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Introduction

This section contains a brief review of the basic concepts and results that are related

to the work presented in the thesis.

0.1 Entire Function

An entire function is a function f : C — C, which is regular in every finite region
of the complex plane. The general theory of these functions originated in the works
of Weierstrass [66]; in the beginning it was developed by Picard, Borel, Poincaré,
Hadamard and others. In the beginning of twentieth century some new concepts
were introduced by eminent mathematicians such as Valiron [64], Lindeldf, Levin,
Wiman, Nevanlinna and Hardy etc. Since then, Whittaker [67], Hayman, Boas [5],
Holland [21], Clunie, Titchmarch [58] and others have contributed richly to the theory
of entire functions.
An entire function f(z) has the representation by a power series of the form
o
fz) =3 anz", lm {ffa,] = 0.

n=0
This is the simplest class of analytic functions containing all polynomials. Polynomi-
~ als are classified according to their degree, i.e. according to their growth as |z| — o0.
An entire function can grow in various ways along different directions. For a gener-
alization of the growth, the function
(0.1.1) M(r) = M(r; f) = max|f(z)|

jz|=r



is introduced. Then M (r) is said to be the maximum modulus of f(z) for [z] = r.
It has been established that maximum absolute value of an entire function over
a closed disc coincides with the maximum absolute value of that function over its
boundary. Blumenthal [4] showed that M (r) is a steadily increasing continuous func-
tion of r and is different in adjacent intervals. Further, In M(r) is a convex function

of Inr and has the representation [64]

(0.1.2) I M(r) = In M(ro) + / W(z)

ro

dx, 7 > ro,

where W (z) is a positive indefinitely increasing function of x which is continuous in
adjacent intervals. M(r) plays a key role in the study of the growth of entire functions.
A.P.Singh and Baloria [49] have studied on maximum modulus and maximum term
of composition of entire functions.

In order to estimate the growth of f(z) precisely, the concept of order was intro-
duced. An entire function f(z) is called a function of finite order if M(r) < exp (r*)
for some k > 0. The order of an entire function f is the greatest lower bound of those
values of k for which this asymptotic inequality is fulfilled. We shall usually denote
the order of an entire function f by p. It follows from the definition of the order that

T < M(r) < €
By taking the logarithm twice we obtain
Inln M{(r)
p—€ < —— < p+e,
Inr
Thus the order p of f(z) is given by
(0.1.3) p = limsup lr—l-hll—n}\f-(—r)-, 0 <p<Loo.

By convention, a constant function is taken to be of order zero.
The concept of type has been introduced to determine the relative growth of two

entire functions of same non-zero finite order. Let p be the order of an entire function



f(2). The function is said to have a finite type if for some A > 0 the inequality
M(r) < e’

is fulfilled. The greatest lower bound for those values of A for which the later asymp-
totic inequality is fulfilled is called the type 7 of the function f(z). It follows from
the definition of the type that

e(r—-cs)ir*‘J < M('l‘) < e(f+e)r".
By taking logarithm and dividing by r?, we obtain
M
(r—e€) < In M(r) < (7 +¢).
rP
Thus, an entire function f(2) of order p (0 < p < 0) is said to be of type 7 if
In M(r)
p

(0.1.4) 7 = limsup

r— oo

, 0L 1r<o00.

The function f(z) is said to be minimal, maximal or normal type according as 7 = 0,
T =060 or 0 < 7 < 0o respectively. An entire function f(z)is said to be of growth
(p, 7) if its order does not exceed p, and its type does not exceed 7 if it is of order
p. The function f(z) is of exponential type 7 if it is of order less than one,and if of
order one, of the type less than or equal to 7, T < co. L.R.Sons [52, 53] have studied
on regularity of growth and gaps.

If an entire function f(z) is of zero or infinite order then the usual definition of
type has no meaning. Hence the comparison of growth of such functions can not be
made by confining to the above concepts. To overcome this difficulty, V.G.Iyer (24]
introduced the concept of logarithmic order. Thus for an entire function of érder zero,
p* is said to be logarithmic order of f(z) if

(0.1.5) Pt = limsupM

, 0<p*' <o
r— 00 Inlnr =P =



For 1 < p* < 00, the logarithmic type 7* is defined as

) In M(r)
g Y= —_— <7 <00
(0.1.6) | T llﬂsolip nr) 0<7 <00

The entire function f(z) can be expanded in Taylor series around any point z =
zo because it is regular everywhere in the whole plane. However without loss of

generality, we may assume zo = 0. Then f(z) has the representation
oo}

(0.1.7) f(z) = Zan 2",
n=0

where the coefficients a,’s are given by [38]

1 (71

- dz
2mi fy 2t

(n)
(0.1.8) a, = = I——n—'(-Q

f™(0) being the the value of n th derivative of f(z) at z = 0.

Various mathematicians such as S.M.Shah [46], Q.I.LRahman [10], A.R.Reddy
[40, 41], Juneja and Srivastava [27], Shah and Ishaq [47], Juneja [25], Awasthi {1},
G.S.Srivastava [54] and others have found the formulae relating the coefficients of
Taylor series with order, lower order, type, lower type,logarithmic order, logarithmic
type etc. Juneja [26] has obtained the results, which give formulae for order etc. in
terms of the ratio of consecutive coefficients. Recently, J.K.Langely [33] have studied
on integer points of entire functions.

For generalizations of the classical characteristics of growth of entire functions
M.N.Seremeta [44] defined the generalized order and generalized type with the help
of general functions as follows.

Let L° denote the class of functions h satisfying the following conditions
(i) h(z) is defined on [a,00) and is positive, strictly increasing, differentiable and
tends to o0 as z — 00,

(i)
tim R{(1 + 1/9(z))z} _1,
e hla)

for every function ¥(z) such that ¥(z) — 0o as z — o0.




Let A denote the class of functions h satisfying condition (i) and

)

S h@)

for every ¢ > 0, that is, h(z) is slowly increasing

The generalized order p(a, 8) of an entire function f(z), is defined as [44)
(0.1.9) plan B, ) = timoup XTI
where a(z) € A, 8(z) € L.
For 0 < p < 00, the generalized type 7(¢, §) is defined as

: ) afln M(r, f

(0.1.10) (e, B, ) = lurrisot:p ——_;[6[(7(7%)/’])]
where a(z), 87(z), v(z) € LO.
Seremeta obtained the coefficient characterizations of generalized order and general-
ized type as follows.

Theorem A’ [44, Th.1] Let a(z) € A, B(z) € L°. Set F(z,c) = B~ [ca(z)].
If dF(x,c)/dlnz = O(1) as z — oo for all ¢, 0 < ¢ < oo, then
(0.1.11) pla, B, f) = limsup am)

oo B (—%In|an) ’

Theorem B’ [44, Th.2] Let a(z)B7(z),v(z) € L°. Let p be a fixed number,
0<p<oo. Set F(z;0,p) = ’Y-ll{[ﬂ’l(aa(x))]lf”}. Suppose that for all ¢, 0 < ¢ <
0o, F(z;0,p) satisfies

(i) if v(z) € A and a(z) € A then

dln F(z; 0, p)
dlnz

= 01) as z— 00

(ii) if v(z) € (L° — A) or a(x) € (L° — A) then

lim dln F(z; 0, p) _ l
200 dlnz P




Then we have

(0.1.12) (a, B, f) = limsup O-Z(%) .
D) = TR B R

In the above Theorem A’ the relation (0.1.11) was obtained under the condition

[~ (ca(z))]

(0.1.13) o)

=0(1) asz — oo.

Clearly (0.1.13), is not satisfied for @ = B. To overcome this difficulty, G.P.Kapoor
and Nautiyal [29] defined generalized order p(a; f) of slow growth with the help of
general functions as follows

Let 2 be the class of functions h(z) satisfying (i) and

(iv) there exists a 6(z) € A and zg, K; and Kj such that

0 < K] ((5(1 )) K2 <oo forallz > )

Let § be the class of functions h(z) satisfying (i) and

(v)
fim JME) _

s—oo d(lnz)

Kapoor and Nautiyal [29] showed that class Q and Q are contained in A. Further,

0 < K < co.

QN Q = ¢ and they defined the generalized order p(c; f) for entire functions f(z) of
slow growth as
a(ln M(r, f))

vp(a; f)= hrrrisgop “almr)

where a(z) either belongs to Q or to €.

0.2 Entire Functions of Two Complex Variables

Let f(21,22) = 2 Gmymy21 25 be a function of the complex variables z; and 22,
regular for | z; | £ 7y, t = 1,2. If r; and r; can be taken arbitrarily large, then f(z;, 22)
represents an entire function of the complex variables 2z; and z;. Many researchers
(13, 37, 28, 31, 30, 32] have studied the growth of entire functions of two complex

variables in different ways. Following Bose and Sharma {7], we define the maximum



modulus of f(z;, 22) as

M(ri,7e) = max | f(z1,22) |, t=1,2.
lz¢)<re

The order p of the entire function f(zi, 22) is defined as [7, p. 219]

= lim supln In M (ry,72) ‘
rrz—oo  IN(T172)

For 0 < p < o0, the type 7 of an entire function f(2i1, 22) is defined as [7, p. 223]

In M
lim sup—— 172/ > (rl’?) =T
T1,72—00 ™ =+ Ty
Bose and Sharma. [7], obtained the following characterizations for order and type of

entire functions of two complex variables.

Theorem A: The entire function f(z1,22) = 3 .. 1,20 @m1ma21 22" is of finite

order if and only if

mi1 m2
(0.2.1) p = limsup In(my”my™)

m1,m2—00 ~ lnl Qmi,ma |

is finite and then the order p of f(z1, 22) is equal to p.

Define
(0.2.2) a = limsup (M™m2?] Gmy me |p)1/(m1+m2)_
m1,m2—0c0
Theorem B: If 0 < o < 00, the function f(z1,22) = D0 o _0my,me#] 22 I8

an entire function of order p and type 7 if and only if a = e7p.

0.3 Entire Functions of Several Complex Variables

The first work in general theory of entire functions of several variables appeared as

early as the beginning of the last century Borel [6], Sire [50]. However, an inten-

sive investigation of entire functions in C”, stemming from the general upsurge of

interest in the theory of holomorphic functions of several variables, began only 25

to 30 years later. After that this topic became more interest and many researchers

(16, 14, 17, 18, 22, 34, 35, 35, 56] and others have worked on analytic and entire
7



functions of several complex variables.

We denote complex n-space by C". Thus, z € C™ means that z = (21, ..., z,),
where zi, ....z, are complex numbers. A function f(z), z € C™ is said to be holomor-
phic or analytic at a point 2° € C™ if it can be expanded in some neighborhood of 2°
as an absolutely convergent power series

o0

F2)= > ax(z = 2"

lkli=0

A function f(z) is said to be holomorphic or analytic in a domain G if it is
holomorphic at each point of the domain.

A domain D C C™ is said to be poly cylindrical, or simply a poly cylinder, if it
has the form D = {z: z; € D;,i =1,2.,,n}. A poly cylindrical domain D is said to
be a circular poly cylinder, or simply a poly disk, if all the domains D, are disks.

A domain G C C™ is said to be multi circular with center at 2° if, together with every

point 2, G contains any point z whose coordinates z; satisfy the conditions

|z =22 = |z, — 20|, i=1,..,n.

A multi circular domain G C C™ with center at 20 is said to be complete if, together

with each pbint z € G, it contains' the entire poly disk
{z Do =20 =z - 20 i = 1,...,n}.

Let G € C™ be a multi circular domain. we denote by |G| the image in R%} of the

domain G under the mapping r; = |2, — 22}, i =1, ..., n.

0.4 Jordan Domain

A domain D is simply-connected if and only if D is homeomorphic to C. There is an
alternative definition which states that a domain D is simply-connected if and only

if every loop = in D can be shrunk to a point in D. or more formally is homotopic to

8



a constant loop in D;

An important class of simply-connected domains is the class of Jordan domains.
A loop 7 is a Jordan curve if v is a homeomorphic image of a circle; equivalently,
if z(t)(a < t < b) is a parametrization of v, then « is a Jordan curve if z(f) is 1-1
(injective) on [a,b) (z(a) = z(b)). The fundamental Jordan Curve Theorem states
that a Jordan curve vy divides the plane into exactly two regions; to be precise 4¢ has
exactly two components, the unbounded component (exterior of ), and the bounded
component (interior of ). Sheil - Small [48] defined a Jordan domain is the interior
of a Jordan curve. Thus a Jordan curve is the boundary of a Jordan domain. An
extended version of the Riemann mapping theorem shows that the union of a Jordan
corresponding to the Jordan domain and the circle bounding the disc corresponding

to the boundary Jordan curve.

0.5 Faber Polynomials

Most of the mathematicians were attracted by a problem in complex analysis was
that of finding a set of polynomials P1{2), p2(2), ..., which belong to a given region, in
the sense that any function f analytic in the region can be expanded by a convergent
series ap + 32, a;pj(2), in which the coefficients a;, but not the polynomials p;,
depend on f. In 1903, Georg Faber [11] published a solution to the problem which
was notable both for the basic simplicity of the convergence proof and also for the
rich and interesting structure of the polynomials.

After Faber’s invention the polynomials became more popular and various math-
ematicians [9, 51, 45, 57] have worked on these polynomials and applied in different
areas. In 1980 Andre Giroux [15] applied these polynomials to study the growth
characterizations of order and type of entire functions of one complex variable over

Jordan domains in terms of approximation errors.



0.6 Approximation of Entire Functions

At first Bernstein [3] have studied the polynomial approximation of entire transcen-
dental functions. Later Varga [65] have obtained the growth characterizations of order
and type of an entire function in the uniform metric space C[-1, 1]. By these inves-
tigations Reddy [41, 42] have studied the behavior of approximation characteristics

for entire transcendental functions of slow growth.

Batyrev [2] first extended Bernstein’s ideas to the case of the complex plane C.
Further, Ibragimov and Shikhaliev [23], Giroux [15], and Vakarchuk [61, 62, 60] con-

tinued the investigations in the space C.

In 1989 Vakarchuk [59] carried the investigations to the case of Banach spaces.
Ponnusamy [39], Friedrich Haslinger {20] and others have studied on Hardy and
Bergman spaces.

The present thesis deals with the study of growth characteristics and polynomial
approximations of entire functions of one, two and several complex variables. The

organization of the thesis is as follows:

CHAPTER 1: In this chapter we have studied the polynomial approximation of
entire functions in Banach spaces (Hardy space, Bergman space and B(p, g, &) space)
and then we have obtained characterizations of generalized type of entire functions
in terms of approximation errors in the Banach spaces. In the second section of this
chapter we have studied the characterizations of entire functions of slow growth in
certain Banach spaces as mentioned above, then we have obtained coefficient charac-
terizations of generalized order and generalized type of entire function of slow growth,
and then the characterizations of growth characteristics (generalized order and gen-
eralized type) have been obtained in terms of approximation errors in the Banach
spaces.

In the second section of this chapter, we have defined the generalized type 7 of

10



entire functions of slow growth having finite generalized orderp and their characteri-
zations have been obtained in terms of approximation errors.

CHAPTER 2: In this chapter we have studied the polynomial approximation of
entire functions over Jordan domains. We have obtained coefficient characterizations
of generalized order and generalized type of entire functions over Jordan domains.
Next we have obtained necessary and sufficient conditions of generalized order and
generalized type of entire functions in terms of approxiiation errors by using L?P
norm.

CHAPTER 3: In the first section of this chapter, we have studied the approx-
imation of continuous functions on the domain by homogeneous polynomials. First
we have obtained necessary and sufficient conditions for a continuous function have
an analytic extension in terms of the growth parameters and then we have obtained
the coefficient characterizations of order and type of entire functions of two compﬂax
variables in terms of approximation errors. In the second section, we have studied
the polynomial approximation of entire functions of two complex variables in Banach
spaces (Hardy space, Bergman space ‘and B(p, ¢, ) space) and then we have obtained
characterizations of order and type of entire functions of two complex variables in
terms of approximation errors in Banach spaces.

CHAPTER 4: In this chapter we have studied the polynomial approximation of
entire functions of two complex variables over Jordan domain and obtained coefficient
characterizations of order and type of entire functions. Necessary and sufficient con-
ditions for an entire function to have prescribed growth have been obtained in terms
of approximation errors by using LP norm. We have obtained the characterizations of
order p and type 7 of entire functions of two complex variables when f is restriction
to the domain D for 2 < p < o0.

CHAPTER 5: The last, i.e. the fifth chapter of this thesis deals with the study
of the entire functions of several complex variables. In this chapter, we have studied
the polynomial approximation of entire functions of several complex variables in a
full region G in R%, and obtained the characterizations of order, type, generalized
order, and generalized type in terms of approximation errors.

11
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Chapter 1

Afpgroximation of Entire Functions
of One Complex Variable in
Certain Banach Spaces

In this chapter we study the polynomial approximation of entire functions in Banach
spaces (B(p, q, k) space, Hardy space and Bergman space). The coefficient charac-
terizations of generalized Order and generalized type of entire functions having finite
generalized Order of slow growth have been obtained in terms of the approximation

€errors.

1.1 Introduction

Let f(z) = 3.2 sanz" be an entire function and M(r, f) = max;=r | f(2)] be its
maximum modulus. Recently Vakarchuk and Zhir [63] considered the approximation
of entire functions in Banach spaces. Thus, let f(z) be analytic in the unit disc

U={2€C:|z| <1} and we set
1 /" ;
My, 0) = (o= [ 170y, g > 0.

Let H, denote the Hardy space of functions f(z) satisfying the condition

Iflle, = lim Mo(r, f) < oo

13



and let H; denote the Bergman space of functions f(z) satisfying the condition

”f”u; = {%/Llf(z)lqdwdy}l/q<w.

For ¢ = oo, let || /||l g:. = ||fll#e = sup{|f(2)],z € U}. Then H, and H, are Banach
spaces for ¢ > 1. Following [63, p.1394], we say that a function f(z) which is analytic
in U belongs to the space B(p, q, k) if

.1
1 llpgn = {/0 (1= r)=/p Y= Mz (r, fdr}* < oo,
0<p<qg<oo, 0<k<oo and
”f”p,q.oo = SuP{(l - T)l/pﬁllqu(’!_', flo<r< 1} < 0.

It is known [19] that B(p, ¢, #) is a Banach space for p > 0 and g, % > 1, otherwise it
is a Frechet space. Further [60],

(1.1.1) H,C H, = B(g/2,9,9), 1 S q< o0.
Let X denote one of the Banach spaces defined above and let

En(X,§) = inf{||f —pllx : p € P}

where P, consists of algebraic polynomials of degree at most n in complex variable z.

