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ABSTRACT 

Traditionally, water supplies for drinking or industrial uses have been drawn from 

rivers, streams, and from natural or artificial collections of water. The systems of 

tapping under-ground water have been tube wells (vertical well), infiltration galleries, 

and radial collector wells. Vertical wells are generally suitable in a thick aquifer and it 

can tap water from an aquifer lying at greater depth. An infiltration gallery is a 

horizontal perforated pipe or conduit suitable for tapping water from a shallow 

aquifer. Infiltration galleries are generally laid near a stream or river to intercept 

infiltration water from the river. Infiltration galleries may be laid in different 

alignment, such as parallel or perpendicular to the stream or a river. 

A radial %.,olle‘.,toi well (RC W) c,onsisis of a IfufIIU I of ituriconitd performed 

pipes laid in an aquifer and connected to a vertical cylindrical caisson, plugged at the 

bottom end. These wells are particularly suitable for shallow highly permeable thin 

aquifers in which vertical wells have low yields due to the limited drawdown. RCWs 

have significantly longer well screen, which is exposed to the aquifer, and produce 

large quantities of water under the moderate drawdown conditions. A radial collector 

well with one or two collinear laterals can be treated as a horizontal collector pipe or 

an infiltration gallery. However, in case of multiple laterals in a radial collector well, 

the laterals interfere with each other, and hence it is important to provide non-

perfortaed portion of pipes near the caisson. 

Riverbank filtration (RBF) (Ray, 2002) describes the process of extracting 

groundwater through horizontal collector wells or vertical wells installed along the 

riverbank which induces infiltration from the river. RBF provides passive exposure to 



various processes such as adsorption, physiochemical filtration, and biodegradation. 

It produces water that is relatively consistent in quality and is easier to treat to achieve 

higher levels of finished quality. Radial collector wells are generally installed near 

rivers as a part of riverbank filtration system to increase the potential yield and to 

improve the quality of the withdrawn water. 

Estimation of flow to a radial collector well is a complex problem. Even 

under simplified conditions, estimation of safe yield is complex than in case of a 

vertical well. Since, the water enters through a number of horizontal screened pipes 

(laterals), analytical solutions of flow to the RCW are based on the theory of flow to a 

horizontal pipe. Estimation of flow to a lateral can be based on two fundamental 

assumptions, i.e., (i) the total discharge through a lateral is uniformly distributed 

along its entire length, i.e., the uniform flux boundary condition exist along the lateral, 

and (ii) that the head along the lateral is uniform, i.e., Dirichelt type boundary 

condition exists along the lateral. 

In this study, before going into detail analysis of groundwater flow to 

multiple laterals of a radial collector well, an attempt has been made to ascertain the 

flow characteristics(i.e., laminar or turbulent), and the appropriate boundary condition 

in a horizontal collector pipe (i.e., constant head or constant flux) along the lateral. It 

is found that barring for a small length near the tip (free end) of a horizontal collector 

pipe, the flow condition in the pipe is turbulent. Collector pipe of diameter 0.3m-0.4 is 

generally adopted and for collector pipe with diameter 0.2m and above, the total head 

loss is very marginal. Therefore, for steady state flow condition, either Dirichlet 

boundary condition or uniform flux condition can be applied without introducing 

appreciable error. Dirichelt boundary condition is to be applied for solving Laplace 
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equation for steady state flow condition. For unsteady state flow condition, the 

uniform flux boundary condition can be adopted conveniently. 

The groundwater flow near a radial collector well or a horizontal collector 

pipe (infiltration gallery) is distinctly three-dimensional in nature. However, if the 

objective is to estimate the production rate of a radial collector well installed in a thin 

aquifer, flow field can be considered to be two-dimensional (in x-y horizontal plane) 

only neglecting the resistance to vertical flow. If the well is located near to a surface 

water body, the flow to the well can be treated as steady state flow during later stage 

of long pumping. At late pumping stage, horizontal pseudoradial flow takes place 

towards a horizontal collector pipe (Park and Cao, 2000). This postulate supports the 

assumption of sheet flow condition in a thin aquifer and horizontal collector well 

system and the flow can be estimated by solving well known Laplace equation for 2D 

flow field under steady state conditions and, thereafter, a correction factor can be 

applied on account of resistance to vertical flow. Conformal mapping technique is one 

of the methods available to solve the 2D groundwater flow. 

In the present study, Schwartz Christoffel conformal mapping technique has 

been applied assuming steady state flow condition and implementing a constant head 

distribution along the infiltration galleries and laterals of a radial collector well. 

Before analyzing flow to a radial collector well with multiple laterals, flow to single 

horizontal collector pipe or infiltration gallery near river (meandering or straight 

reach) has been analyzed. 

In case of an infiltration gallery near a meandering river reach or at the centre 

of an island, flow increase and travel time reduces with the increase in the length of 

infiltration gallery. For a given size of island, the length of the infiltration gallery has 
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to be fixed on the basis of permissible minimum travel time. The minimum travel 

time should be greater than the survival life of bacteria in concern. Infiltration gallery 

near a straight reach of a river may be laid in different orientations. In case of a 

gallery perpendicular and aligned towards the river from the caisson, the flow 

increases and travel time decreases sharply with the increase in the length of gallery 

for a given distance from the river. Whereas, in case of a gallery perpendicular and 

towards landside, the flow increases monotonically and minimum travel time reduces 

and becomes constant. 

Most of the studies on radial collector wells have been carried out by 

assuming that the laterals are fully screened. However, in practice, the laterals are 

kept non-perforated (blind) near the caisson as no flow zone is created near the 

caisson due to the interference of laterals. Hence, it is desirable to investigate the 

effect of partially screened laterals on the potential yield of the well and 

corresponding entrance velocity to the laterals. 

The performance assessment of a radial collector well near straight reach of a 

river or near meandering river has been carried out in terms of specific capacity and 

minimum travel time for river water to reach the well screens. Sensitivity analysis has 

been carried out for various parameters such as, laterals arrangement around the 

caisson, their number, radius, length of screened and blind portion, and the distance of 

caisson from the river for the given hydro-geologic conditions. 

The average entrance velocity mainly depends on the length of screen portion of 

laterals. It increases sharply with the increase in blind portion. The minimum travel 

time depends on storage coefficient, drawdown, and distance of screens from the 

river. 
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NOTATIONS 

b 
	

• 	

thickness of aquifer; 

d 	

• 	

diameter of horizontal collector pipe or lateral; 

f 	

• 	

friction factor; 

g 
	

• 	

acceleration due to gravity; 

Ho 	 maximum rise in stream stage during flood; 

• water level in stream; 

h„ 	

• 	

water level in caisson; 

h 	

▪ 	

hr-h, =drawdown in caisson; 

• imaginary number = ± 	; 

K 
	

• 	

hydraulic conductivity; 

La 	

• 	

thickness of aquiclude layer; 

L 	

• 	

length of horizontal collector pipe; 

1 	

• 	

length of lateral; 

• length of laminar flow zone in a collector pipe; 

12 
	

• 	

length of turbulent flow zone in a collector pipe; 

16 	

• 	

length of blind(non-perforated) section of a lateral; 

• length of screened( perforated) part of lateral; 

LI, L2, L3 	

• 	

length of laterals; 

Lib, L2b, L3b 	

• 	

length of non perforated sections of laterals, 1, 2, 3, 

respectively 

n, m 	

• 	

time step, integer; 

n 	

• 	

number of lateral, 
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Q(n) 

rw  = 

S1 = 

S2 = 

T1  = 

T2  = 

t c  = 

td  = 

a = 

volume of water passing through shaft during nth  time 

step; 

distance of caisson /vertical shaft from stream; 

radius of vertical shaft and horizontal lateral; 

storage coefficient of aquifer; 

storage coefficient of upper aquifer; 

storage coefficient of lower aquifer; 

transmissivity of aquifer and thickness; 

transmissivity of upper aquifer; 

transmissivity of lower aquifer; 

time parameter; 

time to the flood peak; 

duration of flood wave; 

real number; 

13 	 = 	hydraulic diffusivity of aquifer-VS ; 

At 	 = 	time step size; 

time step, integer; 

5,(r,„,n —7 +1, At) 	= 	coefficients of discrete kernel for drawdown at shaft 

face due to passing of water from upper aquifer to lower 

aquifer; 

6.2 (r,„n—y+1,At) 	= 	coefficients of discrete kernel for rise in piezometric 

level at shaft face owing to recharge from upper aquifer; 



6, (2R, n — y +1, At) = 

o h (R,n—y +1, At) = 

a = 

coefficients of discrete kernel for water- level rise at 

shaft face due to image recharge well; 

coefficients of discrete kernel for water-level rise at 

shaft face due to stream stage rise; and 

rise in stream stage at t----yAt 

Other notations are locally defined wherever these appear 
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Chanter 1 

INTRODUCTION 

1.1 GENERAL 

Providing safe and adequate drinking water to the masses is one of the most vital 

services to the society. Traditionally, water supplies for drinking or industrial uses 

have been drawn from rivers, streams, and from natural or artificial collection of 

water. As the surface water sources are becoming more and more inadequate and 

unsafe due to contamination, the decision-makers are looking towards ground water 

as a sustainable and safe source of drinking water. The traditional systems of tapping 

under-ground 'water have been tube wells (deep vertical wells), infiltration galleries or 

horizontal collector wells (screened pipes or conduits, trenches), and radial collector 

wells (RCW) which consist of multiple horizontal screened pipes (called laterals or 

radials) connected to a central caisson plugged at the bottom end. 

In some sedimentary groundwater basins, even though the aquifer is 

hydraulically connected to a nearby surface water body, the aquifer may not be thick 

enough to supply the required volume of water to a vertical well. The hydraulic 

conductivity of the sediment deposit may be excellent but transmissivity may be 

limited as the deposits are thin. For example, in a typical river valley, there may be a 

thin alluvial deposit that may be sandwiched between clay deposits. In other 

situation, a thin layer of fresh water may overlie saline or brackish water. Vertical 

well at such sites would cause upconing of the saltwater, thereby degrading the 



quality of water withdrawn. Under these hydro-geologic conditions, RCWs can 

produce large quantity of freshwater under the moderate draw-down conditions as 

there are significant longer well screens exposed to the aquifer. 

The first RCW, commonly known as Ranney well (after the name of Leo 

Ranney), was installed at London, England, in 1933. Since then, many municipalities 

throughout the world have successfully operated this type of groundwater collection 

system to obtain part of their water supply. The advantages of the RCW over 

traditional vertical well are (Spiridonoff, 1964): (1) the horizontal perforated collector 

pipe (the configuration and length of which may vary) enable a large area of an 

aquifer to be exploited; (2) the removal of fine sand and gravel in the path of the 

projected collector pipe establishes an artificial aquifer of much higher permeability 

than the virgin soil; (3) after construction, the collector pipe simply serves as a sub 

drain in a filter surrounded by a circle of course gravels several feet in diameter; (4) 

the unrestricted access and independent control of each collector pipe permit easy 

regulation of flow into a caisson and inspection and backwash of the collector pipe; 

(5) the large area of exposed perforations in the collector well causes low inflow 

velocities, which minimizes incrustation, clogging, and sand transport. 

RCWs are often used to induce recharge from surface water bodies and 

installed close to major streams/ rivers. In some cases, laterals of the RCW are 

extended below the rivers. The laterals intercept and collect groundwater derived 

principally from surface water infiltration. Such supplies usually pass through the 

underlying sand and gravel deposits and hydraulically connected with surface sources, 

such as river, lake, or ocean. Water withdrawn from RCW is comparatively of better 

quality than river water as the water goes through various physiochemical and 
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biological processes in the porous medium between the river and the well (Ray et at 

2002). The laterals can be arranged in different pattern around the caisson to optimize 

the yield and quality of water. The RCWs are generally installed near a river as a part 

of Riverbank Filtration (RBF) system to increase the potential yield and the quality of 

the water. 

RBF is generally performed when the quality of water in the river is not 

suitable for water supplies due to intermittent or chronic pollution. The riverbed 

sediments and aquifer materials provide 'slow-rate filtration' and the recovered water 

is of higher and more consistent quality than water drawn directly from the river. RBF 

provides passive exposure to various processes such as adsorption, reduction, 

physiochemical filtration, and biodegradation. It produces water that is relatively 

consistent in quality and easier to treat to higher levels of finished quality. 

Under flood conditions, contaminant could reach the RBF wells from the 

combined effect of pumping stresses and enhanced hydraulic gradient between the 

river and the aquifer. The portion of riverbank filtrate in the pumped raw water woulci,,,  

depend on source water quality, geo-hydrologic conditions of the aquifer, river-

aquifer interface, hydraulic gradient, infiltration rates, hydraulic conductivity, and the 

distance between the riverbank and the pumping well. The early emphasis of RBF 

was on the enhancement of well yields, whereas the later emphasis has been on the 

improvement of water quality as the surface water sources are getting polluted day 

after day due to increasing population and industrialization. During the time of flood 

in river, the collector pipes that are oriented towards the river can be closed to 

minimize the contamination of the collected water and water will enter the caisson 

only through those collector pipes that are oriented away from the river. In this way, 
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Impervious layer 
Elevation 

Radial Collector Well (RCW) 

Aquifer thickness T 

Q 

water will flow through a longer distance, maintaining larger residence time in porous 

medium, and hence the chances of contamination will be less. 

Through riverbank filtration, many communities located along riverbanks 

have developed the water supplies by pumping water from alluvial aquifers using 

RCWs and vertical wells along the riverbank. In Europe, RBF has been the primary 

mode of drinking water production for many cities located along major rivers such as 

the Danube in Central Europe (from Austria to Black sea), Rhine and Elbe in 

Germany, Lot and Seine in France, Rhine in the Netherlands, as well as along rivers 

in Austria, Switzerland, Slovenia, and Spain. Lake Bank filtration is also common in 

many European countries, including Finland, where wells are placed close to natural 

lakes or artificial reservoirs for drinking water production. 

A typical RCW having multiple laterals located near a straight reach of a fully 

penetrating river is shown in Fig. 1.1 below: 

Fig.1.1. Line diagram of a typical radial collector well near a stream. 
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1.2 THEORY OF FLOW TO A RADIAL COLLECTOR WELL 

Estimation of flow to a radial collector well is a complex problem. Even under 

simplified conditions, its estimation is complex than in case of a vertical well. Since, 

the water enters through a number of horizontal screened pipes (laterals), analytical 

solutions of flow to a RCW are based on the theory of flow to a horizontal pipe. 

Estimations of flow to a lateral can be based on two fundamental assumptions, i.e., (i) 

the total discharge through a lateral is uniformly distributed along its entire length, 

i.e., the uniform flux boundary condition exist along the laterals, and (ii) that the head 

along the lateral is uniform, i.e., Dirichelt type boundary condition exists along the 

laterals. 

Hantush and Papadopulos (1962) have derived analytical solutions for 

drawdown distribution around a collector well with several horizontally laid laterals 

in confined and unconfined aquifer located near or under a stream channel satisfying 

uniform-flux boundary condition along the laterals. Hantush (1964) has suggested that 

instead of assuming each of the laterals to be line sink of uniform strength, Dirichelts 

type of boundary condition (uniform head condition) needs to be imposed along the 

laterals. Milojevic (1963) has conducted an experimental study using electro-dynamic 

analog model to analyse the yield of a radial collector well for the constant head 

boundary condition along the pipes. Debrine (1970) has conducted an experiment on 

electrolytic model to test the validity of the condition if the flux or the head should be 

uniform along the laterals. The results of his model study agreed with the solutions of 

Hantush and Papadopulos (1962) with relative deviation of about 2.2%. He 

concluded that the flow to a collector well could be estimated using the assumptions 

of either uniform flux or uniform head along the laterals. Zhan and Park (2003) have 
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assumed uniform flux distribution along the lateral axis for solving unsteady flow to 

the well under various aquifer conditions. They have mentioned that if a horizontal 

well is pumped with a large pumping rate, different flow states such as laminar, 

transitional, and turbulent flows can co-exist inside the lateral and the problem must 

be treated as a coupled well-aquifer hydraulics problem. Chen et al. (2003) using 

simplified numerical model of a horizontal well underneath a river have shown that 

the use of either a uniform flux or uniform boundary condition on the well screen 

misrepresents the realistic flux or head distribution along the laterals. The finding of 

Chen et al. pertains to a collector well, which has laterals of very small diameter 

(0.05m) and large length (116m). The Zhan and Cao (2000) put forward that at late 

pumping stage, horizontal pseudo-radial flow takes place towards a horizontal 

collector pipe. This postulate supports the assumption of sheet flow condition in a thin 

aquifer and horizontal collector well system. Mishra and Kansal (2007) have 

analysed the flow to a RCW having four coplanar fully screened laterals in a thin 

confined aquifer nearby a stream by applying conformal mapping technique. They 

have found that a constant head boundary condition along the lateral is applicable for 

laterals of diameter more than 0.2 m. 

Generally, a RCW system has many laterals ranging from 2 to 23 per well and 

in such case, due to interference of laterals, the flux distribution along any lateral will 

not be uniform. The flux per unit length will be more near the tips of the pipes than 

that near the caisson. The flux per unit length at any section depends on entry 

gradient, pipe diameter, perforation percentage, hydraulic conductivity, and the 

hydraulic head difference across the flow boundaries. The entry gradient, hence the 

flux distribution, is governed by the geometry of flow domain. Thus, in case of a 
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collector well with several laterals, an assumption of uniform flux distribution along 

the laterals would misrepresent the true situation. 

The groundwater flow problem near a horizontal or radial collector well can 

be described as a three-dimensional flow problem. The safe yield of a radial collector 

well can be estimated by solving Boussinesq's equation for 3-D flow with appropriate 

initial and boundary conditions. The flow to the radial collector well can be estimated 

using a numerical modelling approach by assuming the hydraulic head along the 

laterals as the same as that in the caisson. Though, the numerical methods are 

versatile for analyzing both steady and unsteady flow in non-homogeneous flow 

domain, they need more effort to discretise the flow domain for any parametric study. 

For example, a study on flow to radial collector well with several laterals would 

require fine grid size to compute the hydraulic gradient near the laterals with 

precision. Further, numerical models have their own limitations due to truncation 

error, convergence and stability problems. 

Alternately, the design of the collector well can be based on steady state flow 

condition satisfying Laplace equation and the pertinent boundary condition (Harr 

(1962)). For a given layout of radials, and for a prescribed draw down in the well 

caisson, the unsteady flow to the collector radials can be computed. While estimating 

the flow, the entrance velocity to the radials is computed and compared with the 

limiting entrance velocity (3 cm/sec) for the prescribed draw down. Further, the axial 

velocity inside the screen should be less than 0.9 m/sec (Ray (2002), Driscoll (1987)). 

Varying the draw down and simultaneously computing the entrance velocity and 

comparing with the permissible velocity, the maximum flow rate for a given layout 
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and length of radials is computed, which is the capacity supply rate of the collector 

well. 

The flow domain of a collector well in a thin aquifer near a stream can be 

considered as homogeneous as the radius of influence would not progress with time 

due to presence of the surface water body. The effective flow domain of a collector 

well will be a small part of the aquifer. The advantage of homogeneity can be taken 

for solving the well hydraulics problem analytically. If the objective is to estimate the 

production rate of a radial collector well, flow field can be considered as two-

dimensional (x-y horizontal plane) neglecting the resistance to vertical flow. If the 

well is located near to a surface water body, the flow to the well could be treated as 

steady state flow during the later stage of long pumping. Thus, the flow can be 

estimated by solving well-known Laplace equation for 2D flow field 

(d 2h/dx 2  + d 2hidy2 )under steady state conditions and, thereafter, a correction factor 

can be applied on account of resistance to vertical flow. 

Yield of a collector well is influenced by length, orientation, number and 

diameter of laterals, etc. and can be studied through analytical technique such as the 

conformal mapping technique. Conformal mapping technique is one of the methods 

available to solve the 2D groundwater flow. Hunt (1983), applying Schwarz 

Christoffel conformal mapping, has analyzed steady flow to a single collector pipe, 

which is located near a stream, for different orientation of the collector pipe 

implementing constant head boundary condition along the pipe. Assumption of two-

dimensional flow in a horizontal plane implies that the lateral as well as the river 

penetrates the entire thickness of aquifer. Applications of the classical Schwartz 

Christoffel conformal mapping technique in solving two-dimensional saturated steady 

8 



flow in homogeneous flow domain are well documented in several text books 

(Polubarinova-Kochina, 1962; Harr, 1962; Bear, 1972; Halek and Svec, 1979; Hunt, 

1983). The Schwarz-Christoffel conformal mapping technique is applicable to a 

simply connected polygon with straight-line boundaries having a finite number of 

vertices one or more of which may be at infinity. 

Most of the studies on radial collector wells have been carried out by 

assuming that the laterals are fully screened and meet at the centre of the collector 

well, whereas, in practical application, screen part of the laterals start at a certain 

distance from the circumference of the well. Hence, it is desirable to see the effect of 

partially screened laterals on the potential yield of the well and corresponding 

entrance velocity to the laterals. 

In this study, the performance assessment of a RCW near a stream has been 

carried out, in terms of the estimation of maximum safe yield for various 

arrangements and parameters (like the numbers, radius, length of screened and blind 

portion, and distance of caisson from the river) of the laterals for various hydro-

geologic conditions. By closing the valves of laterals, a RCW having multiple laterals 

can be made as a RCW with single or two collinear horizontal laterals only and can be 

treated and termed as an infiltration gallery. 

Further, in an alluvial part of a river basin, the river meanders. In such 

situation it is advantageous to locate a RCW at the center of the meandering reach. By 

locating RCW on the concave side, higher specific capacity would be achieved. Also, 

if the river and aquifer system is in hydrostatic state, the flow to a RCW near a 

meandering reach can be conceptualized as a well at the center of a circular island. 
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Also, RCW may be used in a small island to withdraw fresh groundwater lying over 

saline water or from thin aquifer. 

The basic concept of locating a RCW or vertical wells near a stream-bank is to 

take the advantage of induced infiltration from the stream and increase the water 

supply capacity of the aquifer under limiting drawdown condition. Several research 

works on the flow to a vertical pumped well near a stream have been carried out in 

which the estimations of stream depletion (combination of base flow reduction and 

induced infiltration) have been the primary objective. All these works have been 

carried out for the well tapping from upper unconfined aquifer only considering 

stream stage as constant. The stream stage rises during time of flood and water 

infiltrate from stream to the hydraulically connected unconfined aquifer; 

consequently, water level in the unconfined aquifer also rises. If the unconfined 

aquifer is connected to a confined aquifer through a vertical screened shaft nearby a 

river, unsteady flow will take place from the unconfined aquifer to the lower confined 

aquifer till its piezometric level is below the water level of the unconfined aquifer. 

Consequently, the lower confined aquifer will get recharged. In other terms the water 

supply capacity (i.e., specific capacity) of the confined aquifer will increase. This 

situation can be considered in context of groundwater recharge of lower confined 

aquifers. The practical application of this study is that these vertical shafts could be 

installed in series along the riverbank and water supply well (RCW or vertical well) 

could then be installed at some distance from these shafts on landside. Under these 

circumstances, specific capacity of water supply well would increase. 

Generally, the RCWs and vertical wells are being used for drinking water 

supply as a part of riverbank filtration system. Thus, the quality of water produced by 
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the well in terms of presence of pathogenic bacteria needs to be assessed. Hence, it is 

important to estimate the travel time (or retention time) of the water particle from 

river to the well so that it is more than the survival life of the bacteria. Gerba and 

Melnick (1975) have presented the survival lives of pathogenic bacteria in porous 

medium in different conditions. Lesser bacterial concentration in produced water will 

require lesser dose of chlorination and hence lesser quantity of Disinfection-by-

Product (DBP) production in the treated water and lesser risk of carcinogenic disease. 

The minimum travel time will be the time taken by a water particle to reach 

the nearest part of the well screen moving along critical shortest path (stream line) 

which should be more than the survival time of particular pathogenic bacteria in 

concern. The distance of the well should be sufficiently large so that no bacteria can 

survive till it reaches the well. 

1.3 OBJECTIVES OF THE PRESENT STUDY 

In the light of the status of the studies on the flow to radial collector well or horizontal 

well with special reference to its application as part of riverbank filtration systems, 

objectives of the present study are: 

1. Analysis to ascertain the flow characteristics such as the type of flow (laminar 

or turbulent) in a horizontal well (i.e., collector pipe, infiltration gallery, 

lateral, or drain) and the appropriate boundary condition (i.e., constant head or 

constant flux) along the lateral. 

2. Analysis of flow to an infiltration gallery (or single horizontal collector well) 

for its different orientations with respect to the river. 
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3. Analysis of flow to a radial collector well with multiple partly screened 

laterals near a meandering reach of a river. 

4. Analysis of flow to a radial collector well with partly screened laterals near 

straight reach of a stream. 

5. Estimation of minimum travel time (retention time) taken by a water particle 

from the river to the nearest part of an infiltration gallery or laterals of a radial 

collector well to assess the possibility of survival of pathogenic bacteria in the 

produced water. 

6. Estimation of groundwater recharge through a multi-aquifer shaft located near 

a stream during time of flood. 

1.4 ORGANIZATION OF THE THESIS 

The thesis has been organized as follows: 

Chapter I describes the general importance of the radial collector well and the 

basic concepts of Clow to horizontal well. It highlights the basic assumptions and the 

performance parameters of a RCW. It emphasis on the use of RCW and vertical well 

as a part of riverbank filtration system. The scope and objectives of the present study 

have been summarized and the organization of thesis has been described. 

In Chapter 2, the existing literature review is presented. It briefly discuss the 

highlights of the important studies on the flow, design and construction of radial 

collector well, riverbank filtration, stream-aquifer interaction, stream-aquifer-well-

interaction, multi-aquifers system, and natural attenuation of contaminant in the 

porous medium. 
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In Chapter 3, analytical studies have been carried out to ascertain the flow 

characteristics such as the type of flow (laminar or turbulent) inside a lateral/pipe and 

the appropriate boundary condition (i.e., constant head or constant flux) along the 

lateral. 

In Chapter 4, flow to an infiltration gallery (i.e., a single horizontal collector 

pipe) has been analyzed by applying conformal mapping. Flow has been estimated 

for (i) an infiltration gallery laid near a meandering reach of a river, and (ii) an 

infiltration gallery laid in different position(s) with respect to the straight reach of a 

river such as (a) infiltration gallery oriented perpendicularly towards the river side, (b) 

an infiltration gallery oriented perpendicularly away from the river, i.e. towards the 

land side, (c) an infiltration gallery running parallel to the river. The minimum travel 

time taken by river water to reach the infiltration gallery has been estimated for all the 

mentioned above cases. 

In Chapter 5, yield of a radial collector well having multiple partly screened 

laterals around the caisson and located in a meandering reach of a river has been 

estimated. Assuming the river and the aquifer system in hydrostatic state, the flow to 

a well near meandering reach of a river has been conceptualized as a well at the centre 

of a circular island. The flow is estimated using the conformal mapping technique. 

The laterals are considered as partly screened and partly blind (non-perforated). 

Further, the minimum travel time for river water to reach gallery has been estimated. 

In Chapter 6, the performance of a radial collector well (horizontal well) 

having four co-planner laterals which are partly screened (perforated) and partly blind 

(non-perforated) by the side of a straight reach of a river has been studied. The 

performance has been evaluated in terms of yield and quality of water with respect to 
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the length of laterals, lengths of perforated and blind portions, orientation of laterals 

with respect to the river, and the distance of the well (i.e., central caisson) from the 

river. Further, the minimum travel time for river water to reach the nearest lateral has 

been estimated. 

In Chapter 7, groundwater recharge through a shaft situated near a stream is 

estimated during passage of a flood wave. Recharge volume and the flow rate have 

been estimated for (i) a shaft, which is fully penetrating the lower confined aquifer, 

and (ii) a shaft, which has penetrated marginally into the confined aquifer, i.e., 

partially penetrating shaft. In this study, a discrete kernel approach based on 

Duhamel' superposition principle for linear systems, and image well theory are 

applied to quantify the recharge. 

In Chapter 8, the important conclusions of the study have been summarized. 

14 



Chapter 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

It has been known for many years that the productivity of well fields located near a 

river can be improved by way of induced infiltration (Thies, 1935; Kazmann, 1947, 

1948). Several studies have been carried out to estimate the proportion of water 

withdrawn from rivers by pumping from vertical wells located near a river for 

different hydro geologic conditions (Thies, 1941; Glover and Balmer, 1954; Todd, 

1959; Hantush, 1959, 1964, 1965; Wilson, 1993; etc). Horizontal wells recently 

generated great interest among hydrologists and environmental engineers because of 

numerous advantages over vertical wells in many hydrological and environmental 

applications. A Radial collector well consists of a number of horizontal wells (i.e., 

laterals or radials) connected to a central caisson. Despite of this, very limited studies 

have been carried out to estimate the flow to a radial collector well nearby a river for 

different arrangement of laterals and its parameters. In the present chapter, some of 

the important works on flow to a radial collector well, its construction, use of a radial 

collector well, and infiltration gallery (i.e., single horizontal well) are briefly 

discussed. 

