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ABSTRACT 

The smallest possible fullerene, C20, has other isomers of competing energy and the 

relative stability order has been controversial. In the present work, ring, bowl and cage 

structures of C20 are optimized at Hartree-Fock, MP2 and DFT/B3LYP levels using 

D95V(d,p) and cc-pVDZ basis sets. Energetics of hydrogenation of the cage structure 

(C2) and bowl structure of C20 to yield C20112 isomers and completely hydrogenated 

perhydrofullerene C20H20 are also studied. Preliminary studies in C24 are also reported. 
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INTRODUCTION 

AND 

LITERATURE REVIEW 



Introduction 
1.1) Fullerenes 

Till 1985 only two forms in which pure carbon occurred, were 

recognized: diamond and graphite. Both these substances consist entirely of 

carbon atoms, but differ greatly in their structure and physical properties. In 

diamond, each carbon atom is bound to four other carbon atoms in a tetrahedronal 

arrangement. This structure makes diamond extremely hard, where as graphite ha 

a layer structure which makes it soft and conducting. 

1.2) Bucky balls — a new sphere of science: 

Fullerenes are a new class of molecules and may be thought to constitute a 

new allotrope of carbon. They have the structure of hollow carbon cages. Because 

of its discrete molecular nature, it is a pure form of carbon. The number of carbon 

atoms in each fullerene cage can vary and for this reason numerous new structures 

can be visualised. Generally, they are represented by the formula C„, where n 

denotes the number of carbon atoms present in the cage. Co is the most abundant 

and well characterized member of the fullerene family and is currently 

dominating fullerene research. It has a closed cage like structure which is based 

on the family of platonic solids. The 1996 Chemistry Nobel Prize was awarded 

jointly to Robert F Curl Jr and Richard E Smalley of USA and Harold W Kroto of 

UK for the discovery of fullerenes. This remarkable discovery has opened up 

exciting new avenues in multidisciplinary research involving chemistry, physics, 

materials science and even biology. 

1.3) Geometrical aspects of Fullerenes 

1.3.1 Platonic Solids: 

Regular solids (regular polyhedra, or Platonic solids after their description 

by Plato) are solid geometric figures, with identical regular polygons as their 

faces, and with the same number of faces meeting at every corner (vertex). 

The equilateral triangle is the simplest regular polygon. Three equilateral 

triangles meet at a vertex (total angle of 180°) of the tetrahedron (4 faces, 4 
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vertices). With four equilateral triangles meeting at each vertex (total angle of 

240°) we get an octahedron (8 faces, 6 vertices). When we try five equilateral 

triangles at each vertex (300°) we end up with an icosahedron (20 faces, 12 
vertices). A sixth equilateral triangle meeting at a vertex will tile the plane (360°). 

(a) Tetrahedron 	 (b) Octahedron 

(c) Icosahedron 	 (d) Cube 

(e) Dodecahedron. 

Fig 1: The Platonic Solids 

The next simplest regular polygon is the regular pentagon. Three 

pentagons meeting at vertex produce a dodecahedron (12 faces, 20 vertices). 
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Three regular hexagons meeting at each vertex will tile the plane. And there is no 

room, at a vertex, for more complicated polygons. Hence the set of regular solids 

is limited to these five forms. 

The relation between number of faces, vertices and edges is given by 

Euler's formula, which is given by: 

V+F-E=2 

Table 1: Faces, Vertices and Edges of Regular solids 

S.No Solid Faces Vertices Edges 

1 Tetrahedron 4 4 6 

2 Octahedron 8 6 12 

3 Cube 6 8 12 

4 Icosahedron 20 12 30 

5 Dodecahedron 12 20 30 

From the table it is clear that no of faces in octahedron is equal to no of 

vertices in cube and vice versa. This property is termed as "duality". So, 

Octahedron and Cube are dual to each other. Similarly icosahedron and 

dodecahedron are dual to each other. Tetrahedron is dual to itself. Polyhedra dual 

to one another have the same symmetry elements and belong to the same point 

group. Thus the cube and octahedron have octahedral symmetry (Oh), where as 

the icosahedron and dodecahedron have icosahedral symmetry (Ih). 

1.3.2 Archimedean Solids: 

In geometry an Archimedean solid is a highly symmetric, semi-regular 

convex polyhedron composed of two or more types of regular polygons meeting 

in identical vertices. They are distinct from the Platonic solids, which are 

composed of only one type of polygon meeting in identical vertices, and from the 

Johnson solids, whose regular polygonal faces do not meet in identical vertices. 

3 



The symmetry of the Archimedean solids excludes the members of the dihedral 

group, the prisms and antiprisms. C60 fullerene is a truncated icosahedron. (Fig 2) • 
Fig 2: Truncated icosahedron 

1.r4) 	Fullerene Structures: 

The requirement for certain numbers of polygons mk of k sides to form a 

closed structure is given by 

E (6 —k)mk  -= 12 
k 

This constraint, when applied to rings having only 5 or 6 members, gives 

12 = m + 0 m 5 	 6 

This relation can be used to define the family of fullerene structures.[1] It implies 

that any such closed structure must have 12 five sided elements, but any number 

(0, 1, 2...) of hexagons are possible. As a result, a fullerene having the chemical 

formula Cn  must have 12 pentagonal faces and (n-20)/2 hexagons. Hence the 

lowest number of the fullerene family must have twelve pentagonal faces (C20) 

alone. Similarly C60 must have 12 pentagonal and 20 hexagonal faces. 

1.5) Discovery of the fullerene C60: 

The discovery of fullerene came about during an investigation into a 

problem of interest to astronomers. Kroto was interested in radio astronomy. In 

order to determine whether carbon containing molecules present in interstellar 

clouds were responsible for some of the signals, he began making and 

characterizing new carbon species in the laboratory, using microwave 

spectroscopy as his main tool. Interstellar clouds cyanopolynes were discovered 

by Kroto and coworkers through a synergistic combination of laboratory 
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microwave spectroscopy experiments, theoretical analysis and observational radio 
astronomy. Curl, a fellow spectroscopist on the other side of the Atlantic, 

suggested that collaboration with Smalley would be beneficial. Smalley was 
interested in cluster chemistry. He had designed and built a special laser-

supersonic cluster beam apparatus which could vaporize almost any known 

material into plasma of atoms and lead to precise information about the pattern 

and distribution of the clusters. In an action packed fortnight in September 1985, 

Curl, Kroto and Smalley along with graduate students JR Heath and SC O'Brein 

began to carry out some experiments on laser vaporization of carbon. 

