by the thermodynamic irreversibility 

during the mixing of streams at the feed, top and bottom of the column. This remixing is 

inherent to any separation that involves an intermediate boiling component. This 

inefficiency can be improved by removing some heat exchangers and introducing thermal 

coupling between columns. if a heat exchanger is removed the liquid reflux (or vapor 

load) is provided by a new stream that is withdrawn from another column, in this way it 

is possible to reduce the energy consumption and under some circumstances also the 

capital costs. A Petlyuk distillation configuration is reached when the entire vapor load is 

provided by a single reboiler and all the reflux by a single condenser. 



AB 
Prefractionator 

A 

Main Column 
ABC 

BC 
C 

Fig. 1.1: The Petlyuk Distillation Arrangement. 

1.1 Petlyuk Distillation Column 
This is the structural arrangement which shows an interconnection between two 

columns with a liquid or vapor extraction from the first column and the recycle stream 

from the other column in the other phase; such interconnection can be implemented 

in place of reboiler or a condenser of one of the columns. The Petlyuk distillation 

configuration has received considerable attention because of its efficiency to reduce the 

energy required for the separation of ternary mixtures. 

The main features of Petlyuk distillation column are:- 

1. No more than one component is stripped out in each section, key 
components A and C: 

- Reversibility during mixing of streams in feed location (pinch zone) 

No remixing effect 

2. Thermal coupling: 

- No thermodynamic losses in heat exchanges of prefractionator reboiler 
and condenser 

- Reversibility during mixing of streams at ends of columns. 

2 



3. Large potential for reduced energy consumption: 

- Savings of 30-40% reboiler duty can be achieved for 3-product Petlyuk 

columns compared to conventional column sequences. 

1.2 Objective of Present Study 
The present investigation is planned to address the following objectives: 

➢ Formation of Underwood's classical equations for minimum energy. 

➢ Derive the general analytic solution for minimum energy consumption in 

Petlyuk distillation column for multicomponent feed and any number of 

products. 

➢ Use of the graphical tool (\f rith, diagram) for visualization of minimum 

energy related feed distribution. 

➢ Self optimizing control of Petlyuk distillation column using local Taylor 

series analysis by turning the optimization problem into a constant 

setpoint problem. 

3 



CHAPTER 2 
LITERATURE SURVEY 

Distillation columns are the most widely used separation units in the 

petrochemical and chemical industries. In order to reduce their significant energy 

consumption there has been several successful developments by the use of process and 

energy integration techniques. A possible way is the integration of conventional distilla-

tion columns into the remainder of the process. If this integration is limited or impossible, 

the operation of the distillation columns should be investigated and/ or energy-integrated 

solutions between the individual columns and nonconventional arrangements should be 

considered such as Petlyuk distillation arrangement, heat integration and thermocoupling. 

The aim of these energy-integrated schemes is cost saving by less energy consumption. 

The successful schemes are usually compared to the conventional arrangements as well 

as to other energy-integrated alternatives. The selection from the several energy-

integrated solutions is usually based on economic features. The Petlyuk distillation 

configuration has received considerable attention because of its efficiency to reduce the 

energy required for the separation of ternary mixtures. But the structure of the Petlyuk 

system offers some control challenges arising from the transfer of vapor streams back and 

forth between the columns. 

2.1 Operation of Petlyuk Distillation Column: 
Alstaci et. al [21 showed that for Petlyuk distillation columns, it may be optimal 

from an energy point of view, to over-fractionate one of the product streams. Additional 

energy savings may also be possible when bypassing some of the feed and mixing it with 

the over-fractionated product stream. However, it should be noted that the distillate 

product will contain component C which may be undesirable. These results have been 

confirmed numerically for the case with finite number of stages, where it is optimal to 

over-fractionate the non-limiting section as expected. This implies that one may either 

4 



F, zr,  q: Cl 

Prefractionator 
L 

IL, V 

D 
L 

Main Column 

S 

V 

	1 B 
Fig. 2.1: Sketch of Petlyuk distillation column 

choose to over-fractionate (in operation) or decrease the number of stages in the non 

limiting section (design). 

The Petlyuk distillation column (Fig.2.1), with a pre-fractionator (Cl) and a main 

column (C21 and C22), is an interesting alternative to the conventional cascade of binary 

columns for separation of ternary mixtures. The potential savings are reported to be of 

approximately 30% in both energy and capital cost. 

Halvorsen and Slcogestad (2003) calculated the vapor flows by following 
expressions for minimum energy: 

a „ — „ a — 0, 	cr 
ELT  = D  [a A XA.D  a 3 (1 

OA 
—  X AM )] 

a — e9  

021 	 021 

021 	a A W A,T  a , W 

T.T  C 22 

V Thmin 

C22 	 022 a , W B,B  +aCW  'R  — B[a  A6 —  XC,B) 
 + 

aB (xe2,13)1 =- 
a — 	 a A — 0B 	a — ac  —6)  If 	 13 

(2.2) 

Kim, Y.H. [13] was presented structural design procedure for fully thermally 

coupled distillation columns (FTCDC) is applied to the example system of butanol 

isomers in order to show the design performance. The procedure gives structural 

V ,min 
(2.1) 

5 



information of the column, and therefore iterative computation encountered in the design 

using conventional procedure and commercial packages can be eliminated. Using the 

outcome of the structural design, other topics, such as thermodynamic efficiency, 

dividing wall column structure and the arrangement of interlinking streams, are 

investigated. Finally, a 3 x 3 operation scheme, which has favorable indices of 

multivariable controllability, is examined by checking the control performances of set-

point tracking and regulation with a model predictive control. 

For the side product is drawn from a main column in fig.2.1, the design of the 

column begins with the composition of the product. Starting at the stage of side product, 

the liquid composition at one stage above the product stage is computed using the 

composition of the product and an equilibrium relation: 

X n+1,i 
n,i 

 

K x . n 7  
(2.3) 

Where K,,,, is equilibrium constant of the ith component at the nth tray from the 

bottom and obtained from an equilibrium relation. This procedure continues until the tray 

composition meets the specification of overhead product. The liquid composition of the 

stages below the side product stage is found in the same manner and the composition 

equation is modified as (2.4): 

X n-1,i 	
xn, 	I 	 (2.4) 

K n-1, j 

In order to analyze the operational characteristic of an FTCDC, its dynamic 

simulation is conducted in which the change of operation variables is applied and 

examined the variation of product composition. The initial operation condition of the 

dynamic simulation is derived from the design result of the previous section. 

X17 • '1 
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The liquid composition is updated from the material balance of a component in a tray: 

n  Mn  dt = L„ 4.1  x„_„,, + Y 	 — Ln x„, — V n  y 11,1 

A structural design procedure for fully thermally coupled distillation columns is 

exercised to an example system having different compositions of feed. The structural 

information from the design eliminates tedious iteration encountered in the design using 

conventional procedures. From the result of the design for the example system and the 

comparison of calculated liquid composition with a commercial design tool, it is proved 

that the proposed procedure is useful. In addition, other design related subjects, such as 

thermodynamic efficiency, dividing wall structure and the arrangement of interlinking 

streams, are investigated using the information of the structural design and possible 

improvements concerning the subjects are suggested. Mixing in feed tray reduces the 

thermodynamic efficiency more than the remixing of intermediate component. A separate 

prefractionator system is better than the dividing wall structure unless the concentrations 

of intermediate component in feed and side product are close. For the column operation. a 

3 x 3 control scheme is adopted and its performance of set-point tracking and regulation 

with a model predictive control is examined to result in satisfactory outcome. 

Halvorsen et al [18] computed important operational parameters for an infinite-

staged Petlyuk column as a function of the feed composition, feed enthalpy, and relative 

volatilities. The computational effort is very low, and the methods can be used to quickly 

evaluate the applicability of a Petlyuk column for a specific separation task. It is found 

that the largest energy savings of about 40% are obtained when the prefractionator is 

operated at its preferred split and the feed composition is such that both the upper and 

lower parts of the main column operate at their respective minimum reflux condition. The 

position of this boundary region relative to the actual feed is very important when we 

consider important operational aspects of the column. 

The minimum boilup rate for the Petlyuk column is given by: 

Dr Petlynk 
min = max  &

H z, 	aczc 	aczc  
0, — a„ 0,—ac  08  — aC  

(2.6) 

(2.5) 
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The Underwood roots (04, 9B) obeya A>  GA> a 8> Os> a c and can be found by 
solving eq. (2.7) 

G  A ZA 	a Z B 	a  c z c  _ 

UA G  - B a B - e a c - 
(2.7) 

The minimum vapor flow for the prefractionator for a sharp A/C split is given by 

a Az, 	a  e z  Big 	a A Z A 	C B Z 	 j 
V! juin  (JO = max 	 

a - 0A  a 8  - BA a - 
(2.8) 

Simple analytical Underwood methods developed for the infinite-staged Petlyuk 

column with a sharp product split can be used to compute the theoretical performance of 

a Petlyuk arrangement for any set of feed properties and operational situations. For every 

set of feed parameters and relative volatilities, the full surface V (R1, Rv) can easily be 

computed and analyzed. We observe that the best possible energy savings is obtained 

close to the feed composition region, where the operating point for the preferred split of 

the prefractionator coincides with the situation that we have the same minimum reflux 

requirement in the upper and lower parts of the main column, i.e., when the main column 

is balanced. This region is also the most difficult region for operation because we have to 

adjust both degrees of freedom online. However, if the feed composition is away from the 

boundary line, then optimal operation (in terms of minimum boilup) can be obtained with 

a strategy where one of the degrees of freedom, e.g., the vapor split, is kept constant. The 

results shown in this paper are valid for sharp product splits and therefore relevant for 

high-purity distillation. A typical symptom of a real column if we have a feed 

composition outside the feasible regions for high-purity operation is that we will be 

unable to produce high-purity products, even if the energy input to the column is above 

the theoretical minimum. So, instead of an increase in the energy consumption for non 

optimal operation, we may experience decreasing product purity, particularly in the side 

stream. 

