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equilibrium sorption of pollutant in each zone of the HCIS model, namely; plug flow and 

two thoroughly mixed zones of unequal residence time, a semi analytical solution for 

pollutant transport has been derived using Laplace transform technique. The hybrid cells in 

series model that incorporates adsorption (HCIS-A) is continuous in time and discrete in 

space. Response of the HCIS-A model closely matches with the finite difference solution 

of the differential equation governing advection dispersion and non-equilibrium 

adsorption. 

Most of the pollutants entering to the river system are bio-degradable in nature. 

Due to this characteristic, the pollutants get decayed while being transported downstream. 

Considering first order decay at a specific rate, advection and dispersion, using HCIS 

model, the pollutant transport has been simulated. It is found that the concentration time 

profile derived from the hybrid cells in series model that incorporates decay (HCIS-D) 

matches with the analytical solution of advection dispersion decay equation model. 

While a non-conservative pollutant enters a water course, depletion of dissolved 

oxygen (DO) takes place due to the consumption of oxygen by microbes to digest the bio-

degradable pollutants. At the same time, depending on the deficit of DO, re-aeration 

process takes place in a specific rate. Considering, decay of pollutant, re-aeration of 

oxygen and advection dispersion transport in the HCIS model, an analytical solution has 

been derived for DO deficit. The response of the hybrid cells in series model that 

incorporate re-aeration (HCIS-R) closely matches with the numerical solution of Streeter-

Phelps dispersion model. The Rinaldi (1979) approach very much over estimates the 

oxygen deficit. 

Using least squares optimization method for a given sets of observed C-t profile, 

the pertinent model (HCIS or HCIS-A) can be identified and its parameters can be 

estimated to simulate the pollutant transport. That model, for which the tracer velocity 

matches with the mean flow velocity of the river, is the appropriate one. 

To demonstrate the flexibility of the hybrid models to incorporate decay and 

adsorption processes, C-t profiles have been computed using the filed data of River 

'-al-irnani, in Orissa (India). For estimating the HCIS model parameters the longitudinal 

ii 



dispersion co-efficient (DL ) is required. In this study, by employing the regime channel 

concept to obtain channel geometry and flow characteristics and using Sea and Cheong's 

(1998) empirical formulae, DL  has been ascertained. The HCIS-D and HCIS-R models 

have been used to simulate the concentration of BOD and DO in the river stretch which is 

under grim of pollutant threat. The maximum concentration at Talcher is about 22.5 mg / L 

due to continuous discharge of waste at Tikira. It is observed, the BOD concentration in 

river Brahmani down stream of Rengali dam and prior to the waste disposal site at Tikira is 

already 12.6 mg / L. Thus, to satisfy the water quality requirement of 3 mg / L as BOD at 

Talcher, the effluents dumped to river Brahmani between Rengali and Talcher including 

that at Tikira confluence require prior treatment. The study could be further extended for 

pollutant-stream-aquifer interaction. Pollutant transport governed by non-linear non-

equilibrium adsorption isotherm of pollutant, effect of sediment transport on pollutant 

transport need to be investigated. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

Streams are the major source to meet the domestic, industrial and agricultural water 

needs. Due to urbanization and industrialization, the quantum of pollutants load to the 

streams has increased many folds. This has resulted in the worsening of stream water 

quality, as the assimilation capacity of the streams is inadequate. Consequently, it 

endangers the associated ecosystem of the streams. In order to control the stream water 

pollution, it is essential to know the rate at which the streams are capable to disperse the 

pollutants it receives. Also, it is imperative to be acquainted with the knowledge of 

pollutants transport for the determination of its concentration along the stream courses and 

for regulating the pollutants disposal to the streams. 

Pollutants originating from domestic, industrial and agricultural sectors can be 

grouped into two categories, such as; conservative and non-conservative. Conservative 

pollutants are those which do not degrade in the receiving water; however, they may 

change form or their media association. Non-conservative pollutants are those which 

degrade in the receiving water. Some of the important water quality constituents and 

indices of pollution are: Temperature, Biochemical Oxygen Demand (BOD), Dissolved 

Oxygen (DO), Total Dissolved Solids (TDS) and Chlorides. Out of these, Temperature, 

TDS and Chloride are conservative in nature and temperature is a catalyst of kinetics of 

non-conservative pollutants like BOD and DO. Pollution problem in streams could be due 

to the transport of both conservative and non-conservative pollutants. When a pollutant 

mass is injected into a stream, the concentrated pollutant mass is advected by the flowing 

water and at the same time the pollutants domain spreads in all directions under the action 

of turbulent diffusion leading to an almost uniform concentration over the whole cross 

section of the stream. During the pollutant's transport, some fractions of the pollutant are 



sorbed from the stream water by the stream bed soils and sediments. The reverse process 

takes place while the concentration of pollutant in stream water is less than that in bed 

sediments. These processes are known as adsorption and desorption respectively. Sorptive 

exchange of the pollutants is non-equilibrium in nature because of the complication of 

these sorption processes and it assumes that the equilibrium is not reached instantaneously. 

If the injected pollutant is of non-conservative type, degradation of pollutants takes place 

along with these processes. 

Waste water treatment and disposal for controlling the environmental pollution 

requires accurate prediction of pollutant transport. Pollutant transport processes are 

basically three-dimensional: However, it has been described by many researchers (Fischer, 

1967, 1968; Sayre, 1968; Chatwin, 1970, 1971; Holley and Tasi, 1977) that in a stream 

away from the source, pollutants' transport can adequately be described by a one-

dimensional process along the longitudinal direction. 

There are several methods of solving pollutant transport models, e.g. finite 

difference, analytical and hybrid methods. The finite difference methods give second order 

accurate results. The advection dispersion equation (ADE) model is a well known model 

for solving solute transport problems. But ADE model has limitations in practical 

applications (Young & Wallis, 1993; Fischer, 1967; 1968; Thackston & Krenkel, 1967; 

Sooky, 1969; Day & Wood, 1969; Fischer et al., 1979; Chatwin, 1980; Chatwin & Allen, 

1985; Van Genuchten & Jury, 1987). Cells-in-Series (CIS) model (Bear, 1972; Banks, 

1974; Vander Molen, 1979; Beltaos, 1980; Van Ommen, 1985; Stefan & 

Demetracopoulos, 1981; Yurtsever, 1983; Beven & Young, 1988; Young & Wallis, 1993; 

Wang & Chen, 1996) could be an alternative method to the ADE model to simulate the 

solute transport. However, due to the limitations, CIS model restricts its usefulness to the 

solute transport in rivers to simulate the longitudinal dispersion (Stefan & 

Demetracopoulos, 1981; Rutherford, 1994; Ghosh, 2001; Ghosh et al., 2004). Aggregated 

Dead Zone (ADZ) model (Beer & Young, 1983) incorporates advective time delay to the 

dead zone approach and brought improvement in the simulation of solute transport. 
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However, there exist a practical difficulty in identifying and estimating the model 

coefficients (Rutherford, 1994) 

The limitations of CIS and ADZ models have been tackled by using conceptualized 

hybrid cells in series (HCIS) model (Ghosh, 2001; Ghosh, et al., 2004). One hybrid unit of 

this HCIS model consists of a plug flow zone of residence time a and two thoroughly 

mixed zones of unequal residence times T1 and T2 and all these zones are connected in 

series. This HCIS model has been conceptualized to simulate the advection and dispersion 

of the solute. As HCIS model has been shown most promising to simulate solute transport 

in streams, it has been considered as a base of the present study. Simulating non-

equilibrium sorption isotherm processes along with advection and dispersion is a difficult 

task due to the complexity of the adsorption and desorption processes (Cameron and Klute, 

1977). Assuming simplified non-equilibrium adsorption isotherm in HCIS model, Ghosh 

(2001) numerically estimated the solute concentration in a river. In the present study, the 

simplified non-equilibrium Freundlich adsorption isotherm has been considered to estimate 

the pollutants concentration in all zones of the HCIS model. Using Laplace transform 

technique, an attempt has been made to find an analytical solution of non-equilibrium 

sorption for A-D pollutants transport in a stream. 

In order to estimate the model parameters, it is required to know the values of flow 

velocity (u) and dispersion coefficient (DL ). Flow velocity (u) can be estimated by using a 

straightforward approach; however, a unique method for estimation of dispersion 

coefficient (DL) is yet to be derived. There are number of theoretical, experimental and 

empirical formulae available for estimation of DL. Most of the empirical formulae depict 

that DL is a function of stream's geometry and flow characteristics, which eventually 

inform that if hydraulic geometry of a stream downstream of pollution source for a given 

flow condition is known a priori, one can reasonably estimate the value of DL  using a 

suitable empirical formula. If only flow rate (Q) is known, using regime channel concepts, 

the hydraulic geometry of a stream can be determined. The regime channel concept dictates 

that the stream geometry is the function of silt factor (fL) and the flow rate (Q). The silt 

factor and flow rate vary in space and time and to change the stream geometry accordingly. 
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Having estimated velocity, and DL, using convolution technique or numerical methods, one 

can predict/forecast the possible threat expected to the downstream. For changing velocity, 

which is normally caused due to non-uniform flow, DL  will also change. The transport of 

pollutant in a non-uniform flow condition is also an important aspect of pollutant transport. 

The present study also deals with pollutants of non-conservative type. The organic 

substances of non-conservative type usually cause serious damage to the aquatic life 

supported by a stream by increasing BOD load and decreasing the DO concentration. A 

stream has a limiting self-cleansing capacity of organic substances, which depends upon 

flow rate and the stream's geometry besides the constituent kinetic and some 

meteorological variables. For a given load of organic substances in a stream, the first order 

reaction kinetic has been coupled with advection and dispersion in HCIS model to predict 

the pollutant transport. In order to explain the proposed philosophy, a case study of 

Brahmani River in India has been considered. The methodology has been applied and 

philosophy has been validated by verifying the results in a particular reach of this river. 

1.2 OBJECTIVES OF THE STUDY 

The research work envisaged in the present dissertation, is: 

1. Investigation of adsorption of the pollutants by the streambed material for conservative 

pollutants. 

2. Investigation of decay of pollutants for non-conservative pollutants. 

3. Investigation of a method to estimate DL, knowing stream flow only using the concept 

of regime channel, and to estimate DL  for non-uniform flow conditions. 

1.3 ORGANIZTION OF THE THESIS 

The thesis has been organized into the following chapters: 

Chapter 1: introduction 

This chapter covers the general introduction and the importance of pollutant 

transport in streams. 
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Chapter 2: Literature Review 

This chapter covers the critical review of the previous investigations on 

transport of conservative and non-conservative solutes. The review is focused 

on advection dispersion equation (ADE) model, cells-in-series (CIS) model, 

aggregated dead zone (ADZ) model, transient storage (TS) model and hybrid 

cells in series (HCIS) model and longitudinal dispersion co-efficient (DO. 

Chapter 3: Transport of conservative pollutants considering non-equilibrium sorption 

This chapter elucidates the model formulation for the problem of conservative 

pollutants, which undergo sorption. HCIS-A model has been conceptualized to 

simulate advection, dispersion and adsorption of pollutants in all the zones 

(Plug flow zone and two thoroughly mixed zones of unequal residence time) 

and represented in terms of differential equations. Laplace transform technique 

has been used to solve the differential equations. Also, characteristics of the C-t 

profiles for a conservative pollutant in a stream with adsorbing stream bed and 

soil sediments are demonstrated. 

Chapter 4: Pollutants transport with first order reaction kinetics 

This chapter explains the formulation of the model and mathematical solution 

for the Non-conservative pollutants, which undergo decay. HCIS-D model has 

been conceptualized to simulate advection, dispersion and first order decay of 

pollutants in all the zones. The governing differential equations have been 

solved by using Laplace transform technique. 

Chapter 5: Pollutant transport with de-oxygenation and re-aeration 

This chapter discusses the problem of non-conservative pollutants transport in a 

stream for deoxygenation — reaeration. HCIS-R model has been conceptualized 

to simulate advection, dispersion, deoxygenation and reaeration. Adopting 

concept of DO deficit, the problem has been solved by using Laplace transform 

technique. 
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Chapter 6: Parameter estimation of hybrid models 

This chapter deals with the estimation of parameters of HCIS model. The three 

model parameters (a, T1 and T2 ) and adsorption rate constant (RD ) have been 

estimated by Least Squares Optimization method using synthetic observed data 

with 0%, 5%, 10% and 20% random errors. 

This Chapter also discusses the usage of regime channel concept to estimate the 

channel geometry and flow characteristics from flow rate and silt factor only. 

The estimated channel geometry and flow characteristics are further used to 

estimate the longitudinal dispersion Co-efficient. 

