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ABSTRACT 

Knowledge about land cover is an important input for the modeling of information 

that can be used for planning of proper utilization of natural resources. The derivation of 

such information increasingly relies on remote sensing technology due to its ability to 

acquire measurements of land surfaces at various spatial and temporal scales. One of the 

major approaches to deriving land cover information from remotely sensed images is 

classification. Conventionally hard classifiers are used which give the output having every 

pixel in a single land cover class which is far from the actual scenario on ground as well as 

loss of information is there. Unlike hard classifiers, sub-pixel (soft) classifiers defer 

making a definitive judgment about the class membership of any pixel in favor of 

producing a group of statements about the degree of membership of that pixel in each of 

the possible classes. 

There is a constant endeavor for obtaining more accurate results of classification. 

Accuracy evaluation of such individual classification technique and mutual comparison of 

the performance of accuracy assessment methods are key issues of debate and research in 

the field of remote sensing. Accuracy is itself defined as "the closeness of results of 

observations, computations, or estimates to the true values or the values accepted as being 

true' (USGS, 1990). These methods are categorized according to their basic concept like 

distance, similarity, uncertainty and fuzzy data set. Some latest features like fuzzy 

correlation coefficient, various entropy measures, fuzzy kappa and new operators in fuzzy 

error matrix are also discussed. A few of these measures are applied on actual data set with 

Bayesian and fuzzy classifiers used. Both mixed and pure training data are used for their 

classification. Their comparative analysis is done through statistical results and graphs.. In 

both the cases mixed training data provided batter classified image than pure training data. 

Accuracy results obtained by fuzzy classification were found to be better than Bayesian 

classifier. 
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CHAPTER 1 

INTRODUCTION 

Land cover information has been identified as one of the crucial data components 

for many aspects of infrastructure planning and development. Remote sensing data are 

vital source of such information as they are available at various scales and time. Production 

of such land cover maps can be facilitated by using automated methods for classification. 

The automated classification of land cover from remotely sensed data forms the basis of 

producing thematic maps. Conventionally hard classifiers are used which give the output 

having every pixel in a single land cover class which is far from the actual scenario on 

ground as well as loss of information is there 

Sub-pixel classification techniques avoid the loss of spatial information and 

generate thematic maps which better represent land cover variations as compared to crisp 

(hard) classifiers. Mixed pixels are bottom line output here, representing an area on the 

ground comprising multiple land cover classes and having partial membership grades to all 

exclusively defined classes. Accuracy evaluation of such individual technique and mutual 

comparison of their performance are key issue of debate and research in the field of remote 

sensing. Manipulating accuracy and indexing errors are vital results for users, as they not 

only reveal the fitness of classified map for specific implications, but also expose 

propagation of errors in subsequent secondary data. 

Why- sub-pixel study so important in the field of remote sensing- 

1. Low cost of coarse resolution images, from we can get information near to a high 

resolution images, with sub pixel level study. 

2. Continuous variation in ground properties is reflected. 
3. Pixel reflectance value represents mixture ground properties. 

4. Various soft classification techniques are available ,which shoud be assessed for 
their accuracy 
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In thematic mapping from remotely sensed data, the term accuracy is used 

typically to express the degree of 'correctness' of a map or classification (Foody, G.M., 

2002) and quantified as (dis)agreement of the classified output with reality or ground 

truth. Error matrix technique of hard classification accuracy assessment has ruled over for 

recent years but it is hardly suitable for sub pixel classification accuracy assessment. Sub 

pixel data (soft data) may be of two kinds; Probabilistic and fuzzy set based; depending 

upon the sum of the membership grades of the pixel. Ground data may also be crisp or soft. 

Comparisons between these data sets have been done by various methods and still research 

is going on. 
The accuracy assessment methods can be categorized according to their basic 

concept like distance based, similarity based, uncertainty based and fuzzy data based. 

Some latest features like fuzzy kappa and, composite and multiplication operator in fuzzy 

error matrix enhance this domain. These measures are reviewed and summarized along 

with the tabulation of their mathematical formulation and references. 

Measures like entropy was first developed to measure the amount of uncertainty in 

the information content of the classified data with respect to an ambiguity free pixel based 

reference data. 
Measures of distance were used to find a metric distance between two datasets. 

Information closeness is a distance measure applicable for two probability distributions 

and Euclidean or L distances are distance measures for any two distributions, probabilistic 

or possibilistic. 
To find the similarity in class representation between two datasets, similarity 

measures like correlation coefficient and RMS error were developed for probabilistic 

datasets, whereas different fuzzy similarity indexes based on fuzzy error matrix were 

developed to measure the similarity between two fuzzy datasets. 

For getting more information about the classification accuracy, conventional error 

matrix is found to be the best. So, an attempt was made to generate fuzzy error matrix, 

which also has the capability of providing a number of accuracy measures like those 

obtained from conventional error matrix. Though error matrix was considered to be the 

best accuracy assessment tool for hard classification, but fuzzy set based error matrix is not 

that much popular till now and this is the reason why more techniques are still being 
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developed. Fuzzy functions were another approach to check accuracy when the classified 

output is hard and reference data is soft. Though, by using this measure different types of 

errors are evident, but certain disadvantages are associated with this approach as discussed 

before for which this method does not impress much for accuracy assessment. 

It is also observed that though several accuracy measures are continuously being 

developed in the field of sub-pixel accuracy assessment of classified images, but the 

literatures do not provide any detailed information about the sampling scheme, sample 

size, method of obtaining the samples etc. for soft classification, though this is a very 

important step in classification. 

Fuzzy entropy measure and fuzzy correlation coefficient are discussed in detail for the 

actual ground data. Fuzzy error matrix is also calculated for the same. Process of low pass 

filter is used to degrade the image and subsequent study is done on the same. 

In most of the papers, the reference data is collected from a higher resolution image. 

Thus the reference data is not truly fuzzy in nature, since the class membership values are 

class proportions only which sum up to give a value of 1 for each pixel. But fuzzy 

approach is different from probabilistic approach in the sense that the membership values 

are obtained from a predefined membership function. 

Due to the disadvantages of some of the measures already developed and used in 

different literatures, there is a scope to develop new methods for accuracy assessment of 

fuzzy classification that do not suffer from any such disadvantage. 

1.2 Objective of the work 

The objective of this work is to evaluate different accuracy assessment measures 

including the novel measures for fuzzy classification accuracy assessment and to make a 

comparison of their capabilities in different situations. Different accuracy assessment 

measures have been used to evaluate the accuracy of data set. The measures which give 

appropriate results are considered to be good accuracy indicator. The results have been 

analyzed thoroughly to find out the advantages and disadvantages of each of the measures. 

Depending on the perfection of the results, the best accuracy assessment measures for 

fuzzy classification accuracy assessment have been recommended. 
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CHAPTER 2 

LITERATURE REVIEW 

Extraction of thematic information from satellite images is generally achieved 

through the application of a conventional classification, which allocates each pixel 

to a land cover class and thus the whole image gets segmented into a number of 

classes. This is the easiest way of obtaining a map like representation of the earth. 

A perfect segmentation is achieved when the class represented in any image 

matches the class on the actual ground surface for the same area. This is known 

as the accuracy of classification. 

Pixel is the arbitrary spatial unit ,which may represent an area on the ground which 

comprise one or more than one discrete land cover classes ,accordingly it is termed as 

hard (pure) and sub (soft/ mixed) pixel. Sub-pixels are abundant in nature. Sub-pixels 

occur due to higher land cover variation comparative to spatial resolution of the sensor or, 

two or more ground features fall within an instantaneous field of view of a detector cell. 

Proportions of the classes in a pixel are represented as the probability distribution or fuzzy 

set. 

While reviewing accuracy aspects of sub-pixel classification, it seems unavoidable 

to consider about the making of sub-pixel classified map. The concept of sub-pixel has 

been incorporated in all three stages of classification process. Training and allocation are 

the two broad spectrum of this computational process. 

2.1 Training and Allocation Stages in Sub Pixel Classification 

In training, pixels of known class membership in the remote sensing data are 

characterized and class signatures are derived (Foody, 1996). Most supervised image 

classification methods need pure pixels for training. Training with mixed pixels may lower 

the classification accuracy, as the class response derived may not be the actual class 

response (Foody-and-Arora-; 1996). 
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However, training becomes complicate when pure pixels are scarce. In these cases, 

it can be difficult to obtain a sufficiently large number of representative training samples to 

accurately estimate the spectra of the classes (Lesparre, 2003; Gorte et al., 2003). 

The solution for the lack of pure training samples is to be found in the use of mixed 

pixels to estimate the spectra of pure classes. An advantage of such a fuzzy training 

method is that more pixels in the image can be used for training, which enables the use of 

heterogeneous areas for training or the random selection of training pixels. There are two 

conditions for this method. First, one needs to have estimates of the fractions of the classes 

in the mixed training samples. Secondly, the spectral values of the mixed pixels should be 

a linear combination of the spectra of the composing class. 

Besides these advantages, however, relatively little attention has been directed to 

the accommodation of fuzziness caused by mixed pixels in the training stage (Arora,M.K., 

Foody,G.M.,1996). 

Allocation of the pixels in sub-pixels classification methods gives partial.  

membership (value 0 to 1) to all the discrete classes defined. Numerous algorithms are 

available like fuzzy c-means clustering, maximum likelihood in soft mode, linear mixture 

modeling, artificial neural network, support vector machine, evidential reasoning classifier, 

decision tree classification and many more. Data associated with the pixel is soft here. 