Generally vaporized carbon is obtained by directing an intense beam of 
laser onto graphite or any other carbon surface. The carbon atoms produced in this 
way in an inert atmosphere combine to form a series of clusters where the size 

varies from a few atoms to many more hundreds. These experiments were aimed 

at synthesizing long chain carbon molecules, since the conditions might reproduce 

those existing in red giant stars, which give off large amounts of carbon. This 

would then provide good evidence to show how such molecules originate in the 

interstellar medium. 

During the course of the experiments which probed the behavior of the 

pure carbon clusters, a striking observation was made. Under some clustering 

conditions the peak corresponding to 720 mass units appeared extremely strong. 

The intensity of this peak relative to adjacent peaks varied dramatically under 

different clustering conditions. Under a particular condition, the mass spectrum 

was totally dominated by the 720 peak, corresponding to sixty carbon atoms. 
The next difficult task was to assign a structure for the 720 mass peak 

which could explain its unique stability, Kroto, Smalley and Curl came up with a 

brilliant resolution to the problem. Using handmade models, they found that the 

planar graphite sheet structure curls up on the introduction of a few pentagons. 

For a 60 atom cluster with 12 pentagons, the structure closes in on itself, forming 
a beautiful cage (Fig 3). 
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The geometry is that of a soccer ball 
with a carbon atom at each vertex. 

©1998 Encyclopaedia Brit annica, Inc. 

 

    

Fig 3: Structure of C60 (Courtesy: Brittanica Encyclopedia) 

The shape is identical to that of a soccer ball. But the inspiration for the 

remarkable proposal of C60 having a spheroidal cage structure came from the 

geodesic domes designed by the renowned architect R.Buckminster Fuller. The 

whole family of hollow cage carbon clusters is now called fullerenes. The most 

important member of this family, apart from C60 is C70. It is usually a major 

contaminant in the production of C60. 

1 J6) Structures and Physical Properties of Some Higher Fullerenes 

The fullerene C60 has 20 hexagonal and 12 pentagonal rings as the basis of 

a closed cage structure icosahedral symmetry. Each carbon atom is bonded to 

three others and is sp2  hybridised. The C60 molecule has two distinct bond lengths 

- the 6:6 ring bonds can be considered "double bonds" and are shorter than the 6:5 

bonds.C60 is not "superaromatic" as it tends to avoid double bonds in the 

pentagonal rings, resulting in poor electron delocalisation. As a result, C60 

behaves like an electron deficient alkene, and reacts readily with electron rich 
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species. The geodesic and electronic bonding factors in the structure account for 

the stability of the molecule. In theory, an infinite number of fullerenes can exist, 

their structure based on pentagonal and hexagonal rings. 

1.7) Production of Fullerenes 

The first method of production of fullerenes used laser vaporization of 

carbon in an inert atmosphere, but this produced microscopic amounts of 

fullerenes. In 1990, a new type of apparatus using an arc to vaporize graphite was 

developed in Germany by ICratscluner and Huffmann. 

Fig 4: Kratcshmer-Huffmann apparatus as used at Widener University 

In their method the system is pumped down and Helium gas is introduced 

into the chamber and this process is repeated. Finally the bell-jar is filled with 

about 100 Torr of Helium. The welding kit power supply is connected and the on / 

off switch on the supply is turned to the on position for 10 to 15 seconds. 

Afterwards there should be plenty of black soot like material produced inside the 

bell-jar. After a 5-10 min cool down period the bell-jar is filled to atmospheric 

pressure taken off and the glass surfaces scraped clean. Nearly 10 % of the soot is 

usually made up of Co. The fullerenes in the soot are then extracted by solvation 

in a small amount of toluene. 
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After extraction, the solvent (toluene) is evaporated off, leaving behind a 

solid mixture of mostly C60 with small amounts of larger fullerenes. Pure C60 is 

obtained by liquid chromatography. The mixture is dissolved in toluene and 

pumped through a column of activated charcoal mixed with silica gel. The 

magenta C60 comes off first, followed by the red C70. The differently coloured 

solutions are collected separately and the toluene removed using the rotary 

evaporator. 

1.8) Lower Fullerenes: 

The experimental and theoretical study of carbon clusters has a long 

history, much of this history, as well as the more recent developments have been 

revolved around the Co species. Extensive work has been done related to Co and 

other higher fullerenes. However, clusters in the intermediate range n=20-50 have 

been studied in considerably less detail in the literature and have not been 

subjected to comparable levels of experimental and theoretical examination. This 

is due to their low relative stability. Among fullerene cages, C60 has the 

icosahedral cage structure with each pentagon surrounded by five hexagons and is 

highly stable. In contrast, C20 fullerene cage consists of solely 12 pentagonal rings 

that form a dodecahedron with no hexagons incorporated, resulting in extreme 

curvature. Another carbon cluster which is important in understanding the relative 

stabilities of different fundamental structural units is C24. Two cage structures 

have been proposed, one of them containing four membered rings too and the 

other having six membered rings and few calculations are in existence. 

1.9) C20: 

Over the past decade, considerable attention has been paid in searching for 

the ground-state C20 isomer from either theoretical calculations or experimental 

measurements. These studies can be traced back to the discovery of the fullerene 

structure C60 and thereafter, of their novel properties such as high temperature 

superconductivity. [21 
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C20 cage is the smallest and the most strained fullerene structure. 
Investigations into this and other small fullerenes were critically evaluated in the 

paper by Chen et al. [3]. 

1.9.1) Isomers of C20: 

It is fairly well established [4] that among numerous stable isomers of the 

carbon cluster C20 — which include chains, rings, bowls, plates, cages and 
combinations of these — the lowest in energy are the ring, bowl and cage, illustrated in 

Fig 5. 

it; 

Fig 5: Isomers of C20 

For these three, however, the available theoretical methods give a variety 

of differing predictions for the relative energies. For over a decade that the issue 
of relative stability if C20 isomers remains controversial. 