Chapter 7: Performance evaluation of hybrid models using field data 

This chapter examines the performance of the HCIS model by comparing the 

results with observed values in the field. The flexibility and advantage of HCIS 

model to simulate the pollutants transport has been demonstrated with the field 

data as a case study for Brahmani River, in Orissa, India. 

Chapter 8: Conclusions. 

This chapter highlights the key findings of the investigation and the 

conclusions. Also, it briefs the specific contributions of the present study and 

the scope of future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The solute transport process in a stream or river depends upon the mixing 

mechanisms as well as physical, chemical and biological properties of the contaminant. 

But this process is caused primarily by the interaction of two basic phenomena -

differential advection and cross-sectional diffusion. Adolph Fick in 1855 developed the 

analogy between the molecular diffusion and the heat transfer by conduction using the 

Fourier's law of heat flow. Based on the diffusion laws given by Fick, Sir G. I. Taylor in 

1921 first studied the theory of diffusion for fluid with uniform velocity and established the 

concept of diffusion by continuous movements. Later on, Taylor (1953, 1954) described 

the mechanism of dispersion both for laminar and turbulent flow conditions. 

The mixing process in moving fluid is described by two basic phenomena; 

advection and diffusion. Advection is the bodily movement of fluid particles resulting from 

an imposed current. The scattering of the fluid particles by turbulent motion on a 

microscopic scale due to Brownian motion is termed as molecular diffusion. Scattering of 

particles by the interaction of differential advection and cross sectional diffusion on 

macroscopic scale is known as dispersion. In open channel flows, dispersion is attributed to 

both molecular diffusion and velocity variations caused by shear stress. Shear flow support 

lateral and vertical gradients of longitudinal velocity. Due to non-uniformity in the velocity 

gradient along longitudinal direction, some solute particles travel faster and some slower 

than the mean flow velocity. This results in continuous scattering of solute particles within 

the channel cross-section via transverse and vertical processes. Further it is important to 

know the rate at which the solute cloud spreads out, attenuation of peak concentration, and 

the concentration distribution along the flow direction. 

In a river, near to the source normally mixing and transport of solute particles take 

place in all three directions, viz. vertical, transverse and longitudinal direction. However, 



away from the source, transport of solute particles eventually becomes one-dimensional 

process (Fischer, 1967, 1968; Chatwin, 1970, 1971; Holley and Tasi, 1977). The equation 

describing the spatial and temporal effects of advection and dispersion on solute 

concentration along longitudinal direction was derived from the principle of conservation 

of mass together with the Fick's Law of diffusion. The differential equation of solute 

transport, resulting from the conservation of mass together with the Fick's Law of 

diffusion in a controlled volume, is given by: 

a (Ac) 	a (A u c) a 
AD '3C 	 (2.1) 

at 	ax 	ax 	aX 

where, C is the solute concentration (ML-3), u is the mean flow velocity (LT-1), DL  is 

longitudinal dispersion co-efficient (L2T-1), A is the cross-sectional area of flow (L2), x is 

distance (L) and t is the time (T). 

For a constant A and u i.e., for uniform flow velocity in a regular channel, Eq. (2.1) 

simplifies to the well-known Advection dispersion equation (ADE) (Fischer, 1967 and 

Fischer et al. 1979): 

ac 	- u ac 	a2c, 
— + 	

axe at 	ax  
(2.2) 

Eq. (2.2) is also known as Fickian dispersion model. 

Following assumptions are implied in the derivation of Eq. (2.2): 

1. the fluid is incompressible, and the tracer is neutrally buoyant, i.e., 

hydrodynamically indistinguishable from the surrounding fluid; 

2. velocity varies along vertical direction; 

3. the tracer concentration varies along the longitudinal direction, x, with the flow, 

and time, and the flow cross-section is independent of longitudinal distance and 

time; and 

4. DL  is constant for a given flow system. 

Since the development of the ADE model, it has been widely accepted and 

extensively used (Fischer, 1967, 68; Sooky 1969; Chatwin 1970; 1971; Bear, 1972; Banks, 

1974; Cameron and Klute, 1977; Holley & Tsai 1977; Fischer et al. 1979; Bencala and 
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Walters, 1983; Runkel and Broshears, 1991; Runkel and Chapra, 1993; Hart, 1995; 

Runkel, 1998; Lees et al., 2000) as a standard model for study of solute transport and 

longitudinal dispersion in streams and other areas. 

Numeral factors influence mixing and transport of solute in natural streams. These 

are: i) channel side and bed irregularities, ii) channel curvature, iii) presence of dead zones 

and hyporheic zones, iv) Geo-morphology of the streambed, etc. Additionally, a number of 

processes, in addition to the advection and dispersion, affect the transport of solute. These 

are: i) retardation, ii) sorption iii) decay or growth of the constituents. By employing 

particular processes and factors as applicable to a stream with the two primary mechanisms 

— advection and dispersion, the ADE model had been extended widely to simulate complex 

processes of solute transport in streams and rivers (Bencala and Walters, 1983; Runkel and 

Broshears, 1991; Runkel and Chapra, 1993; Hart, 1995; Runkel, 1998; Lees et al., 2000). 

Inaccurate simulation of C-t profiles and estimation difficulties of DL  in many natural 

streams created doubt to many investigators (Day, 1975; Chatwin, 1980; Chatwin and 

Allen, 1985) about the validity of the ADE model to natural streams, particularly in rivers 

where non-homogeneous turbulent mixing prevails. The argument owed was to the 

limiting assumptions of the ADE model (Young and Wallis, 1993). As there were no 

widely accepted alternate models, the ADE model continued to application as standard 

model for dispersion studies in streams or rivers, even in complex cases despite 

recognizing its limitations. Over last three decades, as alternate to the ADE model, a 

number of conceptual models have been developed and applied successfully for simulating 

solute transport in streams. 

The following sections present and critically review the usage and performance of 

various solute transport models, which mainly focus on: 

1. Advection-Dispersion Equation Model 

2. Conceptual Mixing Cells Models 

Thereafter, the application of the above models for simulation of varies processes like 

Adsorption / Desorption, process due to hyporheic zone and decay have been discussed: 
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2.2 STUDIES BASED ON THE ADE MODEL 

Eq. (2.2) represents a partial differential equation (PDE) of dependant variable C as 
function of x and t. Ogata and Banks (1961) gave the analytical solution of the Eq (2.2) for 

a steady and uniform flow using the initial condition C (x, 0) = 0 with a step input C (0, 1) = 
CR applied at the boundary. The solution given by Ogata and Banks (1961) is: 

C(x,t)=S-{erfc[ x  , u  t  
2 	2VD, t 

          

          

+ exp 
(x U 

erfc 

 

x+u t 

  

(2.3) 

       

       

\, DL 

 

2 V.1)„ t 

  

        

where, erfc ( ) is a complimentary error function = 1- erf ( ), erf (z) is the error function 

of z, which is expressed as erf (z)-= 	fe-2 	, xis distance, t is the time after input and 
Nix 0  

C (x, t) is concentration of solute at a distance x and time t from the input. 

The response function of Eq. (2.2) due to an impulse input of magnitude CR applied 

at the boundary, which is the derivative of Eq. (2.3) with respect to time, is given by: 

c( x,t ) = 	C„ x 	exp{- 
2 t VicD,t 

( x )2 

4 DL  t 
(2.4) 

where, c(x, t) is the response of impulse input at a distance, x and time t since injection of 

solute. Eqs. (2.3) and (2.4) clearly indicate that for computation of concentration of solute 

at any distance, x and time t, one requires prior estimation of two basic parameters, u and 

DL. 

The analytical solution (Eq. 2.3) to Eq. (2.2) given by Ogata and Banks (1961) is 

considered to be the exact solution for idealized condition. After Ogata and Banks (1961), 

many other investigators (Sooky 1969; Chatwin 1970; 1971; Holley & Tsai 1977) derived 

solutions to Eq. (2.2) in different ways, which are similar to Eq (2.4). Sayre (1968) 

considered the cross sectional mass of instantaneous input in the impulse response function 

of the following form; and satisfying the under mentioned boundary conditions had studied 

the solute transport in a stream. 

	

C(x,t) —  	
2 2=1.\pcD,t exp{ 

	 
4 D L t 

( x - ut) Tt 

(2.5) 
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The boundary conditions used for studying the solute transport in stream using Eq. (2.5) 

were: 

JA(x) C (x,t) dx= M 
0 

C(co,t)=-- 0 
ac 	 o 
ax 

for all t 

for t>0 

as t=oo 

where, M— mass injected (M), and A= cross sectional area (L2). Eq. (2.5) is also known 

as Taylor solution. 

Fischer (1967; 1968) studied the dispersion in open channels extensively and 

suggested a convolution integral (routing method) using Taylor solution for computing the 

downstream tracer distribution corresponding to an observed upstream concentration-time 

(C-t) profile: 

c (x„ t) j{c (x„ 

 

}dr. 	 (2.6) 
( 	

2 (t2  - 11 	2)2  \ 
	 exp 	  

V47-t.DL  (t2  —t1 ) 	4DL (12 —t,)  

where, C(x2, t) = predicted value of concentration at station x2 at time t; C(xi, t) = value of 

concentration at station xi  at time t; and ti  , t2  = respective times of passage of the tracer 

cloud through two stations and have been calculated assuming that the cross sectional 

mean velocity u is equal to the velocity of tracer cloud. 

Barnett (1983) suggested an alternative method for routing a C-t profile. He 

considered a different form of solution to Eq. (2.2), which is also called as Hayami 

solution. 

C(x,t)= 	
x 	 exp 

Au t 114 DL t 

Eq. (2.7) is Eq. (2.5) multiplied by x 

(2.7) 

. It satisfies the boundary condition C (0, t) = 0 

(x — u 1)2  
ilDL t 

when a tracer slug of mass M is introduced over an infinitesimally small time interval. 

Barnett suggested that the advantage of using Eq. (2.7) is that it could route an observed C-

t profile without requiring the frozen cloud approximation. Both Taylor (Eq. 2.5) and 
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Hayami (Eq. 2.7) solutions give similar results at moderately large x and t but they differ 
significantly in their behavior at a very small value of t. 

During period from 1960 to 1985, many other investigators (Fischer 1967; 

Thackston and Krenkel 1967; Sooky1969; Day and Wood 1976; Fischer et al. 1979; 

Chatwin 1980; Chatwin and Allen 1985) have also used the Fickian dispersion model to 

study solute transport in rivers for various complexities, and reported the practical 

difficulties in application of Fickian dispersion model to field conditions owing to 

difficulties in establishing a logical method to estimate DL. 

In order to account for variability of field conditions, where analytical solutions fall 

short to satisfactorily field representation, many investigators used numerical methods to 

the advection dispersion equation of one, two and three-dimensional cases in open 

channels. Yotsukura and Fiering (1964) studied transport of solute in open channel by 

deriving numerical solutions for two-dimensional turbulent flows considering logarithmic 

velocity distribution. Fischer (1966) proposed a numerical simulation to two-dimensional 

diffusion equation for predicting the concentration distribution at the convective period 

performing step-by-step simulation of diffusion process. In addition to the investigations 

mentioned above, many other researchers (Holley, 1977; Keefer and Jobson, 1978; Fischer 

et al., 1979; Holley, 1983; Koussis, 1983) suggested various mathematical and numerical 

schemes for solving the convective diffusion equation, which were either mathematically 

very complex or had shown problem of overshoot and undershoot due to the numerical 

dispersion. 

It is clearly evident that the use of the ADE, whether in its analytical form or 

numerical scheme, one requires estimation of u and DL  a priori. In most cases, u can be 

measured or estimated relatively easily and quite accurately from the knowledge of gauged 

flows or by application of flow resistance equation. The situation is, however, not 

straightforward with regard to DL. Thus, the accuracy in simulation of tracer cloud 

transport depends on the value of DL  (Holley and Tsai, 1977). The compilation work of 

many investigators (Bansal, 1971; Elhadi and Davar, 1976; and Elhadi et al., 1984; ERL, 

1985) reported a wide range of DL values which have been estimated either by theoretical 
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or by experimental bases or by empirical formulae. Table 2.1 presents a compilation of 

methods suggested by various investigators for estimation of DL in a stream. 

Table 2.1: Methods suggested by investigators for estimation of DL 

S. 

No 

1  Investigators 
Equation Method 

1.  Taylor, 1921 dt  
do-2  2D; 	is the = 	where, a) 	variance of 

Experimental 
solute distribution and D is the diffusion 

co-efficient. 

2.  Chatwin, 1971; 

Valentine and Wood, 

1979 

do-12 = —173 

Experimental 

D, 	 u is the ; where, 	average 
- 	2 	dx 

flow velocity, o 	is the spatial variances 

of concentration distribution. 