Uncertainty may arise in the data. 

Quality of the allocation algorithms reflects through, how accurately they represent 

the actual scenario on the ground. Without index of accuracy a classification process can 

not be taken as complete. 

2.2 Testing Stage or Accuracy Assessment: 

This is typically accomplished by comparing a sample of pixels' classification with 

some form of reference data. Depending upon the type of classified and ground data 

accuracy may be categorized in four ways. 

1. Hard ground data vs. hard classified data 

2. Hard ground data vs. soft classified data 

3._Soft_ground.data VS. hard_classified_data_ 

4. Soft ground data vs. soft classified data 
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We are, here, interested in the later three categories. Soft data may itself be of two 

kinds. Accuracy assessment process takes classified data and reference data as the input. 

These data sets may be either crisp or soft depending on the availability of resources, 

requirement of the project, purpose of study, allocation scheme used for the classification 

etc. Soft data may itself be of two types; fuzzy and probabilistic. Depending upon the input 

dataset suitable measure is applied to assess the accuracy. The comparison of classified and 

reference data gives out put which may be represented in presented in various forms like; 

overall accuracy, users accuracy, producers accuracy, kappa coefficients, percent correct, 

entropy, distance, similarity ,correlation coefficient . 

2.2.1 Reference Data: 

Since all the accuracy assessment are done by using sub-pixel information of 

reference data, so the most important step for assessing accuracy is to obtain accurate 

reference data. Obtaining true fuzzy reference data is a very difficult task. 

Conventionally ground reference data is derived from photogrammetry, field survey, or 

existing map. In such ground data, the spatial variations evident in reality are commonly 

obscured (Zhang, J., Foody,G..M., 1998). 	Other reference data may be higher spatial 

resolution image than that of the classification being assessed. It may be contemporaneous 

with the dates of the classifications' source remote sensing imagery. It should possess 

known (and acceptably high) classification accuracy itself. 

2.3.2 Deriving Ground Reference Data in Sub Pixel Format: 

1. Degradation Method: - Pure pixels are passed through a low pass filter and 

results obtained are taken as the combination of various membership values. In the current 

study this method is followed where PAN image is passed through low pass mean filter to 

obtain degraded image. 

2. Fine Resolution Images Vs. Coarse Resolution: - In most of the cases in the 

literatures, the reference data has been obtained by using a finer resolution image [Foody, 

(1996), Foody, (2000), Latifovic and Olthof, (2004), E. Binaghi et al, (1999)]. All the 

pixels in the reference image are considered to be pure. The membership degree of any 

class_ in a_pixeLin_the.classified_ image is_simply_the proportion of that class in the pixeLas_ 

obtained from the reference image. The sample pixels chosen from the image should be 

such that they include all the classes being considered for classification. In this approach 
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the reference image should be perfectly registered with respect to the classified image, so 

that no spatial error is accompanied. Without proper registration, the generation of error 

matrix itself will be erroneous. Problem in this case is that, since class proportions are 

taken to be the class membership values, the membership always sum up to one for each 

pixel and thus leads to a probability distribution. 

3. Distance Based Interpolation: - Heterogeneities of the pixel's equivalent area are 

not equally probable (Foody, 1995). Inner parts of the polygon may have 100%probabiity 

to the class that of the polygon but at the boundary it will decrease, as the influence of 

surroundings get considered .the changing pattern of class probabilities may be modeled by 

some quantitative function like interpolation (Wang and Hall, 1996).Distance based 

interpolation may not be suitable for the features, where probability variation is not 

continuous. Spatial distribution of points of known probability should also be taken into 

account. 

2.3.3 Sampling Issues: 

There are different approaches of sampling, such as simple random sampling, 

systematic random sampling, stratified random sampling, stratified systematic unaligned 

sampling, cluster sampling etc. 

Though a number of sampling schemes are available but very little information is 

available in the literature about the sampling schemes used by authors for sub-pixel 

classification and accuracy assessment. In Woodcock and Gopal, (2000), the sampling 

sites were randomly selected. Latifovic and Olthof, (2004) have used sampling that was 

stratified by ecozones. Within each stratum, scenes were selected to closely resemble land 

cover proportions over the ecozones. Finally chi-square tests were used to verify the 

sample distribution with actual land cover distribution. 

The numbers of samples chosen for accuracy assessment by different authors are 

available in the literatures, but not much information is available about how this number 

has been chosen. 
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2.3.4 Limitations of Accuracy Assessment Process :( Foody, G.M., 2002) 

The failure to attain the specific target levels of accuracy is typically taken as the 

failure of remote sensing as a source of land cover information. Several interrelated 

problems that limit the quantification of classification accuracy can be listed as 

1. Compatibility of Resolution: — Comparison of two data sets requires same 

resolution parameters, so that they may be compared cell by cell and the cell represents the 

same area on the ground. 

2. Registration Precision: — The reference image should be perfectly registered with 

respect to the classified image, so that no spatial error is accompanied. Without proper 

registration, the generation of error matrix itself will be erroneous. Geo referencing and 

geo coding of reference data with testing data of classified image is core of their 

comparison .A little error may propagate as the wrong comparison of land cover features. 

3. Non availability of ground data in soft mode: -comparison of sub-pixel 

classified output may be done with hard reference data but some accuracy measures 

require it only in soft mode. To obtain soft reference data is the most typical task of the 

process. 

4. Accuracy of the ground or reference data: - It is just an assumption that reference 

data is accurate representation of reality. In fact, it is another classification which itself 

may have error in it. 

5. Errors should be weighted: - Errors are the misallocation of ground feature to 

some other class. Some errors are more important or damaging than others (foody, 2002) 

Various Measures of Accuracy Assessment of Sub- Pixel Classification are 
discussed as follows. 

2.3 Distance Measures 

To derive the distance between two sub-pixel datasets, distance index is obtained 

for two fuzzy membership distributions or for two probability distributions 

2.3.1 Distance Measure for Two Fuzzy Membership Distributions 



A number of distance indexes has been proposed by Zwick, R., et al (1987) to 

measure the distance between two fuzzy datasets which include Euclidean distance, city 

block distance (L distance), D distance etc. The generalized distance function of these 

measures is known as Minkowski r-metric and is defined as, 

±d,(1,11 ,2 p )=[ r  1 -  

 

Eq(2.1 ) 

  

Where, l mi = membership grade of class i in a pixel of reference image 

2
Pi 

= membership grade of class i in the same pixel of classified image 

The cases of r = 1 and 2 were first studied by Kaufmann (1975), i.e the L distance 

(city block distance) and Euclidean distance respectively. Distance measure d22  or distance.  

D was proposed by Kacprzyk (1976). 

All the distance measures like Euclidean distance S (Eq 2.2 and Eq 2.3) and D (Eq 

2.4 and Eq2.5) [Kent and Mardia, (1988), Foody (1996), Foody and Arora, (1996)], and L 

(Eq 2.6 and Eq 2.7) distance [Foody and Arora, (1996)] has been found to provide suitable 

indexes of accuracy for dealing with fuzzy reference as well as classified data. 

The formulations for all the distance measures are provided in appendix A, table I. 

2.3.2 Distance Measure for Two Probability Distributions 

For evaluating the metric distance between two probability distributions, measure 
re 

of cross entropy and information closeness measure had been proposed by Higashi and 

Klir, (1983), which had been used by Foody, (1995 and 1996) for the accuracy assessment 

of soft classification. Cross entropy actually refers to the relative entropy between two 

probability distributions. The definition of cross entropy as given in Eq (2.8) had been first 
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introduced by Kullback, S (1968) as a distance measure between two probability 

distributions. 

One of the measures to express information closeness between two probability 

distributions is cross-entropy or directed divergence (d). This is to measure the closeness 

of the probability distribution in each pixel of the ground data ('p) and that of the classified 

image ( 2 p). 

d('p,2 p)= 	ip(x) log 2 2  p(x)+I l  p(x) log 2 ' p(x) 	Eq(2.8) 

The measure of cross-entropy is appropriate for two probability distributions 'p and 

2p  only when the supports of the two probability distributions are compatible [Higashi and 

Klir, (1983), Foody, (1996), Chang et al, (1994)]. To overcome this disadvantage, a 

generalized measure of information closeness (I) had been introduced by Higashi and Klir, 

(1983) as follows. 

1 2 	

n2 

+ 2 n  

Dep,2 p)=dep,  P+
2  P

)+d( 2 p,  	 Eq(2.9) 

Foody (1995 & 1996), Zhang & Kirby, (1997) and Zhang & Foody (1998) have 

used the measure of information closeness as an accuracy assessment measure for fuzzy 

reference and classified data. This method is appropriate for two probability distributions, 

where the summation of probabilities of different classes in a pixel is equal to 1. Thus, to 

apply these measures to fuzzy ground and classified data, the membership distribution for 

each pixel is required to be normalized, so that their summation is 1. The measures of 

information closeness have been applied for the fuzzy output and fuzzy reference data 

which have been converted to produce new normalized values that sum up to 1 tor every 

pixel. 
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2.3.3 Discussions on Distance Measure 

Distance measures such as D, L and S have been used successfully to find the 

distance of two sub-pixel datasets either fuzzy or probabilistic in per-pixel basis and for the 

overall image. But here also no attempt has been made to find the accuracy in terms of 

distance between the same class representation of the reference and classified data. 