2.2 STUDIES ON RADIAL COLLECTOR WELL 

2.2.1 Field Studies 
Kazmann (1948) provides a brief outline of the design and construction aspects and 

described at length the methods of horizontal collector well field testing to determine 
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the firm yields of the well under different conditions of the stream. 

Kazmann (1949) has cited a typical and interesting example of the use of 

radial collector well for dual- purpose (i.e., aquifer storage and water supply) at 

Canton, Ohio. Three units dual-purpose horizontal wells were to be installed. One of 

these units was designed to built deep enough to act as the supply unit and was 

equipped with suitable pumps. The other two were designed to replenish the lower 

aquifer as it became depleted and have no pumps installed in them. 

Gildley (1952) has presented details of the installation and performance of 13 

radial collector wells in Ohio River valley, West Virginia. The initial yield of the 

wells varied from 1.75 mgd to more than 4.5 mgd. The wells output was substantially 

increased during high stage of the Ohio River. He also presented the data of water 

quality (alkalinity and hardness) and compared with Ohio river water quality. 

Yale (1957) has presented a case study on the use of Radial collector well by 

Public District No.1 of Skagit County, Washington (USA). He explained the situation 

when the radial collector well faced the problem of higher iron content in produced 

water after a period of high rainfall in the lowlands, thereby raising the groundwater 

table by several feet. The river level did not rise appreciably as it originates primarily 

from higher snowfield. Further, the river water was very cold with higher viscosity 

and thereby reduced its transmissibility to the well. To make the river water gradient 

steeper than the groundwater gradient, a pump was installed in an old abandoned well 

located about 300 ft from the collector towards landside. Within 7 days after starting 

this pump the iron content dropped from high of 1.5 ppm to 0.7 ppm, while all other 

conditions remained constant. 

Gidley and Miller (1960) have studied the performance records of 24 radial 
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collector wells in West Virginia and found that the initial yield of a radial collector 

wells adjacent to a river ranged from 1.5 to 4.5 MGD. This initial yield was found to 

be sustained with continuous pumping and was forecasted to decline by 30 to 50% 

over a period of 6 to 12 years. 

Spiridonoff (1964) has discussed the outstanding features of the radial 

collector wells, design details, construction methods, yield, limitations, comparison 

with surface water treatment and problems in operation of radial collector well. He 

also presented a comprehensive list of radial collector wells with users and year of 

installation in North America and Europe. He concluded that there is a paucity of 

basic engineering information in the literature concerning radial collector wells due to 

the existence of patents and franchise rights connected with the apparatus and 

methods leading to a relative reluctance of the developers to use radial collector wells. 

Hunt. (2002) presents a timeline showing notable dates regarding the use of 

radial collector wells worldwide. He presented three types of laterals methods, such as 

perforated pipe screen, wire wrapped continuous slot screen, and gravel packed 

screen. He presented construction technique of well and lateral installation. 

2.2.2 Experimental Studies 

Mikel and Klair (1956) have given the first empirical solution for computing the 

drawdown in the centre (caisson) of a radial collector well. They introduced 

equivalent well radius re  for a radial collector well, which is the radius of a vertical 

large diameter well having the same specific capacity as the collector well. They 

computed the value of the equivalent radius re  of vertical large diameter well which 

simulates a collector well, and found to be 75-85 percent of the average lateral for 
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collectors of equal lengths, placed symmetrically and in the same horizontal plane all 

along the perimeter of the shaft. 

Milojevic (1963) has conducted experiment using electro dynamic analog 

model to analyze steady flow to a radial collector well near a river and far from any 

recharge boundary. Results have been presented by means of four formulas for 

capacity of RCWs in a free water-table and in a confined aquifer of limited thickness 

and unconfined side expansion. Out of four formulae given by him, two formulae 

were for the radial collector well located far from any recharge boundaries and two 

formulae were for the well located nearby a riverbank. He studied the yield 

distribution along the drains and along the individual drains. He assumed the constant 

head along the drains. 

Debrine (1970) has conducted an experiment on electrolytic model to test the 

validity of the condition that if the flux or the head should be uniform along the 

laterals. He conducted the experiment to estimate the flow to a well with a single 

lateral, located under riverbed and along which the head is maintained uniform. The 

results of his model study agreed with the solutions of Hantush and Papadopulos 

(1962) with relative deviation of about 2.2%. He concluded that the flow to a 

collector well could be estimated using the assumptions of either uniform flux or 

uniform head along the laterals. 

2.2.3 Analytical Solutions 

Hantush and Papadopulos (1962) have derived analytical solutions for drawdown 

distribution around a collector well with several horizontally laid laterals in confined 

and unconfined aquifer located near or under a stream channel satisfying uniform-flux 

boundary condition along the laterals. The three-dimensional unsteady flow problem 
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has been solved treating an element of the collector pipe as a partially penetrating 

vertical well Hantush (1964) has suggested that instead of assuming each of the 

laterals to be the line sink of uniform strength, Dirichelt type of boundary condition 

(uniform head condition) needs to be imposed along the laterals. 

Mishra et al. (1999), satisfying Dirichelt type boundary condition at the 

laterals as suggested by Hantush (1964), have analysed the unsteady three 

dimensional flow to a collector well system located under a streambed for prescribed 

draw-down at the well face using a finite difference numerical method. For the 

prescribed draw-down the entrance velocity to the radials is computed and compared 

with the limiting entrance velocity (3 cm/sec) (Driscoll, 1987). Varying the draw-

down and simultaneously computing the entrance velocity and comparing with the 

permissible velocity, the maximum flow rate for a given layout and length of radials 

is computed, which is the capacity supply rate of the collector well. 

Baker et al. (2005) have applied multi-layer analytic element modelling to 

estimate flow to a two-tier radial collector well with several radials under steady state 

condition. The three dimensional nature of flow and non-homogeneity in aquifer 

properties have been considered by them. Horizontal flow inside a layer is computed 

analytically while vertical flow is approximated with a standard finite-difference 

scheme. 

Mishra and Kansal (2005) have studied the specific capacity of a radial 

collector well having 2-tiers of 12 numbers of laterals in each tier. The flow domain 

has been conceptualised as an island with the collector well at the centre of the island. 

The study indicates that the specific capacity increases marginally with increase in 

number of radials of equal length. 
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2.3 STUDIES ON A SINGLE HORIZONTAL WELL (INFILTRATION 

GALLERY) 

Stone (1954) has presented the details of many infiltration galleries in the United 

States along the various rivers such as Ohio, Mississipi, etc. He concluded that 

infiltration galleries may supply 1 mgd per 1000 ft of length. He has also discussed 

the details of gallery construction and operation. 

Ground water manual (1981) of U.S. department of Interior includes a 

separate chapter on infiltration galleries. According to the manual, the design should 

provide for an average entrance velocity of 0.1 ft per second or less. Manual provides 

some applicable equations to estimate the yield of a gallery for different types of 

construction or setting in the subsurface. 

Huisman and Olsthoorn (1983) have analyzed steady flow to a drainage 

gallery of finite length that runs parallel to a river by drawing flow nets. Both the 

gallery and river are assumed to be fully penetrating. 

Hunt (1983) has applied Schwarz Christoffel conformal mapping technique to 

analyze steady flow to a single collector pipe, which is located near a stream, for 

different orientation of the collector pipe implementing constant head boundary 

condition along the pipe. Hunt has treated the problem as two-dimensional in 

horizontal plane and has modified the velocity potential function suitably. 

Assumption of two-dimensional flow in a horizontal plane impliei that the lateral as 

well as the river penetrates the entire thickness of aquifer. 

Zhan and Cao (2000) states that flow to a finite horizontal well includes three 

stages: an early pumping stage, nearly radial flow, intermediate flow, and a late 

horizontal pseudoradial flow. At the early stage of pumping, the influences of the top 
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and bottom boundaries are not perceptible, thus the flow is radial in a plane 

perpendicular to the well axis. After the intermediate period, the flow enters the 

pseudoradial flow stage during which the equipotential surfaces are similar to vertical 

cylinders in the far field. This situation is similar to a fully penetrating large diameter 

vertical pumping well. This postulation supports the assumption of sheet flow 

condition in a thin aquifer and horizontal collector well system. 

Zhan and Park (2003) have assumed uniform flux distribution along the 

horizontal well axis for solving unsteady flow to the well under various aquifer 

conditions. They state that, if a horizontal well is pumped with a large pumping rate, 

different flow states such as laminar, transitional, and turbulent flows can co-exist 

inside the well bore and the problem must be treated as a coupled well-aquifer 

hydraulics problem. However, a couple well-aquifer hydraulics problems need a 

numerical solution because a closed form analytical solution in this case is not 

possible. 

Chen et al. (2003) has conducted theoretical and experimental studies of 

couple-seepage flow (i.e., welt-aquifer hydfauftcsi to a horizontal well. They have 

used simplified numerical model of a horizontal well underneath a river and have 

shown that the use of either a uniform flux or uniform boundary condition on the well 

screen misrepresents the realistic flux or head distribution along the horizontal well 

bore. The finding of Chen et al. pertains to a collector well, which has a very small 

diameter (0.05m) and a large length (116m). 

Mohammed and Rushton (2006) have carried out field experiment and 

numerical model to analyse the flow in a shallow aquifer before entering into a 

horizontal well, the flow from the aquifer into the horizontal well and flow inside the 
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efficiency of riverbank filtration to remove microorganism from the infiltrating 

surface water depends on (1) attachment of the microorganism to the soil or sand and 

inactivation, (2) the climate and hydrological conditions (temperatures, heterogeneity, 

flood), (3) the geometry of production well (horizontal well or vertical well) and 

surface water body (lake, river, island), (4) the character of the bank materials and 

streambed, and (5) groundwater flow field. Aquifer materials with significant 

fracturing are capable of transmitting groundwater at high velocity in a direct flow 

path with less travel time, i.e., less opportunity for inactivation or removal of 

microbial pathogens. 

Dillon et.al. (2002) have considered two basic factors which are most 

important for the assessment of quality of recovered water from a well pumping 

nearby a river as a part of RBF for drinking water supplies from brackish aquifers. 

These two factors are (i) minimum travel time from the river to the well, t,,,„, and (ii) 

the proportion of the recovered water which is derived from the river (q/Q), where q is 

the rate of induced infiltration from the river and Q is the discharge rate of the 

pumping well. The first factor allows an estimate of contamination attenuation 

through adsorption and biodegradation and the second factor contribute to the further 

reduction in contaminant concentration through dilution. For well close to the river, 

tm,„ is small and q/Q is large, and with increasing distance from the river tm,„ increase 

and q/Q may decline. They have considered only vertical well for the study and used 

MODFLOW for simulation. There results show that a well located 50m from the bank 

would pump 94% water from the closest reach at steady state and will have a Lim, of 

about 84 days for initially horizontal water table taking adsorption and biodegradation 

into consideration. Further, to minimize the risk of bacterial contamination of 
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produced water, the trm;n  should be more than the survival time of pathogenic bacteria 

in concern. 

Schubert (2002) reported the field studies conducted in the lower Rhine region 

to know the flow and transport phenomena of riverbank filtration and to develop 

numerical models for dynamic simulation of flow and transport. In this study, the 

important finding was about the age stratification of the bank filtrate between the river 

and the wells. Age stratification means that water enters a well near a river at widely 

different times. This difference in time is the reason for equalization of the fluctuating 

concentrations between the river and the wells. From 3D modeling under steady state 

condition, results of the flow path, flow time and mean flow velocity were reported 

and are reproduced as 

Flow path (m) Flow time (days) Mean flow velocity (m/day) 

290 157 0.25 
162 120 1.35 
108 33 3.27 
68 20 3.40 

Wiess-(2003)- discusses-the significance-of-RBF-in-removing-natural- organic—

matter (NOM) present in surface water. NOM present in water reacts with chlorine 

used for disinfection and halogenated DfiPs such as trihalomethanes (THMs) and 

haloacetic acid (HAAs) are formed, many of which are suspected or known human 

carcinogens (Singer, 1999). Possible approaches for controlling DBP formation 

include (1) use of alternative disinfectants, such as ultraviolet radiation or 

monochloramines which do not react readily with NOM, (2) removal of DBPs from 

finished water through such process as granular activated carbon adsorption or 

stripping, and (3) better control of source water quality through removal of precursor 

NOM to prevent DBP formation. RBF's value for controlling DBPs lies in its ability 
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to achieve this last benefit, namely removal of NOM through ground passage. In this 

study, they estimated travel time using USGS's MODFLOW for groundwater flow 

and MODPATH for particle tracking. Travel time of 13 to 19 days estimated to reach 

the vertical well (1.5 mgd) located about 177m from the river, whereas 3 to 5 days 

estimated to reach the vertical well (7.6 mgd) located at a distance of 30m from the 

stream. The travel time varies with the variation in pumping rates, porosity, and 

hydraulic conductivity. 

Weiss (2005) reported a study conducted for microbial monitoring over a 

period of more than one year at three full scale RBF facilities, located in US along the 

Ohio, Missouri, and Wabash Rivers. Results of this study demonstrated the potential 

for RBF to provide substantial reductions in microorganism concentration relative to 

the raw water sources. The travel times are highly uncertain, and the purpose of this 

study was to characterize the average concentrations over time particularly for the 

river. 

2.5 STREAM AQUIFER INTERACTION 

The basic concept for locating a radial collector well or vertical well near a stream-

bank is to increase the water supply capacity of an aquifer under limiting drawdown 

condition. The unconfined aquifer gets recharged from stream during passage of 

flood wave. If a vertical screened shaft is located near the stream, water will pass 

from the unconfined aquifer to the lower aquifer through the shaft due the rise in 

stream stage during time of flood. The lower confined aquifers will receive water 

from the upper unconfined aquifer through the shaft under gravity till the peizometric 

level of the confined aquifer is lower than the water level in the unconfined aquifer. 
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Consequently, the lower aquifers will get recharged. In other terms the water supply 

capacity (i.e., specific capacity) of the confined aquifers will increase. This situation 

can be considered in context of groundwater recharge of lower confined aquifers. 

In this study, it has been attempted to estimate the quantity of water that would 

pass from the water table aquifer to the lower confined aquifer through a screened 

shaft, which is located near a stream, during time of flood. The shaft penetrates multi-

aquifers system. Since a well-aquifer-stream system is a linear system. Hence, to 

estimate the quantity of recharge through the well, a better understanding of works on 

the stream-aquifer interaction without a pumped well and in presence of a pumped 

well nearby the stream is required. 

Several investigators have worked on stream-aquifer interactions with their 

different objectives, such as, aquifer's response to stream stage changes; estimation of 

hydraulic diffusivity and estimations of aquifer recharge. Some investigators have 

applied the equation developed for stream-aquifer relationship to estimate the 

hydraulic diffusivity of the aquifer (Ferris, 1952; Rowe, 1960; Pinder et at. 1969; 

---Mishra-andlain,-1999;-SinghTet—ar, 2002; Singh; 2003, etc). To compute the rise in 

piezometric level in the adjoining aquifer due to the stream stage rise, solutions have 

been developed by several investigators (Todd, 1955; Rowe, 1960; Cooper and 

Rorabough, 1963; Hornberger, et al., 1970; Moench and Kisiel, 1970; Hall and 

Moench, 1972; Lin, 1972; Morel-Seytoux and Daly, 1975; Singh, 2004, etc). 

2.5.1 Stream Aquifer Well Interactions: Induced Infiltration 

The estimations of induced infiltration due to abstraction of water from a well nearby 

a river, has been the main objectives in various theoretical and field studies which are 

presented subsequently. 
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Theis (1941) have computed analytically the proportion of pumped water 

taken from stream flow. He has used Thies (1935)'s basic solution for drawdown 

around a infinitesimally small diameter pumped well and the theory of image well. He 

concluded that the proportion of water taken from stream flow varies widely 

depending on the transmissibility of the aquifer and the distance of the well from the 

stream. 

Kazmann (1948) have proposed two methods based on pumping test data for 

determining whether water from a surface water body will infiltrate to an adjacent 

aquifer if wells are pumped at the site tested. The maximum rate of infiltration from a 

surface water body is not involved in either of these methods. The only answer sought 

is whether infiltration will occur after pumping begins. Further, he has given a method 

for determining the effective distance to the line of recharge. 

Hantush (1959) has proposed methods, on the basis of analysis of data from 

pumping wells near a stream, for determining the hydrologic characteristics of an 

aquifer adjacent to the stream and the effective distance from a pumped well to a line 

in the stream bed where the water is entering or leaving the aquifer. He has applied 

the basic equation for drawdown due to unsteady flow towards a well steadily 

discharging from an infinite aquifer and the theory of image well for the analysis. 

Hantush (1965) has presented analytical solution for rate and volume of 

stream depletion due to pumping of a well near stream with semi pervious bed. He 

replaced the resistance of flow due to the semi-perviousness of the bed of the stream 

by an equivalent resistance due to horizontal flow through a semi-pervious layer. The 

semi-pervious layer has insignificant storage capacity which is lying between the 

aquifer and the stream. He has presented a procedure for obtaining the transmissibility 
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of the aquifer, the effective distance from the stream and the retardation coefficient of 

the streambed. 

Moore and Jenkins (1966) have conducted a field study on the Arkansas 

River in Colarado to evaluate the effect of groundwater pumpage on the infiltration 

rate of a semipervious streambed. The studies shown that groundwater pumping can 

easily lower the water table below the level of the streambed, thereby breaking the 

hydraulic connections between the stream and the water table. Once this connection is 

broken, change in depth to water table has no measurable effect on the rate of stream 

flow depletion. 

Newson and Wilson (1988) have developed an analytical model to evaluate 

steady state flow of groundwater towards a well near a gaining stream. In this model 

they have taken the ambient groundwater flow (i.e., regional groundwater flow) into 

consideration. They have given solution to determine the minimum rate of pumping 

that will induce infiltration from a stream to a well, and the components of pumping 

that are derived from the stream and the aquifer. The model is based on image well 

theory and stream is fully penetrating. 

Wilson (1993) has developed a two-dimensional vertical integrated analytical 

model to compute the induced infiltration with ambient flow for various geometry and 

sources of recharge. Model shows that the propensity for discharge and rate of 

induced infiltration are enhanced by higher pumping rates, proximity of the well to 

the stream, and the presence of nearby barrier boundaries. He concluded that the 

induced infiltration to wells located near a gaining stream is essentially independent 

of the source of ambient discharge to the stream, whether it is composed of local 

recharge, lateral inflow, or some combination of the two. Infiltration also appears to 
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be indifferent to the assumption of constant transmissivity or transmissivity is allowed 

to vary with the saturated thickness. 

Sophocleous, et al. (1988) have conducted field experiments to study the 

stream-aquifer interaction in presence of a pumping well along the Arkansas River. 

They have conducted eight days comprehensive pumping test followed by recovery 

monitoring. Drawdown and recharge boundary effects were observed in all 

observation wells completed within the aquifer, including the ones on the opposite 

side of the Arkansas River. Actual stream flow depletion due to groundwater pumping 

was appreciably less than the computed depletion based on analytical solutions. They 

concluded that pumping tests are the most reliable way of obtaining aquifer properties 

for use in developing groundwater supplies, in predictive numerical simulations and 

management of water resources. However, they are expensive tests because of both 

the required equipment and manpower. 

Wallace et al. (1990) have derived equations to compute the stream depletion 

caused by non-uniform, cyclic pumping from a well located in a hydraulically 

connected aquifer. Equations were developed applying the principle of superposition 

and existing analytical solutions for steady, continuous pumping. Analysis shows that 

the volume of stream depletion over a cycle ending at time t, is the same as the 

volume depletion between the start of pumping and time t by a single period of 

pumping. However, they conclude that in some circumstances, approximating the 

effect of cyclic pumping by a steady, continuous pumping at the equivalent cycle 

average rate is not adequate. 

Hunt (1999) has given an analytical solution for stream depletion created by 

pumping from a well beside a semi-pervious stream. He assumed the streambed 
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penetration of the aquifer and dimension of streambed cross section, all are relatively 

small. He assumed streambed is clogged and that a linear relationship exists between 

the outflow seepage through the streambed and the change in peizometric head across 

the semi-pervious layer. 

Analysis of stream aquifer interaction in presence of a pumped well nearby a 

stream has traditionally focused on the determination of the amount of water in the 

stream depleted due to induced infiltration and base flow reduction. When a well is 

placed nearby a stream for the purpose of drinking water supply as part of riverbank 

filtration system, then quality of pumped water becomes a concern. Estimation of 

induced infiltration determines the proportion of dilution of surface water with native 

groundwater in context of RBF process. In this case attention has to be paid to the 

movement of infiltrated stream water inside the aquifer. 

Chen (2001) has studied the migration of induced-infiltrated stream water 

towards a pumped well using particle tracking techniques He has determined the 

travel times, pathlines and influence zones between a stream and nearby pumping 

well. Anal-Yis were conducted for transient conditions, both pumping and non 

pumping periods. He has also determined the percentage of stream water entering the 

well using path lines of stream water. Knowing these path lines help in wellhead 

protection. 

Chen (2003) has computed critical time which is the earliest time of reversal 

of hydraulic gradient occurring along the stream aquifer interface, infiltration reach 

which is the stream segment where stream water recharges the aquifer and the 

shortest travel time for the stream particle to get into a pumping well along the 

meridian line. He concluded that when a steady state condition is assumed for a 
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transient flow, the rate and volume of stream infiltration is overestimated and this 

overestimation can be very significant in early stage of pumping. 

2.6 CONCLUSIONS 

From the literature review on the subject, it is observed that very little analytical 

works have been carried out on the flow to a radial collector well located near a river 

are reported. However, several works on the flow to a vertical well located near a 

river have been carried out to estimate the induced infiltration, stream depletion or 

base flow reduction due to pumping. A radial collector well consists of group of 

horizontal wells, hence from the theory of flow to a horizontal pipe, total flow to a 

radial collector well can be estimated. From the literature review, it is clear that there 

are two basic approaches to find the solutions of flow to a horizontal well. These two 

approaches are: either constant flux or constant head boundary condition persists 

along the horizontal well. Hence, it is desirable to investigate the characteristic of 

flow inside a horizontal well. Analytic works on the flow to a single horizontal wells 

are also reported but analytical solution to the flow to a multi- laterals radial collector 

well a near a stream are very rare. Most of the radial collector wells are used as a part 

of riverbank filtration systems. The total travel time taken by a water particle to reach 

the nearest well screen from the stream needs to be estimated to assess the risk of 

bacterial contamination and organic contamination. Only a few works on the travel 

time of water particle from river to production well are reported. 
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Chapter 3 

GRADUALLY VARIED FLOW 
IN A HORIZONTAL COLLECTOR PIPE 

3.1 INTRODUCTION 

Flow to a lateral of radial collector well is a case of gradually varied flow. Several 

investigators have presented analytical solutions for flow to a horizontal collector pipe 

under different hydro-geological conditions (Zhan, and Cao, 2000; Chen et al., 2003). 

Zhan and Park (2003) have assumed uniform flux distribution along the lateral axis 

for solving unsteady flow to the well under various aquifer conditions. They postulate 

that, if a horizontal well is pumped with a large pumping rate, different flow states 

such as laminar, transitional, and turbulent flows can co-exist inside the lateral and the 

problem must be treated as a coupled well-aquifer hydraulics problem. Chen et al. 

(2003) using simplified numerical model of a horizontal well underneath a river have 

shown that the use of either a uniform flux or uniform boundary condition on the well 

-screen-misrepresents-the-realistic-flux-or-head distribution-along- the -1-a-t-eralTh-e-

finding of Chen et al. pertains to a collector well in which laterals have a very small 

diameter (0.05m) and a large length (116m). Mishra and Kansal (2007) have analysed 

steady flow in a collector pipe assuming exclusively laminar or turbulent flow 

condition and found that Chen et al.'s finding is true for pipe having diameter of the 

order of 0.05m. For pipe diameter of 0.2 and more, uniform head boundary as well as 

uniform flux per unit length boundary condition is applicable as the friction loss is 

negligible for pipe with radius more than 0.1m. 
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In this chapter, considering the co existence of laminar and turbulent flow in a 

collector pipe, an analytical solution has been derived for steady state flow condition 

and applicability of uniform head or uniform flux condition along the collector pipe 

has been investigated. 

3.2 STATEMENT OF THE PROBLEM 

Gradually varied flow in a horizontal collector well (a perforated horizontal pipe) is to be 

analysed to ascertain whether uniform head distribution or uniform water flux per unit 

length exist along the horizontal collector pipe. It is desired to predict magnitude of the 

axial velocity along the collector pipe and entrance velocity at the periphery of the 

collector pipe for radius adopted in practice. The perforated pipe is assumed to be located 

along the axis of a conceptual horizontal cylindrical flow domain of radius R and length L 

as shown in Fig.3.l. It is closed at the left end and the right end is connected to a reservoir 

(caisson) where a hydraulic head hm, is maintained. The drawdown D,„ in the well is hR- 

II,. The flow is laminar up to an unknown length // at which the critical Reynold number 

is 3000. Beyond 1, the flow is turbulent. The length of the turbulent flow zone is 12  which 

is equal to (L — 11 ). The transition zone has been merged with smooth turbulent flow 

zone. At the periphery of the flow domain the hydraulic head is hR . The flow has 

reached a steady state condition. 

3.3 ANALYTICAL SOLUTION 

The axial frictional head loss in the pipe follows Darcy-Weisbach equation and can be 

expressed as 

Oh f 14 2  
--67x =

g 
(3.1) 
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Fig.3.1: A conceptual cylindrical flow-domain around horizontal collector pipe. 

where Ah = h(x + Ax) — h(x) ; f is the friction factor which can be estimated using the 

relation f = 64/Re  for laminar flow having Reynold's number Re(= udp I ,u) < 2300 

(d=diameter of the perforated pipe, u=axial velocity at x; p = density and p = 

viscosity of water) or by using the Blasius equation f = 0.316/ Re°25  for smooth 

turbulent flow having Reynold's number between 3000 to 100, 000. In the zone where 

the Reynolds number is less than 3000, the flow is considered as laminar, otherwise, 

the flow is smooth turbulent. 
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The axial velocity and the corresponding Reynold's number and flow regimes 

are unknown a priori. The flow in the horizontal collector pipe near the left end is 

laminar and it may turn into turbulent with a transition condition in between as it 

approaches towards the caisson. Thus the flow may be a composite flow consisting of 

laminar, transition and turbulent flow zones. The head distribution is computed in the 

horizontal collector pipe assuming that the laminar flow at the left end changes to 

smooth turbulent flow condition. 