C20 fullerene cage consists of solely 12 pentagonal rings that form a 
dodecahedron with no hexagons incorporated. The bowl isomer is an open 

structure that has one central graphitic pentagon surrounded by five hexagonal 

rings. These three geometrically different C20 isomers are close in energy and 

could be potentially used as building blocks to the C60 fullerene formation. 

1.9.2) Experimental evidence for the existence isomers of C20: 
As discussed earlier, the smallest possible fullerene is C20, which consists 

solely of pentagons. But the extreme curvature and reactivity of this structure 

have led to doubts about its existence and stability. The question has been asked 
in the literature to "whether the cage C20 exists only in computers" [5]. Although 
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theoretical calculations have identified, besides this cage, a bowl and a 

monocyclic ring isomer as low-energy members of the C20 carbon cluster family, 

only ring isomers of C20 have been observed experimentally till a few years ago. 

In the work of Prinzbach et al [6] the cage structured fullerene is produced 

from its perhydrogenated form (dodecahedrane C20H20) by replacing the hydrogen 

atoms with relatively weakly bound bromine atoms, followed by gas phase 

debromination. For comparison the bowl isomer of C20 using the same procedure. 

Then the generated clusters are characterized using mass-selective anion 

photoelectron spectroscopy. 

1.10) C24: 
C24 is the first cluster which contains a stable planar graphite like 

fragment. It is thus clearly important in comparing fullerene like cluster growth 

with that of graphite-like growth. However, neither fullerene-like nor graphite-

like isomers were observed for C24 experimentally. Studies by von Heiden et al 

[5] have shown clearly that the dominant isomer of C24 is a monocyclic ring. The 

various predicted isomers of C24  are depicted below in Fig 6. 

Fig 6: Overview of different structures of C24 
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1.11) Potential uses of fullerenes: 
Since the discovery of fullerenes in 1985, scientists have discussed a 

myriad of possible uses for these unusual molecules. Just some of these 
possibilities are described here. 

Chemical sponges 

Medical researchers believe that fullerenes could be put to work as tiny 
chemical sponges, mopping up dangerous chemicals from injured brain tissue. 

Excess production of free radicals (eg, peroxide) in the brain following a head 

injury or a stroke destroys nerve cells. Buckyballs, made soluble in water, appear 
able to 'swallow' and hold free radicals, thereby reducing the damage to tissue. 

Nanotubes in microscopes 

Smalley and colleagues have used nanotubes as chemical probes in a 

scanning-force microscope. The microscope relies on a tiny tip that detects and 

skims the surface of target molecules. The tube springs back into its original 

shape when bent. 

Buckyballs in miniature circuits 

A supercomputer the size of a paperback is the ambition of European 

researchers who have managed to attach a single buckyball to a sheet of copper. 

The scientists compressed the buckyball by 15 per cent, improving electrical 

conductivity by more than 100 times compared to the undisturbed molecule. A 

tiny electronic component like this could make miniature circuits feasible. 

Lubricants, catalysts and superconductors 

Other exciting potential uses of fullerenes include buckyballs behaving as 

'molecular ball bearings' allowing surfaces to glide over one another. Fullerenes 

with metal atoms attached to them might function as catalysts, increasing the rate 

11 



of important chemical reactions. Scientists know that buckyball compounds with 
added potassium act as superconductors at very low temperatures. 

Molecular sieves 

Because of the way they stack, buckyballs could act as molecular sieves, 
trapping particles of particular sizes while leaving others unaffected. Scientists 

talk of designing sieve-like membranes from buckyballs that allow biological 
materials to pass through, but not larger particles such as viruses. This would be 

useful for handling transplant organs, for example. 

Buckycopiers 

In the United States, Xerox owns patents for using buckyballs to improve 

resolution of photocopies. They are 1000 times smaller than the particles used in 

conventional photocopier toner. 

REVIEW OF LITERATURE ON THEORETICAL STUDIES: 
The earliest calculations on the relative stability of C20 isomers were made using 

semi-empirical methods. Newton and Stanton [7] performed calculations at MNDO level. 
Slanina and Adamowicz [8] used the AM1 method and concluded that the ring structure 
was the stablest. However the approximations inherent in these models make the validity 
of their conclusions questionable. Several calculations at the ab-initio level have also 

been made and we discuss these in the following. 

Parasuk and Almlof [9] have studied the structure of 20-atom carbon clusters 

using correlated ab-initio calculations with large contracted basis sets. They showed that 

a regular dodecahedral structure (1h point group) would have partially filled degenerate 

orbitals, giving rise to the electronic states lAg, 3Tig, 3T2g, IGg  and 1Hg, of which the 

triplet states would be stablest in accordance with Hund's rule. As these states are 

spatially degenerate a Jahn-Teller distortion of the molecular geometry leading to the C20 

cage having lower symmetry than Ih was predicted. They obtained a D5d structure at SCF 
level from which no further lowering of symmetry by Jahn-Teller effect was anticipated 
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by them. At this geometry they performed MP2 calculations to include correlation 
effects. Calculations on the ring structure were also performed. On the basis of SCF 

calculations, they predicted a monocyclic, polyacetylene structure to be the most stable 
form. In contrast, a fullerene type cage structure was shown to be the ground state 
conformer at the correlated level. 

Feyereisen et al [1] examined the relative stabilities of closed fullerene, 
cummulene and polyacetylene carbon structures, as well as cohesive energies for clusters 

of size n=18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 50 and 60 using ab- intio self-consistent-

field and second order Moller-Plesset perturbation theory and analytical derivative 

geometry optimization methods. They concluded that fullerene structures are stablest for 

1.02, but hypothesized that with larger basis sets, clusters with n<32 may also favour the 

fullerene structure. 
Raghavachari et al [10] used density functional techniques including gradient 

corrections to investigate the energies of the ring, bowl and cage isomers of C20 using 6- 

31G*  basis set. They showed that the local density approximation yielded the cage as the 

most stable isomer with the bowl and ring forms being significantly higher in energy. 