3.  Elder, 1959 

0.404 D, -=[ 	 1(- 
-HU, 	is + 	; where K 	the 

Theoretical 

K-3 	6 

Von Karman's coefficient, and U. is the 

shear 	velocity, 	and y 	is 	the 	vertical 

distance. 

4.  Fischer et al., 1979 
DL 	 1  lu -=- 	yY f 	ydyclydy 

Theoretical 

--
A

SU 
0 	

0 El 
	0 

where u 	is the deviation of velocity 

from the cross sectional mean velocity, 

y is the depth of flow, and Et is the 

transverse mixing coefficient. 

5.  Taylor, 1954 

DL, = 10.1 U. r; where U. is the shear 

flow velocity, and r is the radius of the 

pipe. 

Empirical 

6.  Elder, 1959 DL=6.3 U. H; where His the flow depth Empirical 
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7.  Yotsukura and 

Fiering, 1964 

DL  = 9.0 to 13.0 U. H; 
Empirical  

8.  Fischer, 1966 

DL  = 0.011 u2  W2/ U* H 

where W is the width of he stream, and 

u is the mean flow velocity. 

Empirical 

9.  Thackston and 

Krenkal, 1967 
DL  = 7.25 U. H (u/ U.} I /4 Empirical 

10.  Sumer, 1969 DL = 6.23 U. H Empirical 

11 Fukuoka and Sayre, 

1973 

D I/RU.= 0.8(1-,2/LBH) 1 4  

where R is the hydraulic depth, r, is the 

radius of curvature 

Empirical 

12. McQuivey and 

Keefer, 1974 

DL  = 0.058 Q/SW 
Empirical 

11.  Jain, 1976 DL  = u2  W2  /k AU. Empirical 

12.  Beltaos, 1978 DL/RU. = a {W/R} 2  Empirical 

13.  Liu, 1978 D L  = 	/2U. R3  (U. /u} 2  Empirical 

14.  

Magazine, 1983 D L/Rb U. = DL/R,,U. = 75.86 Pr 1.632  

Pr=C,./\ig{x/h}0.3  {X 14y} ° 3  {l .5+e/h} Empirical 

15.  Marivoet and 

Craenenbroec, 1986 
DL = 0.0021 u2  W2/U.H Empirical 

16.  Asai et al., 1991 DL/ U. H = 2.0 {W/R} 1.5  Empirical 

17.  

Ranga Raju et al., 

1997 

DL/qS= 0.4 P1  

where 13 	 {W/R} 2 16  121/U*T"2  iST°.2 
Empirical 

18.  Koussis and Mirasol, 

1998 

DL = 0 Ai (gRS)/H {W} 2  
Empirical 

19.  Seo & Cheong, 1998 DL/U.H=5.915{ww628 {ux.)  1 428 Empirical 

20.  Kezhong and Yu, 

2000 

D,/U• H = 3.5 {W/H} 1 125{u/ U* °.25 
Empirical 
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Empirical formulae indicate that DI, is a function of stream flow characteristic and 

stream geometry. By analyzing empirical formulae, Seo and Cheong (1998) suggested a 

generalized functional relationship of Di, with flow characteristic and geometry of a stream 

of the following form: 

	= a 
U, H 

(2.8) 

where, W is the channel width (L), H is the depth of the flow (L), U is the average velocity 

(L1-1), U„ is the shear velocity (L1-1), and a, b, c are constants. 

Table 2.1 also reveals that estimation of DL, is neither a simple nor a straightforward 

approach, as the values of Di, computed by any two methods differ significantly. The 

theoretical methods are data expensive viz., require measurements of point velocities along 

vertical and transverse direction; experimental bases require observations of C-t profiles at 

two downstream sites. Nevertheless, how DL  changes with the change in flow velocity at 

other downstream locations in a stream can't be known when Di, is estimated using 

experimental methods. On the other hand, the empirical formulae show a wide range of 

variability in DL  when compared with each other. 

2.3 MIXING CELLS MODELS 

As alternate to the ADE model, the Cells-In-Series (CIS) approach has been 

extensively used by many investigators (Bear 1972; Banks 1974; Van der Molen 1979; 

Beltaos 1980; Stefan and Demetracopoulos 1981; Yurtsever 1983; Beven and Young 1988; 

Young and Wallis 1993; Wang and Chen 1996) for study of solute transport in flowing 

medium. In the CIS model, a reach length of a river is assumed to be comprised of a 

number of thoroughly mixed cells of equal residence time; the concentration of the effluent 

from a particular cell is equal to the concentration within the cell; output from a preceding 

cell forms input to the succeeding cell, and time is reckoned since injection of solute into 

the first cell. Comparing the CIS model with Ogata and Banks solution to the ADE model, 

Banks (1974) had shown that the CIS model does not adequately simulate the advection 
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component. Stefan and Demetracopoulos (1981) have also reported the limitations of the 

CIS model. These limitations are:(i) the CIS model does not reproduce persistence 

skewness in concentration-time profiles usually observed in tracer data from rivers, (ii) the 

travel time, rate of dispersion and the skewness are function of the number of cells and 

these parameters can't be varied independently, which restricts the usefulness of the model. 

However, the advantage in formulation of the CIS model is that the governing second order 

partial differential equation is reduced to a first order ordinary differential equation. 

To remove the discrepancy in simulating advection component, Beer and Young 

(1983) introduced a variant on the CIS model, which is designated as the Aggregated Dead 

Zone (ADZ) model. In the ADZ model, dead-zone processes were considered as the major 

physical cause of dispersion in natural streams. The main difference in the ADZ model 

from the CIS model is that, in the ADZ model, a pure time delay was introduced into the 

input concentration, which allowed advection and dispersion to be de-coupled (Rutherford 

1994). If the time delay component is zero, the ADZ model breakdowns to the CIS model. 

Beer and Young (1983) have postulated that a correct order of the ADZ model describes 

the observed C-t profiles closely. However, the difficulties with the ADZ model are 

determination of model orders and estimation of the model parameters (Lees et al., 2000). 

Beer and Young (1984) have chosen the time series method (Young 1984) for estimation 

of model parameters. 

Considering the performance of the mixing cell concept for its characteristics to 

describe the dispersion, and the time delay component for its uniqueness to depict the pure 

advection, Ghosh (2001) and Ghosh et al., (2004) developed a conceptualized Hybrid- 

Cells-In-Series (HCIS) model to simulate advection-dispersion governed solute transport 

for a conservative solute transport in a river. The HCIS model seems to overcome the 

limitations of the ADE, the CIS and the ADZ models. The conceptualized HCIS model is 

comprised of a plug flow zone of residence time,a and two thoroughly mixed zones of 

unequal residence times, 771, and T2; all connected in series, as shown in Fig. 2.1. 
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Fig. 2.1: The first process unit of the HCIS model 

The movement of solute in the plug flow zone represents the pure advection, and 

transport through the mixing reservoirs represents both advection and dispersion. Under 

steady and uniform flow conditions, the C-t graphs at n Ax, n = 1,2,3,.., (Ax = basic process 

unit size) generated by the HCIS model have been found identical to that as predicted by 

the analytical solution of the ADE (Ogata and Banks, 1961) when the size of the basic 

process unit, Ax, is equal to or more than 4DL/ u (Ghosh et al., 2004), where u = mean flow 

velocity (LT-1), and DL = longitudinal dispersion coefficient (L2T-1), or chosen satisfying 

the condition of Peclet number, Pe— (Ax u)/DL 4. The linear dimension of the HCIS 

model, i.e., size of each process unit, ,ax = (a+Ti + T2) u, outlines the dispersion of solute 

cloud along the longitudinal flow direction. The mathematical structure and its 

characteristics equations of the HCIS model have been given in the Appendix A. 

By assuming that, (i) the reach length downstream from a point source of pollution 

in a stream is comprised of a series of equal size hybrid process units, and (ii) the output 

from the preceding process unit is the input to the succeeding process unit, the response of 

the nth  hybrid process unit, n 2, consequent to any perturbation at the inlet boundary of 

the first hybrid unit can be obtained by applying simple convolution technique as: 

C(nAx,t) = I gin— 1)Zuct r} k fi(cx,TI ,T2 ,t — r) dr 
0 

(2.9) 
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where C((n-1)zlx, r) = output from (n-1)t̀ ` unit. In particular, for n =1, consequent to a unit 

impulse perturbation, output of the 1st  hybrid unit C(zlx,t) = kh(a, T1, Tz,t ) 

The advantages of the HCIS model as reported by Ghosh et al., (2004) are: 

1. the mathematical derivation of the HCIS model follows an ordinary differential 

equation. 

2. the HCIS model simulates closely the advection-dispersion governed solute 

transport. 

3. the parameters of the model can also be determined from the measurement of single 

C-t profile. 

4. the HCIS model overcomes weaknesses of the CIS and the ADZ model. 

5. In the HCIS model, pure advection is represented by an explicitly derived time 

parameter besides representation of advection and dispersion components implicitly 

by two time parameters. 

6. Alike the ADE model, natural adsorption and desorption, transient storage, growth 

and decay components can be incorporated into the HCIS model comparatively 

more easily. 

2.4 COMPARISON OF THE HCIS MODEL WITH THE CIS, ADZ AND ADE 

MODELS 

The CIS, ADZ, and the HCIS are conceptual models in which dispersion is induced 

by assuming the cells to be thoroughly mixed reservoirs. The ADZ and the HCIS models 

contain a plug flow component, whereas, the CIS model does not have it, implying that a 

pure advection component of solute transport is represented exclusively by the ADZ and 

the HCIS model. An advection component is otherwise implicitly present in all the models 

as the flow velocity governs the residence time in a cell. These models are discrete in space 

domain and continuous in time domain. The CIS has one time constant, the ADZ has two, 

and the HCIS has three time constants. 

Assuming the time lag in the ADZ model to be equal to the residence time in the 

plug flow zone of the HCIS model, and considering that all the models have equal total 
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residence time, the C-t profile generated by each model will be as shown in Fig. 2.2. A 

single unit of the CIS or the ADZ model does not show a rising limb. Therefore, a 

minimum of two units is needed in the ADZ and in the CIS model to simulate a skewed C-t 

profile. While a single hybrid unit of the HCIS model simulates a skewed C-t profile since 

two cells are embedded together. Further, sub-dividing the lag time and the residence time 

of the ADZ model, and the total residence time in the CIS model equally in two parts, the 

C-t distributions simulated by the ADZ and the CIS model will be as shown in Fig. 2.3. 

One can observe from Fig. 2.3 that the second unit of the ADZ and the CIS model generate 

skewed C-t profile like that of the ADE and the HCIS models. Neither of the C-t 

distribution including that of the ADE model is Gaussian. However, the concentration-

space distributions simulated by all the models are Gaussian. 

Fig. 2.2: Comparison of concentration-time distribution profiles generated by 

different models for a unit impulse input; each distribution represents 

same residence time = 10 min. 
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Fig. 2.3: Comparison of concentration-time distribution profiles generated by 

different models for a unit impulse input; each distribution represents same 

residence time = 10 min. 

2.5 ADSORPTION/DESORPTION PROCESSES 

Various processes in addition to primary mechanisms of advection-dispersion 

determine the fate and transport of solutes in streams. One such important process 

controlling the solute concentration in streams is adsorption and desorption to and from 

bed sediments below the water column. Many investigators (Deacon and Driver, 1999; Jain 

and Sharma, 2002; Perk et at., 2006) have reported strong association of numerous toxic 

chemicals both organic and inorganic with sediments below water column in streams. 

Adsorption and desorption take place under non-equilibrium conditions. Investigations 

coupling adsorption and desorption isotherm with the advection-dispersion processes in a 

stream are rarely available in literature. However, adsorption isotherms studies are found 

more referred in soil-water and groundwater contamination problems. From soil-water 

column and groundwater studies, many investigators (Cameron and Klute, 1977; Bear and 
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Bachmat, 1990; Bajracharya and Barry, 1992) demonstrated that the adsorption process 

attenuates concentration of pollutants. 

Numeral investigators (Hays et al., 1966; Nordin and Troutman, 1980; Bencala and 

Walters, 1983; Bencala et al., 1990; Runkel and Broshears, 1991; Runkel and Chapra, 

1993; Czemuszenko and Rowinski, 1997; Runkel, 1998; Warman, 1998; Worrnan et al., 

2002) reported that solute transport in stream is influenced by the presence of dead zones 

or stagnation zones along the streambeds and sides. The physical process representing the 

affects of these zones has been termed as transient storage (Bencala and Walters, 1983). 

Transient storage has been noted in many small streams, where solutes are temporarily 

detained in small eddies and stagnant zones of water that are stationary relative to the faster 

moving waters near the centre of the channel. In addition, significant portions of the flow 

move through the coarse gravel of the streambed and the porous areas within the stream 

bank. The travel time for solutes carried through these porous areas is significantly longer 

than that for solutes travelling within the water column. 