Vakarchuk and Zhir {63] obtained characterizations of Generalized order in certain

Banach spaces (B(p, q, k) space, Hardy space and Bergman space) as follows :
Theorem C: Let a € A, B € L? and F(z,¢c) = ﬂ‘l{c[a(z)B Let for all ¢ € (0, 00),

df (x, c)

and v(c, B) is a finite positive number. Then for a function f(z) € B(p, ¢, k) to be
14



an entire function of generalized order (¢, 8), it is necessary and sufficient that the

following relation to be true:

(1.1.2) lim sup aln)

F—s00 '[—"n‘l in En.(B(p, q,K), f)] = v(e, B)-

Theorem D: Suppose the conditions of Theorem C are satisfied and &(ce, 3) is
a finite positive number. Then for a function f(z) € H, to be an entire function of
generalized order §(q, B), it is necessary and sufficient that the following relation to

be true:

(1.1.3) limsup ;(Z?i(Hq, 757 = 8(ax )

and also obtained an analog of this Theorem for the Banach spaces H; follows from
(1.1.1), for 1 < g < o0 and from Theorem D for g = co.

In the next section we obtained the characterizations of generalized type 7(a, B) of
an entire function having finite generalized order p(w, 8) in certain Banach spaces

(B(p, q, &) space, Hardy space and Bergman space) in terms of approximation errors.

1.2 Generalized Type
First we prove

Theorem 1.2.1. Let a(z) € L°, 7 (z) € L° and v(z) € L% let p, 0 < p < o0
be ¢ fized number. Set F(z;0,p) = v~ {[87 (ca(z))]*/?}. Suppose that for all o,
0 < o < o0, we have |

(i) if v(x) € A and &(z) € A then

din F(z; 0, p) = o(1)

as T — 00
dinzx :

15



(i) if v(z) € (L° = A) or a(z) € (L° ~ A) then

i dnFEep) 1
T—00 dlnz P

Then for any entire function f(z) € B(p,q,x), we have

, a(lnM(r, f)) .. o(3)
(123)  WmSP “R) e BB (B, 4 ) T PY

provided for f(z) = Y an2", ;ﬁ‘:l”“ —d, 0<.d< oo

Proof. We prove the above result in two steps. First we consider the space B(p, ¢, ),
g=2 0<p<2andk>1 Let f(z) € B(p, q, k) be of generalized type 7 with

generalized order p. Then from [44, Th 2|, we have

_ (%) _
(1.2.2) lim sup Bl Pl Py

For a given € > 0, and all n > m = m(¢), we have

exp(2
(1.2.3) lan] < i(’;_)) .
[y {8~ ()M
Let gn(f. 2) = Y.;-aj#’ be the nt* partial sum of the Taylor series of the function

f(z). Following [63, p.1396], we get

(124)  Eu(B(p2.5)f) < BY5((n+ s+ La(1/p—1/2 D las*}”?

j=n-1

where B(a,b) (a,b > 0) denotes the beta function. By using (1.2.1), we have
(1.2.5)
En(B(p) 2, ’9)3 f) £

(n+1)/p B1/x . - ot
e(m+1)/P BYE[(n +al()£;-)1,f6(1/p 1'/2)]{ Z V(e 8},
B DY

16



where

o) el SO
1B R b1 (CTE -

Set
e(l/P)

{161 (52 )]1/"}]

Since a(x) is increasing and j > n + 1, we get

W, ) =

126  wlas) s —22UGXDY i g
{18 (e Y-

By above relation (1.2.6) and since ¥(e, §) < 1, we get from (1.2.5),

e+ /P BYx[(n + 1)k + 1; n(l/p —-1/2)]

(1.2.7) E.(B(p,2,5); f) < .
(1 - ¥%(e, ,6))1/2[7~1{[,(3-1( —2 )]1/p}](n+1)

For n > m, (1.2.7) yields

a(*)

-~ Bi/~] .
ﬁ{v[elpr 1/n+1(B(p,2 x); O [(?;rl‘zr;?:;)()ll//g 1/2)]]1/,l e

T4 ¢

Now

D((r + 1) + DP(s(1/p = 1/2))

Bl(n+ V)& + 1;x(1/p — 1/2)] = T((n+1/2 + 1/p)s + 1)

Hence

_|(n+1)~+1][(n+ 1)K+ 1](n+1)n+3/21-\(1/p 1/2)

Bl(n+1)r+1;5(1/p—1/2)] ~ c[(1¢+1/2+1/p)n+1][(7L +1/2+ 1/p)x + 1|(n+1/2+1]n)n+3]2"

17



Thus
(1.2.8) {Bl(n+ & + L;x(1/p — 1/2)}Y/ D = 1,

Proceeding to limits, we obtain

(1.2.9) 7 > limsup o) :
" noeo B{y[eYPEn(B(p g, k); £)7V/"P}

For reverse inequality, by [63, p.1398], we have
(1.2.10) |@ns1|BY5[(n + i+ 1;5(1/p — 1/2)) < En(B(p,2,5); f).

Then for sufficiently large n, we have

()

B{rle BT (B(p, 2, 5); £}

a(2)

2 BV (anma P B-V(n + 1) + 1, #(1/p — 1/2))7)

o(3)

2 B {an VBV ((n + D+ 13 #(1/p — 172)DP}

By applying limits and from (1.2.2), we obtain

. a(2)
(1.2.11) hnmil.fp B{v[e?En(B(p, g, 5); f)~1/"]°} 2

From (1.2.9), and (1.2.11), we obtain the required equality

| o)
a1 P PP E B, 0 A T

In the second step, we consider the spaces B(p, ¢, %) for 0 < p < ¢,¢ # 2,and ¢,k > 1.

18



Gvaradze [19] showed that, for p > p1, ¢ < 1, and x < &y, if at least one of the
inequalities is strict, then the strict inclusion B(p, ¢, k) C B(p1, g1, 51) holds and the

following relation is true:

I lprars < 2970 (1 /0 — 1/@)]/* 7% | |, gy

For any function f(z) € B(p,q, k), the last relation yields

(1.213)  Ea(B(pr, @1, k1); ) < 2V Y0 [k(1/p — 1/q)] /=" E.(B(p, q, ); f).

For the general case B(p, ¢,k), ¢ # 2, we prove the necessity of condition (1.2.1).
Let f(2) € B(p,q, «) be an entire transcendental function having finite general-

ized order p(a, B; f) whose generalized type is defined by (1.2.2). Using the relation

(1.2.3), for n > m we estimate the value of the best polynomial approximation as

follows

) 1
En(B(p,0,6); ) = If — 9a()lipaw < ( /0 (1 — r)Q/p=1/a)=0) g /R,

Now
| 00
117 = 120"l £ P lawr™) < (™ 37 Jail)?,  hence
k=n+1
LOO
MY < (Y e
k=n+1
or
o o]
M; < r(ﬂ+1)'c( Z |ax )™
k=n+1
Hence

(1.2.14) En(B(p,q,6)f) < Bl/"[(n+1)f€+1;fﬁ(1/zp—l/q)]i ||

k=n+1
19



e™H/P BYR[(n + 1)k + 1; n(l/p —1/9)]
(1 = (e, B) {1 (= )]‘/P}]("“’

For n > m, (1.2.14) yields

ntl
T+e¢ %)
EZ 1/%[(n41)k+1;6{1/p— '
Z BB T (B(p, 2, n); )| K e/l 1o}
Proceeding to limits, we obtain
a(%)

> 1 .
T 2 hmsup e B, ¢ %) 1))

For the reverse inequality, let 0 < p < ¢ < 2 and «,¢ > 1. By (1.2.13), where
1 =p,q1 = 2, and k; = K, and the condition (1.2.1) is already proved for the space

B(p, 2, k), we get

a2 a(?
lim sup ) limsup ()

oo B{y[eVPE,™(B(p, q, k); f)IP} s B{vleV?E,"Y"(B(p, 2,k); )]}

= T

Now let 0 < p € 2 < ¢. Since we have
Ma(r, f) < My(r,f), 0<r<L

Therefore

(1.2.15) E.(B(0,q,%); f) = lans| BY*[(n+ 1)k + 1;5(1/p — 1/q)].

From relations (1.2.2) and (1.2.1), (1.2.4) yields

a(? Q
lim sup (p) > limsup ( )

P BB, g TV} - es? B e
20




Now we assume that 2 < p < q. Set ¢1 = ¢, K1 = &, and 0 < p; < 2 in the inequality
(1.2.13), where p, is an arbitrary fixed number. Substituting p, for p in (1.4.24), we

get
(1.2.16) En(B(p,¢,£); ) 2 lanst|BY*[(n +1)s + 1;5(1/p1 — 1/g)).

Using (1.2.16) and applying the same analogy as in the previous case 0 < p < 2 < g,
we obtain

; | a(2) S
e B ePER(Bp, 0, 5); )P} =

From relations (1.2.9) and (1.2.11), we obtain the required relation (1.2.12). This

7.

completes the proof of Theorem 1.2.1. 0

Theorem 1.2.2. Assumz'ng‘ that the conditions of the Theorem 1.2.1 are satisﬁed
and &(e, B) is a positive number, a necessary and sufficient condition for a function
f(z) € Hy to be an entire function of genemlz'ze& type €(cx, B) having finite generalized
order p is that

n
(1.2.17) lim sup i o) 01
n—oo  B{y[eVrEn(Hy; f)~ 1"

} = 6-((“3 B)-

An analog of this theorem for the Bergman Spaces follows from (1.1.1) for1 < q¢ < oo

and from Theorem 1.2.2 for ¢ = co.

Proof. Let f(z) =Y 7, aq2" be an entire transcendental function whose generalized

type 7 having finite generalized order p. Since

n—oo

(1.2.18) lim {/]a,] = 0
and f(z) € B(p,¢,%), where 0 < p < ¢ < 0o and g,k > 1, from relation (1.1.1), we

21



get

(1.2.19) En(B(/2,9,9); f) € %Ea(Hg f), 1<g<oo.

where ¢, is a constant independent of n and f. In the case of Hardy space Heo,

(1'2'20) En(B(pv 00, 00); f) < En(Hoo; f)’ l1<p<oo

Since

a(3)
nkie S = 1 7
(1.2.21) ¢l B;f) = limsup B{vlePEx " (Hg; )P}

; (%)
im sup oRiC ‘
n—oo ﬁ{'y[el/f’ (B(Q/zv q, Q), f)]p}

> 71 1<g<o0.

1\

Using estimate (1.2.20) we prove inequality (1.2.21) in the case q' =00

For the reverse inequality

(1.2.22) faBif) < 7y

use the relation (1.2.3), which is valid for n > m, and estimate from above the
generalized type T of an entire transcendental function f(z) having finite generalized

order p as follows. We have

Eu(Hi f) < If =gl

o0
< > lajl

j=n+1

vy HB (==

(n+1

IA

— )]1//)} 1/n+le(n+l)/p Z 1/),} a, ’(3)

j=n+l

22



Using (1.2.6),

En(Hoi f) < If = nllg,

a(2)
< (1= (e /) Iy BTN Sy e e,
This yields
a(ntl
(1.2.23) T4+e > )

= Bl (BT (Hy; P — (e, B)/A+1])

Since € > 0 is arbitrary, passing to the limit asn — oo in (1.2.23), we obtain inequality

(1.2.22). Thus we have finally

(1.2.24) | e, B85 f) = 7.

This completes the proof of Theorem 1.2.2. O

1.3 Generalized Order of Entire Functions of Slow
Growth

In this section we consider the generalized order of functions of slow growth in terms

of the approximation errors £,(B(p,q,k); f). We now prove

Theorem 1.3.1. Let o(z) € Q, then necessary and sufficient condition for an entire

function f(z) € B(p, q,k) of finite generalized order p is

(1.3.1) lim sup a(n)

n—oo  a[-n~tln E,(B(p,q, ,g);f)] = T(a) = p- 1L

23



Proof. From [29, Th 4], we have

| a(n)
1.3.2 ) = - |
132 pleif) = 1+L,  wherel = limsup vt oy

For a given € > 0 and all n > m = m(e), we have

1

(1.3.3) lon] < exp {na~t{a(n)/(p+ €)]}

From (1.2.4),

BY¥[(n + 1)k + Li(1/p = /27204y 5% ()}
exp{(n + 1a~a(n +1)/((¢— 1) + )]}

(1.34) E.(B(p,2,k);f) <
where
¥i(e) = exp{(n+ 1o a(r+1)/((p— 1) +¢)] — jo {a(h)/((p— D) + o)}

Set
1

exp {o~e(1)/((p — 1) + €)1}’

¥a) =

Then we have
(135) 9@ < exp{(n+1-j)afa(n+1)/(p—1)+e)} < P (a).

By relation (1.3.5) and since (o) < 1, (1.3.4) takes the form
(1.3.6)

En(B(p,2,k)i f) < BY~[(n + 1) + 1;5(1/p — 1/2)]

(1 - 92(a))2exp{(n+1)a~*[a(n + 1)/ ((0 - 1) + €)]}
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for n > m, estimate (1.3.6) yields

a(n+1)

— . - m—
a{(n +1)7}[~1n En(B(p, 2, 5); f) + In G-l

(1.3.7) (p—1)+e >

and passing to limits as n — oo in (1.3.7), we get
(1.3.8) p—12 T(a).

For the reverse inequality, from relation (1.4.24), for sufficiently large n, we have

| a(n) .
a[-n1In E.(B(p, 2, x); )]

N  aa-ery |
~a{(1+ Hn(1/ "Yans]) +In (1) “%/B((n + 1)s + L;x(1/p — 1/2)))]}

Proceeding to limits, we obtain

(1.3.9) () > p— L.

From relations (1.3.8) and (1.3.9), we will obtain the required equality
(1.3.10) T(e) = p—1.

This completes the proof of Theorem 1.3.1. a

Theorem 1.3.2. Let a(z) € Q, then a necessary and sufficient condition for an

entire function f(z) € Hy to be of finite generalized order p is

| . NG I
(1.3.11) lim sup o[- E,(Hy )]~ ° -

25



Proof. From (1.2.19)

En[B(a/2,9,9); f] < G En(Hy;f) 1 < g < 00

where ¢, is a constant independent of n and f. Hence

lim sup 0 a(n) > limsup a(n)
n—oo a[—n71InE,(Hy; f)] nooo a[—n~11nE.(B(g/2,9,9); f)]
(1.3.12) > p-1,1<gq <

Using estimate (1.2.20), the above inequality is true for the case when ¢ = co
For reverse inequality, we use the relation (1.3.3), which is valid for n > m, and
estimate from above the generalized order p of an entire function f(2) as follows. We

have

En(Hg; f) < f = gnlly,

oo}
< Y al

j=n+1

< op{-(rr 0 ZEEL S )

(b — 1)+€ S

Using (1.3.5), we get

Bally f) < (1= 9(@)  ep { ~(n + Do~ 2R

This yields
a(n+1)

(p - l) +€ Z 1 1 ‘1 )
= [ ety + 0 b

2



Now proceeding to limits, we obtain

| . on)
(1.3.13) p=1 2 limsup o Sy T P}

From (1.3.12), and (1.3.13), we get the required relation (1.3.11). This completes the
proof of Theorem 1.3.2. O

1.4 Generalized Type of Entire Functions of Slow

Growth

We define the generalized type 7(c; f) of an entire function f (2) having finite gener-
alized order p(a; f) as

Y i e 2R M (T £))
T(e; f) = llﬂslzop a(in )

where a(x) either belongs to 2 or to Q.

Now we prove
Theorem 1.4.1. Let a(x) € §, then the entire function f(z) of generalized order

p, 1 < p < oo, is of generalized type T if and only if

(1.4.1) 7 = limsup a(3)
4. N—r00 {a[;g-i In lan|-—1/n]}p_1 )

provided dF(xz ; 7, p)/dInz = O(1) asz — 00 for allT, 0 < T < 00.

Proof. Let

. a(ln M(R, f)) _
hsup = B

We suppose 7 < 00. Then for every € > 0, 3 R(e) such that for all R > R(e), we

have
a(ln M(R, f))
[a(In R)}e

27
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or

InM(R, f) < (¢ ' {Fle(ln R)]"}).

Choose R = R(n) to be the unique root of the equation

(1.4.2) n= E% FllnR; T }15]’
Then
(1.4.3) mR=al@ @)V =™, L o1
T p P T
By Cauchy’s inequality,
la,| < R™M(R; f)

N

exp{—nlnR + ({7 [a(ln R)]’})}
By using (1.4.2) and (1.4.3), we get
lan] < exp {—nF + %F}

or

P ~1/n —157 1 TL\\1/(p—-1
L e 2 a7 {5 (2 Ve)

or

{a[;57 In]an|~2/n]}

Proceeding to limits, we obtain

(%)
1.4.4 T > limsu £ )
( ) = n_.oop a[;‘_li In [a,[~1/7]} -1
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Inequality (1.4.4) obviously holds when 7 = oo
Conversely, let

limsup a(%) . =
n— 00 {.a[;f—l In |a,|~1/7]}e-1)

Suppose ¢ < oo. Then for every € > 0, 3N (€) such that for all n > N, we have

<o+4+e=7

(%)

{a[;5 Injan|=/7]}e-1)

(1.4.5) ie. |an| < exp{(p_ 1) _;! F’[ll;‘. ' % y P— 1]}

The inequality

(1.4.6) /|an|R™ < Re~ G FIZ 3401 <

[ R

is fulfilled beginning with some n = n(R). Then

00 o0 1
(14.7) Y laalR™ < Z FSt
n=n(R)+1 n(R)+

We now express n(R) in terms of R. From inequality (1.4.6),

) p_]']}7

QHH

2R < exp{(———‘——) F[%

we can take n(R) = E[p a7} {F (a(lnR +1n2))#~1}]. Consider the function
Y(z) = R¥exp{— (‘—a—) z F[2; 3, p— 1]} and take its logarithmic derivative and

set it equal to zero.

(1.4.8) %(Lg = InR - (L}E)F[



As r — o0, by the assumption of the theorem, for finite o (0 < o < 00),
dF|z ; G, p—1] /dInz is bounded. So thereis an A > 0 such that for z > z; we

have

dF[%,%,P—1]|<A

(1.4.9) | e <

We can take A > In2. It is then obvious that inequalities (1.4.6) and (1.4.7) hold
for n > ni(R) = Elp o {7 (a(lnR+ A))®V}] + 1. We let ny designate the
number max (N (¢), E[z;]+1). For R > Ry(no) we have ¥'(ng)/¥(ng) > 0. From
(1.4.9)and (1.4.8) it follows that ¢’ (n,(R))/4(n1(R)) < 0. We hence obtain that if for
R > R;(ng) we let z*(R) designate the point where ¢(z*(R)) = max,<z<n, () ¥(Z),
then

ng < z*(R) <n1(R) and z*(R) = pa~ {7 (a(In R — a(R)))**}.

where o
—A<a(R) = il ;dfn,wp — Y lemar(m) < A.
Further
RPe {7 (e(ln R-a(R)))*~'}
no<f1{1 gﬁ R) (lan|R™) < n0<151<373§(m¢($) = gra-1{a(a(ln R—a(R)))* 1} (In R~a(R))

= exp{a(R)po~{7 (a(In R — a(R)))*}} < exp{Apa~{z(a(ln R + A))*"1}}.