They found that in contrast to the work of Parasuk and Almolf [9], where a D5d structure 

of cage was found, distortion along a 3-fold axis leading th a Dad structure was 

energetically better. These authors also preferred vibrational frequency calculations on 

these structures and observed one imaginary frequency. Hence they lowered the 

symmetry further and obtained a C2 structure for the cage which is a true local minimum 

at the Hartree-Fock level with 6-31G*  basis set. They also found that the Dion ring has 

three imaginary frequencies where as the C5v bowl structure is a local minimum. 

However the inclusion of gradient corrections completely reversed the energy ordering of 

the isomers. The gradient correction altered the relative energy between ring and cage 

isomers by more than 7 eV and yielded the ring as the most stable form. 

In a later paper, Raghavachari and co-workers [11] used density functional 

techniques to investigate the relative energies of seven different isomers of C24. The 

seven isomers predicted are a monocyclic ring, a bicyclic ring, a graphite like isomer, two 

bowl like isomers having different symmetries and two different cage isomers having 

different symmetries. The traditional local density approximation yields the fullerene like 
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isomer to the most stable. The gradient corrected B-LYP method yielded the monocyclic 

ring and graphite like isomer to be almost isoenergetic (most stable) while the bicyclic 

ring, fullerene like and bowl like isomers are progressively higher in energy. 

Contrary to the experimental evidence suggesting that the monocyclic ring is the 

most stable 20-atom carbon species, Taylor et al [12], predicted that the smallest 

fullerene, dodecahedral C20, has lowest energy using coupled cluster calculations, which 

included higher percentage of correlation energy. They also showed that a related 

corannulene like bowl is nearly degenerate in energy to the fullerene and would be stabler 

at higher temperatures. However, they have not performed vibration frequency 

calculations to verify if their structures are true minima. 

Jensen and Koch [13] have calculated the energy difference between the ring and 

fullerene forms of C24 by means of ab-initio methods and compared to density functional 

methods. Their calculations strongly suggest that the fullerene form is favored by -'80 

kcal/mol over a monocyclic ring structure, which is at variance with experimental 

findings. The monocyclic ring had an ideal symmetry of D24h, however at the HF level 

an acetylenic structure with D12h symmetry was lower in energy. The fullerene has ideal 

D6d symmetry, but a Jahn-Teller distortion reduced the symmetry to D6. 

Martin et al [14] have studied several structures of C24 using different density 

functional methods. Their best calculations indicated that a dodecadehydrocoronene 

planar sheet and a fullerene cage are comparable in energy, followed by a poly acetylenic 

ring and a bowl structure. At high temperatures they predicted ting structure to prevail 

due to vibrational entropy from many low-lying vibrations. The ring structure was found 

to have C12h symmetry, rather than D12h symmetry. The bowl like sheet is found to be flat 

and to be a local minimum in D6h symmetry. There were two cage isomers predicted. One 

had D6 symmetry and the other had Oh symmetry. 

Sokolova et al [4] determined the energetics of the ring, bowl and cage isomers of 

C20 in all electron fixed-node quantum Monte Carlo calculations. In good agreement with 

results from Moller Plesset calculations, they predicted bowl isomer to be the lowest 

energy isomer. The energies of cage and ring, relative to the bowl, are 1.1±0.5 and 

2.1±0.5 eV, respectively. These authors have also made a detailed comparison of earlier 

results on the stability of these isomers. 
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Chen et al [3] have investigated the smaller fullerenes C20, C24, C32, C36, C40 and 

C50 and their hydrogenation products systematically at the B3LYP/6-31G* density 

functional level of theory. They have also showed that owing to Jahn-Teller distortion, 

the singlet ground state of C20 has C2 symmetry instead of Ih symmetry and complete 

hydrogenation of C20 leads to dodecahedron (C20H20) which represents a normal saturated 

hydrocarbon with C-C bond length of 1.557A. The structure of C24 was considered as a 

trannulene capped with two benzene rings at both sides. Apart from the unique C-C bond 

length of six- membered rings, the central trannulene ring has localized C-C bond lengths 

of 1.365 and 1.463 A, while the C-C bond lengths between six membered rings and the 

trannulene ring is 1.531 A. With partially hydrogenated C24H12,  the compensation effect 

was assessed by the difference between hydrogenation of the trannulene subunit and the 

two six membered rings. 

An et al [2] have carried out high-level ab-initio and density functional 

calculations to examine relative stability of bowl, cage and ring isomers of C20 and C20-> 
The total electronic energies of the three isomers showed different orderings, strongly 

depending on the hybrid functionals selected. Both CCSD (T) and MP4 calculations 

indicated that the bowl isomer is most likely the global minimum of neutral C20 isomers, 

followed by the fullerene cage and ring. 

In the present work we investigate the stability of various structures of C20 at 

Hartree-Fock and Moller Plesset levels as well as by the DFT methods using B3LYP 

functionals using several basis sets. Hydrogenation of C20 is also investigated. A 

beginning is made to the study of C24 cage structure also. All our calculations are made 

using the GAUSSIAN 98W [15] suite of programs. 
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Chapter-2 

METHODS OF THEORETICAL 

CALCULATIONS 



Methods of theoretical calculations 

2.1 Molecular Orbital Theory: 
The task of predicting molecular structures begins with the separation of 

electronic and nuclear motion using the Born-Oppenheimer approximation 
In a molecular system if we assume nucleus and electrons to be point masses and 

neglect spin orbit and other relativistic interactions, then the molecular Hamiltonian is 

H 	 v2 	h  Ev 2 	ZaZ fie '2 EEzae 2 
-FEEf_

2 
....(2.1.1) 

where, a, 13 refers to nuclei and i, j refers to electron . 

We have to solve the equation 

Hy = Etv 	 (2.1.2) 

Or 	 Hw(qhq„) = Exif(gj,qa) 	 (2.1.3) 

Where, qi and qc, symbolize the electronic and nuclear coordinates respectively. 