8 
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2.2 Optimization strategy for Petlyuk distillation Column: 

Hernandez et al [10] reported that the dynamic model is based on the total mass 

balance, component mass balances, equilibrium relationship (ideal VLE), summation 

constraints, energy balance, and stage hydraulics (Francis Weir formula). One set of 

equations must be written for each column of the Petlyuk system. The equations are 

coupled because of the two recycle streams between the columns; therefore, the full set of 

equations must be solved simultaneously. An important aspect for the design of the 

system is the specifications of the two recycle streams, a liquid stream that leaves column 

C-2 from stage NR and enters at the top of column C-1, and a vapor stream that leaves 

column C-2 from stage NS2 and constitutes the feed stream at the bottom of column C-1 

(Fig:  2.2). We define the following dimensionless variables for these streams, which lie 

between 0 and 1 and are used as search variables in the optimization procedure: 

V B  
v - 	 (2.9) 

V Ns 2 

LT  

L 
L  NR 

Cohatitin C:-2i 

(2.10) 

Fig. 2.2 Relevant variables for the design of the Petlyuk system. 



The dynamic model requires a basic structure of the Petlyuk system. Such a 

preliminary design can be obtained by the shortcut method of Triantabillou and Smith 

(1992), or through the implementation of some expected distribution of the intermediate 

component. The dynamic model serves two purposes. First, it will detect whether the 

proposed design can effectively provide the desired products compositions, and secondly 

it will identify the operating conditions under which minimum energy consumption will 

be achieved. The following steps are used for the optimization procedure. 

1. Specify products compositions for the Petlyuk system. These values are taken as set 

points for the dynamic model. 

2. Establish the control loops between each manipulated variable (R, LS and QR) and its 

corresponding output variable (XD, XS and XB). 

3. Set a value for qv. 

4. Set a value for ML. 

5. Initialize time to start the rigorous dynamic simulation. 

6. Integrate the dynamic model (Hernandez & Jimenez, 1996). 

7. Compare product compositions with set point values. If they do not agree, increase 

time by At and go back to step 6. If they agree, a search point is completed; the 

operating values for R, LS and QR are detected. 

8. Increase it, and go back to step 5 until the local minimum of heat duty is detected. 

9. Increase tiv  and go back to step 4 until the overall minimum of heat duty is found. 

It is important to note that an adjustment of the initial design might be needed if 

the final steady state compositions do not agree with the established set points. 

2.2.1 Energy Optimization in the Petlyuk Column 
Serra et. al [7] studied that the thermally coupled distillation column known as 

Petlyuk column (Petlyuk 1965), shown in figure 2.1, is a complex distillation 

arrangement to separate a ternary mixture of A (the more volatile), B (intermediate 

volatility) and C (the less volatile). The Petlyuk column has been given special attention 

due to very high reported energy savings. (Triantafyllou and Smith, 1992) reported 

savings of 30% comparing the Petlyuk column with the conventional trains of columns. 

10 



The complex design of the Petlyuk column offers some extra degrees of freedom which 

permit an optimization that is not possible in the conventional ternary distillation designs. 

2.2.2 Optimizing Control Requirement for the Petlyuk Column 
Halvorsen et al (1996) assumed that the Petlyuk column reboiler and 

accumulator levels are stabilized by the distillate flow (D) and the bottoms flow (B). 

Then it has five degrees of freedom: boilup (V), reflux (L), side stream flow (S), liquid 

split (RI) and vapor split (R,). Of these five degrees of freedom, three are used to control 

the compositions of the three products (composition of component A in the distillate, 

composition of B in the side stream and composition of C in the bottoms stream). (Wolff 

and Skogestad, 1996) showed that the LSV control structure give acceptable 

performance. It consists in the control of A composition by the reflux (L), the control of 

the B composition by the side stream flow (S) and the control of C composition by the 

boilup (V). LSV is the control structure assumed in this work. Therefore, liquid split (RI) 

and vapour split (Rv) are the two extra variables to be used for optimization purposes. 

The energy consumption, here represented by the boilup vapour rate (V) will be used as 

the criterion. When the composition loops are closed and the products purity are 

controlled to their specifications, the product specifications setpoints will replace the 

composition control loop inputs (L, S and V), as degrees of freedom. These setpoints will 

affect the optimal operation point in addition to the disturbances in the feed flow rate (F), 

feed composition (z) and feed liquid fraction (q). 

It was shown (Halvorsen and Skogestad, 1997, 1998) that the optimal operation 

point of the Petlyuk column is not robust when no optimizing control is applied in 

addition to the product composition control. The optimal values of the two degrees of 

freedom (R, R„) used for optimization are sensitive to feed disturbances and product set 

points changes. The objective function surface V(12.1, R„) is very steep in some directions 

and if no adjustment of these remaining degrees of freedom (DOF) is applied, the 

operation may get far from optimal. Therefore, some control is required to maintain the 

optimal operation when disturbances and uncertainties are present. However, in 

accordance with the work of (Halvorsen and Skogestad, 1998), we will fix R„, and use R1 

as the only manipulated variable to indirectly achieve the energy control. Two reasons 

11 



= 
a i x 

Arc 

,_] 

(2.12) 
a i x ;  

justify this decision. First the energy surface V(111, R„) is quite flat close to the minimum 

in a narrow long region in a certain direction in the (R,, R„)-plane, permitting that for any 
given R can find a R,,0  t,1 that makes the value of V(121 ,010E1, R,,) be close to the absolute 
minimum when both values of the remaining DOFs are optimized: V(Ri,opt Rv,o t). R must 
be set in a reasonable neighborhood to R,,,„pt. The flat region was shown by (Fidkowski 

1986) for infinite stages and sharp product splits. The extent of the flat region is 

determined by the feed properties (composition and liquid fraction), and the relative 

volatility of the components. Second, if we consider a dividing wall column (DWC) 
(Wright 1949), R,, would be a difficult variable to manipulate in normal operation since 

its value will be naturally given by the pressure equalization on each side of the dividing 

wall. 

2.3 Underwood Equations for Minimum Energy in multi 
-component distillation 

2.3.1 Basic Definition: 
The starting point for Underwood's methods for multicomponent 

mixtures is the material balance equation at a cross section in the 

column. The net material transport (WO of component i upward through 
a stage n is the difference between the amount traveling upward from a 

stage as vapor and the amount entering a stage from above as liquid: 

W- =V n y 1,n — L n÷1 	,n +1 	 (2.11) 

Note that at steady state W, is constant through each column 

section. In the following, Skogestad et. al [8] assumed constant molar 
flows (L = L.= Len_i and V = V, = V,-,+1) and constant relative volatility 
(R,). 

The vapor-liquid equilibrium (VLE) at an equilibrium stage is 

given by: 
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In the top section, the net product flow is D = V, - L,„+1 and 

	

Way. = X a,  D = r, D z i F 
	

(2.13) 

In the bottom section, B = 	- V„, and the net material flow is 

W iB  = 	iBB = 	i F 	 (2.14) 

The positive direction of the net component flows is defined 
upward, but in the bottom the components normally travel downward 
from the feed stage and then we have Wis < 0. With a single feed stream, 
the net component flow in the feed is given as 

W ;  F 	z i F 	 (2.15) 

A recovery can then be regarded as a normalized component flow: 

W, W, 
Y = 	 

z,F (2.16) 

At the feed stage, Wa y is defined as positive into the column. 

2.3.2 Definition of Underwood Roots: 
The Underwood roots (0) in the top section are defined as the /V, 

solutions of 

VT  a.Wi  _ E 	,T  

- (2.17) 

In the bottom there is another set of Underwood roots given by 

the solutions of 

a  i W i,B v s  (2.18) 

 

a -1,r 
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Equations (2.1 7) St (2.18) are related via the material balance at the 
feed stage: 

WCT 	=WI 
= ZiF F 
	

(2.19) 

The change in vapor flow at the feed stage given by the liquid 
fraction (q) of the feed (F) 

VE  =VT  - VB  = (1-  OF 	 (2.20) 

Computation of the Underwood roots involves  solving a 
straightforward polynomial root problem, but make sure that the vector 
of component flows WT or WB is feasible. This also implies that in the 
multicomponent case there is a "hidden" interaction between the 
unspecified elements in WT and the Underwood roots. 

2.3.3 Underwood Roots for Minimum Vapor Flow 
Underwood showed a series of properties of the roots (0 and vi) for 

a two-product column with a single reboiler and condenser. In this 
conventional column, all components flow upward in the top section (W, T 
> 0) and downward in the bottom section (W,,3 < 0). With /V, components 
there are, for each of 0 and yr, Arc  solutions obeying 

> 01 > az > 0 2 > a3 > 0 3 	 > aNc >0Nc 	 (2.2 1 ) 

> al > W 2 > az>  tif 3 > 063 --- 	•> il/Nc > CANc 
	 (2.22) 

Recall that VT - VI3 = (1 - q)F. By subtracting the defining 
equations for the top and bottom sections (2.17) and (2.18), we obtain the 
following equation, which is valid for the common roots only (denoted 6): 

0— q )= 	aezi 
a (2.23) 
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We will denote a root OK an active root for the case when ce K = K±I = OK  . 

Inserting the active root in the top- and bottom-defining equations gives the minimum 

flow for a given set of component distributions. 

VT , min 
r  CX ;W  ;T 

= 	a  n  
K 

or 	VT , min 
z,F 

a, — 0, (2.24) 

2.4 Vrnin  Diagram (Minimum-Energy Mountain) 

A nice feature, because there are only 2 degrees of freedom, is that we can 

visualize the entire operating range in two dimensions, even with an arbitrary number of 

feed components. We choose to use (a) vapor flow per unit feed (V/F) and (b) product 

split, expressed by the distillate (D1F), as degrees of freedom. The choice of vapor flow 

rate on the ordinate provides a direct visualization of the energy consumption and column 

load. We chose to use the vapor flow in the top (VT) on the ordinate when the feed quality 

q 

Vmhz  for 
sharp Ali-split 

Region (A) where 
only A is distributing 
(no B in distillate). 

PAB: riDn'n 

Region (B) where 
only B is distributing, 
(no A in bottoms). 