It is obvious that (for R > Ri(no))
M(R, f) < B2 lan|R" = Tp%lan|R™ + Zpi [an] RY + To2, (r4alan| R”

< O(R"°) + ny(R) max (la,|JR") + 1

no<n<ny(R)

30



M(R, f)(1+0(1)) < exp {{Ap + o(1)) o~ '[ (a(ln R + A))*~']}
a(ln M(R, f)) < Fla(ln R+ A))P"! < 7 [a(InR+ A)).
We then have

af(Ap+o() ' M(R, )} _ .. _
[a(n & + A)P S0 =ote

Since a(z) € 02 C A, now proceeding to limits wé obtain

| ' - a(ln M(R; f))
el LN 4 <
(1.4.10) lgnjgop an e S
From inequalities (1.4.4) and (1.4.10), we get the required the result. This completes
the proof of Theorem 1.4.1. O

Theorem 1.4.2. Let a(z) € ), then a necessary and sufficient condition for an

entire function f(z) € B(p,q, k) to be of generalized type T having finite generalized

order p, 1 < p < 00 18

| @)
(1.4.11) TS R o W (BB, 0, %) DIFONED

Proof. We prove the above result in two steps. First we consider the space B(p, ¢, ),
g=2 0<p<2and k > 1. Let f(2) € B(p,q,x) be of generalized type  with
generalized order p. Then from the Theorem 1.4.1, we have

al
(1.4.12) lim sup ——— fp), .
oo {@[757 Inan|"/"]}o71

= T.

For a given ¢ > 0, and all n > m = m(e), we have

1

1.4.13 An S ‘ n n -
(1.4.13) ol S S TG=DEFE, L, o= 1))

Let gn(f,2) = 3.;_oa;2° be the nth partial sum of the Taylorbseries of the function
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f(z). Following [63, p.1396], we get

o0
(14.14)  E.(B(p,2,x); f) < BY*|(n+ )&+ L;x(1/p - 1/2)){ Z |a;|?}2/2
J=n+1
where B(a,b) (a,b > 0) denotes the beta function. By using (1.2.3), we have
(1.4.15)

, BY"{(n+ 1+ L (1/p - 1/2 V2
E.(B(»,2,k); f) < o (o 1) =2 F= { §1¢2(a }

-

p ,T:

where
«p { Btl a1 1/(p-1)
bila) = exp {*(p — 1) {(a(ﬂ;e ) }]}.
exp {Z(p — 1)[ ‘1{(:&)1/("””}]}
Set
(1)

o) = exp{~%<p—1>[ (= )W-”}]}

Since a(z) is increasing and j > n + 1, we get
a(..t.

(1.4.16) 1

we) < (DI (oo oy < i
Since ¥(a) < 1, we get from (1.2.5) and (1.2.6),
(1.4.17)

BB, 2,%). f) < BI/”[(n+ e+ 1;6(1/p - 1/2)]

(1= w2(e))M2[exp {21 (p — 1)fa1{(52 vy

For n > m, (1.4.17) yields

(—'t-)
1/&{(n+1)r+1;k = -1)
{o gl (In (1Bl %) + In (Bl s ety nj -

T+e2

Now
F((n+ 1)+ DI(k(1/p—1/2))
M((n+1/2+1/p)k + 1)

Bl(n+ 1)+ 1;6(1/p—1/2)] =
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Hence

e—[(n+?.)n+1][(n + 1)~ + 1](n+1)n+3/2r(1/p - 1/2)
el +172+1/P)e 1 [(n + 1/2 + 1/p)k + 1)(n+1/2+1/p)n+3/2°

Bl(n+1)x+1;x(1/p=—1/2)] =~
Thus

(1.4.18) {B(n+ )r+ 1;x(1/p - 1/2)}/0+D = 1,
Proceeding té limits, we obtain

a(Z)
1.4.19 7 > limsup S .
(1.4.19) MED oo In ([Bal- M) [P D

For reverse inequality, by [63, p.1398], we have
(1.4.20) |ansa| BY*[(n+ 1)k + 1;6(1/p — 1/2)] < En(B(p,2,5); f).

Then for sufficiently large n, we have

__an/p)
[e{ 555 In (| En|~1/7)}](e—D)
N . ¢ N o
~ [o{;5{In(lans|7") +1In(B=#/<[(n + 1)k + 1;k(1/p — 1/2)]) }}]-1)
o(2)

2 TaloE {In (jan ™) + 10 (B-P7~{(n + D + L(1/p— 1/2NIHED

By applying limits and from (1.4.12), we obtain

(%)
14 : BEY L >
( 421) llinqs;?lp [a{;g_iln(IEnl—l/u)}](p-—l) T
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From (1.4.19), and (1.4.21), we obtain the required relation

o(2)
1.4.22 lim su L = T
(1.422) P Tl In ([ V) @D

In the second step, we consider the spaces B(p, ¢, x) for0 < p < ¢,q # 2, and ¢, 5 > 1.
Gvaradze [19] showed that, for p > p1, ¢ < @1, and k < K, if at least one of the
inequalities is strict, then the strict inclusion B(p, ¢, ) C B(p, g1, 1) holds and the

following relation is true:

1f lprars S 2779 6(1/p ~ 1/@)] "7 | llp e

For any function f(2) € B(p, ¢, k), the last relation yields

(1423)  Ea(B(pr, a1, m); f) < 2970 [s(1/p - 1/q))/* "/ Ea(B(p, ¢, 5); f).

For the general case B(p, g, %), ¢ # 2, we prove the necessity of condition (1.4.11).
Let f(2) € B(p, g, k) be an entire transcendental function having finite generalized
order p(a; f) whose generalized type is defined by (1.4.12). Using the relation (1.4.13),

for n > m we estimate the value of the best polynomial approximation as follows

1
En(B,q,6); ) = IIf = 0a(Npan < ( /0 (1 — r)=/e=Y/O=D pfgryl/s,

Now
00
1f19 = D anz"? <O lanr™|)? < (r™+ > laxl)e.
k=n+1
Hence

E.(B(p.q,k); f) < BY*[(n+ i+ 1;6(1/p — 1/)] D lal

k=n+1
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BY*[(n 4 1)k + 1;x(1/p — 1/9)]

S - PrES) .
(1 — w(a))fexp {22 (o — 1o {(Z52) -0}y

For n > m, (1.4.24) yields

e o) .
=, —1/n Bl/s[(n4 1;x(1/p~ —1)
el {In (Bl ~/%) + In (B b1 /2 1/ ) -1

Since ¥(a) < 1, and & € £, proceeding to limits and using (1.2.8), we obtain

T 2 limsup e a(%) -
T nooo (o587 In(|Ey|7Y/n)}] (=D
For the reverse inequality, let 0 < p < ¢ < 2 and k,¢ > 1. By (1.4.23), where
P1=p,q1 =2, and K; = K, and the condition (1.4.11) is already proved for the space
B(p, 2, k), we get

_ - _(n/p) _
MR A (B (B, 4, 0% DIV

= [a{;.a-in(|1~5n<Bo(3(fz/‘f A
Now let 0 < p < 2 < ¢q. Since we have ‘
My(r, f) S My(r, f), 0<r < 1,
therefore
(1.4.24) Ex(B(p, g,); f) 2 lansa| BY*[(n + 1) + 1;6(1/p — 1/g)].
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Then for sufficiently large n, we have

~a(n/p) |
la{ ;5 In (|E,|~1/m)})e-Y)
. a(2)
~ le{;5{In(|ann]™?) +In(B-2/m[(n+ 1)k + 1 5(1/p — 1/q)]) } ¢~V
(%)

= [e{z&{In (Jan]|~*/") +In(B=#/"[(n+ 1)x + 1;x(1/p — 1/g)])) }}]-"

By applying limits and from (1.4.12), we obtain

lim su a(%) > limsu () =T
v [a{% In (|Bn|=1/m)}]0e-D = S {52 In ([an [/ }e-D —

Now we assume that 2 < p < ¢q. Set ;1 = q, k1 = &, and 0 < p; < 2 in the inequality
(1.4.23), where p; is an arbitrary fixed number. Substituting py for p in (1.4.24), we

get
(1.4.25) En(B(p,9:6); f) 2 lans1|BY*[(n+ 1)k + 1;5(1/p1 — 1/q)).

Using (1.4.25) and applying the same analogy as in the previous case 0 < p < 2 < g,

for sufficiently large n, we have

a(n/p)
[a{>4 In (| Eu|=1/7) }](e=1)
> } (%)
~ le{z&{In(|an|V") +1n(B=P/m=[(n + 1)k + 1;5(1/ps — 1/9)]) }}]C-D
a(3)

* ol I () + (B (0 + D+ T #(1/p1 — /DI D
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By applying limits and using (1.4.12), we obtain

o(2)
S P e Y (A TN

From relations (1.4.19) and (1.4.21), and the above inequality, we obtain the required
relation (1.4.22). This completes the proof of Theorem 1.4.2. O

Theorem 1.4.3. Assuming that the conditions of theorem 1.4.2 are satisfied and £(o)
is a positive number, a necessary and sufficient condition for a function f(z) € H, to
be an entire function of generalized type £(¢) having finite generalized order p is that

| o(®) _
(1.4.26) i S e (B H s P~ S

Proof. Let f(2) = Y oo ¢ @n2" be an entire transcendental function having finite gen-

eralized order p and generalized type 7 . Since

(1.4.27) lim Yan] = 0

f(z) € B(p,g,k), where 0 < p < ¢ < oo and ¢,k > 1. From relation (1.1.1), we get
(1.4.28) En(B(9/2,9,9); f) < GEa(Hg f), 1< g< 0.

where ¢, is a constant independent of n and f. In the case of Hardy space H,
(1.4.29) E.(B(p,00,00); f) € E.(Hy; f), 1<p<oo.

Since

a(n/p)
- In (| Ea(Hy; f)|71/m)}]l-D)

&(ey f)—hmsup o {
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. a(n/p)
= ISP Gl W (B (B/2,4, ) DIUNED

(1.4.30) > 7, 1<g<o0.

Using estimate (1.4.29) we prove inequality (1.4.30) in the case ¢ = o0

For the reverse inequality

(1.4.31) flas f) < 7,

we use the relation (1.4.13), which is valid for » > m, and estimate from above, the
generalized type 7 of an entire transcendental function f(z) having finite generalized

order p, as follows. We have

E.(Hy; f) < ”f_gn“Hq

< Z la;]

j=n+1

. 3 ().

lexp{(p—~ 1) 22 a1 {(25E2 e =t

IA

Using (1.4.16),

En(Hq;f) < ”f—gn”Hq

<

1
(1- () fexp {( - 1) 2 o -1 e 60y

1

(n+1)} _; a('(%ll) R
m 2 (1-9(a)) exp {(P -1) P {a { (“"‘;“—) .

This yields

a(2£)
A3 T4 ¢ 2 BT (B NP7 + ({1 = $(@) e
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Since ¥(a) < 1 and by applying the properties of the function «, passing to the limit
as n — oo in (1.4.32), we obtain inequality (1.4.31). Thus we have finally

(1.4.33) ¢a) = 7

This completes the proof of Theorem 1.4.3. O

Remark 1.4.1. An analog of this theorem for the Bergman Spaces follows from (1.1.1)

for 1 < g < o¢ and from Theorem 1.4.3 for ¢ = oco.
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Chapter 2

Afpgroximation of Entire Functions
of One Complex Variable Over
Jordan Domain

In this present Chapter, we study the polynomial approximation of entire functions
over Jordan domains by using Faber polynomials. The coefficient characterizations
of generalized order and generalized type of entire functions have been obtained in

terms of the approximation errors.

2.1 Introduction

Let C be an analytic Jordan curve, D its interior and E be its exterior. Let ¢ map
E conformally onto {w : |w| > 1} such that ¢(50) = co and ¢ (00) > 0. Then for

sufficiently large |z|, ¢(2) can be expressed as
(2.1.1) w = p(z)=

An arbitrary Jordan curve can be approximated from the inside as well as from the
outside by analytic Jordan curves. Since C is analytic, ¢ is holomorphic on C as well.

The n th Faber polynomial F,,(z) of C is the principal part of (¢(z))" at co, so that

n

Fo(z) = % 4o
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Faber [12] proved that as n — oo,
(2.1.2) Fa(2) ~ (0(2))"

uniformly for z € E and

(2.1.3) lim (max|Fn(z)|)%/n =1.

n—oo \ zeC

A function f holomorphic in D can be represented by its Faber series

(2.1.4) 12) =Y anFa(2)
n=0
where
an =5 ST )

and r < 1 is sufficiently close to 1 so that ¢~! is holomorphic and univalent in |w| > r,
the series converging uniformly on compact subsets of D. Let M (r, f) = max,=r | f(2)|
be the maximum modulus of f(z). The growth of f(2) is measured in terms of its

order p and type 7 defined as under

(2_1.5) hmsupw = p,
S r—00 Inr

(2.1.6) limsupw—-—————lnM(r’f) = T,
r—00 TP

for 0 < p < o0.
Let LP(D) denote the set of functions f holomorphic in D and such that

llercer = G{ / /D |f(z)|"da;dy)1/p< o
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where A is the area of D. For f € LP(D), set
E} = EX(f; D) = min || f — 7a||e(D)

where 7, is an arbitrary polynomial of degree at most n.

2.2 Generalized Order and Generalized Type

In this section we obtain the growth characterizations in terms of the coefficients {a,}
of the Faber series (2.1.4). We first prove

Theorem 2.2.1. Let a(z) € A, B(z) € L°. Set H(z;c) = B~ c a(x)], then f is

restriction to the domain D of an entire function of finite generalized order p iff

_ : o(n)
2.2.1 limsup - . . = p,

provided dH(z;c)/dIlnzx = O(1) as x — oo for all ¢, 0 < ¢ < 0.

Proof. Let f(z) = 3 oo ,anFn(2) be an entire function of finite generalized order p,
where
— 1 -1 -(n+1)
= 55 Jyuer fle™ (w)) w dw

with arbitrarily large R. From (2.1.1), we have

-1
lim P (w) —d
Jw|—o0 w

Hence for sufficiently large |w|,

(d-elwl < loH(w)| < (d+ €l
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Therefore

[f(e7 @)l < exp{a™ [ A(In(d+e)lw))]}, p=p+e

and from Cauchy’s inequality, we have
Janl < R exp {0~ [5 6 (1n (d + €) w| R)]}.

for all R sufficiently large. To minimize the right member of this inequality, choose
R = R(n) = z-exp {H (n; %)} Substituting this value of R in the above inequality,
we have

—Inla,| > nH(n; %) —nin(d+¢e) —a™? [ﬁﬂ (H(n; %))]

O S H(n;i) = g F a(n)]
n P P

= ﬂ(—%hl%l) 2 %O‘(n)
aln)

T T B Ina)

Now proceeding to limits and since ¢ is arbitrary, we have

, a(n)
(2.2.2) p > hnm—-»sc:o}p,@(—,-lzlnlann'

Conversely, let

. a(n)
lim sup 7 (~Ilnja,))

Suppose ¢ < co. Then for every e > 0, 3 N(¢) such that for all n > N, we have

= 0.

a(n)

B ("% In la'nl)

= lan| < exp{—n H (n,%)}
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Since f(z) = Y _arp 0n Fu(2), therefore
760 = S enp {nt () 1AL

But from (2.1.2), we have for some K > 0, |F,(z)| < Klp(2)|* V z € E and from

(2.1.1), for all sufficiently large |z|, we have

| 2]
d—¢

(2.2.3) lp(2)) <

Therefore the above inequality reduces to

(2.2.4) |f(z)| < I\'iexp {—nH (n; %)} (31—"’:'-;)“

n=0

By considering the function ¥(z) = (a—’_i;)d’ exp {—:vH (a:; %)} and proceeding on

the lines of proof of Theorem 1 of Seremeta [44, p 294], we obtain

M(R; )1 +0(1)) < exp{(G+o(1))a[F f(ln R+ G)]}

a[(G +0(1)) ' In M(R; f)]
B(n R+ G)

< T=0+ce.

Since a(z) € A and B(z) € L?, on letting R — oo and since ¢ is arbitrary, we get

, a(ln M(R; f)) . _a(n)
(285 bR TSmRy . < T P Imlal)

The above inequality holds obviously of o = co. From (2.2.2) and (2.2.5), we obtain
the required result (2.2.1). This completes the proof of Theorem 2.2.1. O

Theorem 2.2.2. Let a(z), B~ (z), v(z) € L°; let p be a fized number, 0 < p < oo.
Set H(z;0,p) = v} {[ﬁ’1 (o oz(:c))]l/p}, then f is the restriction to the domain D of
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an entire function of generalized order p and finite generalized type 7 if and only if

| « (3)
(2.2.6) S Ty (de2lan )}

=T

provided if ¥(z) € A and a(x) € A, dH(z;0,p)/dInz = O(1) as z — oo.

Proof. Proceeding as in the proof of Theorem 2.2.1, we have
(d = e)fw] < [p™H(w) < (d+ ¢)wl.

Let f be an entire function of generalized type 7 having finite generalized order p.

Then we have
@™ @) < exp{a™ {7 B[(v((d + Y1},
and from Cauchy’s inequality, we have
janl < B exp {0~ {7 B[(v((d+ O T},

for all R sufficiently large. To minimize the right hand side of this inequality, choose

R = R(n) = A-H (%; .3 p). Substituting value of R in the above inequality, we

(d+¢)
have ~ .
(d +€> exp (;)
|a'n| S - " 1 i3
@9 A ()]
: Yp|, |-1/ > n }. i
= (d+e€)e?|ay] “.H(p’?’ )
Proceeding to limits, we have
(3)

(2.2.7) lim sup < T

nooo O {[y(deVlan|~¥")P} ~
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Conversely let

a(3)

lim sup

..":'r'_

B{[y (de/elan)| 1))}

Suppose 1 < co. Then for every € > 0, 3 Y (¢) such that for all n > Y, we have

a(2)

ﬁ{[’y(delfplanr‘.l'/n)]p} < N+e€ = 7.

n=—00

= |a,]| <

Since f(2) = 307, an Fu(2), therefore

@ exp (2)
HED)

As in (2.2.4), we have on using the estimate of F,(z),

HOEDD

n=0

7 [Fa(2)l.