Since nuclei are much heavier than electrons, the electrons move much faster than the 

nuclei and to a good approximations as far as the electrons are concerned we can assume 
nuclei as a fixed. While the electrons carry out their motion or in other words the change 
in nuclear configuration is negligible. Thus considering the nuclei as fixed we omit the 
nuclear kinetic energy terms. This is the Born-Oppenheimer approximations. It is the 
approximation of separating electronic and nuclear motions. Within the Born-
Oppenheimer approximation the true molecular wave function is adequately 
approximated as 

= 	 (2.1.4) 

So the purely electronic Hamiltonion Hey is: 

H . et —h 2  v  EE  Za e2 _FEE e '2 

2me 	a 	r,a  

The electronic wave function satisfies 

Hei/ f  e (1,2,3....N) = Eeive  (1,2,3 	N) 	 (2.1.6) 

The electronic energy Eel in the above equation depends parametrically on the 
nuclear coordinates and becomes potential energy term for the nuclear motions: 

(TN+Eei(R)) = E 

2 a  Ma 	2Me  i 	a ,g>a Y cr i r  ia 

(2.1.5) 
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Where, TN represents the nuclear kinetic energy operator. 

As electrons are fermions, the N-electron wave function Tel  (1, 2, ... n) 

needs to satisfy the antisymmetry requirement i.e., it has to change sign when the 

coordinates of a pair of electrons is interchanged. 

Tel (1, 2, ... n)= 	(2, 	 (2.1.7) , 1, 	n) 	 

The simplest function built of one electron functions or orbitals (including 

spin) ilk is of the form 

I-11(n) P2(n) 113(n) 	 ,u„ (n) 

Where, 
1

the factor accounts for normalization. Such a function is called 
11/7! 

Slater determinant. In general the molecular electronic wave function can be expressed as 

a linear combination of Slater determinants. The simplest theoretically acceptable 

electronic wave function consists of a simple Slater determinant. The orbitals 14 used in 

its construction are chosen to minimize the expectation value of energy using the Hartree-

Fock method. In practice they are expressed as a linear combination of basis functions 

and the coefficients involved are determined so as to satisfy the normalization and 

orthogonality conditions among the orbitals. 

(1)1 pij (0> = 6ii 	 (2.1.9) 

Where the Kronecker delta function defined as 

fl if i = j 
8' 10 if i # j 

2.2 Hartree-Fock Method 
The molecular Hartree-Fock wave function is written as an anti symmetrized 

product spin orbitals i.e. products of a spatial function 9; and a spin function. 

P, (1) P2 (1) /13  (1) 	 P n (1) 
pi (2) 112 (2) /13  (2) .... 	 (2) 

...(2.1.8) D= 1 
n! 
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The expression for Hartree-Fock molecular electronic energy EHF is given by the 
variation theorem as 

E  fiF =< 	ei VAIN ID > 	  (2.2.1 ) 

Where D is the Slater determinant Hartree-Fock wave function and H d  and VNN 

are given by 
A 	h 2 	 '2 	'2 

He/ 	Ey,  EE zae 	±IE—er 	 (2.2.2) 2me  , 	i  r ice  

V = E E Z aZ2 I3d 
VNN 

 
	 (2.2.3) 

a I3>a 	r 

Since VNN does not involve electronic coordinates and D is normalized, we have 

<D V NN 1D >= V „ < DID >= VNN 	 (2.2.4) 

The operator He/  is the sum of one electron operator hi and two electron operator 
A 

g y  Using atomic units (where e=1, h=1, me=1) we may write 
- A 	 A 	 A 

Her = 	 (2.2.5) 

Where 

1  h = — v 2  —E 
2 	r, 

    

(2.2.6) 

    

	 .(2.2.7) 

A 	 A 

The Hamiltonian H, is the same as the Hamiltonian H for an atom except that 

E—E-  Replaces — in hi 
rs a 	 ru 

For closed shell systems where each spatial orbital is doubly occupied, we get 

E=<D H 
n/2 A 

D>=2E<O,Of 
i=1 

n/2 nI2 
Oi(1)>  +EE(2J0 — Ko ) 

j=I 
	(2.2.8) 

   

Therefore, the Hartree-Fock energy of molecule with only closed sub-shells is 
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Where, 

H,7" 
	

0, (1)111,7re  IA >=< (1)- 0, (1) > 	 (2.2.10) 
Za  

ria 

n/2 	 n/2 n/2 f  
E„=2ZH:o" + EE (2.1u  Ko.)+V„ 	 (2.2.9) 

1=1 	 1=1 

 

(1)0, (2) > 

  

.(2.2.11) 

   

      

 

0J (1)0, (2) > 

   

(2.3.12) 

    

      

Where, the one electron operator symbol was changed from hi  to H(c)re .The one 

electron core Hamiltonian H(e)re  omits the interaction of electron i with the other 

electrons. 
The closed sub-shell orthogonal Hartree-Fock MO's satisfy 

F(093,(1)= 6,0,(1) 	 .(2.2.13) 

Where ci is the orbital energy and where the Hartree Fock operator F is 

F(1) = H(1)e  + E[2./ (1)- K (0] 	 (2.2.14) 
j=1 

core 	
1 	 Z 

H (I) = 	12 -E 	 (2.2.15) 
2 	a ria  

Where, coulomb operator .11; and exchange operator Ki are 

J./  (1)40 = 4140j  (12  —
r1

dr2 	 (2.2.16) 
12 

 

K (Ou 	0  - (2M2)dr2 	 (2.2.17) 
r12 

Where, u is an arbitrary function and the integrals are definite integrals over all 
space 
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To obtain the expression for the orbital energies Ei, we multiply (2.2.13) by 0: (1) 

and integrate over all space we obtain 

= (1)F(00:(0dv, 	 (2.2.18) 

n/2  
Ei = H,7" + E / 	— K y ) 	  (2.2.19) 

J=I 
Summation of (3.3.19) over n/2 occupied orbital gives 

n/2 	n/2 	n/2 n12 / 

Z6i  =EHr re  A- EDI/0  — K u ) 	 (2.2.20) 
i=1 	i=1 	 1=1 j=1 

Solving the equation for E H,;'" and substituting results into (2.2.1) we obtain 

The expression for the Hartree-Fock energy is 
n/2 	n12 n/2  

E„ =2E6, — E E ( - K-, ) 
1=1 

V  NN 	(2.2.21) 

Expanding the spatial orbitals in terms of basis functions {us}, we write 

01 =EC  si 	 (2.2.22) 
s=1 

Where, b is the number of basis functions. 
Substituting the expression into the Hartree-Fock equation gives the Rothan 

Hartree-Fock equations 

FC=SCs 	 (2.2.23) 