Distance measure such as d and I are used to find the distance between two 

probabilistic datasets. But the logarithmic gain formula suffers from the facts that it 

provides undefined results for zero class probability or membership values. Thus absence 

of any class in any pixel would lead to undefined results for cross entropy and 

consequently information closeness measures. 

2.4 Fuzzy Set Based Measures 

The concept of fuzzy set was first introduced by Zadeh (1965) for dealing with 

vagueness in complex systems, and represents a generalization of crisp sets to situations, 

where the class memberships of single elements cannot be sharply defined. The principle 

behind fuzzy set theory is that the situation of one class being exactly right and all other 

classes being equally and exactly wrong often does not exist. Conversely, there is a gradual 

change from membership to non-membership (Gopal and Woodcock 1994). Thus, in the 

case of remotely sensed images, rather than assigning individual pixels to just a single 

class, each pixel may be associated with every class with variable degrees of class 

membership. (C. Ricotta, 2005) 

Several fuzzy set based accuracy assessment measures have been developed by 

different authors to check the accuracy of fuzzy classification. A brief review of different 

fuzzy set based measures has been discussed in the following sections. 
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2.4.1. Fuzzy Error Matrix 

The concept of error matrix to fuzzy reference and classified data has been first 

elaborated by E. Binaghi et al, (1999) as given below. 

Let, number of dominant classes present in the reference data is n, i.e., this is 

denoted by (ri);=1 , 	Fuzzy classification for n classes is done for the image and the 

classified data is denoted by (01=1, 	n  Number of pixels considered for classification is 

m. 

And, lark= membership grade of i'th class in k'th pixel of reference data 

ficjk= membership grade of j'th class in k'th pixel of classified data 

The fuzzy error matrix for each pixel is shown in Table 3.1 and that for overall image in 

Table 3.2 

Any element of i'th row and j'th column of error matrix is obtained as, 

auk= OPERA TOR(Ank, 1..tcjk) 	 Eq (2.10) 

Operator may be, for instance, Boolean, multiplication, minimum and composite 

depending upon the membership of the pixel. Their suitability is shown through table in 

the next section. 

Here, for instance, in Binaghi approach the MIN operator has been used, which 

indicates the intersection or aggregation of pixel in both the data sets. 

The diagonal elements in fuzzy error matrix shown in Table 2.1 represent the 

membership grades of the classes correctly classified. The off-diagonal elements stand for 

error of omission or commission, the same as in the conventional classification. The total 

—gtadesloreach-rowis-the-membership-grade-of-corresPonding class in-the-classified-data- 
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and that for each column is the membership grade of corresponding class in the reference 

data. 

TABLE 2.1 FUZZY ERROR MATRIX FOR K'TH PIXEL 

Reference data 

I-1  r2 	  In  

c1 aiik  a12k 	 aink  

C2 k ••-•21 a 	k 22 	 a2nk  

. 

- 
. 
' 

• 
. 

. 	. 	. 	. 	. 	. ' 
. 
. 

Cn ant k  a n2k 	 an nk  

TABLE 2.2 FUZZY ERROR MATRIX FOR OVERALL IMAGE 

Reference data 

R, R2 R, 

C1  All A,2 	 A, n  

C2 A2, A22 	 A2ri 
. 
• 
. 

. 

. 

. 

- 

. 

• • ' ' . 

. 

Cii  An1 An2 	 Ann 

Where, Al = 	a  if 
k =1 

Error matrix has also been used by Shalan et al for evaluating the accuracy of sub-

pixel classification. Error matrix had also been generated by Jager and Benz (2000) for 

sub-pixel data and the approach for generation of error matrix is similar as the approach of 

Binaghi (1999).Approach of generation of error matrix for the whole image as given in 

Jager and Benz (2000) is explained below 

ne measures of accuracy such as overall accuracy, user's accuracy, producer's 

accuracy etc. are derived from the fuzzy error matrix as follows: 

B 
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Table 2.3 Accuracy measures in fuzzy error matrix (Binaghi et al., 1999) 

Accuracy Pixel matrix Image matrix 

Overall Accuracy n 

Ea„ 
1=1 

n 

E Ail  
i=1 

n Eiirki 
i=1 

m 	fl  

E(prk,) 
k=1 	i=1 

User's accuracy  a, Aii  
k 

Aid 
m 

k 
1 lici 
k=1 

Producer's accuracy 
ai ,k  A .1  A 

k 
114  ri Ern 	

k 
Pri 

 

k=1 

Let, R, be the set of membership grades of class i in the reference data over all the pixels, 

= 	 gni ) 

And, let C., be the set of membership grades of class j in the classified data over all the 

pixels, i.e., 

Ci Uj cii Pci 5 	 PcInj 

Then each element of error matrix of i'th row and j'th column is obtained as, 

m 

Ay =1 n =I[minark,,pckj)] 
k=1 

 

Eq (2.11) 

 

The accuracy in this case was judged by using different fuzzy similarity measures. For full 

similarity, the similarity index is 1 and for no similarity it is 0. 
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Jager and Benz (2000) have used a hypothetical image to test the accuracy and 

different fuzzy similarity indexes, such as fuzzy overall accuracy, fuzzy Hellden's 

accuracy etc have been derived for the classified data. 

Advantages: 

1. Error matrix is superior to other measures since it is able to represent the 

individual category measures and the situations of overestimation and underestimation, 

i.e., more information about accuracy of classification can be obtained from error matrix 

rather than only a single index of accuracy [Binaghi et al (1999)] 

Disadvantages: 

1. For every pixel separate class by class matrix is prepared, which consumes a lot 

memory of computer and increased computation includes time complexity consideration. 

2.4.2. Fuzzy Similarity Measures: Fuzzy Neighborhood and Category Vector 

Another fuzzy set based approach for measuring the similarity between a set of 

pixel based classifications has been used by A. Hagen (2002). Fuzzy category and 

neighborhood vectors have been developed by him for measuring the accuracy or 

similarity between two hard datasets. If the number of categories present in an image is C, 

then the fuzzy category vector for a pixel is defined as, 

( „ 

cur,2 

	 .Eq(2.12) 

\,Pcat,C 

where, PCP, ,1 =1 for original category and, 0 	l for other categories. 

= 
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In representing the fuzziness of location the effect of neighborhood is taken into account. 

The different membership contributions of the neighboring cells are combined by 

calculating the fuzzy union of all neighboring cells multiplied by their distance based 

membership. 

Fuzzy neighborhood vector for a pixel is thus defined as, 

/2nbh,1 

nbh,2 

Vnbh = .Eq(2.13) 

■\.Pnbh,c 

where, Pnbh,i iticat,i,1 x  ml ,  Pcui,i,2 	n22 ,  

 

x m N 

 

= Membership of category `i' for neighboring pixel T [0 or 1 in A. Hagen, (2000)] 

m j  = distance based membership of neighboring cell T 

The similarity of the same pixel between two fuzzy classified images has been found by 

taking the intersection of the fuzzy neighborhood vectors of the same pixel in two images. 

An intersection that is greater than 0.5 indicates good similarity. 

Two way similarity:- 

Another measure of similarity as used by Hagen, A., (2002) is "two way similarity", which 

overcomes the disadvantage of the first method of carrying out the comparison excluding 

the cell itself (Eq 2.14). In this case, first fuzzy neighborhood vector of a pixel in one 

image (say, image 1) is compared (intersection) to the crisp vector (formed by taking 

pea, —1 for original category and 0 for other categories in 	of the same pixel in the 

other image (say, image 2). Then the crisp vector of the same pixel in image 1 is compared 
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to the fuzzy neighborhood vector of image 2. Finally, the lower of the two comparison 

results establishes the similarity at that location. 

Limitation: 	Only cell by cell comparison, not overall image comparison. 

Advantage: 	neighbor hood concept is involved 

2.4.3 Fuzzy Functions 

There is another fuzzy set based approach for accuracy assessment for fuzzy 

classification by using different fuzzy functions. This is a fuzzy possibilistic approach for 

assessing the accuracy. It is different from the abovementioned fuzzy methods in the 

sense that it is applied when the reference is fuzzy and the classification output is hard 

[S. Gopal and C. Woodcock, (1994)]. In this method a linguistic scale of reference based 

on the expert evaluation is constructed, each pixel is then assigned a membership grade 

corresponding to each class. Finally the accuracy is judged based on the frequency of 

matches and mismatches, magnitude of error, source of error and nature of error. No 

single accuracy index is available in this case. 

Frequency of error measures the accuracy of the map in terms of the matches and 

mismatches of the classified data with respect to the reference data. A pixel is assigned to a 

particular class for which the membership grade is the highest using the 'Max' function 

(Eq 2.16) or 'Right' function (Eq 2.17) (Appendix A, Table 2). Similarly the magnitude, 

source and nature of error all are found out by applying different functions as given in (Eq 

2.18, 2.19, Eq2.20, Eq 2.21. 

In this way, an idea of different types of errors and their distribution can be found out 

by using these_measures.This_idea_is_helpful_in_formation_of_error_models,_which-is 

significant in GIS analysis. Though these measures are applicable for pixel based classified 
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output, an estimate of area can be obtained using these measures [C. Woodcock and S. 

Gopal, (2000)]. 