Bencala and Walters (1983) studied the effect of dead zone by coupling a non- 

linear sorption type isotherm with the classical ADE model. The coupled process has been 

named as the Transient Storage (TS) model. The TS model has been expressed by the 

following governing partial differential equations: 

ac ac 2C  
at ax  ax2 (2.10) 

irs  a  A (C—c,)  (2.11) at - As \  

where C, is the concentration in the storage zone (ML-3), C is the concentration in the main 

stream (MC), As  is the area of the storage zone (L2), A is the area of the main stream (L2), 

a is the mass exchange rate constant (71 ). 

The assumptions underlined in their study were: 

1. There exist storage zones and these are assumed to be stagnant relative to the 

longitudinal flow of the stream. 

2. Within the storage zone, solute is uniformly distributed. 
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3. 	First order kinetic has been assumed to the exchange of mass between the 

mainstream and storage zone 

Several other transient storage models were found in literature, which have been 

developed considering either main channel flow in conjunction with mass exchange in 

stagnant water zones or first-order mass exchange between the main channel and a storage 

zone (Hays et al., 1966; Nordin and Troutman, 1980; Bencala and Walters, 1983; Bencala 

et al., 1990; Czernuszenko and Rowinski, 1997). Worman (1998) considered the exchange 

of solute from the main channel to a storage zone to be governed by a diffusion equation 

and presented an analytical solution neglecting dispersion in the main channel. Worman et 

al. (2002) described a model that couples longitudinal solute transport in streams with 

solute advection along a continuous distribution of hyporheic flow paths. Runkel and 

Chapra (1993) developed a one-dimensional Transport with Inflow and Storage (OTIS) 

model and presented analysis of an implicit finite difference approximation by considering 

first-order mass exchange between the main channel and a storage zone (Runkel and 

Broshears, 1991; Runkel and Chapra, 1993). The model was later extended as OTIS-P 

(Runkel, 1998), and has been used extensively. 

Hart (1995) presented an alternative formulation of the storage model by 

considering stochastic process and derived an analytical expression for the density function 

of a conservative solute. The governing equation considered for the model was, 

Q ac 	a  
ax A ax

( ac 
AD —.3--x )+ kl (B -C)+kL (CL -C) 	 (2.12) 

A  

and 

aB = k2 (C - B) 
at 

(2.13) 

where IQ is the exchange co-efficient from free flowing water to the storage zone (T- '), k2  is 

the exchange co-efficient from the storage zone to the free flowing water (T-1 ), kL, is the 

exchange co-efficient for lateral inflow (T1), CI, is the concentration of the solute in the 

lateral inflow (ML-3), B is the concentration of solute trapped in the transient storage zone 

(ML-3) and C is the concentration of solute in the stream (ML-3). 
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De Smedt F et at (2005) gave an analytical solution for solute transport in rivers 

including the effects of transient storage in which the traditional advection—dispersion 

equation for transport in the main channel was linked to a first order mass exchange term 

between the main channel and the transient storage zone. The governing equation 

considered for the model was, 

ac ,a2c ac =,— v-- a - s ) 
at 	ax 	ax  

aC 
= a (C -C 

at 

(2.14) 

(2.15) 

where C and CS  are the cross sectional averaged solute concentrations respectively in the 

main channel and the storage zone (ML-3). DL is the cross sectional averaged longitudinal 

dispersion co-efficient in the main channel (L2T1 ). a is the mass exchange co-efficient 

between main channel and storage zone (T1 ), /3  is the ratio between the storage zone and 

main channel cross sectional area. They used convolution theorem of the Laplace 

transform to solve Eq. (2.14) and (2.15) and a close form analytical solution was given by 

of C (x,t)= 1 

	

( x2 _ v2r 2 	1 	 ( 

	 a J az-,
a(t-r) 

0 
a + 	 

4Dz-2  2r 	 /3  
( a (t-  - z- ) 
	,az  Co  (x,1- )clz-  (2.16) 

■ fi 	iJ  

where, Co is the solution of the classical advection dispersion equation, J(*, *) is the J -

function. 

The integral appearing in Eq. (2.16) is an improper integral as the integrand 

becomes infinite at T= 0. By making a substitution r= 1 / di = - (1 /kt2) du, Eq. (2.16) is 

reduced to 

+ 
(  

(.X2 -v2//12  P a .1 al 
a (t — VP)  \  4 DI ,u2 	2 

aJ 
( a (t -11 
	, a/u C (x ,11 /..1) (1/f12) d p 

   

This integral is also improper, as the limit has gone to infinite. However the value 

of the integrand is 0 at the upper limit. 

The processes of solute transport as considered in the transient storage model are 

nearly similar as that of the adsorption/desorption processes, except the differences of 

transport media, and their extent. In case of transient storage model, the exchange of solute 

is between the main channel flow and the stagnation or dead zone, and vice-versa, while 
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for adsorption /desorption, the exchange of solute takes place between the water column 

and the sediment bed, and vice-versa. 

2.6 REACTIVE POLLUTANTS TRANSPORT 

Stream water quality modeling has a long history since development of Streeter and 

Phelps equation in year 1925 for DO-BOD modeling. After Streeter and Phelps, several 

concepts were introduced (Bhargava, 1983; Bobba et al., 1983; Barnwell, 1985; Thomman 

and Muller, 1987; Choudhary et al., 1990; Jolanki, 1997; Guymer, 1998; Sharma et al., 

2000). All these approaches assumed that the substances present in the water decay 

according to a first order reaction, i.e., the rate of loss of the substance is proportional to its 

concentration at any time. However, the one-dimensional equation describing the 

advection-dispersion-decay of pollutants for time varying concentration of reactive 

pollutants in a stream due to steady and uniform flow conditions is given by: 

ac 	ac 	' =—u +D a  	
C 

C  A 	 (2.16) 
at 	ax 	aX 2  

where C is the concentration of reactive pollutants (ML-3), x is distance (L), t is time (T), u 

is the mean flow velocity (LT-1), DL  is the longitudinal dispersion coefficient (L2T-1), and A 

is the decay rate coefficient (T-1). 

Later on, the approximate dispersion model for BOD-DO has been derived by 

extending the Streeter-Phelps model in the form (Source: Rinaldi et al., 1979) 

Ob. 	a2  ab 	 b 

	

+ v 7a  — D -F12  = 	 (2.17) 

' +v ad 
a 

D a  ad 	
l'
d =Icib—k2d 	 (2.18) 

at 	al  

where b is the BOD concentration (ML-3), d is the DO deficit (ML-3), v is the flow velocity 

(LT-'), D is the longitudinal dispersion co-efficient (L271 ), lc] is the decay rate co-efficient 

(T1 ) and k2 is the re-aeration rate constant (T1). 

By defining the auxiliary variable, a 

a=d+ k' b 
—/c2  

(2.19) 
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Eq. (2.18) was simplified and analytical solution, a q, 0 was obtained. From Eq. (2.19), the 

solution for DO deficit has been deduced. Dobbins' criterion (Dobbins, 1964) says that the 

effect of dispersion is negligible as far as steady state conditions are concerned. 

Young and Beck (1974) joined together two of the most well known simplifying 

assumptions: i) the river to be constituted by a sequence of reaches ii) each reach is a 

perfectly mixed reactor. The approximate dispersion model for BOD-DO has the same 

structure as the so-called continuously stirred tank reactor (CSTR) model heuristically 

proposed by them. 

De Smedt F (2006) gave analytical solutions for solute transport in rivers including 

the effects of transient storage and first order decay. The solute transport model considers 

an advection—dispersion equation for transport in the main channel linked to a first order 

decay and to a first order mass exchange between the main channel and the transient 

storage zones. This new analytical solutions are suitable for both conservative and non-

conservative solute. However, like Eq. (2.16), it has the similar problem of singularity in 

( x2 
- V

22 	
1 

a — 	2, j term, in which A is first order decay coefficient in the main 
4Dr2 	2r 

stream; As  is first order decay coefficient in the dead zone. 

Incorporating kinetics of reactive components with the ADE model, transport of 

non-conservative pollutants in streams are normally studied as a standard practice. The 

question that remains valid, even for transport of reactive pollutants is estimation of logical 

value of Di, for natural streams. 

Re-aeration rate constant, k2 is one of the important parameters for stream water 

quality modeling. It is the rate at which oxygen in dissolved form is introduced in the water 

column. Many researchers (O'Connor and Dobbins, 1958; Owens et al., 1964; Langbein 

and Durum, 1967; Thackston and Krenkel, 1969; and Moog and Jirka, 1998) have derived 

different empirical formulae to estimate k2. 
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2.7 CONCLUSIONS 

From the literature review, following conclusions are drawn. 

1. The ADE model has been used as a classical approach based on the physical theory 

for solute transport in the streams. However, difficulty in estimation of DL poses 

the major hurdle in its straightforward application. 

2. The applications of conceptual potential alternatives to the ADE model, namely the 

CIS and the ADZ models have their own limitations. The CIS model has limitation 

toward simulating advection component, while the ADZ model faces complexity in 

selecting the model order. 

3. The HCIS model simulates advection-dispersion governed solute transport as 

depicted by the ADE model under steady and uniform flow conditions closely 

when size of the basic process unit of the HCIS model is equal to or greater than 

4DL / u or is chosen satisfying the condition of Peclet number, Pe= (dy u)/D1, 4. 

4. The HCIS model is a three-parameter model discrete in space and continuous in 

time domain. Alike the ADE, the HCIS model also represents Gaussian distribution 

of the concentration-space and asymmetric of the concentration-time variation. 

5. The parameters of the HCIS model can be determined from the measurement of 

single C-t profile without invoking measurements of u and DL. 

6. In the HCIS model, pure advection is represented by an explicitly derived time 

parameter, and it also represents the advection and dispersion components 

implicitly by two time parameters. Whereas, in the ADE model, both advection and 

dispersion are represented implicitly by u and DL. The HCIS is a simple semi-

analytical model and can accommodate non-homogeneity character of the system. 

7. Alike in the ADE model, natural adsorption and desorption, transient storage, 

growth and decay components can be incorporated into the HCIS model. 

8. Thus, the HCIS model seems to have overcome the weaknesses of the ADE, the 

CIS, and the ADZ model. Considering the strength and the flexibility of the 

HCIS model, it can be extended to the study of solute transport in streams for 

resolving the model complexities of various processes like adsorption/desorption, 
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stagnation and hyporheic zones, and non-conservative nature of the pollutants. 

The present study aims at extending the HCIS model for analyzing the 

adsorption/desorption mechanism for a conservative as well as non-conservative 

substance. 
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CHAPTER 3 

TRANSPORT OF CONSERVATIVE POLLUTANTS CONSIDERING 

NON-EQUILIBRIUM SORPTION 

3.1 INTRODUCTION 

In developing countries, streams and rivers are being exploited unwisely as means 

for waste disposal from domestic, industrial and agricultural sectors beyond their 

assimilating power of the streams. When the pollutants are disposed into water bodies, 

some basic processes like advection, diffusion, dispersion and decay take place. During 

transport of the solute, the bed soils and sediments adsorb some portion of the pollutants. 