3.3.1 Head Distribution for Laminar Flow Zone 

In order to estimate the frictional head loss corresponding to laminar flow in a 

pipeline, 	Hagen-Poiseuille 

f = 64/Re  in Darcy Weisbach 

– pgd 2  dh 
u = 

	

equation, 	which 	can 

equation, is used. Accordingly, 

q,,, (x), at x in laminar flow zone 

( 	dh) 
dx ) 

	

dq 	
) 	

izgpd 4  d 2 
 with x is: 	= 

be 	derived 

is: 

( 	40\  

by 	substituting 

(3.2) 

(3.3) 

(3.4) 

32p 	dx 

Therefore, the axial flow, 

(x) 	ngpd 4  qix  
128,u 

The variation of axial flow 
dx 	128,u dx 2  

The variation in axial flow in the pipe is equal to the radial flow into the pipe. Hence, 

dq1 (x)  
r()  dx  

Assuming the flow to be radial in a plane normal to the pipe axis and applying 

Darcy's law, the radial flux, qr (x), at any radial distance r, d12..r__R, from the 

pipe axis, for a steady state flow condition, is given by 

– 2nrk—
dh = a constant= – q r (x) 
dr 

(3.6) 

(3.5) 

36 



Integrating and applying the boundary condition h(R, x) = hi, and h(d / 2, x) = h(x) 

qr (x)—  in(22R1km){hn 
–h(x)} 
	

(3.7) 

g (x) = water flux per unit length along the collector pipe. The entrance velocity v, (x) 

at x at the periphery of the collector pipe with P % of perforation is given by: 

vr(x)= 	1216(  \ –h(x)]/[Pr 
In(2R1d) -h- 

Incorporating (3.5) and (3.7) in (3.4), the differential equation reduces to 

,rvi 4 

	ln(2R/d)—d'h 
	–h(x)} 

256pk 	dx2 

Let the laminar flow persist up to length 1, and let the head at the interface of laminar 

and smooth turbulent flow be h(11 ). Both 1, and h (1,)  are unknown a priori. At the left 

end of the collector pipe, i.e. at x=0, —dh  = 0. The solution to differential equation 
dx 

(3.9) satisfying the above mentioned boundary conditions is 

h(x) ,- hn  – {ha – 	)}cosh(Cx) 
cosh(C/I ) 

(3.10) 

(3.8) 

(3.9) 

where C = 	256111c 
gpd'In(2R/d) 

Differentiating h(x) and incorporating the differential in (3.3), the flow at section x in 

the laminar flow zone is 

,(x). c ng,,d4 sinh
(
Cx) 	h(11)}  

128,u cosh(C/1 ) 
(3.11) 

At x =11 , where laminar flow becomes turbulent, the axial flow is 

„4 4 
q 	C  n61-44  tanh(C/I ){hR  – h(I1 )} 

128p 
(3.12) 
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71"  
and qb,(x ) = g P  

1/4 	"7  d19/7 
	dh` 4 / 7  

\ dxJ 4 0.158/4"  
(3.14) 

3.3.2 Head Distribution in Smooth Turbulent Flow Zone 

For analyzing flow in the smooth turbulent flow zone, a separate origin is chosen at 

the incipient of turbulent flow. In order to estimate the frictional head loss in smooth 

turbulent flow zone, Blasius equation is incorporated in equation (3.1), Accordingly, 

 

gd 514p1/4 

0.158,u"  

4/7 
	dh -4/7  

 

u = (3.13) 

    

Differentiating q,x (x) with respect to x and equating 

simplifying 

dq,,(x)  ir(x) and 
dx 

dqJx) =711- 	
gp" 4/7

d19/7 dx dhr 
dx 	7[0.158,u" 	 ) 

d 2h\ 	27rk 
In(2R/d)

r  
dxz 	

- h(x)] 	(3.15) 

H ' 	2  
—
dh Substituting H = hR  - h; - =dH • and — d h —dx2 = 

01 
dx  

in equation (3.15) and 
dx dx 

simplifying 

 

4/7 

 —  3/7  gplot 
a19/7 d21 n  n 

0.158a" 	dx2 
 

dx  ) 

 

In(2R/d) 
14k 

(3.16) 

   

The smooth turbulent zone is discretized into n number of grids of equal size & . Let 

the grid point at the origin be assigned the number 1 and the grid at the caisson be 

assigned number N . The finite difference forms of the first and second order 

derivatives for intermediate nodes [2 	(N -I)] are 

dH _ 	+1)- H (i -1) 
(3.17) 

dx 	 2& 
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d 2  H _ H(i + 1) – 2H(i) + 	–1) 
dx2 	 6,x2 (3.18) 

Incorporating equations (3.17) and (3.18) in equation (3.16), the finite difference form 

of the differential equation (3.16) reduces to 

F{110 	H(i), HO +1)1= C I  {H(i +1)– 2H(i)+ H(i – I)/ – H(i) {HO + 1) – HO – Or= 0 
= 2,3,...N – 1 

(3.19) 

where C, = (2A,0317 142R/di  gp"  14/7 
d

1917 
and m = 3 / 7 ; N –1 = /2  /Ar (Ar) 	14k 	0.158,u" 

Let 	–1),H * (i), H * (i +1) are close to the true solution. Applying Taylor series 

expansion to the function in equation (3.19) 

F(H,*_1, ,H;+1)+aF(11,_,,H„H,,I) 
ax,_, 

   

+ 
,H;+1  

5F(H 	, H1+1) 

 

  

  

aF(11,_1 ,H1  ,111+1 ) 
0H,+1  

AI-1,+,= 0 
H;_1 ,11; 

(3.20) 

  

–Substituting-the partial-differential of F(H-,--_TT 	-;,) With respect to 	H 1 +1  — 

in equation (3.20) and simplifying 

+ mH s  (i)[H* (i +1)– H s  (i – or 
2C1  –[H * (i+ 1) – H *  – or 16,0)  

+IC –mil (411*  (i + 1)– (i – or-i }AH0+ 0  

_c, [H'(i+1)_ 2H * (i)+H * (i -1)] +H * (i)[H * (i+1)–H * (i-1)]n (3.21) 

= 2,3,...N –1 
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For i = N –1, H(N) = h 1  – 	= H.  (N) and AH(N)= 0. With these substitutions in 

equation (3.21), one obtains 

ICI  + 	(N –1)[(h„ h,,) – H .  (N – 2)1m 	– 2)+ 

1-2C, – [(h R  – h,,)– H .  (N – 2)r }AH(N –1) 

–C, [(h„ – h,,,) – 2H.  (N –1)+ H.  (N –2)1+ H.  (N –1)[(h„ – h„,)– H .  (N – 2)1" 

(3.22) 

At the origin for grid 1, the finite difference form defined in equation (3.17) is 

not applicable as the head distribution is not differentiable at grid 1. The forward 

difference at grid 1 is given by: 

dH – H(2)– H(1) 
clx 	tLx 

(3.23) 

Incorporating equation (3.23) in equation(3.13)the following relation is obtained: 

u = 
gd5/ 4 p1/ 4 -4/7 1-  H(2)-  H(1)14/7  

0.158/i ii 4 	[ dx 
(3.24) 

Equating the Reynold's number—udp equal to 3000, one gets 

[05/4p"  14 / 7[H(2)- H(1)  
L0.158,u" 	L Ox 

4/7 d  
-2- = 3000 
/1  

 

(3.25) 

 

Further simplification leads to 

1/(2)– H(1)– Ax 3000714 0.158,42 	 = 0 
gd3  p 

Applying Taylor series expansion for the function in equation (3.26) one finds 

– A H (1) + A H (2) H (1) - H'(2)+ Ax 3000741 
0.158,u2 
gd3 p2  

(3.26) 

(3.27) 
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The required boundary conditions are incorporated through equations (3.22) and 

(3.27). Thus for an assumed value of smooth turbulent flow zone, the drawdown at 

N —1 grid locations are found using equations (3.21), (3.22) and (3.27). From 

equations (3.21), (3.22), (3.27), the elements of the Jacobian matrix are as follows: 

A(1,1) = —1; 

A(1,2) 1; 

A(1,3) = 0; ..., A(1, N — 2) = 0; A(1, N —1) = 0 	 (3.28) 

A(2,1) = 	+ 	(2)[H s  (3)— H s  (or i} 
A(2,2) = 2C, — [H*  (3)— 1/*  (,)r} 
A(2,3) -= 	— 	(2)[H s  (3)— H s  (or 
A(2,4),..., A(2, N — 2), A(2, N —1) = 0 

A(3,1) = 0; 

A(3,2) = 	+ mH (3)[H s  (4)— H*(2)r 1 }; 

A(3,3) = 2C, — [H.(4)— H .  (2)im  

A(3,4) = tC, mH .  (3)[11 (4) — H (2)1" 

A(3,5) = A(3,6) = 	A(3, N —1) = 0 

A(N-1,1-)=A(N-1,2)= - 	 

A(N —1,N — 2) = 	+ mH .  (N —1)[(hR  h,„)— H s  (N — 2) 

A(N —1,N —1) 	2C, —[(hR  —h,,)—H'(N-2)]m }  

2  
E(1) = H s  (1)- H.  (2)+ Ax 30007'4 0.158p2  

(3.29) 

(3.30) 

(3.31) 

gc13  p2  

E(2) = —C 1 [H (3) — 2H' (2) + H (pi+ H (2){11 (3) —H s(1)I n  

E(3) = —C [II (4) — 2H ' (3) + H s  (2)1+ H (3) [11 (4) — H s  (2)r 
E(N —1) = —C, 	h,,)-2H e (N— 1) + (N —2)1+ H s  (N —1)[(hi, — h,E )— H s  (N — 2) 

(3.32) 

Let the column matrix [B] be defined as: 
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[B] = {AH(1), AH(2), AH(3),...., 	— 2), AH(N —1)1' 	 (3.33) 

The set of N —1 equations including one at x = 0; and at x = (N —1)Ax in matrix 

notation are expressed as: 

[A] [B1= [E] 	 (3.34) 

Hence, 

[B] [E] 	 (3.35) 

The initial guessed values 11* 	= 	—1) are improved by adding AH(i) to 

them and the process is repeated till the desired accuracy is attained. 

3.3.3 Determination of length of laminar flow zone 

The Reynold's number at the end of laminar flow zone is equal to 3000. Thus, from 

equation (3.12), the axial velocity is 

Pd 
2 

g  u = C 	tanh(C/1  )H(11 ) 
32,u 

The corresponding Reynold number is 

udp 
= C 

gp2d3 
tanh(C/1 )H(11  )=.- 3000 

32p2  

Replacing H(1,) by H(1) in equation (3.37) one finds 

2d3  
C 

gp

p2 	
/ \ \ tanhkC/1 )Hk1)= 3000 

32 

(3.36) 

(3.37) 

(3.38) 

or 

\ /4
2  96000  

tanh(C/,)= 	„ 
Cgp`d ' H(1) 

(3.39) 

or 
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1+ 
/ = —

1 In 	Cgp2c13  H(1)  
2C

1 
 112   96000  
Cgp2 d 3  H(1) 

/1 2  96000 \ 

(3.40) 

The length, L, of the collector well is: 

L = li +(N —1)Ax 	 (3.41) 

3.4 RESULTS AND DISCUSSION 

The variations of drawdown, axial flow, axial velocity, and entrance velocity along 

collector pipes having diameter ranging from 0.2m to 0.5m and lengths varying from 

50 to 80m have been estimated using the following set of data. 

hR  — h. =10m; hydraulic conductivity 	k =lm / day ; density of water 

p = 998kg /m3  ; viscosity of water ,u =10.1x104  Ns I m2  ; radius of conceptual 

cylindrical flow domain R =15m . 

The following procedure is adopted to obtain numerical result. 

(I) A numerical value to length /2  of the smooth turbulent flow zone is assigned. 

(2) The turbulent flow zone is discretized into 20 equal size grids. 

(3) The left end of smooth turbulent flow zone is assigned grid number 1. The 

right end grid of the turbulent flow zone is 21. 

(4) An 	initial 	guess 	of 	Ir(i) is 	made 	using 	a 	relation 

	

H * (i)= 0.9(h r 	)+ 0.9 i /( i.);i =1,...20 

(5) The initial guess values are improved till OH(i) 	. A sample result is 

presented in Table 3.1. 

(6) For the assumed value of/2 , /1  has been computed and corresponding L is 

found. 
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The variation of length of collector pipe, L (=11+12) with the turbulent flow 

length, 12, for different diameter of pipe is presented in Fig.(3.2). As seen from the 

figure for a collector of given diameter, the laminar flow zone varies very little with 

length of the collector. For example, for d=0.3m, 12  = 20m, the length of laminar 

flow zone /, = 4.530m . Ford= 0.3m, 12  = 80m, the corresponding /, = 4.532m . The 

length of laminar flow zone varies with the diameter of the pipe. For example for d 

0.2m, 12=80m, //=3.293m. For a given length of a collector pipe, as the diameter is 

increased, the laminar flow length is increased and turbulent flow length is decreased. 

Variation of drawdown along the entire length of collector pipe for 

L=//+/2=50m and diameter d=0.3m is presented in Fig.(3.3). The maximum head 

difference, i.e., difference of heads at x=0, and at x=50m, is 0.00085m only. For 

d=0.2m the corresponding head difference is 0.0050m. Thus the entire length of 

collector with diameter more than 0.2 m can be regarded as a constant head boundary. 

Variation of flux per unit length along the length of the collector is presented 

in Fig.(3.4) for L=50 m and d=0.3 m. At x = 0, the flux per unit length is 

13.643 m3  I day I m and at x = 50m , the flux per unit length is 13.644 m3  I day I m. The 

difference in flux per unit length is 0.001 m3  /daylm . The corresponding values for d 

=0,2m are 12.533, 12.540, and 0.007 m3  I day I m. Thus for collector with diameter 

0.2m and more both uniform head boundary condition or uniform flux per unit length 

is applicable. 

Variation of axial flow, axial velocity, and Reynolds number along the 

collector pipe are presented in Fig.(3.5), Fig.(3.6), and Fig.(3.7) respectively for 

L = 50m and d = 0.3m. At the section where the flow changes from laminar to 

turbulent i.e. at x = 1, = 4.53m, these graphs show kinks at the junction. This is due to 
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the fact that the graph of head with x is not differentiable at x=11. The kink is not 

visible in Fig.3.3 as the variation in head along the collector is insignificant. As seen 

in Fig3.7, at x =11 , the Reynold Number=3000, which verifies that the boundary 

condition at x = /I  been implemented. 

The variation of maximum axial velocity, which occurs at x = L, i.e., near the 

caisson, with length of collector is presented in Fig (3.8) for different diameters of the 

collector. The maximum axial velocity increases with length of the collector and 

decreases with increase in diameter. Axial velocity increases more rapidly with 

decrease in diameter. The limiting maximum axial velocity is 0.9m/sec (Driscol, 

1987). Thus with pipe diameter 0.2 and 0.3m and above, the axial velocity can be 

contained within permissible limit. 

The entrance velocity has been computed assuming 20% perforation. The 

variation of maximum entrance velocity, which occurs at x = L, with diameter of the 

pipe is presented for various length of pipe in Fig.3.9. The limiting value of entrance 

velocity is 3cm/sec. Thus, with pipe diameter of 0.2 m and above, the entrance 

velocity can be contained within allowable limit for the normal length of collector 

pipe adopted in a collector well. 

Variation of specific capacity of a collector well with diameter is presented in 

Fig. (3.10) for different lengths of pipe. Specific capacity increases with increase in 

length and diameter of collector pipe. 
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Table3.1. Drawdown H*(i) in turbulent flow zone at different nodes, and 
corresponding function F(H*(i)) and AH(i) for d=0.3m, /2=45.5m, and Ax=2.28m 

Node (D x (m) F(H'(i) AH(i) H*(i) 
1 4.53 1.7600E-16 5.7300E-16 9.9991487 
2 6.81 -3.9300E-11 7.4800E-16 9.9991504 
3 9.08 5.4300E-11 -5.3200E-16 9.9991538 
4 11.36 1.7900E-12 -1.1800E-16 9.9991596 
5 13.63 -4.0600E-11 4.3500E-16 9.9991681 
6 15.91 1.2500E-11 -3.6200E-16 9.9991798 
7 18.18 4.0600E-11 -8.2100E-16 9.9991951 
8 20.46 -9.2900E-12 7.6000E-17 9.9992145 
9 22.73 -2.2100E-11 7.3700E-16 9.9992382 
10 25.01 -1.0900E-11 6.9600E-16 9.9992668 
11 27.28 1.0500E-13 2.8000E-16 9.9993006 
12 29.56 7.6900E-12 -1.5900E-16 9.9993399 
13 31.83 4.3200E-12 -3.6500E-16 9.9993851 
14 34.11 3.2200E-11 -4.3600E-16 9.9994366 
15 36.38 -3.9700E-11 5.7600E-16 9.9994946 
16 38.66 -4.8900E-12 3.0200E-16 9.9995596 
17 40.93 2.9300E-12 -1.4900E-16 9.9996319 
18 43.21 4.0600E-11 -5.2000E-16 9.9997117 
19 45.48 -6.1100E-11 4.5300E-16 9.9997995 
20 47.76 4.9500E-11 -5.8200E-16 9.9998955 
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3.5 CONCLUSIONS 

Barring for a small length near the tip of collector pipe (free end), the flow condition 

inside the pipe is turbulent. Collector pipe of diameter 0.3m-0.4 is generally adopted 

and for collector pipe with diameter 0.2m and above, the total head loss is very 

marginal. Therefore, for steady state flow condition, either Dirichlet boundary 

condition or uniform flux condition can be applied without introducing appreciable 

error. Dirichelt boundary condition is to be applied for solving Lalace equation for 

steady state flow condition. For unsteady state flow condition, the uniform flux 

boundary condition can be adopted conveniently. 

For collector pipe with diameter ranging from 0.2 to 0.4m, the entrance 

velocity and axial velocity are contained within permissible limit for normal lengths 

of pipe laid in a radial collector well. 
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Chapter 4 

ANALYSIS OF FLOW TO 
AN INFILTRATION GALLERY 

4.1 INTRODUCTION 

In some groundwater basins, the alluvial deposit in the vicinity of a river may contain 

boulders. 	Pushing horizontal radials into such deposits is very difficult. In such 

aquifers, infiltration galleries are laid at a shallow depth after making an open 

excavation. A gallery may be laid under the riverbed or in the vicinity of the 

riverbank. A significant quantity of water can be pumped from an infiltration gallery 

because the hydraulic conductivity of the natural material and the filter pack 

surrounding the screens is so high that recharge is sufficient to meet required pumping 

rate with permissible draw-down. A gallery laid under a riverbed is oriented 

perpendicular to the river flow direction whereas a gallery installed near the 

riverbank is placed parallel to the river i.e. perpendicular to the groundwater flow 

direction. The galleries located adjacent to a water body usually receive water that 

has lower turbidity and fewer bacteria than bed-mounted galleries, because the 

water gets filtered more extensively (Ray et. al, 2002). Moreover a gallery placed 

under a riverbed is to be safeguarded against scour problem. 

In alluvial plain, rivers generally meander. In such situation, specific capacity 

of a well located near the concave side of the meandering reach will be more than that 

of the well located on the convex side. Conceptually, a well located in the concave 

side of a meandering river reach can be considered as a well at the center of an island. 
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An island provides a favorable setting for high groundwater yields as the well located 

in an island can potentially capture surface water from several directions. 

In this chapter, the objective is to analyze flow to an infiltration gallery located 

(a) near a meandering river reach, and (b) near a straight river reach. For an 

infiltration gallery located near a straight river reach, three possible orientations of the 

gallery are considered. These are: (i) gallery perpendicular to and towards the river, 

(ii) gallery perpendicular to and towards landside, and (iii) gallery running parallel to 

the straight river reach. Further, it is desired to find the travel time of a tracer along 

the shortest ground water flow path from the surface water body to the infiltration 

galleries. The same has been found estimated for all the above mentioned orientation 

of the infiltration galleries. 

4.2. AN INFILTRATION GALLERY NEAR A MEANDERING RIVER 

Statement of the Problem 

An infiltration gallery of radius rw  and length 2/ is located at a distance R from a 

meandering river reach or in the concave side (or located at the center of an island of 

radius R ) in a thin aquifer of thickness T as shown in Fig.4.1(a). The caisson is 

located at the middle of the gallery to contain the axial velocity within the permissible 

limit. The water level in the river is at a height hr  measured from the middle of the 

thin aquifer which is assumed as the datum. The aquifer thickness being small, the 

flow is occurring in horizontal x-y plane. The collector well (caisson) is pumped at a 

constant rate Q. A steady state flow condition is attained. In the steady state condition, 

the water level in the caisson is at a height h., above the datum. It is required to 
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quantify the specific capacity of the gallery and minimum travel time for river water 

to reach the infiltration gallery for specified R, r,„, and 1. 

The following assumptions are made in the analysis: 

(i) The aquifer is homogeneous and isotropic. 

(ii) The aquifer thickness is small and the flow is taking place in a horizontal planes. 

(iii) The flow is in steady state. 

(iv) The gallery intercepts the entire thickness of the aquifer. 

(v) The meandering river reach forms part of a circle. 

(vi) Interference of the caisson on the flow characteristics is negligible. 

Analytical Solution 

An analytical solution is obtained by solving the Laplace equation using conformal 

mapping technique. Under steady state flow condition, the governing equation for 

two-dimensional flow is the Laplace equation which is written as 

ax~520 = 0 
(4.1) ay 2 

where, 0 = is a velocity potential function and is defined as for sheet flow (Hunt, 
1983) 

= —kT(T• I + Y)+ C 	 (4.2) 

where, p=water pressure; y. = unit weight of water; Y=elevation head assumed as 0 

for present case; C= a constant. 0 = real part of the complex potential w which is 

defined as w = 0 + iW , where, yi is a stream function. The conceptualized flow 

domain of the infiltration gallery is shown in Fig.4.1(b). The flow domain is 

symmetrical about y-axis. Therefore, AB and DE are streamlines. Let yi = 0 define 

the streamline AB, and yi = +q define the streamline ED. q is the rate of flow entering 
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Figure 4.1(b): Flow Domain in z(=x+iy) plane (plan) 
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direction of x at x= 0 and –1 ysl. With the assumption of cu = +q along ED and 

= 0 along AB, —aw is negative along the potential DB. The assumption is in 
ay 

a0 ow conformity with Cauchy- Reimann condition i.e. — = 	. Assuming the constant 
ax ay 

C = –Tkhw  the.complex potential plane for half of the flow domain is shown in Fig 

4.2. For the present problem, the Laplace equation is to satisfy the following boundary 

conditions: 

0 = –Tk(h, –h.) along x2  + y 2  = R 2 	 (4.3) 

and, 

0 = 0 along (R – 1) y (R + 1), and x = 0 	 (4.4) 

Inverse flow domain 
The simple connected flow domain is comprised of a circular part EFA and a linear 

part ABCDE intersecting at points A and E. One of the points can be chosen as origin 

to apply inverse mapping for converting the circular part and the straight line part 

passing through origin into straight lines in inverse flow domain so that Schwarz-

Chirstoffel conformal mapping technique is applicable. 

The inverse mapping is given by 

1 	x–iy x 	y  
z x+iy x 2  +y 2  x2  +y 2 X

2 
+ y 2 (4.5) 

Accordingly,the inverse flow domain is shown in Fig.4.3. As per equation (4.5) point 

– i 
A (z=i2R) is mapped onto point C = — 2R ; point B (z = i(R +1)) is mapped onto point 

= 	  
R +I 

; and point D (z = i(R ID is mapped onto 4' = 
R-1 

.The inverse flow 

domain has two vertices A and E, the latter one lying at infinity. 
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Mapping of 4  plane onto t plane 

Conformal mapping of the inverse flow domain to the lower half an auxiliary 

t(= r + is) plane (Fig.4.4) is given by 

d  M  
dt (0-0" 

(4.6) 

The points E, D, B, A, F have been mapped onto ± co,—d,-1,0,f respectively on real 

axis of 	r + is) plane. Integrating 

= —2M(—t)" + N 	 (4.7) 

where Mand N are complex constants. For vertex A, t = 0 and c = 
2R 

. Hence, 

N 	. 
2R 

For point B, t = —1, and 4-  = 	 . Applying this condition in equation (4.5), and 

incorporating constant N, the constant M is found to be 

M = 

The mapping 

Using equation 

d = 

b =1 

R —1 
(4.8) 

(4.9) 

(4.10) 

(4.11) 

41?(R +I) 

function reduces to 

R-1 
( 412  — 

2R(R +1) 	2R 

(4.9), the parameter d and b are found to be 

R+1)4  
\ R —1 ) 

Mapping of w Plane onto t Plane 

The conformal mapping of the complex potential plane onto the 't' plane is given by: 
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Fig. 4.3: Inverse flow domain in 4 	11) plane. 
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W = M, f 
• ( -d - 

)112( 1 	0112( 0112 	kT(hr  - + iq 	 (4.12b) dt 

w=M, 	  
(-d - t)112 (-1-1)"  (0 -0112  

dt 
(4.15) 

or 

1 dw 
=  

dt 	(-d - t)"(-1 - t)u2  ( -0
'12 

(4.12a) 

For point D, t = -d and w=iq. Hence, 

iq = M, 	  
1(—d - t)"  ( 

dt-

1)112  (-t)` 
kT(hr - h.)+ iq 	 (4.13) 

Integrating (Byrd and Friedman, 1971) and simplifying, the constant M i  is found to 

be 

d 112 kT(hr -h„,) 
M = 

	

	 (4.14) 
/j)  

where 4r/2, 1/J/)=Elliptical integral of the First kind with modulus1/1:i The 

elliptical integral of the First kind with modulus k i  is defined as 

fr/2 	dO 
12,10= 

k,2  sin 2  0 

For —d t 5 -1 , the relation between w and t plane is given by: 

For point B, w=0 and I = -1. Applying this condition in equation (4.15) 

dt 
0 = M 	 +iq 	 (4.16) or(_1)1/2 (d+01/2 (_ i  _ 01/20 _01/2 

Integrating and simplifying 

F(r/2 V(d-1)/d) 
q = kT(h, - h,,) 

FVr 12,1111 d 
(4.17) 
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F 	1 
{1+11RJ 

1-11R1  

/,.) 	 1 -1 / 
z ' - 0 +1/R j 

	= 2 
kT(h,-h„,) 

F 

(4.19) 

The total flow to the gallery is given by: 

4r12,11(d -01d) 
Q ,2kT(17, h,„) 

FV1- 12,1111d 
(4.18) 

Substituting the value of parameter d, the relation between the dimensionless specific 

capacity of drainage gallery and dimensionless length of gallery is found to be 

Minimum Travel Time for a Tracer 
The shortest distance between the river and the gallery is AB. Also, he velocity at 

point B is infinite. Therefore, the travel time for path AB is derived as follows. 

/ dw 1 dw dt 
dz T dt dz 

From equation (4.5) 

dc 	 1 
dz 	z 2  

Incorporating equations (4.12a), (4:6) and (4.21) in equation (4.20) 

. 	{c1"k(h,. -h.) 	1 
u = 

2FV12,1/) (-d t)"(-1-0112 (-01/ 2  

{

4R(R+1)( 01,2 }1 12 1 
i(R-l) 	z 

Ix 

(4.20) 

(4.21) 

(4.22) 

For -1 S t S 0 , equating real parts and imaginary parts, the components of velocity 

are found from equation (4.22) to be 

u = 0 	 (4.23) 

and 
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— l) 
}(d +01/2 (1+ 01/2  y'dy (4.25) 

R(R + I) 

v= 
d'i2 k(hr 	1 	114* + 1)11  1 
24/12,1/VW) (d +6'2 0+ 6 /2  jt (R-1) j Ly2i (4.24) 

The negative sign indicates that water is moving in the negative direction of y. 

The total travel time r is given by: 

	

R+I dy 	R+1{ 2F(TC/2, 1 Rja)  
= f 	= —s  

	

ViS 	2R  d k(h r  — 

where S =porosity of the aquifer medium. 

Substituting z = iy for flow path AB in equation (4.9)  

 R-1  ( 4/2 	i 

z iy 2R(R +1) 	2R 

Solving for t 

t=4,_2120+,,Ry 
y 

Incorporating the value oft from (4.27) in equation (4.25), and simplifying the 

equation, we get 

kr(hr  —h,„)  = {  2F(r/2,1/J/)}{  —//R)  }{d 	2R \2(1+  II R) 2  
SR2 	 c1112 	4(1+//R) 	y 	l—///?) 

}I/2 

x 

(4.26) 

(4.27) 

{1— 
2R)

2
(1+//R 2} 1/2  1y1 

R 
2  dy 

Y 	 tRi  
(4.28) 

Let the variable y I R be replaced by another dummy variable and —dy by dz. 

Incorporating these substitutions in Eq. (4.28) the dimensionless minimum time factor 

is found to be 
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kr(h, 	h„,) 
SR 2  

2F(t/2, /-Jc7)}{0_„, d 0 2121(1+1/R)21/2 
X 

 d"2 	40+I/R) 	 1 -IIR (4.29) 

2 112 
N ( 114-21 ,r)2 1+11R 	z2dx 

1-1IR)  
E 0 

Results and Discussions 

The variation of specific capacity with 1/R is presented in Fig. 4.5. Specific capacity 

increases rapidly with the increase in the length of collector pipe. But for 1/R ranging 

from 0.2 to 0.5, the specific capacity is linearly proportional to the length of collector 

pipe. Beyond //R=0.5, the increase in yield is primarily due to closer proximity of the 

collector pipe to the river. However, the collector pipe is to be laid at a safe distance 

from the river. The safe distance is to be ascertained on the basis of the minimum time 

a tracer (a micro organism) would take to travel from water body to the collector pipe 

using Eq. (4.29). The minimum dimensionless travel time factor has been presented in 

Fig. 4.6. Travel time is inversely proportional to drawdown, hydraulic conductivity 

and directly proportional to porosity of the aquifer medium and square of the distance 

of the river from the caisson. Smaller the drawdown and conductivity longer the travel 

time and more the opportunity time for filtration. The travel time should be greater 

than the survival time of pathogenic bacteria in concern. A sample result is presented 

as below: 

Illustrative Example: 

Length of infiltration gallery, l = 50m; 

Total length of infiltration gallery, 21= 100m; 

Radius of island, R = 150m; //R=0.33; 
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Aquifer thickness, T =7.5 m; 

Diameter of gallery=0.32m; Drawdown, hr  hw 6m; 

Hydraulic conductivity, k= 10m/day; 	 - S=0.2 

For 1/R=0.333, the non dimensional flow (Fig.4.5), 	— 3.5 
kT(h — h,„) 

or 

Q=3.5 x kT(h r  — h„ ) =1574m3/day. A correction factor needs to be applied to Q as 

the infiltration gallery (collector pipe) system partly intercepts the thickness of the 

aquifer. The correction factor, Cl, has been derived (given in appendix D) for the case 

where the infiltration gallery is running parallel to the river. The same correction 

factor has been applied here. Hence , the modified flow is 

Q = C, x1574 =1023m 3  /day, where C1=0.65 

The corresponding non dimensional time factor from Fig.(4.6) is 
kr(hr — h„) = 0.66 . Sle 

For the above set of data, the minimum travel time, r is 49.5 days. Thus, 

Bacteria will take 49.5 days to reach from point A to point B, i.e., 100m. The average 

travel time of pathogenic bacteria is 30-40 days. Hence, the infiltration gallery is 

located at a safe distance from the river. 
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4.3 AN INFILTRATION GALLERY NEAR STRAIGHT REACH OF A 

RIVER 

Flow to infiltration gallery has been analyzed for different orientation with respect to 

a straight reach of a river, such as, (i) a gallery perpendicular to and aligned towards 

the river, (ii) a gallery perpendicular to and aligned towards landside, and (iii) parallel 

to the river. 