IF@ < >

& @ew(;

- (75)

+ R™.

n=0

To estimate the summation of the right hand side of above inequality, we consider the
function Y(z) = (R eV/?)® [H (%.; Y p)] -
[44, Th .2, Page 296}, we obtain

*. Then following the proof of Seremeta

MR f) S exp{(Ap+ o) a {78 [(v (re?))"|} }-
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By using the definition of the class L°, A, and proceeding to limits, we obtain

— limeug &0 MR £)]
(2.28) T = B0 SRR

From (2.2.7) and (2.2.8), we get the required result. This completes the proof of
Theorem 2.2.2. 0

2.3 L[? - Approximation

In this section we consider the approximations of an entire function over the domain

D. Consider the polynomials
Pn(2) = A2 + ..(A > 0)

defined through
1 i _— :
2 // Pn(z) Pm(2)dx dy = Onm.
D

These polynomials were first considered by T. Carleman [8] who proved that

n+1)4

1/2
D2) T @ EEr s e

(2.3.1) Pu(2) ~ (

uniformly for z € E where A and ¢(z) are as defined earlier. Any function f € L%(D)

can be expanded in terms of these polynomials in a series

(2.3.2) f(z) = Z b Pn(z)

n=0

where

b= | /D £(2) Pa(@)dz dy
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and the series converges uniformly on compact subsets of D.

Parseval’s relation yields

oo 1/2
(2.3.3) E?= ( > [bk|2) .

k=n+1

We now prove

Lemma 2.3.1. Let a(z) € A, B(z) € L, then

- a(n) a(n)
2.34 1 I = 1 —————
(23.4) P B(imfal) | e B(-L1nE3)

Proof. From (2.3.3), we have

|bn+1l S E’?n

Since 3 € L%, we have
1 1
—~= In|b, >p{-— InE2).
5(=% mwal) 2 6(- 2)
Since o € A, proceeding to limits, we have

' . a(n) ) a(n)
2.3.5 1 <1 e,
(23.5) TSP B(=Imb.]) — mee B(—LInEZ)

Conversely, let

limsu a(n) =
'n—-'oop ﬁ (—;’1; In ‘bni) p-

Suppose p < co. Then for every € > 0, 3 G(¢) such that for all n. > G, we have

a(n) _
< o
e A
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= |by} < G exp{—-n Bt [: a(n)}}

Therefore

(l’:',‘f,)2 < G Z exp{—QkH(k;é)}
k=n+1 P -1

1 1
< G exp{-2(n+1)H(n.+ 1;5)} (1—3T<:1—))
€ e

< Gexp {—2(n +1)H(n+1; %)}

= ln1 2(n+1)H(n+1;%)

E2

or

1 ) 1
—_ > = .
ﬂ( T lnEn) = a(n+1)
Proceeding to limits, we obtain
: a(n) : o(n)
2.3.6 lir —_—t < p = limsup ————
(23.6) ) Ay el ol | (S S YT )

from (2.3.5) and (2.3.6), we get the required result. This completes the proof of
Lemma 2.3.1. |

Lemma 2.3.2. Let o(z), 87 (z), v(z) € L° let p be a fired number, 0 < p < oo.
Set H(z;a,p) =7 {[67 (@ o())]'/?}, then

| e (3) .
(2.3.7) hﬁfip B{ly (der Pl /FY timsup B {lr (de/r(E2)~ V™) }
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Proof. From (2.3.3), we have
lbﬂ-f-l, <E n’

&7 by 2 e (BT

since v € L%, we have

V[d VP fboa| V") > y[d e/? (BT

= 8{(rlae” ™)} 2 #{(v[a e @)}

Hence a(’%‘) "‘(%‘l) —
s{(+[de 7))’}

B{(vld eV Ibn+1l“‘/"])”

By applying limits, since o € L?, we obtain

a(3)

a(2)

3. i 7 | ‘ '
(2.3.8) 1f1n_+s°1:p 3 {[’Y (del/P|b - 1/,,) p} < hin_’sgp 3 {[’y (del/p(Ele)—I/n)]ﬂ}
Conversely, let

lim sup | > (%) —— =T
noo B {[7(de/P[b, TP}

Suppose 7 < co. Then for every € > 0, 3 V(¢) such that for all n > V, we have

,_
[ [ @] e mre

-n
= lbﬂlgd"eﬂ/" [H(P—; é,p)] .
p' T

eBAd Al
&° M‘f‘@a
& 13032
Aes. ﬂe.—-.--um '

<3 A gqr&ﬂi@g‘

e =
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Therefore

(B2)°

IA
[~
S

>

[s]

[ &)

Lo

~

h~)
r

xe
N
| &=
S| -

©
N—
——
d
kol

A
| ———|
X
TN
I
"’-‘* =
sk
o
- st
=
S )
R~}
N——’
| I—— |
3
3
+
=
| panmeesm— |
—
|
/N
=
/N
3
u|+ o
(ad
Q
.- >,
~
RS -
R~
—
SN——
N
| ISR
i
o

for n > 2del/?.

S
+

— delle (B2)TVOH H(

A
©
N——

v

2

A
A
=
7N
S

Q
N
3

© |+
Pk
N—
N—’
——d
<
)
St

== T4+€> ——r

B [{’)/ [d elle (E%)"‘l/(n+1)] }1/,}

Since a(z), B~!(z) and y(z) € L°, proceeding to limits, we have

23 P TR @Y > P B @ ez Y

From (2.3.8) and (2.3.9), we get the required result (2.3.7). This completes the proof '
of Lemma 2.3.2. O
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2.4 Main Results

In this section we obtain the growth characterizations (Generalized order and Gener-
alized type) of an entire function in terms of approximation errors E?.

Now we prove

Theorem 2.4.1. Let 2 < p < 0. afz) € A, B(x) € LO. Set H(z;¢) = B c a(z)],
then f is restriction to the domain D of an entire function of finite generalized order

p if and only if

Lo am)
(2.4.1) llﬁs;:p 5 (—%In(Eﬂ)) = p,

provided dH (z;c¢)/dInz = O(1) as z — o0 for all ¢, 0 < c < 00.

Proof. We prove the theorem in two steps. First we consider the case for p = 2.

Assume f is of finite generalized order p. Then from (2.2.1), we have
lan| < e HmB),

Now by considering the orthonormality of the polynomials p,(z), we have

i Qg /fDFk(Z) mda: dy.

1
bﬂ = -
A k=n+1

Hence

bal < D7 lax] max|Fe(2)].

k=n+1

Since from (2.1.3), we have

(2.4.2) max |Fi(2)] < L (1+¢),
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therefore, we have

bal < L Y eTHHER) (14 o)k
k=n+1 '

< I e—(n+l) H((n+1);%) (1 + 6)(n+1) [1 _ 1+ E]

< oL o~ (n+1) H(n+1):3)

since H (z; %) is an increasing function — oo as z — o0. Hence

1 1
lnm > (n+l) H((n+1),%)

= -

1
- it
— In|b,| > 8 l:ﬁ a(n+l)}

or

1 1
_ Infb,} ) > =
;6( 1 n| l)_ﬁa(n+1)

a(n+1)
= BT )

Since B € LO, proceeding to limits, we get

, a(n)
2.4.3 limsup <p.

Conversely, let

limsu a(n)
novo. B (=L 1n|bal)

Suppose ¢ < co. Then for each € > 0, 3 Z(¢) such that for all n > Z, we have

= Q.

bn] <7 H(n;é)-
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By Carleman’s result, as n — 0o, we have
n+1 A 1/2 I; n
pata) ~ (ZEDA) T 6a) (ot

uniformly for z € E. Therefore for all z € E, we have

IPa(2)] < L' (n + 1Y |¢'(2)] le(2)]",

le'(2)| <T VzekE,
|2|
, < ,
and  [p(2)] < =

for all z with sufficiently large modulus. Therefore

FE L3 e H) (o4 1y12

n=0

Now consider n 87! [ a(n)] — L In(n + 1) = g(n).
o] 1)

(£

cor=afp s o+ 0]

or
1
Since B € L%, we have
2 atm) = 4|2 o)
— 1
a(n) = 7+ 8 |2 g(n)] +o(8(n)

S5z o).

— g(n) =g~ L- 2
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Therefore

FEI<L S e k) (dli)n-

n=0
Consider the function x(z) = (£)° exp[-z H (x;25)]. Take its logarithmic
derivative and set it equal to zero. Then we have

x'(x)=1n( R ) _ H(x. 1 ) LA

d—e¢ "o+ 2¢ dlnz

By assumption of the theorem 3 K’ > 0 such that for z > 2

’

<K.

d H (z; %)
dInz

Let K1(R) = E [a7 {(c +2¢) B(ln R+ K')}] + 1 and ko = max (K'(¢), Efz1] + 1).
For R > Ry(ko), ¥ (ko)/¥(ko) > 0, and ' (K1(R))/v¥(K1(R)) < 0. Let z*(R) be the

point where the function ¥ attains its maximum such that

P(@*(R)) = _max (),

 koSz<Ky(R)
then ko < z*(R) < K;(R) and z*(R) = a~* ({0 + 2¢) S(In R — a(R))), where

d H (z; -15)

-K <a(R) = TTne lz=ar(ry < K.
Further
k
% <
koS’?.]Saf)(cl(R) (Ibkl R ) I Sing)fcﬁ(R)w(m‘)

Ro™ 1{{o+2¢) B(In R—In (d—€)—a(R))}
ea~{(g+2¢) B(In R—In (d—€)—a(R}}} [tn R—In (d—€)—a(R)]

= exp{K a7 [(o+2¢) Al R~ In(d~ o) ~ a(R))]}

< exp {KI o (o + 2€) ﬁ(Y)]}
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where B(Y) = B(InR — In(d — €) + K'). Therefore for R > R;(ko), we have

k1(R) 0o

M(R; f)<Z|bk|Rk SR S BlR S bR
k=0 k=ko+1 k=Fk;(R)+1
< O(R®)+ 1+ ky(R) (1] BY).

ko <k<K(R)

Hence

M(R; f) 1+0(1)) < (o7 (0 +2¢) BY)]+1) exp {K a7 (o + 2¢) ﬁ(Y)]}
< exp { (K +0(1)) a7 [( +26) BV }.
Then, we have
a [(K' +0(1))"! In M(R; f)]
BY)

Since a(x) € A and B(x) € L%, proceeding to limits as R — 0o, we obtain

< 0o+ 2.

(2.4.4) p = limsup a(h;?ﬁl (%f D <,

Combining (2.4.3) and (2.4.4),we obtain

lim sup a(n) =p
n—00 ﬁ ( = 1n lbﬂl) ’

The result now follows on using Lemma 2.3.1 for the case of p = 2.

Now we consider the case p > 2. Since, we have

(2.4.5) E:<EP<E®

for 2 < p < o0, it is sufficient to consider the case p = 00. Suppose f is an entire
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function of generalized type having finite generalized order p. Then

En < zeC (Z) kz_oak Fk(z)
< D loxl max|Fi(2)]
k=n+1

Since by Theorem 2.2.1, we have
lanl < e ™ H(n;%)_

and since we have

meaéchk(z)l <K(1+ e)k,

therefore the above inequality becomes

EX < K Z T HOE) (14 )

k=n+1

-1
S K e—(n+1) H(n+1;%) (1 +€)(n+1) [1 _ (1 ’:6)]

< OV K e~ (D) H(n+1;3) (1 +€)(n+1)

= In—— 2> (n+1) H((n+1):%)

Eoo

n

or

1 1
- ®) >~ .
ﬂ( n+11nEn)_ﬁa(n+1)

Since o € LY, proceeding to limits, we get

a(n)
I <p.
oo B(—L ) ~F

In view of inequalities (2.4.5) and the fact that (2.4.1) holds for p = 2, this last
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inequality is an equality. This completes the proof of Theorem 2.4.1. O

Theorem 2.4.2. Let 2 < p < 0. a(x), B8~ z), v{z) € L°; and p be a fized number,
0 <p < oo Set Hz;o,p) =t {[ﬂ‘l (o a(:z:))]”p}, then f is restriction to the
domain D of an entire function of generalized order p and finite generalized type T if
and only if

P

(2.4.6 li - (ﬂ) T =
4.6) e’ B {7 (del/r(BR)- T

7—

provided if y(z) € A and a(z) € A, dH(z;0,p)/dInz = O(1) as x — oo.

Proof. We prove the result in two steps. First we consider the case when p = 2.
Assume f is an entire function of generalized type 7 having finite generalized order p.

From equation (2.2.6), we have

n ,nf L 1 "
lan| £ d" ™ |H| = =, p ,
p T

where 7 = 7 + €. As before we mentioned in the proof of Theorem 2.4.1, we obtain

oo
Bal < D lax] max|Fi(2)].
k=n+1 Fed

Since from (2.1.3), we have
_ , .
gné\%c[Fk(zN <L (1+¢€)".

Therefore, we have

bal < L dk ekle [H (—- :
[bs} > p

k=n+1

, p)]-k (1+¢)F

5 ) =
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-1
4 n41 —(n+1) 1 1/p
a5 [l
? d [H (",;" » 7o P)]
n+1

, atl 1 —(n+1)
< OQQ) L' d"™D e [H( R p)] (1+¢)tD)

= Ibnll/(n+1) <

or
de'’? (1+4¢) n+1 1
o[/ E[H ( ’ ’¥”’)]

or

;@{ [v(de? (1+¢) Ibnl‘l/("ﬂ))]"} > %a(njl).

Since a(z), B~ (x), v(z) € L?, proceeding to limits, since € is arbitrary, we obtain

. a(3)
(2.4.7) T > llﬂgp 5l (@ fou] TP}

lim sup , a(,%)
n—oo B{[y(d el/* [ba[-1/")]°}

Suppose o < 0o. Then for each € > 0, 3 L(¢) such that for all n > L, we have

DI

where & = ¢ + €. As in the proof of Theorem 2.2.1, we obtain

Conversely, let

=d0.

[ba] < d™ e/? [H (% ;

SH

@<L e [H (% 2 p)] T 1) (Eli—l"e)

n=0
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Consider

[H(éf 1%)",’2;)],, = g(n/p)
e\ [H(5:30)]
= (9 ep) T (e 1)

o s (82) " - (i ()]

As n — oo, we have

oo (522 ] - ()]

Since y(z) € L°, by using the property of L° class, we have

o~ 7[(9(7;/@)_1/”] _ [ﬁ'l (; a(%))]w

Therefore, using above approximation of g(n/p), we get

o o n 1 ™ (diz]\"
NS L Yo [H (-,;, g-_;—p)] (3-_—) |

Consider the function ((z) = (Re/?)* [H (% ; =i p)]_z. Set its logarithmic

T4e !

derivative equal to zero. Then




If a(z),v7(z) € A, then by hypothesis of theorem, 3 A > 0, such that for z > z,, we

tn(n (3 #.))

dInz

have

< A

By replacing @ by 7 + ¢, the rest of the minimization process follows from the proof

of converse part of Seremeta [44, Th .2, Page 296]. Then we get,

M(R; f) < exp {(Ap+0() o™ {@+e) B[(v(R )}

Since a(z), v(z) € L?, proceeding to limits, we obtain

@43) 7= ST <

Combining (2.4.7) and (2.4.8), we obtain

(2.4.9) lim sup - (%)
n—oo B3 { [y (det/?lba] )}’ }

=T

The result now follows on using Lemma 2.3.2 for the case of p = 2.

Now we consider the other case p > 2. Since from (2.4.5), it is sufficient to consider
the case p = co. Suppose f is an entire function of generalized type 7 having finite
generalized order p. Then

EX < max
zeC

f(2) =3 ax Fu(z)
k=0

o

< Y lax] max|Fi(2)]

k=n+1
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Since by Theorem 2.2.2, we have

|an] < K d™ e/? [H (% ;

P

max [Fi(z) < K(1+¢),

=i =

and since we have

therefore the above inequality becomes

ErX < K Zd"e"/" [H(—-,% )] (1+¢)F
+

k=n+1

< K[d (l +6)]"+1 (n+1)/p [H( .

< O(1) K d**! er+D/e [H ("’J-’ -
P

—(n+1) .
, P)] (1+€)(n+1)
== (Eoo)l/(n+1) < d 31(" (1 + E) -
N LG R )
£ Y F

deV? (1+¢) n+l 1
(Eoo)l/(n-{-l) = {II( ) 3 ;1 P)]

SN -

or

B{ [7 (d e/? (1+¢) (Ego)—l/(uﬂ))]”} > % a(n —;_ 1).

Since a(z), B8~(z), v(z) € L?, proceeding to limits we obtain

T 2 limsup a(%)
= s ,6{ del/p Eoo) 1/n)]}

—(n+1) . 1/p
11 p)] {1_ d(1+¢)e
’ [

1.1
H(2 1,

il

In view of inequalities (2.4.5) and the fact that (2.4.6) holds for p = 2, this last

inequality is an equality. This completes the proof of Theorem 2.4.2.
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Chapter 3

Approximation of Entire Functions
of Two Complex Variables

In the first section of this chapter we study the approximation of continuous func-
tion f(z.y) on the domain [—1,1] x [~1,1] by homogeneous polynomials has been
considered. Necessary and sufficient conditions for f(z,y) having analytic function
extension [(zi, z3) of two complex variables have also been obtained in terms of the
growth parameters. In the next section, we study the polynomial approximation of
entire functions of two complex variables in Banach spaces. The characterizations of

order and type of entire functions of two complex variables have been obtained in

terms of the approximation errors.

3.1 Introduction

Let f(x) be a real valued continuous function defined on [-1, 1] and II, the set of

real polynomials of degree at most n.Then

E.()) = inf |[(J =p)lLeof-1y 7 =0,1,2..,,

pell,

denotes the minimum error in the chebyshev approximation of f(x) over the set II,.

Bernstein (3, p. 118], proved that

lim VE, =0

Th== OO
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if and only if f(z) has an analytic extension f(z) such that f(z) is an entire function.
Later, Varga [65, p. 176], proved that f(z) has entire function extension f(z) of order
p if and only if

. nlnn
hmsolgp :-_IT(f) = p.

Further f(z) has an analytic extension f(z) such that f(z) is an entire function of

order p and type 7 if and only if

lim sup Ef‘ (f) = epr.
n—oo
In this chapter we consider the approximation of real valued continuous functions of
two variables in terms of the minimum error defined as follows. Let f(z,y) be a real-
valued continuous function defined on the square —1 < z,y < 1 of R2. We consider
the class II,,, , of all real homogeneous polynomials in {z,y) of degree at most m and

n in x and y respectively. Define the error

BLD  Bual)= i I =Pllgmisye  formn=0,12..

We derive conditions under which the function f(z,y) can be extended to an analytic
function f(z1, 2;) of two variables 2; and 2 in the poly disc |z1| < |pi1l, 22| < |p2l,
1 < p3 < p2 < co. To study the approximation of functions of two variables, we
introduce the polynomials of least deviation from 0 on [-1,1] x [-1,1]. For one

variable, these are known to be [36, Th. 11}, the polynomials given by :
pn = 27"MC, ().

Where
(2 + VD" + (¢ = V)"

Cn(z) = 5

On substituting z = cost, we get C,,(z) = cosnt.