The reverse process takes place when the concentration of pollutant is reduced in the 

moving water. The exchange of the pollutants between the solid and liquid phases is non- 

equilibrium in nature. Simulating non-equilibrium sorption processes along with advection 

and dispersion, which govern the transport of the pollutants, is a difficult task due the 

complexity of the adsorption and desorption processes (Cameron and Klute, 1977). Ghosh 

(2001) conceptualized a Hybrid Cells-in-Series (HCIS) model to simulate the transport of 

conservative solute in river. By discretising the time domain, and adopting Freundlich non- 

equilibrium adsorption isotherm in HC1S model, Ghosh (200I) estimated the concentration 

of conservative solute in a river. Scientific studies (Cameron and Klute, 1977; Bear and 

Bachmat, 1990; Bajracharya and Barry, 1992) illustrate that the adsorption processes more 

attenuate the concentration of the pollutants. So an exact simulation of the pollutants' 

transport is essential to ascertain the assimilation capacity of rivers. in this study, it has 

been assumed that the non-equilibrium Freundlich adsorption isotherm governs adsorption- 

desorption process. A semi analytical solution for pollutant transport in a stream 

consequence to advection, dispersion and adsorption has been derived using the Laplace 

transform technique and HCIS model. 
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3.2 STATEMENT OF THE PROBLEM 

Consider a conceptualized hybrid cells in series model as shown in Fig. 3.1 with 

adsorption (HCIS-A) consisting of a plug flow zone and two thoroughly mixed zones of 

different residence time all connected in series. Let the initial concentration of pollutant in 

each zone be C,. The boundary concentration changes from C, to CR at r = 0. In the plug 

flow zone, the fluid gets replaced in a time a, which is equal to the ratio of the volume of 

plug flow zone to the volumetric throughput or stream flow rate. In the first thoroughly 

mixed zone, the residence time of fluid is Ti . In the second thoroughly mixed zone, the 

residence time is T2. Let the flow rate be Q m3  / unit time and flow be under steady state 

condition. Let the exclusively plug flow zone is as shown in Fig, 3.2. The plug flow zone is 

conceptualized as a series of compartments. The length of each compartment is Axp and 

velocity of water is u. A plume of water in each compartment stays for a time interval alp/ 

id and then replaced by an incoming plume. Such replacements take place in all 

compartments in the plug flow zone simultaneously. This means, in any compartment there 

is no intermixing of the pollutant with the pollutants in either the leading or the following 

compartments. While moving to downstream, the pollutant looses some fraction of its 

concentration due to adsorption activity by the riverbed materials. Adsorption of pollutant 

is assumed to follow the simplified Freundlich adsorption isotherm of non-equilibrium 

type. Within the advanced moving front in the plug flow zone in a particular compartment 

at xo, the rate of adsorption is given by: 

d Cs(xo,t) = R o[C (xo , t)— C„ (x0 ,01 	 (3.1) 

where, RD is proportionality constant (T1), Cs(xo , 1)  is the concentration of pollutant 

adsorbed (ML-3), C(xo, i) is the concentration of pollutant in the water column (ML-3), r is 

the time (T). ft is aimed to predict the temporal and spatial distribution of solute 

concentration in a stream that is conceptualized as a series of hybrid cells. 

d 
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Fig. 3.1: Conceptualized unit of Hybrid Cells in Series Model incorporating 

adsorption 

Fig. 3.2: Pollutant transport through plug flow zone for a unit step input. 

3.3 FORMULATION OF MODEL 

3.3.1 Derivation of Concentration of Pollutant in the Plug Flow Zone 

Consider a control volume which consists of water column and soil column within 

the plug flow zone. The pollutant transported thorough water column gets adsorbed by the 

materials of soil column or exchanged with adjacent pore water. Let the concentration of 

the pollutant in the water column be C(x, t). In a small time interval At, some fraction of 

the pollutant is adsorbed, and then the remaining pollutant in the water column is moved 

forward to the next control volume in which concentration is C(x-I-Axiy, t+At). Within each 

control volume in the water column the pollutant is uniformly distributed. For a steady 

state flow condition, the mass balance equation is 

2" mixed zone 

C (0, = CR 

Q 

a 	Cp 	t) 	 

f  
ttot. 	t.:tAitActc,s-tig  

Cs  
Water column 
Soil column 
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{

Q At C(x,t)—W,, DB &CO 

=Q At C(X±AX jo t+At) 

Cs (x,t+At)+Cs (x+Axp,t+At)] [Cs  (r,t)+Cs (x+Axp,t)1 

2 	 2 

(32) 

Using Taylor series of expansion, 

Cs  (x, t + At) = Cs (x, t)± ac, (x,t)  At  ± 4..  

, acs  (x, ci (x+Axr ,t) --= (x, t)+ 	Axp  + 
ex 

oc,(x,t) 
At+ 

 ac, (x,t) 	
+ 

a (ac,(x,t)
at  jx+ Ax,,t + AO= cs (x,1)-b- 	 • 	At Axp  +... 

 at ax 	P  ax 

C(x+Ax 	
, anx,t)  	ac(x,t)  	+   a   (anx,t)  AtlAx±...  

At+ p ,t+At)=C(x,t)+ at 	ax 	P  ax at 

Incorporating these in Eq. (3.2) 

Qat[C (x,t) +  at 
0C (x30  At + 	ax 

ac(x,t) Ax 
+ 

a 1  ac(x,t)  At jAH 
r  axat 	

QAtC(x,t) 

OW pips&  1,  {[(Cs(x50+acs,(x,t)  at)+(  Cs(x,t)+ acs (x,t) At + acis  (x,t) 
t!,  

A
a

__ 
2 	 at 	 at 	ax 

+ a  ( acs (x5t)  AtjA,,ji[cs(x,t)+(cs(x,t)± acs (x't)  Arl,j1} ax 	at 	P 	 ax 
Neglecting higher order terms in Taylor series of expansion and simplifying by equating Q 

= u A and u = Axp  / At, 

BC(x,t) 	
u 

OC (x,t) 	0 Wid9B  ac,(x,t) (3.3) 
at 	ox 	A 	at 

where, C(x, t) is concentration of pollutant in the water column (ML-3), Cs(x, t) is 

concentration of pollutant in the soil column (MC), Wp is the wetted surface area per unit 

length of the stream (L), DE  is the average thickness of the adsorbing layer surrounding the 

wetted perimeter of the stream (L), u is the flow velocity (LT-I ), 0 is the porosity, A is the 

cross sectional area of flow (L2), x is the distance from the point of injection (L), and t is 
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the time (T). Alternatively, the formulation of Eq. (3.3) has been done using Chain rule or 

Euler's principle as given in Appendix B. 

The initial and boundary conditions to be satisfied for Eq. (3.3) are: 

C (x, 0) = 0, 	x>0; 	 (3.4 a) 

C, (x, 0) = 0, 	x>0; 	 (3.4 b) 

C(0,t)=CR , 	t>0; 	 (3.4 c) 

C, (x, co) = CR  , 	X > . 	 (3.4 d) 

Taking Laplace transform for the Eq. (3.3) 

.Erc )=sC s  —Ce-s1 1 = s C 
at 	 ,r_o (3.5) 

L( OC )
=

dC*  
ax 	dx 	

(3.6) 

acs  E 	=scs  —cel =sc, 	 (3.7) \. at 	 =o 

where, C* , 	are are the Laplace Transforms of C and Cs, and s is the Laplace domain 

variable for time. 

From Eq. (3.1), for constant input 'C', C, (t) is given by 

(t)= C [1—e-R D i 	 (3.8) 

In the plug flow zone, the input to any particular control volume will not be constant over 

different time while adsorption of pollutant takes place by stream bed materials. Consider 

the variable input C (r), in that case Cs  can be expressed as: 

Cs (t)=:1C(r)ks (t — r)dr 	 (3.9) 

where, ks  is unit impulse response in respect of Cs. From Eq. (3.8) k,(0= R 

Eq. (3.9) can be written as: 

C, (x,t)=JC(x,r)k., (x,t — r)dr 
0 

(3.10) 
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Now taking Laplace Transform for Eq. (3.10) by using Faultang theorem (Abramowitz and 

Stegun, 1970): 

(c, (x,t)) = fc(x, k, (x,t =C* ks 	 (3.11 a) 

   

Eq. (3.11 a) can be rewritten as follows: 

• (

▪ 

x,t)), 	fC(x,r)k s (x,t—r)dr+ fC(x,r) (x,t—r)dr =C* k*  (3.11 b) 
o 11 

At any x, C(x, t) = 0 for 0 < t < x/u. Until the time t < x / u, the pollutant front does not 

travel the distance x. So at any distance x within the plug flow zone, the concentration of 

pollutant will be zero up to the time x / u. 

Hence, Eq. (3.11 b) becomes 

( 

• (

• 

x,t))=.0 fC(x,r)ks (x,t--1- )dr =C s ks 	 (3.12) 
■ 

where, C*  and k5*  are the Laplace transforms of C and k3  respectively. 

Eq. (3.8) can be modified to express C, (x, t) for the constant input 'C' injected at a 

distance of x to a particular control volume as follows 

Cs  (x,t)= C (1—e-R°(' X)  (3.13) 

Eq. (3.13) is valid for t > x/u 

Differentiating 

d 

Eq. (3.13) 

Cc (x,t)\  

with respect to t 

k,(x,t)= 
dt = RD e (3.14) 

C 

Taking Laplace Transform for Eq. (3.14) 

( 
f 	(x,t)) 	Rn fe-RD(` -iX4)  e-s` dt = Ro  eRp7 

0  

1 (3.15) 
s+ RD ) 

Substituting Eq. (3.15) in Eq. (3.12) 

= C 	eRDYu (3.16) 
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E In 
s 	A (s+ 

+ 0 WpDB  (3.21) 

Substituting Eq. (3.16) in Eq. (3.7) 

ac,\ 
=sC* RD e R" 	1  

s + 
(3.17) at j, 

Now Laplace Transform of Eq. (3.3) can be written incorporating Eqs. (3.5), (3.6) and 

(3.17) as 

sc*  

Rearranging 

dC*  

dC* 	Wp D B  u 	 s R C RD e " 

( 

u 
dx 	A 

Eq. (3.18) 

0WpDBR„ eRD% 

s+R, 

dx 
C*  uA 

+— s:R 

Integrating Eq. (3.19), 

In C" — ci  WPDB (   s V x Ro , e u —s + E 
A s+ R \ 	D  

where, E is a constant of integration. 

For x = 0; C = CR from condition given in Eq. (3.4 c). 

C*  (0, s) = C R e'dt = G- 
s 0 

Hence, 

(3.18) 

(3.19) 

(3.20) 

Substituting Eq. (3.21) in Eq. (3.20), 

In 
•= ° WPDB  (ei'Du  1): 

S  
s+ RD 	s

x 
i A 	 i u 

(3.22) 

Hence, 

} 

	

C =G   exp 	WI'Dn  (e Rt ) 	1)(  s 	s x 
A k 	\ s+R„i  

CR 	1 0 	W, ,D, (RD-y 	R/)  s x 

	

exp 	 e u 1)(1 
A 	 s+RD 	ie 

(3.23) 
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1)1+ 0 Wp DB. ( eR„-yu  1) D ( 	/-.1)  s  x 
U 

ex 

A s+ RD j  

R 
1)}exp{°WAPDB  (e 

s+ R D J 

= —CR exp 	0 WpDB  
s 	A 

(e" 

s 	A (e
RD % = ex p CR  { 0 WPDB  

CR  
exp {P} exp 	)exp(--s - 

s + RD  
(3.24) 

0  where, 13= 	
A 

W,,D,  ( e R„y„, 1 ) ;  ,OW,D,R,  ( eR, 	1) 

After C*  is obtained, the original solution C is obtained by finding the inverse Laplace 

Transform for Eq. (3.24). 

C = {c 	C R exp {13} {- exp -s --\ exp ; 
u i 	s+1?,_ 

, From the table of Laplace transform, L' —f kS)} = if F (r)dr, where, F = L'(f) 
,s 	0 

(3.25) 

° = 0  _L.' e 	[* —e dt 	 (3.26) 1 	 } 1 -Suex   [s+11 	1  e_ 	
ue
x 

17 
Expanding the exponential term e'RD 

	

, 	s -x 	71  [s + 	R,1} = 

	

1- 	 c e " e I 

  

 

2 	 3 
77 	

77 
77  1+ + 	+ 	 

s+ 	2! (s+R1, )2 3! (s+RD ) 

 

  

From the table of Laplace transform, r I le's} = 8 (1 - a) 

L-1 {,--f (s)} = {0F(t - cl)U  - 	t > a 
t < a 

where, F = 	(f) and U(t-a) is step function and o(t-a) is Dirac delta function. 

x [ 0 
--1 e-s, e 	= 8  -, 	x-Fi f { 	 ( t  __x 

it i  
+U 

I 
1 — 

\ x — 
u i  

—e 
1! 

i ( i  X t — .
.,,2 

	

-RD(t-1 1.1 3 	-RD(/-1 
+ 77

2 1 U 	u + ,1  , 	U ) 	e 	e 	. ± 
2! 	1! 	 3! 	2! 
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1 

(3.27 a) x 	 -RD 
=8 t-- +U t-- e 

\.‘ 	u 	u, 

x 	r x\2 t -- 	2 I -- -121,1--x\ 
71 	u ) 4-  '7 	u i  

	

\ 	i 	■ 
( =6 t--x- +U t--x 

 77 e 	u, +  

	

it ! 	\, 	i I! 2! 	1! 	3! 	2! 

where, 6 (t-x / u) is the Direc delta function. 

Rewriting Eq. (3.27 a), 

x  
u [ 

 7?  
] ft e  - e  s+RD 	: { 	 x 	( 	R x 	- D 

o t-- +U t-- ri e 
ui 	it) 

(3.27 b) 

Eq. (3.27 b) can be expressed alternatively as follows (Abramowitz and Stegun, 1970): 

{ 
i  -s „ x 	7 	1 	x 'N 	l 	X 	-12,(t- 1 

f" e ue s—D =8 t-- +U t--)77 e 
,,. I I, ■ u 	

u 	 
r 

t — ---xli  
U1 

(3.27 c) 1 

where, is the Modified Bessel function of first kind and first order. 