4.3.1 Flow to an Infiltration Gallery Aligned Perpendicular to and 

Towards the River 

Using conformal mapping technique, Hunt (1983) has derived analytical solution to 

compute yield of a single collector well. The minimum travel time of a tracer from a 

straight river reach to the caisson could be derived making use of Hunt's derivation. 

In this chapter the solution has been rederived and the travel time has been found. 

Solution to Laplace equation pertaining to flow to a single collector is derived 

assuming sheet flow domain and using conformal mapping. Schwarz Christoffel 

mapping the steps of mapping are shown in Fig.4.7. Vertex D in z plane (Fig.4.7 (a)) 

only takes part in mapping of z plane onto t plane. Points A, B, C, D, A have been 

mapped onto -00, 0, c, 1, co respectively on real axis of an auxiliary t plane. 

Mapping of z (=x+iy) plane onto t(=r+is) plane 

The relation between z plane to t plane is (Fig.4.7(b)) 

and 

dz 	 
dt 0_4/ 2  (4.30a) 

z = —2A4(1—t)'' 2 	 (4.30b) 
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Applying the condition at point B for which 1=0, and z=0, N=2M. For point D, 1=1 and 

z= R, hence, M= R/2, and 

z = R11 — — t)'/21 	 (4.31a) 

and 

dz 
dt 	_ ty 12  

For point C, z=1, and t=c. Applying this condition in (4.31a) 

c = 1 
1)2 

— 

(4.31b) 

(4.32) 

Mapping of w(= 0 + i v) onto t=(r+ is) 

The complex potential w(= 0 + iv) for half of the flow domain is shown in Fig.4.7 

(c). The velocity potential 	is defined as (Hunt, 1983) 

=.—k7(+Y)+C 	 (4.33) 
rw  

Assuming C = —kTh„,, the potential along the river is — kT — h,„ . The mapping of 

the w plane onto upper half of the t plane is given by 

	

dw 	 MI 	 (4.34) 

	

dt 	— tY " — "(0— t)" 2  

dt — h w ) w=M i  f 	  
(1 — tY"(c — tr 2  (0 — 	2 	

kr(17,, 
 

(4.35) 

For point B, t = 0 and w=0. Performing the integration (Byrd and Friedman, 1971), 

and solving for M1 

kT(h
r 	

h
w

) 
M,= 

 

2F(-
11-
2

, 1 — 
R 

(4.36) 
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Infiltration Gallery 

A.„ 

A 	 IC 1
D 

 -co 	0 

(a) Physical flow domain in z(=x+iy) plane 

is 

+co 
A 

(b) Auxiliary upper half t(=r+is) plane 

(c) Complex potential plane w=(130+iv) plane 

Fig. 4.7: Steps of conformal mapping for an infiltration gallery aligned 

perpendicular to and towards a river 
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For 0 	c 

w = 	f 6,0 _ty,2(c_dt
)

,2(0  	' r  
(±)i g 0 - 4" (c - )" t u  412 (4.37) 

For point C, t =c and w=iq. Performing the integration, and applying the condition 

at point C, q is found to be 

	 2 

kT(12, -h.) F E 
2 	R 

q = 

 

(4.38) 
F(,1--

R
1 ) 

2  

Total flow to the infiltration gallery, Q= 2q. 

Minimum travel time 

The minimum travel time for stream water to reach the infiltration gallery would 

occur along the path CD. The Darcy velocity is given by 

I dw I dw dt 
u - iv = 

	

	 (4.39) 
T dz T dt dz 

Incorporating —
dw 

and —
dt.

n Eq (4.39), and simplifying 
dt 	dz 

U - iV = 
k(hr  

R 	
2 
 1- 

R
) 

1 

(c—t)" (0 t)i / 2 (4.40) 

Along the stream line CD, the component of velocity in y direction, v = 0 .1-lence, 

-k(hr 	1 
u = 	  

RFI 5  1- R1 
2  

2 2 

Replacing t by 1- (1- 
R 

 I = 1- (1- -x-R ) in Eq (4.41) 

(4.41) 
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-14h, — h)  u= 	 
R1- 1  

2 	R 
(1 	 )2  

R ) A 
1 — c — 1 — 

x 
)2  

(4.42) 

R 

The negative sign indicates that the flow is in negative direction of x. The minimum 

travel time i by a conservative pollutant to travel from x = R to X =1 is given by 

F —
7t

,1 

i dx 	.1 SR \ 2 	R1  
(u/S) — 	Ic(hr —

hi  
{

1—
(

1— 
x

R 

 2 
1 — C —(1

-2 
dx (4.43) 

) 	
R 

2 
Replacing 1-c= (I— 

R  , 
	

R 
= X,dx = —RdX , equation (4.43) reduces to 

F(
lr  
— , 1 — 1 — 

1-  = SR 2 	2 	R  
k(hr  —h,v ) 

  

(1 — X 2 ) 	 -X 2  dx 	 (4.44) 

The elliptic integral appearing in Eq.(4.44) has been tabulated by Byrd and Friedman 

(1971, p60, no. 220.05; p213, no. 361.19). The elliptic integral is evaluated applying 

a substitution sn 2
V = 	

— / /R)2 — X2 

—1/R)2 (1—X 2 ) .  

reduces to 

Incorporating the integral, Eq.(4.44) 

	

F
( 71' 	1) 

	

\ 2 	R ) 	1 
r = SR' \ 

k(hr  —h.) 3 

(1_1  2 	( )}E19,1-1.1 ( 1\2 	( 1  
1-- 	1-1 

) 	 j 	 L 9 \  — R 	\ R J  R) 

 

I( 	)2\ cos9   1 (1 
2 	 

1—(1--) sin ip 

  

- y=702 

   

2 
+ (1— — 

) 
sin ce 1 

1 

  

14 1\2 2 
1 --

R 
 sin 

  

    

   

- v=0 

70 



(4.45) 
After implementing the limits of integration 

\ 2 
r = SR 2  F(52 1—  —R1)  1 1+11--1)

2 

Efl" 11111 	 j F { 1.4 (14)} k(hr -h,,,) 3 	R) 	2 	R) 	 R 	 z' 	A 

(4.46) 
Thus, non-dimensional time factor, 	is given by 

r k(h, — h„,) 
= 	

SR2 

F 
 2 

.-
3 
 — 1-- 

1 (Ir 

R, 
(1--1) 2 }E4(1 --1 )-11- 

R 	 R 

2} 

F{co,(1— )} 

   

(4.47) 

Results and Discussions 

Variation of dimensionless yield with 1/R is presented in Fig.4.8 for an infiltration 

gallery near straight reach of a river and aligned perpendicularly towards the river. 

As seen from the figure, the yield of the collector pipe increases linearly with length 

of the pipe for 0.2 //R 0.5. For 0 	0.2, and 0.5 ._11R1 the yield 

increases nonlinearly with length of pipe. Beyond II 	0.5 , the rapid increase in 

yield is due to close proximity of the water body. 

As noticed from Eq. (4.46), the minimum travel time is directly proportional 

to square of the distance of the tip of the gallery from the river, and porosity of the 

aquifer material. Travel time increases with increase in distance of the caisson from 

the river and decreases with increase in length of the gallery. The minimum travel 
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time is inversely proportional to drawdown in the caisson and hydraulic conductivity 

of the porous medium. 

7 
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1 

0 	 

I 

0 0.1 0.2 0,3 0.4 0.5 0.6 0.7 0,8 0.9 1 

1/R 

Fig.4.8: Variation of non-dimensional flow, 	 
kT(h r  - 

h) with //R for an 

infiltration gallery aligned perpendicular to and towards a river 
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for an infiltration gallery aligned perpendicular to and towards a river 

4.3.2 Flow to an Infiltration Gallery Aligned Perpendicular to the 

Direction of River Flow and Towards Landside 

In order to provide appropriate filtration opportunity, an infiltration gallery may be 

laid towards the landside from the caisson. For such case, the Schwarz Christoffel 

mapping is similar to that where the gallery is oriented towards the stream from the 

caisson. The step of mapping is shown in Fig. 4.10. The physical flow domain 

(z=x+iy) is shown in Fig.4.10 (a). 

Mapping of z plane onto t plane 

The mapping function between z and t plane( Fig.4.10(b)) is 

dz m  1  
dr 	V(1— r) 

(4.48) 
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W MI 	1)1/2 t "2 	t y/ 2 0 01/2 
dt 

(4.59) 

z 	+ N 	 (4.49) 

Applying the correspondences between t and z planes at points D, C, B, constants M, 

N, and parameter c are found and the following mapping functions are obtained: 

dz R+1\   1 

 

(4.50) 

(4.51) 

(4.52) 

dt 	2 1_01 / 2  

z = R —(1? + 	1 — t) 

t =1 R— z)2  
R+1 

c =1 	1 , 	 (4.53) 
(1.+//R)2  

Mapping of w plane onto t plane 

The relation between w(= 0+ iv) and t plane( Fig.4.10( c)) is 

dw 	 MI  
dt 0-4/2(c-4'2 0 —412  

and 

dt w= 	  kT(hr —h„,) 
— 2  (c— 4 /20 —4 /2  

For point B, t =0 and w=0. Applying this condition 

kT(hr —h) M I =  ( 
2F , 

\. 2 	I 

(4.54) 

(4.55) 

(4.56) 

For 0 	c 

For point c, w=ig. Taking (— 1)1/2  = 
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I 

(a) Physical flow domain in z=x+iy plane 

S 

-co 	10 	 1 	+co 
A 	B 	 C 	 D 	A 

(b) Auxiliary upper half t(=r+is) plane 

D 

A B 
•	  

kT(1- -11,) 

(c) Complex potential w 	+ iy)plane 

Fig.4.10: Steps of conformal mapping for an Infiltration Gallery Aligned 

Perpendicular to the Direction of River Flow and Towards Landside 
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F 
7r 	

1 	1  
2' 	0+///02 )  

q = kT(h r —h„,) 	( ir 	
1 

'1+//1?) 

(4.60) 

Total flow to the infiltration gallery ,Q=2q. 

Minimum travel time 

The travel time for river water to reach the gallery is minimum for the pathline CD. 

For computation of minimum time, dimension of the caisson is neglected. 

1 dw 1 dw dt 
u —

. 
 = 	=--.— 

T dz T dt dz 

_ 1 	kT(h,, —h„) 	1 	2 0 — tY" 
T 2F(Ir 12, V1 c)(0—t)' /2 (c—t)" 2 (1—t)"2 R +1 

Along path CD, z=x, and v=0 

Substituting t from Eq (4.52) in Eq(4.61) one gets 

(4.61) 

u= 

 

k(h r  — h„,) 
(4.62) 

 

1/2 2 	}1/2 

1 	 
(R-1  

R+1 )} 	R +1 

 

1  ) 
(R+1)F 7rI2, 

1+1/R 

   

The travel time to cover distance CD is found to be 

2 

S(R+O 7r  ff, 
 1  laR-1}1/2 

	 2 { 
1—c  ( R-x\ 

r 

 — , 
dx 	 2 1+//R) 	R+1 

(u/S) 	 k(hr  —h,v ) 

1/2 

(4.63) 

let —
R — x 

= X 
R+l 

— dx =(R+ 1)dX 
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S + 	F(/1-  /2 , 	 
1+11R  IT 

	

—h,v) 	
0 {(

1 XT{ 	 X 2}} dX 0+110 	 (4.64) = 
1/2 

With these substitutions in equation (4.63), the travel time is found to be 

Following Byrd and Friedman (1971, p 60, 220.05) the above integral is derived. The 

minimum travel time is found to be 

S(R+/Y F( 17. 	1  
= 	  

2 '1+//R  r 	 X 
3417, —12„) 

[{ 
, 	1  2}E Ir  f  1  	1 	 1+ 

 (2 ' 0+1/10} { (1+11/R)2 }F{r2 1 1+111R}1 

The dimensionless time factor is 

(4.65) 

rk(hr hw  ) 

\2 1E [1 
.1 r 

F  
(2

,  

= 
S(R 

= F 
(

-7T  

+1)2  

I  [(1 

3 	\ 2 '1+//R kl+//R) 
f 

'kl+//R 0+11RI2 ) 1+//R) 

(4.66) 

Results and Discussions 

Variation of dimensionless yield of the infiltration gallery, Q 	with ,  
kT 

dimensionless length IIR is presented in Fig.4.11. Beyond 11R> 0.5 the variation of 

yield with II R is very nearly linear. The increase in flow is due to mainly increase in 

flow area. The variation of dimensionless minimum travel time with II R is presented 
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in Fig. 4.12. Though the minimum path remains same irrespective of the increase in 

gallery length, the minimum travel time reduces as flow from the river is increased 

resulting in an increase in flow velocity. The minimum travel time reduces with 

increase in gallery length rather sluggishly where as the travel time reduces sharply 

when the length of infiltration gallery is increased towards river side. 

3.5 

0.5 

0.0 
0 	0.5 	1 	1.5 	2 

I/R 

	

Fig.4.11: Variation of non dimensional flow, 	Q 	with //R an infiltration 
— h,,) 

gallery aligned perpendicular to the direction of river flow and towards landside 
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Fig.4.12: Variation of non dimensional time factor, 

Tk(hr 
	 with //R an 

S(R +1)2  
infiltration gallery aligned perpendicular to the direction of river flow and 
towards landside. 

4.3.3 Flow to an Infiltration Gallery Running Parallel to a River 

An infiltration gallery near a riverbank is generally constructed parallel to a straight 

river reach at a safe distance from the river. Assuming condition of sheet flow, and 

applying conformal mapping technique, yield of an infiltration gallery running 

parallel to a straight river reach has been quantified by Hunt (1983). Mishra (20041(0 

has further simplified Hunt's solution. Using Mishra's solution the minimum travel 

time is derived in this chapter. 

An infiltration gallery running parallel to a river is shown in Fig.4.13 (a). The 

thickness of the aquifer (T) is small and the flow is occurring in x-y plane. The 

radius of the gallery is rW  and the length of half of the gallery is 1. 	It is required to 
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solve the Laplace equation for the flow domain in the x-y plane and derive the 

minimum travel time of water from the river to the caisson. 

Mapping of z plane onto t plane 

According to Schwarz-Christoffel transformation the conformal mapping of the flow 

domain, shown in Fig.4.13 (a), to the upper half of the auxiliary 't' plane, shown in 

Fig.4.13 (b), is given by (Harr, 1962): 

(t–c) 
z = M j  ,, 	,,, 	,,,dt+N 

t"(d –0-0-0—  0 

t  /1/2 	 t 	 dt = M 
(d – 01/2(1 – tr 

, 
 ` 
,,, di 	Mc f 	  of i/ 2 (d  _ 1)1/ 2 (1 _ 1)1/ 2 o  

+ N (4.67) 

M and N are constants. Since for t = 0, z = 0, hence, N = 0. Integrating (Byrd and 

Friedman, 1971, p72, 233.00 and 233.03, 310.02) and considering point D, for which z=0 

and t =d, one finds 

d 
2dt  

Er I 2, cn I  c
= 

f . 

d 	

g(d –0'12(1-0112 
–1 	

a 
 

f t1/2 (d –t)"2(1-612 	
F(71 - 12, 4- ) dt  

F(K/2,,ici) and E(ir / 2, JO are complete elliptic integrals of the first kind and the 

second kind with modulos Ag . For an assumed value of d, the corresponding value of c 

can be obtained from equation (4.68). For point C,z = it and t=c. Applying this in 

equation (4.67) 

,r 	
tu2dt 	c dt  

i 1 = M0 (61_6120_612 mc of t uv  _ ouzo  _612 

= 2(1– c)MF{sin -I  V(cl d), VW } – 2ME{sin -I  V(c/d),-41} 	(4.69) 

(4.68) 

0 
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Ffsin-t  ,j(c/d), J/1, and E{sin-' 11(cl d),JI} are incomplete elliptic integrals of the 

first and the second kind. For d t 1, the relation between z and t plane is given by: 

Z =  
 t" dt 	 dt  M 

 
j(d - t)" _ 0112 McI 1,112 (d  _ 0112 0  _ 0112 (4.70) 

For point E, z = R, and t =1. Applying this condition in equation (4.70) 

t u2dt dt 
R- M 	  Mc f 	  d (-0112 (t d)112 (1 _ 01/2 	d (-0112 1.112 (t  _ d)112 (1 _ 0112 (4.71) 

Integrating (Byrd and Friedman,1971, p.77, 235.05,315.02;235.00) 

(±)/R = 2M E{g12,V(1- d)}-2McF{ir I 2, V(1 - d)} 	 (4.72) 

Dividing equation (4.69) by equation (4.72) 

1 	(1- c)F{sin-I V(c/d),j/} - 	11(c I d)ord-} 

R 	E{ 124(1 - d) } - cF{r 12, V(1 - d)} 
(4.73) 

Thus, with an assumed 	and computed 'c', the corresponding //R can be known 

from equation (4.73) 

Mapping of w plane onto t plane 

The conformal mapping of the complex potential plane (Fig 4.13 (c)) onto the 't' plane is 
given by: 

kT(hr  - h,,) 	 dt 
w = 	I 	 „ 	T, k (hr  - h,v ) 	(4.74) 

2Fkr / 2,4(1- d))2,',(0 - t)"`(d - t)" 2(1-t)" 

Applying the condition at point E for which t = 0 and w 	-h,,)+ iq , q is found 

to be 
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V 
(a): Upper half of the flow domain in z(=x+iy) plane (plan) 

A 
B 	 1 	1 

-co 	 C 	D 	E 

(b): Auxiliary upper half t plane (t=r+is) 

• 

+oo 

E D 

C 

A 
41---k(hr-hw) 

B (I) 

  

(c): Complex potential plane (w=0-Fiy4 

Fig.4.13: Steps of conformal mapping for an infiltration gallery running 

parallel to straight reach of a river 
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F I 20,17.-1) q = kT(h h,v ) (4.75) 
F (r I 2,11(1— d) 

Total flow to gallery, Q=2q 

For 0 5 t .  5 d , the relation between w and t plane is given by: 

kT(h r  — h,,,) 	 dt 

	

w = iy = 	, 	
2FVE/2,V(1—d))1(0 —0112(d-01 '2(1-0" 

kT(h r  — h w 	
F 

) 	 1 	 
isin-I A/kt. /d t 

i)FVE/2,1/(1— d)) 

(4.76) 

At t .  = c , the stream function is 

= (
kT (17 Th,„)  

,R7a,Nral 
Fyr I 2, \i(1 — d)) 

(4.77) 

The flow to the infiltration gallery is 2g . Incorporating the correction factor, C,, 

(Appendix D) the approximate flow to the infiltration gallery is given by: 

. 	2 F(Tc/2,1:1)  
Q = C,T1(01,. — h ) 

F(it / 2, V(I — d) 
(4.78) 

The average entrance velocity, v, through the slotted- pipe of length 1, and perforation P is 

given by: 

FOr(nAci)   }1 IP12r1.1 v .{C 	— h ,) 
F 104 (1 — d) 

The maximum axial velocity near the caisson, v2 , is given by: 

(4.79) 
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Al - 	  
21E{r/2,11(1—d)} —cF{r12,,1(1— d)}] 

iR 
(4.83) 

v 2  = {C,Tk(h r  — hw,) F(n/20R1)   } 	21 / Fr„, 	 (4.80) 
F(rc / 2, 	— d) 

Travel time for the shortest distance 

The travel time for river water to reach the infiltration gallery along the path ED is not 

the minimum travel time. The time will be minimum for that path line along which 

water enters point C, that is for the stream line defined by Eq.(4.77). This is because 

the velocity at point C is theoretically infinite. It is cumbersome to find the minimum 

travel time. Therefore the time for the shortest flow path is computed. The Darcy 

velocity is given by 

1 dw 1 dw dt 
u —

. 
= 	= --- • -- 	 (4.8l) 

T dz T dt dz 

From Eq.(4.74) 

dw 	kT(hr  — h.) 	 1  
dt 	2F( 12,11(1— d)) (0 — t)" (d — t)" (1 — t) I12  

(4.82) 

From Eq.(4.72) 

From Eq.(4.67) 

dz 	 iR 	 (t — c). 
dt 2{E{n- / 24(1— d)} — cF I 2, V(1 — d)}1t"(d — 0 112  (1— t) I12  

(4.84) 

Incorporating Eqs. (4.80), and (4.82) in Eq (4.79), and simplifying 
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u= 
h„) 	[E {It 12,T–T1)} – cF{r 12,V(1– d)}] 

F(7r 12 , 	–d)) 	 – c)R 
(4.85) 

The travel time, z-  along shortest distance is given by 

0 dx 	SR 	F(ir 12 , 11(1– d))  
i? (14 I S) 1c(h,. – h„,)[E{It I 2, V(1 – d)} – cF{71 12, V(1 d)}1 

SR 	41-  12  , V(1  – d))  
	 i[ftdX – cR 

417,. 	
1 

	

– h,v )k {7r 2, V(1 d)} –cF{7 12, 	d)}} 0 

r= 	= 

or 

r= 

t – cY/x 	(4.86a) 

(4.86b) 

Or 

	

SR 2 	41-12, VO-d)) 	dx 
- 	r  	t- -c 	(4.86c) 

– h,v )IE{7 r 12,V(1– d)} – cF {Ir 12,11(1 – 	R0 

The dimensionless time factor is given by 

	

14hr  – 	 F((1 12 V(1– d))  
	 Rft 	– C1 (4.87) 

 dx 
= 	SR' 	[E{7 r 12, (1 – d)} – cF {71 12, V(1 d)}.1 0  R 

The integral Rft —
dx 

is the dimensionless area of the graph of t versus x / R ,which can 
R 

be evaluated numerically. Along DE z = x and t varies from d to 1. 

Results and Discussions 

Variation of dimensionless yield of the infiltration gallery, 	Q 	with 
kT(17, – hbv ) 

dimensionless 1/R is presented in Fig.4.14. Beyond 1/R>0.25 the variation of yield 

with l/R is linear. The increase in flow is due to increase in length of gallery, i.e., 

increase in the flow area. The variation of dimensionless time factor with l/R is 

0 
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presented in Fig.4.15. Less than l/R < 1 the minimum travel time decreases with 

increase in length of gallery. Beyond l/R >1 the minimum travel time becomes 

constant with the further increase in the length of gallery. 

5.0 

4.5 

4.0 

3.5 

3.0 
2.5  

gi  2.0 

1.5 

1.0 

0.5 
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Fig.4.14. Variation of non dimensional flow, 	 with UR for an 
kT(hr —h„,) 

infiltration gallery running parallel to straight reach of a river 
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4.4 CONCLUSIONS 

In this chapter, flow to an infiltration gallery located near a meandering river reach 

and near a straight river reach has been analyzed. The minimum travel time has been 

estimated. Results are presented in non dimensional form. In case of an infiltration 

gallery near a meandering river reach or at the centre of an island, flow increase and 

travel time reduces with the increase in the length of infiltration gallery. For a given 

size of island, the length of the infiltration gallery has to be fixed on the basis of 

permissible minimum travel time. The minimum travel time should be greater than 

the survival life of bacteria in concern. 

Infiltration gallery near a straight reach of a river may be laid in different 

orientation. In case of a gallery perpendicular and toward the river, the flow increases 

and travel time decreases sharply with the increase in the length of gallery for a given 

87 



value of R. Whereas, in case of a gallery perpendicular and towards landside, the flow 

increases with decreasing rate and minimum travel time reduces and become constant. 

Flow to an infiltration gallery running parallel to river increase linearly with 

the increase in the length of gallery. The minimum travel time reduces sharply for I/R 

<0.25 and then decrease slowly and finally becomes constant after 1/R=1.25 
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Chapter S 

A RADIAL COLLECTOR WELL 
NEAR A MEANDERING RIVER 

5.1 INTRODUCTION 

In an alluvial region, a river is likely to meander. In that case, it is advantageous to 

install a radial collector well in the concave side of the meandering reach. In such 

hydro-geological situation like this, it can be idealized that a constant head boundary 

condition prevails at a distance R around the radial collector well. Thus, a radial 

collector well near a meandering river reach can be conceptualised as a radial 

collector well at the centre of an island of radius R. Further, in practice, laterals of a 

radial collector well are kept partly screened. Non-perforated portion (blind) is kept 

near the caisson, as provision of perforated pipes near the caisson is not advantageous 

due to pronounced interference of laterals near the caisson. Thus, it is desirable to 

investigate the effect of non-perforated section on the yield of a radial collector well. 

In this chapter, flow to a radial collector well near a meandering river reach having 

partly perforated multiple laterals is analyzed and minimum travel time that would be 

taken by river water to reach the screens has been estimated. 

5.2 STATEMENT OF THE PROBLEM 

A radial collector well located near a meandering river is shown Figure 5.1. The 

laterals are of equal length placed at equal angular interval. Part of each lateral near 

the caisson is blind (non-perforated). The blind part is of length / t, and the screened 

(perforated) part is of length /, . The screened part of the lateral is assumed as a 
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constant head boundary. It is desired to find flow to the well under steady state 

condition that would prevail under continuous pumping. 

Let the datum be selected in the plane of the laterals; height of water level in 

the well above the datum is 11,„,, and height of water level in the river measured from 

the datum be hr. Because of symmetry, half of Un th  part of the flow domain, shown in 

Fig. 5.2(a), is considered for analysis. 

.•.'.•.'.'. 

// 	\ Impervious Base // 

Figure 5.1: A radial collector well with n partly screened laterals near a 

meandering river 

5.3 ANALYSIS: CONFORMAL MAPPING 

In order to analyze, The Christoffel conformal mapping technique is applied to I /n th  

part of the flow domain 

Transformation of z Plane onto Auxiliary t Plane 

The conformal mapping of the flow domain ABC1C2 D shown in Fig.5.2(a) onto 

upper half of the auxiliary 't' plane shown in Fig.5.2(b) is given by: 

dz 
=M tu  ' 1  (1 — t)(11-1 )/ 2n-I 

dt 
(5.1) 

90 



Integrating 

z= M Bi {1/ fl,(1— 1/n)/2}+ N 
	

(5.2) 

B, {1 / n, (1 — 1/ n) / 2} is an incomplete Beta function, which is defined as: 

B,(m,n)= iv' (1— 	dv ; m > 0;n > 0;1 	v isa  dummy variable. 
0 

For point B, t = 0 , and z = 0 . Hence, N = 0. For point D, t =1 and z = R . Hence, 

11(n +1)/2n}  M = 	 = 
/n, (1-1/n)/ 2} 

R 
 F(1/n) F{(1-1/n)/ 2} 

in which, B(m,n) is complete Beta function and T(m) is complete Gamma function. 

For point C,, t = c./ and z=/b. Hence, from equation (5.2) 

F{(n +1)/ 2n} 	t„ 0  _ 1/ n)/ 2}  /b/R— 

	

	 (5.4) F(1/ n)11(1 —1 I 11)1 2} c, 

The parameter 'c l  ' can be obtained from equation (5.4) by an iterative procedure for 

known /b/R. Similarly for point C2, t = c 2  , z =1/, +1, , and 

0, +0/ R 	F{(n-4.-1)/-2n} 
BIZ  {1 I n, (1 —1/ 0/2} 	 (5.5) - F(1/ n) F {(1 —1 I n) 2} 

The parameter c2 can be obtained for known (1,, + I, )1 R using an iterative procedure. 

