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Introduction 

This section contains a brief review of the basic concepts and results that are related 
to the work presented in the thesis. 

0.1 Entire Function 

An entire function is a function f : C 	C, which is regular in every finite region 
of the complex plane. The general theory of these functions originated in the works 

of Weierstrass [66]; in the beginning it was developed by Picard, Borel, Poincare, 

Hadamard and others. In the beginning of twentieth century some new concepts 

were introduced by eminent mathematicians such as Valiron [64], Lindelof, Levin, 

Wiman, Nevanlinna and Hardy etc. Since then, Whittaker [67], Hayman, Boas [5], 

Holland [21], Clunie, Titchmarch [58] and others have contributed richly to the theory 
of entire functions. 

An entire function f (z) has the representation by a power series of the form 

f (z) = 
00 E zn,lO 

oci 	
a„1 = 0. 

n—o 
n=0 

This is the simplest class of analytic functions containing all polynomials. Polynomi-

als are classified according to their degree, i.e. according to their growth as 1z1 —+ co. 

An entire function can grow in various ways along different directions. For a gener-
alization of the growth, the function 

(0.1.1) 	 M(r) = M(r; f) = max if(z)i 
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is introduced. Then M(r) is said to be the maximum modulus of f(z) for Izi = r. 

It has been established that maximum absolute value of an entire function over 

a closed disc coincides with the maximum absolute value of that function over its 

boundary. Blumenthal [4] showed that M(r) is a steadily increasing continuous func-

tion of r and is different in adjacent intervals. Further, In M(r) is a convex function 

of In r and has the representation [64] 

(0.1.2) 	In M(r) =-- 1nM(ro) + 	dx, T > ro, 
f0 1.

r w (x) 

 

where W(x) is a positive indefinitely increasing function of x which is continuous in 

adjacent intervals. M(r) plays a key role in the study of the growth of entire functions. 

A.P.Singh and Baloria [49] have studied on maximum modulus and maximum term 

of composition of entire functions. 

In order to estimate the growth of f (z) precisely, the concept of order was intro-

duced. An entire function f (z) is called a function of finite order if M(r) < exp (rk) 

for some k > 0. The order of an entire function f is the greatest lower bound of those 

values of k for which this asymptotic inequality is fulfilled. We shall usually denote 

the order of an entire function f by p. It follows from the definition of the order that 

erP-t  < m ( r ) < erp+ 

By taking the logarithm twice we obtain 

In In  M (r) 

	

p — E < 	< p + e, In r 

Thus the order p of f (z) is given by 

In In M(r) 
 , (0.1.3) 	 p = lim sup 	, 

	

r 	
0 < p < 00 . 

	

r 00 	i 

By convention, a constant function is taken to be of order zero. 

The concept of type has been introduced to determine the relative growth of two 

entire functions of same non-zero finite order. Let p be the order of an entire function 
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f (z). The function is said to have a finite type if for some A > 0 the inequality 

M(r) < eArP 

is fulfilled. The greatest lower bound for those values of A for which the later asymp-

totic inequality is fulfilled is called the type r of the function f (z). It follows from 
the definition of the type that 

e( r-e )rP  < M(r) < jr+E)7.P . 

By taking logarithm and dividing by rP, we obtain 

M(r)  
c) < 	< 	E). 

rP 	

, 

Thus, an entire function f (z) of order p (0 < p < co) is said to be of type T if 

(0.1.4) 	 T = lim sup In M (r) , 0 < < 
-0 00 

The function f (z) is said to be minimal, maximal or normal type according as T = 0, 

T = 00 or 0 < T < oo respectively. An entire function f(z)is said to be of growth 

(p, r) if its order does not exceed p, and its type does not exceed 7 if it is of order 
p. The function f (z) is of exponential type r if it is of order less than one,and if of 

order one, of the type less than or equal to r, r < oo. L.R.Sons [52, 53] have studied 

on regularity of growth and gaps. 

If an entire function f (z) is of zero or infinite order then the usual definition of 

type has no meaning. Hence the comparison of growth of such functions can not be 

made by confining to the above concepts. To overcome this difficulty, V.G.Iyer [24] 

introduced the concept of logarithmic order. Thus for an entire function of Order zero, 
p* is said to be logarithmic order of 1(z) if 

p* = lirn sup In  In M(r) 
 0 < p* < oo.  (0.1.5) 

lnlnr 
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For 1 < p*  < oo, the logarithmic type 7-*  is defined as 

(0.1.6) 	 In M (r)  lim sup kmr, 	0 < T*  < 00 . 
r 00   

The entire function f (z) can be expanded in Taylor series around any point z 

zo  because it is regular everywhere in the whole plane. However without loss of 

generality, we may assume zo  = 0. Then f (z) has the representation 
00 

(0.1.7) 	 (z) 	E an  zn, 
n=0 

where the coefficients an's are given by [38] 

(0.1.8) 	 an  = 

	

r 	, --z 	f (n)  (0)  

27ri 0  Zn  

(

+1

) a 	n! 

f (1)(0) being the the value of n th derivative of f (z) at z = 0. 

Various mathematicians such as S.M.Shah [46], Q.LRahman [10], A.R.Reddy 

[40, 41], Juneja and Srivastava [27], Shah and Ishaq [47], Juneja [25], Awasthi [1], 

G.S.Srivastava [54] and others have found the formulae relating the coefficients of 

Taylor series with order, lower order, type, lower type,logarithmic order, logarithmic 

type etc. Juneja [26] has obtained the results, which give formulae for order etc. in 

terms of the ratio of consecutive coefficients. Recently, J.K.Langely [33] have studied 

on integer points of entire functions. 

For generalizations of the classical characteristics of growth of entire functions 

M.N.Seremeta [44] defined the generalized order and generalized type with the help 

of general functions as follows. 

Let L° denote the class of functions h satisfying the following conditions 

(i) h(x) is defined on [a, cc) and is positive, strictly increasing, differentiable and 

tends to co as x oo, 

(ii)  
h{(1 +1/1/)(x))x}  urn 	 = 1, 

h(x) 

for every function (x) such that 11)(x) -4 00 as x 	oo . 
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Let A denote the class of functions h satisfying condition (i) and 

h(cx)  

	

inn 	 = 1 
x-00 h(x) 

for every c > 0, that is, h(x) is slowly increasing 

The generalized order p(a, 0) of an entire function f (z), is defined as [44] 

	

p(a, , f) = 	sup 
a [In MAr, f )]  

(0.1.9) 
r—■oo 
	0(111r) 

where a(x) E A, OW E 

For 0 < p < oo, the generalized type -r(oe, 0) is defined as 

(0.1.10) 6[IP M(r,  7-(a, )3, f) = lirn sup 
OR`Y(r))1 

where a(x), 0-1(x), -y(x) E L°. 

Seremeta obtained the coefficient characterizations of generalized order and general-

ized type as follows. 

Theorem A' [44, Th.1] Let a(x) E A, 0(x) E L°. Set F(x, c) = 0-1ica(x)]. 

If dF(t, c)/dlnx = 0(1) as x 	oo for all c, 0 < c < oo, then 

p  (0.1.11) 	 p(a, 0, 1) = lim su 

	

n.--■ao 	n

o4( 
l

) 
an!) 

Theorem B' [44, Th.2] Let a(x)[ -  

0 < p < oo. Set F(x; a, p) 	,y-i 1[0-1(0.41( x ))1 lip I Suppose that for all a, 0 < o-  < 

oo, F(x; o-, p) satisfies 

(i) if ry(x) E A and a(x) E A then 

dln.P(x; a, p) 
d in x 

= 0(1) as X' 	00 

(ii) if -y(x) E (L° — A) or a.(x) E (L° — A) then 

dln F(x; ci, p) 	1 lim dlnx 

1(x), -y(x) E L°. Let p be a fixed number, 
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Then we have 

ctM  

	

(0.1.12) 	r(a, 0, 1) = lim sup 
fl{[y(e'/Plani—lin )]P}•  

In the above Theorem A' the relation (0.1.11) was obtained under the condition 

	

(0.1.13) 	 d[/3-i(ca(x)))  = 0(1) as x 	oo. 
d(ln x) 

Clearly (0.1.13), is not satisfied for a = 0. To overcome this difficulty, G.P.Kapoor 

and Nautiyal [29] defined generalized order p(a; f) of slow growth with the help of 

general functions as follows 

Let St be the class of functions h(x) satisfying (i) and 

(iv) there exists a 6(x) E A and xo, K1  and K2 such that 

d) ) 
0 < 	< d(6(l

(h( x
nx)) < K2  < oo for all x > So. 

Let S2 be the class of functions h(x) satisfying (i) and 

(v)  
d(h(x)) lim 	 K, 0 < K < 00. x.. d(ln x) 

Kapoor and Nautiyal [29] showed that class S2 and ri are contained in A. Further, 

C2 Ii S2 = cb and they defined the generalized order p(a; f) for entire functions f(z) of 

slow growth as 

p(a; f) = lim sup a(ln 
M(r, f))  

a(lnr) 

where a(x) either belongs to 52 or to 

0.2 Entire Functions of Two Complex Variables 

Let f(z i , z2 ) = E anii ,m2zr 1  z22  be a function of the complex variables z1  and z2 , 

regular for I zt  I < rt , t = 1, 2. If r1  and r2  can be taken arbitrarily large, then f (zi, z2) 

represents an entire function of the complex variables z1  and z2. Many researchers 

[13, 37, 28, 31, 30, 32] have studied the growth of entire functions of two complex 

variables in different ways. Following Bose and Sharma [7], we define the maximum 
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modulus of f (zi, z2) as 

M(ri,r2) = max I f 	z2) 	t = 1,2. 
izti5rt 

The order p of the entire function f (zi, z2) is defined as [7, p. 219] 

lnln M(ri, r2)  p = lim sup 
l r1,r2-00n(rir2)  

For 0 < p < oo, the type r of an entire function f (z i , z2 ) is defined as [7, p. 223] 

1nM(ri,r2)  lim sup 0 	= T. 
7.1;7'2 -000 	ri  +7-2  

Bose and Sharma [7], obtained the following characterizations for order and type of 

entire functions of two complex variables. 

Theorem A: The entire function f (zi, z2) = Emim.2=o a,,1,,,,2zriz2  2  is of finite 

order if and only if 

(0.2.1) 
a m m  

'1 	2 /  
= lira sup 

m1,m2-400 — in i ami,m2 I 

is finite and then the order p of f (z i , z2 ) is equal to 

Define 

(0.2.2) 	a = lim sup (minnim22 I ami 071,2 1911(m1+1112)  
mi,m2-000 

Theorem B: If 0 < a < oo, the function f (zi, z2) = Ern.wi,m2=0 am1,m2 Zr1Z;n2  is 

an entire function of order p and type T if and only if a = er p. 

0.3 Entire Functions of Several Complex Variables 

The first work in general theory of entire functions of several variables appeared as 

early as the beginning of the last century Borel [6], Sire [50]. However, an inten-

sive investigation of entire functions in Cm, stemming from the general upsurge of 

interest in the theory of holomorphic functions of several variables, began only 25 

to 30 years later. After that this topic became more interest and many researchers 

[16, 14, 17, 18, 22, 34, 35, 55, 56] and others have worked on analytic and entire 
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functions of several complex variables. 

We denote complex n-space by Cn. Thus, z E Cn means that z = (zi, zn), 

where zl , ....zn  are complex numbers. A function f (z), z E cn is said to be holomor-

phic or analytic at a point z0  E Cn if it can be expanded in some neighborhood of 2.0  

as an absolutely convergent power series 

00 

f (z) 
11k11=0 

k (z - 

A function f(z) is said to be holomorphic or analytic in a domain G if it is 

holomorphic at each point of the domain. 

A domain D C Cn is said to be poly cylindrical, or simply a poly cylinder, if it 

has the form D = {z : E Di, i =1, 2.., n}. A poly cylindrical domain D is said to 

be a circular poly cylinder, or simply a poly disk, if all the domains Di  are disks. 

A domain G C Cn is said to be multi circular with center at z°  if, together with every 

point z', G contains any point z whose coordinates zi  satisfy the conditions 

= I — I , i = 1, 	n. 

A multi circular domain G C Cn with center at z° is said to be complete if, together 

with each point z E G, it contains' the entire poly disk 

{z : Izi  — zi  = I zi  — 	I ,2=1,...,n . 

Let G C Cn be a multi circular domain. we denote by IGI the image in Rq_ of the 

domain G under the mapping ri = 1zi — 41, i = 1, n. 

0.4 Jordan Domain 

A domain D is simply-connected if and only if D is homeomorphic to C. There is an 

alternative definition which states that a domain D is simply-connected if and only 

if every loop -y in D can be shrunk to a point in D. or more formally is homotopic to 
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a constant loop in D; 

An important class of simply-connected domains is the class of Jordan domains. 

A loop -y is a Jordan curve if -y is a homeomorphic image of a circle; equivalently, 

if z(t)(a < t < b) is a parametrization of y, then 'y is a Jordan curve if z(t) is 1-1 

(injective) on [a, b) (z(a) = z(b)). The fundamental Jordan Curve Theorem states 

that a Jordan curve -y divides the plane into exactly two regions; to be precise -ye has 

exactly two components, the unbounded component (exterior of -y), and the bounded 

component (interior of 	Sheil - Small [48] defined a Jordan domain is the interior 

of a Jordan curve. Thus a Jordan curve is the boundary of a Jordan domain. An 

extended version of the Riemann mapping theorem shows that the union of a Jordan 

domain and its boundary curve is homeomorphic to a closed disc with the open disc 

corresponding to the Jordan domain and the circle bounding the disc corresponding 

to the boundary Jordan curve. 

0.5 Faber Polynomials 

Most of the mathematicians were attracted by a problem in complex analysis was 

that of finding a set of polynomials p1(z),p2(z), 	which belong to a given region, in 

the sense that any function f analytic in the region can be expanded by a convergent 

series a0  + ErL1 ai pi (z), in which the coefficients aj, but not the polynomials pi , 

depend on f . In 1903, Georg Faber [11] published a solution to the problem which 

was notable both for the basic simplicity of the convergence proof and also for the 

rich and interesting structure of the polynomials. 

After Faber's invention the polynomials became more popular and various math-

ematicians [9, 51, 45, 57] have worked on these polynomials and applied in different 

areas. In 1980 Andre Giroux [15] applied these polynomials to study the growth 

characterizations of order and type of entire functions of one complex variable over 

Jordan domains in terms of approximation errors. 
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0.6 Approximation of Entire Functions 

At first Bernstein [3] have studied the polynomial approximation of entire transcen-

dental functions. Later Varga [65] have obtained the growth characterizations of order 

and type of an entire function in the uniform metric space C[-1, 1]. By these inves-

tigations Reddy [41, 42] have studied the behavior of approximation characteristics 

for entire transcendental functions of slow growth. 

Batyrev [2] first extended Bernstein's ideas to the case of the complex plane C. 

Further, Ibragimov and Shikhaliev [23], Giroux [15], and Vakarchuk [61, 62, 60] con-

tinued the investigations in the space C. 

In 1989 Vakarchuk [59] carried the investigations to the case of Banach spaces. 

Ponnusamy [39], Friedrich Haslinger [20] and others have studied on Hardy and 

Bergman spaces. 
The present thesis deals with the study of growth characteristics and polynomial 

approximations of entire functions of one, two and several complex variables. The 

organization of the thesis is as follows: 

CHAPTER 1: In this chapter we have studied the polynomial approximation of 

entire functions in Banach spaces (Hardy space, Bergman space and B(p, q, tc) space) 

and then we have obtained characterizations of generalized type of entire functions 

in terms of approximation errors in the Banach spaces. In the second section of this 

chapter we have studied the characterizations of entire functions of slow growth in 

certain Banach spaces as mentioned above, then we have obtained coefficient charac-

terizations of generalized order and generalized type of entire function of slow growth, 

and then the characterizations of growth characteristics (generalized order and gen-

eralized type) have been obtained in terms of approximation errors in the Banach 

spaces. 
In the second section of this chapter, we have defined the generalized type T of 

10 



entire functions of slow growth having finite generalized orderp and their characteri-

zations have been obtained in terms of approximation errors. 

CHAPTER 2: In this chapter we have studied the polynomial approximation of 

entire functions over Jordan domains. We have obtained coefficient characterizations 

of generalized order and generalized type of entire functions over Jordan domains. 

Next we have obtained necessary and sufficient conditions of generalized order and 

generalized type of entire functions in terms of approximation errors by using LP 

norm. 

CHAPTER 3: In the first section of this chapter, we have studied the approx-

imation of continuous functions on the domain by homogeneous polynomials. First 

we have obtained necessary and sufficient conditions for a continuous function have 

an analytic extension in terms of the growth parameters and then we have obtained 

the coefficient characterizations of order and type of entire functions of two complex 

variables in terms of approximation errors. In the second section, we have studied 

the polynomial approximation of entire functions of two complex variables in Banach 

spaces (Hardy space, Bergman space and t3(p, q, space) and then we have obtained 

characterizations of order and type of entire functions of two complex variables in 

terms of approximation errors in Banach spaces. 

CHAPTER 4: In this chapter we have studied the polynomial approximation of 

entire functions of two complex variables over Jordan domain and obtained coefficient 

characterizations of order and type of entire functions. Necessary and sufficient con-

ditions for an entire function to have prescribed growth have been obtained in terms 

of approximation errors by using LP norm. We have obtained the characterizations of 

order p and type r of entire functions of two complex variables when f is restriction 

to the domain ID for 2 < p < oo. 

CHAPTER 5: The last, i.e. the fifth chapter of this thesis deals with the study 

of the entire functions of several complex variables. In this chapter, we have studied 

the polynomial approximation of entire functions of several complex variables in a 
full region 0 in R.1., and obtained the characterizations of order, type, generalized 

order, and generalized type in terms of approximation errors. 
11 
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Chapter 1 
Approximation of Entire Functions 
of One Complex Variable in 
Certain Banach Spaces 

In this chapter we study the polynomial approximation of entire functions in Banach 

spaces (8(p, q, is) space, Hardy space and Bergman space). The coefficient charac-

terizations of generalized Order and generalized type of entire functions having finite 

generalized Order of slow growth have been obtained in terms of the approximation 

errors. 

1.1 Introduction 

Let f (z) = E77_0 anzn be an entire function and M (r, f) = maxizi=, If (z)I be its 

maximum modulus. Recently Vakarchuk and Zhir [63] considered the approximation 

of entire functions in Banach spaces. Thus, let f (z) be analytic in the unit disc 

U lz E C : Izi < 11 and we set 

Mq(r, f) = { -r  f r  I f(reiNg dell  , q > O. 

Let Hq  denote the Hardy space of functions f (z) satisfying the condition 

lif II x9 	n Mq(r, f) < oo 

13 



and let HQ  denote the Bergman space of functions f (z) satisfying the condition 

11/11,4 = 	 f f IJ(z)Igdxdy}1/q < 00. 

For q  = oo, let II! 	= HRH.° = suP{ii(z)1,z E U} . Then Hq  and HQ are Banach 

spaces for q  > 1. Following [63, p.1394], we say that a function f (z) which is analytic 

in U belongs to the space B(p, q , k) if 

rl 

= 11 (1 - r) 
(l/P-1/q)-1Ac(r, f)dr}1/1̀  < 00, 

• 0 

0 < p < q  < oo, 0<rc< oo and 

sup{(1 — 	Mq(r, f) 0 < r < 1} < oo. 

It is known [19] that B(p, q, ft) is a Banach space for p > 0 and q , > 1, otherwise it 

is a Frechet space. Further [60], 

(1.1.1) 	 Hq  C H = B(q/2,q,q), 1 S. q  < oo. 

Let X denote one of the Banach spaces defined above and let 

En(X,S) = inf{11.f — Plix :P E Pn} 

where Pr , consists of algebraic polynomials of degree at most n in complex variable z. 

Vakarchuk and Zhir [63] obtained characterizations of Generalized order in certain 

Banach spaces (B(p, q , ic) space, Hardy space and Bergman space) as follows : 

Theorem C: Let a E A, i3 E L° and F(x, c) = 131c[a(x)]j Let for all c E (0, oo), 

dlnx -= 0(1)as x 	oo, df(r, c) 

and -y (a , [3) is a finite positive number. Then for a function f (z) E B(p, q, ic) to be 

14 



(1.1.2) 	lim sup 	
a(n)  

,8[ —n--1  In En  (B (p, q, K), f)] = -y(a, 0). 

an entire function of generalized order -y(a,fl), it is necessary and sufficient that the 

following relation to be true: 

Theorem D: Suppose the conditions of Theorem C are satisfied and o(a,,5) is 

a finite positive number. Then for a function f (z) E Hy to be an entire function of 

generalized order 5(cr,,(3), it is necessary and sufficient that the following relation to 

be true: 

a(n)  
(1.1.3) 	 lim sup 	 = 0). 

0[ —n-  In E„(14, 1)] 

and also obtained an analog of this Theorem for the Banach spaces Hq  follows from 

(1.1.1), for 1 < q < oc) and from Theorem D for q --= oo. 

In the next section we obtained the characterizations of generalized type 7-(a,0) of 

an entire function having finite generalized order p(a, $) in certain Banach spaces 

(B(p, q, i.e) space, Hardy space and Bergman space) in terms of approximation errors. 