These measures have been used by C. Woodcock and S. Gopal, (2000), De Gloria et al, 

(2000), Thenkabail, P, S et al (2005), Laba, M, et al (2002) etc. for accuracy assessment of 

thematic maps. The sample sites were visited by the experts and then the measures of 

accuracy assessment were applied. But these measures do not provide any overall measure 

of accuracy of classification. So, there is no option to compare two classifications with 

respect to a single reference using these methods. Also, the expert evaluation may vary 

from one expert to other. In such case, there is a need of standardization of results from a 

number of experts. Finally, the methods have only been used for pixel based classification. 

But nowadays, newer techniques for sub-pixel level classification are being derived to 

include most of the information about the different types of land covers present in an 

image and it is much more difficult to obtain a fuzzy reference data than to obtain a fuzzy 

classification. So, the methods should be improved so that they can be applied for fuzzy 

reference as well as fuzzy classification output. 

Discussions on Fuzzy set Based measures 

Among the fuzzy set based measures only fuzzy error matrix attempts to find the 

different accuracy indexes such as overall accuracy, user's and producer's accuracy etc. 

But since fuzzy classification does not consider the spatial accuracy, so the attribute 

accuracy regarding the user's and producer's accuracy may produce misleading results in 

many situations. 
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Development of fuzzy neighborhood and category vector to find the accuracy in terms 

of similarity is related to pixel based classification. So this approach has nothing to do with 

fuzzy classification and its accuracy assessment. 

Fuzzy functions like max function, right function etc are used to find the accuracy of a 

sub-pixel classification with respect to a fuzzy reference. 

The disadvantage is collection of fuzzy reference data is much more difficult than 

producing fuzzy classification. 

2.5 Uncertainty Measures 

According to eminent scientist Albert Einstein "So far as the law of mathematics 

refer to reality, they are not certain .And so far as they are certain, they do not refer to 

reality". 

Uncertainty is the inability to decide what to do or not, to perform any specific task 

An digital image classification uncertainty is categorized in two ways; Ambiguity and 

Vagueness. The uncertainty in class allocation can be measured in terms of entropy [Foody 

(1995), Foody (1996), Zhang and Kirby (1997), Zhu, A-Xing, (1997)].Various entropy 

measures, based on fuzzy and probabilistic data sets, are the tools to mathematically 

quantify these aspects. 

3.2.1 Ambiguity vs. Vagueness 

Ambiguity is associated with one to many situation and conflicts of evidences.(Klir 

and Folger,1988). In remote sensing , this kind of uncertainty arise when , there is 

confusion regarding allocation of the pixel to a class, as it may be having equal proportion 

of all the classes . Entropy is a measure of such kind of uncertainty. 

Vagueness is associated with the difficulties of making precise distinction. In 

mapping it is considered as with the problem if locating a sharp dividing line between two 

continuous classes. Shanon entropy is the generalized tool to quantify such uncertainty. 

The entropy that has been used in different literatures for measuring the uncertainty 

is given in Table-3-.4-  Eq-(2:22):The-rneasure-(Eq-2-22)-used-by-Foody-is used to 	the 

entropy of a probability distribution [Maselli, M et al (1994)]. For finding the entropy of 

possibilistic data, the data has been normalized to a probability distribution so that 
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summation of membership grades for each pixel equals to one [Foody (1996)]. The value 

of entropy is low for pure pixels and high for mixed pixels. If reference data consists of 

only pure pixels, the entropy value will be zero for the reference data. However, if the 

classification gives rise to mixed pixels, then it is understood easily that there is some error 

in classification and that will be reflected with a higher entropy value for the classified 

image. 

Shannon's entropy as given by Eq. (2.23) has been found in S.K. Pal et al (2000), 

Ghosh, J.K. (1996), De Luca and Termini (1972) etc. but this is not used for accuracy 

assessment. This measure has been used to measure the uncertainty of fuzzy membership 

distribution, both normalized and not normalized. 

Table2.4 Measures of Uncertainty 

Measure Formulation Explanation Reference 

Entropy 
used 	by 
Foody 

H(p) = —1 p(x) log 2p(x) 
x 

	 Eq(2.22) 

Measures the uncertainty 
(in terms of ambiguity) of 
 information content in a 
probability distribution 

1. Foody, 
1995 
2. Foody, 
1996 
3. Zhang and 
Kirby, 1997 

Symbols x is the class variable ; 
P(x) represents the 	membership probability of pixel to class x ; 
H(p) represents the entropy of pixel 

Shannon 
Entropy 

1 	n Measures the uncertainty 
(in terms of vagueness) of 
information content in a 
fuzzy membership 
distribution. 

_, 
 

1. Ghosh. 
J.K, 1996 
2. Pal. S.K et 
al, 2000. 
3. Shannon, 
1998 

F101)— 	S 	 Eq(2.23) ,(,u(x)) 	 
n In(2) 	, 

Where, 
Sn(g.x))= —,u(x)ltigx) — {1—,u(x)}1n11—,u(x) 

Symbols x is the class variable ; 
pt(x) is the membership of the pixel to class x ; 
S (..t(x)) is the Shanon parameter. 

2.5.2 Advantages and Disadvantages of Uncertainty Measures 

Advantages: —For a probabilistic dataset, i.e., when the class probability values over 

eacn pixel sum up to 1, men entropy iiiutisuiu can be used very effectively to compute the 

information content or uncertainty contained in a dataset. 
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Disadvantages: - Entropy measure is unsuitable while dealing with fuzzy 

classifications where summation of membership grades for each pixel does not produce the 

value of one. Both of the entropy measures, as mentioned in Table3.6 suffer from the 

common disadvantage that the use of logarithm in the measures restricts their use for only 

those mixed pixels in which all the classes are present with a membership value greater 

than 0 and less than 1. But for classes with zero membership value, the measures give rise 

to undefined solutions. To overcome this limitation, logarithmic gain can be replaced by 

exponential gain, i.e., In(11(x)) should be replaced by e(1-'1(x))  [Pal, N.R., and Pal. S.K., 

(1991)]. .The other disadvantage of this measure is that it does not provide any information 

regarding the accuracy of individual classes in the image. 

2.6 Similarity Measure 

Similarity measure provides the similarity between two datasets. It is of two types, one 

dealing with the probabilistic output and the other dealing with fuzzy output. A summary 

of the similarity measures discussed in this section has been given in Table 3, Appendix A. 

2.6.1 Similarity Measures for Probabilistic Data 

Different types of similarity measures for probabilistic output have been stated in 

different literatures, such as correlation coefficient [Foody (2000), Zhang and Foody 

(1998), Atkinson, P,M, Foody and Cox (1994), Maselli et al (1996)1, root mean square 

error (RMSE) [Foody, (2000), Atkinson, P.M., Martens, K.C., et al], expected sets shared 

(ESS) [Ricotta, C., (2004)] etc. 

2.6.1.1 Pearson's Correlation Coefficient 

Pearson's correlation coefficient (CC) ( Appendix A, Table 3, Eq 2.24) finds the 

correlation or similarity among two representations of the same class in both reference and 
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classified data. The value of CC is maximum (1), when there is absolute correlation or no 

error, and minimum (-1) when there is a totally opposite correlation. Its value is 0 when 

there is no correlation among the datasets. 

Coy 	) 
CC, — 	 Eq 2.24 

cr 	x CT 

2.6.1.2 RMS Error 

Root mean square (Appendix A ,Table 3, Eq 2.25 and Eq 2.26) error also finds the 

error in any class representation in the classified data with respect to the reference data and 

the corresponding accuracy in terms of similarity is (1-RMSE). RMSE is 0 if there is no 

error and it increases as deviation between the representation of the same class in the two 

datasets increases. But the problem with RMS error is that it is not standardized by any 

measure of variance. Thus it is large for larger dataset and small for smaller dataset, 

irrespective of the correlation among datasets. So, correlation coefficient is a better 

alternative which gives acceptable information about accuracy or similarity. 

(1fi 	2)2 
ii 

 

RMSE =  	 Eq 2.25 
n —1 

E RAISE; 
.1=1 	 Eq 2.26 

2.6.1.3 Expected Sets Shared (ESS) 

ESS is a measure of accuracy assessment developed by C. Ricotta (2004). The term 

expected sets shared means the number of classes common to the same pixel in both 

reference and classified data. 
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Mathematically the expected sets shared for the i'th pixel is obtained as given in 

Eq(3.27). 

n 

ESS, (11A, PB;rn) = 	— (1 — pAk )rn —(1— 	) ) 
k=1 

	Eq(2.27) 

where, E,uk  = 1, for each pixel. 
k=1 

pi, and pB  denote membership vectors of the same pixel (say iith) in two sample 

datasets (such as reference and classified), 

`n' is the number of class. 

Then ESS is the expected number of common classes in the i'th pixel of the two 

samples. As the value of the parameter 'm' is increased, where `m' is the sample size, the 

curve of ESS vs 'm' converges to the number of common classes between the two 

samples, which have non-zero membership values. Some other measures such as 

symmetric NESS (Normalized expected sets shared) or asymmetric NESSA  or NESSB  have 

also been derived. The overall ESS for the whole image is simply the average of the ESS 

of all the pixels. The pixel based ESS allows checking pair wise similarity and thus helps 

in finding out the problematic areas in the map. 