Transformation of w Plane onto t Plane 

The complex potential iv(= + iv) plane corresponding to a unit segment flow 

domain ABC1C2 D is shown in Fig.5.2(c). The velocity potential function 0 here is 

defined as (Hunt, 1983): 

0 = —kT(p I y,„ + Y) + C 	 (5.6) 

Where, k = hydraulic conductivity of the medium, p= pore water pressure; Y-= elevation head 

measured from the horizontal plane in which the laterals have been laid. For the present 

(5.3) 
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conceptual flow domain, Y = 0 . Constant C = —kTh,„ where h„, is height of water level 

above the xy plane. 

4)=-k(hr-hw) 

(a): Physical flow domain, z =x+iy plane 

(b): Auxuliary t plane (t=r+is) 

k(hr-hw) 

(c): Complex potential plane w (=4-1-iy) 

Fig.5.2: Steps of conformal mapping for a radial collector well with n partly 
screened laterals near a meandering river 
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The mapping of the complex potential 'w' plane onto the auxiliaryT plane is given 

by: 

w=MI 	dt 	
kT(h,. — h,„) 

_4(c, t)(c 2  — t)(1— t) 

For point 'CI', t = CI and w = 0. Performing the integration (Byrd and Friedman, 

1971) 

0 = M, 	
2 
	F(n.  / 2, V(1 — c2  ) /(1 — ) kT(hr  

V1— c, 
(5.8) 

F(ir 12, V(1 c2 )/(1— c,) is complete elliptic integral of the first kind with modulus 

1/(1 — c2 )/(1 — c, ). 

The constant M1 from equation (5.8) is found to be 

111- c i  kT(h r  — h„,) 
M = 	 (5.9) 

2F(r 12, V(1 — c2  )1(1 — c, ) 

Forci c2 the relation between w and t planes is given by: 

w= M, J 	
 di 

-J-1V(t — c, )(c2 	— 

 

(5.10) 

For point C2, 1= c2  and w = iq . Performing the integration and substituting 

 

constant M i  flow 'q' is found to be: 

  

(F r / 2, V(c2  — ) — ) ) 
q =kT(h,, — h,,,) 

F(Ir 12, V(1 — c2 )/(1 	) 
(5.11) 

The quantity q is half of the flow to a lateral. Therefore, the total flow 'Q' to the 

collector well with n laterals is 2nq. Applying the correction factor, CI (Appendix D) 

the flow Q to the collector well can be estimated as 

(5.7) 
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Q = C,2nkT(hr  - 
F(71 - 12, (c 2  - c,)1(1- c,) ) 

F(77-12,V(1-c 2 )1(1-c 1 )) 
(5.12) 

The entrance velocity (v,) is given by 

v 1  = Q (5.13) 
r127zrwl,P 

Where, ri„, is the radius of the perforated pipe, and P is the percentage of perforations 

of the lateral. 

The maximum axial velocity (v2 ) in the lateral is 

v 2  = 	 
n g rw 2 

Minimum Travel Time 

(5.14) 

The travel time is minimum for the river water that follows the path line CD. The 

Darcy velocity is given by: 

1 dw 1 dw dt 
u - iv = 	 .— 

T dz T dt dz 

Incorporating —
dw 

from equation (5.7) and —
dt 

from equation (5.2) in above 
dt 	 dz 

 

c , k(hr  -h,,) 

 

Fr 1/0 r{(1-1/n)/2}1(  	t l-un (l_ty"2n)  

RF{(n+I)/ 2n} 	p i(t_c,y2(t_e 2 )/2 

 

2F(n/2,V(1 — c2 )/(1—c,)_ 

(5.15) 

Along path CD, z=x, and v=0. Therefore, the minimum travel time is given by 

T 	 
dx 

 =
RS [2F(7c/ 2,11(1— c2)/(1—  ci )1 

 x 

R (tiS  

V/ 	k(h,. - h ) 

[ 	r{(111 )  1- i)/2n} 	iRr(t — c,)"2(t -- c2 )"2  

LF(1/n) Ill —1/n)/ 2}V t i-lin0 —0142") dx  

(5.16) 
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Let X = x I R; and dx = RdX . Incorporating these substitutions in (5.16), the 

dimensionless time factor is found to be 

TIC01 	[2F(n/2,11(1—c2 )/(1—c 1 )  
R 2S - 	1/77c; 

r  r{(n+0,2n }   iir o 	1" _c l y"(t_c2 , 
\t„,, dX 

LF(1/n) r{0 —1 /0/ 2}1i 

(5.17) 

The integral appearing in equation (5.16) is evaluated numerically as follows. 

z = x +iy = f (0; 	hence, 	as 	y = 0, 	t = f (x) 	and 

)
1/ 2 

(t — C2 )
1/2 

tr2n)  
— F[f -1(A= F[f 	. For given value of t, Fit -i (X)1 is 

evaluated and for the assumed value of t, corresponding X is obtained from equation 

(5.2). A graph ofF[f -1 (X)] versus X is plotted and area under the graph gives the 

value of the integrand. 

5.4 	RESULTS AND DISCUSSIONS 

The variation of non-dimensional flow with 1/R for different number of laterals for a 

given value of /b/R=0./ and R=100m is presented in Fig.5.3. Flow increases 

monotonically with the increase in number of laterals. The increase in flow is 

significant for increased number of longer laterals. For smaller length of laterals, no 

significant increase in flow is observed with the increase in number of laterals. 

The variation of entrance velocity with 1/R with different number of laterals is 

presented in Fig.5.4. It is observed that with the increase in 1/R the entrance velocity 

first decreases then increases. The reason for this is that when the 1/R is less, i.e., the 

screen length short, hence, the entrance velocity is higher. With further increase in the 
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length of screen, laterals come closer to the river resulting in higher flow to the 

laterals consequently entrance velocity is increased. 

The variation of axial velocity with l/R for different number of laterals is 

presented in Fig.5.5. Axial velocity increases with the increase in screen length and 

decreases with the increase in number of laterals. 

The variation of non-dimensional time factor with l/R for different number of 

laterals is presented Fig.5.6. For large number and length of laterals, the travel time is 

less, whereas, with small number and short length of laterals the travel time is higher. 

The variation of nondimensional flow, entrance velocity, axial velocity and 

nondimensional time factor with l/R for different value of /b/R is presented in Table 

5.1. It is clear from the table that the flow increases with the increase in screen length 

for the same value of I/R. Flow decreases and time minimum travel time increases 

monotonically with the increases in blind portion. However, the entrance velocity 

increases sharply with the increase in blind portion. 

A sample result is presented as below: 

Illustrative Example: 

Number of laterals, N=8; Length of each laterals, / = 50m; 

Length of blind portion, /b=/ Om; length of screen, Is=40m; 

Radius of island, R = 100m; lb/R=0.1; l/R =0.5; Aquifer thickness, T =7.5 m; 

Diameter of gallery=0.32m; Correction factor, C1=0.8; Drawdown, hr-hw= 6m; 

Hydraulic conductivity, k= 10m/day; 	 S=0.2 

For lb/R=0.1, l/R =0.5, and N=8 the non dimensional flow (Fig.5.3), 

7.35 or Q=7.35 x kT(i r 	)C, =2646 m3/day. 

 

kT(h r  — h,„) 
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The corresponding non dimensional time factor from Fig.(5.6) is  kt(h
r

SR 
 h)

= 0.32. 

For the above set of data, the minimum travel time, r is 10.6 days. Thus, Bacteria will 

take 10.6 days to reach from point D to point C2, i.e., a distance of 50m. The average 

survival time of pathogenic bacteria is 30-40 days. Therefore, the length and number 

of laterals have to be reduced in order to increase the travel time. 

For lb/R=0.1, 1/R =0.30, and N=4 the non dimensional flow (Fig.5.3), 

4.2 , or Q=4.2 x kT(11 r  h „, )C, =1512 m3/day. 

The corresponding non-dimensional time factor from Fig. (5.6) is kr(h
SR 2

r 
— h)

= 0.91. 

The minimum travel time r is 30.3 days to reach from point D to point C2, i.e., a 

distance of 70m. 

5.5 CONCLUSIONS 

A radial collector well near a meandering river can be conceptualized to be located at 

the centre of an island. For a given size of an island, the major parameters of a 

proposed radial collector well are the number of laterals, length of screen and blind 

portions, and permissible drawdown in the caisson that has to be realized , keeping the 

minimum travel time and entrance velocity as limiting factors. Interference of laterals 

increases with the increase in number of laterals, in such case the increase in blind 

length does not affect much on the total flow to the well. However, the average 

entrance velocity to laterals increases sharply. The length of blind portion depends on 

the number of laterals. 

—11,,) 
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Fig.5.3: Variation of nondimensional flow with I/R for different numbers of 

partly screened laterals of a RCW near a meandering river 

2.5 

2.0 

E 
1.5 

0 

`Cti 1.0 

*th' 
44 

0.5 

0.0 

T=7.5m; 

FrI 

k=70m/day; 
drawdown 

/b/R-0.1;R=100m; 

=10m 

I 
C1=0.8;P=0.2; 

11 

diameter=0.32m 

,  
-- n=4 

n=6 
n=8 
n=10 

—0— 
-a-  
--x-- 

. 

liftims:411111.12  iftikartizw.---m••,-------  _ __,,,. ,,eidnillialillig41"10°  

1 
0.2 
	

0.4 
	

0.6 
	

0.8 
	

1.0 

I/R 

Fig.5.4: Variation of entrance velocity with I/R for different numbers of partly 

screened laterals of a RCW near a meandering river 
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Fig.5.5: Variation of axial velocity with 1/12 for different numbers of partly 

screened laterals of a RCW near a meandering river 

Fig.5.6: Variation of nondimensional time factor with 1/1? for different numbers 

of partly screened laterals of a RCW near a meandering river 
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Table 5.1: Variation of non-dimensional flow, entrance velocity , axial velocity, and 
non-dimensional time with 1/R for different ratio of 1,/R. 
N=8, R=100m, k=70m/day, T=7.5m, C1 =0.8, diameter of lateral=0.32m, hr-11,,=10m, 

P=0.2 
lt /R 1/R YR Q/kT(hr  -h w) V1(cm/sec) V2(m/s) Time 

Factor 
1 2 3 4 5 6 7 

0.40 0.10 0.50 7.17 2.17 0.54 0.3271 
0.40 0.15 0.55 8.18 1.65 0.62 0.2641 
0.40 0.20 0.60 9.30 1.41 0.70 0.2095 
0.40 0.25 0.65 10.59 1.28 0.80 0.1618 
0.40 0.30 0.70 12.13 1.22 0.92 0.1201 
0.40 0.35 0.75 14.03 1.21 1.06 0.0844 
0.40 0.40 0.80 16.42 1.24 1.24 0.0545 
0.40 0.45 0.85 19.62 1.32 1.48 0.0309 
0.40 0.50 0.90 24.23 1.46 1.83 0.0137 
0.30 0.10 0.40 5.77  1.74 0.44 0.4616 
0.30 0.15 0.45 6.52 1.31 0.49 0.3873 
0.30 0.20 0.50 7.35  1.11 0.56 0.3213 
0.30 0.25 0.55 8.28 1.00 0.63 0.2619 
0.30 0.30 0.60 9.36 0.94 0.71 0.2086 
0.30 0.35 0.65 10.63 0.92 0.80 0.1614 
0.30 0.40 0.70 12.16 0.92 0.92 0.1200 
0.30 0.45 0.75 14.05 0.94 1.06 0.0843 
0.30 0.50 0.80 16.44 0.99 1.24 0.0545 
0.30 0.55 0.85 19.63 1.08 1.48 0.0309 
0.30 0.60 0.90 24.24 1.22 1.83 0.0137 
0.20 0.10 0.30 4.59 1.39 0.35 0.6244 
0.20 0.15 0.35 5.19 1.05 0.39 0.5350 
0.20 0.20 0.40 5.84 0.88 0.44 0.4568 
0.20 0.25 0.45 6.56 0.79 0.50 0.3857 
0.20 0.30 0.50 7.37 0.74 0.56 0.3207 
0.20 0.35 0.55 8.29 0.72 0.63 0.2617 
0.20 0.40 0.60 9.37  0.71 0.71 0.2085 
0.20 0.45 0.65 10.64 0.71 0.80 0.1614 
0.20 0.50 0.70 12.17  0.74 0.92 0.1200 
0.20 0.55 0.75 14.05 0.77 1.06 0.0843 
0.20 0.60 0.80 16.45 0.83 1.24 0.0545 
0.20 0.65 0.85 19.63 0.91 1.48 0.0309 
0.20 0.70 0.90 24.24 1.05 1.83 0.0137 

continued 
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It/R Is/R UR VI (cm/sec) V2(m/s) Time 
Factor 

1 2 3 4 5 6 7 
0.10 0.10 0.20 3.55 1.07 0.27 0.8513 
0.10 0.15 0.25 4.06 0.82 0.31 0.7251 
0.10 0.20 030 4.61 0.70 0.35 0.6222 
0.10 0.25 0.35 5.19 0.63 0.39 0.5346 
0.10 0.30 0.40 5.84 0.59 0.44 0.4567 
0.10 0.35 0.45 6.56 0.57 0.50 0.3857 
0.10 0.40 0.50 7.37 0.56 0.56 0.3207 
0.10 0.45 0.55 8.29 0.56 0.63 0.2617 
0.10 0.50 0.60 9.37 0.57 0.71 0.2085 
0.10 0.55 0.65 10.64 0.58 0.80 0.1614 
0.10 0.60 0.70 12.17 0.61 0.92 0.1200 
0.10 0.65 0.75 14.05 0.65 1.06 0.0843 
0.10 0.70 0.80 16.45 0.71 1.24 0.0545 
0.10 0.75 0.85 19.63 0.79 1.48 0.0309 
0.10 0.80 0.90 24.24 0.92 1.83 0.0137 

Fully screened 
laterals 

0.0 0.10 0.10 2.59 0.78 0.20 1.2235 
0.0 0.15 0.15 3.05 0.62 0.23 1.0139 
0.0 0.20 0.20 3.55 0.54 0.27 0.8510 
0.0 0.25 0.25 4.06 0.49 0.31 0.7251 
0.0 0.30 0.30 4.61 0.46 0.35 0.6222 
0.0 0.35 0.35 5.19 0.45 0.39 0.5346 
0.0 0.40 0.40 5.84 0.44 0.44 0.4567 
0.0 0.45 0.45 6.56 0.44 0.50 0.3857 
0.0 0.50 0.50 7.37 0.45 0.56 0.3207 
0.0 0.55 0.55 8.29 0.46 0.63 0.2617 
0.0 0.60 0.60 9.37 0.47 0.71 0.2085 
0.0 0.65 0.65 10.64 0.49 0.80 0.1614 
0.0 0.70 0.70 12.17 0.53 0.92 0.1200 
0.0 0.75 0.75 14.05 0.57 1.06 0.0843 
0.0 0.80 0.80 16.45 0.62 1.24 0.0545 
0.0 0.85 0.85 19.63 0.70 1.48 0.0309 
0.0 0.90 0.90 24.24 0.81  1.83 0.0137 
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Chapter 6 

A RADIAL COLLECTOR WELL 
NEAR STRAIGHT REACH OF A STREAM 

6.1 INTRODUCTION 

A radial collector well constructed close to a stream induces recharge from surface 

water bodies. In some cases, the laterals are extended beneath the streambed to 

increase groundwater production. The yield of a collector well increases with 

increasing length and diameter of collector pipe, and proximity of the lateral screens 

to the river. The quality of the water gets improved as the distance of the perforated 

pipe from the riverbank increases. Therefore, a radial collector well should be located 

at an appropriate distance from the effective line of infiltration. 

Analytical study of flow to radial collector well or horizontal wells in 

hydrological science can be dated back to Hantush and Papadopulos(1962), who 

investigated flow to a collector well consisting of a series of horizontal wells. 

Milojevic (1963) has conducted experiments using electrical analog model to analyze 

yield of a radial collector well near a river. Recently, Bakker et al. (2005) have 

applied multilayer analytic element modeling to estimate steady flow to two tier radial 

collector well with several laterals. Mishra and Kansal (2007) have analyzed steady 

flow to a radial collector well system with four fully screened laterals by applying 

conformal mapping and assuming laminar flow domain. 

All studies on radial collector well have been done by assuming the laterals 

to be fully screened, whereas in practice, screened parts of the laterals start at a certain 
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distance from the circumference of the well. Hence, it is desirable to analyze the 

effect of partially screened laterals on the potential yield of a radial collector well and 

corresponding entrance velocity through the screen and axial velocity in the laterals. 

The objective of the present chapter is to analyze the performance of a radial 

collector well under steady state flow conditions. Assuming condition of sheet flow, 

and applying Schwartz-Christoffel conformal mapping technique, yield of a radial 

collector well, located near a straight river reach in a thin aquifer, having four 

coplanar partly perforated laterals is quantified for various orientation of laterals and 

distance of the collector well from the river. The average entrance velocity through 

the collector's screen is determined. The minimum time taken by river water to reach 

the laterals is derived. 

6.2 STATEMENT OF THE PROBLEM 

A radial collector well having four co-planer partly screened laterals near straight 

reach of a stream is shown in Fig.6.1. The laterals are partially screened. The solid 

line indicates the non- perforated sections of the laterals. The total lengths of the 

laterals are Li, L2, L3, and L2 and the non- perforated lengths are L1b, L2b, Lab, and L2b. 

The caisson is located at a distance R from the river. The radius of each lateral is I.., 

and the thickness of the aquifer is T. The height of water level in the river above the 

laterals is hr  and the height in the caisson of the collector well is 12, Points PI and P2 

on the on screened parts (Fig.6.1) locate the points of zero velocity (or water divide). 

For small thickness of the aquifer, the flow domain is considered to be a 

horizontal plane flow domain. Thus, flow is assumed to be occurring in xy horizontal 

plane and is symmetrical about the x-axis. 
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6.3 	Analytical Solution: Conformal Mapping 

The Schwarz-Christoffel transformation is applicable to a simply connected polygon 

with straight-line boundaries having a finite number of vertices one or more of which 

may be at infinity. The present flow domain being symmetrical about the x-axis, half 

of the flow domain is considered for applying conformal mapping. Thereby, the flow 

domain conforms to a simple connected flow domain and gets amenable to Schwarz 

Christoffel conformal mapping technique. By considering symmetry in flow domain, 

the mapping function is considerably simplified. According to Schwarz-Christoffel-

transformation, the conformal mapping of the flow domain ABB1CDIDD2EFIFGA in 

z(= x+ iy) plane onto the auxiliary t(= r + is) plane is given below. The auxiliary t-

plane and the complex potential w-plane are shown in Fig(6.2) and Fig.(6.3), 

respectively. 

Transformation of z(=x+iy) plane onto t(=r+is) plane 

The vertices A, C, D, E, G having been mapped onto —0o,O,d,l,g respectively on the 

real axis of t plane, the mapping is given by: 

dz m  , 	(d— t)  
dt 	to 0 - 01' - t)I/2  

Integrating 

z = 	— t)dt  
ita - tra  - tY" 

+N 
 

where, M and N are complex constants. For vertex C, 1=0 and 	hence, constant 

N=O. For vertex E, t =1 and z=0. Applying this condition one obtains 

— t)dt  0 = Mt 
a - t 	

(6.3a) 
- tY" 

(6.1) 

(6.2) 
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Upper half t-plane 
S 

-co -b -b1  -P2 0 	d1 d d2 1 	r  PI l't f g 00  
A B B1 P2 	C 	DI  D D2 E P1  F1 F G A 

Fig.6.2 Auxiliary t ( r+is) plane 

• iw 
k(hr-h ) 	

F 

F 
P1  

D 
q2 

	

P2 1 	 

q3 

B 

Fig. 6.3: Complex potential (w=0-Flyt) plane 

Or 

1 	 1 dt 	 t dt  Md 1 	 
0  61 - tY' (g - t)'l2 

— Ait
ft' (1 - t)l-a  (g - t)'/2  

Since, M # 0, therefore, 

I 	t' -a cit 

d = 
J  (1 - t)1-a  (g - 01/2  

, 
dt 

ft(' 0  - 01-a (g - 01/2  

(6.3b) 

(6.4) 
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For an assumed value of parameter g, the parameter d can be computed using  an 

iteration technique. Both integrals in the numerator and denominator of Eq uation (6.4)  

are improper integrals. The integral in the numerator is converted to a proper integral 

by substituting  t = 1- 	, where v is a dummy variable and the integral in the 

denominator is converted to a proper integral by splitting  the integral 

SF(t)dt = F(t)dt + IF(t)dt and substituting  t = 	in the first and t = 1- v ila in 
0 	0 	112 

the second integral. Thus, 

— v" 
	 dv 

a 0 
J(.,_1+v,/i/2 x. 

(1/2 )im-u) 
dv 	 I ( 1 

(l/('-u )112  + 	j 	
dv  

1  a 1 	vY('-a)r g-v 	) 	a 0 	-v ""Ng - + vi'12  

(6.5) 

For vertex D, t =d, and z=  1,2e'"  . Applying  this condition in equation (6.2) and 

	

incorporating  a substitution t = 10' 	1 a), dt = 	v" 4')  to remove the singularity 
1— a 

t = 0, the following  relation is derived. 

e 	m  f 	(el — t)dt 	1 	r 	(a - voldv 
2 	 = A4- 

	

g tc. - tra - 	(1—a) ;1  (1_ v  I/0'0 	v 1/01112  

1 = L 2 e1"  

Ia 
— VI/ (  ))th/ 

— a) 0  _ vuo-or a ( g _ v  „o-o) 

)1. point G, t=g and z =R. Applying  these in equation (6.2) 

— t)dt  = M
rt a  - tra  - tr2 

d = 

(6.6) 

(6.7) 

(6.8a) 
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Incorporating constant M from equation (6.7) in equation (6.8a) 

L 2 e''" 
R= 	

(-1)(t - d)dt  
1 	(cl — v"(Ildv 	(-1)1 ' t' - 	- 01/2  

(I —a) 	( - V 11(1-11-a 	_ v1/0a9/2 

Taking —1 = Cs' and simplifying equation (6.8b) reduces to 

R 1  gf (t-d)dt  
L 2 	1 	 (c1 v1/0-0 )jv 	to (t  01-a 	ty2 

	

(1 — a) g 	- V'/('')  )1a 	- v'l(1'))1/2  

(6.8b) 

(6.9) 

The improper integral appearing in the denominator is converted to proper integral as 

follows: 

(t - d)dt (t+g)'2 	(t - d)dt  (t - d)dt  
ta (t - 1)I-a (g - t)1/2 	ta - 	- 01/2 	0+0,2  t a - 01-a(g - t)v2  

The singularity t =1 in the first integrand is removed with a substitution t =I+ vua  

and the singularity t = g in the second integrand is removed with a 

substitution t = g — v 2  . Incorporating these, the integral (6.10a) reduces to 

gi 	- COCIt 

to - 	(g - 002 

((g-I)/ 2}° 	 4-1)/ 2}" 2  
+ V ila  — dPV 	 — d —1,2 )dv 

a  
	 + 2 

0 	+ /a (g —1 — v
, a )1 / 2 	 IEG 2 \a 	2 	\I -a 

0 	(g—v j w—v —1) 

(6.10b) 

Incorporating equation (6.10b) in equation (6.9) 

(6.10a) 

R 
L2  

   

I EG  

 

(6.11) 

 

1 

 

(d-v"( ' e ) )dv 

 

  

(1 — a 

 

v /7(1.0 	(g  _1,17(1-a) )1 12 
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The parameters d and g corresponding to known R/L2  are found using an iteration 

procedure. Assuming g, d is computed using equation (6.5). For this set of d and g 

computed R/L2 is compared with the true value of R/L2 and the procedure is repeated 

till desired accuracy is achieved. Using the iterated values of g and d , the modulus of 

constant M is evaluated from Eq.(6.7). 

The others parameters b, b1 , d1 , d2, fi, and f on t-plane are computed from the 

geometry of the flow domain considering the correspondence between z and t planes 

as follows: 

From equation (6.8a) the constant M is also given by 

(- 1)('' )  R 
A/ =  	

(  I) 	 (6.12) 
gr 	- codt 	l„ 

ta (t - 	(g -01/2  

Incorporating Eq.(6.12) in Eq.(6.2) 

(-1)(1') R 1 	—  t)dt  z= 
IF 	1 ta (1- t)' a 	-t)"2  

For point B, z = — L3  and t' — b . Applying this condition in above equation 

(6.13) 

1 ) a  R  b 	(d—t)dt 	(-1)(1')  R 	(-0a - odt 
lEG 	0 	tra (g 4)112 	

/a; 	 t)a (1 _ t)'-"(g - 

(6.14a) 

Substituting t = —v, dt = —dv for evaluating the integral in the numerator, and 

b 	p + o 
iV 	

th,  

simplifying one finds 
L3 = ° 0  V)

/-a  +412  
R 	 I EG 

(6.14b) 

109 



The singularity v=0 in the integrand in the numerator is removed by 

substituting v = X"(1-a ) , and dv = — 
1– 

X , where X is a dummy variable. a 

Performing the substitution, Eq.(6.14b) is reduced to 

, 	n''-‘ )  (ci +  X1/(1-a 9dX 
L3  = 1— a g + 	)y-a + A, v(1.0)112 

R 	 I EG  

Similarly 

(d + v)dv  
L 3b 	Oj V° + yr' (g + V)112 

R 	I EG  

(6.14c) 

(d + xuol dx 
0 0 + X  -111-a 	X170112  

I EG 

For point D,, t = do z = L "T" . Applying this condition in equation (6.13) 

L2be'" = (-1)(1') 	(d – t)dt  

RILO 	O ta (1 - t)I-" (g 0'12  

Substituting –1= 	in above equation and simplifying one finds 

L2b = 1  1 	(21 – t)dt  
R 	I LO 0  ta (I - t)I-a  (g 1)112  

1 	' r 	(d —vi/('-0))civ 
1— a 

	

0 q–v/7(I-a)ra 	vV("))112 

I EG 

For point Fi  ,t = f,,z = L,b  . Applying this condition in equation (6.13) 

1 
1–a 

(6.15) 

(6.16a) 

(6.16b) 
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Lib  	(-1)(1—a )  ter (a — t)dt  
R 	I „ 	t 0 - 01-a  - tY/2  

(6.17a) 

After simplification equation (6.17a) reduces to 

	

Lib = 1 fir 	-coat 
RI EG t a  - Ira  (g - t)1" 

(fr-ir 

f

-d + v ita* 
a 0 (1+ vila (g -1- vul2  

(6.17b) 
EG 

 

For point F, t = f;z= L. Applying this condition in equation (6.13), and after 

simplification one gets 

r (f_i 

	

f 	+ v"),Jv 

_ a 

	

.0 	+ v  l 'a (g -1 - v ua )1" 
(6.18) 

R EG 

Transformation of w- plane onto t-plane 

The conformal transformation of the complex potential plane shown in Fig.(6.2) onto 

the auxiliary t-plane is given by: 

dw 
= m — PYt + P2)  

dt 	1/(t + b)(t + b,)(t — d,)(t—d 2 )(t — 	—f,)(g- t)  

Integrating 

— p,)(t + p 2 )dt 
w = f 	 +NI 

f  V(t + b)(t + b1 )(t — d, )(t — d 2  )(t. — f, )(t — f)(g - t) 

(6.19) 

(6.20) 

The constant N, is equal to the complex potential at lower limit of integration. For 

t = f w 	. Hence, in equation (6.20), N I= 0. It is different if another lower limit is 

chosen. Considering consecutive vertices in w plane and their corresponding 
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Lib  	(-1)(1—a )  ter (a — t)dt  
R 	I „ 	t 0 - 01-a  - tY/2  

(6.17a) 

After simplification equation (6.17a) reduces to 

	

Lib = 1 fir 	-coat 
RI EG t a  - Ira  (g - t)1" 

(fr-ir 

f

-d + v ita* 
a 0 (1+ vila (g -1- vul2  

(6.17b) 
EG 

 

For point F, t = f;z= L. Applying this condition in equation (6.13), and after 

simplification one gets 

r (f_i 

	

f 	+ v"),Jv 

_ a 

	

.0 	+ v  l 'a (g -1 - v ua )1" 
(6.18) 

R EG 

Transformation of w- plane onto t-plane 

The conformal transformation of the complex potential plane shown in Fig.(6.2) onto 

the auxiliary t-plane is given by: 

dw 
= m — PYt + P2)  

dt 	1/(t + b)(t + b,)(t — d,)(t—d 2 )(t — 	—f,)(g- t)  

Integrating 

— p,)(t + p 2 )dt 
w = f 	 +NI 

f  V(t + b)(t + b1 )(t — d, )(t — d 2  )(t. — f, )(t — f)(g - t) 

(6.19) 

(6.20) 

The constant N, is equal to the complex potential at lower limit of integration. For 

t = f w 	. Hence, in equation (6.20), N I= 0. It is different if another lower limit is 

chosen. Considering consecutive vertices in w plane and their corresponding 
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locations in t plane, the following relationships are obtained. At vertex G, t = g 

and w = —Ott  — 	Using this, one finds 

M
— kT(h r  — h ) = 

I FG 

pl )(t + p2 )dt  where, I FG  f  	
f l(t b)(t + b,)(t — d,)(t — d 2  )(t — )(t — f)(g - t) 

(6.21) 

The integral I pG  is evaluated numerically after removing the singularities as 

described below. The singularities are t = f and t = g . Splitting the integral into two 

parts, one can write 

I FG 
f al(t b)(t + b , )(t — d,)(t — d 2  )(t — f, )(t — f)(g - t) 

— p,)(t + p2 )dt  + 
(f+g)/21At b)(t + 12, 1 )(t — d1 )(t — d 2 )(t 	)(t f)(g - t) 

Using substitutions t — f = v 2 ;dt = 2vdv in the first integrand, and g —t = v 2 ; 

dt = —2vdv in the second integrand, the singularities are removed. Thus, 

I FG 

t(9-02Y" 	 2(f — p1 + v 2 )(f +p2 +v2)dv  

I 	A/1(f + b+v2 )(f +b, +v2 )(f —d, +v2 )(f —d 2  +v2 )(f —f, +v2 )(g- f —v 2 ) 

{(g- f)/ 2 }"2  2r 2  

+ 
2(g— —v2 )(g+p2  —v 2 )dv 

0 	1l(g+b-v2 )(g+b, -v 2 )(g—d, -v 2 )(g—d 2  -v 2 )(g—f, -v2 )(g—f -v 2 ) 

Similar procedure (splitting the integration into two parts and applying suitable 

substitution for each part) is adopted for numerical integration of similar improper 

integral. 