1.2 Generalized Type 

First we prove 

Theorem 1.2.1. Let a(x) E /2,13-1(x) E L° ama ry(x) E L°; let p, 0 < p < 00 

be a fixed number. Set F(x; a, p) = 7 -1{[13-1(aa(x))111P} . Suppose that for all a, 

0 < a < oo, we have 

(i) if -y(x) E A and &(x) E A then 

in F(x; 	 , I)  as x ( 
d In 3.; 	

0 
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where B(a, b) (a, b > 0) denotes the beta function. By using (1.2.1), we have 

(1.2.5) 
e(n+1)/PB111cRn 1)K + 1; tc(1/p - 1/2)1(  ct 4(a, 0)1/21,  

En(B(p, 2, ic);  1) 

IT-1{[P-1(-7-4_,)11/P}ln+1 	
j=n+1 

(ii) if -y(x) E (L°  - A) or a(x) E (L°  - A) then 

dln F (x; a , p) 	1 
lirn 

dlnx 

Then for any entire function f(z) E B(p,q,K,), we have 

a(7) ) 

	

ceOn M(r, i))  = Him sup 	r i/PE (AP 4,10; f )-1/1P} 

(1.2.1) 	
e 	n hi 

 
t i  tip  #{[7(r) ]P1 	 n—)°3 

provided for 1(z) = E an z
"  1-'1.- 1 11" 	d, 0 < d < 00. 

an+1 

Proof. We prove the above result in two steps. First we consider the space B(p, q, 

q = 2, 0 < p < 2 and rc > 1. Let f (z) E B(p, q, n) be of generalized type T with 

generalized order p. Then from [44, Th 2], we have 

(1.2.2) 	 lim sup 	 T. 

— n'00  fi 	

a(P)fD  

-1/1]P}  

For a given e > 0, and all n > m = m(e), we have 

7-;!) 
(1.2.3) 	 Ianl 	

exp( 

 
[,y-1 [0-1( °412  )]r/p}in 

Let gii(f,z) = E7_0ajz i  be the nth  partial sum of the Taylor series of the function 

f (z). Following [63, p.1396], we get 

00 

(1.2.4) 	En(B(p, 2, n); 1) 	B1/" [(n +1)tc + 1; ic(1/p - 1/2)]{ E 10112}112 
j=n+1 
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11);(a, 0) 

 

expl(j (n+,1))/p}  

{[0-1(4)]1/P W [7-1{[0-1( 	)11/Pli -(n÷1)  

 

where 

Set 
e(11P) 

• [7-1  { 	())11/P11 

Since a(x) is increasing and j > n +1, we get 

(1.2.6) 	.i(«, 
0)  < 	expW 	+ 1))/p} 	< o;-(n+1 )(6, 0)•  

h,-1 f[0-1(;Rii)p / ply - (n+1) 

By above relation (1.2.6) and since 0(01,0) < 1, we get from (1.2.5), 

(1.2.7) 	.gn(B(p, 2, tc); f) < e(n+1)/PB1hq(n±  1)m + 1; K(111) 7  1/2)]  
(1 _ ,02(a,  0))1/2[7-11[0-1(fivp}i(n+i) 

For n > nt, (1.2.7) yields 

ta(ri,±1) 
T E> 	  / p 	1/n+1  (B (7),  2, k) ;  f ) /131/'[(n+l)n-Flvc(1/p-1/2)111/n+lip  . 

t 	(1-02(01,0))1 2 	j 

Now 

B[(n + 1)K + 1; n(1/p — 1/2)] 	r((  

	

t'((rt 1)+ 1/2
)r(  
+ 1/p)

(1/
m; + 

1/2))  
1) 	• 

Hence 

e-1(n+i)K+11n + 1) + Wn+1)"3/2r1 -1/2B[(n+1)K+1; K(1/3-1/2)] 	[( 	 ( 	 )  
ei(n+1/2-1/p)K+11Rn 

 
 + 1/2 + l/p)K + 11(n+1/2+vp*-1-3/2* 
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Thus 

(1.2.8) 	{B[(n + 1)ic + 1; ic(1/p — 1/2)il1i(n+1) 	1. 

Proceeding to limits, we obtain 

(1.2.9) 	7 > lim sup 	
a(V  

elIPET,(B(p,q, lc);  

For reverse inequality, by [63, p.1398], we have 

(1.2.10) 	Ian+  1B1/'[(n + 1)i + 1; K(1/p — 1/2)] < .E,,(Np, 2, m); f). 

Then for sufficiently large n, we have 

pey[el/PE,, 1/n(13(p, 2, n); f)jP} 

> 	
a(P) 

— 	an+11 -1/nB-1inic[(n + 1)/c + 1, ; ic( 1/p — 1/2)])P} 

a(1,!) 
3b[el/P(lani-1in/3-1/nK[(n + 1)e + 1, ;K(1/p -1/2 )DP}•  

By applying limits and from (1.2.2), we obtain 

(1.2.11) sup 

	

lira 	
,0 

	

rn 	 > T, 
O 	

0/  
bielIPE„(B(p,q, n); f)-1/71}P} 

From (1.2.9), and (1.2.11), we obtain the required equality 

(1.2.12) a(7) ) 	 lira sup 	 = T. 
n t 0 )3 {-yfel/PEn(B(p, q, n); f)-1/I9P} 

In the second step, we consider the spaces B(p, q, lc) for 0 < p < q, q 0 2, and q, > 1. 

18 



Gvaradze [19] showed that, for p > 731 , q < q1 , and ,c < ,c1, if at least one of the 

inequalities is strict, then the strict inclusion B(p, q, tc) C B(p1, q1, c1) holds and the 

following  relation is true: 

21/q-1hik(1/P - 1/011/K-1/'111fIlp,q,.. 

For any function f (z) E B(p, q, lc), the last relation yields 

(1.2.13) 	En,(B(P1,q1,Ki);.n 	21k-1kik(1/P - 1/011/K-1/K1 En(B(p, q, it) ;  f). 

For the general case B(p, q, n), q 	2, we prove the necessity of condition (1.2.1). 

Let Az) E B(p, q, tc) be an entire transcendental function having  finite general-

ized order p(ot, #; f) whose generalized type is defined by (1.2.2). Using  the relation 

(1.2.3), for n > rn, we estimate the value of the best polynomial approximation as 

follows 

f i 
En(B(P, q, tc); f) = 	gra) ilp,g,K 5- ( .1 ( 1  - r)(6(1IP-1/q )-1)  .114;dr)11K 

0 

Now 

Ifr = 	anzniq < (Elanrni)q 5. (rn+1 E lad)q, hence 
k=n4-1 

Mn < (rn+1  E faki)q, 
k=71-1-1 

Or 
Co 

Mq < r(n-F1)-( E Iakir. - 
k=n+1 

Hence 

(1.2.14) En(B(p,q, k) ;  f) < 1311'1(n + 1)tc + 1;  n(1 /p - 11q)] E iak 
k=n+1 
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lira sup 
n--■oo 017[e1iPEn-1in(B(p, q, K 

047; ) 

e(n+1)/PB1/1s[(n + 1)K + 1; n(l/p — 1/q)]  

(1 — (a,  0))[,), -1 { [0 -1(a(:4_,:_ ) )11/p}i(n-1-1) 

For n > m, (1.2.14) yields 

T E > 
f ie [ eil p EVIn+1(B( p,  2, n); n[ Bi/.[(n+1)K4-1;ts(1/19-1/q )lilin+1?). * 

(1-1G(aA) 

Proceeding to limits, we obtain 

a() 
T 	i sup 

0 	

7,  

	

{'Y [e l/P En(B(P , 	f)-1/n1 p} • 

For the reverse inequality, let 0 < p < q < 2 and ic, q > 1. By (1.2.13), where 

Pi = p, q1 = 2, and 	= ic, and the condition (1.2.1) is already proved for the space 

B(p, 2, ic), we get 

a( 
P ) 

a(p) 
	 > limsup 	  

— 	 00 011/[e1/P En-1in(B(P, 2, ic); Pi P} 
= T. 

Now let 0 < p < 2 < q. Since we have 

M2(r, f) 5 Mq(r, f), 0 < r < 1. 

Therefore 

(1.2.15) 	En(B(p, q, ic); f) ?.. 	.131111(n +1)K + 1; is(1/p — 1/q)]. 

From relations (1.2.2) and (1.2.1), (1.2.4) yields 

oz(,i) 	 a(2/;)  
lirn sup 	 > lim sup 	- 
n-,00 13{7[e1lP En(B(p, q, n); f)-11n1P} 	n-.00 130[eil lan1-111P} 

20 
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Now we assume that 2 < p < q. Set qi = q, = lc, and 0 < pi  < 2 in the inequality 

(1.2.13), where pi is an arbitrary fixed number. Substituting pi for p in (1.4.24), we 

get 

(1.2.16) 	En (B(p, q, n); f) 	IB1N( ± 1)K + 1; ts(1/pi  — 1/q)]. 

Using (1.2.16) and applying the same analogy as in the previous ease 0 < p < 2 < q, 

we obtain 
(I( vt ) 

lim p 	  su 	 - > 

	

Tt—,co f5{7[el/P En(B(P) ll, /0; f)-1111P} 	
T. 

 

From relations (1.2.g) and (1.2.11), we obtain the required relation (1.2.12). This 

completes the proof of Theorem 1.2.1. 	 f::1 

Theorem 1.2.2. Assuming that the conditions of the Theorem 1.2.1 are satisfied 

and Vcr, ,8) is a positive number, a necessary and sufficient condition for a function 

f (z) E Hq  to be an entire function of generalized type 	fl) having finite generalized 

order p is that 

(1.2.17) a(2 )  lim sup 
11-400 0{7 felmEn(Hq; f)-1/1"} 	

((-V113). 

An analog of this theorem for the Bergman Spaces follows from (1.1.1) for]. < q < co 

and from Theorem 1.2.2 for q = co. 

Proof. Let f (z) -= Enc.°  o  anzn be an entire transcendental function whose generalized 

type T having finite generalized order p. Since 

(1.2.18) 	 urn 	lanl = 0 
n—boo 

and f(z) E B(p, q, K), where 0 <p<q< oo and q, > 1, from relation (1.1.1), we 
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get 

	

(1.2.19) 	En(B(q/2,q,q); f) < c gEn(Hq; A 1 < q < oo. 

where cq  is a constant independent of n and f. In the case of Hardy space Hoo, 

	

(1.2.20) 	E„(B(p, oo, oo); f) < En(I-I.; f), 1 < p < oo. 

Since 

a(p) 

	

(1.2.21) 	"((x, /3; f) = lim sup 	  
n—■oo 0-b[el/PETTiln(Hq ; f)1P1 

a(7;)  
> lim sup 

Poo Ofry[ellP Erz, 	(B(q 2, q, q); AP} 
> 7., 1 < q < co. 

Using estimate (1.2.20) we prove inequality (1.2.21) in the case q = oo. 

For the reverse inequality 

(1.2.22) 	 (ct,  0; f) 

use the relation (1.2.3), which is valid for n > m, and estimate from above the 

generalized type T of an entire transcendental function f (z) having finite generalized 

order p as follows. We have 

En(Hq; 	II! — 
00 

E l a jl 

j=n-I-1 
(11 P  1- 

e
) 	 00 

	

< -11[13-1 (a 	)11/p}-1/n+1e(n+1)//) E  oi(a,  0)•  r  j=n-f-1 
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a( n±1) 
T > 	 P  /31-y[ellp[E;1in+1(Hq; f)]{1 - 0(a, Miiiit-olp} 

Using (1.2.6), 

En(Hq; f) 5- Ilf - grit-4  
( 

5. (1 	0))-17 -11[0-1( 	P ) )11/1-1111-1-1e(n+1)/p 
T 

This yields 

(1.2.23) 

Since e > 0 is arbitrary, passing to the limit as n 	oo in (1.2.23), we obtain inequality 

(1.2.22). Thus we have finally 

(1.2.24) 	 e(a, /3; f) = T • 

This completes the proof of Theorem 1.2.2. 	 ❑  

1.3 Generalized Order of Entire Functions of Slow 

Growth 

In this section we consider the generalized order of functions of slow growth in terms 

of the approximation errors En(B(p, q, tc); f ). We now prove 

Theorem 1.3.1. Let cv(x) E CZ, then necessary and sufficient condition for an entire 

function f(z) E .13(p,q,n) of finite generalized order p is 

lim sup 	a(11)- 	= T(a) = p - 1. (1.3.1) 
,00 	 Eri(B(p, q, /); f)] 
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(1.3.4) E„(B(p, 2, n); 
exp{(n +1)a-l[a(n + 1)/((p  - 1) + E)]} 

1311KRn + 1)ic + 1; tc(1/p - 1/2)1{ELo_1  072(a) 1/2 

Proof From [29, Th 4], we have 

(1.3.2) 	P(ct; f) = 1+ L, where L = lirn sup 	
a(n) 

 
41--+00 a{(1/n) in Ian; I} 

For a given e > 0 and all n > m = m(e), we have 

(1.3.3) 	 iani < exp {na 1  a(n)I(p + c)]} 

From (1.2.4), 

1 

where 

1/),i(a) = exp{(n + 1)(1-1[a(n + 1)/((p - 1) + e)] - ja-I [a(j)/((p - 1) + e)1}. 

Set 

1/) (a) `=-' 
exp 	c(1)/((p - 1) + c)}}.  

Then we have 

(1.3.5) 	2bi(a) < exp {(n +1 - j)ana(n + 1)/((p - 1) + 	oi-(n+i)(a). 

By relation (1.3.5) and since 0(a) < 1, (1.3.4) takes the form 

(1.3.6) 
B1/"[(n + 1)K + 1; ic(1/p - 1/2)]  

En(E,3(p, 2, ); 	< 
- (1 - 02(ce))1/2expl(n +1)a-l[a(n + 1)/((p 1) + €)]} 

1 
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for n > m, estimate (1.3.6) yields 

(1.3.7) (p —1)+e > 
a(n + 1) 

)n;xlip-12)111  al(n 1)-1[— 	 Blin[(n  E,(B(p, 2, K), f) + In 	(1-2(a) 
(
)1/2 	 j 

and passing to limits as n —4 ob in (1.3.7), we get 

(1.3.8) 	 p —1 > T(a). 

For the reverse inequality, from relation (1.4.24), for sufficiently large n, we have 

a(n) 
--1  ln En (B(P" ); f  

a[(1 — 7 11 -.1)(n + 1)1 

6{(1  ti)[111 (1/ "+10an+11) +111 	("1VB((n 1)/C + 1; n(l/P 1/2)))1} 

Proceeding to limits, we obtain 

(1.3.9) 	 T(a) > p — 1. 

From relations (1.3.8) and (1.3.9), we will obtain the required equality 

(1.3.10) 	 T(a) = p — 1. 

This completes the proof of Theorem 1.3.1. 	 0 

Theorem 1.3.2. Let a(x) E St, then a necessary and sufficient condition for an 

entire function f (z) E Hq  to be of finite generalized order p is 

(1.3.11) cr(n) 	p — lim su
p

1. 
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Proof From (1.2.19) 

	

En [B(qI2,q,q); f] 	Sq En(Hq ; f) 1 < q < 00 

where cq  is a constant independent of n and f. Hence 

lirasup 	
a(n) 	 a(n)  

> lirn sup 

	

a[—n-1  In En(Hg ; f)] 	 En(B(q I 2, q, q); f)] 

(1.3.12) 	 > p — 1, 1 < q < oo. 

Using estimate (1.2.20), the above inequality is true for the case when q = oo. 

For reverse inequality, we use the relation (1.3.3), which is valid for n > m, and 

estimate from above the generalized order p of an entire function f (z) as follows. We 

have 

En(Hq ; f) 5_ II f — sfIlHq  
00 E 

j=n+1 

5 	-  exp { (n + 1)oz-1[ (:(71  1+1 +1)  e] 	if)i  (a). 
I 	.7=n-1-1 

Using (1.3.5), we get 

	

En(Hq ; 1) 5 (1 —11)(a))-1  exp {—(n + 1)a-1[
09a(n  1+) +1) 	€

]
1 

This yields 

(i)  
a(n + 1) 

[ 1 In  n+1 Hq 	+ 	1- En+i(j) 	 la)]  I 
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Now proceeding to limits, we obtain 

(1.3.13) p - 1 > lim SUP 	  
n--+c<5 al-n-1 

a(n) 
ln En(Hq ; 

From (1.3.12), and (1.3.13), we get the required relation (1.3.11). This completes the 

proof of Theorem 1.3.2. 	 1:1 

1.4 Generalized Type of tntire Functions of Slow 

Growth 

We define the generalized type r(a, f) of an entire function f (z) having finite gener-

alized order p(a; 1) as 

r(a; 	lim sup 
a(ln M(r, f)) 

[a(ln r)]P 

where a(x) either belongs to 5-2 or to 

Now we prove 

Theorem 1.4.1. Let a(x) E Si, then the entire function f(z) of generalized order 

p, 1 < p < oo, is of generalized type 7 if and only if 

(1.4.1) 	 T = lim sup 	c(7))  
n-400 { [-e- ln [an  1-1/n11,p-1' 

P-1 

provided dF(x -r , p)/dlnx = 0(1) as x --) oo for all 7, 0 < T < oo. 

Proof. Let 
a(In M(R, 	f))  

	

lim sup 	 = T. 
E_,00 	[a(ln R)]P 

We suppose T < oo. Then for every c > 0, 3 R(c) such that for all R > R(e), we 

have 
d(In M(/, n)  < + 

[a(ln R)]P 
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or 

In M(R, f) < (a-1{7f[a(lnR)]P}). 

Choose R = R(n) to be the unique root of the equation 

(1.4.2) 

Then 

(1.4.3) 

1 n = 	Fpn R ; T-  , - ]. ln R 

In R = a-1  [(-1  cx( 12:))1/ ( P-1) ] = F [ ii  • -1  p - 1]. 
T-  p 

By Cauchy's inequality, 

lani 5_ R-"M(R; f) 

exp { -n In R 	(a-1{T (ln R)1"})} 

By using (1.4.2) and (1.4.3), wier get 
a 	

exp {_nF 7
-1F} 

Or 

	 in  Ian 	 1 ce(—n ))1/(p-1)1} 
p - 1 ' 	 T p  

or 

T-  = T > 

  

 

{a[T_P-ri In lan1-1/1}P-1  • 

Proceeding to limits, we obtain 

(1.4.4) 	 T > lim sup 	ce(7-10 
n --. co {a[T,f-i lniani-vn]yp-i)• 
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Inequality (1.4.4) obviously holds when = oo. 

Conversely, let 

lira sup 

n 	 fa[- 1P---- 
c/(7,)  

In 	
= Q. 

Suppose a < oo. Then for every € > 0, 3N(€) such that for all n > N, we have 

a(n) 

{C[7,FT In I an  I -1/7]}(P-1) 	
er 	= 

(1.4.5) 	 i.e. Ian! < exp 	{(10 	1) 	; o, p— 1]} .  

The inequality 

(1.4.6) 	 V IanIRn < Re-(1)F[,.-; , P-11 < 

is fulfilled beginning with some n = n(R). Then 

00 	 00 	.1

n  
(1.4.7) 	 E laniRn  5_ E 	< 1. 

2— 

We now express n(R) in terms of R. From inequality (1.4.6), 

p — 	 n 
2R 5_ exp{( 

P
-

1
) 

P 
— , p — 11} , 

we can take n(R) = E[p a-1  {T (6(1n R + In 2))p`1}]. Consider the function 

= Rx  exp {— (8-7p1) x F[T5  ; 1 , p - 1] } and take its logarithmic derivative and 

set it equal to zero. 

	

11; (x) 	 p 1 	x 	1 	dF1-7, ; 1 , p — 1] 
(1.4.8) 	 = 1nR 	()F1 

 . 	, p 1]   = 0. 

	

fi(x) 	 p 	Q dlrix 

1 

n=n(R)+1 	n=n(R)+1 
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As x 	oo, by the assumption of the theorem, for finite o (0 < v < oo), 

dF[x ; F p — 1] / dlnx is bounded. So there is an A > 0 such that for x > x1  we 

have 

(1.4.9) 
dF[m ; , p — 1 

P 	
 

dln x 
<A. 

We can take A > 1n2. It is then obvious that inequalities (1.4.6) and (1.4.7) hold 

for n > ni (R) = 	or' 	(a(1nR + A))(P-1)}]  + 1. We let no  designate the 

number max (N(E), E[xi J + 1). For R > R1(no ) we have Oi(no)/0(no) > 0. From 

(1.4.9)and (1.4.8) it follows that iii(ni(R))/Vi(ni(R)) < 0. We hence obtain that if for 

R > Ri(no ) we let x*(R) designate the point where 0(x*(R)) = maxna<x<ni(R) 0(x), 

then 

no  < x*(R) < ni(R) and x* (R) = pce-10--  (a(ln R — a(R)))P 11. 

where 
dF[E ; 	, p 1] 

—A < (R) = 	 lx.x.(R) < A. dlnx 

Further 

max (laniiin ) 5_ max tk(x) = no<n<ni (R) 	 na<x<ni(R) 

Rpct -1{Q (a(In R-a(R)))P-1 ) 

e pa-1  {i7 (a(In R-a(R)))11-  1} (ln R-a(R)) 

= exp {a(R)pa-1{5- (a(ln R — a(R)))P-1}} < exp {Apci -1{-ci(ct(ln R + A))P-1}}. 