V.> M1.1 

B at the boundary of 
becoming distributing 

11=  frInhi rrAf r.6) 

94 active 

Region (AB) where both 
A413 are distributing.  

'›Fr> 	= no active roots rn?  

A al the boundary of 
becoming distributing 

(149F 
Infeasible region: (VW or V<(I -tVF 

PO 41,0 

Fig. 2.3 The Vflordiagram, or minimum energy mountain (Visualization of the regions distributing 

components for a binary feed case). 

2.4F F 
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2.4.1 Feasible Flow Rates in Distillation 
The D-V plane spans out the complete feasible operating space for the column, both the 

minimum energy solutions and all others. This is quite simple to understand from an operational 

viewpoint. D and VT are just flows, and we can operate a column with any feasible combination of flows 

through the separation stages. If we alternatively specify two key component recoveries as degrees of 

freedom, we can only span a sub-region of the operating space, and we do not know in advance if our 

specification is feasible. Feasibility simply implies that we require positive vapor and liquid flows in all 

sections: 

VT > 0, VB > 0, LT > 0, 1.3, > 0 
	

(2.25) 

In an ordinary two product column we also require D = VT -LT> 0 and B = 1,B  - Vg > 0 (note 

that this is not a feasibility requirement for directly coupled sections) which with a single feed translates 

to V T  = max (0 — q)F, D and 0 < —D < 1 
F (2.26) 

2.4.2 Binary Case 

Consider a feed with light component A and heavy component B with relative 

volatilities [aA, an], feed composition z = [rA, zaj, feed flow rate F=1 and liquid fraction 

q. In this case we obtain from the feed equation (3.23) a single common root OA obeying 

air > 0 A > aB. The minimum vapor flow is found by applying this root in the definition 

equation (3.24): 

V T min  = a  ArA,Tz A  + 12  BraJzs  
F 	 cr A - A 	ce 11 - 0 A 

(2.27) 

If we want to specify the product split as one degree of freedom, we introduce D/F as an 
extra variable and the following extra equation: 

= 	r.1  z i,T 	= rA.rz A 	 (2.28) 
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We obtain the following results which we plot in the in the D-V-plane of the V„„„ 

diagram in Figure 2.3 First we find the operating point which gives sharp /6dB-split 

PAR :ir A ,r ,ra,T 	[0 ,0] 	, V T ,min  j= [0,0] 

and then the asymptotic points: 

PO : ITA,T I rB,T I=  [o,o]= LD ,  VT,  min = [o , o I 

P 	r B  = [1,1] 	ID , V T ,min  i= [1,0 qAF 

These three points make up a triangle as shown in Figure 3. Along the straight line 

Po-PAti we have V= V„,„, for a pure top product (rar = 0), and the line can be expressed by: 

V T 	r J.4 TZ A  

	

whereD = r A T  z A  F 	 (2.29) F a A — 9  ,4 

Similarly, along the straight line PAB-PI, we have V=Vmin for a pure bottom product 

(r A T = I), and the line can be expressed by: 

V T  aA z A  a Z D 
	 +  B 

	B  where 	z A  -1- re  z B 	 (2-30) a 	t9 	F 
= 

as  A 	e9  A 

Above the triangle (V,„;, mountain), V> V„,„, and we have no active Underwood roots, so 

(3.27) no longer applies. However, since only one component is distributing, we have 

either rA ,T  = I or rB  T = 0. This implies that the recoveries are directly related to D, and we 

have: 

D  rA ,T z A  for 	z z Aor — = 	+ I'm?. B FOT — Z A 	(2.31) 

Anywhere above the triangle we obviously waste energy since the same separation 

can be obtained by reducing the vapour flow until we hit the boundary to region AB. 

VT>D and VT  > (1-q)F for feasible operation of a conventional two-product distillation 

column. The shaded area represents an infeasible region where a flow rate somewhere in 

the column would be negative. 
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CHAPTER 3 

MINIMUM ENERGY FOR THREE PRODUCTS 

PETLYUK ARRANGEMENTS 

3.1 Brief Description of the Underwood Equations 

Consider a two-product distillation column with a multicomponent feed (F) with 

liquid fraction q and composition vector z of N components. The defining equation for 

the Underwood roots ( ) in the top and (w) in the bottom are: 

a .W. 
Top: V T 	

a 1W t,T  
Bottom: V ,B  

(3.1) 
= 1 a 	0 	 t.1 Cr 

There will be N solutions for each root and the sets from the top and bottom 

equations are generally different. Note that the net flow for a component (WO is defined 

positive upwards, also in the bottom. Underwood showed that with infinite number of 

stages, minimum vapor flow is obtained when pairs of roots in the top and bottom 

coincide. By subtracting the equations above, we obtain what we denote the feed 

equation, which gives us the set of possible common roots 0: 

iv atO 	T 	B) 	a zi F 
VT  — VB  E 	= 	= 0 - 

t=i 	a, —0 	a, —0 

Underwood showed, that for ordinary columns, the number of each set of roots 

is equal to number of components (N), and they obey: a, > 0 > 0, > 41> a, +j, and 

that the (N-1) possible common roots are in the range between all volatilities. When we 

apply the material balance at the feed stage, we observe that the possible common roots 

depend only on feed composition and quality, and not on how the column is operated. 

However, it is not obvious when we may apply the common roots back into the 

defining equations, in particular for more than binary mixtures. The general rule is that 

we may apply the common roots being in the range of volatilities for the components 

distributed to both ends. We denote these roots active roots. If we have any active roots 

(3.2) 
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ASC 
FA B: riTrign 

F Region AB Region BC: 
GB 

Region A 
Region B 

"The preferred split" 
z.  

Trn in 

Region ABC 
GAB  

V= limin  in regions AB,BC and ABC 

Region C: 

ti 

zs C 
ABC- • Itatill 

then V = V„,,„ and there will be a unique solution for a given product purity 

specification, Otherwise I/ > VIntm. 

We assumed that constant pressure and constant relative volatilities, and then 

the vapor liquid equilibrium (VLE) relationship between the vapor (y) and liquid (x) 

compositions is given by: 

Y i  

a i x 

 

a .x .1  . .1  
= I 

(3.3) 

3.2 The Vfran-diagram for Conventional Columns 

Since a two-product column operated at constant pressure has only two degrees of 

freedom we may visualize all possible operating points in the D-V plane. This is 

illustrated in the Vmin-diagram, which is shown for a ternary feed (with components 

ABC) in Figure 3.1. The diagram provides an informative visualization of the exact 

solutions for any given set of feasible specifications and infinite number of stages. 

rirr v---11.min 111 

regions k B tied C 

Fig. 3.1 The Vmin-diagram for a ternary mixture ABC. The components which are 

distributed to both ends are indicated in each region, with the corresponding active 

Underwood roots. 
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Each peak or knot in this diagram (Pij) is the operating point for minimum vapor flow and 
i 

sharp split between the component pair 12)(
tr 

 Min

o  
 ). The straight lines between the peaks and 

knots are a distribution boundary where a component is at the limit of appearing or 

disappearing in one of the product streams. We denote the distribution regions by the 

components being distributed to both products when operating in that region. For 

example in region AB components A and B are distributing to both products, whereas 

component C only appear in the bottom product. In region A, B and C we have no 

common Underwood roots and V > Vmin. Below the "mountain", in regions AB, ABC or 

BC, one or more pair of Underwood roots coincide and V = Vmin. The actual active 

common roots are those in the range between the volatilities of the distributing 

components. 

3.3 The Underwood Equations Applied to the Petlyuk Column 

Prefractionator 

In the prefractionator of a Petlyuk column we can still use the net component flow 

(w) or feed recovery (r) to describe the separation carried out in the column. From the 

material balance at any cross-section in the column: 

W =V nY I, — L x i,n 	 n+I i+1,n (3.4) 

t 
Is... I'd 

I 	L -rx A, 

z 

XL9 

17B,..V13 

Fig. 3.2 The prefractionator of a Petlyuk Arrangement 
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Thus, for the column in Figure 3.2 the composition in the flow leaving the 

column top is dependent on the composition of the incoming flow through the material 

balance: 

Yi,VT = 
W i T  + LT X i,LT 

 

VT  (3.5) 

For a conventional column with total condenser xi , LT = yi VT, and we have a 
unique relation between net component flow and the product composition for a given 

distillate flow: yi LT = Wi ,T /D, where D = VT - LT. 

We may regard the vapor flow entering the Petlyuk column prefractionator at the 

bottom and the liquid flow entering at the top as independent feeds with compositions 

(xLT , yVB). Thus the number of degrees of freedom in operation is now increased, 

because in addition to LT and VB we may also consider the new "end-feed" 

compositions (xLT , yVB) as degrees of freedom. 

The Underwood equations used to produce the Vmin-diagram have been 

deduced from the material balance (3.4) and the vapor liquid equilibrium, without con-

sidering product compositions at all. However, that the results are based on the 

restrictions Wi,T > 0 and Wi,B < 0. In a conventional column, these conditions are 

always fulfilled, but the prefractionator in Figure 2.3 may be operated in modes where 

these restrictions are not met. Thus provided these restrictions are fulfilled, the equations 

behind the Vmin-diagram will also apply for the Petlyuk column prefractionator. 