(f+g)/ 2 	 — 	+ p2  )dt 
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Considering the vertices F, and F , one finds 

I 
It - P 	p 2 ) c  W F  

fi .v(t + b)(t +100 - d )(t - d 2  )(t - )(I — I)(g - t) w  

(6.22a) 

where wi, and 	are the complex potentials at vertices F and F1 respectively. 

After simplification, equation (6.22a) reduces to 

q, 	= I  FI F 

kT(11, — h ) I FG  

where 

— pl )(t + p2 )dt  
f, 1/(t + b)(t + bi  )(t — d i  )(t — d 2 )(t — f, )(f - t)(g - t) 

Considering vertices D2  and F, 

— pl )(t + p2 )dt  wp  = 	 + wD2 
, 	+ b)(t + 1)1 )0 d )(t d 2 	f l )(t f)(g - t) 

WD2  is complex potential at vertex D2  . Since, wri  = WD,  , therefore, 

(6.22b) 

(6.23a) 

— pl )(t + p2 )dt  

d2 y(t 	b )(t d l )(t — d 2 )(f, - t)(f - t)(g - 
= 0 	 (6.24a) 

or 

— p i k  + p2 )dt  

d2 	b )(t d )(t d 2  )(f, - t)(f - t)(g - t) 

+ f 	—p,)(t + p2 )dt  
pj I 	b)(t + bi )(t — d, )(t — d 2  )(fi  - t)(f - t)(g - t) =

0 
f i  

(6.24b) 

or 
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= M I 
-1,1
.1 	  

11( 
	
t b)(t + bi  )(t — )(t — d 2 )(t 	)(t t)(g 	

+ wH 
 

di 	
(t —p,)(t+p2)dt (6.26) 

(p1  —t)(t + p 2 )cit 
d2 (t + b)(t + b, )(t d1 )(t — d 2)(f, - t)(f - t)(g - t) 

f, 	 - p, )(t + p2 )dt 
= 

Th
f ,  11/(t + b)(t + bi )(t — d, )(t — 2 	-t)(f-t)(g-t) 

Considering vertices Di  and D2  

d 	 — p i Xt + p2 )dt  
wo2 — W 

110 4-  b)(t + 1)1)0 — d,Xt — d 2 )(t — f, )(t — f)(g - t) 

mini  is the complex potential at vertex D, . 

Simplifying equation (6.25a) reduces to 

\ 	di I 	
(P1 tXt p 2  )dt  

(q2  — q, ) _  11(t b)(t + )(t — d, )(d  2  t)(f, t)(f - t)(g - t) 
kT(h,—h„) 	 IPG 

(6.24c) 

(6.25a) 

(6.25b) 

Considering vertices B, and DI  

is complex potential at vertex B, . Since, wi3,  = vvD  , therefore, 

— p, )(t + p2 )dt   	= 0 	 (6.27a) 
+ b)(t + b, )(t — d, )(t — d 2 )(t — )(t — t)(g t) 

or 

	

f 	
— p, )(t + p2 )dt  

b)(t + b i )(t — d, )(t — d 2 )(f, - t)(f - t)(g - t) 

di 	 — p, )(t + p2 )dt  

	

+ 	 (6.27b) 
pi  (t b)(t + b1 )(t — d, )(t — d 2 )(f, - t)(f - t)(g - t) 

or 
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1,2 	 (p, —t)(t + p2 )dt 
-h v

i(t b)(t + b, )(d, - 0(d 2  - t)(f, - t)(f - t)(g - t) 

= d.11 	
(p, - t)(t + p2 )dt  

= 0 	 (6.27c) _1,, (t + b)(t + b, )(d , - t)(d 2  — t)(f, - t)(f - t)(g - t) 

Considering vertices B and B, 

-b, 
(t — p,)(t + p2 )dt = M, 	, 	

, (t + b)(t + b, )(t — d, )(t — d 2  )(t — f, )(t — f)(g - t) 
+ WB  

wB  is the complex potential at vertex B . Simplifying, equation (6.28) reduces to 

f 	
(p, —t)(t + p2 )dt 

—  q2 ) 	—b 	b)(t 	)(d, - t)(d 2 —  t)(f,  t)(f - t)(g - t) 
kT(h, 	 I 1.-G 

The parameters b,b,,c11 ,d,d2 , f;, f and g are found from the geometry of the flow 

domain. The parameters p, and p2  are determined from equations (6.24c) and (6.27c) 

using Newton Raphson technique as follows. 

Let functions F, (p, , p2 ) and F2  (p, , p2 ) be defined as: 

F1(131, P2) -= 

f,  

F2 (PI 9  P 2) 

cl, 

p, 
f 

(p, — t)(t + p2 )dt 

(6.30) 

(6.31) 

d211(t + b)(t + b, )(t — d,)(t — d 2  )(f, - t)(f - t)(g - t) 

pl )(t + p2 )dt 
1 

P2  

- 

-I) 

b)(t + b, )(t — d1 )(t — d 2  )(f, - t)(f - t)(g - t) 

(PI — t)(t + p2 )dt 
I 

(t 	b)(t + bi )(d, - t)(d 2 	t)(f, - t)(f - t)(g - t) 

(pi  - t)(t + p2 )dt 
vi(t + b)(t + b, )(d, - t)(d 2  — t)(f, - t)(f - t)(g - t) 

Let p,',p; be in the neighbor hood of the true solution. Then applying Taylor series 

expansion and neglecting higher order terms 

(6.28) 

(6.29) 
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+ap.(n
) aF,(p•,p;) (-. 	 ) 	 Ap, (6.32) 

(6.33) 

as: 

(6.34) 

, P2 + 	Ap2  =0 
aPi 	 ap2 

aF2 	, p2) F2 (Pi.* 	(P' 	 ,P*2) Ap2  ,P2)+ + aF2(p =0  

In matrix notation 

aF1 	aF1 

api 

equations (6.32) 

[Api  

• Ap2 

* p l  p2  

OP2 

and (6.33) are written 

* 	*) 
I 	' 	P2 	)\ 

	

— F2  PI 	'P2 ) 

3131 	aP2 
aF2 	aF2 

aPi 	1313 2 

The partial differentials appearing as elements of the Jacobian matrix are found 

numerically as follows: 

aFP.*  .P 42) 
api 

[ 
P; 

+f

6 	
(131  + e  — t)(t + padt 

d, 11(t b)(t + bi )(t — d, )(t — d 2  )(f1  t)(f t)(g - t) 
f, 

(t -p; — 6)(t p.2 )dt  

	

„, f„. 11 (t + b)(t + b, )(t d i  )(t — d 2 	- t)(f - t)(g - t) 

Pi 	(p; _t)(t+ path  [ 
d2  (t + b)(t + b, )(t — d,)(t — d )(f, - t)(f - t)(g - t) 

„, v (t b)(t +1)1 )(t — d i )(t — d 2 )(f, - t)(f - t)(g - t) 

(6.35) 
where e is a very small positive number. 

aFi(P, , p2)_  [ [ P f 	(p; — t)(t + p; + e)dt  
aP 2 	 d2  11(t b)(t + b )(t — d , )(t — d 2 )(f, - t)(f - t)(g - t) 

- p;)( + p; + e)dt  

IVO +N(t +b,)(1-c11 )(t-d 2 )(f,-ff-t)(g-t) 

P; 	 (p: - 	+  p.2  )dt  [ 
di  11(t b)(t + b, )(t — d, )(t — d 2 )(f, - t)(f - t)(g - t) 

- p;)(t + padt 
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f, 	 (t-p*,)(t +p;)dt  
f ,,,v(t+ b)(t + b, )(t — d, )(t — d )(f, - t)(f - t)(g - t) 	}16  

aF2(p,,P.2)  _ [ [ 	(p; + 	t)(t p.2 )dt 

OP! 	V(t + b)(t + b, )(d, - t)(d 2  - t)(f, - t)(f - t)(g - 

(p, + e - t)(t p 2 )dt  
+ b)(t + b,)(d, - t)(d 2  - t)(f, - t)(f - t)(g - t) 

P

f 	
(P; - 	padt  

b (t + b)(t + b,)(d, - t)(d 2  - t)(f, - t)(f - t)(g - t) 

(p; - t)(t p 2  )dt  

jp2  111(t b)(t + b,)(d, t)(d 2  - t)(f, - t)(f - t)(g - t) 	
} 

aF, 	_ [ [ 
ape 

-P2-6 	 (P: q)(t P; odt  

, 
-b, 	b)(t b, )(d1  - t)(d 2 - t)(f, - t)(f - t)(g - t) 

d, 
(p.1  - t)(t p2  + e)dt  

,j(t+ b)(t + b,)(d, - 0(d, - t)(f, - t)(f - t)(g - 

p2 	(p; —t)(t  + padt  
[ 

- 	+ 	+ bi  )(d, - t)(d 2 t)(f, - t)(f - t)(g - t) 

d, 
(Psi - tXt + p2 )dt  

/ 
b)(t + b1 )(d, - t)(d 2 - t)(f, - t)(f - t)(g - t) 

(6.38) 

Assuming a set of p:,p;, the elements of the Jocobian matrix and right hand column 

matrix are computed. Using matrix inversion technique, the unknowns in equation 

(6.34) are solved, which are given by: 

(6.36) 

(6.37) 

117 



aF1 	aF1 
–1 

[Api  
Ap2  

= aPi 	aP2 
aF2 	aF2 
0/31 	aP2 * 	* 

PI 'P2 

 

(6.39) - F2 1 'P2 

  

The old set pi*  and p; is replaced by a new set pl.  + Ap, and p; + Ap2 , and this 

procedure is repeated till desired accuracy is achieved. Once p, and p2  are 

determined the flow to different collector pipes are computed using Eqs.(6.22b), 

(6.25b) and (6.29). Flow through lateral 1 orienting towards riverside, Q, , is equal to 

2q, . Flow through 2'd  lateral, Q2 , is ( q2 - q,). Flow through third lateral oriented 

towards landside, Q3 , is 2(q3  – q2 ). The total flow to the collector well system, Q, is 

given by: 

Q = 	+ 2Q2 +Q3  291 +2(q2  qi)+ 2(q3 92) 	 (6.40) 

Minimum Travel Time 

The travel time is minimum for the river water that follows the path line FG. The 

Darcy velocity is given by: 

1 dw 1 dw dt u - iv = 	= -- • — 
T dz T dt dz (6.41) 

Incorporating —dw 
from equation (6.19), M, from (6.21), —dt 

from equation (6.1), dt 	 dz 

and M from (6.12) in equation (6.41) 

1 dw 
u  . 
	1[-kT(hr 	 +P2)  

T dz  

	

I G 	Akt b)(t + b i )(t – d, )(t – d 2 )(t - f)(t – f, )(g - t) 
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I EG 

(-1)(1-a)  R 
ta(1- t)

d
1::(

t
g
)
- t)," 

Along path F,G , the velocity in y direction is zero and the velocity u along x 

direction is given by: 

u = 
[— k(h,.h,„)1[/EG 	(t—p,)(t +p2 )ta(t -1)1' 

I FG 	R1(t 
1 

 d)V(t + b)(t + b )(t — 	— d 2 — 	fi 

The travel time, r , is given by 

r  LIf dx 	[  — RSI I FG 	_d)v(t b)(t + )(t — d, )(t — d 2  Xt — f)(t — )dx  
(u/S) 	kth — h ) I EG  R 	 —p,)(t +p2 )tu0 

(6.43) 

Substituting X = x / R, dx = RdX in equation (6.43), the dimensionless time 

factor 	is 

   

    

r k(h,. — h ) 
SR' — 

FG 	— 41(t +b)(t +b, )(t —d,)(t — d 2  )(t f)(t — f, )dx  

EG 	(11 R)+E 	 (t—p1)(t+p2)ta(t-1)'' 

(6.44) 

where, c = a very small number. AlongFG , zIR (=x1R) is a function of t 

f(t)) as depicted by equation (6.12). Alternately t 	is an inverse function of 

x I R , that is 

t = f (x 1 R)= f (X) 	 (6.45) 

(t —d)\/(t + b)(t + b,)(t — d,)(t —(12 )0 — f)(t — f,) The integrand 	  is a function t . Let it 
(t — pl )(t + p2 )ta (t-1)I" 

(6.42) 
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be designated as F(1), which is equal to FifiX).1. Thus, the integral 

	

fF (t)cl.A' = SF (f I  (X))dX 
	

(6.46) 
Li IR 

The integral in equation (6.44) is determined as follows. 

(1) In equation (6.46), at the lower limit of integration X= L, /R, t = f and at the 

upper limit of integration X =1, t = g . 

(2) Divide (g — f) into N equal parts. 

(3) Select t, = f + 	 f) i, i = 1,2,3. • • N —1 

(4) Compute F(t, i = 1,2,3 • • • N —1 

(5) Find the corresponding X(i) using the relation 

_ 	- d)dt 	_ 1 	 - d + v v" )dv  X(1)  

/EG t u  (t - lr (g- tY/2  //:Ga 0 (1+ vu" (g -1- v"))12  

- (6) Draw a graph of-F(t) versus X(i) and find-the-area under the graph from _ 

X = (Li  IR)+s to X= 1. 

Entrance Velocity 

The average entrance velocity through the screen section of the individual lateral is 

estimated as: For example, the average entrance velocity to lateral EF is 

ve_ Q1 k 	h w ) T Cf 

27try, (L I  — L ib  )P 
(6.47) 

where, Cf is the correction factor applied due to the partial penetration of the laterals 

into the aquifer of thickness, T and the percentage of perforation, P. Similarly, 

entrance velocity for other laterals are estimated separately as done above for lateral 

EF. 
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Particular Cases 

From the generalized solution presented above results for the following particular 

cases can be obtained provided the flow domain is symmetrical about x axis. 

Case 1: 

The laterals are fully screened i.e., L11, = L2b = L3h = 0 . For such case 

b1  = 0;p2  = 0;d, =0;d, = 1; p i  =1;f1  =1 as points 131,152and Di merge with vertex C 

and .points D2, Pi and F1 merge with vertex E. Vertices E and C do not take part in 

transformation of w plane to t plane. Transformation of w plane to t plane is given 

by 

dw m 	1 	 (6.48) 
dt 	+ b(t — f)(g - t) 

Mishra and Kansal(2007) have given solution for this particular case. The flow to the 

collector well system is given by: 

2q3  = Q = 2kT(h r  — 
F(Tc/2 , 	+ b)/(g + 	b))  
RrE/2 , 	— f)/(g + 

(6.49) 

Case 2: The case of three laterals 

Case 2.1 

The lateral aligned perpendicular towards the river (EF) is absent. Such case may 

arise if the collector valve is closed during period of flood or for any other reason. In 

that case, 

points F, F1, Pi merge with E as the L1  = 0 . The parameters f, f1, pi  merge to 1. The 

mapping of z plane onto t plane remains the same. The step of mapping is shown in 

Fig.6.4. The corresponding complex potential plane is shown in Fig 6.4(c). The 

mapping of w plane to t plane is modified as: 
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dw m 	 +P2)  
dt 	V(t + b)(t + b ,)(t - d, )(t - d 2  )(g  - t)  

+ p 2 )dt 1 D,G  - f 	  

	

d2 	b)(t + )(t - d )(t - d 2  )(g 	- 

-kT(h,  kT(h, - h„) 
I 	I 1),G  

+ p 2 )dt  
I , 	

	

(q 2 ) 	di  (t  b)(t + )(t — c I )(d  2  - t)(g -  t)  
kT(i r  - 	) ID2G 

(t+p2 )dt  
(q3  —q 2 ) 	_b .‘1(t + b)(t + b 1)01  - t)(d 2  - t)(g  - t)  

kT(h r  - h,,,) I D2G 

+ p 2 )dt 
F2(132)=  

-bi 
t 	b)(t + b, )(d - t)(d 2  - t)(g  - t) 

d, p 2 )cit  
_12 1, (t + b)(t + b )(d - t)(d 2  - t)(g  - t)  

dF 2  (p;) = [ [ p;-
f

c + p2 + c)d t  
dp2 	_bi 	b)(t + )(d - t)(d 2  - t)(g  - t)  

a, + p2  +  E)dt  
- f_c v(t+ b)(t + )(d - t)(d 2  - t)(g  - t)  

-p
f 
	+ p;)dt  

[  
_ bi  11(t b)(t + b )(d - t)(d 2  - t)(g  - t) 

+ p  2 )dt 
_p
f
,  v(t+h)(t + h, )(d, -t)(d2  -0(g-1) lie 

(6.50) 

(6.51) 

(6.52) 

(6.53) 

(6.54) 

(6.55) 

(6.56) 
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F2(p2 )

+dF 2
dp 

(P*2)Ap2  =0 
2  

(6.57) 

2 (p.2  F) 
Lp2 

dp 2  

Improved p2  = ; +L 2  

Case 2.2 

The lateral aligned perpendicular towards landside (CB is absent). In that case, points 

B, B1, P2 merge with C as the L3  = 0. The parameters b, b1 , P2 merge to O. The 

mapping of z plane onto t plane remains the same. The steps of mapping is shown in 

Fig.(6.5).The corresponding complex potential plane is shown in Fig 6.5(c). The 

mapping of w plane to t plane is modified as: 

dw — p1 ) 

	

= M  	 (6.58) 
dt 	.1/(t — d )(t — d 2  )(t — f)(t — f )(g - t) 

— p dt 
IFG 	 (6.59) 

	

f 1 	d )(t — d 2  )(t — f, )(t — fi (g t) 

= 
—kT(hr —hw) 

IFG 

(p —t) dt  
\ (q 2  --chi  _ d i  V 	di )02 Off/  - f  - t)(g - t)  

kT(11 	h w  ) 	 IFG 

(6.60) 

(6.61) 

Fi(Pi) = 
Pi 	(p 1  — t) di 	

f,

I 

	

(t - p1 ) dt  
f  , 	

, 
d2 11(i — di  )(i — c i 2  )(f 1  - t)(f - t)(g - t) 	p   li  0 .. d 1  )(t — d 2  )(f, - t)ff-t)(g - 0 
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(6.62) 

dF, (p,)_ 	[ 	 (P; C t)dt  

dp, 	d2 Ni(t 	)(t d 2 )6; - 0(f - (g - t) 

- p; --e)dt 	 _ 
1,1(t — d 1 )(t d 2  )U; -t)(  -t)(g -t) 

[ 	—t)dt  
d2 	— d )(t — d 2  )(f; - t)(f -t)(g - t) 

A 	-  dt 
p1, 11(t—d1 )(t—d 2 )(fi  -t)( f -t)(g-t) }}16  

*  
Fi(p, )+ dF (PI )Ap, = 0 

dp, 

F, (p;)  
Ap, =  

kp;  
dp 

(6.63) 

(6.64) 

Improved p, = pl*  + Op, 

Case3: Case of two collinear laterals 

3.1 Two co linear laterals perpendicular to the river axis 

The step of mapping is shown in Fig.6.6. In this case points C, D, and E in z plane are 

located at the origin, and they do not take part in transformation. Vertex G takes part 

in the transformation It is located at t =1 in the auxiliary plane. The mapping 

function is given by: 

dz „ = 	 
dt 	0-4" 

z = —21%4(1— 4 /2  + N = 141 — (1— 01" 	 (6.66) 

Parameters, f, f,, b, and bi  are found from Eq.(6.66) as: 

(6.65) 
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IFG/ 	 
f V(t + byt + I)(t — .fi)(t — fi(1- t) - 

— p,) dt 
(6.70) 

f .1—
( 

 1— = I — 
1 

L 
\2 

lb 1 —  — 
R 

I 
b= 1+ 

L.3 2  

R 
—1 	, b, =1+ 

R 2  

Relation between w plane and t plane 

dw m (t— Pi)  
dt 	V(t + b)(t +b, )(t — f)(t — f, )(1 - t) 

Integrating 

(6.67) 

— p ,)  dt  

+1\11 	
(6.68) 

w M  ff  .\/(t + b)(t +b,)(t— f i )(t— 1)(1-t) 

— kih r  — h w ) 
M,  	 (6.69) 

IFG 

where, 

q1 	/hp 
—h w ) I FG 

and 

	

(q3 -q 1 ) 	1138, 
kT(11,. — h) 	IFG 

where, 

(p —  dt 
IBB, — 	1 

_1,11(t + b)(t + b, 	- t)(f - t)(1 - t) 

parameter pi is determined as follow: 

(6.71) 

(6.72) 

(6.73) 
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F1(1) 1)-  f 	(p, — dt 	 A 	- pi ) dt 

bi  1,1 	N + LOT' -t)(f-t)(1- t) / v(t4- b)(t 	 -1)(14) 

(6.74) 

[ 
dp, 

Di +C 
(P; 	dt  

bi  1/ + bYt + )(f -0T-00-0 

- p; — Ocit  
11(t + b)(t + 1)1  )(f, - t)(f - t)(1 - t) 

i 	
(p; — t) dt  

-t)(1-t)(1 

pi ll(t+b)(t + b, )(f, -t)(f - t)(1- t) 11/6  
(6.75) 

F 	
dF (ps  

F1 pj+ 	 )Ap, = 
dp, 

Case 3.2 Two co linear partly non perforated laterals running parallel to the river 

axis 

dz — 	
—t)  

dt 	t 	- 01" (g - 412  

d , g, and M can be obtained putting a =1/2 in Eq.(6.5), Eq(6.11), Eq(6.12) 

,respectively. 

For point DI , t = d l ,z = L201" . Applying this condition in equation (6.13) 

L2b  = 1 di• 	—Odt  

R 	I EG  61 t"(1- t)"  (g - t)112  

(6.76) 

(6.78) 
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dt 
I  D2G 	f 	 

d2  J(t -di)(t — d1 )(g - t)  
(6.81) 

2  

2 f 
- v2 )dv 

0 —  y" - v112  
I EG 

1(13-0/ 2)",  + v 2  — d)dv 	4-1)12)"1 	— d — v 2 )dv 
IEG = 2  

(1+ v 2 y(g 1 __. v 2 )1/2  + 2 	o 	
(g_v2)1/2(g_ v2 4/2 (6.79) 

transformation of w plane to t plane. 

dw 	 1 
= M„ 	

dt 	 — )(t — d )(g - t) 

Integrating 

(6.80) 

Ad 1  -kT(hr  h.) 
I DA  

di  

, 	
dt  

(q 3,, 	At a di )02 	0(g - t)  _10,11(d  2  — d 	— d i )) 

kT(h r  — h w  ) 	 I DG 	 F 7E/2 ,11(g — d 2 )/(g — d1 )) 

(6.82) 

(6.83) 

6.4 COMPARISON WITH EXPERIMENTAL ELECTRO DYNAMIC 

MODEL 

Milojevic(1963) has conducted an electro dynamic model to estimated the flow to a 

radial collector well near a river. He has presented an equation in non- dimensional 

form (Eq.9, page, 144), which is rewritten below: 
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)0.100)0.15F 

=(- ) (- ) [4 13 m°1415  – 1.22(-9] x 
– 	ho) L L 

f 	 •N 0.914+0.0183 m-0.348(91  (6.84) 

 

1 

  

 

Logm(
2b)  

) 

  

Where, D= diameter of the horizontal well (drain, gallery, pipe, lateral); 

t= height of drain above the impervious layer; 

L= drain length; m= number of drains; 

b= well distance from the riverbank; 

T= water bearing layer thickness; 

H-ho= draw-down; 

In the present study, symbols are as: D=2r,,,; t= T/2; b=R; }-1-110= hr-h,, 
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• NI 

D2 
k(h rh,) 

q3 DI  
P2 I 	 

B 

• 

(1)=-k(hrh,,) 

G 

(a) z (=x+iy) plane 

-co -b -bi -p2 
0 

di 	d d2 1 	 00 
• 

A B B1 P2 C 	Di 	D D2 E 	G A 

(b) : Auxiliary t(=r+is) plane 

B  

(c) : Complex potential (v=0+41) plane 

Fig.6.4: Steps of conformal mapping for a radial collector well with three partly 

screened laterals, case 2.1 
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k(hrhw) 
F 

PI I 	 

Q2 

• 

(1)=-k(hrh„,) 

G 

stream 

  

(a) z (=x+iy) plane 

Upper half t-plane 

1 	g 	Co 

A 	 C DI D D2 E 	G A 

(b) : Auxiliary t(=r+is) plane 

A NI 

DI  

(c): Complex potential (w=0+itg) plane 

Fig.6.5: Steps of mapping for a radial collector well with three partly screened 

laterals, case 2.2 
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111=0 

stream 

C E -q3 
A-co 	B 

R 

(a) Physical flow domain in z (x+iy) plane 

Upper half t-plane 

s 

-co -b -b1  

I 

0 r 	f 1 co 

A B B1 	C F1 G A 

(b) Auxiliary t (r+is) plane 

A kV 
kT(hr-hw)  

Pi I 	 

B 

(c): Complex potential (w=0+icti) plane 

Fig.6.6: Steps of mapping for two collinear partly screened laterals aligned 

perpendicular to the stream, case 3.1 

Q3 
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(a) Physical flow domain z= (x+iy) 

-co 	o 1 s 	d1 	
ro.  d 
	d2 	1 	g 

	co 

	

A C DI D D2 E 	G A 

(b) Auxiliary t =(r-Fis) plane 

G 

A 

(I) 

(c) Complex potential w = (1) + iy) plane 

Fig. 6.7 Steps of mapping of two partly screened collinear laterals running 

parallel to a stream, case 3.2 
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6.5 RESULTS AND DISCUSSIONS 

Total flow to the collector well and the total time taken by water to reach the laterals 

from the river have been presented for a given sets of hydro-geologic and system 

parameters. Fig (6.8) shows the flow to well for different arrangements of laterals 

with varying length of non-perforated length. It is found that there is no significant 

decrease in the flow to the well when length of non-perforated pipe is kept within 40-

45% of the lateral length. However, further increase in the non-perforated length 

decreases the flow marginally. 

Interference of well is reduces and the total flow increases when the angle 

between two laterals are increased as shown in Fig (6.9). Table 6.1 presents the flow 

to the well for different length of non- perforated section. It is found there is no 

significant decrease in the flow however the entrance velocity increases sharply with 

the decrease in the screen length. Hence, entrance velocity should be checked for 

individual lateral which is capturing more water or having smaller screen length. For a 

particular location of the well and other given parameters, the total flow to the well 

increases with the increase in the length of laterals Fig (6.10). 

The pathogenic bacterial contamination point of view, the safe distance of the 

well from the river has been determined by estimating the travel time of water from 

point G to point F (the shortest streamline) along the x-axis. For a given hydro-

geologic parameters and geometric arrangements of the laterals, the variation of 

S/vx  with respect to dx is shown in Fig (6.11). The total travel time is the area 

between the curve and the x-axis. The variations of nondimnsional flow and the 

travel time with L1/R are shown in Fig (6.12a) and Fig (6.12b), respectively. Flow 

increases and minimum travel time decreases with the increase in length of laterals. 
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Non-dimensional flow for four equally spaced laterals computed in the present 

study is compared with the non-dimensional flow computed from the expression 

given by Milojovic (1963) in Table 6.2 for a given thickness of aquifer and diameter 

of laterals and varying L/R. The correction factor owing to the partial interception of 

the laterals is found to be 0.8. 