It is obvious that (for R > Ri(no)) 

M(R, f) < EZ3-0 I an I Rn  = ElntolanIRn 	E7/111nR0)+11an IRn 	E7̀7--nim+i Ian Vin  

0(Rn°) + ni(R) 
no <n<ni 

max
(R) 

(faniRn) + 1 
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la„I 5_ exp {(p — 1) 7, F[-t, ; 	p - 1]}.  (1.4.13) 1 

M(R, f)(1 + o(1)) < exp {(Ap + o(1)) 	(a(ln R A))Pl} 

a(ln M(R, f)) < ala(ln R + A)]P' < Q [a(ln R + A)]P . 

We then have 
et[(Ap o(1))-11n111 (R, f)1  < 

[a(ln R + A)]/' 
= a+ e. 

Since a (x) E r/ C A, now proceeding to limits we obtain 

(1.4.10) 
a(ln  M(R.,1))  lim sup 	- 	< 

R (Do 	{a(ln RAP 	- 

From inequalities (1.4.4) and (1.4.10), we get the required the result. This completes 

the proof of Theorem 1.4.1. 	 0 

Theorem 1.4.2. Let a(x) E 11, then a necessary and sufficient condition, for an 

entire function f (z) E B(p, q, c) to be Of generalized type r having finite generalized 

order p, 1 < p < a) is 

(1.4.11) T = lirli 	
a() 

SUp 	 P  
In (1E„(B(p, q, tc); n1-1 /79}1(p-1) 

Proof. We prove the above result in two steps. First we consider the space B(p, q, tc), 

q = 2, 0 < p < 2 and tc > 1. Let f (z) E B(p, q, k) be of generalized type r with 

generalized order p. Then from the Theorem 1.4.1, we have 

(1.4.12) 
a() 

lim sup  - - 	P 1 /71}p-i n-mx) 	[-e-p-1 In la 1-  
=  T. 

For a given e > 0, and all n > 	rn(e), we have 

Let gn ( f, z) = Erji=o aizi be the nth  partial sum of the Taylor series of the function 
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where B(a, b) (a, b > 0) denotes the beta function. By using (1.2.3), we have 

(1.4.15) 
1/2 

En(B(p, 2, tc); f) 	
B1I''[( + 1) + 1; K(1/p - 1/2)]  

q(a)} exp 	1) 111-+ F[ 2-1±-,1  ; T, p-  1]} 

00 

f (z). Following [63, p.1396], we get 

00 

(1.4.14) 	En,(B(p, 2, lc); f) 5_ BilK [(n + 1)n + 1; K(1/P - 1/2)]{ E lad  12}1/2 
jz=n+1 

where 

i(a) 	
exp{r-V(p - 

exp{:zo (p - 1) [a- 

11 ( 	)1/(p-1)}j} 

1{(T- )1/(p-1)}]} 
• 

Set 

00(a) exp{--
1  (p — 1)[a --1  I ( 

a(;) 
11 /(P-1) 

"T -FE / 	j"  

Since a(x) is increasing and j > n + 1, we get 

(1.4.16) 
((n 	+ 1) - j) 	a(1±-1  ) 7,bi(a) 	exp { 	(p 	1)[ci-1{( 	P  )1AP-1)}]} 5.. 	(n+1) (a ) 

T C 

Since ib(a) < 1, we get from (1.2.5) and (1.2.6), 

(1.4.17) 
+ 1)K + 1; K(1 /p - 1/2)]  En(B(p, 2, k); f) 5_ (11±1  ) 

(1  — 02 (a))1/2 [exP 	(p— 1)[a-11(
a 	

)1/(P-1)}ill 

For n > m, (1.4.17) yields 

T+ > 

 

a(11) 

la(c1+Ap-1){1n (IE. -1/n) + in  (B11  Rn(-1-11);(a17)(11/2p-1/2)1)1/n})}  (p -1) 

r((n + 1)/c + 1)r(tc(1/p - 1/2))  B[(n + 1)K + 1; K(11 p - 1/2)] = 
r((n + 1/2 + 1/p)n + 1) 

Now 
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Hence 

e-[(n+1)'+'][(n  + 1)K + 11(n+1)1"-3/2r(l/p  — 1/2) 
S'[(n + 1)n -F 1; n(1/p — 1/2)] 	e[(n+1/2+1/p)K+1][(71 + 1/2 + 1/p)n + 1](n+1/2-1-1/p)m-1-3/2 • 

Thus 

(1.4.18) 
	

{B[(n + 1)K + 1; rt(1/p — 1/2)111/(n-14)  'A' 1 

Proceeding to limits, we obtain 

(1.4.19) T >. limn  soup 	  
[al-A 111(fEnl-1/n)WP-1)  

For reverse inequality, by [63, p.1398], we have 

(1.4.20) 
	

lan+i 	f (n + 1)/c + 1; K(1/p — 1/2)) < En(13(p, ic); f) ,  

Then for sufficiently large n, we have 

a(PIP)  
[a 7).Pri  In (lEn1-1/7)}1(P-1) 

ct(7,) 
[6{7,,ezi {In I an+11-1/") + In (B-Pink[(rt, ± 1)K + 1; (1/11 — 1/2)1)}}1(P-1)  

> 	- 	 00)  
(lan1 -1/n) + In (B-PirucRn + 1)k  + 1; n(1/p — 1/2)])}}p-1) 

By applying limits and from (1.4.12), we obtain 

(1.4.21) limsup 	  
00 [a{7,!--i In (lEnhi)WP-1)  ?"' T. 
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From (1.4.19), and (1.4.21), we obtain the required relation 

(1.4.22) lim sup 

 

= T. [a{ 	( I En1-1/71)}](P-i)  

In the second step, we consider the spaces B(p, q, ic) for 0 < p < q, q 2, and q, K > 1. 

Gvaradze [19] showed that, for p > 7)1, q < ql , and < 	if at least one of the 

inequalities is strict, then the strict inclusion B(p, q, tc) C B(p1, q1, KO holds and the 

following relation is true: 

	

f 	211"-1i91 [K(1/p — 1/q)]1R-1/K111flim,,,. 

For any function f (z) E B(p, q, ic), the last relation yields 

(1.4.23) 	En(B(Pi, q1, tci); f) < 21/9-1/910(1/p — 1/q)P/K-1/'' En (B(p, q, 10; f). 

For the general case B(p, q, n), q 	2, we prove the necessity of condition (1.4.11). 

Let f (z) E B(p, q, tc) be an entire transcendental function having finite generalized 

order p(a; f) whose generalized type is defined by (1.4.12). Using the relation (1.4.13), 

for n > m we estimate the value of the best polynomial approximation as follows 

1 

	

En (B(p, q, ec); 	!If gn(f)11Thq,,, 5_ (f (1 — rpi(l/p-1/9)-1)Acdr)1R. 

Now 
00 

Iflq = 1E aner < (E lanrni)9 < (rn-f-1 E taki)Q. 
k=n+1 

Hence 
00 

En (B(p, q, K); f) < B inn + 1)K + 1; K(1/p — 1 /q)] E lad 
k=n+1 
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.81/1(n + 1)/c + 1; ts(l/p — 1/q)}  

v+1 ) 
(1  — tk(a))[exP 	 1)16-1{(7-17-) (P-)}11] 

For n > in, (1.4.24) yields 

,„( 71.±1) 
e > 	 P I  

+ 	( BIN(n+l)n-1-1;n(l/P-1/2)1  )1/1.)}(p-1) 16( 	e 	{ln (lEnl-1/n) - (a)) 1-1---)(p-1) 

Since (a) < 1, and et E St, proceeding to limits and using (1.2.8), we obtain 

T > lim SUP 
'00 

For the reverse inequality, let 0 < p < q < 2 and ts, q > 1. By (1.4.23), where 

Pi = p, gi = 2, and is i = ,c, and the condition (1.4.11) is already proved for the space 

B(p, 2, tc), we get 

I.  sup 	
a(n/p) 

rt--000 	 In (1E(i3(p, q , 16) ;  f)I-1/79}1(P-1) 

> lim sup 
n-+oo 

ct (n/P)  

[ce{7,f=j-  In (lEn (B(p, 2, K); 

Now let 0 < p < 2 < q. Since we have 

M2(r, f) 5_ Adti(r, ,f), 0 < r < 1, 

therefore 

(1.4.24) 	 En(13(p, q, n); 1) 	lan+11 B1/"[(n 	1)Is + 1;  ic(1/p — 1/01. 

)e ) 
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Then for sufficiently large n, we have 

(n 1 p) 
[a{ Teri  ln (lEn1-1/n)}}(p--1) 

a( -7 ) 
[(1{{ln (lan+11 -1/n) + In (B-Pintn + 1)/c + 1; K(1/p - 1/q)])} }](P-1) 

a( 7) ) 
+ In (13-PI"Pq(n + 1)K + 1; K(11 p - 1/q)])}}P-1) .  

By applying limits and from (1.4.12), we obtain 

a( ,; )  limsup 	 ,n, 	 lirn sup 
(a{72).-_3 , in 	/ )11 	) 	00 

a(2,;)  
(Ian hIln)Wp-1 ) T. 

Now we assume that 2 < p < q. Set qi = q, Ki = ,c, and 0 < p1  < 2 in the inequality 

(1.4.23), where pi  is an arbitrary fixed number. Substituting pi  for p in (1.4.24), we 

get 

(1.4.25) 	En (B(p, q, K); f) 	lan+11B1I'Rn + 	+ 1; K(1/pi - 1/q)]. 

Using (1.4.25) and applying the same analogy as in the previous case 0 < p < 2 < q, 

for sufficiently large n, we have 

a(n/p)  

Ea{T,Pzy 1n  (1E,L1-1/n)}l(P-1)  

a(;) 
{a{-,A{In (la.+11-1/n)  + In CB-  Pinis[(71 1)K + 1; k(1/231, - 1/01)}}1(,-1) 

a(P) 
(lan1-1/n) + In (B-Ping[(n + 1)/c + 1; n(1/231  - 1/q)])}}p--1) .  

> 
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By applying limits and using (1.4.12), we obtain 

°CI )  
n-.. ice{P—p4In (tEni-vn)}](pi > T. 

From relations (1.4.19) and (1.4.21), and the above inequality, we obtain the required 

relation (1.4.22). This completes the proof of Theorem 1.4.2. 	 0 

Theorem 1.4.3. Assuming that the conditions of theorem 1.4.2 are satisfied and e(a) 

is a positive number, a necessary and sufficient condition for a function f (z) E Hq  to 

be an entire function of generalized type C(a) having finite generalized order p is that 

(1.4.26) a7;  lira sup 	 ()  
[cx{-4-1_ ln (14.,(Hq ; f) I -1/n)Hp-i 	C(a)- 

Proof. Let f (z) =E77_0 a„zn be an entire transcendental function having finite gen-

eralized order p and generalized type T . Since 

(1.4.27) llm Vlaid = 0 n,00 

f (z) E B(p, q, ,c), where 0 < p < q < oo and q, rc ?_ 1. From relation (1.1.1), we get 

	

(1.4.28) 	En(B(q/2, q, q); 	cq Pn(Hq ; f), 1 < q < oo. 

where cq is a constant independent of n and f. In the case of Hardy space Hoo , 

	

(1.4.29) 	En(B(p, oo, oo); f ) 5_ En(H00; 1), 1 < p < co. 

Since 

C(ce; f) = lim sup 
71-000 

 

oi(nl p)  
f)I -1/n )}1(P-1)  
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(1.4.30) 

> lim sup 	
a(n/p)  

[a{tr In (1,E72((B(q/2, q, q); f)1 -1/71 )11(P-1 ) 
> T, 	< q < oo. 

Using estimate (1.4.29) we prove inequality (1.4.30) in the case q = oo. 

For the reverse inequality 

(1.4.31) 

we use the relation (1.4.13), which is valid for n > rn, and estimate from above, the 

generalized type 7-  of an entire transcendental function f(z) having finite generalized 

order p, as follows. We have 

En (Hq ; f) < Ilf — gnIIH, 
00 

E Iaal 
i=n+1 

1 	 00 
2,41(a) 

[exp {(p - 1) n--1--pq 	 j:77+1  - 	• 

Using (1.4.16), 

En(Hq; n 5- IIf - gaff, 

(1 - Ca)) [exp {(p - 1) n+1±-,1  [oz-1{(a(4)1/(p-i)mi .  

1   

En(Hq; f) 	
(1 7/)(a)) exp (p 	(n + 1) 1)  p  

This yields 

a-1 	a(  I (n+1) )571  -5.1  /1 }1  

(1.4.32) 
a()  E > 

[oz{A- [ln (IE„(Hq ; f)1-1/11.+1 ) + In ((1 0(a))-1/n+imi(p-i) • 
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Since 0(a) < 1 and by applying the properties of the function a, passing to,the limit 

as n 	oo in (1.4.32), we obtain inequality (1.4.31). Thus we have finally 

(1.4.33) 

This completes the proof of Theorem 1.4.3. 	 D 

Remark 1.4.1. An analog of this theorem for the Bergman Spaces follows from (1.1.1) 

for 1 < q < oo and from Theorem 1.4.3 for q = oo. 
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Chapter 2 
Approximation of Entire Functions 
of One Complex Variable Over 
Jordan Domain 

In this present Chapter, we study the polynomial approximation Of entire functions 
over Jordan domains by using Faber polynomials. The coefficient characterizations 

Of generalized order and generalized type of entire functions have been obtained in 
terms of the approximation errors. 

2.1 Introduction 

Let C be an analytic Jordan curve, D its interior and E be its exterior. Let ep map 
E conformally onto {w : 	> 1} such that goo) = 00 and :pi (oo) > 0. Then for 
sufficiently large kJ, yo(z) can be expressed as 

(2.1.1) Clz 	C2 w = co(z) = 	Co d 	 z z 

An arbitrary Jordan curve can be approximated from the inside as well as from the 
outside by analytic Jordan curves. Since C is analytic, so is holomorphic on C as well. 
The n th Faber polynomial Fn(z) of C is the principal part of ((p(z))n at oo, so that 

zn- 
Pn(z) = + 
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Faber [12] proved that as n --+ oo, 

(2.1.2) 	 Fn (z) (co(z))n 

uniformly for z E E and 

\ 1/n 
(2.1.3) 	 (llizEacx' IFn(z)l) 

	=1. 
 

A function f holomorphic in D can be represented by its Faber series 

(2.1.4) 
00 

1 (z) = > a„Fn(z) 
n=o 

where 
1 jr)^1. 

an 	
f 	(w)),ur (n+l)dw  

27ril,„1 „. 

and r < 1 is sufficiently close to 1 so that co-1  is holomorphic and univalent in Iwl > r, 

the series converging uniformly on compact subsets of D. Let M(r, 1) = max1,1,„ if (z) I 

be the maximum modulus of f (z). The growth of f (z) is measured in terms of its 

order p and type T defined as under 

(2.1.5) Um sup In In M(r, f) 
= In r 

(2.1.6) lim sup In M(r f)  ,  
= 7-, 

r—+oo 	rP 

for 0 < p < oo. 

Let LP(D) denote the set of functions f holomorphic in D and such that 

1 1/p 

11.111Lp(D)= (—
A 	D  fif(z)1Pdxdy) 	< oo 
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where A is the area of D. For f E LP(D), set 

Eri = rn(f ; D) =min llf -ltn IILP(D) 

where Ir„ is an arbitrary polynomial of degree at most n. 

2.2 Generalized Order and Generalized Type 

In this section we obtain the growth characterizations in terms of the coefficients {an} 

of the Faber series (2.1.4). We first prove 

Theorem 2.2.1. Let a(x) E A, /3(x) E L° . Set H(x;c) 	,3-1[c a(x)], then f is 

restriction to the domain D of an entire function of finite generalized order p if 

(2.2.1) lim sup 	
01(n)

, 	 ‘ 
n-000 P 	In n i = 

provided dH(x;c)Idlnx = 0(1) as x oo for all c, 0 < c < oo. 

Proof Let f(z) = En°°_0  anFn(z) be an entire function of finite generalized order p, 

where 
1 

an = 27r2 f (co-1(w)) w —(n+l)dw 

with arbitrarily large R. From (2.1.1), we have 

lim Co 1(w) 	d. 
1w1-400 w 

Hence for sufficiently large 1w1, 

(d - e)11-vi <140-1(w)i <(d + 0114 
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Therefore 

If (so 1 (10))1 	exp { ce-1  [-A 	(d + c)lw1)11, P=p + E,  

and from Cauchy's inequality, we have 

lard 5_ R —n  exp { a-1  roa 13 On (d + E)11144}' 

for all R sufficiently large. To minimize the right member of this inequality, choose 

I = R(n) = 	exp {11(n; 	Substituting this value of R in the above inequality, 

we have 
1 In 	 1 nH(fl; 	- n in (d + - a-1  [M3 (I-1(n; ::))] 

- -1  In lard .?. H  (NO = 	
P 

0- 1   a(n)d P  

0(
--1-ln lan l) _> -1a(n) n 	 p 

p + c > 	a(n)  
0 (- ;

1 
 In (an ') 

Now proceeding to limits and since 6 is arbitrary, we have 

(2.2.2) p > lim sup 
n—+oo 

a(n)  
( 

n In Ian') • 

Conversely, let 

dim sup 	
a(n)  

(-11n lan ) 

Suppose cr < oo. Then for every E > 0, 3 N(c) such that for all n > N, we have 

a(n) 

	

< 	= 
(-k lnlanl) 

lanl 5_ exp {-n H (72; Fri )} . 
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Since f (z) = 	a„ F„(z), therefore 

00 
1 /(45_ Eexp {—nH (n;=)} IFn(z)i- 

n=0 

But from (2.1.2), we have for some K > 0, IF„(z)l < Kicp(z)In VzEE and from 

(2.1.1), for all sufficiently large Izi, we have 

(2.2.3) 
I zI 

E  icP(z)i 	d 	• 

Therefore the above inequality reduces to 

oo 	 1 
(2.2.4) 	 I f (z)I < K Eexp{—nH (n; Fj. )} (

IZI
Tri)n  

n=0 

By considering the function .0(x) = (-1-V exp 	(x; 0} and proceeding on —c 

the lines of proof of Theorem 1 of Seremeta [44, p 294], we obtain 

M(11; f)(1 + o(1)) < exp{(G + o(1))cx-1[-(7.  [3(ln R + G)]} 

aRG + o(1))-1  ln /11(R; f)]  
< = a + E. /3(ln R + G) 

Since a(x) E A and /3(x) E L°, on letting R oo and since 6 is arbitrary, we get 

a(ln M (R; f)) 	 a(n)  (2.2.5) 	lirn sup 	 < o-  = lim sup 
0(1n R) 	 13 ( -4- Ina„i) 

The above inequality holds obviously of a = oo. From (2.2.2) and (2.2.5), we obtain 

the required result (2.2.1). This completes the proof of Theorem 2.2.1. 	0 

Theorem 2.2.2. Let a(x), 13-1(x), -y(x) E L°; let p be a fixed number, 0 < p < oo. 

Set H (x; a, p) 	[f3-1 	cr(x))]l/p}, then f is the restriction to the domain D of 
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an entire function of generalized order p and finite generalized type r if and only if 

(n) 
(2.2.6) 	 lirasup 	  

71-4°° 
P ifry (del/Plaid-11,2y} = 

provided if -y(x) E A and a(x) E A, dH(x; o, p)Id in x = 0(1) as x oo. 

Proof. Proceeding as in the proof of Theorem 2.2.1, we have 

(d f)iwi < 1W -1(01 < (d + 0114 

Let f be an entire function of generalized type T having finite generalized order p. 

Then we have 

If ((p-  (w))I < exp fa-1{7 0 [(7((d + OwDY1}},  

and from Cauchy's inequality, we have 

ianl S R-n exp {42-1  {r R-Y((d + c)1w1))P]}}, 

for all R sufficiently large. To minimize the right hand side of this inequality, choose 

R 	R(n) 	(d+1  e) H (7) ; 31E, p). Substituting value of R in the above inequality, we 

have 

(d + e)eil P lan1-1 In > H ( -1.- ; P 

Proceeding to limits, we have 

(2.2.7) 	 lim sup 	a  (LIP) 	T. 
n--■oo 	ay (del/Plani -lin)]P J  

45 

Lejexp (a) 
Ian' <

d
r 	  

H (7 ); , p)r 



Conversely let 

lim sup - 	 (79)  
Th-.00 	{['y (dell P la,,)-1/n)] 

Suppose 77 < oo. Then for every c > 0, 3 Y(e) such that for all n > Y, we have 

a (' ji) 

{h, (deliplan  -1,n)ip} 5_ + E = 

	

lani 	r  cr:  texP (7))  

1_11 Int ; 4,P)] 
71. • 

Since f (z) = 	an  Fn(z), therefore 

do  exp () 
lf(z)I E 	P IFn(z)I. 

n=o [ 11 ( 0 ,.4 ,01 

As in (2.2.4), we have on using the estimate of F,,(z), 

exp (2) P  

	

If(z)I 5. 	 , 
(d I.zi \ n  

n---- H (70 ; 4,p)] 	d - c. ) 

to 0 ex p ( 4  

	

< 	
,) 

n=0 [H  ( F.ii;  4,P)i,, 
	 Hn  . 