2.6.2 Similarity Measure for Fuzzy Datasets 

The similarity measures for fuzzy output can also be obtained by using different 

similarity indexes (Eq 3.28) [Townsend (2000); Jager and Benz (2000), Chen, S, (1995)] 

and fuzzy correlation coefficient [Pal et al, (2000)]. This type of similarity index expresses 

the similarity between two fuzzy sets. The results express the correlation similarly as for 

probabilistic correlation; only the formulation is different in this case. However, fuzzy 
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correlation coefficient has not been used by any author to judge the accuracy of fuzzy 

classification. The formulations of all the similarity measures are given in Appendix A, 

Table 3. 

2.6.3 Discussions on Similarity Measures 

Different similarity measures have been developed by different authors to provide 

information about the similarity between two sub-pixel datasets. But in most cases the 

similarity indexes have been developed for probabilistic dataset, e.g correlation coefficient, 

RMS error, expected sets shared etc. So, similarity of fuzzy datasets should not be obtained 

by using these measures. 

2.7 Fuzzy correlation coefficient 

There are several sub-pixel accuracy assessment measures proposed by different authors. 

A review of the same can be found in Ghosh and Mukherjee (2005). It has been observed 

that most of the measures assess accuracy qualitatively. So, quantitative measures to 

evaluate accuracy of a fuzzy classification are warrant of the situation. 

Statistical correlation coefficient, also known as Pearson's correlation coefficient, 

has been used as a measure to assess the accuracy of sub-pixel classified images (Foody, 

2000) quantitatively. This measure is based on statistical concepts i.e., on the theory of 

probability. It is based on the assumption that both the variables, whose correlation is 

required to be found, are normally distributed (Davis, 1986). It uses the mean and standard 

deviation of the data to find the correlation among datasets. Thus, it is appropriate to 

restrict the measure in assessment of accuracy of sub-pixel classification based on 

statistical-concepts.-  
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Fuzzy classification gets carried out based on fuzzy concept, more generally on the 

theory of possibility. Thus, to check the accuracy of fuzzy classification, it is also required 

to have some method of based on fuzzy concept. Moreover, to evaluate the accuracy of a 

fuzzy classification, different measures are required such as measure for accuracy 

assessment of any particular class in any particular pixel, measure for accuracy assessment 

of any particular pixel consisting of different sub-pixel classes, measure for accuracy 

assessment of different types of classes (sub-pixels) present in an image or of an image 

classified into different sub-pixel classes. Thus, there is a need for an accuracy assessment 

technique compatible to the fuzzy classification. 

Pal and Dutta Mazumder (1986) has introduced a measure termed as fuzzy correlation 

to find the correlation between two (fuzzy) properties of an image (defined by two 

membership functions). Same measure has been used by Pal & Ghosh (1992) and Pal et al 

(2000) for segmentation of image. 

The objective of this paper it to test the viability of some measures based on fuzzy 

correlation co-efficient for different accuracy assessments of fuzzy classification. 

Measures Based on Fuzzy Correlation Co-efficient 

Let ,u,( „,) , pc( „,)  be the membership values of reference and classified data any 

class/object (o) in any pixel (i) in some domain, say O. Modified from the definition 

available in (Pal and Dutta Mazumder, 1986), the different types of measures (fuzzy 

correlation co-efficient), for assessment of accuracy of fuzzy classification of remote 

sensing data, can be defined as follows: 

Class based 

(A) One Class in a pixel 
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C o  =1— 	
4 E [Pr( X r(o) 	X c(o) i=1 

n 
]2 

Eq  2.30 

4 ]2 m 

E r(o,i) X r(i)  + X c(i) 0=1  ....Eq  2.31 

Measure for accuracy assessment of a class (o) in any pixel (i), say C„,, can be 
given by the Equation (2.29) as follows: 

4 
Co ,, =1 	 r „ 	

— 
, 	,2 

[21.4(0 ,0  —112 	„ 	_,-,2 [flr(o,i) Pc(0 ,0 J 

(B) One Class in an image 

....Eq  2.29 

Measure for accuracy assessment of a class (o) in any image (of n pixels), say C„, can be 
given by the Equation (2.30) as follows: 

Where 
X

rk 
(
o) 

=D2,14(0,0  —11
2 

i=1 

n 

and Xc(o)  =E[2,ttc(0,i)  
i=1 

Pixel based 

Measure for accuracy assessment of any pixel (i) having m types of classes in it, say C, , 
can be given by the Equation (2.31) as follows: 

m 	 m 

Xr(i) =E[2pr(o i) —1]2  and X41)  =1,[2,uc(o,i)  —1]2 ,  
6=1 	 i=1 

Image based 

Measure-for-accuracy-assessment of an-im-a-g-eTsay-C, consisting or n pixels wan m classes 

in each pixel can be given by an Equation (2.32) as follows: 
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C = 1 4 	n m 
1 2 E [1.1 r ( o,i ) 	,(0,0 	- - X  r ( o,i )  + X  c ( o,i )  i=1 0=1 	Eq 2.32 

n m 	 n m 
 =Ey 	 —

2 	 lWhere 
Xrki\ 	 pp (0,1) 1] and Xc(i) =Eptc(o,i) 

i=10=1 	 1=1 

The properties which these measures possess are given below: 

(i) For high or low values of both,ur(,,,)  and ,u,( „, )  , measure value is high and 

designates high degree of accuracy in classification. Particular measure represents 

the degree of accuracy of that particular category. 

(ii) For high values of ,ur(00  and low values of ,u,(00  or vice versa, measure value is 

low thus indicates a low degree of accuracy in classification. 

(iii) !Measure value' < 1, for all ,u ).(00  and ,u,( „,, )  

(iv) Measure value for ,ur(„ o and pc(o , )  is same for that of ,u,( „, )  and ,u,( „, ) . 

(v) Measure value for ,11,100  and pc(00  is same for that of (1-,ur( „, )  ) and (1- 	) 

Thus, the accuracy of fuzzy classification is thus expected to be assessed by using 

the measures based on fuzzy correlation coefficient. 

2.8 .Operator In Error Matrix: new possibilities 

Pontius, R.G, 2006 et al. have developed a generalized cross tabulation matrix, 

where the entry in the cell of matrix is not always traditional, like Boolean operator for 

hard-data-set-or-minimum- operator—for—fuzzy- data- set.--Some- new -operators-are- also 

introduced .Which operator should be used when; such kind of suitability is shown in table 

3.4. Mathematical formulation of these operators and their assessment are as follows; 
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NOTATION: - Pnij is the entry in row i and column j. 

Pni* denote the membership of pixel into class i, value between 0 and 1, 
both inclusive. 

Pn*j denote the membership of pixel into class j, value between 0 and 1, 

both inclusive. 

Boolean operator is for crisp classification, for instance, 

Pnij = 1 if Pni• = Pn • j = 1 
0 else 

 

eq(2.33) 

 

2.8.1 MINIMUM Operator 

Is most frequently used operator because it gives common region of aggregation but 

suitable only for fuzzy data 

Pnij = MIN(Pni*, Pn • j) 	 eq(2.34) 

2.8.2. MULTIPLICATION Operator 

Pnij = Pni • x Pn • j 	 eq(2.34) 

2.8.3 COMPOSITE Operator 

Pnij = (Pni • — Pnii) x (Pn  • j — Pnjj)  

E (Pn • j — Pnjj) 
fori# j 	 eq(2.35) 

Their utilization in the accuracy assessment depends on the circumstances. New term 

ontology is defined by the author to categorize the type of pixel. 

Table on next page explain relation between the pixel and type of operator to be used , 
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Table 2.5 Suitability of Operators in Error Matrix (Pontius, R.G. and Cheuk, M. L., 2006) 

... 

Operator 
Classification Sum of entries 

equal to 1 

Diagonal matrix for 
completely identical maps 

BOOLEAN Hard Yes Yes 
Each pixel has membership in exactly one class. 
The concept of location within pixel is irrelevant 

MINIMUM Soft 
(Fuzzy data ) 

No No 

Each pixel has membership according to fuzzy set theory in order to 
acknowledge ambiguity. 
The sum of the class membership can be different than 100%. 

MULTIPLICATION Soft 
(Probabilistic 
data) 

Yes No 

Each pixel has membership in a class according to the probability 
that a randomly selected point within the pixel belongs to that 
classes. 
The concept of location within pixel exists in terms of infinitely 
small points, whose spatial distribution within the pixel is random. 

COMPOSITE Soft 
(Probabilistic 
data) 

Yes Yes 

Each pixel has membership in a class according to the probability 
that a randomly selected point within the pixel belongs to that 
classes. 
The concept of location within pixel exists in terms of infinitely 
small points, whose spatial distribution within the pixel is random. 

Advantages: - 

1. 

 

They have also considered the concept of location of the ground feature within the pixel. 

2. Concept of weight is also considered, accordingly there are three common reasons why 

scientist would want to weight some pixel differently uidn wrier 

A. Each pixel may represent substantially different amount of the area of the earth surface. 
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(Global or regional level maps) 

B. Weight zero masks, pixel that are out side area of study and non zero weight to the 

pixels in analysis; in accuracy assessment zero weight can be assigned to the pixel where 

ground information has not been collected. 

C. When coarse pixels are aggregated from a different no. of fine pixels and study areas is 

not a perfect square then assign weight to the pixels. 

P+ij = 

N 
E (W x Pnij ) 

ij = n=1  
N 
E W 

n =1 n  

   

eq(2.36) 

   

Weights are included here to make standard entry. 