Let f(x,y) be a continuous function defined for -1 < z < 1,-1 <y < 1. We
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consider its expansion on [—1, 1]? into series of Chebyshev polynomials. Thus

(3.1.2) flz,y) = —g— ZZQ,”“ (T Y)-

m=ln=]

Where (', . (2, v) is a polynomial in x and y of degree m and n respectively. We write
x = cost; and y = costy. It is easily seen that f(z,y) is an even, periodic function of
period 27 with respect to both variables ¢; and f, and can be expanded in a double

Fourier series
f(costy, costy) = ZZ(),” n cOs Mty cos nity.
m=1lm=1

Where

1 J ok

Qg = —2/ ] - f(costy, costy) cos mty cos ntadt,dts.

T l1=—mr Jip=—m

Substituting cost; = x and cost, = y, we get the required expression (3.1.2).
Next, we define certain Banach spaces of two complex variables as follows

Let H,. q¢ > 0 denote the space of functions f(z;,22) analytic in the unit bi disc

U= {2.20€C:|n| <1, |2] <1} such that

1, = | lim  Mo(f;71,72) < 00,

1 7r kg ) . 1/q
My(f;r1,7m2) = {-1'772'/ f [f(r1et rpet?) |9 dtldtz} :

and let H;, g > 0 denote the space of functions f(z;, 22) analytic in U and satisfying

where

the condition

. 1 . l/q
W = {_'5/ / |/ (21, 22)[7 (lfl;l’lf‘llfl:"".’d:‘/Z} < oo.
T2 Jzl<t Jlzl<t
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Set
e, =Ifllae = sup{lf(z1,22)] : 21,20 €U}

H, and H, ; are Banach spaces for ¢ > 1. In analogy with spaces of functions of one
variable, we call H, and H, ; the Hardy and Bergman spaces respectively.

The function f(z;,22) is analytic in U and belongs to the space B(p, ¢, k), where
O<p<g<oo,and 0< k < 00, if

1/x
lnan={ | : / {1 = ra)(1 = ) R g )i} <oo

for 0 < kK < 00, and for k¥ = oo,
[ fllpg.00 = sup {[(1 — 1) (1 — ra)}/P=HD=1 M(f,71,m5) 1 0 <rp,12 <1} < oo

The space B(p, q,«) is a Banach space for p > 0 and ¢,« > 1, otherwise it is a

Fréchet space. Further, we have
(3.1.3) H,C H,=B(q/2, q, 9), 1<q< oo

~ Let X be a Banach space and let B, ,(f, X) be the best approximation of a function
f(z1,22) € X by elements of the space P that consists of algebraic polynomials of

degree < m + n in two complex variables :

(3.1.4) Epn(f, X) =inf {||f —»lls ; » € P}.

Notation : For reducing the length of expressions we use the following notations
in main results. '
BY*[(n+ 1)k +1; w(1/p ~ 1/2)] = Bln,p,2,4]
BY*[(m+1r+1; k(1/p—1/2)] = Bm,p,?2,+]
BY¥[(n+1)s+1; s(1/p~ 1/q)] = Bln,p,q, ]
BY*|(m+ 1)k +1; w(1/p—1/q)} = Blm,p,q,x).
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3.2 Growth Characterizations in [—1,1] x [-1,1]

In this section first we prove the the necessary and sufficient condition the function
f(z1, 22) to be entire and then we obtained growth characterizations of order and type

on the domain [~1,1] x [~1,1] in terms of approximation errors. We now prove

Theorem 3.2.1. Let f(x,y) be a real valued continuous function defined on [—1,1]2.
Then f(z,y) has an analytic extension f(z1,2;) such that f(z1, z2) is an entire func-
tion, if and only if |

(3.2.1) lim ET(f) = 0.

m,n—900

Proof. First we show that, if f is analytic in Ds,, 1 < § < 00,1 < 7 < o0, where
Dy, is the poly ellipse {(wy,w3),w; € closed elliptic region in the z; plane bounded
by ellipse F5, with foci (£1,0) and sum of the semi axes is d;, similarly wy € closed

elliptic region in the z plane bounded by ellipse /75, with foci (£1,0) and sum of

semi of axes equal to 2} then

1
(3.2.2) lim sup E,&{",T"’ (f) <=

mn—oco n

We begin by considering the expansion of f(x,y) given by (3.1.2).

Since |Cyun(z,¥)} £ 1 for =1 < @,y < 1, we have from (3.1.2),

(323) Emnlf Z Z |k l-

I=m+41k=1

Now we estimate |axy|. The substitution 2; = expit; , zo = expit; in the integral for
ax, gives the line integral along the circles {z] = 1, |z5] = 1:

(3.2.4)

owam oy [ [ pETAT AT T @ da dn b
, (‘"-1)2 I.S:Ql:l lzII:I 2 k 2 2 2 27 29 )
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We take 01,09 with 1 < §; < 4,1 < d2 < 7. Consider the function

21+ 2171 29+ 2971
9(21122)=f(1 21 )2 22 )

in the closed rings R; and R, bounded by the circles Cy : |2;| = 6, 7%,

Ca: |z1| = 61,Cs : |z3] = 627, Cy : |21] = 85. The annular regions &' < |z] < &,
and 8571 < |z3| < 6, are mapped to ellipses Es, and Ej, by the transformations
wy = 211%1‘_‘ and wy = QL;‘LI respectively. Where sum of semi-axes of Ej, is &,
and sum of semi-axes of Ej, is d2. Since f(wi,ws) is analytic in D, it follows that
g(21, 22) is analytic in the poly disc {(z1, 22),0 < |21] < 01,0 < |22| < b2}

In order to obtain an estimate of a;;, we now transform the path of integration. We
split the integral (3.2.4), into four parts. The integral containing z7*, 2z, is taken
over a circle with a large radius, and for the integral with z{‘ , 25, we take a circle with

a small radius. Thus,

a; = / / 9(21, 22) 215 1 2" Mdzyd2g
' 27TZ Cs JCy
(k—1),, I-1
21,22)2 2o "dz1dz
+2W1/(3lgg(1 2)1 2 1G22
+ / / 9(z1, 22) 21" 12V d 2 d2y
27r7 c.Je

+ 5 / / 9(z1,22)21~ k=1) 3, ==z, d2,.
cu /e,

Let M be the maximum of the absolute value of f(w;,w2) on Ds,, then the absolute

value of the first integral is not greater than

1 1\® D\ —kg 1
2_7I'M(5_1) (E) 27'('(51 62 =M(51 (52 .

In the same way, the remaining three integrals are majorized by M 6,7%8,7¢, and we
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get |akl < AM&,7%6,7!. Then, by (3.2.3),

0 oo AM
Ena(f) < 4M 8,7k, = Mé, ™5,
ma(NSAM D 3 67 = Ty M

Hence

'"M/Em,n(f) < Mllf(m'*"ﬂ)(gl-(m+1)/(m+")52“("+1)/(m+").

Proceeding to limits, we obtain

sy /) < 8
mgii‘g)m m,n(f) >0 02

Since §; and J, are arbitrary, we get (3.2.2). The converse follows in the same manner

and the result is proved. This completes the proof of Theorem 3.2.1. a

Next wé obtain the characterization of order of entire function f(z;, z;) in terms

of the approximation error E, ,..

Theorem 3.2.2. Let f(z,y) be a real-valued continuous function on [—1,1)%. Then

My,
(3.2.5) lim sup In(m?n")

mnosos ~ 1 Epn(f)

Where o is a non-negative real number, if and only if f(z,y) has an analytic extension
(21, 22), which is dan entire function of order o.

Proof. First, we assume that f(z,y) has an analytic extension f(2, z2), which is an

entire function of order ¢(0 < o < %0). For each m,n > 0, we have

4B(p,n)
3.2.6 Enn(f) < r
( ) L n(f) pmnn(p —_ 1)(77 —_ 1)
for any p,n > 1, where B(p,n) = max,, ¢, zek, |f (21, 22)|, and E, with p > 1 denotes
the closed interior of the ellipse with foci (%1, 0), half-major axis ‘%;12 and half-minor
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axis f%l .Simillarly E, with n > 1 denotes the closed interior of the ellipse with foci
(£1,0), half-major axis 1’7—22—;532 and half-minor axis 5—"—;;—11 The ellipse E, is bounded
by the closed disks D;(p) and Dy(p) in the sense that

_ p°—1 _ pPP+1
Di(p) = {zl ] £ % } C E, C Dy(p) = {zl tz] < 55 |

Similarly, ellipse E, is bounded by the closed disks D3(n) and D4(n) i.e.

P 241
Ds(n) = {22 t 2o £ 7 o } C B, C Dy(n) = {22 2| < n?n }
From these inclusions, it follows by definition that

p2+1 n2+1
20 ' 2p

(3.2.7) M; ) < B(p,n) £ Mf( ) Ypo,n>1

Consequently, from (3.2.7), we have for each m,n > 0,

: M f’z_'*l,f_**_l
(3.2.8) Emn(f) < 15 )

Pt e — 1)(n—1)

for any p,n > 1. Since f(21, z2) is by assumption of order o, given any ¢ > 0, there
exists an R(€) > 0, such that My(ry,m9) < exp (r179)°* for all 1,75 > R(e). Thus
2 2
dexp{(52)7(5E)+)
pr(p —1)(n — 1)

(3.2.9) Enn(f) £

for all p,7 > 4R(¢€), and all m, n > 0. The right hand side of this inequality, considered
as a function of p and 7 for fixed m, n is minimized by choosing p = 4m/(@+e)

n = 4n'/+e) and this choice of p, 7 is compatible with the restriction p,n > 4R(¢)
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for all m,n sufficiently large. For these choices of p and 7, we have
FA IV (1)
20 2n

-1 o+4€ =1 + £ 23
_ (2m1/(o+e) 4 _’Z"_.__g_"_ﬂ) (an/we) + Z_‘___fg:_‘.).)

~ 47 mn.

Hence we have

~ 4exp[d”temn]

4(m‘ﬁs+m)[m(m+1)n(n+1>]n‘i:7 '

Enn(f) <
Proceeding to limits, we have

In(m™n™)
lim sup ———p—ie < g +e.
m,n-—oog - 11’1 Em’n (f)
As e is arbitrary, and f(2;, z2) is of order o, it follows that there exists a finite number

8 > 0 such that

Ay M on Th
(3.2.10) lim sup —20PT)

- =p<o.
mn—oo — In Em’n(f) ﬁ - g

Then it follows that for any given ¢ > 0, there exist positive integers mo(€) and no(e)

such that

1

(3.2.11) Emn(f) S 75707679

for all m > mo(¢e), n > ng(e), and from (3.2.1), this means that f(z,y) can be ex-

tended to an entire function f(z;,23). For each m,n > 0, there exists a unique
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polynomial pm ,.(z,y) € I, such that
“f - pm,n“L“[—l,lP = Em,n(f), m,n = 01 17 2)

By triangle inequality,

”pm+1,n+1 - pm,n”L“[—l,lP is bounded by 4Em,n(f)'
Thus

(3.2.12) |Pms1ne1(21, 22) = Pmnl21, 22)| € 4Ema(f)p™ 1™+

for all 2y € E,, 23 € E,, for any p,n > 1, we can write

f(z1,22) = Foolz1, 22) +ZZ(pk+1 +1(=1, 22) ~ Pra(21, 22)),
=0 k=0

and from (3.2.12), it follows that this series converges uniformly in any bounded

domain of the hyper plane. Thus, from (3.2.12), we have

(3.2.13) [f(21, 22)| < |Poo(z1, 22)] +4ZZEkt(f)pk+l 141

l=0 k=0

for any 2z; € E,, 22 € E,, and consequently, from the definition of B(p,7), it follows
that

(3-2.14) B(p,n) < |Poo(z1, z2)| + 4D Y Exa(f)p* 0"+

=0 k=0

With the first inequality of (3.2.7), and (3.2.11), we can write this as

2___1 2_1
M,«(pzp ’n2n ) < | Poo(21, 22)]
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+ 4 Z Z Z Z B i(f)pFH gt

I<mo(e) k<no(e) 12mo(e) Ic<no(e)

+ 4 Z Yo+ > S | Bt

| i<mo(e) k2no(e)  I>mo(c) k>no(e) |
k+l l+1

< 0(1)+16 Z Z [kklzll/(ﬁ+c)

I>mo(e) k>ng(e)

Applying Theorem A to the series on the right hand side of above equation , we see
that the series representation is an entire function of order B + €. Thus there exists

an R(e) > 1 such that

- P =1 n-1 3 (o826 (B+2¢)
(3.2.15) My 5= "% < Prgmo(py 1) + exp (o +2n(+29))

for all p,n > R(¢), where

ﬂomo(psn) |P00(z1,22)|+4 Z Z E'“ f)pk-l-l 14+1

I<mo(e) k<no(e)

is a polynomial. From(3.2.15), it then follows that

(3.2.16) lim sup LEIM

< B,
pN—00 1n (pm)

which shows that the entire function f(z, z2) is of order at most 8. Summarizing, if
f(z1,27) is of finite order o, then (3.2.10), is valid for some 8 with 8 < 0. If < 0,
the argument above leading to (3.2.16), shows that f(z;, z3) would be of order less
than o, a contradiction. Thus 8 = ¢ and the converse follows as well. This completes

the proof of Theorem 3.2.2. a

Theorem 3.2.3. Let f(z,y) be a real-valued continuous function on [—1,1]%. Then
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there exist constants o (positive) and o, 7 (non negative) such that

lim sup { (m™n"Eg, . (f)) } Yimin) - _ Qa

m,n—00

if and only if f(z,y) has an analytic extension f (},1, 23) such that f(z1, z2) is an entire

function of order o and type T. Where a = (ec7)27°.
Proof. From (3.2.8), for each m,n > 0, and for every p,n > 1, we have

P24+l 741
4M;( 2-; »%jf‘)

(e —1)(n—1)

Emn(f)

Since by assumption, f(z1,22) is of order o and type 7, given any ¢ > 0, there exists

an R(e) > 0 such that M;(ry,7r2) < exp {(7 +€)(r{ +rJ)} for all 71,72 > R(e). Thus

dexp{( +{(52)" + ()}
prr(p—1)(n—1)

(3.2.17) Enn(f) <

for all p,7 2> 2R(€), and all m,n > 0. The right hand side of this inequality considered

as a function of p and n for fixed m,n, is minimized by chooSing o 2(6(:_;6))1/ 7

n = 2(0(;‘+€))l/ ?  and these choices of p and n are compatible with the restriction

p,m 2> 2R(e) for all sufficiently large values of m and n. For these values of p and 7,
2 1 o 2 1 4
p°+ (T +
2p 2n
_ m 1+1 r+e\° U+ n 1+l r+e\’7\
ol +0) 4\ m o(T+¢) 4\ n

m+4+n
m(l +0(1)).

we have

Q
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Hence,
{o(r + €)}™+"+2/7 exp {(m + n)/o}
2m+n+2m(m+1)/an(n+1)/a

Enn(f) <4

. [+ exp(m +n)
B s o[ 2GR SRty

On proceeding to limits, we get

limsup {(m™n™)EZ, ()} < [eo(r +€))277
m,n—oo
As ¢ is arbitrary, the assiu‘nption that f(z1, 29) is of order ¢ and type 7 implies that

‘there exists a finite x > 0 such that

(3.2.18) limsup {(m™n")E2, ()} = x < . .
m,n—00

From (3.2.18), it follows that given any € > 0, there exist positive integers m(e) and

n(€) such that

(X + 6)(m+n)/¢r
mm/&nr:)a %

(3.2.19) Ena(f) £

for all m > m(e),n > n(c). With the first inequality of (3.2.7), and the inequality of

(3.2.13), we can write this as

2 -1 72—1 _
M,("’ 1T ) < Pl 443 S Bu(f)eig

l<n(e) k<m(e)

N .4 Z E {(X-|-e)(k+l)/0pk+1‘r)l+l}(’Ckll)-l/a.

I>n(e) k>m(e)

Applying Theorem B to the infinite series on the right hand side of above equation,

it follows that it represents an entire function of order ¢ and type (x + €)/es. Thus,
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there exists an R(e) > 1 such that

(3.2.20) M,(p i ! = 1) < Pum(p,m) ; exp {(x + €)(ea) (o +7°)}

for all p,n > R(e). where

Pam(p,n) = |Poo(21, 22)| + 4 E Z Eyi(f)p*+in+?

l<n(e) k<m(e)

is a polynomial of degree at most m(e) and n(e) in p and 7. From (3.2.20), it then

follows that

(3.2.21) lim sup 2Mr(e:m)  x2

< <T
pa—co (P +1°) €o

which shows that the entire function f(z),22) is of order ¢ and type at most 7.
Summarizing, if f(z1, 22) is of order o and type at most 7, then (3.2.18) is valid for
some x with x < a. If x < ¢, the argument above leading to (3.2.21) shows that
J (21, z2) would be of order o and type less than 7, a contradiction. Thus a = x and
the circle of reasoning is complete for the converse as well. This completes the proof

of Theorem 3.2.3. 0

3.3 Growth Characterizations in Banach spaces

In this section, we have obtained growth characterizations of order and type of entire
functions of two complex variables on certain Banach spaces in terms of approximation

errors. Now we prove

Theorem 3.3.1. Let f(z1,22) = Y 17 o @mm 20" 23, then the entire function
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f(21,22) € B(p,q, ) is of finite order p, if and only if

(33.1) p=limeup ——an 02D
mn — 0o lnEm-ﬂ(va(p:q,K))

Proof. We prove the above result in two steps. First we consider the space B(p, g, %),
g=2 0<p<2and k> 1. Let f(21,22) € B(p, g, x) of order p. From Theorem A,

for any € > 0, there exists a natural number ngy = ng(€) such that
(3.3.2) (@] € m—™ete nMPte ;o > py,

We denote the partial sum of the Taylor series of a function f(21, z2) by

m .
Tm,n(f, 21, 2'2) = 51=0 32“0 aJh_anlZ% We write

(3.3.3) Em,n(fa B(p,2,k)) = | f — Tm,n(f)”P,z,N

1/x

/2
{ / / {(1=m) (1—r)““"’"’2"‘(22 o r%jzlaj,lez) drydrs

. J2

where

§:§:2j1 272 2 _ E: }: 271 252 2
Ty To |a'.7'1,7'2| "“'Sl + S2 + Ty To Iahdsl

J1 g2 Nri=m+1 jo=n+1

m o0
— 251 ,.272 2
".E : E : G N

J1=0ja=n+1
00 n
E : 251 2]2 2
E rl |a.71rJ2|
Ji=m+1 jg=0

Since S), Sz are bounded and 7,72 < 1, the above expression (3.3.3) becomes

) 00 oo 1/2
Em,n(f,B(p,z,n))SC{ /0 {(1-e--)““/”“’z"l%"*”"dr} { > 3 lajl,hP}

j1=m+1 j2=ﬂ+1
77

T
&



where

1 1
{/ {(1- 7ﬁ)m(l/za—l/2)-l},.(s+1)nd7.} = {/ {1~ 7*1)"“/“"1/2)‘1}r§m+1)‘dr1} x
0 0
1
{/ {(1 _ Tz)}fc(l/p—l/Z)—l T§n+1)nd’7‘2} .
0

Therefore,

o0

_ 00 1/2
(3.3.4) Em,,,(f,B(p,zn))sGB[m,p,Zn]B[n,p,Zn]{ >y Iajl,j2l2}

J1=m+1 jo=n+1

where C is a constant and B(a, b) (a,b > 0) denotes the beta function.