To estimate the summation of the right hand side of above inequality, we consider the 

function 0(x) 	(R el/Pr [H 	4,0 
x

1 . Then following the proof of Seremeta 

[44, Th .2, Page 2961, we obtain 

M(R;f) exp { (A p+ o(1))  ct-1  {71 OKey (Re0Y}}}. 
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By using the definition of the class L°, A, and proceeding to limits, we obtain 

[ln M(R; sn]  (2.2.8) 	 7 = IiRrtslloop 	[ (R))P] 	• 

From (2.2.7) and (2.2.8), we get the required result. This completes the proof of 

Theorem 2.2.2. 	 0 

2.3 LP - Approximation 

In this section we consider the approximations of an entire function over the domain 

D. Consider the polynomials 

(z) = 	+ ( An  > 0) 

defined through 
1 f jp.  

Pn(z) pm(z)dx dy 

These polynomials were first considered by T. Carleman [8] who proved that 

(2.3.1) (n+1)A)1/2  , 
Piz(z) 	( 	 (z) •(V(z))n  as n —0 00 

uniformly for z E E where A and co(z) are as defined earlier. Any function f E L2(D) 

can be expanded in terms of these polynomials in a series 

00 

(2.3.2) 
	

f (z) = E bn Pn(z) 
n=0 

where 

b„ = A f D f f(z) p„(z)dx dy 
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and the series converges uniformly on compact subsets of D. 
Parseval's relation yields 

oo 	1/2 

(2.3 n.3) 	 En E tbki2 	. 

We now prove 

Lemma 2.3.1. Let a(x) E A, [3(x) E L°, then 

(2.3.4) 	lim sup 	a(n) 	= lirn sup 	a(n) 
n--■co /3 (— ln lb ,t1) 	n-000 	 ln Eg. ) .  

Proof. From (2.3.3), we have 

	

1 	1 	1 , 1 >  in — 

	

n 	 n En  

Since 13 E L°, we have 

/3( 1  

	

-- n Ibn+d) 	In Ee
l 

 

Since a E A, proceeding to limits, we have 

(2.3.5) 	lim sup 	 a(n) 	< lira sup 	  a(n) 
n-.00 	(-1 	

, 
	 r-400 	hi  M. )  • 

Conversely, let 
a(n)  lira sup 	 = p. 

	

n—too 	(— 1n1b7,1) 

Suppose p < oo. Then for every E > 0, 3 G(€) such that for all n > G, we have 

a(n) 
(— 

k=n4-1 

48 



16.„1 5 G exp -n 0-1  f 
a(n)] 

5 G exp {-n H (n;1  

Therefore 

(ED2  
00 

< G E exp {-2kH(k; 
k=n+1 	 ..- I 

< G exp {-2(n + 1)H(n + 1; =4 (1 	 
P 	e2 H(n+1;f) 

< Gexp {-2(n + 1)H(n +1; =1) } 

1 
In 

1 	(n + 1) H(n +1; =) 

or 

0 ( 	1 n + 1 In 	
1 a(n + 1). 

Proceeding to limits, we obtain 

(-711  (1n2Ibni) (2.3.6) 	lim„sooup 	a(n)  
0(--11nE) • p = limn2ciouP 

from (2.3.5) and (2.3.6), we get the required result. This completes the proof of 

Lemma 2.3.1. 	 0 

Lemma 2.3.2. Let a(x), 13-1(x), -y(x) E L°; let p be a fixed number, 0 < p < oo. 

Set H(x; a-, p) = -y-1  t[0-1  (o-  a(x))]11, then 

a  (2.3.7) 	lim sup  n r r
(!)  

	

, „ 	lim sup 

	

Q try ( ie=iplioni-iin)1, 	n_,00 	{ [7  (dei/p (Er21)- vn  )1P 
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00Mb 14444440  

61.30,23 
Aoss. 115434,..... W..a.* pleat 

Proof. From (2.3.3), we have 

1bn-1-11 < EL, 

ellp bn+11-1/n > elip (EE)-1/n 

since - y E 1,0, we have 

'y[de1" Ibn+1
I -1/nl > 7[d ell°  (ED-1 

0{(7[d 	Ibn+11-1//r} 	Of Old elIP  (ED 1/791.  

cx 

 

(72.±) 
	 <  	P 	 
ni)P 	#{(71c1 	(g)-1/1) PJ  

By applying limits, since a E L° , we obtain 

(2.3.8) 	lira sup 
n--)oo P 

a  (7) • - < 	c'  
(devpibni-4/7 )}P — lim sup  

n-400 p { fry (del/P(ED -1111)1P  

Conversely, let 
a (11 ) 

lim sup 	  ___- T. 
Doo 	{ [-y 

Suppose T < co. Then for every E > 0, 3 V(6) such that for all n > V, we have 

lIp 
1,--1 [{,6 ---1 [—L- a Mil 	d e l/P  lb„1-1/n  

p 

	

< r e"/  P  [H C 	 n  

	

p 	P 

50 	Dete••• 

Hence 

/3{(7[d el/P Ibn+1I- 



Therefore 

(E,D 2  
oo 	 1 	—2k 

< E  ,2k a e2k1P [H (- ; = 3 P 
P 7 k=n+1 

d e11P 
2(n-I-1) 

1 
 

[ 
d el/0  

H  
[ 

N ; ) , p)  

( 
n+1,  . 	1 

P 	7r- 	7 
n  
r 

d el1P 
(t2± 1 n  

" p 

for n > 2de11P. 

d e11P (E2)-1/(n-I-1)  > H  (n +1   1 , 
P 	) 

1 	n + 1 
7-1  [3-1  (77  a  P ))1

111 

{ 7  [d ellp (En2)-1/(n+1)] 111 > 1 a (n + 1) = — 
I" 	 f) 

a  (71.±ip  

0[17 [d e11 P (E)-11(n+1)1}11P 

Since a(x), 0-1(x) and 7(x) E L°, proceeding to limits, we have 

a  (72) 	 a eli;) 
(2.3.9) 	limn_tip Ivy (devpibni _ i/n)ii,}  > lirn sup 	  

n—*oo /3 { (del/P(Eti)-1/n)]"} 

From (2.3.8) and (2.3.9), we get the required result (2.3.7). This completes the proof 

of Lemma 2.3.2. 
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2.4 Main Results 

In this section we obtain the growth characterizations (Generalized order and Gener-

alized type) of an entire function in terms of approximation errors E. 
Now we prove 

Theorem 2.4.1. Let 2 < p < oo. a(x) E A, 18(x) E L°. Set H(x;c) = 0-1[c a(x)], 

then f is restriction to the domain, 1) of an entire function of finite generalized order 

p if and only if 

(2.4.1) lim sup 	
a(n)

= 
n—•oo 	(— Tit  111(En)) 

provided dH(x;G) I d ln x = 0(1) as x --+ oo for all c, 0 < c < cx) 

Proof. We prove the theorem in two steps. First we consider the case for p = 2. 

Assume f is of finite generalized order p. Then from (2.2.1), we have 

I an ! < e—n H(n;j) 

Now by considering the orthonormality of the polynomials pn(z), we have 

0. 
b„ = 

A 
E ak  f f Fk(z) p„(z)dx dy. 

k=n+1 

Hence 

Ibni E 
k=n-I-1 

max Ifil(z)i-z 

Since from (2.1.3), we have 

(2.4.2) max IFk(z)1 < L (1+ c)k  , z 
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therefore, we have 

00 
e-k H(k;i) (1 + Ibni 	L 

k=n+1 
< L e-(n+1) H((n+1)4,) (1 + e)(n+1) 

Ii((n+1);3) L C-(n+1)  
[1 

since H (x. 1 ) is an increasing function —+ oo as x 	oo. Hence P )  

1 
1n Ib

1
d > (n + 1) H((n + 1); :7.) 
r  

 
n + 1 In Ibni 13-1  [- 1 a(n + 1)] 

or 

0(  	 n + 1 
ln ? 1  «(n + 1) 

P 

a(n + 1)  
p E „ 

in ibnI) 

Since E L°, proceeding to limits, we get 

(2.4.3) 
a(n)  lirn sup 	 < p. 

( -71,, inibni) 

Conversely, let 

lim s 	a() up 
n-■cc, 	ln Ibn I 

Suppose a < oo. Then for each € > 0, 3 Z(6) such that for all n > Z, we have 

Ibn i < e-n 

= u. 
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By Carleman's result, as n —+ co, we have 

pn(z) 	(n ±1)A  1/2 co,(z) (co(o)n 

uniformly for z E E. Therefore for all z E E, we have 

iPri(z)1 	(n + 1)1/2 Icc'(z)I iSc(z)in, 

iCAz)i T T V z E E, 

and 	i cp(z)1  <  'Izi  d — c 

for all z with sufficiently large modulus. Therefore 

If (z)I 	L 	H("41.-) (n, + 1)h/2   n. 
n=0 

Now consider n 0-1 [1. a(n)]  — 2 1n (n + 1)  = g(n). 

-1[1 6(  ,1 	g(n) 11  + 1 In (n + 	1)1  
)i n 1.  2 g(n) 

or 

= 
1 	

) 
ct ,n, 0 	9f7,0 f  + 12  ln (gnol+)  1)11  

Ln 

Since Q E L°, we have 

= a(n) 	[ g(n) 1 	1  
7t 

Or 

a( n )  = (fr + e) 	g(n)] + o(P(n)) 

g(n) = n0 -1  [÷ 2e  a(n)] . 
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Therefore 
00 

If(z)I L Ee-n H(71;1) 
n=0 

Consider the function x(x) = 	exp[—x H (x; cr _17u)]. Take its logarithmic 

derivative and set it equal to zero. Then we have 

x/(x) = ( R 	( x;  1 	d H (x; 	0.  

x(x) 	— 	 F 2e ) 	d lnx 

By assumption of the theorem 3 K' > 0 such that for x 	X 

d H (x; 0.+12,) 
d In x 

<K. 

  

Let K1(R) = E [a-1  {(a-  + 2e) 0(ln R + K i)}1 + 1 and ko  = max (IC (e), E[xi ] + 1). 

For R > Ri(ko), (4)11P(ko) > 0, and 1,Y(K1(R))/ 1,b(K1(R)) < 0. Let x*(R) be the 

point where the function & attains its maximum such that 

'11)(x*(R)) = 	max 0(x), 
ko<s<Ki (R) 

then ko < x*(R) < K1(R) and x*(R) = a-1  ((a + 2€) 0(ln R — a(R))), where 

d H (x. 
—K' < a(R) = 	7  cr+2e  

I x=x. (R) < d ln x 

Further 

max 	(jbkI  Rk) 
ko< k < K 1(R) lc()  

1118X 
< x < K t(R) 7

7b (X) 
 

Ra- 1 {(0 2e) /3(ln R—In (d—e)—a(R))) 

- e

- 	

a-1{(a+2e) (3(ln 	(d-()-a(R))). [In R —In (d-e)-a(R)] 

= exp {K' a-1  [(a + 2e) fl(ln R — In (d — e) — a(R))]} 

< exp {K'  a' [(a + 2e) 0(Y)}} 
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where /3(Y) = 0(1n R - 111(d - e) + K). Therefore for R > Ri(ko) , we have 

ko 	 (R) 

M(R; f) < 
	

Ibk1Ric  = ElbkiRk 	E ibkiRk+ >2  IbklRk  
k=0 
	 k=0 
	

k=k0 +1 	k=ki (R)+1 

< 0 (R4 ) + 1 + k1(R) ;co  < im(R)  (ibk I Ric). 

Hence 

M(R; f) (1 + O(1)) < (6-1  [(a + 2E) 3(Y)] + 1) exp 	ce-1  [(a + 2E) 0(Y)]} 

5_ exp (K i  + o(1)) 01-1  [(a + 2e) 0(Y)1}. 

Then, we have 
a [(K' + o(1))-1  In NI (R; .1:)] < + 2e. 

0(Y) 

Since a(x) E A and OW E L°, proceeding to limits as R co, we obtain 

(2.4.4) 
il 

p = lim sup 
a(ln M(R; f 

- 	< o-. 
R....„0 	0(ln R) 

Combining (2.4.3) and (2.4.4),we obtain 

a(
ln jb,, 
n) 

lim sup 	 - p. ..00 13 	I) 

The result now follows On using Lemma 2.3.1 for the case of p = 2. 

Now we consider the case p > 2. Since, we have 

(2.4.5) 	 < 	< 

for 2 < p < oo, it is sufficient to consider the case p = oo. Suppose f is an entire 
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function of generalized type having finite generalized order p. Then 

Er°,° < max 
zEc 1(z) - E ak Fk(z) 

k=0 
00 

 

I max IFk(z)I. 
zec 

k=n-1-1 

Since by Theorem 2.2.1, we have 

I an ! < e-n H(n4) .  

and since we have 

maC
x IFk(z)I 5_ K(1 + E) k  

zE 

therefore the above inequality becomes 

.0 
Ez) < K  > e_nH(n;i)  (1  + 

k=n+1 

K e-(7"-') H(n+1;1) ( 1  ± e)(n+1) 	(1 + c)  1  

< 	K e- 

1
g° 

In 
E
— > (n + 	

1 
1) H((n +1); =) 

or 

n +
1 
 1 	p 

ln 	
1 

> a(n + 1). 

Since a E L°, proceeding to limits, we get 

lim sup 	 < p, 
n-400 	(

a(n)  

1z  ln E,T) 

In view of inequalities (2.4.5) and the fact that (2.4.1) holds for p = 2, this last 

(n-1-1) Ign+1;§) (1 + 6)(n+1) 
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inequality is an equality. This completes the proof of Theorem 2.4.1. 	 0 

Theorem 2.4.2. Let 2 < p < oo. ce(x), 0-1(x), -y(x) E L°; and p be a fixed number, 

0 < p < oo. Set H(x; o, p) = -y-1  {{,e-i (a a(x)))11, then f is restriction to the 

domain .D of an entire function Of generalized order p and finite generalized type T if 

and only if 

(2.4.6) 	 lim sup 	a  (0  
n-.00 	{ (-7 (devp(Ero-ihoyj 

provided if -y(x) E A and a(x) E A, dH(x; a, p)Id In x = 0(1) as x 

Proof. We prove the result in two steps. First we consider the case when p = 2. 

Assume f is an entire function of generalized type r having finite generalized order p. 

From equation (2.2.6), we have 

la„I 	enIP [H (Li  
P 

-n 

.1171 P)1 7 

where 7r-  = T E. As before we mentioned in the proof of Theorem 2.4.1, we obtain 

00 

ibni < E lakl 	 iFk(z)i. max  E C 
k=n+1 

Since from (2.1.3), we have 

max IF),(z)1 < L' (1 + ok. z E 

Therefore, we have 

k 

lb 5 	E dk ek/P 	(
P 

1 —; 	 P)] ( 1  + €)k  
k

k 

k=n+1 
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[d (1+ cr-1-1)e ±-  
[H  (n + 1 1 , ,..)] -(n+1)  

1 	(1+ c) el/P 
P 	11) d [H (nV 7 3. 7 

-en-1-1) [H  (// + 1 , 1 , 
0(1) 	d n+1)  ea±-P 1 	 (1 + c)(Th+1)  

P T- 17.1 

ibn iv(n+1)  < 
d el / P  (1 + c)  

II ( zal 	n)] 
p 	.-r- 

 

or 
dell' ( 1+ e)  >111( 	 

T  
n+  1 	' P )] Ibm111{11+1)  

or 
+ 

	

{[ ..Y (d e l I  P  (1 e) Ibni_ ( n±1))]p} 	a  (n 1) 
 

Since a(x), 13-1(x),  -y(x)  E L°, proceeding to limits, since e is arbitrary, we obtain 

(2.4.7) 	 T > lim sup 	a(P)  
- n-700 Q{ [y (d el/P Ibn1-1/n)]P} • 

Conversely, let 

)lim sup 	
a (2 	

- cr. 
n--)oo g{md 

Suppose a < QC. Then for each c > 0, 3 L(c) such that for all n > L, we have 

114 < en/P 
-n n 1 

; = P)] P 

where 57  = a + E. As in the proof of Theorem 2.2.1, we obtain 

00 
If (z), < L E ct en I P [H 	; 

n=0 

1 	)1 -n 
= a + 1)1/2  
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Consider 

[H(W;  1,F)P,I2pn)r  = 9(nIP) 

	

g (n 	 / 19 	[II (7, 	, p)] 

	

e 	 ( n 	+ 1)1/2n 

	

7.11/2n (1 + 1/n)1/2n 	1/1) 
= 7-1  { 	(-1' cv(P))]1/P} 

As n oo, we have 

	

g(n1p)) -111 	[ -1  (1 	1/p 

	

7[(1 O(1)) 	 = 	= a( p  ))1 cr  

Since '),(x) E L°, by using the property of L° class, we have 

-1/P 	 1/P  [(g(nlp)) e ,ip ))1 

()},n,  ) = + e) {( 3 [7 ( (nel P) )  11P  + 6(7(v)) 

	

g(71/p) = [if (Thp  ; 	1 	P  + 6  P)] * 

Therefore, using above approximation of g(n/p), we get 

00 

If(z)1 < L 	enIP 
n=0 

H ( ; 1 	 pyr n  d IZI 
+ E )i 	) 

Consider the function ((x) = (Rel/Pr [H 	; 

derivative equal to zero. Then 

-3, 
. Set its logarithmic 

(x) 	1 	 d In (H (f:  ; 71+, , p)) 

((x) 
ln R + - In (H 	; 	, p)) 	

d n x 

	

i 	- 0.
p 	 p 	± 
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If a(x),7(x) E A, then by hypothesis of theorem, 3 A > 0, such that for x > x1, we 

have 

 

d In (H () ; zr.L , p)) 

  

   

< A. 

  

dlnx  

 

     

     

By replacing a by a + 6, the rest of the minimization process follows from the proof 

of converse part of Seremeta [44, Th .2, Page 296]. Then we get, 

	

M(R; f) < exp {(Ap + o(1)) 	{(Tf + e) )3 Rry (R et,""))1} 1. 

Since a(x), •Ii(x) E L°, proceeding to limits, we obtain 

r lim sup 
a (ln M(R; 1))  < (2.4.8) 

	

R--■oo 	0[(7(R))(1 

Combining (2.4.7) and (2.4.8), we obtain 

(2.4.9) 	 lim sup 	(n)  
n--"Do 	{E'Y (dellibn i-Vn)I"} = 

T. 

The result now follows on using Lemma 2.3.2 for the case of p = 2. 

Now we consider the other case p > 2. Since from (2.4.5), it is sufficient to consider 

the case p = oo. Suppose f is an entire function of generalized type T having finite 

generalized order p. Then 

E < maCx f  (z) — 	ak Fk(z) 
zE 

k=0 
co 

< 	lakl MaCXIFk(Z)1' zE 
k=n+1 
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< K tro  e("4-1)/P [H n  ± 1  ,  1  
L 	P 

(E7,)11(n+1)  

(1 + f)k  

1 	)]-(n+1) 
P 

 

11 

P)]

-(n-I-1) 
(1 

d 	+ 

d (1 + €) el/p 
1 

[H 

+ E)(71+1)  

v 
1 

7 	
/9)] 

E'") < K E dk ek/P [H ( k  ; 
k.,t+1 

K[d (1 + O]n+le(n-1-1)/p I H 	+1 
L P 

Since by Theorem 2.2.2, we have 

n 
I ctn J< K 	en' P [H 

A
; T , ; =1  , p)] 	, 

and since we have 

max 1Pk(z)l < K(1 + e)k, zEc 

therefore the above inequality becomes 

d el/P (1 + e)  
(E70)1/(n-1-1) 

(n 1 , 	pyi 
)9  7  ) 

or 

/31[1, (del/P (1+ e) (g.',"3)-1/(n+1))1P1 > 	ot ( n4:1) 
'T 	P 

Since a(x), 13'(x), -y(x) E L°, proceeding to limits we Obtain 

T > lim sup 
0{ (d el1P  (41° )-11n )11 .  

In view of inequalities (2.4.5) and the fact that (2.4.6) holds for p = 2, this last 

inequality is an equality. This completes the proof of Theorem 2.4.2. 
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Chapter 3 
Approximation of Entire Functions 
of Two Complex Variables 

In the first section of this chapter we study the approximation of continuous func-

tion f (x, y) on the domain [-1, 1] x [-1, 1] by homogeneous polynomials has been 

considered. Necessary and sufficient conditions for f (x, y) having analytic function 

extension f 	z2) of two complex variables have also been obtained in terms of the 

growth parameters. In the next.section, we study the polynomial approximation of 

entire functions of two complex variables in Banach spaces. The characterizations of 

order and type of entire functions of two complex variables have been obtained in 

terms of the approximation errors. 

3.1 Introduction 

Let f (x) be a real valued continuous function defined on [-1, 1] and lin  the set of 

real polynomials of degree at most n.Then 

_En  (f ) = ,;En inf 11(.1.  — 	 = 0, 1, 2..., 
, 

denotes the minimum error in the chebyshev approximation of f (x) over the set En . 
Bernstein [3, p. 118], proved that 

• ET, = 0 
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if and only if f (x) has an analytic extension f (z) such that f (z) is an entire function. 

Later, Varga [65, p. 176], proved that f (x) has entire function extension f (z) of order 

p if and only if 
n ln n 

lim sup 	= p. 
n—.00 — in En(f) 

Further f (x) has an analytic extension f (z) such that f(z) is an entire function of 

order p and type r if and only if 

A 
lim sup ER-  (f) = epr. 