3.3.1 Carry Over Underwood Roots in Directly Coupled Columns 

The vapor flow in the top of the prefractionator is given by the Underwood 

defining equation: 

Trr 

W ci „fp  .E 	i,T  
i a i  0CI 

1 	
,,c0, 

.__  
ic, + 

(3.6) 	Fig.3.3 Fully Thermally Coupled Column 
(Petlyuk Column) 
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The top and bottom defining equations for column C21 become: 

and 
,w C21 

v C21 = 	IA'
. 
 rir  i,T 

L4 _ 0c2t 
C23 

V C21 a _W A  
C2I 

ai (3.7) 

The material balance at the connection point gives: 

vC2 1 V 1  - 	and (3.8) 

The combination of these gives the feed equation for column C21 where the common 

roots (0C21) appear: 

a (pvC21 wC21.) 	a_W C1 

(a, - 	) 	(ce,  _ 9c21) 	T 
i,T  = vC1 vC21 v-C21 V'  i,T 	i,B 

v  B 	Z 	 C211 (3.9) 

Here we observe that the feed equation of column C21 (3.9) is identical to the 

top section defining equation for column Cl in (3.6). Thus the possible common roots in 

column C21 are equal to the actual roots from the defining equation in the top of column 

C1: 

9021 = 
C1 
	

(3.10) 

The common roots (0) of column CI are found from the feed equation for the 

main feed (note that we will omit the superscript Cl for column C1), which with a 

ternary is the familiar expression: 

GAZA 
	aBZ B 	acZc  = 

aA -19  aB 	ac 
(3.11) 

Since an active common root represents a minimum vapor solution in a single 

mn, and 0C21 = 0  Cl, we have the following relation for the ternary feed example 

re we recover all of the light component in the top of C21 with the middle and 
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heavy component recovery equal to zero: 

vC21 i  

F 

	

a AZ A 	aAZA 	aAZA  
A 	

a 
C21 	 C2I 	 ci 

	

aA strA 	aA -9A 	,4 -  OA 

a AZ A  

aA -K I  

This implies the following relation for the roots: 

C1 0 < 
	

0C21 0C21 
OCI  = A 	A 	A 	IPA 

(3.12) 

(3.13) 

The minimum vapor flow in column C21 for any given operation of Cl is when 
A C:21 	Ael 

the common root in C21 is active. Then for the first root W A — A — W A and 

VT T min 	a AZ A  

F 	a -thc  A 	• A l  
(3.14) 

Aci 
The absolute minimum solution is found when SVA is equal to the common 

rootO,t1  =OA). Then the common root of Cl becomes active in both columns at the same 

time (K2' = K 21  = 93.4"1  OA" ): 

min v C21 
C1 	T min 

F 
a A Z A   j= 

a 4 —  8.4 
(3.15) 

We may generalize this expression to any number of components and feasible 

recoveries in the top with the following equation set (one equation for each root 

BK  El°, 	 N C21 
NJ ). -1  given by the dr  components distributed to the top of C21): 

min 
C1 

Dy C21 
r T min  	aizirity21  

F — 6a  (3.16) 
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The relation in (3.12) also shows that any sub-optimal operation of either column 

Cl or C21 cannot be recovered by the other. The operation of both has to be optimized 

simultaneously to achieve the overall minimum vapor flow in C21 as in (3.16). 

For a column C22 connected to the bottom of column Cl we will find 

equivalent results. For the ternary feed case, with full recovery of the heavy component 

C in the bottom of column C22 and middle and light component recovery is equal to 

zero, the equivalent to equation (3.15) becomes: 

min 	C22 
Cic Zc 	a AZ A 	aBZB  Cl Vamin 	 q) 

F 	aC - 0B a A 151
B 

aBB 
(3.17) 

We have not considered the actual compositions in the junction streams. 

However, we know that the composition in the return flow into the top of Cl has no 

influence on the product split in Cl unless a component which would have been 

removed in a conventional prefractionator were to be introduced in that return flow. This 

implies that for nonsharp operation of C1, (where all components distribute and all 

common roots are active) the return flow composition has no influence at all. For 

referred split operation, this is also true when we ensure that there is no heavy(C) 

component in the return flow. In normal operation regimes of C1 and C21, the 

conditions are trivially fulfilled. This is very important and somewhat surprising because 

from a glance at a Petlyuk arrangement, we might expect all kinds of complicated 

recycle effects due to the two-way flows in the direct coupling. 

3.3.2 Minimum Energy of a Ternary Petlyuk Arrangement 

3.3.2.1 Coupling Column C22 with Columns C21 and Cl 

Now we have the necessary background to deduce the simple analytical solution 

for minimum vapor flow in the Petlyuk arrangement as shown in Figure 3.1. For sharp 

A/C split in column C1 and sharp AR split in column C21, minimum vapour flow 

requirement in the top of C21 is given by equation (3.14): 

vC21 > 	 = vC21 	a A Z  A  F  • T 	— T man 	 C I a - A WA 
(3.18) 
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We can also find the equivalent for the bottom flow in C22 for sharp B/C split 

from equation (3.17): 

	

vi3C 22 > pr C22 	— aC Z C  

	

Bmin 	 C I 
a c  

(3.19) 

Due to the direct coupling we know that the absolute minimum vapour flow in 

C21 is found when we operate column Cl in a region where 0  A = OA . Similarly, the 

absolute minimum for vapour flow in C22 is found when Cl is operated in a region 

where zpC = OB . For sharp product splits, the preferred split is the only point of 

operation where both common roots carry over to C21 and C22 at the same time. Any 

other solution will give a larger value for the minim vapour flow in at least one of C21 or 

C22 so we know that we really only have to consider the solution at preferred split 

operation of C1. Now we relate these expressions to the required vapour flow in the 

bottom reboiler of the Petlyuk arrangement: 

Petlyuk 	 C21 _ 	 C22 
VBrnin  = max fnain(Vrmin ) (1—  q)F, min(V„„„, )) 

For sharp product splits, we can express this as 

Pellyuk 	 aAzA 	
q) 

— ac Zc  
V V  min — max  

	

a  A —  61 	 cx A 	

, 	 

C -0B 

F 

(3.20) 

(3.21) 

We may use the feed equation (3.11) to remove the feed quality term (1-q)F from 

the Underwood expressions, as we have done in (3.22). in addition we here relate the 

minimum vapor flow to the top condenser: 

Perlyuk 	Petlyuk—  
r 

 
Turin 	r  limin 

z A  +  a A 	13 ZB  F, 
+ (1— q)F = max  a Az A 	ot( 

aA 

a

ce,4 -85 a5 -85 (3.23) 

This minimum solution implies that either C21 or C22 may get a vapour flow 

larger than its minimum value. However, this only affects the local behavior of that 

column, and not the product composition and the operation of the prefractionator and the 

other column. The reason is that, although the composition in the connection point to the 

prefractionator may be altered and in theory might influence the separation in the 

25 



prefractionator, the product composition has no influence on the recovery of feed 

components unless a removed component is reintroduced, or there is a reverse flow of 

components back into the column. Thus we have to verify that the heavy C cannot reach 
the feed junction to C21 and that the light A cannot reach the feed junction to C22 in the 

main column. 

3.3.2.2 Visualization in the Vmin- diagram 

Figure 3.4 show an example of the Vmin-diagram, or "minimum energy moun-

tain" for a ternary feed (ABC). 

	

Pr  F 	Sharp A'BC split 	 Shan) ABC split 

zA 111` 	=3 .7. c 

	

41 	 01  	O.. 
4-143C 

Region A 	B1  Illinin 

V"-"Vrnin , 	 Region B 
above this 	 e preferred split.  
-mountain- 	 A it 

AC: PTrnen 
4 

L 

C•. Trir:01: 

Region C 

ABC 
Eqz 

L3 
Region ABC 
eAes  

172---(1-vF or 1/2=0 

0 

Fig. 3.4 V„,„,-"mountain"-diagram for a ternary feed mixture (ABC). V> V„,„, above the solid 

"mountain" Pa-FAB-PAc-Pric-Pi.  Below this boundary V-= V„,„, for all cases, but the distribution of 

feed components to the product are dependent on operating region. These regions are 

denoted AB, BC and ABC from the distributing components. The active roots are also 

indicated. 

VrD (1.7=0,1 

Infeasible region 

D. 

1-q 

Po DT 
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The peaks, which give Vmin for sharp splits A/B and B/C (no distributing components): 

PAR :[rA,T> r8,T1=  [1,01 	[D, VT min ] = Z A 
a  A2  A  

ail - 94 _ 
F 

PBC : [rB,T P rC ,T1 = [1,01[D, V T min 1= (Z A 	
a 

Z 	AZ  A + 	a s
z 	

F 
aA 9B a  n 

The preferred split, which gives Vmin for sharp A/C — split (B is distributing): 

PAC : [rA,r >rc,r]=[1,0][D, Vrinin ]= (2 A  ± zll Jv 
a z A 	a E flZ B  

a A  - 0B  ad - B _ 
F 

Where 13 is the recovery of B: 
13= rB,T

AIC  = 
aRzn (a4 -  OAXa 

n  
A  - 05 ) 

And the trivial asymptotic points: 

Po  :1! A  , r 	j= [0 	[D, V T min 1= [0 ,0] 

P, : [r A  , r ,T 1= [1 ,1] 	[D, V ,„ ] [ 0 - q)]F 

The two peaks (PAB and PBC) give us the minimum vapour flow for sharp split 

between A/13 and B/C, respectively. The valley, PAC, gives us the minimum vapour 

flow for a sharp A/C split and this occurs for a specific distribution of the intermediate 

component B, known as the "preferred split". 

A part of the Vmin-boundary, namely the V-shaped PAB-PAC-PBC curve, has 

been illustrated by several authors, e.g. Fidkowski (1986), Christiansen and Skogestad 

(1997). It gives the minimum vapour flow for a sharp split between A and C as a 

function of the distillate flow. Figure 3.4, gives the complete picture for all feasible 

operating points. In every region where more than one component may be distributing to 

both products (AB, BC and ABC), at least one Underwood root is active. 
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3.4 COMPUTATIONAL PROCEDURE 
Consider a set of Nd distributing components, denoted: (di, d2, 	} . The 

recoveries in the top are trivially r, T = I for all non-distributing light components 

<d7), and ri  T = 0 for the non-distributing heavy components (1> d,vd). Then, with 

a given distribution set we know the N - Nd recoveries of the non-distributing 

components. 