In absence of lateral EF (Case 2.1), the variation of non-dimensional flow with 

different orientation of lateral CDE is presented Fig.(6.13). As the lateral CDE sweep 

towards the landside, the interference of laterals CDE on lateral BC increases and 

flow to lateral BC reduces whereas flow to lateral CDE increases marginally, and the 

total flow to the well decreases. 

In absence of lateral BC (Case 2.2), the variation of non-dimensional flow 

with different orientation of lateral CDE is presented Fig.(6.14). As the lateral CDE 

sweep towards the landside, the interference of laterals CDE on lateral EF reduces 

and flow to lateral EF increases whereas flow to lateral CDE reduces marginally, and 

the total flow to the well increases. 

Total yield increases with the decrease in the distance R keeping the length of 

laterals same, but simultaneously the retention time also decreases. Table 6.3 show 

that the yield remain same when ratios of R/L1 and L / b/L, are kept same for L/-L2=L3 

and Lib=L2b=L3b. Hence, quantity and quality of flow to the collector well primarily 

depends on the distance of the well R and the length of each lateral (LI, L2, L3) 

whereas the diameter, percentage of perforation and length of the screens primarily 

govern entrance velocity. 
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6.6 CONCLUSIONS 

For a given hydro-geologic condition, flow to a single lateral decreases with the 

increase in number of laterals, due to interference of flow. However, total flow 

increases. with the increase in number of laterals but not in same proportion, but the 

average entrance velocity of the flow decreases with the increase in the total length of 

the screen. When the screen portion of the laterals decreases flow does not decreases 

in the same proportion. For smaller length of laterals, the interference of flow 

increases, therefore, it is not beneficial to have large number of laterals of smaller 

length. The distance of the well from the river is the major parameter, which governs 

the yield and quality of water. If the length of laterals, the length of screens, and the 

distance of the well from the river for a particular pattern of laterals are increased or 

decreased by a constant factor, the yield will remain same. However, the collector 

well at larger distance from the river with longer laterals will produce good quality of 

water. The increase in the radius and the percentage of perforation increases the 

yield. 
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LA/14=0.2, 
R=300m, h=10m, k=70m/day 
S=0.3 
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Fig.6.10: Variation of total non-dimensional flow with length of laterals 

120 

0.25 

0.20 

0.15 

rl 0.10 

0.05 

0.00 
50 	100 	150 	200 

	
250 
	

300 
Distance x from the origin (m) 

Fig.6.11: Variation of S/u with x. 

137 



3.4 

3.1 

2.9 

2.6 

2.4 

2.1 

1.9 

1.6 

Ter 

- — 

a=0.5 

--- 

L I=1,2=L 3=50m, 

— 
1,1  =L21,=L 3b=10m,L ItiLi =0.2 

0.2 
	

0.3 
	

0.4 
	

0.5 

L ///i 

Fig.6.12(a): Variation of non-dimensional flow with Lr/R 

80 

1,1=L2=L3=50m, Lib=L2n=L3b= 0m,Li t/L1=0. 
a=0.5, k=70m/day, S=0.3 

40 

30 

20 

1.4 

1.1 
0.1 

M
in

im
um

  t
ra

ve
l t

im
e  

(d
ay

s)
  

70 - 

60 	 

50 

10 - 

0 	 
0.1 	0.2 
	

0.3 
L 11R 

Fig.6.12(b):Variation of minimum travel time with Li/R 

0.4 	0.5 

138 



• 2.00 

0' 
▪ 1.50 - E-1 

▪ 'C5  1.00 
E• 
6,  0.50 - 

0.00 - 	 

R=200M, L2=L3=50M, L21,-L,31,=10M 

3.50 - 

3.00 - :ET 
2.50 

:2  2• .00 - E-1  

1• .50-  
.1f 
• 1.00 

0▪ ' 0.50 - 

R-- 100m, 	Lib=L2h-lOrn 

Q1/(kTh) 

Q2/(kTh) 

Ql(kTh) 

2.50 
Q/kTh 

0.1 	0.2 	0.3 	0.4 	0.5 	0.6 	0.7 
q 

Fig.6.13: Non-dimensional flow to individual laterals for different arrangements 

(Case 2.1) 

0.35 
	

0.45 	0.55 
	

0.65 
	

0.75 
ae. 

Fig.6.14: Non-dimensional flow to individual laterals for different arrangements 

(Case 2.2) 

0.00 - 
0.25 

139 



Table 6.1. Variation of nondimensional flow to each laterals and entrance velocity to 

lateral EF with Lib/LI. 

R=200m,a =O. 667, L1=L2=L3=125m, k=70m/day, Aquifer thickness=7.5m, 

drawdown,h= hr-h„,=7m; perforation, P=0.2; diameter, d=0.32, Llly'L2b=1-3b 

Blind 
Length(m) Q i /kTh Q2/kTh Q3/kTh Q/kTh 

Avg. Entrance 
Velocity to EF 

cm/sec 
1 2 3 4 5=2+2*3+4 6 
0 1.428 0.917 0.0999 3.363 0.242 

25 1.426 0.917 0.1000 3.359 0.302 

50 1.406 0.912 0.1004 3.330 0.397 

75 1.350 0.898 0.1010 3.247 0.571 

100 1.218 0.868 0.0998 3.053 1.031 

Table.6.2. Comparison of non-dimensional flow, Q/kT(hr-h,,) from Electrodynamic 

model and the present study. 

T=7.5m, diameter d=0.32m and number of equally spaced (ct=0.5) laterals, m=4 

Length of R=b (m) 	L/R 	Milojovic( I 963)'s Present 	Correction 
each 	 Electrodynamic 	study 	factor, Cf 
laterals 	 model 

Q/kT(h r-h,,) 

1 2 3 4 5 6=4/5 

50 100 0.50 2.42 3.01 0.806 

50 120 0.42 2.24. 2.80 0.799 

50 140 0.36 2.11 2.65 0.796 

50 160 0.31 2.01 2.53 0.794 
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Table 6.3. Variation of minimum travel time for a given value of LI R  and Lib/L1  for 

same flow, i.e., Q/kT(hr-hw)=2.58 

S=0.2, k=1 Om/day, drawdown, hr-h„,=6m; 

R 	L1=L2=L3 R(m) 	Shortest Non 	 Minimum 
(m) 	(m) 	 Distance dimensional 	travel time 

( G to F) flow, 	( Days) 
(m) 	Q/kT(hr-hw) 

1 2 3 4 5 

150 50 10 100 2.58 50.4 

225 75 15 150 2.58 112.8 

300 100 20 200 2.58 201.4 

375 125 25 250 2.58 315.0 
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Chapter 7 

GROUNDWATER RECHARGE THROUGH 
A MULTI-AQUIFER SHAFT NEAR A FLOODING 

STREAM 

7.1 INTRODUCTION 

In arid and semi-arid regions, groundwater storage depletion is a common feature. 

Therefore, some effective measures are required to replenish the groundwater storage 

loss or to increase safe yield of the aquifer. A variety of methods have been 

developed to recharge or replenish groundwater (Oaksford, 1985). These methods 

include direct surface, direct subsurface and indirect recharge. In direct surface 

method, water moves from land surface to the phreatic aquifer by percolation through 

the soil such as flooding, furrow, basins, stream augmentation and over-irrigation, etc. 

In direct subsurface method, water is conveyed into natural openings, pits or shafts 

and wells, and water percolates down under gravity, Further, indirect recharge is the 

induced infiltration that takes place from the stream to the aquifer owing to pumping 

of a well near a stream-bank. A particular situation may occur when a shaft is opened 

to multilayer confining aquifers and is situated near a flooding stream. During flood 

events, the water level in the stream rises and consequently the piezometric level or 

water table in the upper aquifer rises, as a result, the lower aquifer gets recharged 

through the shaft. Further, during flood period the velocity of water in stream is 

sufficiently high to prevent silt deposition from sealing the streambed and stream-

bank. After the recession of flood when the stream becomes a gaining stream, the 

presence of such multi-aquifer shafts will capture some of the ambient aquifer 

discharge before it reaches the stream as base flow. The acceptance rate of the aquifer 
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is function of aquifer parameters, radius and position of the shaft as well as peak flood 

rise and duration of the flood. This method could be proved effective in 

unconsolidated formations of permeable sand and gravel hydraulically connecting the 

stream and the aquifer. A vertical shaft may be considered in context of Riverbank 

Filtration (RBF) for (i) increasing the safe yield of the underlying aquifers and (ii) 

improving the source water quality by taking the advantage of the natural 

biogeochemical processes occurring in the porous medium between the stream and 

the shaft. 

Several studies (Theis, 1941; Kazmann, 1948; Glover and Balmer, 1954; 

Hantush, 1965; Jenkins, 1968; Wallace et al., 1990; Wilson, 1993; Spalding and 

Khaleel, 1991; Hunt, 1999; Chen, 2003; Swamee, et al., 2000; Singh, 2000, 2003, 

etc.) have been carried out on stream-aquifer-well system in which the estimations of 

stream depletion and induced infiltration are the main objectives. However, all these 

studies have been carried out for the well tapping single aquifer, i.e., the unconfined 

aquifer only and no flood is passing in the stream. Recently, using discrete kernel 

approach, Mishra and Fahimuddin (2005) have analyzed unsteady flow through a 

multi-aquifer well of infinitesimally small radius situated nearby a stream during 

pumping, after stoppage of pumping, as well as during passage of a flood wave in the 

stream. The objective of this chapter is to present a solution to quantify the recharge 

through a multi-aquifer shaft of finite radius located near stream-bank during flood 

period. The increase in recharge due to various factors such as increase in diameter of 

the shaft, proximity of the shaft to the stream and extent of its penetration into the 

aquifer to be recharged, has been studied. 
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In nature, a single aquifer rarely exists. An aquifer is part of a system of 

aquifers (multi-aquifer system) separated from each other by less permeable confining 

layers. Several studies, mostly numerical modeling, have been carried out to analyze 

the groundwater flow in multiaquifer and well systems (Saleem, 1973; Fujinawa, 

1977; Hen-era et. at, 1980; Maddock III and Luther, 1991; Cheng and Morohunfola, 

1993; Giao et. al., 1999; Baker and Strack, 2003; Neville and Tonkin, 2004, etc). 

Mishra, et.al. (1985), applying discrete kernel approach, have analyzed unsteady flow 

to a multiaquifer well tapping two aquifers separated by an aquiclude However, very 

few studies on multiaquifer and stream system are reported. A stream in a 

multiaquifer system may partially or fully penetrate the upper aquifer. It interacts 

directly with the top aquifer and indirectly with the lower aquifers through the well 

opening only if the aquifers are separated by aquicludes. Hemker(1984) and 

Mass(1986) address the problem of a stream in a multiaquifer system. Very few 

works are reported on the understanding of the interaction of a stream and 

multiaquifer system with or without a pumped well nearby the stream. Recently, using 

discrete kernel approach, Mishra and Fahimuddin (2005) have analyzed the unsteady 

flow through a multiaquifer well situated nearby a stream during pumping, after 

stoppage of pumping, as well as during passage of a flood wave in the stream. 

Transient well hydraulics in a single homogeneous and isotropic nonleaky 

confined aquifer is the simplest case in both the practical and mathematical sense. The 

theory was developed by Theis (1935), known as the "Theis Equation", describing 

transient flow in aquifers under pumping conditions from a well in a confined non-

leaky aquifer. The Theis's solution is based on the assumption that the well can be 

idealized as a mathematical sink (i.e. radius 	0) that has no storage capacity. Later, 
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Hantush (1964) given solution for drawdown around a well of finite radius assuming 

that the rate at which water is pumped from the well is equal to that entering the well, 

so that storage capacity of the well is neglected. Further, Papadopulos and Cooper 

(1967) given solution for drawdown in and around of a large diameter well taking the 

water stored into account. Some studies in which discrete kernel method has been 

applied to analyze unsteady flow to a large diameter well are cited here (Patel and 

Mishra, 1983; Mishra and Chachadi, 1985; Sen , 1986; Rushton and Singh, 1987; 

Barker, 1991; Chachadi and Mishra, 1992; Mishra, 2004, etc). 

In this chapter, an analytical model is described to quantify groundwater 

recharge that would take place from the upper unconfined aquifer to lower confined 

aquifers through a shaft (un-pumped well of finite radius) situated near a riverbank 

due to the rise in stage during passage of a flood. The shaft taps first two aquifers 

separated by an aquiclude. 

7.2 STATEMENT OF THE PROBLEM 

A definition sketch of a multi-aquifer shaft for the groundwater recharge is shown in 

Fig.(7.1). The shaft with a radius rW  is located at a distance R from stream bank. The 

shaft is open to two aquifers, i.e., phreatic aquifer and lower confined aquifer of 

transmisivities, Ti  and 12, and storage coefficients, Si  and S2, respectively. An 

aquiclude of thickness L separates the two aquifers and b is thickness of the lower 

confined aquifer. It is assumed that the stream and aquifers are in initially hydraulic 

equilibrium state. 

The objective is to quantify the recharge to the lower aquifer through the shaft 

during passage of a flood wave in the nearby stream. Quantification of recharge rate is 

145 



T2, S2 
	 4- 

Datum 

sought for a vertical shaft penetrating fully to the lower aquifer and marginally to the 

lower aquifer, i.e., the shaft terminates at the base of the aquiclude layer. 

-AP+ 

Shaft  

2rw  
Water table & 
Piezometric level at time t>0 

Stream T1, Si 

hi+hi 
..... •-• _y_li 2 -------- -- - 

Watel. talires& Piezometric level at time t---0 

co 

4- 

Impervious layer 

Fig.7.1: A multiaquifer shaft near a flooding stream 

146 



7.3 ASSUMPTIONS 

The following assumptions have been made in the analysis: 

(1) The time parameter is discrete. Within each time step, the unknown recharge 

rates are separate constants varying from one time step to another time step. 

(2) The varying recharge is a train of pulses and an unsteady state is a succession 

of steady states, therefore, within a time step, Bernoulli's equation is 

applicable. 

(3) The stream forms a straight boundary, fully penetrates the upper aquifer and is 

in perfect hydraulic connection with the upper aquifer. There is no clogging 

layer, i.e., stream resistance is neglected. 

(4) Each of the aquifers is homogeneous, isotropic, and of a constant thickness in 

lateral extent. 

7.4 ANALYSIS 

To compute the recharge through a multi-aquifer shaft near stream-bank during 

passage of a flood wave (Fig.7.1), a mathematical expression is written applying 

Bernoulli's equation between points 1 and 2 with datum at the base of the aquiclude at 

the end of any time step n as: 

y+hi(n)+hi(n)—s(n)=y+h2(n)+v
i2(n) f La v22(n) 

2g 	4grw  
(7.1) 

where , 

y= height of initial water level from the datum; 

v2(n) =Q(n)/((nrw2)At), velocity of water at point 2 during nth  time step; Q(n)= 

volume of water passing through the shaft during nth  time step; rw  = radius of the 
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shaft; n = an integer; At = time step size; f= coefficient of friction; La= thickness of 

the aquiclude; g= acceleration due to gravity; 

h1  (n) = yE 
1 
 (a Y — 6y-1) 5h (R, n — y +1, At), rise in piezometric level at the shaft 

= 

face due to stream stage rise at the end of nth  time step; c = rise in stream stage at 

the end of y th time step which is computed using mathematical expression for 

sinusoidal flood wave proposed by Cooper and Rorabough(1963); 

Sh (R,n y +1, At) = discrete ramp kernel coefficient obtained using the unit 

response function given by Carslaw and Jaeger (1959) for analogous heat conduction 

problem(see the Appendix B) ; R= distance of the shaft from the stream-bank ; y = an 

integer; 

n 
s(n)= 	Q(y) Si  (rw , n — y +1, At) , drawdown in piezometric level at the shaft face 

Y=1 

due to passing of water from the upper aquifer to the lower aquifer, 

; Si  (rw  ,n — y +1, At)= discrete pulse kernel coefficients obtained from the solution 

for drawdown derived by Hantush (1964) for the fully penetrating well of finite 

radius(see the Appendix C and Mishra, 2004(a)); 

h.(n)= 	Q (y) 51 (2R, 	y +1, At), rise in piezometric level at the shaft face due 7_1  

to an image recharge well; and 

n 
h 2(n) 	= E Q(y) 52 (rw, , n y +1, At), rise in piezometric level at the shaft face 

Y=1  
in the lower aquifer owing to recharge from the upper aquifer. 
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Incorporating h, (n) , h (n), s(n), h 2 (n) and v2(n) into Eq. (7.1) the following 

expression is obtained: 

	

il 	 — ay-1) Sh (R, n —y + I, At) + 	Q (7) 81 (2R n —7 +1, At)- 

	

7=1 	 Y=1  
2 

n „ n  EQW 6i(rw  , n — +1, At) = 	Q(y) 82  (rw  , n —y + I, At)+  Q(n)  

	

7=1 	 7=1 	 Atnrw  2  2g 

2  fLa {  Q(n)  } 

4grw Atnrw 2  

Eq. (7.2) is rearranged and written in the form of a quadratic equation as: 

1  Q2(01  tla  
(At)2  4g72 r,„5 	(At)2  2g7c2  r„, 4  

	

n 	61 (rw , n—y+1, At) — 6/ (2R, n—y+l,At) 
+ EQ6,  

	

y=1 	62  (rw ' n — y +1, At) 

-71(
csy — ay-1) Sh (R, n —y +1, At) =0 

= 

Eq. (7.3) is solved for Q(n) considering positive root only as: 

Q(n)— — b + Vb2  — 4ac 
2a 

fL + 	1  
(At)2 4g7c2 rw 5 	(At)2 2g7t 2 r,, 4  

b= 81  (rw  , I , AO-81 (2R, I, At) + 62  (rw  , 1, At); 
and 

c-- 
n-1 

Q(y)16i  (rte, , n —y +1, At) — 61 (2R, n — y +1, At) +62  (rw  , n — y + I ,At)} 
7=1  

 
7
E 

1
(ay — (57_1  ) 8h  (R, n —y +1, At) . 

= 

(7.2) 

(7.3) 

(7.4) 

where, a — 
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By neglecting the terms for the velocity head and the head loss due to friction 

in Eq. (7.1), Eq. (7.3), which is nonlinear, becomes a simple linear equation as: 

Q6,  8,(rw  , n — y + At) — 61(2R, n — y +1, At) + 

r=1 	 S2 (rw , n—y +1, At) 

7 1 
(ay — 07_1 ) Sh (R, n —y +1, At) =0 

= 
(7.5) 

The procedure for finding recharge though a shaft that penetrates marginally 

(i.e. zero penetration) into the lower aquifer is same as that for the fully penetrating 

shaft described above. In this case, the rise in piezometric level h2(n) at the shaft face 

owing to recharge is to be computed using discrete pulse kernel coefficients obtained 

from the solution for drawdown derived by Hantush (1961) for the partially 

penetrating well ( see the appendix C and Mishra, 2004). 

7.5 RESULTS AND DISCUSSIONS 

Results have been obtained by solving Eq. (7.3) varying the values of different 

parameters of the system considering the thickness of the aquiclude, La=10.00m; the 

coefficient of friction, f=0.02; and the time step size, At =1/12 day. The proximity of 

the shaft to the stream, the radius and the extent of its penetration into the aquifer to 

be recharged are parameters that govern the volume of recharge most for a particular 

hydro geologic site. Distance of the shaft from the stream is a major parameter, which 

governs the quantity and quality of the recharge most. The recharge reduces 

significantly with the increase in distance of the shaft from the stream as shown in 

Fig. (7.2). However, a longer distance between the shaft and the stream-bank helps in 

removing large quantities of surface water contaminants and improves the quality of 

the recharge water. 
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The size or radius of the shaft is the second most important parameter that has 

to be decided to obtain maximum recharge through a shaft located at a particular 

distance from the stream. Fig. (7.3) shows the total volume of recharge through the 

shaft of different radius and placed at different distance from the stream-bank. The 

recharge was estimated for initial two months since onset of flood. It is found that the 

percentage increase in total recharge with the increase in radius is more for smaller 

radius as shown in Fig. (7.3). For example, total volume of water that is recharged to 

the lower aquifer through a shaft which is placed at R=100m is increased from 

3062m3  to 3843m3  when the radius is increased from O. /m to 0.5m and it increases 

further to 4217m3  when the radius is further increased to1.0m. 

The extent of shaft's penetration into the aquifer to be recharged is another 

important parameter. Fig.(7.4) shows recharge through a shaft that penetrates fully 

and marginally into the confined aquifer. A substantial difference in the recharge is 

found corresponding to these two conditions, hence, the shaft should penetrate into 

the entire depth of the aquifer to be recharged. 

Recharge decreases for greater storage coefficient of the upper aquifer as 

shown in Fig. (7.5a) and it increases for greater storage coefficient of the lower 

aquifer as shown in Fig. (7.5b). Recharge rate for different peak and duration of flood 

is shown in Fig. (7.6). 

It is noticed from figures that some quantity of water come back from the 

confined aquifer to the unconfined aquifer immediately after recession of the flood. 

This is because that the peizometric level in the unconfined aquifer at the shaft face 

starts decreasing and becomes lower than the piezometric level of the confined aquifer 

at the well face for some time immediately after flood period. 
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Recharge rates computed solving Eq. (7.3) and Eq. (7.5) are compared in 

Table.7.1. Hydraulic heads due to the velocity and the friction loss in the aquiclude 

portion of the shaft would be very small even for greater depth of aquiclude (L3), 

larger friction factor (f) and smaller radius (rw). The reason for this is that water 

mainly flows through porous medium except in the aquiclude portion of the shaft. 

Hence, Eq. (7.5) can be used as a good approximation of Eq. (7.3). 

7.6 CONCLUSIONS 

An analytical solution, using discrete kernel approach, has been presented to quantify 

groundwater recharge through a multi-aquifer shaft situated near stream-bank during 

passage of flood in the stream. Distance of the shaft from the stream is a major 

parameter that governs the quantity and quality of the recharge. The recharge reduces 

significantly with the increase in distance of the shaft from the stream. However, a 

longer distance (longer travel time) between the shaft and the stream-bank helps in 

removing large quantities of surface water contaminants through bio-geochemical 

processes and improves the quality of the recharge water. The recharge increases with 

increase in radius of the shaft at a particular distance from the stream-bank. However, 

the rate of increase in recharge diminishes at larger diameter of the shaft. The shaft 

should penetrate fully into the aquifer that has to be recharged. 

The stream—aquifer system, by an optimal management, can be used to store 

the runoff occurring in the stream. Multi-aquifer shafts located directly adjacent to a 

flooding stream can serve a means of artificial recharge by setting a gallery or a line 

of shafts parallel the bank of a stream and at a short distance from it. 
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Table 7.1: Recharge rate computed using Eq. (7.3) and (7.5). 
TI =T2=450m2/day ; SI=S2=0.001; R =50m, r„ 0.1m, 

L=10m, 1=0.02, H0=3m,tc=5days,td=15days.  

Recharge rates (m3/day) from 
Days Eq.(7.3) Eq.(7.5) Difference 

1 29.3318 29.3319 0.0001 
2 153.1999 153.2003 0.0004 
3 303.1393 303.1408 0.0015 
4 418.6350 418.6380 0.0030 
5 474.8673 474.8709 0.0036 
6 471.3053 471.3088 0.0035 
7 421.3559 421.3587 0.0028 
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Chapter 8 

CONCLUSIONS 

A radial collector well consists of a number of horizontal screened pipes (laterals) 

connected to a central caisson. Water enters through these horizontal laterals; 

therefore, analytical solutions of flow to a RCW are based on the theory of gradually 

varied flow in a horizontal perforated pipe (drain or gallery). An infiltration gallery 

can be treated as a special case of a radial collector well with only one or two 

collinear laterals. 

If a horizontal well is pumped with a large pumping rate, different flow states 

such as laminar, transitional, and turbulent flows can co-exist inside the lateral and the 

problem must be treated as a coupled well-aquifer hydraulics problem. It is found that 

the laminar flow length is dependent on the radius of the collector pipe. Barring for a 

small length near the tip of collector pipe (free end), the flow condition inside the pipe 

is turbulent. 

Estimation of flow to a horizontal pipe can be based on two fundamental 

assumptions, i.e., (i) either the total discharge through a lateral is uniformly 

distributed along its entire length, i.e., the uniform flux boundary condition exist 

along the laterals, or (ii) that the head along the lateral is uniform, i.e., Dirichelt type 

boundary condition exists along the laterals. Collector pipe of diameter 0.3m-0.4m is 

generally adopted for a radial collector well and for collector pipe with diameter 0.2m 

and above, the head loss is very marginal. Therefore, for steady state flow condition, 

either Dirichlet boundary condition or uniform flux condition can be applied without 
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introducing appreciable error. Dirichelt boundary condition is to be applied for 

solving Laplace equation for steady state flow condition. For unsteady state flow 

condition, the uniform flux boundary condition can be adopted conveniently. 

Generally, a RCW system has many laterals ranging from 2 to 23 per well and 

in such case, due to interference of laterals, the flux distribution along any lateral will 

not be uniform. The flux per unit length will be more near the tips of the pipes than 

that near the caisson. The flux per unit length at any section depends on entry 

gradient, pipe diameter, perforation percentage, hydraulic conductivity, and the 

hydraulic head difference across the flow boundaries. The entry gradient, hence the 

flux distribution, is governed by the geometry of flow domain. Thus, in case of a 

collector well with several laterals, an assumption of uniform flux distribution along 

the laterals would misrepresent the true situation. 

The flow domain of a radial collector well or an infiltration gallery in a thin 

aquifer near a stream can be considered as homogeneous as the radius of influence 

would not progress with time due to presence of the surface water body. The effective 

flow domain of a radial collector well or infiltration gallery will be a small part of the 

aquifer. The advantage of homogeneity can be taken for solving the well hydraulics 

problem analytically. If the objective is to estimate the production rate of a radial 

collector well, flow field can be considered as two-dimensional in x-y horizontal 

plane neglecting the resistance to vertical flow. 

If the well is located near to a surface water body, the flow to the well could 

be treated as steady state flow during the later stage of contineous pumping. At late 

pumping stage, horizontal pseudo-radial flow towards a horizontal collector pipe is 

established which supports the assumption of sheet flow condition in a thin aquifer 
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and horizontal collector well system.Thus, the flow can be estimated by solving well-

known Laplace equation for 2D flow field under steady state conditions. Thereafter, a 

correction factor is to be applied to take account of the partial interception of the 

aquifer thickness by the collectors. 

Yield of a collector well is influenced by length, orientation, number and 

diameter of laterals, etc. and can be studied through analytical technique such as the 

conformal mapping technique. Conformal mapping technique is one of the methods 

available to solve the 2D groundwater flow problems. 

The safe yield of a radial collector well or that of an infiltration gallery near a 

river is a function of length of gallery or laterals, location of the collector system from 

the surface water body (river, lake), geometry of the surface water body (straight 

reach or meandering reach), radius and percentage of perforation of laterals, and the 

hydro-geological parameters, i.e., aquifer thickness, hydraulic conductivity, and 

storage coefficients. 

The specific capacity of an infiltration gallery located at the centre of an island 

increases and travel time decreases with the increase in I/R. Similar situation happefis 

for an infiltration gallery aligned at right angle towards straight reach of a river. In 

case of an infiltration gallery aligned towards landside of the river, the specific 

capacity increases and the minimum travel time decreases monotonically with the 

increase in l/R. The specific capacity of an infiltration gallery running parallel to a 

river increases linearly with the increase in I/R , whereas, the minimum travel time 

increases first and then becomes almost constant. 

The specific capacity of a radial collector well with multiple partly screened 

laterals located near meandering reach of a river increases with increase in I/R and 
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the number of laterals. However, for smaller length of laterals, the increase in the 

specific capacity is marginal with the increase in number of laterals. The minimum 

travel time decreases with increase in 1/R. The entrance velocity first decreases and 

then increases with the increase in 1/R. The reason for this is that flow increases 

linearly for smaller 1/R and increases exponentially for 1/R approaching 1. The effect 

of the length of non-perforated section of laterals on specific capacity and minimum 

travel time is not significant. However, total length of each collector remaining same, 

the entrance velocity increases sharply with the increase in non perforated length of 

the lateral. 

The specific capacity of a radial collector well with four partly screened 

laterals located near a straight reach of a river increases with the increase in the length 

of screen. For a given length of laterals (nonperforated and perforated section), the 

specific capacity changes with the change in mutual orientation of laterals with 

respect to the river. For nominal blind length of laterals, the yield is maximum when 

three laterals are laid towards land side at an angle 7c/3 between them, and one is 

oriented towards the river side. If the blind part is more than 60% of the collector 

length, the maximum yield occurs when the angle between laterals is m/2 and one of 

laterals is oriented at right angle towards the river. The minimum travel time 

decreases with increase in length of laterals as screen part comes closer to the river. 