Incorporating Eq. (3.27 c) in Eq. (3.26), 

, 	ii 
L-1 1 -'- —e 'e s  

ifc5(0 	11, 
dr 

+ fti 
0 

X \ 
r 

u, 
1  	I 

i77 ( r -r ) 
x 

\ 

2 ri r - — 	dr 
(3.28) 

+In 2 

where, In l and In 2  are the first and the second integral in Eq. (3.28). 

( 	( 
= J6 r —x )dr =U t -- 

o U 	 tly 
(3.29) 
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X) -RD( r -1 	1  
in 2 = -5 SU 	e 	 II 2  0 	u 	 x 

a -  - 
u 

dr 

U (r-x / = 0 for T<X/Iland (r-x / u) =1 for r >x /u 

Hence, 

( -Ri,(1-1 	1 	 xl 
1312=177N 	e 	 II  2 7)(r - dr 

\, 	I 
_ 

t 

To remove the singularity at r — —x , let us substitute, z --x = ,u2  ; dr = 2 ,u d p . 

x 

ru 	2 1 
In 2 = 	

R 
D m —11( 2 -1-1 ) 

0 	 #11  

2pdp 

X 
u 

= 2 77 	CRI"  I, (2 ji p) dp 	 (3.30) 
0 

The limits of integration are changed for performing numerical integration for Eq. (3.30) 4  

by Gauss quadrature formula. 

Let, ,u=a+bu 

where, a and b are unknown constants, v is another dummy variable. 

At the lower limit u = 0, v = -1; hence, a — b = 0 . 

At the upper limit p = , u = +1; hence, a +b = 

t — —x  
Solving, a = b = 

2 

x x  t-- 	 t — 
Substituting p= 	

2 	 2 
u  (1+ v) and d,u= 	u  du in Eq. (3.30) 
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-2 

In 2 

( 
t 	e dv 	 (3.31) 

—RD [ 

[t — — 
u  X
1  

	(1  

W 1,D8R D (e R"'Y 

(332) 

dv :exp 
t

x — — 
u 	- (1+ u) 

A 2 

Incorporating Eq. (3.29) and Eq. (3.31) in Eq. (3.28) 

            

.L'
x 	'1  

-' 	
i  
1  e 's ue

[ 
 s+R" 

s 

   

I? 0  

       

' x' 
U t-- + n  t-- Se 

u 

2 

II  
( x 

— ( l + u) du 

  

          

Finally the solution C(x, t) is obtained by substituting w, 

(3.25) as: 

x 	 
& 1-1{ 1  — e u eL."- 	in Eq. 

        

     

i0 WpDBRD( fif)i —1) 

A 

 

x t — — 
u 

      

C (X , 1) C eXp 

 

O WP DB( RD  

   

     

      

        

        

        

which is valid for t > x/u. The response at the end of plug flow zone is Cp (a u, t) then 

described by Eq. (3.32). 

3.3.2 Unit Step Response Function for the First Thoroughly Mixed Zone 

Consider the first thoroughly mixed zone as shown in Fig. 3.3. The output of the 

plug flow zone enters the first thoroughly mixed zone after traveling a distance au. In order 

to find the solute concentration in the first thoroughly mixed zone, we first derive 

exclusively the unit step response function for the first thoroughly mixed zone Consider a 

unit step input CR, and perform the mass balance in the first thoroughly mixed zone over a 

time interval t to t + AL 
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Fig. 3.3: Exclusive pollutant transport through 1st  thoroughly mixed zone for a unit 

step input. 

Expressing the mass balance equation in discrete form, 

CR uAAt =Cmi ttAAt+V,ACmi + AM, 	 (3.33) 

In which, the term in left side is the mass entering, the first term in right side is the mass 

leaving, the second term is change of mass within the zone and the third term is the mass 

adsorbed. 

Rearranging the above, 

ACM , 1 AA/I, 
CR  =C  All 	 

uA At uA At 

AC  T AM C, = 	+T, 	m' +  
At V, At 

(3.34) 

where, CR is influent concentration (ML-3), Cm] is the pollutant concentration of the 

effluent of the first thoroughly mixed zone (ML-3), Ms  is the mass of the pollutant adsorbed 

by the stream bed materials (M), Vi is the volume of the first thoroughly mixed zone (L3), 

Ti  is the residence time of the first thoroughly mixed zone (T). 

Eq. (3.34) is reduced to differential form as follows: 

dC T dM CR  = Cm , 	 + 	s 
dt V, dt 

where, MS  = q Wp DB Axi G and V I  = A Ax 

Substituting these and rearranging the Eq. (3.35), 

(3.35) 
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dC„,  CR  Cm  0  W,,DB  
dt T, T A dt 

(3.36) 

In the 1s` thoroughly mixed zone, adsorption of pollutant by bed materials follows the 

Freundlich non-equilibrium adsorption isotherm, which is expressed as: 

dC, = 	 (3.37) 

Eq. (3.36) and (3.37) are first order differential equations, containing two dependant 

variables (CM, and Cs). These are segregated into two different second order differential 

equations as follows: 

Substituting Eq. (3.37) in Eq. (3.36), 

dC _C, Cm , 0  W,,DBR DC„,,, + 0 W,13,,R„C, 
(3.38) 

di 	7', 	7; 	A 	A 

Expressing Eq. (3.38) as, 

dCm , 
	=a,Cm,+a,C, + a, 	 (3.39) 

dt 

W„,D,R„ ; and a, ,CR 
A 

	

1  93 WpDBRD  . 	0  where, ai = - 2 = A 

Let us express Eq. (3.37) as, 

dC, • =a,c,,,,+a,C, 
dt 

where, a4  = 	& a, =-R, 

Differentiating Eq. (3.39) with respect to t 

	- dC„,,, dC, a 	 
dt2 	dt 

+ a 2 	
dt 

Substituting Eq. (3.40) in Eq. (3,41) 

(3.40) 

(3.41) 

2 

= a  cicil ± a
2 

(a,cm, a,C,) 	 (3.42) 
dt dt  

From Eq. (3.39), 

1 dC,  
C  = 

a2 	dt
' a

I
C

"41
- a

3
) 

Substituting Eq. (3.43) in Eq. (3,42), 

(3.43) 

dt 
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a2a4 	(a, + a5 )- -(al -a5 )
2 

4a2 a4  
; = 	  2 	 2  where, A, = 

2 

(al + a5 )+ V(a,- a5 ) 

dCM1 	 1 e  dC 1 	M 	 ■)} 
d2 CM1  = al 	± a2  a41.a4CM1 a5 	dt 	

aCmi - a3 
dt2 	dt 2  

(3.44) 

Rearranging, Eq. (3.44) reduces to 

+a\dCm , a2 a4 )C,,,,+ a3 a5  = 0 	 (3.45) 
dt 	k 	dt 

For solving Eq. (3.45), the Complementary Function and Particular Integral are found as 

follows: 

The Complementary Function is 

CF= Al l e211  +B l e"12 ` 

The Particular Integral is: 

PI= 	 1 	 a3a5 ) 
{D2 - (al + a5 )D+(aia5 -a2a4 )j 

where, D is the differential operator. 

Since (-a3a5) is constant, the particular integral is: 

PI = 	
-a3a5 
	=C, 

(a,a5 -a2a4 ) 

Complete Solution is 

Cm, = A le A-11  + 	+CR  

  

(3.46) 

     

Similarly differentiating Eq. (3.40) with respect to t 

d 2C, _ dC„,,, 	dC, a 	+a  
dt2 	4  dt 	5  dt 

Substituting Eq. (3.39) in Eq. (3.47), 

2  dC„ = a4  cm,  .4_ a,c,+a,j+a5 dC 
dt 2 dt 

From Eq. (3.40), 

1 (c1C 	 ) Cm 
a, dt 

,=— 	-a,C, 
 

(3.47) 

(3.48) 

(3.49) 
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Substituting Eq. (3.49) in Eq. (3.48), 

d 2C, 	I ( dC
" + a2C, + 

= -a3a5, Eq. 

s ± a3a5 =0 

a3a4  

by finding Complementary 

dC 
(3.50) 

(3.51) 

(3.52) 

= a4 {al 

	

dt 2 	a4  

Rearranging and incorporating 

2  

	

dC 	\ dC ka ± a5 )— ±(a 

a5C, 
dt 

1a5 — a2a4 )C 

2t  + CR  

a, 	
dt

' 

(3.50) reduces to 

Function and Particular Integral, 

dt 	dt dt 

Solving Eq. (3.51) 

CS  = A2 e
Alt 

±B2e

(al + 
\2 	 ‘2 

a5 )± V(a1 — a5 ) ± 402a4 	(a, +a5 ) —  \kat 	a5  ) + 4a2a4  
ki  where, 	= 

Differentiating Eq. 

dC1l41 At Ale Al t 

; 	 2 = 2 	 2 

(3.46) and Eq. (3.52) with respect to t, 

A21 

B2 A,2e
A21 

(3.53) 

(3.54) 

= 	+131 /12e 
dt 

dC 
A = 	2 Ie 	+ 

dt 

Applying initial and boundary conditions in Eq. (3.46), Eq. (3.52), Eq. (3.53) and Eq. 

(3.54), i.e 

C m  , _C at t = 0; Cm , = 0; 	 d
dt 
	

T,
: & cs  =o , the following relations are obtained: 

Ai +Bi +c„=0 

4+B2 +cR =0 

At + 
B122 

= 
c, 

A22 + B222  = 0 

Solving the above, 

( 

CR  A2 

A, = 	
22 — 

( 	, 
—CR  2, + - 

\  
Ai /12 
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canceling out the common terms, it can be noted that Vai -Fa5)1> V(ai  - a5 )
2 

4a2a4  . So 

A 	CR 22  
2

= 
Al 22  B, = " 	_ 22  

Substituting these in Eq. (3.46) and Eq. (3.52) the concentration of the pollutant at the 

outlet of the first thoroughly mixed zone and the concentration of the pollutant adsorbed by 

the stream bed materials are found as: 

=CR  

C =CR {1+ 

{

Cm! 	1+ 

( 	
1\ 

22 + 
e  

Al  

+ —
1 

T A21  e 

e.i 2 r 

21 - 22 

2 

22 

1 

Al 	22 .12 

(3.55) 

(3.56) 

where, 

,2 
(a l  +a5 )+V(ai —a5 ) +4a2a4  

21 = 	 ; 2 

2 
(a, +a5 )— V(a i -  a s ) + 4a 2a4 

A2 = 2 

1 0 kris,DB RD 	0Wp DBR„ 
a = 	 ; a2  = 	  a = RD  & a5  = -R T D  1 

A 	 A 

For any value of0 WP, DB, RD, T,, A, CR, the root of Eq. (3.51), 22 will be negative as a, 

and a5 having negative value. Substituting a l , a2, a4, and a5  in expression of 21  and 

the other root of Eq. (3.51), 	is always negative. 

3.3.3 Unit Step Response Function for the Second Thoroughly Mixed Zone 

The second thoroughly mixed zone, shown in Fig. 3.4, differs from the first only in 

the residence time (T2). Performing mass balance in the second mixed zone over a time 

interval t to t + At for a unit step input of CR ,  the concentration of pollutant in the second 

mixed zone can be derived in the similar manner as carried out for the first thoroughly 

mixed zone. 
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Fig. 3.4: Exclusive pollutant transport through 2nd  thoroughly mixed zone for a unit 

step input. 

The step response function of the second thoroughly mixed zone and the 

concentration of the pollutant adsorbed by the stream bed materials for a step input can be 

written as: 

I

Cm , --- CR  1+ 

i 

(3.57) 
-A2 

( 
-=C 	

112 
   e

;2 
R {1± „ 

■\ 21 —22 ) \ .1,1 - 22 ) 
„ 1} 

where, Al  
( 11 I + a5)±  V( a l - a5 )2  4a2a4 

2 

1 q5W p DB RD 	q5Wp DB RD  ; & , =-T  ; a2 =  
A 	 A 2 

(3.58) 

A2 

a4  = R„ 

(a, +a5 )-1(a l  -a5 )2 4a 2a4  
2 

as  = — R„ 

3.3.4 Derivation of Concentration of Pollutant by Discrete Kernel Approach 

The Eq. (3.32), Eq. (3.55) and Eq. (3.57) give the individual step response function 

of plug flow zone and the two thoroughly mixed zones where in adsorption is taking place. 