Then we use another of Underwood's results: For any minimum vapour flow 

solution, the active Underwood roots will only be those with values in the range 

between the volatilities of the distributing components (adi > ek > adNd ). This 

implies that with Nd distributing components, the number of active roots is: 

N u  = N d  — 1 	 (3.24) 

Define the vector X containing the recoveries of the Nd distributing 

components and the normalized vapor flow in the top section: 

X  = [ rd 1.T 7  rd 2,T 2 	7  rdNd ,7 

V 7-1T 	

(3.25) 

(Superscript T denotes transposed). The equation set (2.24) can be written as a 

linear equation set on matrix form: 

M • X = Z 
	

(3.26) 

With the detailed elements in the matrices expanded, this is same as: 

    

adlZdl 	ad2Zd2 	adNaZdNd  

adl —19di 	ad2—edl 	a — 0 dl 

adizd, 	ad2Zd2 	adNaZdNd  

adl —  ed2 	ad2 9d2 	adl —  6)d2 

-•" '• • ' 
adlZdi 	ad2Zd2 	 adNaZdNd  

adi  0d,vd_, a ediVd-1 	acn —edNd-1 

1 

1 

-1 

  

• 

dl,T 

d2.T 

r
dNd 

VT I F 

   

   

The elements in each column of M arise from the term in (2.24) related to the 

distributing components, and we have one row for each active root. Z contains the part 
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adizal ad2Zd2 adNAINd 1 

1 

—1 

1 

0 

0 

0 

0 

0 

—1 

• 

rdlf 

d2,T 

rdNd 

V7- /F 

D/F 

ad,-0th  
adl zdl 

an  —0 di 
ad2Zd2 adNaZ dNd 

adi 	Od, 

adI Zdl 

	

ad2 	ed2 

• • 

ad2Zd2 

adl 	9d2 

adNdIdNd 

ad1 -0dNd_l 

Zdl  

ad2  — dNd-1 

<12 

adi — edNd-1 

. 	Z dArd  

   

  

 

(3.28) 

  

  

   

of (2.24) arising from the non-distributing light components with recovery one in the 

top. The recoveries for the heavy non-distributing components are zero in the top, so 

these terms disappear. 

There are Nr-Nd_i equations (rows of M and Z) and Nd+1  variables in X (col-

umns in M). Thus by specifying any two of the variables in X as our degrees of 

freedom we are left with Nth  unknowns which can be solved from the linear equation 

set in (3.25). 

If we want to specify the product split as one degree of freedom, we introduce 

D/F as an extra variable and the following extra equation: 

D/F=Erir zi 	 (3.27) 

Then the linear equation set {5.2) can be expanded to give: 

The problem of finding the correct distribution set is dependent on how we specify the 

two degrees of freedom. An example of a specification which always gives a feasible 

solution is rucr = 1 and 111K,T = 0. That is, when we want to find the minimum energy 

operation point for sharp split between a light key (LK) component in the top and a 

heavy key (HK) in the bottom. Then we always know that the common Underwood 

roots with values between the relative volatilities of the keys will be active, thus d1 = 

LK and dNd = HK and the structure of equation (3.25) is thereby known. 
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3.4.1 Algorithm to Draw the Vmin — mountain-diagram 

The procedure for computing the required points to draw the I/ in-mountain-

diagram for a general multicomponent case (Ng  components) is as follows: 

1. Find all possible common Underwood roots [01, 02, 03, ....eNc  — from the 

feed equation (2.23). 

2. Use equation (3.28) to find the full solutions for sharp split between every 

possible pair of fight (LK) and heavy key (HK) specifications. Each solution 

gives the component recoveries (R), minimum vapour flow (V,,,„/F) and product 

split (D/F). These are the peaks and knots in the diagram, and there are Ne(Ng  -

1)/2 such key combinations, described in more detail below: 

- Ne  -1 cases with no intermediates (e.g. AB, BC, CD,....) These points are 

the peaks in the V„,,„-diagram 

- Ng  -2 cases with one intermediate (e.g. AC, BD, CE,....) These are the 

knots between the peaks, and the line segments between the peaks and 

these knots forms the V„,,„-boundary etc. 

2 cases with Ng  -3 intermediates (Ng  -1 components distribute) 

1 case with Ng  -2 intermediates (all components distribute) 

This last case is the "preferred split" solution where the keys are the most light 

and heavy components, and all intermediates distribute. 

3. Finally we will find the asymptotic points where all recoveries in the top 

are zero and one, respectively. These are trivially found as Vrmin=0  for 

D=0 and Vr,min(1-q)F for D=F. 
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Chapter 4 

SELF-OPTIMIZING CONTROL FOR 
PETLYUK DISTILLATION COLUMN 

In a Petlyuk distillation column, two extra degrees of freedom can be used for 

optimization purposes. It has been reported that a typical energy saving of 30 - 40 % is 

achievable with a Petlyuk distillation column, compared to conventional distillation 

arrangements. However, the optimal steady-state operation point can be difficult to maintain 

in practice. In this chapter we have studied the performance of some self-optimizing control 

configurations for the Petlyuk distillation column in presence of disturbances and 

uncertainties. The results show that self-optimizing control can be used to improve the 

robustness of optimal operation by adjusting a degree of freedom in a feedback control loop 

by keeping a suitable measurement variable at a setpoint. 

Self-optimizing control is an approach to solve this problem by turning the 

optimization problem into a set point problem. The key idea is to find a measurable variable 

with constant value at optimal operation. If this variable can be found, a feedback control loop 

is closed to keep the variable at the set point, and to keep indirectly the process at optimal 

operation. Since self-optimizing control results in a feedback control loop, it will be robust 

against disturbances and model uncertainties compared to any open loop model based 

optimization methods. The application of self-optimizing control to the Petlyuk distillation 

column was already addressed in (Halvorsen and Skogestad, 1998). Some candidate 

measurable feedback variables for the Petlyuk distillation column were proposed and analyzed 

in a qualitative way. This work has to be seen as a continuation of that one in which a more 

careful evaluation is performed. New candidate feedback variables have been proposed and a 

quantitative study has been done to see the performance of the controlled system in face of 

various process disturbances and model uncertainties. 
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4.1 Energy optimization in Petlyuk Distillation Column 
The thermally coupled distillation column known as Petlyuk column (Petlyuk 1965), 

shown in figure 4.1, is a complex distillation arrangement to separate a ternary mixture of A 

(the more volatile), B (intermediate volatility) and C (the less volatile). The Petlyuk column 

has been given special attention due to very high reported energy savings. (Triantafyllou and 

Smith, 1992) reported savings of 30% comparing the Petlyuk column with the conventional 

trains of columns. Considerable investment capital savings can be obtained if the arrangement 

is implemented in a single shell (Divided Wall Column). The complex design of the Petlyuk 

column offers some extra degrees of freedom which permit an optimization that is not possible 

in the conventional ternary distillation designs. 

Fig. 4.1: Fully thermally Coupled Column 

We assume that the Petlyuk column reboiler and accumulator levels are stabilized by 

the distillate flow (D) and the bottoms flow (B). Then it has five degrees of freedom: boilup 

(V), reflux (L), side stream flow (S), liquid split (RL) and vapour split (Rv). Of these five 

degrees of freedom, three are used to control the compositions of the three products 

(composition of component A in the distillate, composition of B in the side stream and 
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composition of C in the bottoms stream). (Wolff and Skogestad, 1996) showed that the LSV 

control structure give acceptable performance. It consists in the control of A composition by 

the reflux (L), the control of the B composition by the side stream flow (S) and the control of 

C composition by the boilup (V). LSV is the control structure assumed in this work. 

Therefore, liquid split (RL) and vapour split (Rv) are the two extra variables to be used for 

optimization purposes. The energy consumption, here represented by the boilup vapour rate 

(V) will be used as the criterion. When the composition loops are closed and the products 

purity are controlled to their specifications, the product specifications setpoints will replace 

the composition control loop inputs (L, S and V), as degrees of freedom. These setpoints will 

affect the optimal operation point in addition to the disturbances in the feed flow rate (F), feed 

composition (z) and feed liquid fraction (q). 

It was shown (Halvorsen and Skogestad, 1997, 1998) that the optimal operation point 

of the Petlyuk column is not robust when no optimizing control is applied in addition to the 

product composition control. The optimal values of the two degrees of freedom (RI, ft,) used 

for optimization are sensitive to feed disturbances and product set points changes. The 

objective function surface V(RL, Rv) is very steep in some directions and if no adjustment of 

these remaining degrees of freedom (DOF) is applied, the operation may get far from optimal. 

Therefore, some control is required to maintain the optimal operation when disturbances and 

uncertainties are present. However, in accordance with the work of (Halvorsen and Skogestad, 

1998), we will fix Rv and use RL as the only manipulated variable to indirectly achieve the 

energy control. Two reasons justify this decision. First the energy surface V(RL Rv) is quite 

flat close to the minimum in a narrow long region in a certain direction in the (RL, Rv)-plane, 

permitting that for any given Rv, we can find a RL,opt,1 that makes the value of V(RL,opt l Rv) be 

close to the absolute minimum when both values of the remaining DOFs are optimized: V(RL,Dpi 

Rv,opt). Rv must be set in a reasonable neighborhood to Rv,0pt. The flat region was shown by 

(Fidkowski 1986) for infinite stages and sharp product splits. The extent of the flat region is 

determined by the feed properties (composition and liquid fraction), and the relative volatility 

of the components. 
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4.2 Self-Optimizing Control for The Petlyuk Column 
The concept of self-optimizing control is presented in (Skogestad et. al. 1998 and 

1999). A brief introduction for our Petlyuk column case study will be given here. The idea 

behind self-optimizing control is to find a variable which characterize operation at the 

optimum, and the value of this variable at the optimum should be less sensitive to variations in 

disturbances than the optimal value of the remaining degrees of freedom. Thus if we close a 

feedback loop with this candidate variable controlled to a setpoint, we should expect that the 

operation will be kept closer to optimum when a disturbance occur. We define u to be our 

remaining degrees of freedom which we will use as manipulative variables for optimizing 

control, and d to include the external disturbances, the setpoint specifications for all the closed 

control loops and any remaining degrees of freedom not used as manipulative variables. In our 

general case u = (RL, Rv) and d = (z, q, xopt, xs8, XBC), but when we fix Rv and use RL as the only 

manipulative variable we will have u = R and d = (z, q, xnA, XS8, Xgc, Rv). The optimal solution is 

found by minimizing V(u, d) with respect to u. Thus both the optimal value of the criterion 

function Vopt  and the corresponding solution uopt will be a function of d. 

kcpt  (d) = min„V , d) = V (4 oi„ (d), d) 	 (4.1) 

The combined set of (u,d) determines an operation point uniquely, and also the values 

of any internal states and measurements. Assume now that we choose a measurement 

variable c =g(u, d), and that the inverse function u = g'(c, d) exists. Then we may apply u=g-

1 (cs, d), where cs is the setpoint. 