By using (3.3.2), we have

S el < 5 S
o T pte 5 ote
|a11,12| < 11 J2

j1=m+1 jz=n+1 Jji=m+1 j2=n+1
s ~24a hd —2h
> pte > pte
< E I E : J2
Ji=m+1 J2=n+1

< O(1) (m+ 1)—2(m+1)/p+e (n+ 1)—2(n+1)/p+e'
Using above inequality in (3.3.4), we have

Enmn(f,B(p,2,5)) < C Bim,p,2,x)Bn,p,2,k] (m+ 1)"mHD/pte (4 1)~ (0 pte,

In[(m + 1)™+1) (n 4 1)+

= pte2 —ln{Em,n(f’B(p,Z K-))} +ln{B[m,p,2; K]} + ln{B[n,p,2,l€]}.

Now

|= I((n+ s+ DC(s(1/p — 1/2))

Bl(n + 1)k + 1;£(1/p — 1/2) T((n+1/2+ 1/p)r + 1)

Hence

e—[(n+1)x+1][(n + I)Ka + l]('n+1)h+3/2r(1/p _ 1/2)
é[(n+1/2+1/p)n+1][(n +1/2 +1 /p)K + 1](n+1/2+1/p)x.+3/2'
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Thus
(3.3.5) {B[(n+ Kk + 1;x(1/p — 1/2)]}1/ "+ = 1,

Proceeding to limits, we obtain

, In(m™ n")
(3.3.6) p 2 limsup g . B®, 2,1}

For the reverse inequality, since from the right hand side of the inequality (3.3.4), we

have
(337) am+l,n+1| B[ma D, 2: K'] B[n’ b, 2) K’] S Em,n(f) B(py 2’ K’))’
we have

In(m™ n") In (m™ n")

—lnE‘mn(f,B(p,2 K)) — —1n|am+1,n+1| +ln{B[m ?,2,k]} + In{Bn,p,2,x]}

Proceeding to lim’its, we obtain

. ln(m’" n")
(3.3.8) MMSUP TTn B (f Bo 2. %)) =

From (3.3.6) and (3.3.8), we get the required result.

In the second step, for the general case B(p,q, k), ¢ # 2, we have

(3'3-9) Em-ﬂ(f> B(p, q, ""’)) < ”f - Tmm(f)”P,q,N

1/k

x/q
{ [ [ = a=ryan ""“(ZZW‘ ||) dno:rz} ,

n o J2
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where

o0 o0
i1 ,.272 2 __ 25 ,.252 2
> > i ri®la P =5 + Sa+ DR WA - PR L

J1 Jj2 1=m+1 jo=n+1

m o0
— 2j1 252 12
Sy = E : E : Ty To lajl,le

J1=0ja=n+1

o0 n
— E § : 21 272, . .12
Sp = T Ia’sz I :

FSr=m+1 jo=0
Since S3,5; are bounded and r,7; < 1, therefore the above expression (3.3.9)

becomes

1 0o 0o /¢
Enn(f,B(p,q,k)) < c’ {/ {1- r)“(l/P“l/Q)—l}r(s+1)nd,r} { Z Z |aj1’j2|4} ’
0

Ji=m+1l je=n+1

where

! 1
{/ {(1 — ,»)n(l/p—l/q)—l}r(s+1)ndr} = {f {(1 - Tl)K(l/p—l/q)—l}Tgm-}-])mdrl} v
0 0
1
{/ {(1 _ ,,,2)}&(1/1’—1/?)—1 rgn+1)ndr2} .
0 .

Therefore

(3.3.10)

oo oo /4
Emn(f,B(p,q,x)) < C B[m,p,q,x] B[n,p,q,rc]{ > > Iajl,jzl"} ;

J1=m+1j2=n+1

where C' is constant and B[m, p, ¢, k] is Euler’s integral of first kind. By using (3.3.2),

we have

c- G * -gqj 00 o
Do 2 lwalt < Y j79 3 7

J1=m+1 jo=n+1 J1=m+1 Ja=n+1

< 0() (m+ 1) (n+ 1) B
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Using above inequality in (3.3.10), we have

Ema(f,B(p,q,5)) < C' Blm,p,q,} Bln,p,q, k] (m -+ 1)~m+D/e+e (n 4 1)=(+D/pe,

. Imm+1)"t 4+
= ptez —In Epn(f,B(p,q,5)) + In{B[m,p, ¢,x]} + In{B[n,p,q,x]}

Proceeding to limits, we obtain

. In (m™ n")
3.3.11 > lims N sninll. S . )
( ) P = SR TIn Bmnl/, B(p, 0, %))

Let 0 < p<q¢<2, and k,¢ > 1. Since
Emn(f,B®1,q1,%1)) <2V V0 [x (1/p — 1/q)]Y/* =" Epn(f, B(D,q,K)), -

where p; = p, ¢1 = 2 and k; = k, and the condition (3.3.1) is already proved for the

space B(p, 2, k), we have

L In (m™ n™) ) In (m™ n™)
3.3.12) limsu — e > limsu e = p.
( ) m,mn — orc)> - ln Efn,u(f, B(p7 Q7 ﬁ))) - m,n —» Olz - In Em,n(fv B(P, 2, K’)) p

Now let 0 <p < 2 <¢q. Since
M2(f) T1, T2) S Mq(f’ Tla'r?)a 0 < 1, T2 < la

therefore

1 1 1/x
(3.3.13) Ema(f,B(p,q,x)) = {/; j(; {1—r)(1- 7‘2)}"(1/"'1/")'1 Qd?"]d’f'z}

2 Iam+1,n+1| B[mv »9q K] B[n7p) q, K‘]v
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where Q = inf [Mf(f — p;71,72) : p € P). Hence we have

In (m™ n™) S In(m™n")
~InEnn(f, B, g,5)) ~ —Inlamirn| + In{Blm,p,q,«]} +1n {B[n,p,q, ]}

Now proceeding to limits, we obtain

. In (m™ n™)
N ‘ > p.
(3.3.14) A i B, BE ) 2

From (3.3.11) and (3.3.14), we get the required result. This completes the proof of
Theorem 3.3.1. a

Theorem 3.3.2. Let f(21,22) = 3 o .o Ama2(*2%, then the entire function

f(z1,22) € H, 1is of finite order p, if and only if

. In(m™ n")
3.3.15 = limsu .
( ) b mmn — oIc)> - ln Em,n(f; Hq)

Proof. Let f(z1,22) = Y on o0 0ma2"25 € Hy be an entire transcendental function.

Since f is entire, we have

(3.3.16) lim  ™*%/|apm.| =0,

m,n — 00

and f € H,, therefore

Mq(ﬂ TI’TQ) < 0o,

and f(z1,22) € B(p,¢,k), 0 <p < qg<o0; ¢,k > 1. By (3.1.3) we obtain

(3.3.17) Em,n(faB(Q'/z:‘Qa 7)) £ GEmal(f, H,;), 1<g¢< .
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where ¢, is a constant independent of m , n and f. In the case of space Heo,

(3.3.18) Enn(f,B(p,00,0)) £ Enn(f,Ho), 0<p<o0.

From (3.3.17), we have

]

lim sup ln(mm nﬂ)

mm—oco = INEmalf, 'q)

litn sup _In (m® n7)
ma— oo — I Dm,n(faB(Q/2 QaQ))
Py 1 €£qg < o0,

(3.3.19) £(f)

Y

v

and using estimate (3.3.18) we prove inequality (3.3.19) for the case ¢ = 00

For the reverse inequality

(3.3.20) ' N <p

since 7 ‘
EmalfH) <O 3 3 lannl
j1=m+1 je=n+1

using (3.3.2), we have

Em,n(fs Hq) < 1) Z Z jl P+c - I-He

11-m+1 Jz—ﬂ+1

<om YA Y a*

1=m+1 Ja=n+1

< OQ1) (m+ 1)"m+D/ete (n 4 1) (n+1)/p+e

In [(m + 1)+ (n + 1)(n+1)]
~1In [Em,.(f, )

Proceeding to limits, then we get (3.3.20). From (3.3.19) and (3.3.20) we obtain the

= p+e>

required result.
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Now we prove the sufficiency part. Assume that the condition (3.3.15) is satisfied.
Then it follows that In [1/Ema(f, H)Y™™ — 00 as m,n — oo. This yields

m}tlr—xoloo (m+"V) Em'"(f’ HQ) =0

This relation and estimate |ami1,n+1(f)| < Emn(f, Hy) yield the relation (3.3.16).
This means that f(z;, 22) € H, is an entire transcendental function. This completes

the proof of Theorem 3.3.2. O
Theorem 3.3.3. Let f(z1,22) = Y o 1m0 Gmn 27 25, then the entire function

f(21,2z2) € B(p,q,&) of finite order p, is of type T if and only if

(3.3.21) T = 1 limsup {m™ n" Ef, .(f, B(p,q, fc))}#rﬂ

Cp m,mn —» 00

Proof. We prove the above result in two steps. First we consider the space B(p, g, &),
g=2,0<p<2andk >1. Let f(2) € B(p,q,«) of order p. From Theorem B, for

any € > 0, there exists a natural number ny = ng(€) such that

m+n

(3.3.22) |mn| ST 0P (e p (14 €))7

By using (3.3.22), we have

S S el £ S S 5T e 4 g

J1=m+1ja=n+1 Ji=m+1 ja=n+1
X, -2a 2j a5 2ip
< Z 5 ° lep(t + 6)]71 Z 72 ste [ep(T + €)™
Ji1=m+1 Ja=n+1

< 0(1) (m + 1)~ Am+b/p (n + 1) 2D olep(r 4 6)] sontnsn)
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Using above inequality in (3.3.4), we have

Ef, (£, B(p,2,5)) < C* B*[m,p,2,k] B*[n,p,2,K] Y [e p (1 + )] ™™D,
where Y = (m 4 1)~(™+D (n 4+ 1)=(*1_ Proceeding to limits, we have
(3.3.23) 21- limsup {m™ n* E£,,(f, B(r, 2 )} < .

For the reverse inequality, since from the right hand side of (?7?),
Iaﬁl-!-l,ﬂ.-lv-ll B['rn) p; 2) K] B[n) pa 2) K’] S Em,h(fa B(pa 2! N))
we have

m/(m+n) ,n/(m+n) lam+1,rl+1|ﬂl(m+n) BUA+ay [m, D, 2, K,] Bl [n, D, 2, ,c]

< {Efnn mm ,nn}l/(m+n).
Proceeding to limits, we obtain

(3:3.24) r <= lmsup {m™ n" B4 ,(f, B(p,2, )}

€EP mmn—-o0

From (3.3.23) and (3.3.24), we get the required result.
In the second step, for the genéral case B(p,q,k), ¢ # 2. By using (3.3.22), we

estimate
o ad 00 0 _ei1 _ajz b4
)DED DN TV AETED DI DIF N A 7 G
J1i=m+1 ja=n+1 j1=m+1 ja=n+1
2, -ia 4 o -in W
< ST i T leptr + N YD gy lenl(r + €)%
- i=ma+l Jo=n+1
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m+4n+2
< O(1) (m + 1)79 /P (4 1)79 (FD/p[ep(r 4 )] “=5

Using above inequality in (3.3.10), we have

E}(f,B(p,q,k)) S (C')Y B’lm,p,q,5] B[n,p,q,K] Y [e p (7 + €)%,

where Y = (m+1)~(m+) (n+1)-(*+1) Now proceeding to limits, since € is arbitrary,

we have

(3.3.25) L limsup {m™ n* B5,.(f, B(p,q, ¥)}7 < .

€EP mu— oo

Let 0<p<¢<2 and x,q > 1. Since
Em,n(fa B(ply QI)Kfl)) S 2l/q -1/q {K, (l/p - I/Q)ll/n__l/m Em,n(f’ B(p, q, K))

where p; = p, ¢1 = 2 and k; = &, and the condition (3.3.21) has already been proved

for the space B(p, 2, k), we have

limsup {m™ n" EZ,.(f,B(p,q,))}7= > limsup {m™ n" EZ, .(f, B(p, 2, ))} 7= = .
m,n — 0o m,n -+ 00
Now let 0 < p < 2 < ¢. Since, in this case we have

M2(f1 ’l’],’l"z) S Mq(fv 7‘11"'2)1 0< 7,72 < 11

therefore

limsup {m™ n" Ef, . (f,B(p, q, n))}m%n > limsup {m™ n" Iam,nl"}ﬁ?
m,mn — o0 mn — 00

(3.3.26) = epr.
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From (3.3.25) and (3.3.26), we get the required result. This completes the proof of
Theorem 3.3.3. 0

mn=0

Theorem 3.3.4. Let f(21,23) = oo, _08mn 20" 23, then the entire function

f(z1,22) € Hy having finite order p is of type 7 if and only if

(3.3.27) T = -é-}-l; limsup {m™ n" E2, .(/, Hq)};’_h"'

m,n - 00

Proof. Since f(z1,22) = S0 _yamn 27°23 is an entire transcendental function, we

have

; : m+n — o
(3.3.28) im Vlamal = 0.

Therefore f(2),22) € B(p,¢,%), 0<p < ¢ <o0; ¢, 2 1. We have

) = 2 tmup (o B0
(3.3.29) 2 — limsup {m™ n™ Ef, .(f,B(¢/2,q, q))} 7 =1
MR — 00

for 1 € ¢ < co. Using estimate (3.3.18) we prove inequality (3.3.29) in the case

g = co. For the reverse inequality

(3.3.30) §(f) <,

we have
o0

EnalfH)S 30 3 lana(f).

ji=m+1 ja=n+1

Using (3.3.22), we have

Ef (f,Hy) <0O(1) (m+ 1)~ (m+) (n+ 1)-(ﬂ+l) e p (T + C)](m-+»n+2)
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1
=  T+e> o {(m+ D)™ (n 4 1) Bp (f, H )}

Proceeding to limits, we have

(3.3.31) T2 -é-l; limsup {m™ n" E}, .(f, H,,)}Fl?ﬁ.

mmn — oC

From (3.3.29) and (3.3.31), we get the required result.
Now we prove the sufficiency part. Assume that the condition (3.3.27) is satisfied.

Then it follows that {E2, ,(f, Hy)}¥™*+" — 0asm,n — oo. This yields

m}gr—r}w (m+n)/Em’n(f’ Hq) = 0

This relation and estimate |am+1n4+1(f)| £ Emn(f, Hy) yield the inequality (3.3.28).
This implies that f(21,22) € H, is an entire transcendental function. This completes

the proof of Theorem 3.3.4. O
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Chapter 4

Approximation of Entire Functions
of Two Complex Variables Over
Jordan Domains

In this present Chapter, we study the polynomial approximation of entire functions
of two complex variables over Jordan domains by using Faber polynomials. The
coefficient characterizations of order and type of entire functions of two complex

variables have been obtained in terms of the approximation errors.

4.1 Introduction

Let I'y and I'; be given Jordan curves in the complex plane C and D;, Ej, j = 1,2,
be the interior and exterior respectively, of I';. Let ¢; map E; conformally onto
{w;j : |w;| > 1} such that ;(00) = 0o and ¢;(c0) > 0. Then by [15], for sufficiently

large |2;(, @;(2;) can be expressed as

21 1 Co
4.1.1 | = = — —_ =
( ) wy p1(21) 4 +¢o + o + p +
. 29 ' C' C’
4.1.2 Wy = @o(zg) = = 2424 .
(4.1.2) 2 = ¢a22) d2+c°+z2+z§+

where dy,dy > 0. Let us put D = Dy x Dy and E = E; x E, in C? and let the
function ¢ map E conformally onte the unit bidisc U = {|wy| > 1, jws| > 1} such that
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©(21,22) = @1(21) p2(z2) satisfies the conditions (00, 00) = co and ¢ (00, 00) > 0.

Then for sufficiently large |21], |22, ¥(21,22) can be expressed as

oc
2y 22 Cmn
4.1.3 = = —_——— —
( ) WiW2 (P(zl, Z2) dl d2 + m:n=:0 Zng'

An arbitrary Jordan curve can be approximated from the inside as well as from the
outside by analytic Jordan curves. Since I' is analytic, ¢ is holomorphic on I' as well.

The m,n th Faber polynomial F,, (21, 2z2) of I' is the principal part of (¢(21, 22))"*"

Mmoo\
Fm'n(zl._zg) = (;—1) (d—z) + ..

Following Faber [12] for the one variable case, we can easily see that as m,n — oo,

at (00, 00), so that

(4.1.4) Frnn(21, 22) ~ (91(21))" (92(22))"

uniformly for 2; € Ej, 2, € E; and

mn—o \ z1,22€I"

_ 1/{m+n)
(415) lim ( max ,En.,'n(zl’zz),) =1

A function f holomorphic in D can be represented by its Faber series

(416} f(zls 22) = Z Z am,nFm.n(zl» 22)

m=0 n=0

where
1 / / -1 -1 —(m+1)_ —(n+1)
U = Te—5 FleTH(wn), w5 (w2))w w dwdw,
(X3 (27‘_2)2 fwaj=rs J jwal=rz ( 1 ( ) 2 ) 1 2

and 1,7 < 1 are sufficiently close to 1 so that for j = 1, 2., ¢} ! are holomorphic
and univalent in |w;| > r; respectively, the series converging uniformly on compact

subsets of D. Let M (r1,72) = maxXs|=r; | f (21, 29)|, § = 1,2 be the maximum modulus
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of f(21,%2). The growth of an entire function f (21, 22) is measured in terms of its

order p and type T defined as under (7]

. Inln M(Tl, Tg)
4.1.7 lim su =
( ) ™ .rz—*olz In (ryr2)

’

, In M(ry,72)
1. 1 RSl == T
(4.18) ripmss T4+

for 0 < p <.

Let LP(D) denote the set of functions f holomorphic in D and such that

1/p
| fll ey = (%/Llf(ZI:ZZ)Ipdxldyldzzd'yz) < 00

where A is the area of D. For f € L?(D), set

E’ﬁl,n = Eﬁr-,n(f; D) = frnin ”j - Wffl,n“-’a”([))
m,n

where 7,5 is an arbitrary polynomial of degree at most m -+ n.