Where, F = (Frs), is the Fock matrix of molecular expansion coefficients. As F is a 
function of C, the solutionof this is an iterative process, where an initial C is 

approximated suitably. One method is to choose it to satisfy 
Hcore C  = S C E 	 (2.2.24) 

Where, We're  is the core Hamiltonian matrix. The solution of Roothan-Hartree-
Fock equations proceeds iteratively once a starting C is found and is terminated when the 
input C to a cycle is sufficiently close to the output C (the self-consistency criterion) 
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2.3 Basis functions: 

Early calculations used a basis constituting of Slater type orbitals (STO). An STO 
centered on atom a has the form 

n+1 

[2/(20 ] 2  
R„(r , a) = 	 

[(2n)!] 2  
ran-I  e -4.ra  Ylm  (en0a) 	 (2.3..1) 

The real form of the STO is: 

n+1 
[24/a0 :  

Rn  (r , a) — 	] ran-i e-;ra (y/m• yim 21 / 2 
	 (2.3.2) 

[(2n)!] 2  

In calculations on polyatomic molecules we use STO's centered on each of the 
atoms. The presence of more than two atoms causes difficulty in evaluating the needed 

integrals. One must deal with 4 centered, 3 centered, 2 centered and 1 centered integrals. 
For accurate SCF molecular calculation on small to medium size molecules, one might 

use from 20 to 200 basis functions producing 20000 to 2 X 108  electron repulsion 
integrals. Evaluation of three and four centered integrals over STO basis function is very 
time consuming. This problem is alleviated by the use of Gaussian type functions, since 
the product of two Gaussians centered on two centers is expressible as a multiple of a 
Gaussian centered at a point intermediate to them. 

2.3.1 Gaussian type functions (GTF): 
A Cartesian Gaussian centered on atom a is defined as 

g , j,,(XYZa) = NXa y: Z 	 (2.3.4) 

Where N is the normalized atom constant i, j, k are nonnegative integers and a is 
the positive orbital exponent 

When i-I-j-Fk=0 the GTF is called s type Gaussian. 
When itj-Ek=1 the GTF is called p type Gaussian. 
When i+j+k=2 the GTF is called d type Gaussian. 
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In general, linear combination of Cartesian Gaussian can be formed to have the 

form 	 Nral 	(Ym.  ± )7)/2" 	 (2.3.5) 

Even though Gaussians are better suited for integral evaluation, they have poor 
cusp behavior near the nuclei. Thus I s-type Gaussian has zero slope at r=0 whereas the 
STO has a non-zero slope. This makes it necessary to use a larger number of Gaussians in 
a basis set for comparable accuracy. 

2.3.2 Minimal basis set: 
A minimal basis set consists of one STO for each inner shell and valence shell 

AO of each atom. For example, for C2H2 a minimal basis set consist of 1 s, 2s, 2p„, 2py  
and 2p, AO's on each carbon and is STO on each hydrogen (total 12 basis functions). 

2.3.3 Double Zeta basis set: 
Double Zeta basis set is obtained by replacing each STO of a minimal basis set by 

with two STOs that differ in their orbital exponents C(zeta). 

2.3.4 Split Valence basis set: 

Split Valence basis set uses two STOs for each valance AO but only one STO for 
each inner shell AO. This basis set is minimal for the inner shell AOs and Double Zeta 
for the valance AOs. 

2.3.5 Contracted Gaussian functions: 
Instead of using individual Gaussian functions, we may us a smaller basis, with 

each function expressed as linear combination of a small number of Gaussian, according 
to 

Zr = Edur gu (au 	 (2.3.5) 

Where gu  are Cartesian Gaussian centered on same atom and having the same i, j, 

k values as one another, but the different a's. The coefficients dui- are constants that are 

held fixed during the calculation. xr  is called a contracted Gaussian type function and gu 
are called primitive Gaussians. 

To obtain gaussians sets one starts with a minimal basis set of one STO per AO, 
with the STO orbital exponent fixed at a value found to work well in calculations on 
small molecules. Each STO then approximated as a linear combination of N Gaussian 
functions eg. STO-3G. 
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Another way to form contracted Gaussian is to start with atomic GTF SCF 
calculations. The 3-21G and 4-31G and 6-31Gare commonly used CGTFs. 

6-31G*  or 6-31G (d) basis set is a Split Valence set with some polarization 
function added .It uses a linear combinations of six primitives in each inner shell AO and 
adds a single set of 6 d-type Cartesian Gaussian polarization function for each non 
hydrogen atom 

6-31G**  or 6-31G (d,p) set adds to the 6-31G*  set a set of p-type Gaussian 
polarization function on each hydrogen atom. 

D95V basis set [16] is a double zeta quality contracted Gaussian basis. D95V 
basis is a related split valence set. 

	

2.4 	Determination of equilibrium geometry 
The equilibrium geometry of a molecule is that for which the electronic energy 

(including nuclear repulsion energy) has a minimum. Since Ee  (qx) is the potential energy 
for nuclear motions (vibrations and rotations of the molecule), a local minimum is also 
characterized by positive force constants in all vibrational modes. Other stationary points 
on the potential energy surface may correspond to saddle points, which correspond to 
minima along several vibrational modes with a maxima along one (or few) vibrational 
modes. These correspond to transition structures. 

The stationary points on the potential energy surface correspond to zeros of the 
gradient of the potential energy. These are located using suitable optimization methods. 
The default optimization method used in the Gaussian 98 system is due to Schlegel [17]. 
Once a stationary point is found, calculation of vibrational frequencies enables one to 
characterize the stationary point as a true minima or a transition structure. 

	

2.5 	Moller Plesset Perturbation theory 
The Hartree-Fock method does not include correlation between the motions of 

electrons of dissimilar spins and hence the Hartree-Fock enrgy is higher than true non-
relativistic energy. The difference is called correlation energy. One of the methods 
available to include correlation energy is to use perturbation theory. In Many body 
perturbation theory (MBPT) as formulated by Moller and Plesset, [18] the unperturbed 

23 



Hamiltonian H. is written as the sum of the Fock operators and the difference between 
the true Hamiltonian and H. is treated as the perturbation H 

Ho 	EF, 	 (2.5.1) 

H' = - E Evi( i)-K;(0 	(2.5.2) 
i 

The unperturbed energy in this case corresponds to the sum of occupied orbital 
energies and the first order perturbation correction gives the Hartree-Fock energy. The 
second order corrections are commonly used and inclusion of these gives MP2 energy. 
Higher order calculations are feasible only for very small systems. 