In this chapter we consider the approximation of real valued continuous functions of 

two variables in terms of the minimum error defined as follows. Let f (x, y) be a real-

valued continuous function defined on the square —1 < x, y < 1 of R2. We consider 

the class II,n,n  of all real homogeneous polynomials in (x, y) of degree at most m and 

n in x and y respectively. Define the error 

(3.1.1) 	Em,n( f) = inf n  II(f — pEn,n ,  
for m, n = 0, 1, 2... 

We derive conditions under which the function f (x, y) can be extended to an analytic 

function f 	z2) of two variables z1  and z2 in the poly disc Iz1I < 'Pi I, Iz21 < IP2I, 

1 < pi  < p2  < oo. To study the approximation of functions of two variables, we 

introduce the polynomials of least deviation from 0 on [-1, 1] x [-1, 1]. For one 

variable, these are known to be [36, Th. 11], the polynomials given by : 

pn  = 2-n-l-1cn  ( x ).  

Where 

Cn(X) — 
(X  + VX2  — 1)n  ± (X — VX2  — 1)n  

2 

On substituting x = cost, we get Cn(x) = cos nt. 

Let f(x,y) be a continuous function defined for —1 < x < 1,-1 < y < 1. We 
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/I 	• 71 

(177 A r7/. = — 7r2 f (cos t i , cos t2 ) cos mil  cos 7712dt1dt2. 

consider its expansion on [-1, 1J2  into series of Chebyshev polynomials. Thus 

00 00 

(3.1.2) 	 f(x,Y)= 
 ao 	

a111,71.C111,71.(X y)• 
77-t=lri=1 

Where Cr„,n (x, y) is a polynomial in x and y of degree m and n respectively. We write 

x = cos t 1  and y = cos t2. It is easily seen that f (x, y) is an even, periodic function of 

period 27r with respect to both variables t1  and t2  and can be expanded in a double 

Fourier series 

Where 

a0 ,0  .1 (cos t i , cos t 2 ) = 2 

00 00 

am, m  cos 77711 cos 7],t2. 
m=lrn=1 

Substituting cost s  = z and co.st2  = y, we get the required expression (3.1.2). 

Next, we define certain Banach spaces of two complex variables as follows 

Let H„, q > 0 denote the space of functions f(z i , z2) analytic in the unit bi disc 
U = {z1 , z2  E C : 	< 1, Iz21 < 1} such that 

Ilf IIH„ = 	lirn 	/11,1(f ; ri , r2 ) < CO, 
ri,r2 

where 
1 7r f 7r 	lig 

Mg( f ;ri, r2) = --2- 	If (r )1 dtidt2 47r 

and let H', q > 0 denote the space of functions f 	z2) analytic in U and satisfying  
the condition 

11.11 111:, 	{ —2-, 
" flz1 I <1 fizz l< 1 

1/12 

I./ ( z , z2 )Iq 	i dy idx 242 	< oo. 
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Set 

sup flf(zi , z2 )I : zi , Z2  E U}. 

Hq  and Hq are Banach spaces for q > 1. In analogy with spaces of functions of one 

variable, we call Hq  and Hq  the Hardy and Bergman spaces respectively. 

The function f (zi , z2 ) is analytic in U and belongs to the space B(p, q, ic), where 

0 < p < q < oo, and 0 < < oo, if 

	

II f 	= 	

1 	I 

fo 
{(1 - r1)(1 — r2)1K(11P-11q)-111c(f 1'1, r2)dridr2}

lin 
< 00, 

for 0 < < oo, and for K oo, 

II .f II p,q,00 = sup {[(1 — r1 ) (1 — r2)}(1/P-1/"" Mq(f, r1, r2) : 0 < r1 , r2  < 1} < oo. 

The space B(p, q, K) is a Banach space for p > 0 and q, K > 1, otherwise it is a 

Fr&het space. Further, we have 

	

(3.1.3) 	 Hq  C 11:1  = B(q/2, q, q), 1 < q < oo. 

Let X be a Banach space and let En.,,„ (f , X) be the best approximation of a function 

f(zi , z2 ) E X by elements of the space P that consists of algebraic polynomials of 

degree < m + n in two complex variables : 

	

(3.1.4) 	 Em,n(i, X) = inf {IIf — pII x ; p E 

Notation : For reducing the length of expressions we use the following notations 

in main results. 

B1/11(n + 1)m + 1 ; ic(1/p — 1/2)] = B[n ,  p, 2, ic] 
13111(m + 1)tc + 1 ; n(l/p — 1/2)] = B[m,,p, 2, K] 

+ 1)K + 1 K(1 /p 1/q)] = Bin, p, q, 

131/1(m + 1)K + 1 ; n(1/p 1/q)] = B[m, p, q, #c]. 
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3.2 Growth Characterizations in [ —1, 1] x [-1, 1] 

In this section first we prove the the necessary and sufficient condition the function 

f (21 , 2,2) to be entire and then we obtained growth characterizations of order and type 

on the domain [-1, 1] x 	in terms of approximation errors. We now prove 

Theorem 3.2.1. Let f (x, y) be a real valued continuous function defined on (-1,1] 2 . 

Then f(x,y) has an analytic extension f 	22 ) such that f 	22 ) is an entire func- 

tion, if and only if 

(3.2.1) 	 urn E,Z4-n )  ( f) = 0. 
771,n —*Co 

Proof. First we show that, if f is analytic in D5,,, 1 < S < co, 1 < rl < co, where 

Don  is the poly ellipse {(tv1,102), W1  E closed elliptic region in the z1  plane bounded 

by ellipse E6 , with foci (±1, 0) and sum of the semi axes is Si, similarly w2  E closed 

elliptic region in the z2  plane bounded by ellipse E,52  with foci (±1, 0) and sum of 

semi of axes equal to (521 then 

(3.2.2) lirn sup ErTt" ) (f) < —
1 

7n.n--•oo 	— 671 

We begin by considering. the expansion of f , y) given by (3.1.2). 

Since 1Cm.n(x,Y)I < 1 for –1 < x, y < 1, we have from (3.1.2), 

(3.2.3) 	 E7„,,,(f) < 	E 

Now we estimate 'aka'. The substitution z1  = exp it1  , 22  = exp it2  in the integral for 

cik,i gives the line integral along the circles 1211 = 1,1221 = 1: 

(3.2.4) 
1 

ak,I= (ri IIz2 I =1 fIZ 11=1 

k 
	 )( 

z21 22 .4 dzi dz2  
f ( 

Zi  + Z 	22  + 2271 
 2 2 	2 2 	) zi  z2 • 
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We take 51, 52 with 1 < Ji  < 5,1 < 52 < n. Consider the function 

(Zi  ± Z1-1  Z2 +  Z2-1)  g (zi , z 2 ) = f 2 	2 

in the closed rings R1  and R2 bounded by the circles C1 : Izil = 51-1, 

C2 : IZ11 = 611 C3 IZ21 = 62-1, C4  : Izi( = 52 . The annular regions Si-1  < Izi 1 < 51 

and 52-1  < 1z21 < 62  are mapped to ellipses E6, and E,52  by the transformations 

=  + zizi  wi — -2 	and w2  = .12/11  respectively. Where sum of semi-axes of E61  is 51 

and sum of semi-axes of EE2  is 62. Since f (wi, w2) is analytic in D671  it follows that 

g(zi , z2 ) is analytic in the poly disc {(z1, z2), 0 < IziI < 51,0 5_ 1z21 5. 52}. 

In order to obtain an estimate of ak,i, we now transform the path of integration. We 

split the integral (3.2.4), into four parts. The integral containing zi-k, z21  is taken 

over a circle with a large radius, and for the integral with 4, 4, we take a circle with 

a small radius. Thus, 

ak,i = 271-ri  I c,3  fc1g(zi, z2 )zik-1  z21-1dzidz2 

_Qc-i) z21-1  dzidz2 
1 

-I- 	 g(zi, z2)zi 27ri fc3 f %2  

g(zi, z2)zik-1  z2-(1-1) dZidZ2 
1 

+
 

271i fC4  Cl  

-(k-1) z2- (1-1)dzidz2- 1 
+ n  : 	g(zi, z2)zi 

hirt fat  IC.  2 

Let M be the maximum of the absolute value of f (wi, w2) on D6,1 , then the absolute 

value of the first integral is not greater than 

m  1)(k-1) 

C at/  

1 )(1-1)  27rol_152 _, M51-k52-1..  
(Ti.) 0; 

In the same way, the remaining three integrals are majorized by 11161-k62-1, and we 
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get lakii 5_ 4M51-k82-1. Then, by (3.2.3), 

00 	00 
Em,n(f) 5_ 4M E E 51-k52-1 =

(51 (51 — 1)(52 — 1)
Mj 

 

Hence 

fn+VEnt,n(f) < A///(m+n)451-(In+1)/(nt+n)52-(n+1)/(m+n). 

Proceeding to limits, we obtain 

lien sup "1+4  
/11,400,11,-+00 

Em,n(f) < S1-152-1  

Since Si  and 52 are arbitrary, we get (3.2.2). The converse follows in the same manner 

and the result is proved. This completes the proof of Theorem 3.2.1. 	 0 

Next we obtain the characterization of order of entire function f (xi, z2) in terms 

of the approximation error Ernoi.. 

Theorem 3.2.2. Let f (x, y) be a real-valued continuous function on [-1,112 . Then 

(3.2.5) 
ln(mmnn) lim sup 	• — a. 

— In Em,n(f) 

Where u is a non-negative real number, if and only if f (x, y) has an analytic extension 

f (z1, z2), which is an entire function of order a. 

Proof. First, we assume that f y) has an analytic extension f 	z2), which is an 

entire function of order a(0 < a < o)). For each m, n > 0, we have 

(3.2.6) 4B (p, 77) 
Eni _,n(f) 5 	• 

P"17 1n (P 	1)(77 — 1) 

for any p,77 > 1, where B(p,n) — maxz1EEp,z2EEn  I f (zi, z2)I, and Ep  with p > 1 denotes 

the closed interior of the ellipse with foci (±1, 0), half-major axis. 14-1 1;1  and half-minor 
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4M1(q,v) 
Em,n(i) < g

ni/7' (P 1)(n — 1) 
(3.2.8) 

axis 2p .Simillarly En  with 77 > 1 denotes the closed interior of the ellipse with foci 

(±1, 0), half-major axis (I72:11)  and half-minor axis V. The ellipse 4 is bounded 

by the closed disks Di(p) and D2(p) in the sense that 

— 
Di(P) {zi 	5_

p2
2p

1 
 C 4 c D2(p) = {zi 	5_ -

p2
2p  
+

}. 

Similarly, ellipse E,, is bounded by the closed disks /33(7/) and D4(i) i.e. 

2  D3(77) 	{z2 : 1z21 	772271 
1 C 	C D4(17) 	{z2 1z21 277 

± 1 

From these inclusions, it follows by definition that 

p22p 1 7)2
277 	' 

1 (3.2.7) 	Mf     < B(p n) < M f  (92  2p  + 1  772  277  +  1 )  V P, 7l > 1. 

Consequently, from (3.2.7), we have for each m, n > 0, 

for any p, 7) > 1. Since f 	z2 ) is by assumption of order a , given any e > 0, there 

exists an R(E) > 0, such that Al f(ri , r2) < exp (r1r2)'+' for all r1, r2 > R(E). Thus 

(3.2.9) 	 Ern,n(i) < 
lomir (P — 1 )07 — 1 ) 

for all p, i > 4R(E), and all m, n > 0. The right hand side of this inequality, considered 

as a function of p and 7.1 for fixed m, n is minimized by choosing p 	4m11(°+c ), 

7) = 47/1/('+') and this choice of p, i  is compatible with the restriction p, 	4R(€) 

4 exp{(Eii--p;1)'+'(V)°+e} 
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for all imn sufficiently large. 'or these choices of p and 77, we have 

[ (p2 	) 17-1-€ 	+ 1 ) cr+E] 

2M1/(cr-I-e) 772-1/(cr-I-E) a+e + 8  ) 270/(a+e) rz-1/(0-4-0 + 8  ) 

Hence we have 

(f) < 
4 exp [4'+cmn] 

Efn, — 4( (m1:4L1)+rnir0[712(171+1)71(n+r) tai-1 • 

Proceeding to limits, we have 

in(mmh.") lim sup 

	

	- 	< Q ± E. 
— 1n ,11,n 

„, 
 

As E is arbitrary, and f (z i , z2) is of order a, it follows that there exists a finite number 

8 > 0 such that 

(3.2.10) ln(mmrin) lirn sup  -; 	, „, 	< 
— In Eirn,r,(j) 

Then it follows that for any given E > 0, there exist positive integers mo(f) and no(f) 

such that 

(3.2.11) 1 
Em,n(f) mm/ 	0+0 1(s+c) 

for all m > mo(f), n > no(6), and from (3.2.1), this means that f (x, y) can be ex-

tended to an entire function f (z1, z2). For each m, n > 0, there exists a unique 
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polynomial 	y) E ilmn such that 

If — pm,.11L.H1,112 = Em ,n(f), m, n = 0, 1, 2, ... 

By triangle inequality, 

iiPm+i,n+i 
	 is bounded by 4Ern,n(f ) • 

Thus 

(3.2.12) 
	

IPm+1,n-1-1 (Z1 I z2) - Pm,n(zi, Z2 )1 < 4E7n,n(f) 1)M-171mA-1 

for all z1 E Ep, z2 E En , for any p,7-1> 1, we can write 

00 00 

f 	z2 ) = P0,o(zi, z2) E E 	z2) - 	(Z1) z2)), 
1=0 k=0 

and from (3.2.12), it follows that this series converges uniformly in any bounded 

domain of the hyper plane. Thus, from (3.2.12), we have 

00 00 

(3.2.13) 
	

If (zi, z2)I < 	z2)I + 4 E (f)pk+17,71+1 
1=0 k=0 

for any z1  E Ep, z2 E En  and consequently, from the definition of B(p, n), it follows 

that 

00 00 

(3.2.14) + 
4 	k 	7,7  E E  Et(f)pk+11-1-1.  13 (1) 71) 	IP0,o(zi,  z2)I 

1=0 k=0 

With the first inequality of (3.2.7), and (3.2.11), we can write this as 

M (P2 1 	< iPo 	z2)I f 2p 271 
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4[

E 	E E ] 

	

'<mow k<no(f) 	k<no(e) 

4 	E 	 E  Ek,t(f)pk+17)11-1 

1<mo(e) k?no(c)1>mo(c) k>no(
,a

c) 

	

+ 16 E 	p+i 77  

„mow k,Lano(E)  

Applying Theorem A to the series on the right hand side of above equation , we see 

that the series representation is an entire function of order + €. Thus there exists 

an R(f) > 1 such that 

(3.2.15) mf  (P2  — I   172 —1) 
rizo ,mow, + exp (p  	(0+2c)) 

2P 	277 

for all p, n > R(e), where 

E E  E  
PnOrmo (/), n) = 1P0,0(zi, z2)I + 4 	 k,i(f)pk+17,71+1  

1<mo(e) k<no(e) 

is a polynomial. From(3.2.15), it then follows that 

(3.2.16) lim sup 111 in' ‘1/11,  f 	< 1, 
pm--,.00 	In (pu) 

which shows that the entire function f 	z2) is of order at most 0. Summarizing, if 

f (xi , z2 ) is of finite order a, then (3.2.10), is valid for some 0 with 0 < a. If /3 < a, 

the argument above leading to (3.2.16), shows that f (zi , z2) would be of order less 

than a, a contradiction. Thus 9 = a and the converse follows as well. This completes 

the proof of Theorem 3.2.2. 	 ❑  

Theorem 3.2.3. Let f (x, y) be a real-valued continuous function on [-1,112. Then 
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(3.2.17) Em,n(f) C 	
pmiln(p —1)(77 — 1) 

4exp {(r + €){P--p-1)ar 	(V-)°.}} 

there exist constants a (positive) and a, r (non negative) such that 

lirn sup { (minnnE°:,,,n(f))11/(m+n)  
m,n—000 

a  

if and only if f(x,y) has an analytic extension f 	z2) such that f 	z2) is an entire 

function of order a and type T. Where a = (eor)2' 

Proof. From (3.2.8), for each m, n > 0, and for every p, i > 1, we have 

4M/ 
Em,n(f) 	

2p 277  

Anzrin (P — 1)(7? — 1) 

Since by assumption, f 	z2) is of order o and type r, given any E > 0, there exists 

an R(e) > 0 such that Mf(r l , r2) < exp {(r + e)(71 + rD} for all r1, r2 > R(e). Thus 

for all p, > 2R(€), and all m, n > 0. The right hand side of this inequality considered 

as a function of p and n for fixed m,n, is minimized by choosing p 2(,(7E0 )1117  , 

2(0.07+0)1/a, and these choices of p and ri are compatible with the restriction 

p, rt > 2R(e) for all sufficiently large values of m and n. For these values of p and n, 

we have 
(102 ± \ ± 

2p ) 

072+1)-  
277  ) 

m  (1+1(7-12IT 
+ 

n 	+ 1 (  + eV la y r

n  
I 	\ 	Al 	I  

o-  (7.  + 	 4 	 CYJ 

m + n  (1 + o(1)). 
0"0- 
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Hence, 

Em,n(f 	4 
{a + e)}(m+"+2)/  exp {(m+ n)/a} 

2'h-1-'14-2m(n+1)/ait(n+1)/0-  

.8:„ (f 
) 5_ 4' 

[(Ter + m+n+2  exp(m + n) 

	

2° 	.1 

On proceeding to limits, we get 

'it'll sup {(mme)Efrnm(f)}11(m+n) 
< [ea + c)]2-°. 

trt,n—■oo 

	

As c is arbitrary, the assumption that f 	z2) is of order a and type r implies that 

there exists a finite x > () such that 

(3.2.18) lien sup I (len' 	(f)}11(m+n) -.2= X < 
m.,n-•00 

From (3.2.18), it follows that given any E > 6, there exist positive integers m(c) and 

n(c) such that 

(3.2.19) (X + 6)("n)/(7  Em,n(f) S nevcrtnicr 

for all m > m(c),n > n(c). With the first inequality of (3.2.7), and the inequality of 

(3.2.13), we can write this as 

(p2  — 1 712  
2p ' 2i) { < 	1P0,0(zi, z2)1 + 4  E E Ek,1(f)pk+1n1+1 

1<n(e) k<m(e) 

+ 4  E E {(x1-€) (k+1) 1 cr pk+1771-1-11(kk 11)-11 a 

1>n(E) k>m(e) 

Applying Theorem 1 to the infinite series on the right hand sick) Of above equation, 

it follows that it represents an entire function Of order a and type (x + eV ecr. Thus, 
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there exists an R(e) > 1 such that 

2  — 1 7p -  1 (3.2.20) 	M f (P 	2p 	277 	' Pn mG01 + exp {(X + 0(69)-1  (P6  + 

for all p, i > R(e). where 

Pn,m(P07) = iPo,o(zi, z2)I + 4  E E Ek,l
(f)pk-1-171l+1 

1<n(c) k<m(e) 

is a polynomial of degree at most m(c) and n(e) in p and 77. From (3.2.20), it then 

follows that 

(3.2.21) sup lira 	ln M f  (p, 77) < x2' 
- 
kffr  + 	— 6°-  

< T 

which shows that the entire function f (zi, z2) is of order a and type at most r. 

Summarizing, if f (zi , z2 ) is of order a and type at most r, then (3.2.18) is valid for 

some x with x < a. If x < a, the argument above leading to (3.2.21) shows that 

f (zi , z2 ) would be of order a and type less than r, a contradiction. Thus a = x and 

the circle of reasoning is complete for the converse as well. This completes the proof 

of Theorem 3.2.3. 	 0 

3.3 Growth Characterizations in Banach spaces 

In this section, we have obtained growth characterizations of order and type of entire 

functions of two complex variables on certain Banach spaces in terms of approximation 

errors. Now we prove 

Theorem 3.3.1. Let f (zi, z2) = EZ7 ,==o am ,„ z1 4, then the entire function 
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f 	z2) E 13(p, q, pc) is of finite order p, if and only if 

In (m"1 nn)  
(3.3.1) 	 p = lim 

m,n —4 o
up

o — ln Em,n(f, 13(p, q, ic))' 

Proof. We prove the above result in two steps. First we consider the space B(23, q, K), 

q = 2, 0 < p < 2 and n > 1. Let f z 2 ) E B(p, q, K) of order p. Prom Theorem A, 

for any E > 0, there exists a natural number no = no(c) such that 

(3.3.2) 	 larh,n1 < m-m/P+E n—n/P+f  in, n > no. 

We denote the partial sum of the Taylor series of a function f (zi , z2) by 

T,„,n(f ,  , z1, z2) = E,,=0 Ei2,0  a11i24142. We write 

(3.3.3) 	 Em,n(f, B(p, 2, K)) = Ilf 

1 	1 
2,2!j

i  
--= {fo  fo  {(1 — 7.1 ) (1 _ r2)}n(vp-112)--1 	Ei2 	r2 . 

aii,J212) K/2  dridr 

where 

00 
rill r2 252 	2 	+ S2 + 	E 71i1 422 J2 12 > 

.11 j2 	 /1=-4,1+1 j2=n+1 

m E 2.91 ,Z.72 
12 I 	2  

0o n E  
i1=m+1 /2=0  

r1
2j1 

r2 
2h 	12 

• 

Since S1, S2 are bounded and r1, r2 < 1, the above expression (3.3.3) becomes 

1 
ET„.„„(f ,  ,B(p,2,K)) C f {(1 — • 

 oo 
tc(l/p-1/2)-1 7.(8+1)nd7.1 	t E  

 la 	 21 	 ii ,i21  
ji=m+1 

1/2 

77 



00 	00 

{i1=m+1  j2=n+1 
E E 

} 1/2 

2•  • I 143102 (3.3.4) Em.,n(i ,B(9, 2, is)) 5 C B[m,p, 2, ic]B[n,p, 2, K] 

where 

1 
1/2)-1 }r(s+1)ndr 	

1 
{ (1 — rr(l/P- 	 If {(1 r1)6(

1/p-1/2)-1}rim-1-1)mdri  x 

f  
Jo  {(1 - r2)} 
	

}tc(1/p-1/2)-1 r n+l)tcdr2  . 