2.9 Fuzzy kappa - new possibility 

The similarity measures discussed in the earlier section represent similarity by a 

cell by cell comparison method. But it is often required to find the similarity of overall 

images. In such cases just taking the average similarity obtained over all the pixels do not 

serve the purpose since "the expected value of similarity would be strongly influenced by 

the number of categories in the map and also by the numerical distribution of the cells over 

those categories"[A. Hagen, (2003]. In such cases Kappa statistics has been introduced. 

The Fuzzy Kappa is calculated in the same manner as the (crisp) Kappa, as shown 
in equation (3.12). 

Fuzzy Kappa — K  Fuzz 
1 - E 
	 Eq(2.37) S — E 

where S is the overall similarity and E is the expected overall similarity. They are 
calculated as. 

Expected overall similarity : 
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E(S1 ) 
E = E(S)= 1=' 	 

n 

 

Eq(2.38) 

 

where 	E(S1 ) = E (P/, i xi, i) 	 .Eq(2.39) 

In other words, Pi is the probability distribution of the outcome of the similarity values 

which are in the vector Xi, and thus the expected local similarity can be calculated as the 

sum product of probability and similarity (see equation (3.14): 

Equation (3.13) calculates the expected similarity as the average expected similarity over 

all cells: 

Overall similarity: 

 

eq(2.40) 

 

Equation (3.15) calculates the overall similarity of the cell, 	by taking the minimum 

similarity of mapA to the category found in mapB at that location and vice versa: 

1 is cell parameter variable . 

= min(simAm, 	i sim8 ;■  ) 	 eq(2.41) r m 

Disadvantage 
1. The calculation detailed in this paper can be time-consuming. 

Advantage 

1. It involves the neighborhoods impact or proximity relation. 

2. Fuzziness of location and fuzziness of category, both are considered. 
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CONCLUSIONS 

Measures like entropy was first developed to measure the amount of uncertainty in 

the information content of the classified data with respect to an ambiguity free pixel based 

reference data. Measures of distance were used to find a metric distance between two 

datasets. 	Information closeness is a distance measure applicable for two probability 

distributions and Euclidean or L distances are distance measures for any two distributions, 

probabilistic or possibilistic. To find the similarity in class representation between two 

datasets, similarity measures like correlation coefficient and RMS error were developed for 

probabilistic datasets, whereas different fuzzy similarity indexes based on fuzzy error 

matrix were developed to measure the similarity between two fuzzy datasets. 

For getting more information about the classification accuracy, conventional error 

matrix is found to be the best. So, an attempt was made to generate fuzzy error matrix, 

which also has the capability of providing a number of accuracy measures like those 

obtained from conventional error matrix. Though error matrix was considered to be the 

best accuracy assessment tool for hard classification, but fuzzy set based error matrix is not 

that much popular till now and this is the reason why more techniques are still being 

developed. Fuzzy functions were another approach to check accuracy when the classified 

output is hard and reference data is soft. Though, by using this measure different types of 

errors are evident, but certain disadvantages are associated with this approach as discussed 

before for which this method does not impress much for accuracy assessment. Some 

recently developed statistical techniques of accuracy assessment are ESS (soft reference 

and classified data) and_subzpixel_fract ional_error_ matri x_(h ard _ c las s i fi ed_data—and- soft- 
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reference data) technique. But these measures do not take into account the fuzziness of 

dataset. 

It is also observed that though several accuracy measures are continuously being 

developed in the field of sub-pixel accuracy assessment of classified images, but the 

literatures do not provide any detailed information about the sampling scheme, sample 

size, method of obtaining the samples etc. for soft classification, though this is a very 

important step in classification. In most of the papers, the reference data is collected from a 

higher resolution image. Thus the reference data is not truly fuzzy in nature, since the class 

membership values are class proportions only which sum up to give a value of 1 for each 

pixel. But fuzzy approach is different from probabilistic approach in the sense that the 

membership values are obtained from a predefined membership function. Weight and 

proximity relation of the pixel are also open for new research. 

Due to the disadvantages of some of the measures already developed and used in 

different literatures, there is a scope to develop new methods for accuracy assessment of 

fuzzy classification that do not suffer from any such disadvantage. 
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CHAPTER 3 

DATA SET AND METHODOLOGY 

3.1 Data set 
The study area is located in the North Cacher Hills district of Assam (INDIA) lying 

between the latitudes 25° 00' N to 25° 15' N and longitudes 92° 45' E to 93° 00' E covering an 

area of about700 square kilometers. The area is represented by Survey of India topographic sheet 

number 83 C/16 (at1:50,000 scale).An IRS (Indian Remote Sensing) 1D PAN Image (Path 

number 112 and Row number 054) of the region is being used for this study. The original image 

was resampled at 6 meter resolution (Figure 3.2) using nearest neighborhood sampling scheme. 

Image was geographically registered with topographic map (83 C/16) using poly conic 

projection. An image of 2048 pixel was cut from the original image and similar .area was being 

collected from scanned topographic map (Figure 3.1). 

An IRS (Indian remote sensing) satellite LISS 3 pan image of Assam region (map id 83 

c16) is used for this study. Image was geographically registered with registered LISS image by 

poly conic projection. 

3.1.1 Geographical distribution of the land cover features 

The area is rich in vegetation, mainly covered with forest on hilly terrain. The area is drained by 

the Jatinga River. In the valley thin water streams are available. In the river region sandy area 

and agriculture land is found. Bare soil is also available which includes Urban and jhoom 

cultivation features in this study. 

3.2 Methodology 
Maximum likelihood (MLC) crisp classification of the PAN image has been used as 

reference data. In order to classify the PAN image, training data for five dominant classes 

present in the study area were extracted from a VDU through interactive software. Before 

collection of samples of data, locations of some training fields are marked on the hard copy of a 

FCC (IRS 1C LISS III) of the scene by visual interpretation corroborated through topographic 

map as base data and finally through field reconnaissance survey. Training samples consisting of 

3325, 	2525, 1843, 1764 and 2719 pixels—were considered respectively-for—water;—forest; 

agriculture, sandy area and bare soil land cover types. The statistics of training samples are as 

given in Table 3.1.The training samples (their statistics) were then used to classify re sampled 
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PAN image (Figure 3.2) by Maximum likelihood classifier (MLC). The accuracy of the 

classified image (Figure 3.3), at the training locations, was found to be 100 percent. The MLC 

classified image together with the topographic map was then used as reference data and was 

assumed to be 100% accurate. For each pixel in these reference data at 6m resolution, the land 

covers are known and considered to be one of the five classes (water, forest, agriculture, sandy 

area and bare soil) and assumed pure. The original re sampled PAN image was than degraded by 

using 3 by 3 low pass mean filter. 

The PAN degraded image was then classified using MLC soft classifier and FUZZY 

classifier using pure (Table 3.2) and mixed training data (Table 3.3). The fragmented images 

from all the classifiers for five different land cover classes are as shown in Figure 3.5. The class 

compositions of the land cover classes at reference locations were then found from the classified 

fragmented images. These class compositions of the Fragmented classified images represent the 

fuzzy classified data (testing data) to be used for accuracy assessment. Thus, from the degraded 

image (Figure 3.4) mix training samples were being collected using MLC classified image as the 

reference image. The statistics of training samples are as given in Table 3.3. 

Reference samples, consisting of 100 pixels for all the five broad land cover classes, were 

collected from the degraded PAN image using random sampling technique. The testing sites 

were mostly selected at the boundaries of the polygon features in order to get mixed pixels. 

Statistics of the reference samples are as given in Table 3.4. Using the reference data, actual 

class proportions of reference pixels in the degraded image were then computed using 3 X 3 

windows in MLC classified image (Figure 3.2). These class compositions of the degraded PAN 

image represent the sub-pixel reference data to be used for accuracy assessment. 

In order to collect testing samples for accuracy assessment of fuzzy classification, MLC soft 

classifier (Wang, 1990) and FUZZY classifier (Key et al, 1989) were being used in supervised 

mode. 
While collecting training data from pan image some different land cover classes which 

can be identified to be separate with the help of topographic map.  as well as google earth images 

used as ancillary data they may give almost same range of DN values depending upon the 

surrounding effect. Mixed training data are given in appendix B. Statistics of mix training data 

was calculated by fuzzy mean and fuzzy standard deviation. 
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Fig 3.3: hard TALC classification of PAN image shown in fig 3.1 
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class 
No of training 

pixel 
Mi n max mean Standard 

deviation 
Water 3325 29 48 34.6 4.8 
Forest 2525 43 60 51.3 6.4 
Agriculture 1843 91 141 99.4 18.4 
Sandy area 1764 73 89 80.4 8.5 
Bare soil 2719 61 76 67.5 6.1 

Table 3.1 Statistics of pure training data from PAN image 

class 
No of training 

pixel 
Min max mean Standard 

deviation 
Water 3436 32 43 34.81 2.48 
Forest 2924 47 57 51.58 2.6 
Agriculture 1881 88 125 99.16 10.9 
Sandy area 1991 73 87 79.9 6.7 
Bare soil 2811 62 73 67.4 3.4 

Table 3.2: statistics of pure training data to classify degraded pan image 

Class 

Number 

o f pixel 

Mi n Max mean Standard 

deviation 

Water 100 37 77 43.08 7.49 

Forest 150 39 89 52.01 9.72 

Agriculture 100 57 94 85.72 8.30 

Sandy area 150 40 95 79.29 9.37 

Bare soil 100 43 88 67.14 10.15 

Table 3.3 Statistics of mixed training data from degraded PAN image 

The range of min to max of training data decides about the standard deviation. In case of 

mixed training data fuzzy standard deviation is higher in comparison to pure training data so the 

sub-pixel classified output is having more mixed pixel in comparative to pure training data. 