The limiting entrance velocity (3 cm/sec), the limiting axial velocity (0.9 

m/sec (Ray (2002), Driscoll (1987)), and the minimum travel time (average survival 

time of pathogenic bacteria) are the major governing parameters for the design of an 

infiltration gallery and a radial collector well near a river. In the design of a radial 

collector well, the well location, orientation of infiltration gallery or laterals with 
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respect to the river axis, radius, length of screen, percentage of perforation of 

collectors are determined for a given hydro-geological condition and for desired 

production of the well. 

In sedimentary groundwater basin, and even in hard rock region, a 

multiaquifer system exists. In such situation, to meet the desired water supply 

demand, and to meet the water quality standard, it is advantageous to tap the lower 

aquifer. To increase the water supply capacity of the lower aquifer, the aquifer may be 

recharged artificially by constructing vertical shaft near a river. The quantity of water 

recharged during passage of a flood has been determined. The recharge increases with 

the increase in radius of the shaft and with close proximity of the shaft to the river. If 

the lower aquifer is fully intercepted by the vertical shaft, the recharge increases 

significantly. 

Scope for further studies 

The present study has been carried out with certain objectives under certain 

assumptions. The radial collector well-stream-aquifer interaction needs further studies 

focusing on: 

(1) The effect of partial penetration of stream on specific yield. 

(2) Comparison of performance of a vertical well and a radial collector well in 

a thick aquifer in respect of specific yield and energy consumptions. 

(3) Performance of radial collector well during unsteady state of flow 

(4) Evaluation of safe yield of a collector well system in an unconfined aquifer 

stream system. 

(5) Safe distance of the well from a river or stream accounting for dispersion, 

adsorption and decay of pollutants. 

161 



APPENDIX A 

A.1 CONFORMAL MAPPING 

Most of the analytical methods for the solution of two dimensional groundwater 

problems are concerned with the determination of a function which will transform the 

problem from a geometrical domain within which a solution is sought into one within 

which the solution is easy to obtain. Let w = + iT be an analytic function of z = x + 

iy & suppose that a complex number x + iy is located at point P1  in z-plane. As w is a 

function of z, there must be some point Qi  in w-plane corresponding to the point P1  in 

z-plane. Similarly, by correspondence of a sequence of points for any curve in z-

plane, there will be a corresponding curve in w plane. This is called a mapping. 

Conformal mapping is one of the several techniques of transformation in which the 

angles of intersection and the approximate shape are preserved. The usefulness of 

conformal mapping in two-dimensional flow problems stem in the fact that solutions 

of Laplace's equation remain solutions when subjected to conformal mapping. In 

conformal mapping technique, the crux of the problem is to find a transformation (or 

series of transformation) that will map conformally a complex region in z-plane into 

an analytic region (say) in w or t-plane of simple shape such as rectangle or circle. 

A.2 SCHWARZ-CHRISTOFFEL TRANSFORMATION 

In groundwater seepage problem, it is generally required to study the seepage 

characteristics within complicated but straight-line boundaries. Theoretically, the 

transformation exists which will map any pair of simply connected regions 
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a n c a e 
Fig.A.2 

t co 
Fig.A.1 

• S 

t=r+is 

conformally onto each other. The use of appropriate auxiliary mapping technique 

enables to transform even complicated flow regions into regular geometric shapes. 

Generally, these regions are polygons having a finite number of vertices, out of which 

one or more may be at infinity. Thus, the method of mapping a polygon from one or 

more planes onto upper half of another plane is of particular importance. 

If a polygon is located in the z plane (z=x+iy), then transformation that maps it 

conformally onto the upper half of the auxiliary t plane ( t=r+is) is: 

dt  
z M 	(=A ) 	(4,) 	 (.170) 

(t_ a) 	(t — b) 	(t — e) 	(t — d) 	(t — e) 
+N 	 (A l ) 

where M and N are complex constants. A, B,C,...., are the interior angles (in radians) 

of the polygon in the z plane Fig (Al), and a,b,c,...., (a<b<c<..) are points on the real 

axis of the t-plane (Fig. A2) corresponding to the respective vertices A,B,C,... 

Equation Al is called as the Schwarz-Christoffel transformation. The Schwarz-

Christoffel transformation technique is applicable to a simply connected polygon with 

straight-line boundaries having a finite number of vertices one or more of which may 
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be at infinity. However, in some cases there is no physically connected flow domain. 

In such cases it is checked whether there is any symmetry about the real x-axis in flow 

domain. In case of symmetry, half of the flow domain owing to symmetry is a 

connected polygon and can be chosen for mapping. The mapping function gets 

considerably simplified and gets amenable to Schwarz Christoffel conformal mapping 

technique. The transformation is accomplished by opening the polygon at some 

convenient point (i.e. between A and E as in Fig Al) and extending one end to the t=- 

00 and the other end to the t-----Foo (Fig A2). In this operation, the sides of the polygon 

form a straight-line which is placed along the real axis of t-plane. By choosing 71 as 

the interior angle at the opening point, it takes no part in transformation as shown in 

Eq.(A1). The opening point should be chosen between any two vertexes. In 

transformation process, any three of the values a,b,c,... , can be chosen arbitrarily to 

correspond to three of the vertices of the polygon A,B,C,.... The (n-3) remaining 

values are determined to satisfy the condition of similarity. If the opening point is 

kept at infinity then only two points remain to be chosen arbitrarily and (n-2) point 

remains to be determined. 

Unless the flow domain is of very simple shape, direct analytical solution to 

Laplace's equation is very difficult. Conformal mapping is one of the several 

techniques of transformation in which a region of complex shape is transformed into a 

region of simpler shape by keeping the angles of intersection in magnitude and sense, 

and the approximate shape preserved. Through conformal mapping a complex domain 

is transformed into a simpler shape wherein Laplace's equation can be solved 

subjected to the transformed boundary conditions. 
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APPENDIX B 

B.1 RISE OF AQUIFER WATER LEVEL LOCATED AT DISTANCE X 

DUE TO RISE IN STREAM STAGE AFTER TIME T. 

Carslaw and Jaeger (1959) have derived solutions for heat conduction problems, 

which are applicable to analogous groundwater flow problems. The rise in 

piezometric surface corresponding to a step rise in stream stage for one dimensional 

transient flow of water in an initially steady state, semi-infinite, homogeneous and 

isotropic aquifer, bounded by a fully penetrating fairly straight stream, can be 

represented by the partial differential governing equation such as 

8h 	a21-1 
et  - P  8x 2  

(B1) 

where, 3 is the hydraulic diffusivity, and h is the piezometric head. 

In order to compute rise in piezometric level in the aquifer located at a distance x 

from the stream edge, after time t, due to the sudden rise I-1 in stream stage, following 

initial and boundary conditions are to be satisfied : 

Initial condition, h(x, 0) = 0; and 

Boundary conditions 

h (0, t) = H and h (00, t) = 0 

The solution of analogous heat conduction problem was given by Carsalaw and Jaeger 

(1959) which is given as 

{
h(x,t) = H 1 — erf (B2) 

165 



where, x= distance from the bank of the stream; t= time measured since the onset of 

change in stream stage; T= transmissivity of the aquifer; S = storage coefficient of 

2 X 2  the aquifer; p= T/S, hydraulic diffusivity; erf (X)=error function = 	Cu du . 
TT 0 

B. 2 SYNTHETIC FLOOD WAVE IN A RIVER 

Cooper and Rorabough (1963) have proposed synthetic generalized form of flood 

wave passing in a river, which can be represented as follows: 

,.={
N * H0(1- cos o)t) e-6t  for 0 t .5Ad  
0 	 for 0) td  (B3) 

where o(t) = stream stage above initial water level at any time t ; 

N = exp(Stc )/(1-cos cotc ); Ho= Peak height of flood stage above initial water level; 

tc  = time to reach peak flood from initial stage; td  = total duration of flood period; the 

frequency of oscillation co = 27r/td  , and = co cot (0.5 co te ) ; 

The expressions for temporal and spatial distribution of piezometric head for 

infinite aquifers for a symmetric flood wave (5=0, N=1/2) obtained by Cooper and 

Rorabough(1963) are given as 

\ 
h(x,t)= 0.5H0 

erfc  x  2.5-t. j e(-----x̀ rP  cos wt{ \ 	

/—■ 
X  

1213 + 
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j- 
0.5H0— 

1 
 fe(-u`) sin x  ru  	 
0 	

2 	2 du for t td p U + co  
(B4)  

h(x,t) =0.5H 

erfc( 	erfc[  24,0(xt t  d   j  

for t> td 
I r-N 

fkut e(-u(t-tdIsin XVu 
\_ 	2f

a 	2 	 du 

	

t: ) U 	co 

(B5)  

  

B.3 DISCRETE KERNEL APPROACH 

Many groundwater flow problems have been solved on the basis of the solutions of 

analogous heat conduction problems such as given by Carslaw and Jaeger (1959). 

These solutions for step boundary perturbation are used to generate kernels, which are 

basic property of a linear system. Using these discrete kernels, response of the aquifer 

to any type of boundary perturbations can be obtained. Discrete kernel approach, 

which is based on Duhamel's superposition principle for a linear system is a method 

to find response of variation in the input. Systems that satisfy both the homogeneous 

and additive rules are considered to be linear systems. These two rules, taken together, 

are often used as the principle of superposition and are applied to solve the problems 

of groundwater systems. 

In addition to analytical and numerical approaches, the discrete kernel method 

has been successfully applied for the solution of groundwater problems for time 

varying perturbations in input. 
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To know the response of aquifer (i.e., rise in piezometic level, rate of inflow 

and cumulative volume) to the rise in stream stage, two types of discrete kernels, 

discrete pulse kernels and discrete ramp kernels, can be applied. 

B.3.1 Discrete Pulse Kernels 

The discrete pulse kernel is the response of the aquifer to a unit step-rise in stream 

stage which continues only for a period At. In this kernel, inputs are discretised as a 

train of pulses of uniform duration At and input is considered uniform over a time 

step. 

Discrete pulse kernel, a (x, At, m), is thereby given as: 

a (x,At, m)= erf 
X 	 x 

.N/413(m —1)At V4r3m 
erf (B6) 

and the piezometric level during m th time step applying convolution is given by 

h(x, mAt)= 	(47 —12+ 6(7) cc(x, At, m — y + I) 	 (B7) 
2 

where ay  = rise in stream stage at t =7At ;At = unit time step size; erfc= 

complimentary error function; and m and 7 are integers. 

B.3.2' Discrete Ramp Kernels 

The discrete ramp kernels of the system for a particular response is defined as the 

response to a linearly increasing input (such as rise in stream stage) staring from zero 
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when the system is at rest and ending in an unit input (rise in stream stage) during a 

time span At. In this definition, the slope (i.e., derivative) of the time varying 

perturbation (stream stage rise) is constant during a time step and the input to be 

approximated as a series of incremental discrete ramps. Discrete ramp kernel, 8 (x,At, 

m), is thereby given as: 

	

1 At 	 X 
Sr 	rn, At = — ferfc 	 th , 	} 	 (B8) 

	

At o 	{V413(mAt – 

where m = integer. Integration is performed after using a substitution ti = Atv , 

andth = Atdv , where v is a dimensional dummy variable (Mishra and Jain, 1999), 

and Eq. (B6) becomes 

6, (x,m,At) =1+{(m I)+,  x2  ,}erf  	m + [ 	
x  2  

}erf 	x  

	

k2r3At) 	V4pAt(in –1)1 { 	(2PAt) 	{V4PAtm 

+x exp 	 exp[  –,x2 	m  { x2  
413Atkm –1) 	13At7t 	LIPAtm 

(B9) 

Further, the piezometric level at distance x from the river edge at the end of mth  time 

step, applying convolution, is given by 

n 
h(x, mAt)= y  — cry-1 s (x At, m –7 +1) 

	
(B10) 

-= 1 

Thus, the pulse kernels are convoluted with the stream stage perturbations and 

the ramp kernel are convoluted with the derivatives of the perturbations in order to get 
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the aquifer responses to a time varying stream stage. The selection of time step size 

depends upon the nature of the flood wave. When there is a sharp rise in stream stage, 

comparatively smaller time step size should be used using discrete pulse kernels. 

When there is sluggish rate of rise in stream stage, coarser time step size can be used 

using ramp kernels. However, in both the cases, in general, ramp kernels are more 

efficient in estimating the aquifer response. 

Selection of time step size depends on the nature of the flood wave. A 

sharp rise in stream stage would require comparatively smaller time step than that 

needed for a sluggish rate of rise in stream stage. In table B1, the rise in piezometric 

surface at the end of 3 day has been computed using Eq (1310) for different time step 

sizes for a symmetrical flood wave. The corresponding rise obtained using analytical 

solution given by Cooper and Rorabough (1963), i.e., Eq (B4), comes out to be 

1.0541 m. As seen from the table, for a time step size of 1/10 day, the error in the 

prediction of the rise of piezometric level at the end of 3 days is about 0.02% only. 

Table B 1. Computed rise in piezometric level 

(t=3 days, x=25m, Hmax=2.0m, tc=2 days, 13 = 4 days) 
Time step size, At (day) Rise, h (m) 

0.20 1.0532 
0.10 1.0539 
0.05 1.0541 
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APPENDIX C 

C.1 HANTUSH'S WELL FUNCTION FOR PARTIALLY PENETRATING 

WELL 

A vertical shaft penetrating marginally into an aquifer can be treated as a recharge 

well of zero penetration. Hantush (1961) has derived an analytical expression for 

evolution of piezometric surfaces in response to continuous uniform pumping from a 

well with zero penetration. The corresponding Hantush's well function can be used to 

compute the evolution of rise in piezometric surface due to a unit pulse recharge. The 

response of a linear system to a unit pulse perturbation has been designated as discrete 

kernel coefficient (Morel-Seytoux, 1975). 

Let the unit step response function for piezometric rise at the well face of a 

marginally penetrating recharge well and a confined aquifer system be designated as":- 

U(rw,t). According to Hantush(1961) 

1 	 co 
U(rv,„t ) fW(u)+21Wn(u, 

 n ar
w )) = 

47rT n=1 

(C1) 

(I) 
13=- thickness of aquifer(m); u — 

rw 	
, W(u)= J 

CY—dy , and 
4Tt 	u 

Wn(unirrw 	exP{ 	4y 	b )}. 
dy 	1 ( nizr,„ 2 ,)  

Let the time domain be discretized by time steps of uniform size At. 
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C.1.1 Discrete Pulse Kernels Coefficients, Sp (m,At) : 

Coefficients of discrete pulse kernels are generated using unit step repose function 

given by Eq (C.1) to compute the rise or drawdown at the well face of a partially 

penetrating well as: 

8p(m,At) = Qt  [U(rw ,mAt)— U(r,„(m —1)6,0] 

1 	rS 	,---,' 	r'S ray- 
= 	 W(  w )+22.,Wn(  ' 	, 	w) 

47rT At 4TmAt n,., 4TmAt b 

w2S 	'" 2S 	rutr 
—W( 	

r 	
) 2Wn(  r w 	, w) 

4T(m-1))At 	 , 	4T(m —1)At b 

where, W(u) and W„ (u,nivr,,/b) are improper integrals as the upper limit of integration 

is infinite. W(u) is Theis' Well function and can be computed using the polynomial 

and rational approximation (Abromwitz and Stegun,1970) 	(u,ivir„/b ) is 

evaluated using Gaussian quadrature after converting the improper integral into 

proper integral and changing the limit. The procedure is as follows. 

oo 	 2 s  1 	
1 11 	 Wn. (u, 	) = 	exp{ y 

4 	
71rw  }dy 

y b 

2} 	co 	 2} 1 rutr 
= f —exp{— y--

1 (
—
; 

dy f —
1

exp{ y-- nitrw 
	 dy 

y 	4y b 	 y 	4Y b 

1 
( 	\2} 	I  

= f—exp
1 {— y 1 rutr 	

dy + J 
1 
 exp 

u y 	 2b) 

\2 (ruzr  
w  }dc 

2b 

(C2) 
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tli(rw,t). 1  4 00  — fil — exp( —rx 2 )} fi( x)dx 
0 

(C4) 
4irT 

lr 	2 exp{ (1+ x)+ u(1— x ) 2 
(1+ x)+ u(1— x) 2 {(1+ x)+ u(1— x)) 

lutr,„)2} (1 — u)dx 
2b 	2 

2 	(1+ x) (nnrw   )2}dx  

	

f 	+1 x) 	
exp 

{ 	x ) 	2 	2b J 

As x-+ -1, the value of the integrand in the second integration is found as follows: 

( 1 	2  
(1+ x) exP{ (1+ x) (1+2 x)  n2irrbw ) 2 

1  	{ 	2 	 1  exp 	
2 	4  

(1+ x) 	(1+ x) (1+ x)(1+ 	+ 	+ ) +  x) 210+ x)2   
--> 0 as x—> -1. 

This integration can be performed numerically using Gauss Qudrature technique. 

C.2 HANTUSH WELL FUNCTION FOR A FULLY PENETRATING WELL 

Hantush(1964) has derived the well function for computation of drawdown in an 

artesian aquifer due to pumping from a fully penetrating well of finite radius starting 

from the basic solution given by Carslaw and Jaeger (1959) for an analogous heat 

conduction problem. The unit step response function, Ll i (r,„t), for piezometric rise or 

drawdown at the well face of a fully penetrating well of finite radius and a confined 

aquifer system be is given by Hantush(1964) is: 
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in which, 

T t  
fi(x)= .11(xl(Px) — Jo(Px/ (x)  

r =  Sr 	 x 2  ./1 2 (x)+ Y12 (x) 	
; p = - =1; Jo), Jo) rw  

=Bessel functions of first kind of zero and first order respectively; Yo(x) Y I(x)= 

Bessel functions of second kind of zero and first order respectively 

C.2.1 Discrete Pulse Kernel, 81  (m,At): 

Coefficients of discrete pulse kernels are generated using unit step repose function 

given by Eq (C.4) to compute the rise or drawdown at the well face of a fully 

penetrating well as: 

1 
8,(m,At)= 	 —1)At)] 

At
r 

 
(C5) 

The integral in (C4) is an improper integral as the upper limit of integration is 

infinite. The improper integral is reduced to a proper integral as described below. 

co 

I= 	 )1f1(x)dx = 1[1— exp(—tx 2  )1f1 ( x )dx+ 
0 	 0 

co 

1[1— exp(—rx 2 )1f 1 ( x)dx =11+12 

 

I I= f[1—exp(—rx 2  )1f i  (x)dx= 0.5 
1. 

0 
1—exp{

—r(l+v)2
}1 fi(1+v  )dv 

4 	 2 

Expanding the exponential term, and applying L' Hospital's rule, it can be 

shown that as v tends to -1, the integrand tends to 0. The integral is a proper integral 

and can be evaluated numerically using Gauss qudrature. 
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r 	 r  
12= 1[1— exp(—vc 2  )} (x)cbc = 1[1 — exp(—r v 2  )] fl (1 / 

0 

exP
{  — 4z  }]

ft ( 
2 

 ) 
4dy  

(1+ y)2 	+ (1 +.02  

Limit of the integrand at the lower is found as described below. 

As y-4 -1, 1 — exp{  — 4r 

(1 + .02 

  

  

2 	2 	2 	2  
4 	J1(-1+ y)4(P-1 + y ) 	(P 1 + y )Y1(1+ y ) 4 	2  

[
(i+y)2ii1(14- Y

)—  

 

 

(1 +Y) 	2 2[ 2 	2 	 
(1+y) it (1+y )+Yi ( i+y )  

 

2 	2 	2 	2  
(P 1 + y ) 	(P1 + y (1+ y ) I+ y 

[ 
J12(1+ y 

2  )+ y12( 

 1+ y
2  )1 

2 	2 , 
Jo(P Ji()Y0(P 1+y 	i+y / 	

1 +2 y )Y1(i
+2  

Y
) 

[ j12( 	)+1,12( 
 1+  

2 	[ 
J12(1+  

2 ) 4..  yi2( 

 1+ 
2  ) 

	

y 	 y 
1 

1+ 
2 
 y  

As y—>-1, Y1( 	
1 + 

2 ) —+0 ; hence, 
y 

= 0.5 
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J1(1+
2 

y ))70(P  1+
2  

y ) 

[ 
j1

2 ( 
 1

2 
y 

)+1712 (  1 2  )1 
+ 	+ y 

2 	2 	2 	(1  + Y) 	2p . 	\ 
J1( 1+ y )Y0( P 1+ y )  _ 4( P 1+ y ) Pr sin 	 7r 

1 -1-y 4j 
2   	71.  

J1
2 
 (1 + y ) 	il ( 	1+

2 
 y ) 	(1 	+ Y)  cos 

2  3n 

=1 =1 (since p=1) 

2  
Jo(P 1 + 

2 
 y )Y1(1+y —) 

Similarly, 	 —41 
[ 

J12 
 2  (1+y)+Yi2 (1+y )  

Therefore, 12 can be evaluated using Gauss qudrature. 

The peizometric level at any point at a distance r from the center of the well will be 

computed by substituting r in place of rw  in Eq. (Cl) and Eq (C4) 

C.3 APPLICATION OF IMAGE WELL THEORY 

Although, many equilibrium and non-equilibrium formulae developed for the solution 

of groundwater problems are based on the assumption that the aquifer is of infinite 

areal extent, it is well known that only a few of the aquifers completely satisfy this 

assumption. When an aquifer is recognized as having finite dimensions, direct 

application of equations for computing drawdown at any point around a pumping or 

recharge well is precluded. However, it is possible to circumvent the analytical 

difficulties posed by the aquifer boundary with the application of the method of 

images, widely used in the theory of heat conduction in solids, for groundwater 

1+ y 4 
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problems as well. Ferris et. al., (1962) have discussed in detail the theory of image 

well for different type of aquifer boundaries such as recharge, barrier or 

impermeability. Imaginary wells or streams usually referred to as images at strategic 

locations to duplicate hydraulically the effects on flow regime caused by the known 

physical boundary. Use of the image, thus, is equivalent to removing a physical entity 

and substituting a hydraulic entity. The finite aquifer system is thereby transformed 

by substitution into one involving an aquifer of infinite areal extent, in which several 

real and imaginary wells or streams can be studied applying formulas already 

developed for infinite aquifer. 

In a situation where a recharge or pumped well is situated nearby a perennial 

stream, and it is required to compute the drawdown at a point. This can be carried out 

using the image well theory and the mathematical expressions for draw-down at any 

point around the well in an infinite aquifer. For most of the field conditions, it can be 

assumed that the stream is fully penetrating and is equivalent to a line source at 

constant head. Mishra and Fahimuddin (2005) have applied the theory of image well 

even if stream stage is changing during passage of the flood wave because the whole 

system (stream, aquifer and pumped well) is considered to be a linear system. 

In this study, flood wave is passing in the river, i.e., stream stage is changing. 

In this situation also, the theory of image can be applied as in groundwater hydrology, 

use of image is equivalent to removing a physical entity and substituting a hydraulic 

entity (Ferris et al, 1962). If the stream stage is not lowered by the flow to the real 

well, there shall be no drawdown (due to pumping) along the stream position (Ferris 

et al, 1962). A confined aquifer- stream- well system is a linear system. Therefore, the 

response at any point in the aquifer to the combined perturbations (pumping and flood 
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wave) is sum of response to each separate perturbation. In other words a rise in 

piezometric surface at any point in the upper aquifer is sum of rise due to flood wave 

alone and drawdown due to only withdrawal from the aquifer. Image well theory is 

very much applicable for a linear system for varying stream stage. 
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APPENDIX D 

D.1 CORRECTION FACTOR, C1, FOR ACCOUNTING PARTIAL 
INTERCEPTION OF AQUIFER THICKNESS BY COLLECTOR PIPE 

Opportunity time for filtration of river water into a collector pipe all along its length is 

approximately same for a pipe running parallel to the axis of a straight river reach. 

Therefore, uniform and safe opportunity time can be maintained for a collector pipe 

running parallel to a river axis. The diameter of the collector pipe is generally small in 

comparison to the thickness of the aquifer in which the pipe is laid. A correction 

factor to account for partial trapping of the aquifer thickness by a collector pipe 

running parallel to river axis has been proposed by Mishra (2004 (b)), which is 

presented in this appendix. 

For a long collector pipe running parallel to a river in an aquifer of 

considerable thickness, the flow can be assumed as two dimensional in `the vertical 

plane perpendicular to the collector axis. The flow domain for such situation is 

shown in Fig.D.1. For steady flow condition, conformal mapping technique is 

applicable to solve the Laplace equation. To apply conformal mapping, the circular 

collector section is assumed as a vertical slit of length `ol' equal to diameter of the 

collector. The idealised flow domain is shown in Fig.D.2 (a) The flow domain is 

decomposed into two parts: the part towards the river consisting of an aquifer of finite 

width (domain ABCD), and the part away from the river consisting aquifer of semi 

infinite width (domain EBCF). For computing flow each part is considered separately. 
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Figure D.1: A horizontal collector pipe laid parallel to a straight river reach 

D.1.1 Mapping of the Flow Domain ABCD in z Plane onto t Plane 

The auxiliary t (=r+is) plane is shown in Fig.D.2 (b) 

dt + R— i—T  
z=ttlf 

(t 2  —1)1/ 2  0.2 — b2)"2 	2 

For t = co, z=R ; hence, 

dt +R—i—
T  

R = M 	  
(t 2 —1)1/2 (t2  —b2 )112 	2  

Performing the integration (Byrd and Friedman, 1954) and after simplification 

M =  
2F(ir I 2,b) 

For b t 51 the relation between z and t plane is given by: 

t 	dt 	 .T 
be_01/2

(I
_ t 2 )1/2(t2_ b2 )112 t  2 

For point D, t=1 and z=R-i T/2; hence, 

iT 

00 

(Dl) 

(D2)  

(D3)  

(D4)  
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R 	F(ir / 2,1(1– b2 ))  
T 	2F(71/ 2, b) 

For 0 5 t 5 a, the relation between z and t plane is given by: 

dt 
z=lvlf 	  0(1  _ t2)t/2(b2 _ t2)1/2 

For point C1 , t = a and z = -id/2. Performing the integration (Byrd and Friedman, 1971) 

and applying this condition 

d  , F(sin b  b) 

T 	F(it/2,b) 

D.1.2 Mapping of w Plane onto t Plane 

The complex potential w 0 + ity)for the flow domain ABCD is shown in Fig.D.2(c). 

The velocity potential function 0 is defined as 0 = 	I y„ + A+ C3 ; k=  hydraulic 

conductivity, p= water pressure, yw  = unit weight of water, y=elevation head and C3=  a 

constant taken as kh„ . The relation between w and t plane is given by: 

dt 
"2 _ 01/202 	2 1/2 	-

)+ w = M I 	  k(hr hw iq 
1 kt 

At t = 00 , IV=  -k (hr  

Applying this condition 

–h w )+—ig  =Mi°9 	dt  
2 	ii(t 2 -1)112 (t 2  -a2)112 k(h r  –h w +I•q 	(D9) 

From above the constant M I  is found to be 

iq 
= 	 

2F(3 , a) 
(D10) 

(D5)  

(D6)  

(D7)  

(D8)  
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For a t 1, the relation between w and t plane is given by: 

t 
w = 	

— 	f 	 dt 

2F(rc/2,a)a-1(t2 — 01 /2(t2 _ a2)1/2 

For point D, t =1, and w =  - k(hr-hw) + iq. Applying this condition 

— iq 
— k(h — h w ) = 	

dt  

2F(7r/2,a)a(_01/2(1_t2)1/2(t2 —a2)112 

or 

q 	2F(n-  /2,a) 
k(hr -hw) FOr /2,V(1-a2 ) 

The above equation computes flow to the drain from the riverside. If the pipe intercepts 

the entire thickness of the aquifer, the dimensionless flow to the slit is given by: 

go /[k(h,. — 	 / R 	 (D14) 

The correction factor is, therefore, given by 

2F(ir/2,a) 
= 	R1T 

F(K12,11(1-a2 ) 
(D15) 

The variation of correction factor Cj with ratio of diameter of collector pipe, d, to 

thickness of the aquifer T is given in Fig.D.3. 

(D11)  

(D12)  

(D13)  
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(a): Decomposition of the idealized flow domain; (i) ABCD (ii) EBCF 
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(b): Auxiliary t plane (t=r+is) 

(c): Complex potential plane (w=4)+iy) 

Fig.D.2. Steps of conformal mapping for collector pipe laid parallel to a straight 

river reach 
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