Therefore, 

where C is a constant and B(a,,b) (a, b > 0) denotes the beta function. 

By using  (3.3.2), we have 

00 	00 	 00 	00 	_2 ji 	2  12 

E E l ah,j212  • E E P+e  :22 P."  
=m+1 j2=n+1 j2=n+1 

00 

	

I 00 	2 ,j2
P+e

• 	

E 31 
• 	

E :32 P+e  
ji=m+1 	i2=n+1 

< 0(1) (in + 1)-2(m+1)/ 	(n + 1)-2(n+1)/p÷e. 

Using  above inequality in (3.3.4), we have 

Emm, (f, B (p, is)) < C B[m, p, 2, k]B[n, p, 2, is] 	+ 1)-(m+1)/P+E  (n + 1)—(n+1)/P+e. 

p + c > 
- ln {Em ,(f , B(p, 2, KM + ln {B[m, p, 2, nil + ln {B[n,p„ tc]} 

Now 
r((n + 1)K+ 1)r(k(1/p - 1/2))  

B[(n + 1)K + 1;  ic(1/p - 1/2)] = 
r((n + 1/2 + 11p)K + 1) 

Hence 

e-f(n+i)K-Fij r(n  ± 1)K ii(n+1)K+3/2r(i/p - 1/2) 
B[(n+1)K +1; K(1Ip — 1/2)] 	ei(n+1/2+4/p),,;11[

(
.1 +'1/2  4.11/p)frc+1](ni21/2+1/p)x+3/2. 
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Thus 

(3.3.5) 	 {B[(n +1)n+ 1;  is(1/p — 1/2)111/(n+1) 	1. 

Proceeding  to limits, we obtain 

In (rnm nn) 
(3.3.6) 	 p Lim  sup in {im,n(f, B(p, 2, /0)i 

For the reverse inequality, since from the right hand side of the inequality (3.3.4), we 

have 

(3.3.7) 	I am+i,n+1. B[m,p, 2, K] B[n,p, 2, n] 	Ern,n(f, B(p, 2, K)), 

we have 

In (mm nn) 
—1f Ern,n(f, B(P, K)) 

111(771m nn) 

 

— In lam+1,n-1-1 	In {B[m,p , 2, tc[} + In {.B[n,p, 2, n[}. 

Proceeding  to limits, we obtain 

(3.3.8) 	 lira sup 	
111 (MP/ nn) 	> p. 

—1nEm,,i(f, 8(p, 2, ts)) 

From (3.3.6) and (3.3.8), we get the required result. 

In the second step, for the general case B(p, q, n), q 0 2, we have 

(3.3.9) 	 Ent,n(f, B(p, 4, K)) < II — Tmai.(i) 

fol 11 {(1 ro (1 7.2)}n(vp_vo_i  

EE 	71/21a.ii,i21q 	dridr2 
j2 
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{il=m+1 j2=n-1-1 }E E laii,i2r 

00 	00 	I/q 

where 

00 	00 
r2212 	= S1 + S2 + E E 	,2j2 1, 1 

' 1 	' 2 	12) 
i1=m-4-1 j2=n-1-1 

00 
2i = 	E ri 32 r1 7.1a.ii,j212 

ix =0 j2=n+1 

S2 = >2 E rT3i 
j1=m+1 j2=0 

Since S1, S2 are bounded and r1, r2 < 1, therefore the above expression (3.3.9) 

becomes 

Em ,n(f,  ,B(P, q, K)) 	{(1—-0/P-1/0-11,(34-1)-dr 

	

0 	
0} 

where 

ffoi { (1 r)c(1/P-1/0-11r(s+i)"dr = 	1  {(1 — rir(i/P-1/0-1171'n+1)'dri  x 

{f
1  
o  { (1  _ 7,2)}  ( 1/p-1/q)-1 r(n+1)"dr2 

Therefore 

(3.3.10) 
00 	00 

1/q  

	

Ern,n(i ,B(P, q, PO) 	B[m, p, q, 	B[n,p, q, 	 >2 la2.,,;211 
ii.m+1 j2=n-I-1 

where C' is constant and 13[7n, p, q, is Euler's integral of first kind. By using (3.3.2), 

we have 

	

00 00 	
q 	

00 	 co 	 

E E la < 

	

31 	
E 	 E  

12 
ji=m-1-1 j2=n+1 	

,72 l 	
— i1=m-1-1 

=Eiti_71+ il 	
(P 

j2=n+1 
-q (

+  
.1-1) 

0( 1 ) (m 	 (n + 1) 	0 . 

2j2 	12 r2 	• 
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Using above inequality in (3.3.10), we have 

8,y4,n(f,  ,B(p, q, n)) < c1 B[m, p, q, 	B[n,p, q, K] (m + 1)-(m+1)/n+€ 	1)-(11-1-1)/p+E.  

ln [(rn + 1)92+1  (n + 1)".+11 
P c 	— In im,n(j, 13( 3, q, it)) + In {B[m, p,  q, K]} + In 13[n, p, q, 

Proceeding to limits, we obtain 

(3.3.11) 
n") p > lim sup 	

In (gym 
 

— In 	, 13(p, q, K)) 

Let 0 < p < q < 2, and K, I > 1. Since 

E,n,n(f, B(7)1, q1, KO) < 21/4  - 1/91 [ic  (1/p — 1/q)]11' 1/K1  Ent,n(fl B(p, q, K)), 

where p1  =7), qi = 2 and Ki = ,c, and the condition (3.3.1) is already proved for the 

space B(p, 2, K), we have 

In (rnm nn) 	 In (mm nn) 
(3.3.12) lim sup 	 > lim sup 	  — p. -. 00 — In 	, B(p, q, 10) 	7„,n 	— hi ET71,11( f, B(p, 2, rs)) 

Now let 0 < p < 2 < q. Since 

M2(f, 	r2) < Mq(f, , 7-2), 0 < 7-1 , r2  < 1, 

therefore 

1 11 
(3.3.13) Ent,n(i, B(p, q, tC)) 	f 	{(1 r1) (1 - r2W(11P-*7)-1 Qdridr2 }ilk  

0 0 

larn+1,n+1 I B[m,p, q, rc] B[n, p, q, 
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where Q = inf [M2 (f — p; r1 , r2) : p E P]. Hence we have 

In (mm nn) 	 In (nm nn) 
in Em ,n (f, B(p, q, n)) 	In lam+l ,n+lI  + In {B[m, p, q, x]} + In {B[n, p, q, K ]} 

Now proceeding to limits, we obtain 

(3.3.14) In (mm nn) lirn sup 	 > p. 
c.o  — in Em,n(f,  ,B(P, q, ti)) 

From (3.3.11) and (3.3.14), we get the required result. This completes the proof of 

Theorem 3.3.1. 	 0 

Theorem 3.3.2. Let f (zi , z2) "="-- Em7n=0 an ,,nzr z2 , then the entire function 

f 	z2 ) E Hq  is of finite order p, if and only if 

(3.3.15) 	 p = lim sup 
inn oo 

In (min nn) 
— In 	, Hq ) .  

Proof. Let f 	z2 ) Em ,n=o  am ,nzi z2 E Hq  be an entire transcendental function. 

Since f is entire, we have 

(3.3.16) lim 
m,n 00 

(—+Vjam,n1 = 0, 

and f E Hq , therefore 

f ; ri,r2 ) < oo, 

and f (z1 , z2) E B(p, q, ft), 0 < p < q < oo; q, Ic > 1. By (3.1.3) we obtain 

(3.3.17) 	Emm(f, B(q/2, q, q)) 	SqEm,n(f, Hq ), 1 < q < oo. 
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where cq  is a constant independent of m , n and f. In the case of space H00 , 

	

(3.3.18) 	Em,n(f, B(p, oo, oo)) < Em ,n(f, Hoo ), 0 < p < oo. 

From (3.3.17), we have 

	

lit(mm  nn)(3.3.19) 	e(f) co 
= limn  sup  — In Em,n(f, 

lrl  (mm nn) 
> miirnsuz  in2,,n(f, B0/2,  q,  (In 

> p, 	1 < q < °°' 

and using estimate (3.3.18) we prove inequality (3.3.19) for the case q = oo. 

For the reverse inequality 

(3.3.20) 

since 
oo 

Em,n(f, 	0(1) 
ii=n1+1 j2=n+1 

using (3.3.2), we have 

ah,J2(f)I, 

0. 
Em,n(f, 	< 0(1) E2 J1 P4-4 j2 P." 

ji=rn+1 j2=n+1 
00 _ 

0 (1) E P+e  E 0+. 

i2  0(1) (m + 1)-("1+1)iP77i  (n 1)-(n+1)/P+E. 

In KM,  +  1)("1+1.) (n  ±1)(n+1)1 
P  6 	 Hq )] 	• 

Proceeding to limits, then we get (3.3.20). From (3.3.19) and (3.3.20) we obtain the 

required result. 
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Now we prove the sufficiency part. Assume that the condition (3.3.15) is satisfied. 

Then it follows that In [1/E,7,,,,,(f, Hq )]1/(m+n)  —> oo as m, n --+ oo. This yields 

lirn 
m,n -0 00 

(m+V Em,n(f , 	=0. 

This relation and estimate am+i,n+i(i)1 < Em,n(f, Hq ) yield the relation (3.3.16). 

This means that f (z i , z2 ) E Hq  is an entire transcendental function. This completes 

the proof of Theorem 3.3.2. 

Theorem 3.3.3. Let f 	z2 ) 	 zr 41, then the entire functionn=o 

f (z i , z2) E B(p, q, i) of finite order p, is of type T if and only if 

(3.3.21) T = 
1 

— lim sup {mm nn Ef„,n(f , B(p, q, k))1m+n 
e p m,n -+ oo 

Proof. We prove the above result in two steps. First we consider the space B(p, q, it), 

q = 2, 0 < p < 2 and n > 1. Let f (z) E B(p, q, K) of order p. From Theorem B, for 

any e > 0, there exists a natural number no  = no(e) such that 

(3.3.22) 	 lam,,, I < 	 [e p (7 + e)]" 

By using (3.3.22), we have 

oo 	oo 	 oo 	oo _211 _212 
2(51+52) E E 	< E E P 2 [e P r  

ii=m+132--=n+1 	 ji=m+1 i2=76+1 
00 ail. 	s 	oo 	 ail 	.2_42 < E ii P lePfr + 6 )] ' E j2 P-ft  [eP(7  + e)] P 

ji=m-1-1 	 72=n+1 

< 0(1) (m + 1)-2(m+1)/P (n + 1)-2(n+1)/p[epfr e)}2(m+pn+2). 
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Using above inequality in (3.3.4), we have 

Er n,n(f, B(P, 2, n)) 5_ C°  BP[rn,p, 2, ft] 13"[A,p, 2, lc] Y [e 	+ e)1(m+n+2), 

where Y = (in + 1)-(m+1)  (n + 1)-(n+1) . Proceeding to limits, we have 

(3.3.23) 
1 lirn sup { 

e p tn,n -+oo 
nn  EfT),,,n( f, B(p, 2, tc,))},11+7‘ < T. 

For the reverse inequality, since from the right hand side of (??), 

B[rn, p, 2, ic]  B [n, p, 2, ic] 	Eln,n(f, B(P, 2, ic)) 

we have 

nn/(m+n)  nn/('+h)  lam+i,„1-11P/(m+n) 13 -nntro [trt, p, 2, tc] 13 	[n, p, 2, n] 

< {Efitn Intn  }11(m+n)' 

Proceeding to limits, we obtain 

(3.3.24) T < 
1 lirn sup {trim ,nn  Efyl,n(f, B(p, 2, KM im-Fn 

e p ird ,,i 	00 

From (3.3.23) and (3.3.24), we get the required result. 

In the second step, for the general case B(p,q,k), q 0 2. By using (3.3.22), we 

estimate 

oo 	oo 	 oo _111 _112 	Litl±i22 E E 	< E E P j2 [eP(r + €)] P 
i1=m+1j2=n-1-1 j1 =171+ 1  j2=71+ 1 

Co 	 00 _112 	s.:22 < E  ,,..4„ 	La 31 p [eP(T + 0 ] ° E J2 P+. [egr + e)] P 
ii=m+1 	 j2=n+1 
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< 0(1) (m+ 1)-q (m+1)/P (n + 1)-q n+1  ( 	)/ p[ep(7- f)] (m+n+2)  

Using above inequality in (3.3.10), we have 

Ern,n(f,  , B(p, q, K)) 	(e )" BP[m,p, q, 13P1n, p, q, n] Y [e p 	6)](m+n+2). 

where Y = (m+1)-(m+1)  (n+1)-(n+1). Now proceeding to limits, since c is arbitrary, 

we have 

(3.3.25) 
1 

— lien sup {mm nn  Ern ,n(f,B(p, q, K))1m+n < T. 
e p 771,71 -' 00 

Let 0 < p < q < 2, and K, q > 1. Since 

Em,n(f, B (Ph qi, KO) < 21/a - 	[i (1/p - 1/0]11K  - 1/1" Ern,n(f, B(p, q, K)) 

where p1  = p, q1 = 2 and ic1 = ,c, and the condition (3.3.21) has already been proved 

for the space B(p, 2, ic), we have 

lira sup {mm nn Ern n(f,13(p, q, K))1m-vn > lira sup {mm n" Em,n(f,  B(p, 2, n))}.÷H,  r. 

Now let 0 < p < 2 < q. Since, in this case we have 

M2(f, ri,r2) < Mg( f , ri , r2), 0 < r1, r2  < 1, 

therefore 

lim sup {mm nn 	, B(p, q, K))}m+n > lim sup {min nn lam,n IP} m+n  
m,n oo 	 m,n oo 

(3.3.26) 	 = epT. 

rn,n--+ oo 	 m,n oo 
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From (3.3.25) and (3.3.26), we get the required result. This completes the proof of 

Theorem 3.3.3. 	 0 

Theorem 3.3.4. Let f (z1, z2) 
	

Em7n=0 am,n Z11.71  Z2.4 P then the entire function 

f (zi, z2) E 	having finite order p is of type T if and only if 

(3.3.27) T = 1 — lirY1sup {mm  nn  Efn,n (f,Hq)}m+Ln. 
e p m,n --• 

Proof. Since f (zi, 22) = 77.0=0  am,n 1n  z' zn  is an entire transcendental function, we 2 

have 

(3.3.28) lim 
m,n oo 

min = O. 

Therefore f (21, z2) E B(p, q, k), 0 < p < q < oo; q, s > 1. We have 

(3.3.29) 

—L_ 
e(f) = —

1 
  lira sup {mm  nn Ern , ft  ( f, )} Yv "n  

e p m,n oo 

> 1 
	

sup {mm  nn  Egi,n(f,  , B(q /2, q, q))1 m

- 

+

▪ 

n 

- 

= r 
e p 

for 1 < q < co. Using estimate (3.3.18) we prove inequality (3.3.29) in the case 

q = oo. for the reverse inequality 

(3.3.30) 
	

C(f) 5- 7) 

we have 

E,,,,n(f,Hq) <  
ii=m+1 j2=n-1-1 

Using (3.3.22), we have 

Egi,a, HO 5 0(1) 	+ 1)-(m+1) (n  1)-(n+1) [e p  (7. + 0](m+n+2) 
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1 r E >--
e p 

{(m + 1)(m+1)  (n + 1)(n+1)  EP (f 9 ))- 	2 . n  

Proceeding to limits, we have 

(3.3.31) > 
1 him sup {mm nn Eg n(f Hq)} m+n 

e p m,n oo 

From (3.3.29) and (3.3.31), we get the required result. 

Now we prove the sufficiency part. Assume that the condition (3.3.27) is satisfied. 

Then it follows that {4,,,(f, Ha )}11(m÷n) 	0 as m, n 	oo. This yields 

lim 
m,n --4 co 

( m+V Em,,n(f Hq) = 0. 

This relation and estimate lam+i,n+i(i)l < Em,n(f, Hq ) yield the inequality (3.3.28). 

This implies that f 	z2) E Hq  is an entire transcendental function. This completes 

the proof of Theorem 3.3.4. 
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Chapter 4 
Approximation of Entire Functions 
of Two Complex Variables Over 
Jordan Domains 

In this present Chapter, we study the polynomial approximation of entire functions 

of two complex variables over Jordan domains by using Faber polynomials. The 

coefficient characterizations Of order and type of entire functions of two complex 

variables have been obtained in terms of the approximation errors. 

4.1 Introduction 

Let I-, and r, be given Jordan curves in the complex plane C and Di, E j, j = 1,2., 

be the interior and exterior respectively, of F,. Let co j  map Ei  conformally onto 

{wi  : lwj I > 1} such that coj(cO) = co and co; (co) > 0. Then by [15], for sufficiently 

large Izi l, yoj(zj) can be expressed as 

(4.1.1) 	 , 	Z 	, Cl 	C2 

	

d1
W1 	(P1(Z1) 	CO "1" 

Z1 z1 

C1 C2 (4.1.2) 	 w2 = c'2(z2) = 
Z2 + co  + 	+ 2 + • • • • 

Z2 z2 
where d1, d2 > 0. Let us put D = D1  x D2 and E = El  x E2 in C2  and let the 
function w map E conformally onto the unit bidisc U 	> 1,Iw21> 1} such that 
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40(zi, z2) = (i.91(z1) co2(z2) satisfies the conditions (12(w, oo) = oo and yo/  (oo, oo) > 0. 

Then for sufficiently large 1zi 1, 1z21, 	z2) can be expressed as 

00 

(4.1.3) 	 WIW2 	cO(Zi, Z2) = 
	.2 + 	C.mm  
d2 	Zin3 rn,n=-0 	.Z  

An arbitrary Jordan curve can be approximated from the inside as well as from the 

outside by analytic Jordan curves. Since F is analytic, yo is holomorphic on F as well. 

The m,n th Faber polynomial Fm,n(zi, z2) of r is the principal part of (49(z1, z2)) +n 

at (oo, oo), so that 

F 	 ( Z1 ) 72  ( Z2 ) 71  

	

ra,n, ( Zi  , Z2) = — 	— 	+ .... 

	

di 	. d2  

Following Faber [121 for the one variable case, we can easily see that as m, n 	oo, 

(4.1.4) 	 Frnm  (ZI 7 Z2) 	(101(Z1 ) )" (c02 (Z2) )n  

uniformly for z1  E E1, z2 E E2 and 

(4.1.5) 	
)1/(m+n) 

rim ( max IF Z Z"). 
TO,11,—Poo z

1
,z2Er 	1 	 1 . 

A function f holomorphic in D can be represented by its Faber series 

00 00 

(4.1.6) 	 f (zi, z2) = E E 	z2) 
rn =0 n=0 

where 

1 
am,n 	 (C° 1(w  ) V-1(w )) -(m+1) —(n+1) j.7 A  

(2702  jiwil=ri  filv2i=r2 	1 	1 7 2 	2 W1 	W2 	4.4.11)174,202 

and r1, r2  < 1 are sufficiently close to 1 so that for j = 1, 2., co:11  are holomorphic 

and univalent in 1w.i1 > ri  respectively, the series converging uniformly on compact 

subsets of D. Let M(ri , r2) = maxixi i =r3  I f 	z2)I, j = 1, 2 be the maximum modulus 
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of f(zi, z2). The growth of an entire function f(zi, z2) is measured in terms of its 

order p and type T defined as under [7] 

(4.1.7) lira sup In In M(ri,,r2)  = p, 
111 (rir2) 

In Ai(ri, r2) 
lira sup j2  r - 	= 7 , g 710'2 '4'00 	7 1 	 r 

for 0 < p < 00. 

Let LP(D) denote the set of functions f holomorphic iri ID and such that 

1/p 

Ilf IILP(D) = (-A 	If (zi, z2)1Pdxidyidx2dy2) 	< oo 

where A is the area of D. For f E LP(D), set 

Efn,n(f i D) = min Ilf 7rm,.11Lp(D) 
11  m,n 

where ir,n,n  is an arbitrary polynomial of degree at most m -1- 71. 

4.2 Order and Type 

In this section we obtain the growth characterizations in terms of the coefficients 

of the Faber series (4.1.6). We first prove 

Theorem 4.2.1. The function f is the restriction to domain D of an entire function 

of finite order p if and only if 

(4.2.1) 
In mmein 

= lira sup 	  
m 	 I 

, 
,n—kco — 111 anim  I 

is finite and then the order p off is equal to (J.. 
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Proof. Let f (zi , z2) EZ,n=0 ammFm,n(Zi, z2) be an entire function of two complex 

variables in z1  and z2, where 

	

1 ff"-11„„ 	 _-(m-1-1)w2-(n+l)dwidw2  
am,n = 

	

kh7rzr 	w2i_r2 	1w1)) *12 lu-'2)/ Lul 

with arbitrarily large r1, r2. Then 

lam,n1 	
f (w1-7 1 (wi), 	(w2)),„-i-(m+i)w (n+1) dwidw2  

	

= (27rii)2 	f itu2i=r2 

Since from (4.1.1) and (4.1.2), we have 

Wi(zi) = w1 	caTi(wi) = zl 

o2(z2) = w2 	Stcl(w2) = z2. 