4.3 Selecting Controlled Variables For Optimal Operation 

4.3.1 The Performance Index (Cost)-) 

We assume that the optimal operation problem can be quantified in terms of a scalar 

performance index (cost) J, such that the objective of the operation is to minimize J with 

respect to the available degrees of freedom. J may be a purely economic objective, but is more 

generally a weighted sum of the various control objectives. For the optimization itself it does 

not really matter which variables we use as degrees of freedom as long as they form an 

independent set. Let the base set for the degrees of freedom be denoted u(these may consist, 
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for example, of a subset the physical manipulators rn). In addition, the cost will depend on the 

unknown disturbances d (which here is assumed to include uncertainty in the model and 

uncertainty in the optimizer). We can then write J(u,d). The nominal value of the disturbances 

is denoted do, and we can solve the nominal operating problem and obtain up Ado) for which: 

J op, (d) = ntJ(u, d) = J op, (u op, (d), d) 	 (4.2) 

From this we can obtain a table with the corresponding optimal value of any other 

dependent variable, including the optimal value of any measurement Copt(do). 

The issue is now to decide how to best implement the optimal policy in the presence of 

uncertainty by selecting the right set of controlled variables c with constants setpoints cs = 

eopi(do). Here it is assumed that the number of controlled variables y equals the number of 

independent variables u, or more exactly that we starting from c=j(u, d) can derive the inverse 

relationship: 

u = P l(c,d) 
	

(4.3) 

Where the function f -I  exists and is unique. 

Instead of evaluating the mean value of the performance index, it may be better to 

evaluate the always positive loss function. The loss function expresses the difference between 

the actual operating costs (e.g. obtained when we adjust u in order to keep c at a given 

setpoint) and the optimal operating cost (obtained with u=24,,,,,(d)), 

1.(u,d) = J(u,d) — Joi„(d) 	 (4.4) 

The objective of the operation is to minimize J, or equivalently to minimize the loss L. The 

loss function is zero if we use the optimal policy u=uopt(d). The loss has the advantage of 

providing a better "absolute scale" on which to judge whether a given set of controlled variables 

c is "good enough", and thus is self— optimizing. 
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4.3.2 Open Loop Implementation: 

Let us first consider an open-loop implementation where we attempt to keep u constant 

at the value us. With this implementation the operation may be non-optimal (with a positive 

loss) due to the following reasons 

1. The value of us  is different from the optimal value uupt(d). 

2. The actual value of u is different from us  (due to an implementation error caused by 

imperfect control). 

This can be seen more clearly if we write the actual input as: 

u=u +e s 	u (4.5) 

Where eu  is the implementation error for U. In process control, u is often a flow rate, 

and it is difficult in practice to obtain exactly the desired value us, so eu  may large. 

Introducing the optimization error: 

e„,,(d) = us  —upt(d) 	 (4.6) 

Then the difference between the actual and optimal input, which causes a positive loss, 

can be written: 

u — uo ,(cl) = us  —uopt(d) + eu 	 (4.7) 

It is the sum of the optimization error and the control error. in summary, the open-loop 

policy is often poor; both because the optimal input value often depends strongly on the 

disturbance (so eu.or , is large), and because we are not able to implement u accurately (so e u  is 

large). 
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4.3.3 Closed Loop Implementation 

In theory, the truly optimal solution would be to use some "optimizing controller" which 

uses the measurements information (feedback) to correct the model and estimate the disturbance 

d, and based on this computes a new optimal value uop,(d). The main problem with this approach 

is the modeling effort, and the lack of theoretical tools to ensure robustness (insensitivity to 

uncertainty). 

As mentioned, in practice, a simpler closed-loop implementation is preferred if it yields 

acceptable operation (loss). This approach uses directly the measurements cm  of the selected 

controlled variables and adjusts u in an inner feedback loop to achieve c,,, » cs, where in most 

cases cs = cap,(do), i.e. cs comes from solving the nominal optimization problem. The idea is that 

by keeping cm  » cs we achieve an operation where the deviation u - uo„,(d) is smaller than for 

the open-loop policy (in the open-loop policy we keep u constant, but this is not optimal in the 

face of disturbances). This may happen because cop,(d) is relatively insensitive to d and/ or 

because c may more accurately controlled. 

We here rewrite the problem with the variables c as independent variables rather than 

the original independent variables (inputs) 24. However, note that we as a special case may 

choose c=u, or some of the elements in the vector c may be the original input variables. Thus, 

the open-loop implementation is included as a special case. 

More generally, if there are many alternative sets of variables c which can be measured 

and controlled, which set should be used? If we let ym  represent all the candidate measured 

variables then we can write: 

c=g(y.,74) 
	

(4.8) 

Where the function g is free to select. An open loop policy is obtained with g(y,,,,u) = u. 

Linearized in terms of deviation variables(4.8) becomes: 

Ac=Cl Aym  +C2Au 	 (4.9) 

The issue is then to find the optimal choice for the matrices C1 and C2, but under the 

restriction that the number of controlled variables (c's) equals the number of independent 

inputs (u's). If we use only feedback then C2=0. If we do not allow "combined" controlled 
4 
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variables, then the matrix C = [ CI C2 ] is a selection matrix with only one nonzero element in 

each row. 

To compare the alternative choices we may evaluate the objective function, or 

equivalently the loss function, for alternative values of the disturbance d and the 

implementation error ec. The optimal choice for controlled variables c (i.e. optimal choice of 

the matrix C) is then the one that minimizes some average value of the loss: 

L(u,d) = L(f -1(c5  +e,d),d) 	 (4.10) 

For the expected set of disturbances d e D, and expected set of implementation (control) 

errors e E E. In the simplest case we select the setpoints as cs= com(do), but the value of cs  may 

also be the subject to an optimization. 

The difference between the actual and optimal outputs, which causes a positive loss, 

can be written: 

c — copi (d) = cs  +e —copt (d)=eopt (d)+ e 	 (4. 1 1) 

It is the sum of the optimization error eGpf(d)= cs- cop(d) and the control error e. As already 

mentioned, if there were no uncertainty (i.e. d=c1,7 and er0), then it would make no difference 

which variable c that were chosen. 

Figure 4.1 illustrates an example where we may reduce the loss due to the disturbances 

by keeping the variable c constant instead of the input u. However, some loss must be 

expected due to the error associated with each approach, and for small disturbances the worst 

case error contribution will usually dominate the loss. 
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Figure 4.2: Loss as a function of disturbances for open loop and closed loop operation. The plot also 

illustrates the worst case contribution from the uncertainties and errors associated with each 

approach (dashed). 

4.3.4 A Procedure For outpitt Selection: 

We are now in a position to formulate a procedure for selecting controlled outputs c. 

Preferably, one should find several candidate sets of candidate outputs, which could be further 

analyzed to see if they are adequate with respect to other criteria that may be relevant, such that 

the input-output controllability (including the presence of right half-plane zeros). 

1. Define the optimal operation problem (including specifying the cost function J to be 

minimized). 

2. Solve the optimization problem at a given nominal operating point. That is, find /411(4) 

by solving the nominal optimization problem 

min .J(u,clo ) 

3. This yields a table with the nominal optimal values of all variables, C0  (do) 

(4.12) 
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4. Define the uncertainty for: 

• the optimization: Define the magnitude or set of unknown disturbances (d E D) 

(including any changes that occur between each reoptimization). Treat also errors in 

the data and model for the optimizer as disturbances. 

• each candidate output variable (y): Define the magnitude or set of control error (e E E) 

(e.g. due to measurement error) 

5. Repeat for each candidate set of N„ output variables (y's) 

> Evaluate the cost function J(c,d) with fixed setpoints 

c = Cs + e 	 (4.13) 

> Compute the "mean" cost, J„,,,„„ (or equivalently, the loss L) 

6. Select as the controlled outputs the candidate set with the lowest "mean" 

cost (or retain all the sets with an acceptable loss for further screening). 

4.4 Local Taylor Series Analysis 

In this section we study the problem of selecting controlled outputs by expanding the cost 

function around a nominal optimal unconstrained operating point. To this end, we assume that 

the cost function J is smooth, or more precisely twice differ-entiable, at the operating point we 

are considering. 

We assume that the nominal disturbance is do and that the nominal operating point is 

optimal, i.e. 

tc=u00(do ) 	and 	cc , =cop ,(do ) 	 (4.14) 

So that we have J02,„dd = 40  We next consider a disturbance and input change so that 

the new disturbance is: 

d = do  Ad 	 (4.15) 
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And the new input is: 

u = uo  -I- Au 	 (4.16) 

Where Au is the input change. The input u will generally be different from the optimal 

input, uom(d), and we define the deviation from the optimal value as: 

Au' = u — uopt(d) 	 (4.17) 

Au is not the same as Au ,and more precisely Au= u — uopt(d). In order to track the 

optimum we require Au' = 0, which implies Au = uopt(d)- uot(cio). 