4.2 Order and Type

In this section we obtain the growth characterizations in terms of the coefficients

{amn} of the Faber series (4.1.6). We first prove

Theorem 4.2.1. The function f is the restriction to domain D of an entire function

of finite order p if and only if

™m,,n
(4.2.1) 4 = limsup 2

mn—oo In lam,nl '

is finite and then the order p of f is equal to p.
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Proof. Let f(z1,22) = Y mn=0@mnFmn(21,22) be an entire function of two complex

variables in z; and 23, where
1 - _ - -
Umn = 7572 / / fGe1 l(wl)) P2 1(w2))w1 (m+l)w2 (nH)dwldwz
(2m1) fwy|=r1 J jwa|=rz
with arbitrarily large r;,72. Then

lamn| =

1 / / -1 -1 -(m+1), —(n+1)
yZuny flor (w1), p3~ (w2))w w dwidws -
@117 Jysiors Jrosiers (01 (w1), 93" (w2))wy 2 1dws
Since from (4.1.1) and (4.1.2), we have

v1(z1) = w; => 901_1(101) =2

po(z2) = wp = t,o;l(wg) = 2.

(4.2.2) S |amn] £ M(ry,re) ri™ g™

where M(ry,m2) = maXs,<r, |f(21,22)|, t =1,2. |
Now we want to show that p > p. If 4 = 0 then p > p, since p is not negative. Let

€ >0 and € < u < 00. Then from (4.2.1), we have

—(p =€) ln|amnl < Inm™n”

(1 =

= ln|amn.| = - 6)(mlnm+nlnn)

for an infinite sequence of values of m and n. From (4.2.2), we have

InM(ry,12) > Infampn| +In(rry)
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1
—(M-" -E)(mlnm+nlnn) +mlnr+nlnre

N 1 _ 1
= m(lnrl— o) lnm) +n(lnr2— (“_*E) lnn).

After minimizing the right hand side of above ihequality, we have

Ty = (em)@%—?. Ty = (en)?‘il-‘?.

Substitute 7, and r4 in the above inequality, then we have

m n i+ rh e

InM(ry,72) 2 (M‘_e)+(u—.6) - e(u—e)

Since u — € is independent of 7, and 7y, therefore

p = limsup Inln M(ry, r2)

> u—e
71,7200 ln(Tl"'2) #

Since € is arbitrary, therefore we have
(4.2.3) p >

Conversely, let

. In(m™a™)
lim sup = =
man—-cs — 10 |am,n|

Suppose o < ¢co. Then for every ¢ > 0, 3 X(e),Y (¢) such that for all m > X and
n > Y, we have

lamal < K m™7% n”7%,

Since f(21,22) = Y o neoOma Fmn(21, 22), therefore

1f(z22) S K Y m 7% n~7% |Fp (21, 22))-

myn=0
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By using (4.1.5), for all z; € F; and z; € E;, we have

|Fnn(21, 22)| < K ([p1(21) )™ (lp2(22)])"

and by using (4.1.1)and (4.1.2), for all sufficiently large |2;| and |22|, we have

|21| |Z:z|
< < —,
lp1(z1)] < d— ¢ and lp2(22)] < dy— €

By applying these inequalities, for all sufficiently large |2;| and |22, we have

fna) <K S m e n7ak (fi‘lz) (dizilﬁ) _

m,n=0

Hence
M N r m s n
—m R 1
< L, ot o+e
M(ry,m) < Z—;Onz::()m n (dl—e) (dz—é)
oo 00 I r m ro n
+ Z Z m o+e mp ote ( ) . ( )
m=M+1n=N+1 dy—¢ dg — ¢
M oo - m r "
PR < < N —_n_
+ m ote N ote
mz=0n=ZN+1 (dl - 5) (d2 - E)
o) N r m rs n
—, _.n_ 1
+ m ote 1 ote ( ) ( )
m§+1nz=o dy—e¢ dz -— €
71 M To N
< A
M(TI)TQ) = dl—c) (d2_€)
> 3 n ) (Y
+ m o+c n—ﬁé ( 1 ) ( )
m=M+4+1n=N+1 dy— € dy—¢
r M 00 Ty n
G £ o)
Ty N o0 ’I‘ m
424 + C ( ) s ( ) )
( ) dp — € m§+l di —€



Let $, be the part of the above double series (4.2.4), for which m < (L )o+e,

dy—e¢

n < (Z2)°+. We estimate Y, by taking the largest value of (7 )M (z£2)Y. Then

da—€

z = 22 ZZ m- c+e n- a+z (Zl—_z) (d2 = 6)
1 <(?l_".Le)a+e <(a_"'z_)a+e

) (22_13:)0+e i (%3_!),4., ' .
< S ) ! (_2__) ? Zm“;ﬂ}; N ote
- dy — € dy— € —

- o( )" (—2-))

since the above series is convergent and is independent of r; and rs.
Let 3, contain the terms for which m > (F2)7*¢ and n > (Z2)7* and so in 3,

we have - dx -m

S = % ) m,,+.n.,+.(dl )”‘( )

do —
2 >(z?1L)c+¢ n>(ﬂ‘z_)c+e 2 ¢

m~Yo+ < 1/2 and F2-n~Y/7* < 1/2, and hence

< Dme/t < L

m,n

Let 3, be the part of the series for which m < (ZZL)7* and n > (£2,)°*¢ then

. m n
I S CONP R ek

3 m<(;fT’}:)a+c (3.2;"._2:)«+¢
Since
Z —n T
17’ L& .._.&_.2._— S 1
2r d2 —€
nz(;;;%;)”*
and

" m 71 yor+-2e
T () o,
‘ — €
m<(%)d+z 1

95



therefore
Z S (_ﬁ,’_‘i_ﬁ )a+2¢}
3

Let the remaining part of the above double series be denoted by }_, i.e. for m >

(;2;9—6)‘”" and n < (ﬁz—)‘”'e then

Z < O{e(dg—e )a‘+2c}.

» Further

2 — €

N
m

1 — €

1 M n ) " (2" o+2e
() B )

Hence, substituting these values in (4.2.4), we have

M(Tl,'f'z) < Z+Z+Z+Z+O{e(3§%)o‘+2g} + 0{6(&.211_1;)d+2¢}
1 2 3 "
<0 {e(—*)+(—z)}
< 0 {e(?ﬁé&%ﬁ)"“‘} |

Proceeding to limits and since ¢ is arbitrary, we have

. Inln M(ry, 73)
4.2.5 limsuyp ————MM = <
( ) r ,fz—*olz In (7‘17‘2)

From (4.2.3) and (4.2.5), we obtain the required result (4.2.1). O
. a | 14 3-1;;
Theorem 4.2.2. Let a = limsup,, . {m”‘n” (JEI':""&%) } If0 < a < oo, the

function f is the restriction to domain D of an entire function of finite order p and
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type 7 if and only if

(4.2.6) | a =eTp.

Proof. Since f is an entire function of finite order p and type 7, therefore
lf(wi'l(w:), w07 Hws))| < e(r+e(dr+elwr)+((dz+e)lwal)?

and from Cauchy’s inequality, we have

rr M P+ )P+ (dr el

IA

lam,nl

< r;mrz—vl (T} (di+e)r1)? o(r+e)((d2+e)ra)”

for all 7, 7o sufficiently large. To minimize the right hand side of this inequality, we

select

1 [ m ]1/” 1 [ n_ 1V
r = ' , Tg = — ‘ X
VT G e L+ o) "= Grelprre

Substitute r;, o in the above inequality, we have

(dy 4+ €)™ (da + €)" [ep(r + €)]m+7)/P

|(2m,n l S (’I’nmn")l/”

or,

_ |G| py Y/(m+n)
o T TL m,n < .
{m § ((dl + €)™ (dz + 6)") } Seelr+e)

Proceeding to limits, since € is arbitrary, we obtain

py 1/(m+n)
(4.2.7) lim sup {m’"n" (-Iaa'—""i) } < epr.

m,n-~+00 d"ln dg
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Conversely, let

Py V/(m+n)
lim sup —lp- {m’"n" (M) } = 0.

mmnu—oo € dT' dg’
Suppose o < co. Then for given ¢ > 0, 3 M (e), N (e} such that for all m > M and

n > N, we have
!am,nl <K m-"P /e d’{‘d’; [ep(a + 6)](m+n)/p.
Since f(z1,22) = Z:;::o Gmm Fmn(21, 22), therefore

f(enz) S K Y m™™Pn P dp dpdep(o + €)™ | (21, 20)|-

mn=0

From (4.1.5), by using the estimate of Fy, »(21, 22) in the above inequality, we have

= -m -n m m+n zl ™ lZl »
|f(z1,22)] < KZ m™™P n 7P g™ d3 [ep(o + €)}mH/P (,d_l_i_ﬁ> (__2___)

m,n=0 d2 —€
i _ _ di|z|\™ [ da2ze) \"
< K z : m/p =n/p {m4n)/p 1
B mn=0 " " [ep(a " e)] dy—-¢€ dy—€

oo
< K Y mme T fep(o + )] 4T 42

m,n=0

To estimate the right hand side of the above inequality, we proceeded on the similar

lines of proof of Theorem V of Bose and Sharma [7, p 224], and we obtain
|f(z1, 22)] < o{e(a+e)(r';+r§)}.

Hence
M (ry,73) < 0felsroi+a)y

— In M(rl,_rg)

<0o+e
i+ 1y

98



On proceeding to limits, we obtain

. In M(’I‘l, 7‘2)
. lim sup —— 12 <
(42:8) s P41 =

From (4.2.7) and (4.2.8), we get the required result. This completes the proof of
Theorem 4.2.2. 0

4.3 LP - Approximation

In this section we consider the approximations of an entire func¢tion over the domain

D. Consider the polynomials
Pimn(21, 22) = Ama2l"25 + ...(Amn > 0)
defined through the relation

1 -
3 / fD Pma(21, 22) Pri(21, 22) dzrdyrdzedys = b k-

By applying Carleman’s result [8] independently on 2; and z;, we have

m+ 1(n 1/2
(4.3.1) Pmnl(21,22) ~ ((""11)(, f*l_)AlAz)

o @1 (21) (1 (21))™ @a(20) (pa(z2))"

as m,n — 0o, uniformly for z; € E; and z, € E,. Any function f € L?(D) can be

expanded in terms of these polynomials as

(4.3.2) f(zly 22) = Z Z bm,n pm,n(zh ZZ)

=0 n=0

where

1 _ .
b = 1 / /D (21, 22) Pmn(21, 22) dx1dyr1dzadys

99



and the series is uniformly convergent on compact subsets of D. Applying Parseval’s

relation of one variable independently on m and n, we have

o oo 1/2
(4.3.3) El. = ( > ), lbk,t|2) '
k=mm+1 l=n+1
Before going to main results here we state and prove two lemmas which are more
useful in the proof of main theorems.

Now we prove

Lemma 4.3.1.
. In(m™n") . In (m™n")
(4.3.4) i QU S P Bl G Y 6

Proof. From (4.3.3), we have

lbm+1,n+1l S E?n,m

= —In |bm+1,n+1| >—In (Erzn,n)'

Proceeding to limits, we have

 mmre) . lo(mme)
- < “Tnlbynal
(43 5) E{gi‘g —In (E12n‘n) - lrlnl"r'lli\iop —In |bm,nl
Conversely, let
l MmN
imeup 2T =7

Suppose ¢ < co. Then for each € > 0, 3 M, N such that for all m > M, and n 2 N,
we have

[bmn] £ K m™ak nT
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so that

By < kY S kA
k=m+1l=n+1
o oo " L
< K Y 3 (ma1) (nt1)7o
k=m+1l=n4+1
, _2(mg41) “aen [ 117 1
= K(m+1)" % (n+1)7 - [1_(m+1)2/(a+e)] [1"(5"471“)“27‘(??3

< O(MK(m+1)~ 5 (n+ 1)~

Therefore

B2, < (m+ 1) (n+1)" R

= —In(B},) 2 = In((m+ ™) ((n+ 1)),

Proceeding to limits and since ¢ is arbitrary, therefore we have

In (m™ n") : In (m™n™)
43.6 o = limsup ————= > limsu ———
( ) mn-—»og —In |bmn| m.n-»og_l ( ,n)

From (4.3.5) and (4.3.6), we obtain the required result. This completes the proof of
Lemma 4.3.1. O

Lemma 4.3.2. For any p > 0,
(4.3.7)

1 | b | py 1/(m+n) 1 E2 pY V(m+n)
limsup — < m™n™ (—ﬂl) } = limsup — { m™n" (—"—) )
m.n—»og ep { drrd; mn—»ocla) ep drdy

Proof. From (4.3.3), we have

(Ibmsrnsn]) < (B )
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Since d;, ds > 0, therefore for all m,n > 0, we have
Ibm+1,n+1| ? < Egn,,n g
dapdy ~ \dl'd3
I \ 7 YO g2 \P)Ym
m..n m,n < m._n m,n
=${m“(aw>} -{m"(ww)}

1 - pY 1/ (m+n)
1 m™n" o] A < L m™n" 'E'%”".’ :
ep dpdy T ep drdy

Proceeding to limits, we have

(4.3.8) .
py 1/(m+n) 2 pY V/imntn
lim sup 1 {m’“n” (lb—m—;LI-) } < limsup — { m™n" (%’%) .
mmn—oo €EP d] d2 o mn—oo €0 dl d2

Conversely, let

or

1 |b | py 1/(m+n)
limsup — < m™n" (-—m——'f-) } =0.
MM£W{ dyd

Suppose o < co. Then for each ¢ > 0, 3 M(¢), N(e) such that for all m > M and

n > N, we have
bl < {(ep(o + €)™ m™™n ™} dray
so that

(E7271,n)2 < K i io: {(6p(0’+€))k+l k—kl-—l}2/P dikdgl

k=m+1i=n+1

2/p
di(m+1) dg(n+ 1)

IN

K { (epl(o + €)™+ (54 1)C40 )

2/p n
S O(I)K {(ep(a_ + 6))(m+1)+(n+1) (S + 1)—(3+1)} d?(m+1) dg( +1)
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form>ddiep(oc+e)andn>4ddjep (o +¢), 1
. e n2ae\2/°|
Where (s+1)70#) = (m-+ 1) (n-+ )04, X, = |1 - (S5E)"] " ana

2/p] !
Xy = [1 - ((E‘Zg_’:;fzmp) ] . Therefore

1/ "
E? <O()K {(ep(a+€))(vn+1)+(n+1) (s +1)—(3+1)} i dimty g+

mmn

Proceeding to limits, we have

(4.3.9)
1 Ib l pN 1/ (m+n) 1 E2 NP 1/(m+n)
= |i y — { Mt | Ll > lim —{mmp" | 2 )
o = limsup ep{ n (d{"dg) } v P (d'{'dg

From (4.3.8) and (4.3.9), we get the required result. This completes the proof of
Lemma 4.3.2. a

4.4 Main Results

Theorem 4.4.1. Let 2 < p < 0o. Then f is restriction to the domain D of an entire

function of finite order p if and only if

. In (m™n")
4, ]_ Y ——e. T :
(4 4 1) :::,Irlzf-}loop —-In (E#L,n) P

Proof. We prove the theorem in two steps. First we consider the case p = 2. Let us
assume that f is an entire function having finite order p. Then by Theorem 4.2.1, we

have

|amnl < K m™o% n 50,

Now, by considering the property of orthonormality of polynomials ppy . (21, 22), we
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have

Z Z asz//sz (21, 22)Pm.n (21, 22) dz1dysdasdy,.

k=m+1l=n+1

Hence

bl < j{: j{: lakal max | Fiu(21, 22)].

k=m+1l=n+1

Since, by (4.1.5), we have

max |Fy(21,22)] < K(1+ e)(k“)

21,29€T

by substituting all these values the above inequality becomes,

|bm,n| < K Z Z k";%i l—#(l-}—e)("‘H)

k=m+1l=n+1
< Km e n7pw (1 + ¢)mt)

for all sufficiently large m and n. Therefore, we have

—In|bmn| 2 In (m™n").

1
(p+e€)
Proceeding to limits and since ¢ is arbitrary, we obtain

(44.2) lim sup ————= In(m™n") )

mn—o0 ln Ib »ﬂl
Conversely, let

lim su w —
m.n—»og —In |bm.n|

Suppose o < co. Then for each ¢ > 0, 3 L(e); Z(¢) such that for all m > L and
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n > Z, we have

bnl < K m~3% 5%,

Since by (4.3.1), we have

[Pmn(21, 22)] < K (m+ 1720+ 1)1y (21) 2 (20) "o (22) 02"

for all z; € E; and 2z, € E,, we have

ley(z1)] € K, |@al22)] € K

where K', K" are fixed positive constants, and

|21

<
lor(z1)] < d—¢’

lpa(2)] £

for all 2y, 25 with sufficiently large modulus. Hence

|f(21,22)| < I{iim_'&%n'ﬁ(m*_ 1)1/2(n+ 1)1/2 ( |21| )m( IZgl )n

m=0 n=0 dl —¢€ dz —¢€
< K i im—-ﬁ-n——‘% |z1‘ " |22| "
B Sover: dy— ¢ dy—¢€)

To estimate the right hand side of above inequality, following the method used in

Theorem 4.2.1, we have

A[(T],T‘g) < Z+Z+Z+Z+O{e(%§:)ﬂ+h}+0{e(,ti_211_1.;)a+2z}
1 2 3 4
< ofel@) @™
< o{e(wﬁs‘faﬁ)w},
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Now by applying limits, we obtain

. Inln M(ry,79)
4.4.3 = limsu
( ) p rl,rz—oog ln (T1T2)

From (4.4.2) and (4.4.3), we have

, In (m™n™)
limsup ———— =
Mmoo — I Ibm,nl

By applying Lemma 4.3.1, we have

, In (m™n™)
4.4. st S
(4.44) o SUp (B2

Now we consider the case for p > 2. Since
%

(4.4.5) B, < ER,, < E%, for 2<p<o,

it is sufficient to consider the case p = co. Suppose f is an entire function of order p.