(4.2.2) 
	

lam,n1 5 M(ri,r2) rim r2n 

where M(ri, r2) = maxlztl<rt l f (zi z2) 1, t = 1, 2. 

Now we want to show that p > p. If p = 0 then p > p, since p is not negative. Let 

e> 0 and c < p < oo. Then from (4.2.1), we have 

—(p — e) In 	< ln mmnn 

In lamni > (p 
1  

c) 
(m In m + n In n) 

for an infinite sequence of values of m and n. From (4.2.2), we have 

	

In M(ri , r2) > In 	+ In (rr4) 
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1 
	 lnm + nlnn) + 	+ nlnr2 
(11  — 
(ln 	

1 
— 	m) + (In r2 	1 In . 

	

(A €) 	 f) 
 

After minimizing the right hand side of above inequality, we have 

ri = (e )tr717 , r2 = (en) 

Substitute r1  and r2 in the above inequality, then we have 

m 	n 	r1 + 
In M(ri , r) > 	 

E) 
+ 	

f) 	e(l-t 	f) • 

Since p — E is independent of ri  and r2, therefore 

In In  M(ri, r2 )  

	

p = urn sup 
,r2-400 	ln(rir2) 

Since c is arbitrary, therefore we have 

(4.2.3) 	 p ?- /L. 

Conversely, let 
In (nimfin) 

lien sup, 	— O. -- in iam,„ 

Suppose a < co. Then for every e > 0, X(€), Y(€) such that for all m > X and 

n > Y, we have 

I < K 
_ -+. n_ . 

Since f (zi, z2) = Er„,,,=0am,n Fm,n(zi, z2), therefore 

00 
If (zi , z2 )I < K E 	n-779A I  F,,,,„ 	z2) I . 

tei,,n =0 
93 



)m 
T1 	r2   )n  

(
d1 	d2  — 

00 	00 

• E E 
m=M +1 n=N +1 

M oo 

• E E 
m=on=N+i 

rn  -1-e 

_ _n_  a+g n a+. 
m 

( rl  ) 	r2  ) n  
d1 —E 	d2 — E 

oo N 
n

_ n 

m=m+i n=o 
E E 

Ti  )m  
d1 — c 

(r2 
d2 — 

n 
a+c  

n 
a+c 

717.-  atn- 

T2 
(d2 — e/ 

)m  
7,1  

dl — 

By using (4.1.5), for all z1  E E1  and z2  E E2 , we have 

IF,,,„(zi,z2)1 < K (I(Pi(z1)l)m(1402(z2)pn  

and by using (4.1.1)and (4.1.2), for all sufficiently large Izi  I and 1z21, we have 

and koi(zi)I < dIzil 	c , 1  —  1402 (z2)I <
d2 — 

1z21 

By applying these inequalities, for all sufficiently large Izi l and 1z21, we have 

z2)I 5_ K 
m,n=0 

m 
rn 

n 

G1'4  
— 
—  f) 

m 
IZ21 

 n 

( d2 — ) 

Hence 

M(ri, r2) 
M N 

• EE 771-4-e- 
m=0 

n 
n +e 

)n 
i 	r2 

(d1 
T

—  c) (d2  r? 

ri   ) 	r2  )n  
d1  — 	d2  — 

M(rl, r2) 
r2 

d2  — c)N  

(4.2.4) 

l

M 

(dl — El  00 
• E E 

m=M+1 n=N+1 00 
+ B ri 	E  

— e) n=N+1 
00 

• %./ 
r2  )N  

d2 — E rn=M+1 

A 
ri  

_ m 
/11 Cr  +6  
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ri  yn 
dl  — c 

r2 n  
d2 

E = E E 2 	m>(.471... er+, n>((ii27),+, 

m ri  ) 	r2  )n  1-11. 
e+4  n d1 — 	d2 — E  

Let ti  be the part of the above double series (4.2.4), for which m < 

n < (7112-' 	We estimate El  by taking  the largest value of (d! )M (4-217 )N Then 

E E 
n< (42:4  ),+, 

`dt-e ' 	7.2 	(44.; r+6  
dl — E 	d2 — E  

€(1i.-L-' er++  (c 2;2: )e+e  

cr+e 	a+e 

. a+e 	e+e 

since the above series is convergent and is independent of r1  and r2. 

Let E2 contain the terms for which rti > (di  )°+E  and n > (1d2--E7-1- )'+' and so in E2)  
we have 	m-1/°+€ < 1/2 and -22.  —n—l /cr+E  < 1/2, and hence 

(1/2)"11/2)n < 1. 

Let E3  be the part of the series for which in < (c2TiLL- E )°+f and n > (tr2-i)°+' then 

a+e 
ri 	 r2  n  _ 

fr+6  n  
di C 	 d2 

n>(21120°+` 

Since 

E 
,1? ( 712,14z ).7+. 

_ n n c +4 	
r2 

d2 — e 

and 
m 

711. e+0 	r1  

	

d1 — 	°le' di  —e 	11  m<  22±L• 
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therefore 

E<o{e(ci cr+2E}  

3 

Let the remaining part of the above double series be denoted by E4  i.e. for m > 
( -311-)a+f and n < ( 2T7-:2-)a+', then 

E 	}. 

4 

Further 
( 	 r2 1  M  1. 	 +2e, 

< Ole` d2-e 
I

' 
n 

cr g d
l  — c 	 d2 — c) 

(  7-2   )N  
C 	 Ern °+E 

U2 — E 

(  1'1  )m 	,cr+2. < &fedi-el 	1.  

d1 — e ' 

Hence, substituting these values in (4.2.4), we have 

M(r1,r2) < E+E±E+E-1-0{e(+2'1+0{e(a+2e} 
1 	2 	3 	4 

0 {e( 

r

< 0 e((di-4:)(rd2,_.))°'  I. 

Proceeding to limits and since c is arbitrary, we have 

(4.2.5) in in M(ri, r2)  

	

lira sup 	 < cr. 

	

,r2—■00 	In (7'17'2) 

From (4.2.3) and (4.2.5), we obtain the required result (4.2.1). 	 ❑  

o, 
Theorem 4.2.2. Let a lim 	{rninrin 	'n+" . If 0 < a < oo, the drd;t 
function f is the restriction to domain D of an entire function of finite order p and 

22:0 cr+2e± ( 2r 2._) u+2' 
dl —e / 	 t,d2-6/ 
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type r if and only if 

(4.2.6) 	 a = erp. 

Proof. Since f is an entire function of finite order p and type r, therefore 

1.f(wi-1(wi), w;-1(w2))I < e(r+6)((d1+olwil)'+«d2+e)tw21)P 

and from Cauchy's inequality, we have 

iam,n1 < rrnrre(r+e)((di+e)Iwil)P+((d2+01w2DP 

< rT mrre(r+c)((di-i-ori)oe(r+E)((d2+E)r2)0 

for all r1, r2  sufficiently large. To minimize the right hand side of this inequality, we 

select 

r1  = 
1 	m 11,Ip 	 1 	n 	p 

— 
dl 	LP( r 	 f) 	

1'
] 	2 	d2 + E LP(7- 	f).1 

Substitute r1, r2 in the above inequality, we have 

(C1 t E) n (d/ 7- 	[ep(r + E A(m+n)/p 
lan,n1< 	 (Trennn)1/p 

 

or, 

tot rri rtn 
lamird 	\P 1/(m+n) 

e)rn(d2 + 	
s ep(r + e). 

(d1  

Proceeding to limits, since E is arbitrary, we obtain 

(4.2.7) 	 lirn sup I 	
P 11( 

mmnn ( I  am, 	1rn+n) 

2  dm 	f 
1  

epr. 
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Conversely, let 
1 	ia. ni P  1/(m+Th)  lim sup — fmmnn 	 = cr. 

ra,n--4co ep dm  do  z 

Suppose a < oo. Then for given c > 0, 3 M(f),N(e) such that for all m > M and 

n, > N, we have 

< K rn-mIP n-nip  61714 [ep(o. 6)](m+n)lp 

Since f (z1, z2) = Ern7n_o  amm  Fin,n(Z1) z2), therefore 

00 

If (Z1, z2)I C K 	 P  n-n/pdm d214P(a + E)1(m+n)/P IFin,n(Z1 z2)I. 
m,n=0 

From (4.1.5), by using the estimate of F„, ,n(Zi , z2 ) in the above inequality, we have 

00 

If (zi, z2)I < K E 	n'IP di 4 [ep(a E)](m+n)/P 	 m 	1z21  )
n 

m,n=0 	 dl — e) \d2 2 — 

00 
< K E ,n-m/p n-nIP [ ep( a  € )](m+n)/P 

= 	

(dli  IZiel 	
C12 
d2  I Z2  I n  

) 	6) m,n0 
00 

< K E m-nip 	[ep(a e)]( m+n )IP rr rn  
m,n=0 

To estimate the right hand side of the above inequality, we proceeded on the similar 

lines of proof of Theorem V of Bose and Sharma [7, p 224], and we obtain 

z2)I 0fe(a+e)(ri-H1)}. 

Hence 

M(ri , r2 ) < 0f e(a+e)(71A-r2)}. 

in  M(ri,r2)  
p 	p 50 - ± 6. 

r --1--r 2  
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On proceeding to limits, we obtain 

(4.2.8) 
In M(r , r2 ) 

lim sup 	p 	 p < Q. 
m,n-■oo ri r2 

From (4.2.7) and (4.2.8), we get the required result. This completes the proof of 

Theorem 4.2.2. 	 El 

4.3 LP - Approximation 

In this section we consider the approximations of an entire function over the domain 

D. Consider the polynomials 

Pm,n(zi, z2) = Am,nzre2 + 	> 0) 

defined through the relation 

f fD  

   

prn,n(z17 z2) Pk,l(z1, z2) dX1ck1dX2dY2 

By applying Carleman's result [8] independently on z1  and z2, we have 

(4.3.1) Pm,n(zi, z2) 
(On + 1)(n + 1)A 

.7r2 	
ii12)1/2  , 

(Pi (zi)(oi (z1 ))m 	(z2 ) ( 92 (z2))u  

as m, n 	oo, uniformly for z1 E Ei and z2  E E2. Any function f E L2(D) can be 

expanded in terms of these polynomials as 

(4.3.2) 

where 

0. 00 

.f(z1,z2) = EEbm,nPrn,n(Z11 ;2) 
tn=0 n=0 

ID  f  A D 

   

z1, z2) Prn ,n(Zi, z2 ) dxidyidx2dy2 

99 



(4.3.3) 	 Em2  = E E ( 
oo 	00 	) 1/2 

bk,d2 	• 
k=m+1 1=n+1 

and the series is uniformly convergent on compact subsets of D. Applying Parseval's 

relation of one variable independently on m and n, we have 

Before going to main results here we state and prove two lemmas which are more 

useful in the proof of main theorems. 

Now we prove 

Lemma 4.3.1. 

	

In (mm nn) 	In (mmnn) 
(4.3.4) 	 lim sup 	= um sup 

m,n-oco 	m I Um,n I 	mm,-00 - In 

Proof. From (4.3.3), we have 

Ibm+1,n+1I < Em2  ,n 

- In 	I > - In (Em2  

Proceeding to limits, we have 

	

In (mmnn) 	I 	nn (m 'nn) 
(4.3.5) 	 lim sup,„ < lim sup 	„ . 

moi  -400  - In 11/4  Z/711,n 	 i m,n-0.00 - nib 

Conversely, let 
In (mmnn) 

lim sup 	 (7. 
m,n---•co - In um,n 

Suppose a < oo. Then for each € > 0, 3 M, N such that for all m > M, and n > N, 

we have 
_ 

Ibm ,n l< K m 	n Q+. 
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so that 

(81,n)2  
00 

• K E E k-o+ c.f. 
k=m+1 1=4+1 

co 	00 
• K E E (m + 	1)--  ;17 

k=m+1 1=n+1 

a(n 
▪ K (m +1)  	

a± 
+ 1) 	[1 

< 0(1)K(m + 1) 2(1:4" (71+ 1) 2(.:Vi. 

-1 

Therefore 

	

Em2  < (rn + 1)- 	(n + 1)-13+-P 

1 
— In (E,2,,n ) > + 

In ((in + 1)m+1) ((n + 1)11+1). 

Proceeding to limits and since e is arbitrary, therefore we have 

	

In (mmn") 	In (mninn) 

	

(4.3.6) 	a = lirn sup 		> lim sup 	- - 

	

rft,n-•00 — in rinz,n I 	m,n-woo n) 

From (4.3.5) and (4.3.6), we obtain the required result. This completes the proof of 

Lemma 4.3.1. 0 

Lemma 4.3.2. For any p > 0, 

(4.3.7) 
p 1/(m+n) 

lim sup — {TrinInn 	I ) 	
1 	 Li', 2 

m,n-400 ep 	dmd" 

	

1 2 	
= li111 SUp — mmitn 

M.,71--K50 ep 	e'er"' 1 2 

Proof. From (4.3.3), we have 

< 
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Since d1, d2  > 0, therefore for all m, n > 0, we have 

<  Ibm+1,n+11  P 	E m,n  P 
di  d2 ) 	dr dt ) 

or 

{ 
	

7 	

) p 1/(m+n) 
mmnn l

d
m

d 

 
< {MnIn 

2 
 

1 m (1 bm n  p 1/(m+n) 
mm 	m  --2 	< — {mmnn  

ep dn 1 2 	 ep 

E,,n  271 p 1/(m+n) 

ClInct21 ) 

E2P  " (m+n)  
4714 

Proceeding to limits, we have 

(4.3.8) 

< lim sup —1  mmnn (4'1  P 
 11(m+n) 

1 	lb ly 1/(m+n)  lirn sup — {mmnn 
m,n-■oo eP 	 dn 

	

1 2 	oei. 	 dm dn 1 2 m,n-•00 ep 

Conversely, let 

	

1 	Ibm ni yrn+n) = lira sup — mmnn 
dr C1/42  m,n---000 ep 

Suppose a < oo. Then for each c > 0, 3 M(E), N(c) such that for all m > M and 

n > N, we have 

{(ep(o + ) )1n±n  ni-mn-71  VP  dmdn 1 2 

so that 

00 	00 
(Em2 ,n  )2 < K 	 (ego. + 6))k+1 -k/-t 2/P A2k,4

I
21 

'1 'I 
k=m+1 l=n+1 

K {(ep(a + E))(m4-1)+(n+1) (s + 1 )-(8+1)12/P  42(m+1) , 
"4

2
2
(n+1) di 

 
(m+1) 

< 0(1)K {(ep(a + c)) (m.+1)+(n+1) (5  1)—(s+1) 12/P  4.(m+1) cirl) 
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for rrt > 4di e p (cr + e) and n > 4d2 e p (a + e), 

where (s +1)-(3+1)  = (?n+ 1) (m+1)(n± 1)-(7'4-1), X1  = [1 
—1 

(ep(o+e))2,4  ) -1  Pi , and (m+1)(m+1) 	an  

X2 = El 	( (qP(6;±-f))2
1)  
41  ) 2/P1 -1  

(4+071+ 	. Therefore 

Em2 < 0(1)K { (Cp(CI f)) (m+1)+(n+1)  (s + 1) (8+1) 1/1' dr+1) 4n+1).  

Proceeding to limits, we have 

(4.3.9) 

U = lim sup —1  
m,n-koo ep 	

mnn Ibm,n1 P 1/   
1 2 

	

drndn 	
> lirn sup — mmnn 

ep 
1 

dmdn 

B2 ) } 1  (m+n ) 

1 2 

From (4.3.8) and (4.3.9), we get the required result. This completes the proof of 

Lemma 4.3.2. 

4.4 Main Results 

Theorem 4.4.1. Let 2 < p < 00. When f is restriction to the domain D of an entire 

function of finite order p if and only if 

(4.4.1) lim sup 
In (mmnn) 

nt,n-+oo 	In (Ern,n) = P.  

Proof. We prove the theorem in two steps. First we consider the case p = 2. Let us 

assume that f is an entire function having finite order p. Then by Theorem 4.2.1, we 

have 
_ < K 	1)+4 n P+6 . 

Now, by considering the property of orthonormality of polynomials p,,,,n(zi, z2 ), we 
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have 

	

binm  = E E ak,1 f f 	z2 ) dx1dyidx2dy2. 
k=m+11=n+1 

Hence 
00 	00 

Ibm,n1 E Elak,l I  zi
max I Fk ,I(Z1) Z2)1. 

,z2 Er 

Since, by (4.1.5), we have 

max IFk,1 (zi, z2) I < K(1 + e)(k+i), 
z ,z2Er 

by substituting all these values the above inequality becomes, 

00 	00 
K E E 	1-71-F-(1 + 6)(k+1)  

k=m+11=n-1-1 
< it 	P-i-e n-,*€ (1 	€)(m+n) 

for all sufficiently large m and n. Therefore, we have 

1 

	

— In Ibmn l ?_ 	
c) 

In (mmnn). 
+  

Proceeding to limits and since c is arbitrary, we obtain 

(4.4.2) sup 
In (mmnn) 

lim   < p. 
m,n--400 — 	

, 
 

lirn sup 

 

Conversely, let 

In (mmnn) 	 = 0-, 
m,71--.00 	In Ibm,„I- 

Suppose o < oo. Then for each e > 0, 3 L(6), Z(e) such that for all m > L and 

00 	00 

k=m-1-1 i=n+1 

Ibm,n1 
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rt > Z, we have 

	

Ibm,ni CKrn—c+; 	7:7 

Since by (4.3.1), we have 

iPni,n(zi,z2)1 5_ K (rn +1)112( + 1)1/2kc1(zi)ii(P1(zi)rni(d2(z2)11(P2(z2)in 

for all zi  E E1  and z2  E E2, we have 

	

ItPc(zi)i 	1402(z2)1 < K" 

where 	K" are fixed positive constants, and 

	

kol(zi)i < 	 
1z21  

, i(P2(z2)1 < d2 

	

— e 	 — 

for all z1, z2  with sufficiently large modulus. Hence 

.0 00 
ipz,,z2)1 	I{  E m, 	1)112(n + 1)1/2 (  Izi Yn 

— E 	d2  — E rn=0 n=0 	 di 
oo coo 

< KE 	er 

	

Em -1-2e 	(  I Z1 1  r 	 IZ21  n. 
V/2 — 6) m=o n=0 

To estimate the right hand side of above inequality, following  the method used in 

Theorem 4.2.1, we have 

Agri) 7.2) < EE E E +0(e( d22r-eYr+2e 
1 	2 	3 	4 

< 0 {e(IP41"-2€+W7 +2f 

< 0 {e((di:-Wrri-j r +2' } . 

+ e 
I  AL Na+24L. 

Ol 
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Now by applying  limits, we obtain 

(4.4.3) In In  M(ri , r2) 

	

p lim sup 	 < 0•. 

	

ri,r2-■oe 	in (rir2) 

From (4.4.2) and (4.4.3), we have 

In (mmnn) lim sup 	= p. 
171,11-*C0 — In lvm,n I 

By applying  Lemma 4.3.1, we have 

(4.4.4) sup 	 firn 	In (mmnn) 
= p, 

nt,n-,00 — In (4,n) 

Now we consider the case for p > 2. Since 

(4.4.5) 	 Em n  < Ef„,. < Em77 , for 2 < p < oo, 

it is sufficient to consider the case p = co. Suppose f is an entire function of order p. 

Then 
n 

EmcGn  < max 
' 	z1,z2Er f 	z2) - EE ak,t Fk,t(zi, z2) 

k=0 1=0 

oo 	 00 

tak,d max IFk,/(zi, z2)I + EE ' aka ' max IFk,/(zi, z2)I 
k=0 l=n+1 k=m+1 1=0 	

zEr 

00 	00 
(4.4.6) + E E jak,i1 zimax  IFk,i(zi, z2)I. ,z2 Er  

The first two summations in the above inequality (4.4.6) are bounded. It is sufficient 

to estimate the last summation. Since f is an entire function of finite order p, therefore 

EE 

k=rn+11=n+1 
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00 

EE 
k=m+1 1=n-4-1 

oo 	oo 
<KEE 

k=m-1-11=n+1 

by Theorem 4.2.1, we have 

0,1 < K 	P+e n  P+e 

and 

zi,z2Ei 
	z2)1 5_ (1 + e)k+I . 

Therefore the above inequality (4.4.6) becomes, 

P- 
--L. 1 p (1 + f )k+1 

(  (1 + Ere\ k/(Pi-e) 

711 + 1 ) 
(  (1  +  ere\ LAP-FE) 

n + 1 ) 

K  (1 t crE nt/(p+c) (1  + 	n/(04.,)  

rra ) 	n 

In  (rn,rnnn) < 	 In  (nnnn) 
— ln (E&o,n ) — [1/(p + e)] In (mmn") ln K — 	+ in (1 + e).  

Proceeding to limits and since e is arbitrary, we have 

In  (mtnnn) 
lim sup 	< p. 