4.4.1 Expansion of the Cost Function 

A second order Taylor expansion of the cost function can be written compactly on matrix 

form as : 

J(u,d)=-  J(uo ,dG ) +kr, pri  f 	+ 1 FAulT  
tAdi 2 LAdi 

Au] Adi  + O' (4.18) 

Au 
Where H is the Hessian matrix ofJwith respect to Lad 

; H 'Liu jr " 
' crt j r  aid 

All the derivatives are evaluated at the optimal nominal operating point(with a' =a', and 

u = u, = uoddo)), as indicated by using the subscript o. we have: 
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1=0 because the Jacobian with respect to the independent variables must be zero at the 

optimum when it is unconstrained. The Hessian matrix is always symmetric, so J,,,, and ./dd are 

symmetric. Since the expansion is performed at the point where ./has a minimum, we have that 

Durtl„„Du is positive for any nonzero vector D u, i.e. .4,, is positive definite, Jo„> 0 (if the 

minimum is a saddle then Dur.4„Du is zero in some direction and .4„ is positive semidefinite, Jou 
>0). Equation (4.18) written in separate terms in u and d gives: 

J(u,d)=J(u o ,d,)+ Jur  (u—u,)+.17,;(01 -61„)+1 (u—u o )T  J„„(u—uo ) 

2
1 

( — do)r  J dd(d do)±(d dES  du(u U0 )± 0 3 
	 (4.20) 

4.4.2 The Optimal input 

The nominal operating point (uo, do) is assumed to be optimal so we have tin = tiopido), 
and as noted the Jacobian must be zero (J= 0). Next, consider a disturbance and a corresponding 

optimal input change so that the new operating point is (u, d) and the new Jacobian is: 
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A first order expansion of the Jacobian at the nominal point gives: 

Ji:=Ju +Ji ju-u,)+Jurd(d-do ) +a 

(4.21) 

(4.22) 

We assume that change the input so that the new operating point is also optimal, i.e. u=uop,(d). 

then we must have that the Jacobian is zero, i.e. lir=0, and we get: 

CI=J„Auop,(d)—uom(do ))+J,T,d(d —da ) 	 (4.23) 

Solving with respect to the input we find that a first order accurate approximation of optimal. 

input when there is a disturbance change is: 

itopt(d) = Uo 	 fd. (d -do) 	 (4.24) 

Thus Auopi  = uopt(d) - uo  the optimal control action which will track a moving optimum 

as illustrated in Figure 4.2: 

A 
J(u,doi .1(a440—Ad) 

no tio-Atiopr  

Figure 4.3: Optimal Control move 

4.4.3 Expansion of the Loss Function 
Let us now consider the loss function: 

L(u, d)= J(u, d) 	op,(d),d) (4.25) 
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By applying the taylor series expression in equation(4.20) and combining it with the 

loss function(4.24) we obtain the following interesting expression for the loss : 

L(u, =1 
	

uopt(dDT  Juu(U —71opt(C0)=-  Ater  ✓unAu' 
	

(4.26) 

Where Au' = u — uop,(d) . This tells that the loss is a function of the deviation (Au') from 

the optimal input which also intuitively is reasonable. Here the Hessian J„„ is evaluated in the 

nominal optimal point 040, do. We might consider J„„' evaluated at the current optimal point 

(uopi(d),d). However this does not matter as long as we only consider Taylor series expansion to 

the second order. This can be seen by expressing .A,„' in terms off., . We have =0 and 

Juilt r- ± Jurukl— do)+.1,,Tuzfu„,(d)—uo„,(do)) 	 (4.27) 

When we replace Jui, with J„„ in (4.26) and remove the third order terms, we will get 

exactly the same expression. The impact from the disturbance (d) is only through 	This 

tells us that if the disturbances are small, or the disturbance has a small effect on the optimal 

input, the loss will also be small if we have an acceptable nominal input. The curvature 

described by the Hessian 	determines the "flatness" of the loss function. 
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Chapter 5 
RESULTS AND DISCUSSIONS 

This Chapter discusses results and interpretations of the analysis of a Petlyuk 

distillation column. The minimum energy solution for 3-product Petlyuk arrangement has 

been analyzed. The Vmin-diagram gives a simple graphical interpretation of the whole 

operating space for 3-product distillation column. A key issue is that the feasible 

operating space is only dependent of two degree of freedom and the D-V plane spans this 

space completely. The distribution of feed components and corresponding minimum 

energy requirement is easily found by just having a glance at the diagram. The 

characteristic peaks and knots are easily computed by equation of Underwood and 

represent minimum energy operation for sharp split between all possible pairs of key 

components. The solutions can be very easily visualized in the Vmin-diagram for the feed 

and given by the following rule: 

"The minimum total vapor flow requirement in a Petlyuk arrangement is the same 

as the required vapor flow for the most difficult split between two of the specified 

products if that separation was to be carried out in a single conventional two-product 

column". 

5.1 Model Validation: 
A saturated feed of ternary mixture of Methanol (A), Isopropanol (B) and n-

Propanol (C) have been considered. The relative volatilities are 4.2, 1.86 and 1.00 

respectively, and the feed compositions are 0.3, 0.3 and 0.4 respectively. 

The above example was solved by the proposed model and the values of OA=2.74067 and 

OB=1.28512 were obtain. The Figure 5.1 shows that minimum energy required separating 

the saturated feed of ternary mixture of Methanol, Isopropanol and n- Propane!. PO-PAC-

P1 is the region where both Underwood's root QA and GB are active and the ternary 

mixture ABC was splitted into two regions AB and BC completely at the point PAC. Then 

the mixtures AB and BC were separated into the pure product A, B and C at the points 
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PAB  and PBC  respectively. The values of vapor flow rates at the peaks (i.e. PAC, PAB and 
Pnc) are given in the Table 5.1. 

Table 5.1 Vapor Flow Rates at the Peaks and Knots in the Vmin — diagram for 
ternary mixture of Methanol, Isopropanol and n - Propanol (For Model 

Validation). 

a[4.20, 1.86, 1.00] and 40.3, 0.3, 0.4] 

6A = 2.741 
Og= 1.285 

Po  PAB PBC PAC PI  

liTmin 0 0.8634 1.4029 0.6930 0 

D 0 0.30 0.60 0.38 1 

The minimum total vapor flow requirement in a Petlyuk arrangement to separate the 

given ternary mixture ABC was found to be 1.4029 times than feed flow rate. The results 

was compared with the solved example given in the book "Conceptual Design of 

Distillation Systems" by Doherty, M.F. and Malone, M.F. [6] to separate the same 

ternary mixture from conventional distillation column [6]. The minimum vapor required 

to separate the given mixture with conventional distillation column is 2.2095 times the 

feed flow rate. Hence 36.6% energy saving was achieved by using Petlyuk distillation 

column instead of conventional distillation column. 
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Figure 5.1: Vmin — Diagram for the ternary mixture of Methanol, lsopropanol and 

ri- Propano] 
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5.1.1 Case study-I: Four Component Feed (ABCD) 
A partly vapor feed (q = 0.8) of four component mixture ABCD was considered 

for case study. The relative volatilities were 14.00, 7.00 3.00 and 1.00 respectively, and 

the feed compositions were 0.25, 0.25, 0.25 and 0.25. 

Table A.2 Vapor Flow rates at the Peaks and Knots in the Vmin — diagram for Case 

Study (I): Four Product separation. 

12[14, 7, 3, 1] and z[0.25, 0.25, 0.25, 0.25] 

PO PAB PBC Pco PAC PHD PAD PI 

Vrimn 0 .08975 0.9585 1.0248 0.6350 0.7311 0.5501 0.2 

D 0 0.25 0.50 0.75 0.3663 0.5839 0.4490 I 

The above problem solved by Underwood's Classical equation for minimum energy. 

Figure 5.2 shows that the minimum energy required to separate the partly vapor feed of 

4-components ABCD. Po-PAD-PI was the region where all three Underwood's root °A, 

ea and AC were active and mixture ABCD splits into two regions ABC and BCD 

completely at the point PAD. PO-PAC-PAD was the region where only 0A and es were 

active and the mixture ABC again splits into two regions AB and BC at point PAC. 

Simi Early, PAD-PBD-Pi  was the region where two roots AB and Oc were active and mixture 

BCD splits into two regions BC and CD at point PBD. Finally, the mixtures AB, BC and 

CD was separated into the pure product A, B, C and D at the points PAB, PBC and PCD 

respectively. The vapor flow rates at the peaks (i.e. PAD, PAC, PBD, PAR, PBC and Pcs) are 

shown in Figure 5.2 and vales are given in the Table 5.2. Vmin required in Petlyuk 

distillation column was found to be 1.0248 times the feed flow rate. 
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Figure 5.2: Vmin — Diagram for the Case Study (I): Four Component Feed (ABCD) 
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5.1.2 Case Study II: Ternary Feed (ABC) 
A saturated feed of ternary mixture ABC was considered for case study. The 

relative volatilities were 4.00, 2.00 and 1.00 respectively, and the feed compositions were 

0.333, 0.333 and 0.333. 

Table 5.3 Vapor Flow rates at the Peaks and Knots in the Vmin — diagram for Case 
Study (II) 

a[4, 2, 1] and z[0.333, 0.333, 0.333] 

OA= 2.756 
en = 1.243 

Po PAB PBC PAC P I  

Timm 0 1.0707 1.3642 0.7767 0 

ID 0 0.333 0.667 0A44 1 

The•case-11 solved by the proposed model and the values of 6A-2.756 and 198=1.243 

were obtain. The Figure 5.3 shows, minimum energy required to separate the saturated 

feed of ternary mixture ABC. Po-PAC-PI was the region where both Underwood's root ea 

and 0B were active and the ternary mixture ABC splits into two regions AB and BC 

completely at the point PAC. Similarly, the mixtures AB and BC have been separated into 

the pure product A, B and C at the points PAB and PBC  respectively. The vapor flow rates 

at the peaks (i.e. PAC, PAR and PBC) are shown Figure 5.3 and values are given in the 

Table 5.3. Vmin required in Petlyuk distillation column was found 1.3642 times the feed 

flow rate. The minimum vapor required to separate the given mixture with conventional 

distillation column is 2.03 times the feed flow rate [21]. Hence 32.8 % energy saving was 

achieved by using Petlyuk distillation column instead of conventional distillation column. 
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Figure 5.3: Vmin — Diagram for the Case Study (II): Ternary Mixture (ABC) 

51 



5.2 Parameter Study 

5.2.1 Variation in V„,h, at different Composition of more volatile 
Component (Methanol) 
Methanol is the most volatile and n- Propanol is the least volatile component in 

given ternary mixture. Hence, sharp B/C split is the more difficult split as compared to 

sharp A/13 split. Composition change of methanol from 0.1 to 0.85 was done and 6 Vmin 
- diagrams was obtained. 