Using these basic solutions, the unit step response function of a hybrid unit is derived using 

convolution technique. Consider a unit step input injected at the entrance of the plug flow 

zone. The output from plug flow zone is the input to the 15t  mixed zone and consecutively 
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to the rd  mixed zone. For the unit step input at the inlet of plug flow zone, the response at 

the end of lst  thoroughly mixed zone can be derived as follows 

=14Cdp  (r) Kjwi(t  _ r)  dr  
C,(t) 

0 	r 

dC (r) 	 zeti 
=  	P 	K,„, 0' r)dr + is  

dr 0 	 iv 

dC  p (r) 
Km ,  – r)dr + 

dr 

(3.59) 

(M-filet 

dC,  (r) 
dr 

(t – r)dr 

where, KM,  is the unit step response function of the 1st  thoroughly mixed zone; C p (t) is the 

response of the plug flow zone to a step input. 

Let a ramp kernel co-efficient bmi  (In, At) be defined as: 

Sari (m,At)=— Km,(m At –r)dr 
At 0  (3.60) 

where, in is an integer. 

Incorporating Kiia (m At – r) in Eq. (3.60) 

   

  

A2(prili-T (3.61) 

   

Performing the integration 

le 	\ 

1 	7 eAlmat  
 e12' –Cri z as ) 	(162) 

4 21 – A2 	 ) 22 	22 

The concentration C1  (7 At) of the first thoroughly mixed zone is 

( At) = n± p  (rat)–Cp  ((ye –Oat)} S [(n – y +1) , At] 	 (3.63) 
y=1 

C (n At) is the input to the 2nd  thoroughly mixed zone. Using the ramp kernel of the 

second thoroughly mixed zone, the concentration of the solute in the second mixed zone is 

Klicis_ A (nat) = C2  (n At) =±{C,(yAt)– Cl ay –1) At)} 8442 [(n y +1) , At] 	(3.64) 
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The kernel co-efficient (5,141  On At) and 4/2 (m At) are similar except in the residence time 

(i.e. Ti and T2 ). The Eq. (3.64) predicts the concentration of pollutant at the end of one 

hybrid unit for a unit step input injected at the entrance of the plug flow zone. For a unit 

pulse input, the unit pulse response function bllas-A (n, AO is 

kiiCIS-A0131 AO = °SEWS—A(119  at) 	 At 
Icc„._4(nAt)— K  NOS—A ((n —  Oat) 	

(3.65) 

Let the stream, reach downstream of a point source of pollution be composed of a 

series of equal size hybrid units each having linear dimension Ax and consisting of a plug 

flow zone, and two unequal thoroughly mixed reservoirs, as shown in Fig. 3.5. 

Fig. 3.5: Composed series of hybrid units representing a stream reach of n Ax length. 

Using the convolution technique, the response of the ith hybrid unit, i?2, is expressed as 

Ax,n At)=EC ((i —1 ) Ait7 7) ficts-A (n-7+1,At) 
	

(3.66) 
T-1  

3.4 COMPARISON OF HCIS-A MODEL WITH THE ADE MODEL 

CONSIDERING NON-EQUILIBRIUM FREUNDLICH ADSORPTION 

ISOTHERM 

One can formulate the Fickian based advection dispersion adsorption equation 

model as: 

ac = u ac  + D a2c  ow,D,  acs  , at ex ax2  A at 
(3.67) 

where, C is the concentration of pollutant in the water column (MU3), Cr  is the 

concentration of pollutant in the soil column (1\4L-3), W, is the wetted surface area per unit 
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length of the stream (L), DB is the average thickness of the adsorbing layer surrounding the 

wetted perimeter of the stream (L), u is the flow velocity (LT-1 ), DL is the longitudinal 

dispersion co-efficient (L2T-1), 0 is the porosity, A is the cross sectional area of flow (L2). 

x is the distance from the point of injection (L), and t is the time (T). 

The initial and boundary conditions to be satisfied for Eq. (3.67) are: 

C(x, 0) = 0, 	x > 0 ; 

(x,o) = o, 	x > 0 ; 

C(0,0 = CR , 	t 0 ; 

Cs  (xtoo) = CR , 	x > 0 . 

Adsorption of pollutant can be assumed to follow the simplified Freundlich 

adsorption isotherm of non-equilibrium equation 

dC, = RD  [C—C,] 	 (3.68) 
d t 

where, RD is proportionality constant (T1 ), C is the concentration of pollutant in the water 

column (ML-3), C, is the concentration of pollutant in the soil column (ML-3). 

Many investigators (Hays et al., 1966; Nordin and Troutman, 1980; Bencala and 

Walters, 1983; Bencala et al., 1990; Runkel and Broshears, 1991; Runkel and Chapra, 

1993; Czernuszenko and Rowinski, 1997; Runkel, 1998; Worman, 1998; Worman et al., 

2002) have solved equations similar to Eq. (3.67) and (3.68) by numerical and semi- 

analytical methods. For demonstration, Eq. (3.67) and (3,68) are solved numerically by 

explicit scheme considering forward and central differences in time and space respectively. 

The finite difference form of Eq. (3.67) is 

C(x,t-i-At)—C(x,t) 
At 

+.D 
C(x+Ax,t)— 

L 	
 

u
C(x+Ax,t)—C(x- 

2Ax 
2C(x,t)+C(x—ax,t) $WpDg C s  (X j t AO —  Cs  (X, I) 

(3.69) 

(Ax)
2  A 	At 

 

The finite difference form of Eq. (3.68) is 
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Cs  (x,t + At)—C, (x it).= 
 Ro LC(x,t)—C„.(x )01 

we obtain 

41WpD
B  

and (3.70) 

2DtAt RD& 

+cc  

&At 

+C;(0)[ cl)W  

+C(x + Ax,0 [ 

(3.70) 

(3.71) 

(3.72) 

At 

Combining Eq. (3.69) 

C(x,t +at) = C(x,t) 

Letting x = 	t =j 

C(i, j +1) = C 	j) 

-I-C(x—Aoc,t) 

1 

At 

pay A 

uAt 	DisAt 

uat 	DLAti 
2Ax 	(Ax)z  

2& 	(Ax)2_  
( xjo

A  

+C(i+1, 

rWpDn 

j) 

R E,Ad 
"  

+CO-1,1)4- 

2(60cDLAyt 4)WApD8  

uAt iAt 

uAt 	Dt At] 2ax  + (Ivy  

RoAti D
Ax) 2  ( ARD2  

where i= 1,2, ..., Imax and j = 0, I, 	Jmax; C(0, j) = CR and 	O) = 0. 

Ax Imax is the distance of interest from point of injection and At ,In:vc is the observation 

time of interest from time of injection. 

Unit impulse response function is given by 

k(0)= 
C(i,/ +1)--C(i,j) 

(3.73) 
At 

The unit impulse response of Eq. (3.67) is computed from Eq. (3.73) and compared 

with that of HCIS-A model given by Eq. (3.65) for the following set of data: a = 1.70 min; 

Tl 	 ADS = 2.3 min; T2 = 6.0 min; Ax  = 200 m;. 	A — 0.2; u = 20 in/min; D7 = 1000 m2/min 

and RD =0.1 per min. In order to avoid oscillations in the explicit scheme, the space and 

time grid size have been chosen as 20 m and 0.05 min respectively in such a way that u At 

> Ax / 10. The responses at 200 m from the point of injection have been presented in Fig. 

3.6. From Fig. 3.6, it can be noted that the response of HCIS-A model closely matches with 

the numerical solution of Eq. (3.67). 
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Fig. 3.6: Impulse response functions of HCIS-A model and numerical solution of Eq. 

(3.67) at x = 200 m 
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3.5 RESULTS AND DISCUSSION 

The HCIS model simulates the advection-dispersion governed transport of pollutant 

in a regular channel under uniform flow conditions when the size of the basic process unit, 

Ax, is equal to or more than 4 DL  / u. This means that, the response of the three-parameter 

conceptual HCIS model with parameters, a, T1, and 7'2, which are linked to the flow 

velocity u in the stream, is nearly identical to that of the response of the two-parameter (u, 

DL) ADE model at distance nAx, where n= an integer, for the same u and DL. 

Let the three time parameters,a, T1, and T2 of the HCIS model have been predicted 

from the ADE model for a given value of u and DL satisfying Peclet number, Pe  4. For u 

= 20 m / min, DL  = 1000 m2  / min, the HCIS model parameters are: a = 1.70 min; T1  = 2.3 

min; T2 = 6.0 min. Corresponding to the flow velocity u=20m/min, the length of the plug 

flow zone is 34m. To illustrate the adsorption process in the plug flow zone, variation of 

the solute concentration at the end of plug flow zone with time is presented in Fig. 3.7, 

which have been computed making use of Eq. (3.32) for different values of RD  (=0, 0.1 and 

0WpDB  0.25 per min) for 	= 0.1 
A 

At the first arrival time, a, of the solute at the end of the plug flow zone, the 

concentration is 0.948 mg / L for RD = 0.25 per min. The reduction in concentration is due 

to the adsorption in the plug flow zone. With the passage of time, as the rate of adsorbing 

capacity within the plug flow zone decreases, the concentration of effluent from the plug 

flow zone increases with time. The solute concentration is nearly equal to the boundary 

concentration at about 14 min. Fig. 3.7 depicts the unit step response function of the plug 

flow zone. 

The concentration-time distribution in water, C (au, t) and soil columns, C, (au, 1) 

at the end of plug flow zone are computed using Eq. (3.32) and Eq. (3.10) for RD  = 0.25 per 

min and the above set of the parameters and presented in Fig. 3.8. 

Making use of the above set of parameters, using Eq. (3.32), the spatial effluent 

concentration distributions have been computed for different values of RD  (0.0, 0.1 and 
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0.25 per min) and presented in Fig. 3.9. In Fig. 3.9, the effluent concentrations at x =34 are 

the concentration of pollutant at first arrival time. 

The unit step responses of a thoroughly mixed zone are presented in Fig. 3.10 for 

values of RD  (=0.0, 0.1, 0.2 and 0.3) and T1  = 2.3 min. These are exclusively response of an 

individual unit. In a single thoroughly mixed reservoir in which absorption takes place, the 

pollutant concentration in the effluent starts from zero and attains boundary concentration 

at a slower rate than the effluent from a mixed reservoir where adsorption does not take 

place. 

Unit step response functions of a thoroughly mixed zone are presented in Fig 3.11 

for residence time equal to 2.3 min and 6.0 min for RD = 0.1 per min. In case of the 

reservoir with lesser residence time, effluent attains boundary concentration more rapidly 

than the effluent from a thoroughly mixed zone with larger residence time. 

Unit step response functions, of a hybrid unit computed using Eq. (3.64), are 

presented in Fig. 3.12 for the following set of data: a = 1.70 min; Tl  = 2.3 min; 7'2 = 6.0 

D  P 13 min; tlx = 200 m; OW  	— 0.1; u = 20 m/min; DL = 1000 m2/min and RD =0, 0.1, 1.0 per 
A 

min. The pollutant concentration is zero until time t = a, and increases with time to attain 

boundary concentration. For the higher RD  value, the pollutant gets more adsorbed initially; 

therefore, the pollutant concentration in the effluent for higher RD  is less than that for lower 

RD. But as absorption rate in the plug flow zone decreases with time, the solute 

concentration of the effluent from plug flow zone increases faster at later time to reach the 

boundary concentration earlier than that of with lesser RD value. 

Making use of the above set of the parameters, the unit pulse responses, of a hybrid 

unit computed using Eq. (3.65), are presented in Fig. 3.13 where unit pulse duration has 

been taken as 0.05 min. The peak concentration decreases and a longer tail in falling limb 

are exhibited with increasing RD  value. The time to peak marginally decreases, as RD  value 

increases to 0.25 per min. Further increase in RD, increases the time to peak. 
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Unit step and unit pulse response functions of a hybrid unit for RD  = 0.0, a = 1.70 

W , min; T1  = 2.3 min; T2 = 6.0 min; Ay = 200 m; 	D  0.1; u = 20 m/min and Di, = 1000 
A 

m2/min are compared with those obtained from Ogata and Banks' (1961) analytical 

solution of ADE model at a distance of 200 m from injection point for u = 20 m / min and 

DL  = 1000 m2  / min in Figs. 3.14 and 3.15 respectively. There is a marginal difference in 

peak concentrations in the unit pulse response functions of hybrid model and the ADE 

model. This difference is due to the space discritisization in the hybrid model. The unit step 

response function obtained from the present study is close to that obtained from Ogata and 

Banks' (1961) solution. 

OWPDH  Making use of the values of above set of parameters (a, T1, T2, Ax, 	, u and 
A 

DL ) the unit pulse response functions have been generated for values of RD  = 0.1 per min 

and 0 at the end of 2nd, 5th  and 10th  hybrid units using Eq. (3.66) and are shown in Fig. 

3.16. From C-t profiles shown in Fig. 3.16, it can be seen that, as the pollutants move from 

the near field to the far field, the C-t distributions undergoing absorption get more and 

more attenuated and elongated and the peak concentrations reduces in comparison to those 

without absorption. 