— In (E,c;zn ) 

In view of iriequalities(4.4.5) and the fact that (4.4.1) holds for p = 2, this last 

inequality actually is an equality. Finally assuming (4.4.1) with p = oo, we deduce 

from (4.4.5), that (4.4.1) will hold for p = 2 and hence that f is of order p. This 

completes the proof of Theorem 4.4.1. 	 O 

Theorem 4.4.2. Let 2 < p < oc . Then f is restriction to the domain D of an entire 

function having finite Order p of type r if and only if 

(4.4.7) 	 lirYlsup {mmn' Ern'n ) In+Th  = epr. 
rn trt--,06 	drn dn  1  
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Proof. We prove the theorem in two steps. First we consider the case p = 2. Let us 

assume that f is an entire function having finite order p and finite type T. Then by 

Theorem 4.2.2, we have 

i am,n, _5_ K m-  P n P dl 4 (ep(r  + e)) (m+n)IP . 

Now proceeding on the lines of Theorem 4.4.1, we have 

00 	00 

Ibm,ni 	 4 d2 (ep(r + 6))(k+1)1P(1+ e)(k+1)  

k=m+1 1=n-1-1 
Km-1 	di 4 (ep(r + e))(m+")IP(1+ e)(m+")  

for all sufficiently large m and n. Therefore, we have 

mmelbm,n1P  < K(dr c13)P  (ep(r + f))(m+n). 

By applying limits, we have 

lira sup { mmn"  
m,n-400 

(4.4.8) (  lb r n 	n n  

di d2 
< epr. 

Conversely let 

lim sup —
1 

{77/7„.'nn 
(Ibm,ni) P1 m+n = 

m,n-too eP 	d1 (172'  

Suppose a < oo. Then for each e > 0, 3 H (e), G(e) such that for all m > H and 

n > G, we have 

< L m a n p 414 (ep(a + 6»(m+n)1P. 
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(eio(c, 20)(,r,+„v„ 	I ) (2.1221) d 	d 	n  
— 	d2 e 

For sufficiently large r1, r2 ,  

z2)I L 
00 00 

m=0 n=0 
9 1  474 (ep(a €) )(m+n)/P (8  + 1)1/2 	IZ11  r 

\ 
1z21  )n  

— Ej d2 — 
oci 00 

• L EEg 
m=0 n-=0 

oo 00 
< LEE9 

m=6 71=0 

P 

• 

(ep(cr + 2E))(m+n)/P rim r2 

(in + 1)1/2(n  + 1\ 1/2.  0A where 	= 777,- P n-7; and (s + 1)1/2 	 1)1/2. 'I'o estimate the right 

hand side of above inequality we follow the same lines as bf Bose and Sharma [7, 

Theorem V, p 2241, and we obtain 

If (zi, z2) I < of ecer+Em-f-rD}.  

Hence 

(ri , r2) < 0{e((r+O(ri-Fr2)}. 

Now by applying limits, we have 

(4.4.9) 
In /1//(7.1 , 7-2) 

T = lim sup 
ri,r2-400 r1 + r2 

From (4.4.8) and (4.4.9), we have 

Ibmnn m+n  hill SUP {111mnn 
d in  dn  1 2 

= 

By applying above Lemma 4.3.2, we have 

{ 	
E2 )0 } m-l-n 

lim sup mrnrin  (—II 
,n--..00 	dm dn rn 1 2 

= ep-r. 

Now we consider the case for p > 2. From (4.4.5), it is sufficient to consider the case 
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p = oo. Suppose f is an entire function having finite order p and of type r. Then from 

(4.4.6), the first two summations of the above inequality are bounded. It is sufficient 

to estimate the last summation. Since f is an entire function of finite type -r, therefore 

by Theorem 4.2.2, we have 

_ 
lam,n1 < K m Pn Pcrin arr21(eP(T + e)) ° 

By using above inequality and from (4.4.6), we have 

00 	00 

K E E k--"s2H c111 d12  (ep(r + e)) 2?.,1  (1 + 014+1  
k=m+1 l=n+1 

< 
 co  E 00 	

(i+e)Pl k  11  (1  +  f)11/11  K 	
( 	

k 
M + 1 

/P 

t n + 1
dl d2  (ep(-r + E))k+1  

( (1
m  +

+ e)P
1  j  r

IP  (1+ PVVP K  
n+ 1 ) 	d d (eP(7-  + f))m+n 

p) 1/(m+n) 
(mme 

drin d 	
< (1 + e) (ep(r + E)) 

r2t 

 E
m  )p n+n 

lira sup mmnn   < epr. 
m,n -■co 

 

In view of inequalities(4.4.5) and the fact that (4.4.7) holds for p = 2, this last 

inequality actually is an equality. Finally assuming (4.4.7)with p = oo, we deduce 

from (4.4.5),that (4.4.7) will hold for p = 2 and hence that f is of type r. This 

completes the proof of Theorem 4.4.2. 

k=m+1 i=n+1 
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Chapter 5 
Approximation of Entire Functions 
of Several Complex Variables 

In the present chapter, we study the polynomial approximation of entire functions of 

several complex variables. The coefficient characterizations of generalized order and 

generalized type of entire functions of several complex variables have been obtained 

in terms of the approximation errors. 

5.1 Introduction 

Let f (zi, z2, ••., z,) be an entire function of n complex variables z = (z1, z2, • ••, zn) 
belongs to Cn. Let G be region in Er+1.' (Positive hyper octant). Let G R C en denote 

the region obtained from G by a similarity transformation about the origin, with ratio 

of similitude R. Let dk(G) = supzeG  kik, where Izik = Izilkliz21k2...1z„lkn, and let (9G 

denotes the boundary of the region G. Let 

5)6 
(z) 	f 	z2 , 	ozn ) 	E 	ak,...kn 	znkn 	 ak z

k , 

ki,k2,•••,k4=0 

Ilkil = k1  + k2 + + kn, be the power series expansion of the function f (z). Let 

Mf,c(R) = maxzEcn  If (z)I. To characterize the growth of f, order(pc) and type (TO) 

are defined as [14] 

Pc = lim sup In In  M1, (R)  
R 	 itl R 
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In Mf,G(R)  
TG,  = lim sup 

R oo 	RPG 

For an entire function of several complex variables f (Z)

= 11
kii:effio ak e iZekn  As  0  , t  .Af t s ay  .iGo T1' dbloerrg 

[16, Th .1] obtained the order and G-type ac in terms of the 
c 

expansion by 

(5.1.1) 
— la 

p = limsup 11k11
In d 
 

NI —00 

(5.1.2) 	(e p aG)VP = limsup 111k111/P  Elakl dic(G)ji/114},  (0 < 
p < oo) 

il k li 	°C)  

where dk  (G) = max, E G r k  ; rk = 	. 

We define error of an entire function f on a region G as 

Ek(f,G) = suP {11.f — ALP : p E P}. 

where 

= {1.  
z,,z2,...,zk EG 

If (xi , z2 , 	zk )IP dz1  dz2 	< oo, 

and P(z) = EIIkII=k 
ak  Zk is a polynomial of degree k. 

Before proving main results we state a Lemma. 

Lemma 5.1.1. Let P'(z) 	Ek Zic be a polynomial of degree k, where 

ilkii = k1+ k2 + + kn. Let Mpw(1) = maxzEG IP'(z)I. Then 

1 < Mpi,G(1) max {Ekdk(G)} < (1  +11k11)3. 

• 
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5.2 Order and Type 

Now we prove 

Theorern, 5.2.1. The entire function f(z) = ET1,11=0  akz k  is of order p if and only if 

the following relation holds 

(5.2.1) 	 p = 	
114  sup 	•ln 

Ilkll °C/ - 111  8/C 
	In leik(C)I 

where dk(G) = max,Ea rk . 

Proof. From Ronkin [43, Page 131], we have 

(5.2.2) 	min ei-Le" rin = ( e1=11 )110' ( 1u > 0,v > 0,m > 0), o<t<00 

(5.2.3) 	 sup (-c,b )k/v t k 	exp { 
ev 
a el (a > 0, v > 0). 

0<k<co X 

00 	 CO 

(5.2.4) 	Ek(f) 5_ 11f -AIL" = 11 E a; 	5_ E lail Izli. 
11 11=llkll+1 	11./11=11k11+1 

From (5.1.1), we have 

16'1 	
I < 	1 	I kll-Il k il/(P+c). 

dk(G) 

By using above inequality and (5.2.4), we get 

1 	1 1. 	r 	1-1  [ Ek(f) 	dk(G) (II II + 1)01k11+1)/04-E 	 + 1)1/P+ei 	• 

By setting r = 1 + 	in the above inequality, proceeding to limits and taking into
ilkll 
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—1n Ek (f) — In dk (G) 
	 < a + 

account, the arbitrariness of e > 0, we obtain 

114 111 11k11  lim sup _ In Ek( f) — In dk (G) < p. 
Ilkll — 00 

For reverse inequality, let 

Ilkll In  IIkII  urn sup 
— lnEk(f ) —lndk(G) = r  

Suppose a < oo. Then for any 6 > 0 there exists N such that, for all k with Ilkil > N, 

and consequently 

(5.2.5) 	 Ek dk(G) < k 

Therefore 

00 

Mf,G(R) < max V' EkrkRilkil  
rEG 

Ilkil=0  .0 E RilkilEkdk(G) 
Ilkii=o E Rim 	+ E R1A1 Ekdk(G)  

likeN 
00 

< (1 + 	
Ilk11-11c11/cr+e + C2  RN + 

IIkII=0  
(5.2.6) 
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where c1 and c2 are constants. Set N(R) = (2R)°+e. For Ilkil ?_ N(R) 

R11k11 ( 1 \ 
PO) 	

< 2-11k11, 

and by (5.2.3), for any Ilkll, in particular, for Ilkil < N(R) 

1 	11 

	

Rilkll ( 	\ 14 /(a+0  +e  
II II 	

exp 	ir  
e(cr + e)  f • 

Consequently 00 
E //pH (1 + 	 = 

11k11=0 

	

E kw! (1 + liklir 	 PH (1  + Pon 
ilkil<N(R) 

 
okii?N(R) 

E  (1 +,1 iklIr  exp e(1::+470 	E (1  + iikiir  
k 

Ilkil<N(R) 	 111c11?N(E) 	
211 11 

 
+e 	 + II k  5_ (1 + N(R)r+1  exp e(0- E + E 

k,, ,N(R) 	211k11 

(5.2.7) 

Hence by (5.2.6), we conclude that for all R > and certain constants c1, c2, c3 and 

C4 

(5.2.8) 	Mf,c(R) ci + c2 RN  + ( c3 + C4 R( c+E )  (n+1)) ex f R(a+E)  
t(a+e) J. 

Hence 

ln ln Mf,c  (R) _< [1 + 0(1)] (er + e) ln R. 

Proceeding  to limits, we obtain p < 6- + f, and since e is arbitrary, so p < a. We have 

thus proved (5.2.1). This completes the proof of Theorem 5.2.1. 	 ❑  
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Theorem 5.2.2. The entire function f(z) = El17,11=0  akz k  is of order p and G- type 

oG if and only if the following relation holds 

(5.2.9) 	(epoG)1IP = lim sup { Ilk II 1/P[Ekdk (G)]illikil 	p  > 0,  

where dk(G) = max,. E c rk
•  

Proof. From (5.1.2), we have 

	

lakidk(G) 5_ (e  P (crG 	:4 

	

Ilkil 	) 

By using above inequality and (5.2.4), we get 

1  
Ek(f) dk(G) 714+1  {e (cYG,  + c) ( Ilk!' + 1 ) -1  

PS 
1-r r eP(ac + e)) 

+ 

   

By setting r = 1 + Ilkllin  the above inequality, proceeding to limits, we obtain 

(5.2.10) 
	

lim sup illkill/P[Ekdk(qinkill < 
00  

For reverse inequality, let 

Bin sup {(Ekdkprinkil  = < co. 
Ilkll — 00 

Now we want to show that is > (epc7G)1/P. From the definition of IS, for any e > 0 

there exists M such that, for all k with IlkII > M, 

(Ekdk(G)) 1  an 11k111h) < K  
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and consequently 

€ )
1ikil 

(5.2.11) 	
dk(G)  k  (5175  

Therefore 

Af 	

• 

max 	Ekrk Rokii f ,G(R) rEG 

• E Roklikok(0)  

Ekd,c(G) 
Ilkll>_tif 	II  II 

,c+, III 
Rllkll 

 • E 
Poll< M 

(5.2.12) 

6. 
• E 	(1  + 	( 

iik0=0 

( tc  +)n IIkII/p  
11 	

Rm  + C2,  
14 ) 

where c1 and c2 are constants. Set N(R) (2R(tt €))P. For IlkII > N(R) 

Rllkll  ((K E)P )11kIl/ 

Il k ll ) 
	2-1114 

and by (5.2.3), for any IIkII,  in particular, for Ilkil < N(R) 

Rllkll
eic t Ey 	p 

IIkII ) 	
exp 

(lc+ f)P  ep RP }. 

Consequently 

E R iveR + pm). 
ukfl=„) 

( (K  + op 	II I P 

( 	f)p  PH I P 	E 	(1  + gut' u 	
lc  

(1 + itkn  
iikii<N(R) 	 IIkII 

+ op \11kIII p 

Ilkil 

117 



ex f  ( ep )  + 	Rpi 	 (1+ Ilkiir 2 	(1+ 11 k Itr 

IIkII<N(R) 	 11k11?_N(R) 

(5.2.13) < (1 + N(R))"±1  exp + c)P  Rpi 	(1 	ion.  
ep 	)

IlkDl N(R) 	
211 11 

Hence by (5.2.6), we conclude that for all R > 0 and certain constants c1,c2,c3 and 

C4 

(5.2.14) Alf,c ( R ) 5_ c1 + c2 Rm  + (c3  + RP (n+1)) exp (tc EY  RP} 
ep 

In  M f,G(R) 	+ c)f) 
c = lirn sup 

R 	 RP 	 ep 

(epo-G)1IP < K + C. 

Since e is arbitrary, 

(epaG)11°. 

From (5.2.10) and (5.2.14), we have 

limsup {(Ek dk(G))1/11k11 Ilkii i/P} = (epero)11P. 
11k11— 00 

We have thus proved (5.2.9). This completes the proof of Theorem 5.2.2. 	❑  

5.3 Generalized Order and Generalized Type 

Now we prove 

Theorem 5.3.1. Let a(x) E L°, and 0(x) E A. Set F(x;c) = 0-1[c a(x)]. If 
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dF(x;c)lciln x = 0(1) as -4 oo for all c, 0 < c < oo, then 

ce[lnMf,G(R)] = 
R oo 	1nR 	

rim sup 
Ilk° — 00  0( — Ailn(-8k(ndk(G))) .  

Proof. Prom Seremeta [44, Theorem 1'] 

lakldk(G) < e-111c1I Palk11;0.  

By using above inequality And (5.2.4), we get 

Ek(f) < 	1 	
e 
-(iik11-0)Palk11+1;;;) 741,11+1  [1 	r  • eF(11k11+1;r1) 

By setting r = 1 + likllin the above inequality, proceeding to limits, we obtain 

(5.3.1) 	 limsup 	6(11k1I) 
	<p• 

 
Oki! 00 13( 	in (Ek(ndk(G))) 

Conversely, let 
6(iikii)  limsup 

Ilkll 	oo IQ(— llkli In (Ek  ak1ten
-7»)

v,  

Suppose ri < oo. Then for any E > 0 there exists N' such that for all k with k > N', 

we have 

(5.3.2) 	 Ek dk( 0 ) 5_ exP {-11k11F(11k11 ; 1/TO 

where Tj= i  + E. The inequality 

(5.3.3) 	 1Eku Rllkll Ek  dk(G )  < R -F(11k11;1M) < 
2 

is fulfilled beginning with some 111c11 = k(R) = Efrt-l [Ti /3(1nR + In 2)]1 , where E[F] 

urn sup a(11k11) 
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is an integer part of the function F. Then 

.0 	 00 

(5.3.4) 	 E Ek  dk(G) Rlik il < 	E 	1  < 121kil — 1-  
k(R)+1 

Now 

00 	 ko  

M f,c(R) 5_ E Ek dk(G) Riikil = 	Ek  dk (G) Rilk il 

IIkII = 0 =0 
ki(R) 00 

(5.3.5) 	 E Ek  dk(G) Riik il + 	E 	Ek  dk(G) Rllkll 

iikit=ko+,  

by applying above Lemma 5.1.1 and from (5.3A), the above inequality becomes 

014 
M f ,G(R) (1  + 	k< 

0  + ki(R) _ max <ki(R) (Ek dk(G)R11k11) E2-114. 

Rom (5.3.3), we have 

2R < exp {F(IIkII ; 1/7)}. 

Now, we express k in terms of R. 

1n2 +ln R 	; 1M) = 0-1411--.  ot(Ilk11)1 

where ki(R) = k(R) + 1, and ko  = max {N', ki(R)}. 

ko<iikii5k
max 	(Ek RH") < 	max 	0(11k11) < exp {A ct-l[Ti #(1nR + A)11 

i(R) 

where 0(11k11)= RI1k11 exp 	 ; 1/7)}. From (5.3.5), we have 

Alf,c(R)(1  + o(1)) < exp {(A + 0(1)) 	0(1n R + 
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Then we have 
a[(A + o(1))-1111Mf,a(Mi  < 	e.  

0(ln R + A) 

Proceeding to limits, and using the properties of a(x) and #(x), we obtain 

(5.3.6) 
ce(ln M1,G(R))  

p limsup 	 < 
R oc , 	0(1n R) 

From (5.3.1) and (5.3.6), we obtain the required result. This completes the proof 

Theorem 5.3.1. 

Remark 5.3.1. By taking a(x) = In (x), 13(x) = x in the above Theorem 5.3.1, we 

get (5.2.1). 

Theorem 5.3.2. Let a(x) E L°, 0-1(x) E L6 , -y(x) E L°; let p be a fixed number, 

0 < p < oo. Set F(x ; o- , p) 7-1  f[0-1  (a cx(x))]11P}. Suppose that all a, 0 < a < 

oo, satisfy: 

d ln f(x ; a, p) Id lnx = 0(1) as x --+ oo; 

then the following equation holds: 

lim sup ct(11 Mf 'g(R))  — lim sup /3  r 	a(111a)  
oo 	0[(7(R)) P1 	~ 00  PL[7( e /P lEk dk0)1-1/114 )1PY 

Proof. From Seremeta [44, Theorem 2'] 

lad dk(G) < ellkIIIP [F,  1 
= 

By using above inequality and (5.2.4), we get 

Ek(f) 
,r el', P  

(11k11+1) 
1 

[ r 
. 

( 
) PO 

[ p(Blip [F (liklip+1  ; 
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By setting r = 1 + * in the above inequality, proceeding to limits, we obtain 

a( 11[1)  (5.3.7) 	 lirn sup 	  < 
iikii —■ 00 	fhi  (ell P  {Ek 

Conversely, let 
a(IEI) 

li sup 	„ 
-4  00 P tr(el/P[Ek dk(G)]-1/11k11W} = 

rn 	T. 

Suppose T < oo. Then for every c > 0 there exists M' such that for all k with 

k > M', we have 
(E I) 

	

Ek dk(G) < 	
exp 

P  
[F 	I P ;VT.  'PAM  

where T = r + e. The inequality 

l/P 
(5.3.8) 	 IIVEk  dk(G) RI1k11 5_ 	e 	R 	1 

F  (Il k  II /P ; 	
5_ 

p) 	2  

is fulfilled for all Ilk II beginning with some Ilkil = k(R) = E[p a-1{7 Q  [(7 (2e1/P R))/11]. 

Then 

O. 
(5.3.9) 	E 	Ek dk(G) Rllkll < 	1  < 1. — 

IIkII=k(R)+1 
	 ilkil=k(R)+1 

Hence 

oo 	 k0 
mf,c(R) < E Ek dk(G) 	= E 	dk(G) RH" + 

114=0 	 iikii = 0 
ki(R) 	 00 

(5.3.10) 	> Ek dk(G) Rilkil 	E 	Ek  dk(G) Rllkll 

iikii=ko+1 	 likii=ki(R)+1 

By applying the Lemma 5.1.1 and (5.3.9), the above inequality becomes 

	

Mf,G(R) < (1 + Pip" + k1(R) 	Ilkiax 
 ,(R) 

m 	(Ek  dk(G)Rlik li) + E 2-likil 
l <k 
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where k1(R) = k(R) + 1, and ko = max {M' , ki (R)}. 

max 	(Ek  RI1k11) < 	max  
ko<11kIlki(R) 	 ko5.11kIlki(R) x(Ilk11) 

< exp {A p a-117 Q  [(7(Re ll, -A))11}}, 

117,  10)1-11k11, From  where X(11k11) = 	el/P)P11 	 (5.3.10), we have 

Mf,G(R) < exp {(A p + o(1)) ce-1{7 fl [(7 (R e j,; ÷A))1}}. 

Since oi(x) E L°, 0-1(x) E L°, -y(x) E L°, proceeding to limits, we obtain 

(5.3.11) a = lim sup cl(11-1'  M f'q(R))  
ft 

_4. 	ol(7(R))1   < = ulli111su k11  p.  
a(11) )  

Of [7(el/P[Ek dk(G)1-1/Ilic11 )1P}.  

Prom (5.3.7) and (5.3.11), we obtain the required result. This completes the proof of 

Theorem 5.3.2. 0 

Remark 5.3.2. By taking 6(x) = x, 13(x) = x and 7(x) = x in the above Theorem 

(5.3.2), we get (5.2.9). 
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