2.6 	Density functional theory 
Density functional methods owe their origin to a result by Hohenberg and Kohn 

[19] which states that the ground state energy of a many electron system is a functional of 
the one-electron density p(r). In practice, the exact form of functional is not known and 
approximate functionals for exchange and correlation energies are in use. For molecular 
systems the densities are obtained from one-electron functions x (r) 

ne, 

P(r) = EX: (r)Z,(r) 	 (2.6.1) 

Which are determined from a solution of Kohn-Sham equation [20]. 

The currently most popular DFT scheme uses the B3LP functional which 
incorporates Becke's [21] three parameter exchange functional with Lee-Yang and Parr's 

[22] correlation functional. 
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Chapter-3 

RESULTS 

AND 

DISCUSSION 



Results and Discussion 

The structures of isomers of C20 were optimized at RHF, MP2 and B3LYP levels 

using D95V(d,) and cc-pVDZ basis sets. The former basis set is a split valence type basis 
set including polarization functions due to Dunning [16] that has been found in our 
laboratory [23] to yield better energies than the more popular 6-31G(d,p) basis sets at 
comparable costs in terms of computational time. Since no hydrogen atoms are present in 
the molecules being studied, the basis set is equivalent to D95V (d), but since in the study 
of hydrogenated systems D95V(d,p) basis is used for uniformity; the same designation is 
applied throughout. The cc-pVDZ basis set [24] is a correlation consistent polarized 
double zeta basis set due to Dunning. A ring structure of DIN symmetry, a bowl structure 
of Cs, symmetry and cage structures of D5d and D3d symmetries were obtained at each of 
these levels. The energies are presented in Table 2. At Hartree-Fock and B3LYP levels 

the vibrational frequencies were also calculated and the number of imaginary frequencies 
obtained is given in parenthesis following the energy values. At MP2 level the frequency 
calculations could not be performed since the very large memory requirements in this 
case could not be met by our computing system. 

It is seen that the bowl structure has no imaginary frequencies at all levels and 

therefore corresponds to a true minimum. The D5d and D3d cages and the Di0d ring 

structures all have imaginary frequencies and so do not correspond to stable structures. 
At a late stage in this study we were able to obtain cage structures of Ih and C2 

symmetries also. The 1h cage structure has a triplet electronic state, but did not converge 
fully. A distorted dodecahedral cage of C2 symmetry was also found and had no 

imaginary frequencies, which therefore corresponds to a stable structure. 
A comparison of the energies of the different structures of C20 (relative to the 

stablest, form taken as zero) is presented in Table 3. All the compared results are for the 
D95V(d,p) basis and are expressed in kcal/mole. It is seen that partial inclusion of 
correlation energy at the MP2 level has stabilized all the cage structures relative to the 

bowl, so that the D3d cage now becomes the 'stablest' form. Since frequency calculations 
at the MP2 level are not available, no comment can be made about whether this structure 
represents a true local minimum at present. The C2 cage energy reported is based on a 
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single point MP2 calculation at RHF geometry and is also not very high. The possibility 
that on full MP2 optimization this form may turn out to be the stablest cannot be ruled. 

Table 3: Relative stabilities of different structures of C20 with D95V(d,p) 
basis set.(Energies are in kcal/mole) 

Method Ring Bowl D5d Dad C2 

RI-IF 41.953 0.0 76.015 329.99 50.251 

MP2 190.173 3.818 4.838 0.0 27.453* 

B3LYP 148.088 0.0 16.865 19.335 - 

*MP2 energy at RI-IF geometry 

The numbering of atoms with C2 structure is given in Fig 7 and the distance 

obtained by us with D95V(d) basis are compared in Table 4 with the earlier reports of 
Raghavachari et al [10] at RHF/6-31G(d) level. We see that the differences are only of 
the order of 0.001 A in bond lengths. Fig 8 gives the numbering of atoms for the Dad 

structure and Table 5 gives the distinct bond lengths obtained at the RHF/D95V(d) level. 
Table 6 and Fig 9 give the corresponding data for the D5d structure. In the Ih (triplet) 

structure all the C-C bond lengths were 1.443 A and the C-C-C bond angles were 108°  as 

expected. 
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Table 4: Bond lengths (A) of C2 optimized cage structure 

Parameter a)  RHF/D95V(d,p) RHF/6-31G* 

(Reported [101) 

C6-C12 1.503 1.504 

C12-C11 1.438 1.437 

C12-C18 1.454 1.451 

C2-C6 1.388 1.385 

C6-C8 1.440 1.437 

C11-C17 1.483 1.481 

C11-05 1.410 1.406 

C18-C14 1.425 1.423 

C18-C20 1.462 1.460 

C17-C20 1.371 1.367 

C17-C13 1.471 1.469 

C8-C14 1.416 1.413 

C2-05 1.500 1.444 

CI-C2 1.481 1.479 

C19-C20 1.498 1.497 

C8-C4 1.457 1.455 

a) For the numbering system see Fig 7 

Fig 7: The cage isomer of C20 (C2 symmetry) 
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Table 5: Bond lengths (A) of D3d optimized cage structure 

Parameter b)  RHF/D95V(d,p) 

Cio-C9 1.474 

C9-C6 1.446 

C1_C6 1.419 

C1C11 1.485 
b) For the numbering system see Fig 8 

Fig 8: The cage isomer of C20 (D3d symmetry) 
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Table 6: Bond lengths (A) of D5d optimized cage structure 

Parameter C)  RHF/cc-pVDZ 

C1-C2 1.418 

C1-C6 1.466 

c) For the numbering system see Fig 9 

Fig 9: The cage isomer of C20 (Dm symmetry) 

The distance values at other levels and basis sets are slightly different from those 

presented in tables 4 to 6. 
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Hydrogenation of C20 
The energetics of addition of hydrogen to cage (C2) and bowl structures of C20 

was studied at the Hartree-Fock level. In the bowl structure, addition across the shortest 
C-C bond is expected to be the most favourable. Therefore, the peripheral C-C bond was 
chosen for the addition of H2. The resultant structure of C201-12 was optimized and is 
shown in Fig 10. The peripheral C-C bond lengthens from the value of 1.22 A to 1.378 A 
in the process, as is to be expected. 