Then
m n
EX, < max |f(z,22) = DY aki Fru(zn, 20)
23,22€T
k=0 1=0
m (o] 0 n
< DY gl max |Fu(znz)l+ Y ) lal max |Fiy(21,2)|
21,22€0 z1,z2€l
k=0 l=n+1 k=m+1 =0
o0 oo
(446)+ Y > |l max |Fiy(a1, )]
21,22€T
k=m+1l=n+1

The first two summations in the above inequality (4.4.6) are bounded. It is sufficient

to estimate the last summation. Since f is an entire function of finite order p, therefore
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by Theorem 4.2.1, we have
|amn| < K m”Pven P

and

max |Fk,¢(zl, 2)] < (1+ e)k'H.
z1,22€l

Therefore the above inequality (4.4.6) becomes,

co 00
E2, < 3 % kRER (14 ek

k—m+1 l=n+1

(1+6)p+c k/(p+e) (1+C)f’+€ L/ (p+e)
K Z Z ( n+1

k=m+1l=n+1

((1 +€)p+e)1n/(p+e) ((1 + e)p+e)"-/(ﬂ+¢)
I( T VA A

m n

IN

IA

In (m™n™) ~ In(m™n") A
-In(Eg,) ~ [1/(p+e)]ln(mmn"‘)-an (m+n)ln(1+e)'

Proceeding to limits and since € is arbitrary, we have

l(mﬂ)

lim sup ) = <p.

mn—oo0 —In (

In view of inequalities(4.4.5) and the fact that (4.4.1) holds for p = 2, this last
inequality actually is an equality. Finally assuming (4.4.1) with p = oo, we deduce
from (4.4.5), that (4.4.1) will hold for p = 2 and hence that f is of order p. This
completes the proof of Theorem 4.4.1. O

Theorem 4.4.2. Let 2 < p < oc . Then f is restriction to the domain D of an entire
function having finite order p of type T tf and only if

| ER. _\PY 7
(44.7) lim sup {mmn" (ﬁ) } = epr.
) _

m,n—od
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Proof. We prove the theorem in two steps. First we consider the case p = 2. Let us
assume that f is an entire function having finite order p and finite type 7. Then by

Theorem 4.2.2, we have
lamnl < K m™% n™% d™ d2 (ep(r + €)™/,
Now proceeding on the lines of Theorem 4.4.1, we have

lbmal < K Y0 D7 TR U5 db dj (ep(r+ €)4HVP(1 + )4+

k=m+1 l=n+1
< Km=% n=% dr d2 (ep(t + 6))(m+n)/p(1 + 6)(m+n)

for all sufficiently large m and n. Therefore, we have

¥

M b l” < K(d] d)? (ep(r + €)™,

By applying limits, we have

bmal \ ) 7
(4.4.8) limsup < m™n" | /= <epr.
m,n—oo deg
Conversely let : 1
li 1 m,n lbm,nl 71 —-
e 7 (ar) |

Suppose ¢ < o0. Then for each ¢ > 0, 3 H(e), G(¢) such that for all m > H and

n > G, we have

ibm'nl S L m_% ’n-% d;ndg (ep(a- + 6))(m+n)/p'
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For sufficiently large 7y, 73,

fnz)| < LYY g7 drdg (ep(o + €)™Vo(s + 1) (dll') (,|z2|)

dg—e

m=0 n=0

2 & ore ((alnl\™ ( dalzal \"
—2 (m4n)/p [ 21171 12172
LE Egn(ep(a+26)) (d1_€> (dz—e

m=0 n=0

IA

0 00
< LY S g% (eplo + 200 o] 1

m=0 n=0

where g7¢ =m™% n™% and (s + 1)¥2 = (m + 1)V/2(n + 1)V/2. To estimate the right
hand side of above inequality we follow the same lines as of Bose and Sharma {7,

Theorem V, p 224], and we obtain
f (21, 22)| < Ofelr+Ort+ry,

Hence
M(ry,r2) < O{ele+CT+DY,

Now by applying limits, we have

(4.4.9) 7 = limsup M%fi) <o

ryra=—o0 T TT)

From (4.4.8) and (4.4.9), we have
b
' m.n |bma"I Al —
e e (§F5) ) -
By applying above Lemma 4.3.2, we have

EZ 7Y mEn
lim sup {mmn" (ﬁ) } = eprT.
mn—0o | 1 @2

Now we consider the case for p > 2. From (4.4.5), it is sufficient to consider the case
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p = 00. Suppose f is an entire function having finite order p and of type 7. Then from
(4.4.6), the first two summations of the above inequality are bounded. It is sufficient
to estimate the last summation. Since fis an entire function of finite type 7, therefore

by Theorem 4.2.2, we have
|am | < K m™ %075 d di(ep(r + €))%
By using above inequality and from (4.4.6), we have

Er, < K Z Z k™ol ﬂd’“dl (ep('r+e))ﬂ (14 ¢)*+

k—m+1 l=ﬂ+1

<13 5 ()" (1) aaervor

k=m+1l=n+1

< k(S (L) g v

Eoo \ A\ V(m+n)
— (mmnn (ﬁ) ) < (1+¢) (ep(r +¢)
102

E®_\°) m
. “m,n
limsup {mmn“ (_———d’:‘nd”) } < epr.
m,n—00 1 Qo

In view of inequalities(4.4.5) and the fact that (4.4.7) holds for p = 2, this last
inequality actually is an equality. Finally assuming (4.4.7)with p = oo, we deduce
from (4.4.5),that (4.4.7) will hold for p = 2 and hence that f is of type . This

completes the proof of Theorem 4.4.2. o
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Chapter 5

Afpg)roximation of Entire Functions
of Several Complex Variables

In the present chapter, we study the polynomial approximation of entire functions of
several complex variables. The coefficient characterizations of generalized order and
generalized type of entire functions of several complex variables have been obtained

in terms of the approximation errors.

5.1 Introduction

Let f(z1,22,...,2,) be an entire function of n complex variables z = (23, 2, ..., 2,)
belongs to C™. Let G be region in R} (Positive hyper octant). Let Gr C C™ denote
the region obtained from G by a similarity transformation about the origin, with ratio
of similitude R. Let di(G) = sup,g |2|¥, where |z{* = |2[F1|z;|*2...|2,|*, and let G

denotes the boundary of the region G. Let

o0 oo

[(z) = f(z1,22,....,20) = Z Qb 2 . 2k = }: ax 2¥,

ki,ka,....kn=0 [1kll=0

|kl = k1 + k2 + ... + kn, be the power series expansion of the function f(z). Let
M;c(R) = max,eqp, | f(2)]. To characterize the growth of f, order(pe) and type (7¢)

are defined as [14]

Y In In Mse(R)
pe = lgn_.s o T
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T In Mf,G(R)
TS TRl

For an entire function of several complex variables f(2) = 3\ o z*, A.A.Gol'dberg
[16, Th .1] obtained the order and G-type o¢ in terms of the coefficients of its Taylor

expansion by

: &l In|%]]
5.1.1 = limsup ————.
( ) P k|| = 33 —In lak|

(5.1.2)  (epoe)? = limsup {|Ik|I"/* {lax| de(G)/™}, (0 < p < o)

|klf = oo

k k1 .k rkn'

where di(G) = max,cgr¥; ¢ = ritryt.rk

We define error of an entire function f on a region G as

Ex(f,G) =sup{||f - pllr : » € P}.

where

I llee = {// |f(21, 22, ..., 2k)|" d21 d2g dz }P < oo,
21,22,...,2x €G |

and P(z) = 3k @ 2° is a polynomial of degree k.

Before proving main results we state a Lemma.

Lemma 5.1.1. Let P'(z) = leku:k E; z* be a polynomial of degree k, where
"k” =ky+ ke + ...+ k,. Let Mplg(l) = MaX,eqG |P'(Z)| Then

1< Mpio(1) max {Bude(G)} < (1 + Ikl
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5.2 Order and Type

Now we prove

Theorem 5.2.1. The entire function f(z) = £i%,_o ax2* is of order p if and only if

the following relation holds

. |1l 1o %]
5.2.1 = lim sup —- !
(52.1) O S T B, —njd(C)]

where d(G) = max,e¢ TF.

Proof. From Ronkin [43, Page 131], we have

(5.2.2) min e 1 = (%”)mﬂ (> 0,v>0,m >0),
(5.2.3) sup (E)"/" th = exp{-—(f-t"} (a>0,v>0).
0<k<oo K ev
(5.2.4) E()<If=plee=1 DY, ai2lr< D lajllab.
(l511=Mkl+1 l5l=1lkl}+1

From (5.1.1), we have _
1
| <~ Nl IkI/ o)
o4l < 375 [

By using above inequality and (5.2.4), we get

) 1 1 r -
. VRIS | 75 U B A
B(f) < ar(C) (kI + DD+ " [1 (%l + ]_)1/P+e] ’

By setting r = 1 + ﬂ%‘-ﬁ in the above inequality, proceeding to limits and taking into
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account, the arbitrariness of € > 0, we obtain

: %]l In k]

limsu < p.

[kl — £ —InEy(f) —Indp(G) ~ P
For reverse inequality, let

meup LI _

Ikl — 0o — N Ex(f) —Indi(G)
Suppose o < 0o. Then for any ¢ > 0 there exists N such that, for all k with [|k|| > N,

li5ll Inik|]
“InEo(f) — Indg(G)

Lo + ¢
and consequently

(5.2.5) By di(G) < ||k|| k=,
Therefore

oo
M;c(R) < max »  Eyr*RI

reG

llkjl=0
< Y RMEd(G)
lIkll=o0
< ST RIM || tki/e+e 3" R Eidi(G)
IEliZN Ikll<N
S > REV(L+ Kl RV 40 RY ey,

Ikli=0
(5.2.6)
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where ¢; and c; are constants. Set N(R) = (2R)***. For ||k|| > N(R)
1\ Ikll/(o+e)
R (__) < oM

and by (5.2.3), for any ||k||, in particular, for ||k|| < N(R)

. 1 (1.l /(o e} R‘0+e
ney (L < oxr
R (ukn) 'e"p{ewe) }

Consequently
o
> R+ k)™ (IR0 =
jlk]l=0
S R [fk[)™ (el Ve g S RIFE (14 |[fly® | eI/
[Ikli<N(R) llI=N(R)

R+ n (L+ 1K™

IEl<N(R) =N (R)
R+ o (LR
< (1 +N(R))"+1exp{ } + Y TS
]
ot w2

(5.2.7)

Hence by (5.2.6), we conclude that for all R > 0 and certain constants ¢;, ¢z, ¢z and

C4q

R(e+e)
928 < N (o+e) (n+1)\ Loy ann )
(5.2.8)  Mse(R)<ci + @ R” +(cs +e R ) exp{-—‘——e (a+€)}

Hence

Inln Mye(R) < [1+40(1)] (6 +€) I R.

Proceeding to limits, we obtain p < ¢ + ¢, and since ¢ is arbitrary, so p < . We have

thus proved (5.2.1). This completes the proof of Theorem 5.2.1. D
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Theorem 5.2.2. The entire function f(z) = Zﬁz“=0 arz® is of order p and G- type

oc if and only if the following relation holds

(5.2.9) (epog)'/P = llimsup {IIkIM?[Beds (GNVW}, - p >0,

flklf — oo
where di(G) = max, c ¢ *.

Proof. From (5.1.2), we have

Lk
laxldi(G) < ('e'f‘([%fﬂi)) ,,.

By using above inequality and (5.2.4), we get

1 Il + 1 ) ep(og +€) 1] 7!
rlkHL L e (oo + €) | —— —r [EP9eTE)
e { ("'“( =) } [1 (uku+1> ]

By setting r =1+ 'H%ll in the above inequality, proceeding to limits, we obtain

Ex(f) £

(5.2.10) lim sup {||k]|*[ Exdi (G)]/M} < 0.
ikl — o0

For reverse inequality, let

lim sup { (Exds(G))/ MM ||K]|/°} = 5 < co.
JIk]] — o0

Now we want to show that K > (epog)/?. From the definition of &, for any € > 0

there exists M such that, for all k with ||k} > M,

(Exdi(G) k(P < s+,
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and consequently

ikl
. + €
5.2.11 d <[ LLf
21 (0B (i)
Therefore

00
> k plik
Mse(R) < tpe%xukzu_oEkr R

‘Z R™E,dy(C)

<
fikll=0
— g (e o
< ¥ (fn) + 3 ARG
|kl =M k<At
50 kll/o
< Nkl n (”,fﬁ)")"l Mo .
< ”kzu“:oﬁ 1+ 1IkH) ( T +e RY +c,,

(5.2.12)

where ¢; and c¢; are constants. Set N(R) = (2R(x +¢€))?. For ||k|| > N(R)

and by (5.2.3), for any ||k||, in particular, for ||k|} < N(R)

Rk (M) e < exp { (£ 39 g }

%] ep
Consequently | |
S RIM (14 k] ((R + e)P)IIkH/P )
k=0 1%
S RM (R4 LT — (5 + € Vo
IKI<N(R) KISV (R) 1%l
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cap{EiLpl T a3 GHEDE

ep IKI<N(R) IKI=N(R)

p n
(5213) < (1 -+ N(R))”+1 exp .(K+_€) RS + Z (1 + "k”) )
ep 2llkl
' {IlIZN(R)
Hence by (5.2.6), we conclude that for all R > 0 and certain constants ¢, ¢o, ¢3 and

Cq

p
(5214)  M;a(R) <1 + ca BM +(cs +cs B @) exp{ EF pol
ep

: In My c(R) (k+¢)?
= 2 <
o¢ = limsup Too .

= (epac)'? < & +e.

Since € is arbitrary,

K > (epog)*.

From (5.2.10) and (5.2.14), we have

limsup {(Ex dk(G))l/IIkll Hk“l/”} — (epa.G)l/p.
[I&]] = oo ,

We have thus proved (5.2.9). This completes the proof of Theorem 5.2.2. O

5.3 Generalized Order and Generalized Type

Now we prove

Theorem 5.3.1. Let az) € L°, and B(z) € A. Set F(z;c) = e a(z)]. If
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dF(z;c)/dlnz = O(1) as z — oo for allc, 0 < ¢ < 0o, then

N afln Mye(R)] .. okl _
BOSIP "Bk e Bl 0 (Ba(H)d(O))

Proof. From Seremeta [44, Theorem 1]
lak|di(G) < o~ IkI FIkN:)
By using above inequality and (5.2.4), we get

. 1 .1 r -1
2 (F) < o o=+ RIS i+t |3 T
Bel) < 3o@y © o 1= RG]

By setting r =1 + "—;ﬂ in the above inequality, proceeding to limits, we obtain

. okl
(5:3.1) SR G E(DRE)

Conversely, let

N (1) _
WS Bk 10 Bk (@)

Suppose 17 < co. Then for any € > 0 there exists N’ such that for all k with & > N/,

we have

(5.3.2) Ey d(G) < exp {=[IKIF (1K ; 1/7)}

where 7 = 1 + €. The inequality

(5.3.3) W/ RII B, do(Q) < R e FURIYM < %
is fulfilled beginning with some “k” = k(R) = E[a"'[5i B(InR + In2)]], where E[F)
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is an integer part of the function F. Then

o0 [o. <3
1
k
(5.3.4) Y, Eed(G)RMI< ) o S 1
(lkll=k(R)+1 Ikl = k(R)+1
Now
00 ko
M;o(R) < Y Epdi(G) RM = > B &i(G) R™ +
(I%ll =0 {tkll =0
k1(R) 00
(5.3.5) S Eed(G)RM 4+ " Epdi(G)RM
fikll=ko+1 flelt=ki(R)+1

by applying above Lemma 5.1.1 and from (5.3.4), the above inequality becomes

M;(R) < (L+|I5[)" + Fa(R) (Ex de(G)RWI) 4+ "o~

max
ko< ||kl <ki(R)

From (5.3.3), we have
2R <exp{F(|[k]| ; 1/m}-

Now, we express k in terms of R.
_ 1,1
In2+mmR=F(|k]|; 1/7) = 6 1[;7. a([|&ID1
where k1(R) = k(R) + 1, and ko = max {N’, ky(R)}.
o RIKN < < HpA(lnR+ A
ro<BE o (Ex R™M) < koslﬁgl(mﬂllkll) <exp{A a7 A(ln R+ A)]}

where ¥(||k]) = R exp {—|\k||F(l|k]l ; 1/7)}. From (5.3.5), we have

Mya(R)(1+0(1)) < exp{(A+0(1)) [ A(ln R + A)]}.
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Then we have |
(A +0(1))" In My g(R)]
B(InR + A)

=H=n+e
Proceeding to limits, and using the properties of a(z) and B(z), we obtain

a(ln Mie(R)

(5:3.6) p=lmsup =5 R)

From (5.3.1) and (5.3.6), we obtain the required result. This completes the proof
Theorem 5.3.1. O

Remark 5.3.1. By taking a(x) = In(z), 8(z) = z in the above Theorem 5.3.1, we
get (5.2.1).

Theorem 5.3.2. Let a(z) € L°, f~1(z) € LY, v(z) € LY; let p be a fized number,
0<p<oco. Set F(z; o, p)=7"1{[8" (o a(z))]"*}. Suppose that allo, 0< o <
00, satisfy:

dinF(z;o,p)/dlnz =0(l) asz — 00,

then the following equation holds:

o anMe®) o olfh
lmsup —gee e = MmSU S B (G Y

Proof. From Seremeta [44, Theorem 2']
=kl
onl (@) < et [P 2

By using above inequality and (5.2.4), we get

- . el (Well+1) ) r el/p -
k(f) < ([F(M”*'—l L o) “[F(Mi—l‘ 2, 0) .

121



By setting r =1+ Tﬁtﬂ in the above inequality, proceeding to limits, we obtain

o( L2l
(3.8 kmsup e (e (Er de( G} ~

Conversely, let
a(Ll)

limsep o AR A (G} =

Suppose 7 < oo. Then for every ¢ > 0 there exists A’ such that for all k with

k > M', we have
exp (L)

B () < TR 517 T

where T = 7+ €. The inequality

(5.3.8) W8 B di(G) RIFI < etls B — < =
F(l\kll/p51/7,p) — 2

fu—y

is fulfilled for all || k|| beginning with some ||k|| = k(R) = E[p a™*{7 8 [(y (2¢V/* R))*]}].
Then '

(5.3.9) Z Ek (G R < 3 E%cﬂ_gl.

Ikl =k{R)+ llkli=k(R)+1

Hence

00 ko
M¢g(R) £ Z E; di(G) RIMI = Z E;, di(G) R +

lell =0 Ik} =0
k1(R) 00
(5.3.10) Z Ey d(G) R + Z Ej, d(G) R
ll&ll=ko+1 (Ikll=k1(R)+1

By applying the Lemma 5.1.1 and (5.3.9), the above inequality becomes

M;c(R) < (L+||k])™ + k(R) o < [ <k1(R)(E v di(G)RIk ZQ Iell
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where ky(R) = k(R) + 1, and ko = max {M’, ki(R)}.
(Ex BRI < x(ll&l)

ko<llkll<k1(R) ko <|Ikll<k (R)

< exp{A pa {7 B [(v(Re? ~M)"}},

where x(|[kll) = (& e/?)IEl [E(|[k||/p; 1/7, p)]~ ). From (5.3.10), we have
M;e(R) < exp{(A p +0(1)) ™ {7 B [(v (R e> *A))]}}.

Since a(z) € L%, B~1(z) € L°, ~(z) € L°, proceeding to limits, we obtain

_limsup 2BMra(R) o121
(5:311) o =lmow LRyl = oD Bl Er (GNP

From (5.3.7) and (5.3.11), we obtain the required result. This completes the proof of
Theorem 5.3.2. O

Remark 5.3.2. By taking a(z) = z, 8(z) = £ and y(z) = z in the above Theorem
(5.3.2), we get (5.2.9).
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