In pure training data I have taken exclusive classes without any overlapping the is the 

reason in soft classified image also pixels are inclined towards purity their membership is 

tending to 0 or 1 but in mixed training data is highly overlapped that's why classified 

membership of pixels are varying from entire range between 0 to 1. 
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3.3. Classifier used 
3.3.1 Bayesian classifier 

Unlike hard classifiers, soft classifiers defer making a definitive judgment about the class 

membership of any pixel in favor of producing a group of statements about the degree of 

membership of that pixel in each of the possible classes. Like traditional supervised classification 

procedures, each uses training site information for the purpose of classifying each image pixel. 

However, unlike traditional hard classifiers, the output is not a single classified land cover map, 

but rather, a set of images (one per class) that expresses (in the case of Bayesian classifier ) for 

each pixel the probability that it belongs to each class. 

BAYCLASS is closely related to the MAXLIKE hard classifier available with IDRISI 

image processing software used in this study, in that it computes the posterior probability of 

belonging to each considered class according to Bays' Theorem. 

The variance/covariance matrix derived from training site data is that which allows one to 

assess the multivariate conditional probability. This quantity is then modified by the prior 

probability of the hypothesis being true and then normalized by the sum of such considerations 

over all classes. This latter step is important in that it makes the assumption that the classes 

considered are the only classes that are possible as interpretations for the pixel under 

consideration. Thus even weak support for a specific interpretation may appear to be strong if it 

is the strongest of the possible choices given. 

When no knowledge exists about the prior probabilities with which each class can occur, 

then equal prior probabilities should be used (the default). While having reasonable knowledge 

of the expected proportional area of each class over the image as a whole, we can choose another 

option (specify a prior probability value for each signature). Thus if you expect that 42% of the 

area is under a given cover type, the a priori probability of that class is 0.42. The third option is 

to enter prior probabilities as a separate real number image (with values between 0-1) for each 

class. This allows you to incorporate spatial predictive models into your determination of prior 

probabilities. For example, one may decide that the prior probability of an area known in the past 

to be forest changing to residential is highly likely near to roads and highly unlikely far away 

from roads. This can be expressed quite easily since each pixel is given a separate prior 

probability value using this approach. As always, the sum of probabilities for each pixel must be 

1.0_ The final option allows you to specify either a uniform value or an image of probabilities. In 

all cases except equal probabilities, prior probabilities are specified in the second dialog screen. 
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BAYCLASS is a confident classifier, It assumes that the only possible interpretation of a 

pixel is one of those classes for which training site data have been provided. It therefore admits 

to no ignorance. As a result, lack of evidence for an alternative hypothesis constitutes support for 

the hypotheses that remain. In this context, a pixel for which reflectance data only very weakly 

supports a particular class is treated as unequivocally belonging to that class (p = 1.0) if no 

support exists for any other interpretation. 

The prime motivation for the use of BAYCLASS is sub-pixel classification -- i.e., to 

determine the extent to which mixed pixels exist in the image, and their relative proportions. In 

the context of mixture analysis, the probabilities of BAYCLASS are interpreted directly as 

statements of proportional representation. Thus if a pixel has posterior probabilities of belonging 

to deciduous and conifer of 0.68 and 0.32 respectively, this would be interpreted as evidence that 

the pixel contains 68% deciduous species and 32% conifers. Note, however, that this requires 

several important assumptions to be true. First, it requires thatthe assumption that the classes for 

which training site data have been provided are exhaustive (i.e., that there are no other possible 

interpretations for that pixel). Second, it assumes that the conditional probability distributions do 

not overlap in the case of pure pixels. In practice, these conditions may be difficult to meet. 

A typical remote sensing data clustering is the maximum likelihood supervised 

procedure. It consists of the estimation of a suitable mixture of distributions, based on training 

samples only, and in the subsequnt pixel-by pixel classification, performed by maximizing the 

likelihood ratio. In this way all the information on the parameters of the distributions, contained 

in the unsurveyed samples, is lost. 

3.3.2 Fuzzy classifier 

Fuzzy classification is a generalized approach which takes into account uncertainty of 

classification in terms of both ambiguity and vagueness leading to sub-pixel classification of 

land cover types. In this approach each pixel is provided with a membership grade for each of the 

considered classes. The membership grades are determined on the basis of predefined 

membership functions. The membership values lie between 1 and 0 (included) for each class in 

each pixel in which 1 implies full membership, 0 implies no membership and values in between 

represent sub-pixel membership of a class. Membership function is different for each class. Thus, 

by defining certain membership function of each class, the membership values of each pixel in 

all classes are determined for classification of data. Finally the accuracy of classification required 

to be checked. 
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However the accuracy of the representation provided by a fuzzy classification is difficult to 

evaluate. Conventional measures of classification cannot be used. The accuracy of a 

classification may be indicated by the way in which the strength of class membership is 

partitioned between the classes and how closely this represents the partitioning of class 

membership on the ground. Both thematic and spatial accuracy should be high for a 

classification so that information from the classified image can be used with a high confidence 

by the users of the classified map. 

Fuzzy set membership is based on the standard distance of each pixel to the mean reflectance 

on each band for a signature. To accommodate quality of training signatures and width of 

classes, the user inputs the Z-score (standard deviation units) at which fuzzy set membership 

decreases to zero. 

It requires entering the Z-score at which fuzzy membership decreases to zero. The Z-score 

for 0 fuzzy set memberships can be decided by two parameters: quality of your signature, and 

width of each class. If the signature is pure and the class width is small, a small Z-score should 

be selected. If the signature is mixed and the class width is large, a large Z-score should be 

selected. 

The fuzzy set membership is calculated baSed on standardized Euclidean distance from the mean 

of the signature, using a sigmoid membership function (see FUZZY). The underlying logic is 

that the mean of a signature represents the ideal point for the class, where fuzzy set membership 

is 1. When distance increases, fuzzy set membership decreases, until it reaches the user-defined 

Z-score distance where fuzzy set membership decreases to 0. 

The un-normalized procedure assumes that the fuzzy set membership for each class is 

derived independently, and incomplete information or overlapping signatures may exist. The 

sum of values for a pixel for all class images may be other than 1 in this case. The normalized 

procedure assumes that full information is achieved and signatures do not overlap, thus the fuzzy 

set membership for a pixel for all class images sums to 1. 

The software used for both the above classification methods is IDRISI KILIMANZARO. 

Both above classifiers are used for pure as well as mixed training data, soIn the report, 

now onwards these are named as 

Classifier 1 Bayesian classification with pure training data 

Classifier 2 fuzzy classification with pure training data 

Classifier 3 Bayesian classification with mixed training data 

Classifier 4 fuzzy classification with mixed training data 
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Collection of reference data were done with 3 by 3 window in pan degraded image for each 

class 100 dominating pixels were collected , statistics of same is as shown in table below. 

Class 

Number 

of pixels 

Mi n Max Mean Standard 

deviation 

Water 100 38 71 44.61 .4.8 

Forest 100 42 89 54.12 7.36 

Agriculture 100 44 98 84.99 9.21 

Sandy area 100 50 91 79.16 8.89 

Bare soil 100 39 89 65.95 8.12 

Table 3.4 Statistics of Reference sample from degraded PAN image 

Fragmented images are shown on next page. 
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CHAPTER 4 

RESULTS AND ANALYSIS OF ACCURACY ASSESSMENT 

METHODS 

On the basis of data set in the previous chapter a few measures have been applied which 

are listed below. Formulation and theoretical background of these have been covered in chapter 

on literature review. 

1. fuzzy correlation coefficient 

2. entropy measures 

3. fuzzy error matrix 

Results obtained are presented in tabular and graphical format. 

4.1 Fuzzy correlation coefficient 
Four different accuracy assessment of fuzzy classification can be carried out making use 

fuzzy correlation coefficient (F-cr). These are to find accuracy assessment of (i) a single class in 

a single pixel,(ii) a single class in all the reference samples taken together, (iii) a pixel 

(considering all the classes in the same pixel ) and (iv) an image (for all the classes in all pixels ). 

A comparison with the statistical correlation coefficient can be carried out for the accuracy 

assessment of type (ii) only as it is not possible to find out statistical correlation for other types. 

The estimated values for the different types of accuracy assessment for the test data (consisting 

of reference and their corresponding classified data) were as explained below. 

4.1.1. Class based Accuracy assessment 

The correlation of the proportion of different land cover classes in a pixel with those 

present in reference data were estimated. 