Fig 10: Hydrogenated C20 bowl structure 

The newly formed C-H bond has a length of 1.075 A which is in the typical range 

of values for C-H bonds, in the case of the cage structure the stable (in the sense of being 

a true local energy minimum) C2 structure was chosen and hydrogen molecule was added 

across the C-C bond perpendicular to the C2 axis. The resulting structure of C20H2 is 
shown in Fig 11. In this case after addition the C-C bond lengthens from 1.481 A to 
1.582 A and the C-H bond formed have a length of 1.079 A, again within the normal 
range. Other distances also change marginally. 
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Fig 11: Hydrogenated C20 cage (C2 symmetry) structure 

The energy of the various species involved and the energy changes on hydrogen 
are presented in Table 7. as expected the addition of H2 is exoergic and the AE value is 
numerically higher for the bowl, consistent with the greater change in bond length. 

Table 7: Hydrogenation of C20 at RHF/D95V(d,p) level 
(Number of imaginary frequencies within parenthesis) 

Isomer H2 C20 C20H2 AE 
(Hartree) 

AE 
(kcal/mole) 

Cage -1.1312414 -756.6579235 -757.950263 -0.1610981 -101.025 
(C2) (0) (0) 
Bowl -1.1312414 -756.7380563 -758.0540322 -0.1847345 -115.847 

(C5) (0) (0) 

Complete hydrogenation of the cage to form perhydrofullerene (C20H20) was also 
studied. The resulting structure of C20 H2O  had icosahedral (1h) symmetry, shown in Fig 
12, with C-C bond distance of 1.548 A and the C-H bond distance of 1.085 A. The C-C 
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distance is comparable to the C-C bond length in ethane and is higher than all the C-C 
bond distances found in the case of C20 symmetry as given in Table 4. 
Isomer 	 Cage 
Energy of 10H2 	 -11.3124140 Hartrees 
Energy of C20 	 -756.6579235 Hartrees 
Energy of C20H2o 	-769.1824165 Hartrees 
AE (Hartree) 	 -1.212079 
AE (kcal/mole) 	 -760.095 

Fig 12: Perhydrofullerene structure 

The above results refer to pure electronic energies at the optimum geometries only 
and therefore correspond to 0 K results. To include thermal effects contributions from 
zero point energy, vibrational, rotational and translational motions at 298 K were 
calculated on the idealized rigid rotor-harmonic oscillator approximation using statistical 
mechanical methods. The energy (electronic + thermal) enthalpy and free energy values 
so obtained for the various species and the changes in these for hydrogenation process are 
presented in the Table 8. The numerical values are consistently higher for bowl structure. 

33 



Table 8: Energy, Enthalpy and free energy changes 
at 298 K AT RHF/D95V(d,p level) 

Species Energy (Hartree) Enthalpy (Hartree) Free Energy 
(Hartree) 

H2 -1.118276 -1.117331 -1.132098 

C20 (cage) -756.527516 -756.526572 -756.568259 
C20 (bowl) -756.611183 -756.610238 -756.657073 

C20H2 (cage) -757.792863 -757.791919 -757.832834 

C20H2 (bowl) -757.900777 -757.899833 -757.948091 

AE/ AH/ AG 
(cage) (kcal/mole) 

-92.33 -92.82 -83.08 

AE/ AH/ AG 
(bowl)(kcal/mole) 

-107.43 -108.27 
. 

-99.66 

With a view to determining the activation energies, the transition structures of 
C20H2 were also optimized. For the bowl structure the transition structure could be 
determined only at the RHF/3-21G level, the calculation at RHF/D95V(d,p) level failing 
to converge. Hence the energies of reactants were also computed at this level for 
consistency. The transition states obtained had two and seven imaginary frequencies, 
respectively and 	so represent saddle points of higher order than desired. Hence the 
activation energies presented in Table 9 are to be taken as tentative values at present. 
Because of the differing basis sets used, no serious interpretation can be placed on 
relative magnitudes of activation energies reported, viz. 65.142 kcal/mole for the cage 

isomer and 44.189 kcal/mole for the bowl isomer. 

It may be mentioned at this point that to our knowledge present study is the first 
report on the hydrogenation of C20 in the literature. 
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Table 9: Activation Energies of C20 structures 
Isomer H2 C20 Transition 

state (C20112) 

AE 

(Hartree) 

AE 

(kcal/mole) 
Cage 

RHF/D95V(d,p) 

-1.1312414 -756.5580093 -757.5853730 0.1038777 65.142 

Bowl 

RHF/3-21G 

-1.1229598 -752.3829567 -753.4343673 0.0715492 44.189 

Studies on C24 

A beginning was made on the study of C24 cage structures too. In this case the 

fullerene has an ideal D6d symmetry, but a Jahn-Teller distortion is expected to lower the 

symmetry to D6 [13]. In our calculations, the D6d structure had its energy oscillating 

during the optimization process at the RHF/6-310(d) level and the lowest energy reached 

being -907.8968864 Hartree. The D6 structure also did not converge satisfactorily; the 

least energy reached being -907.9573647 Hartree at RHF/D95V(d) level. The structures 

corresponding to these points are shown in Fig 13. 

(a) 
	

(b) 
Fig 13: C24 structures (a) D6d symmetry (b) D6 symmetry 
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Further lowering of symmetry to D3 appears to be warranted. There is also the 

possibility that a layer basis possibly with diffuse functions may be necessary and work 

in these directions is in progress. 

Concluding Remarks: 
In these studies, the C2 structure of C2p was optimized at a late stage and 

therefore we have results on this system only for one basis set and DFT results for 

comparison are not available at present. It is hoped that further work to fill up these 

gaps will be taken up shortly in this laboratory. Activation energy calculations and 

similar studies on hydrogenation of C24 also merit further work. Studies on 

hydrogenation are the first of its kind to the best of our knowledge. It may also be 

remarked that most other work in this area, have used the 6-31G or 6-3P (d) basis sets 

and our results using D95V (d) provide a check on basis set effects in comparison. 
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