Table A.4 Vapor Flow rates at the Peaks and Knots in the Vmin - diagram at the 
different composition of the saturated liquid feed. 

a[4.20, 1.86, 1.00] 

z[zA, zs, zc] PO PAB PBC PAC P I  
[0.1, 0.4, 0.5] 0A=3.543 	 08=1.325 

VTInin 0 0.6393 1.5367 0.5203 0 

D 0 0.10 0.50 0.2076 1 
[0.2, 0.2, 0.6] 0A=2.9272 	 08-1.4738 

17Thun  0 0.65996 11.2714 0.56646 0 
D 0 0.20 0.40 0.2536 1 
[0.3, 0.3, 0.4] 0A=2.74067 	 08=1.28512 

Vflnin 0 0.8634 1.4029 0.6931 0 
0 0 0.30 0.60 0.3806 1 
[0.4, 0.4, 0.2] 0A=2.639 	 08=1.128 

ri-TmEn 0 1.0762 1.5633 0.8198 0 
D 0 0.4 0.8 0.5074 1 

[0.7, 0.2, 0.1] 0A-2.138 	 08=1 .071 

Vrinoi 0 1.4255 1.4111 1.0660 0 
D 0 0.70 0.90 0.7537 1 
[0.85, 0.1, 0.05] 0A=2.979 	 OB=1.037 

VTnun 0 1.6074 1.3547 1.1891 0 
D 0 0.85 0.95 0.8768 1 
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Figure 5.4-5.6 was analyzed and found that the minimum energy required for sharp A/B 

split was lower than the sharp B/C split. In figure 5.7 and Figure 5.8 the minimum energy 

required for sharp A/B split was greater than the sharp B/C split, hence it is infeasible to 

operate the Petlyuk distillation column in this higher energy consumption for sharp A/B 

split as compared to sharp B/C. From the point of view of energy saving, it is cleared 

from Figure 5.9 that we will operate Petlyuk distillation column less than 0.69 

composition of Methanol. 

PI  

1.2 

DIP 

Figure 5.4: Vmin — Diagram for the ternary mixture of Methanol. Isopropanol and 

n- Propanol at the feed composition of [OA, 0.4, 0.5] 
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Figure 5.5: Vmin — Diagram for the ternary mixture of Methanol, Isopropanol and 

n- Propanol at the feed composition of [0.2, 0.2, 0.6] 
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Figure 5.6: Vmin — Diagram for the ternary mixture of Methanol, Isopropanol and 

n- Propanol at the feed composition of [0.4, 0.4, 0.2] 
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Figure 5.7: Vmin - Diagram for the ternary mixture of Methanol, Isopropanol and 

n- Propanol at the feed composition of (0.7, 0.2, 0.1] 
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Figure 5.8: Vmin — Diagram for the ternary mixture of Methanol, Isopropanol and 

n- Propanol at the feed composition of [0.85, 0.1, 0.05] 
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Figure 5.9 Comparison of minimum vapor flow requirement in Sharp A/B and B/C with 

respect to Composition of more Volatile Component (Methanol). 
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5.2.2 Variation in Vmin  by Changing Feed Conditions 
All five feed conditions were analyzed at the same composition of ternary mixture 

of Methanol, lsopropanol and n-Propanol. It was that when the value of liquid fraction (q) 

decreases in the feed then the minimum total vapor requirement in Petlyuk distillation 

column increases. 

0.8 	 PAB 
Region AB 	 Region BC 

0.2 

 

AA 

 ABC 
OAOB 

OA 	 GB 
0.6 PAC 

5.. CI' 

    

112 

(1-cl)F 

    

      

      

Figure 5.10: Vmin — Diagram for the Cold ternary mixture of Methanol, Isopropanol and 
n- Propanol at the feed composition of [0.3, 0.3, 0.4] 
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Figure 5.11: Vmin — Diagram for the Saturated Liquid mixture of Methanol, Isopropanol 

and n- Propane] at the feed composition of [0.3. 0.3, 0.4] 
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Figure 5.12; Vmin — Diagram for the Partly Vapor mixture of Methanol, lsopropanol and 

Propanol at the feed composition of [0.3, 0.3, 0.4) 
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Figure 5.13: Vmin — Diagram for the Saturated Vapor mixture of Methanol, Isopropanol 

and n- Propanol at the feed composition of [0.3, 0.3, 0.4] 
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Figure 5.14: Vmin — Diagram for the Superheated Vapor mixture of Methanol, 

Isopropanol and n- Propanol at the feed composition of [0.3, 0.3, 0.4] 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 
The following major conclusions can be drawn from present work: 

1. Underwood's Classical equations for minimum energy calculation has been 
derived for Petlyuk distillation column. 

2. General analytic solution for minimum energy consumption in Petlyuk 

distillation column for multicomponent feed and any number of products 
have been derived. 

3. The graphical tool (Vmin-diagram) has been used to calculate the minimum 

energy requirement for the separation of ternary mixture of Methanol. 
Isopropanol and n- Propanol. 

4. 36.6% energy saving has been achieved by using Petlyuk distillation 
column instead of conventional distillation column in the separation of 
ternary mixture of Methanol, Isopropanol and n- Propanol. 

5. In the case study-I, the minimum vapor flow required to separate four 

component feed in Petlyuk distillation column has been found 1.0248 times 
the feed flow rate. 

6. In case study-II, 32.8% energy saving has been achieved by using Petlyuk 

distillation column instead of conventional distillation column in the 
separation of ternary mixture. 

7. Self optimizing control of Petlyuk distillation column using local Taylor 

series analysis by turning the optimization problem into a constant setpoint 
problem has been studied 
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6.2 Recommendations 

6.2.1 Process Design 

The main results presented in this dissertation are developed for ideal systems with 

constant relative volatility and constant molar flows. However, based on the new 

understanding, it is straightforward to develop engineering procedures for real azeotropic 

mixtures. Appendix B contains a simple example of how to use a standard simulator with 

standard two-product columns to find the characteristics of the minimum energy solution 

for a directly coupled arrangement. 

We have assumed constant pressure. However, operation on different pressure 

levels is widely used in process design, and this issue calls for further studies also for 

directly integrated columns. This also applies for internal heat integration. 

6.2.2 Control Structure Design 

We have shown that it is very important to adjust the degrees of freedom on-line 

in order to track the minimum energy operating point. However, we have not carried out a 

detailed controllability study where we look at the combined requirements for 

composition control and minimum energy operation. The principle of self optimizing 

control for selection of controlled variables is promising, and the methods can be 

developed further. This is a general methodology and the coupled arrangements are just 

one application area. The idea is to achieve robust and simple control structures. This 

issue is of great importance both when we use simple and conventional controllers and 

advanced control with on line optimization. 

6.2.3 Advanced Control 

Model based predictive control has been applied with success on a series of 

process control applications, and we should also consider such methods for directly 

coupled arrangements. However, the most widespread solutions are designed for 

setpoint control only. The main advantages compared to conventional solutions are 

their ability to handle constraints and multivariable process interactions. 
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In a directly coupled distillation arrangement we need to operate close to mini-

mum energy. Thus we really need to include a general profit criterion on-line in addition 

to setpoint deviation criteria. Typical solutions today involve steady state optimization at 

the highest level, which computes the setpoints for the lower levels. 

Advanced control methods do not replace the need for good control structure 

design. Thus selfoptimizing control is well suited for control structure design also when 

we consider advanced model based methods. One consequence is that the models required 

for optimization may become simpler. 
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APPENDIX-A 

Table A.1 Vapor Flow rates at the Peaks and Knots in the Vmin - diagram at the 

different composition of the saturated liquid feed. 

a[4.20, 1 86, 1.00] 

z[zA, za, zc] Po PAB PBC PAC PI 

[0.1, 0.4, 0.5] 0A=3.543 	 98=1.325 

Vrman 0 0.6393 1.5367 0.5203 0 

D 0 0.10 0.50 0.2076 1 

[0.2, 0.2, 0.6] OA=2.9272 	 OB=1.4738 

Vrmin 0 0.65996 1.2714 0.56646 0 

D 0 0.20 0.40 0.2536 1 

[0.3, 0.3, 0.4] 6/A=2.74067 	 9B =I.28512 

Vrmin 0 0.8634 1.4029 0.6931 0 

D 0 0.30 0.60 0.3806 1 

[0.4, 0.4, 0.2] 0A=2.639 	 OB=1.128 

VTman 0 1.0762 1.5633 0.8198 0 

D 0 0.4 0.8 0.5074 1 

[0.7, 0.2, 0.1] 0A=2.138 	 OB=1.071 

VTarin 0 1.4255 1.4111 1.0660 0 

D 0 0.70 0.90 0.7537 1 

[0.85, 0.1, 0.05] OA=2.979 	 08=1.037 

lirmin 0 1.6074 13547 1.1891 0 

D 0 0.85 0.95 0.8768 1 
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Table A.2 Vapor Flow rates at the Peaks and Knots in the Vmin - diagram at the 
different feed conditions. 

a[4.20, 1.86, 1.00] and z[0.3, 0.3, 0 4] 

Feed Condition 
(q-value) 

OA Flow 
rates 

Po PAD PDC PAC PI 

OB 

Cold Feed as Liquor 
q = 1.5 

2.4507 VTIIIM 0 0.7203 1.2983 0.5660 -0.5 

1.2224 D 0 0.30 0.60 0.349 1 

Saturated Liquid 

9= 1  

2.74067 V7inin 0 0.8634 1.4029 0.6931 0 

1.28512 D 0 0.30 0.60 0.3806 1 

Feed Partly Vapor 
q = 0.8 

2.8838 Vnnin 0 0.9573 1.4636 0.7769 0.2 

1.3165 D 0 0.30 0.60 0.3993 1 

Saturated Vapor 

q= 0 

3.3794 VT,„,,, 0 1.5355 1.8644 1.3125 1 

1.4626 D 0 0.30 0.60 0.4821 1 

Superheated Vapor 
q =- - 0.25 

3.4821 VT„,„, 0 1.7551 2.0412 1.5242 1.25 

1.5054 D 0 0.30 0.60 0.5014 1 
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