4.1.1.1 Accuracy assessment of one class in a single pixel 

Under this, fuzzy correlation between the proportion of a particular type of land cover 

present in a classified data and that present in the corresponding pixel in reference data were 

being estimated. 
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Table 4.1 a sample of fuzzy correlation coefficient between Reference and Classified data 

ID Reference 

Membership 

value 

Classified 

Membership 

value 

F(cr) ID Reference 

Membership 

value 

Classified 

Membership 

value 

F(cr) 

1 0.11 0.00 0.96 17 0.55 0.17 -0.33 

2 0.40 0.46 18 0.43 -0.97 

3 0.66 -0.72 19 0.72 0.46 

4 0.90 -0.99 20 0.82 0.33 

5 0.22 0.00 0.85 21 0.66 0.01 -0.61 

6 0.12 0.95 22 0.27 -0.95 

7 0.68 -0.90 23 0.72 0.95 

8 0.85 -0.97 24 0.98 0.61 

9 0.33 0.01 0.61 25 0.77 0.0 -0.84 

10 0.27 0.95 26 0.43 -0.46 

11 0.73 -0.96 27 0.79 0.99 

12 0.97 -0.61 28 0.96 0.88 

13 0.44 0.01 0.22 29 0.88 0.00 -0.96 

14 0.49 0.48 30 0.46 -0.18 

15 0.51 -0.48 31 0.67 0.74 

16 0.73 -0.46 32 0.96 0.98 

A sample of calculated fuzzy correlation coefficients for some classified and reference 

data are shown in Table 4.1 

It has been found that if both the values of the reference and classified data lie on one 

side of 0.5i.e., if the degree of belongingness of both the reference and classified data in any 

particular class is either low (less than 0.5) or high (greater than 0.5), their correlation has been 

found to be positive. For example, if the membership values are 0.88 and 0.67, fuzzy correlation 

was found to be 0.75. 

And in other cases where values lie one in each side of 0.5 i.e., if the degree of 

belongingness of one of the reference or classified data is either low (< or high and the other 

having high or low respectively, their correlation coefficient has been found to be negative. For 

example, is the membership values are 0.88 and 0.46, fuzzy correlation was found to be -0.18. 
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Thus, the sign of correlation coefficient provides information bout the type of degree of 

belongingness of the component cover class present in the reference and classified data i.e., 

whether the type of component cover class present in the reference and that represented by 

classified data are same or different. 

It has also been found that if the sub-pixel composition of a particular class in the 

reference and classified data are close to each other their fuzzy correlation Coefficients are high. 

Thus, it has been found that lesser the membership values, higher is the correlation Coefficient, 

approaching towards 1. Further, the variation has been found to be non-linear approximating 

second order polynomial. For example, is the membership values are 0.11 and 0.00, fuzzy 
correlation was found to be 0.97 and for 0.11 and 0.40, the correlation was found to be 0.46. This 

observation is valid if both the values of the reference and classified data are present on the same 

side of 0.5. This is attributed to fact that 0.5 represents a situation having maximum vagueness 

thus designating the class around 0.5 is most uncertain. The magnitude of the negative 

correlation is high when data are away from 0.5 i.e., one of them near 0 and the other is near 1.0. 

This is due to the fact nearer to 1 or 0 signifies their certainty of belongingness or not 

belongingness to that particular class is high. Thus, higher negative value of correlation 

coefficient signifies higher possibility of their belongingness to different classes. 

Further, the magnitude of the negative correlation is low when both the data are near but 

opposite to 0.5. This is due to the fact nearer to value of 0.5 higher is the vagueness that in these 

cases both reference and classified data are having higher vagueness i.e., the certainty of 

belongingness to a particular class is very low and as the values are in the opposite side of 

0.5,possibility of their belongingness lie in different classes. A graphical plot for the fuzzy 

correlation coefficient for water class present in the 100 testing pixels for both the classifiers are 

as shown in figure 4.1. 

4.1.1.2 Accuracy assessment of one class in an image 

In this method of assessment, the fuzzy correlation of one land cover present in all the 

testing pixels has been taken into consideration. Fuzzy correlation between the proportion of a 

particular land cover class present in all classified testing pixels and that present in the 

corresponding pixels in reference data consisting of 500 pixels were being estimated using 

Equation 2. The fuzzy correlation coefficients (F-cr) for different land cover classes for two 

different classifiers are shown in Table 5. It can be found that for all the classes trend with 

respect to a classifier is same i.e., fuzzy correlation coefficient for different land cover classes 

from one classifier is higher from that that of other. Further, the statistical correlation coefficients 
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(Table 6) were estimated and found to have the same trend as that of fuzzy correlation 
coefficients. 

Table 4.2 Fuzzy Correlation coefficient for class based testing pixels 

Classes 4 Water Forest Agriculture Sand Bare Soil 

BAYMIX 0.84 0.73 0.80 0.80 0.78 

FUZMIX 0.94 0.88 0.89 0.91 0.84 

Table 4.3 Statistical Correlation coefficient for class based testing pixels 

Classes 4 Water Forest Agriculture Sand Bare Soil 

BAYMIX 0.86 0.47 0.72 0.53 0.47 

FUZMIX 0.90 0.74 0.77 0.78 0.57 

4.1.2 Pixel based Accuracy assessment 

Further, fuzzy correlation was estimated to assess accuracy of classification of a pixel 

considering all the classes together. A sample of estimated values using Equation 3 is as shown 

in Table 7. In this, the correlation coefficient of a pixel considering the membership values of all 

land cover classes (W-Water, F-forest, A-Agriculture, S-Sandy area, B-Bare soil) present in a 

single pixel were estimated for same set of reference data but different classified data as 

provided by classifier 1 and classifier 2. It has been found 

that for all pixels the trend with respect to a classifier is same i.e., fuzzy correlation coefficient 

for all pixels estimated for one classifier is higher than that from other. 

Table 4.4 Fuzzy Correlation coefficient for pixel based testing ixels 
Classes Water Forest Agriculture Sand Bare Soil 
BAYMIX 0.79 0.76 0.81 0.81 0.86 
FUZMIX 0.92 0.88 0.91 0.91 0.91 

4.1.3 Image based Accuracy assessment 

Finally, fuzzy correlation can be estimated to assess the accuracy of classification of an 

image considering all the classes present in all the pixels in the image together by using Equation 

4. The same was being estimated for all the 500 testing data. The fuzzy correlation coefficients 

are found to be 0.79and 0.89 for Classifier 1 and Classifier 2 respectively. 
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Classifier Fuzzy cor. coefficient 

BAYMIX 0.79 

FUZMIX 0.89 

Table 4.5 Fuzzy Correlation coefficient for overall image 

6. Conclusion 

To evaluate a fuzzy classification, accuracy of different sub-pixel classes (pixel based as 
well as image based), accuracy of individual pixel and accuracy of whole image are required to 

be assessed. A set of measures based on fuzzy correlation coefficient are being applied towards 

evaluation of outputs from two different fuzzy classifiers, in this study. It has been found that the 

measures evaluate four types accuracy of fuzzy classification qualitatively and also provide other 

quantitative information. Thus, it can be concluded that the proposed measures can be used to 

assess different types of accuracy associated with fuzzy classification. 

4.2 Entropy measures 
Kaufmann entropy — according to the formulation given and theory entropy measures are 

also found to be a good measure for the accuracy assessment. it can also be measured in the same 

four ways .Here are the table showing various combination of ref and classified data by which 

variation of Kaufmann entropy can be interpreted. 

Higher values of entropy show good classification comparatively .it is related to the 

uncertainty of the classification. As the fractional values become higher entropy become higher. 

Low entropy means pixel are towards 0 or 1 value. Tables on the next page reflect the same 

result. Fuzzy classifier is having higher entropy value so it can be considered as better classifier 

as well as entropy measure is a good indicator of accuracy. 

For pixel based ,Kaufmann become similar to foody entropy. 
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4.3 DISTANCE BASED MEASURES 

S, D and L are some familiar measures usually used for accuracy assessment of fuzzy 

classification (Foody, G.M. 1996, 2000). These measures provide a distinct trend about the 

accuracy associated with sub-pixel classification. 

Classifier Bayesian pure Fuzzy pure Bayesian mix Fuzzy mix 
S distance 0.074 0.072 ' 0.075 0.0335 
D distance 0.532 0.527 0.544 0.330 
L distance 0.811 0.803 0.824 0.512 

Analysis - the variation of distance value gives the accuracy difference in 

different classifications .lower is the distance, better is the classification. 

Here it can be observed that mix training data are giving better classification than pure. 

4.4 FUZZY ERROR MATRIX 

Fuzzy error matrix is calculated on the basis of min value between reference 

and classified data of a particular pixel. Formulas used are described in literature review. 

This matrix is calculated for fuzzy classification using mixed training data. 

Reference 

classifie 

Water forest agriculture Sandy area Bare soil Total 

Water 65.699 39.651 1.140 1.173 3.645 111.3072 
forest 61.306 79.504 4.600 8.225 41.647 195.282 
agriculture 0.895 1.629 62.899 47.024 10.230 122.677 
Sandy area 2.058 7.274 60.163 77.563 41.570 188.628 
Bare soil 7.708 41.309 25.473 49.321 86.526 210.337 
total 137.666 169.3667 154.2745 183.3056 183.6183 828.2312 

As the sum of the diagonal values is 372.190 and sum of the membership values of all pixel in 
all classes in reference data is 499.889 so 

Overall accuracy = 372.19/499.889= 0.744 
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Class Water forest agriculture Sandy area Bare soil 
Sum — 
classified data 

95.68 96.58 99.24 95.00 113.50 

Sum- 
reference data 

72.00 120.00 74.55 108.22 125.11 

User's accuracy 
Diagonal values are divided by the sum of the membership values of the entire pixel in 

classified map for a particular class. 

Class Water forest agriculture Sandy area Bare soil 
User's 
accuracy 

0.68 0.82 0.63 0.81 0.76 

Producer's accuracy 
Diagonal values are divided by the sum of the membership values of the entire pixel in 

reference map for a particular class. 

Class Water forest agriculture Sandy area Bare soil 
Producer's 
accuracy 

0.91 0.66 0.84 0.71 0.69 
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