OWPDIS  The influence of the dimensionless parameter 	
A 	

on effluent concentration is 

shown in Fig. 3.17. For stream with large width, the dimensionless parameter is nearly 

equal to porosity 0 . Higher the porosity means larger dead zone volume interacts with the 

transport of the solute in the main stream. With larger volume of dead zone, the peak 

concentration gets reduced, the time to peak is marginally reduced and the falling limb gets 

elongated. Variations of peak concentration with volume of dead zone at the end of the first 

and fifth hybrid units are presented in Fig. 3.18. The peak concentration decreases linearly 

with porosity or dead zone storage volume. 
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Fig. 3.15: Unit pulse responses of the ADE model (u =. 20 m/ min; DL = 1000 m2/min) 
and the HCIS model in absence of adsorption for a =1.7 min, T1 = 2.3 min, 
T2= 6.0 min 

58 



Lc) 

II 
C 

C 

II 
C 

0 2 . c3 
E 5.-' 

	

1 	e 	:— 6,  II 	 C■ 

	

4 	 I'"" 	0 	 tr) 
0 z ,./: ...... 

	

1 	 0 	as ,c 
N— 	4... 4  

4 	 "! Z ... 4) 

O 1

• 

7)  
E II 
4tt z 
ci 

0 c.. 
=
7 Lo 	c 
CIJ ir;" 
"le II 
too 
C z 5 
. =  A = ©ei  
= 0 
C cd II 
CI, 
cn 

0 	.11J 1— 1:3 U.1 

VI II = vs 
a. 
= z  

.F. 

	

N 	 0-4- -4. = r.) . 

	

0 	 •- 

	

6 	 4

• 

.7.: E 0 
co 
O 

O 0 0 

4 

II 

/ Bui ul uopraluamop 



-1 — 

E E 
.- c 
a 
o 

C 

ft  

0 

0 
0 c 
0 
-,c co 
o- 
cu 

L__ 
	— Porosity 

Fig.3.18: Variation of Peak concentration with porosity at the end of f
t  and 5` 

hybrid units for a = 1.7 min, T1 = 2.3 min, T2 = 6.0 min, Wp = 10 m, DB = 1 

m, A = 20 m2  and size of one hybrid unit, Ax =200 m corresponding to P e=4, 

u=20 m/min, DL=1000 m2/min 

T 0.10 -, 

0.09 • II 

0.08 1  

0.07 

0.06 

0.04 

0.02 	
0 

0.01 

n = 1 • 

0.60 

0.03 	
= 5 

0.05 	
I 

11 

0.00 0.40 
	--,- 

0.00 	0.10 	0.20 	0.30 	
0.50  

0.1 

0=0.0 
0 

0.08 

13) 0.06 
E 

c 

■ 
8 0.04 

0.02 

—1-  
0 	 10 	 20 	 30 	 40 	 50 

Time m min 

Fig. 3.17: Unit pulse responses of the HCIS-A model for different values of porosity 

0.2 

0.4 

60 



3.5 CONCLUSIONS 

1. The review on earlier studies of solute transport indicates that the Fickian 

dispersion models have limitations in the practical applications. Limitations in CIS 

and ADZ models in simulating time concentration profile with respect to first 

arrival time of pollutant at sampling site downstream of the injection have been 

observed. For resolving environmental issues, it is necessary to predict the pollutant 

transport more accurately by incorporating possible additional processes along with 

advection and dispersion. By introducing a plug flow zone in cell in serious model, 

HCIS model predicts the first arrival time of pollutant at sampling site. 

2. A linear non-equilibrium law for exchange of pollutant between the soil column 

and the mainstream water has been considered along with advection and dispersion 

for analyzing solute transport in a stream. Incorporating adsorption in each of the 

three compartments in the HCIS model, i.e., in the plug flow zone and in the two 

thoroughly mixed reservoirs of unequal residence time, a conceptual hybrid-cells-

in-series model coupled with adsorption (HCIS-A) is developed. The HCIS-A 

model is a four-parameter model representing three time parameters and one time-

reciprocal co-efficient. 

3. An analytical solution in continuous time and space domain for transport of solute 

in a plug flow zone, where adsorption takes place, has been obtained using Laplace 

transform technique. A Hybrid Cells in Series model comprising a plug flow zone 

and two thoroughly mixed reservoirs, has been derived to simulate advection-

dispersion and adsorption governed solute transport in streams in discrete space 

domain and continuous time domain. 

4. The unit step response and the unit pulse response functions of the HCIS-A model 

have been derived. The characteristics of the concentration-time profiles generated 

by the HCIS-A model are comparable to the physical processes of pollutant 

transport governed by the advection-dispersion-adsorption in a natural stream. 

5. Due to the addition of adsorption process with advection and dispersion, peak 

concentration reduces; falling limb of C-t profile gets smoothened and long tail is 
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produced in concentration distribution. These characteristics of the C-t profiles for 

a conservative pollutant in a stream with adsorbing stream bed and soil sediments 

are in the expected lines. 

6. 

	

	Response of the HCIS-A model is closely matching with the finite difference 

solution of the differential equation governing advection dispersion and non- 

equilibrium adsorption. 
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CHAPTER 4 

POLLUTANTS TRANSPORT WITH FIRST ORDER REACTION 

KINETICS 

4.1 INTRODUCTION 

Many organic and inorganic contaminants enter most watercourses each day from 

domestic, industrial and agricultural sectors. These contaminants / pollutants are either 

reactive/decaying type or non-reactive type. Pollution control measures are more particular 

with the non-conservative or reactive type pollutants, such as biochemical oxygen demand 

and coliform bacteria. Decay of pollutant needs to be considered while quantifying BOD or 

coliform bacteria in moving water. The decay of pollutant is assumed to be governed by a 

first order reaction kinetics (Streeter and Phelps, 1944; Rinaldi, et al., 1979; Thomman and 

Muller, 1987). Streeter and Phelps (1944) gave a generalized equation relating the rate of 

the biochemical oxidation of pollutants and the remaining concentration of unoxidized 

pollutants. Considering first order decay, advection, dispersion and decay of a pollutant has 

been simulated in this chapter. 

4.2 STATEMENT OF THE PROBLEM 

The conceptualized hybrid model, which incorporates decay process, (HCIS-D 

model) consisting of a plug flow zone and two thoroughly mixed zones with unequal 

residence time, all connected in series is shown in Fig. 4.1. Let the initial concentration of 

pollutant in each zone be C,. The boundary concentration changes from C, to CR. In the 

plug flow zone, the fluid gets replaced in time a. The pollutant looses some fraction of its 

concentration due to decay while transported to downstream. In the first thoroughly mixed 

zone, where in the residence time is T1, the fluid gets thoroughly mixed before entering to 

the second thoroughly mixed zone that has residence time T2. Decay of the pollutant 

follows the first order reaction kinetics and takes place in all the zones of the HCIS model. 
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The flow rate is Q m3  / unit time and is under steady state condition. It is aimed to predict 

the concentration of the decaying pollutant in the effluent of the hybrid unit. 

C (0, t) 
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Plug flow zone 	1St  mixed zone 	2nd  mixed zone 

Fig. 4.1: Conceptualized unit of Hybrid Cells in Series Model 

4.3 FORMULATION OF MODEL 

4.3.1 Derivation of Concentration of Pollutant in the Plug Flow Zone 

In the plug flow zone (Fig. 4.2), within the moving front; the rate of change of total 

mass in a control volume (A Ax) is equal to negative of total mass decayed from the control 

volume. This can be expressed as: 

d C (x,t 
A Ax 	

) 
= ki  A Ax C (x,t) 

dt 

where, A is the cross sectional area of the plug flow zone, k1  is the first order decay 

constant. 

Fig. 4.2: Pollutant transport through plug flow zone for a unit step input. 

Applying Euler's Equation 

dC ac ac .—+u — 
di at ax 

in Eq. (4.1) 

(4.1) 

64 



ac(x,t) +u ac(x,t)  --kC(x,t) 
at 	ax 

(4.2) 

where, C(x, t) is concentration of pollutant in the water (ML-3), t is the time (T), u is the 

flow velocity (LT-1), x is the distance (L) from the injection point and k1 is the decay rate 

coefficient (T-1). 

Initial and boundary conditions for Eq. (4.2) are: 

C(x, 0) = 0; 	x > 0 
	

(4.3 a) 

c(o,t). c, ; 	t > 0 
	

(4.3 b) 

C(rx u,t) = 0; 	0 < t < a 	 (4.3 c) 

Taking Laplace transform for each terms of Eq. (4.2) 

rr  

and 

sC.  

or 

or 

( 0c 

dC* 

=SC' 

C 

( 

( 

s 

Eq. (4.4), 

k +— 
u 	u 

k +— 
u j  

x + A 

(4,5) and (4.6) in Eq. (4.2) 

C*  

dx 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

at 

ac 

f(c) 

Integrating 

ln(C* ) 

0x 1  

incorporating 

+ u dC*  

dx 

= 

k = dx  

dC*  = — 
dx 

dC 
C 

= 

Eq. (4.8), 

"k, 
u 	u, 

where, A is the integration constant. At x = 0; C = CR and C'*  = CR  / S. 

Therefore, 

A ln (CR  /s) 

Substituting A in Eq. (4.9), 
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k s \  
+- - 

u 
x 

= C  x - 
u _  

exp 
( 	xl  —s - (4.10) exp 

Taking inverse 

C(x, t)=--CR U 

Laplace transform of Eq. (4.10), 

I 	( 	x\ t 	exp 	 (4.11 a) 

The concentration at the end of the plug flow zone is, 

C p  (a u, t) = CR U (t — a)exp(—k, a) 	 (4.11 b) 

which is valid for t > a . U (t — a) is the step function. 

4.3.2 Derivation of Concentration of Pollutant in the First Thoroughly Mixed Zone 

Let the first thoroughly mixed zone, shown in Fig. 4.3, has a filling time T, = V ]  / 

Q, where, V1 = volume of the mixed zone. The effluent from the plug flow zone enters the 

first thoroughly mixed zone. Decay of the pollutant takes place in this zone also. The mass 

decayed in a duration At is equal to ki rliC ApAt. C A41 is the concentration in the effluent 

from the mixed zone, which is also equal to the concentration in the mixed zone. The mass 

balance is expressed as: 

ACM, = CR  U(t — a)e-klaQ At — CmiQ At — 	Cm ,At 	 (4.12) 

Fig. 4.3: Pollutant transport through ft thoroughly mixed zone 

Simplifying Eq. (4.12) reduces to 
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ACM , _CR  U (t — a)e kl a 	Cul  

ki T, 

CM,  

CM 

C 

i  (4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

At 

In differential form, 

dC 	CR  U (t —a)e-k'" ( 1+ 

dt 

Multiplying 

dC 
m 	(1+1c7i,T1 ) 

e 

7i 

either 

CMI e 

L 	 i 	2 

side 

Ti  
ti 

U (t — a)e 

+ 

( 

C Ane 

on 

( 1 ± U (t 	a) e-k'a 

dt 

d 
CR 

(14-1c,j  1; 

1i 

k 

 

k 

 'a e 	'' 
or 

dt 

Integrating, Eq. (4.14) reduces to, 

(t 	a)e kla CR U 
± A 

t = a; CM] = 0. 

U (t — a)e-k'a 

7 I 
C m l e 	1  

where, A 

C R  
A- 

-= 

is the integration 

U (t — a)e-klae 

(1+ k, T, 

For constant. 

a 

Substituting 

(1-41  

(1 + k, Ti ) 

Eq. (4.16) into Eq. (4.15), 

), 	CR U (t 	a)e-k'a e(  
1-i-k1 11), 

7; 
7; Crifl e 

C
R  

(1+ 

(t — a )e-kla 
1 

T,) 

_()+7k, j[t  

(1+ k, T, 

e Cm!  
(1+ k, T1 ) 
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C„ U(t— a)e-kt a  

T2  0 + /CA 

[1+ki  7i  

1—e 7'2  (4.19) 
dt 

d T2  CM 2e 
(l+ki  T2 ' \ 

4.3.3 Derivation of Concentration of Pollutant in the Second Thoroughly Mixed 

Zone 

Consider the second thoroughly mixed zone as shown in Fig. 4.4. The outflow from 

the first thoroughly mixed zone is the inflow to they  second thoroughly mixed zone. 

Performing the mass balance in the second thoroughly mixed zone. 

{ 	  AI2 = 
c1, u(t-a)e-k ,a 

V2 AC 
 

(1+k1 ) 

_(11-k27,) [,  a)  
1 — e }Q At — C m  2Q At — lc, V2  CA4 2  At 

 

Fig. 4.4: Pollutant transport through 2"d  thoroughly mixed zone 

Rearranging and reducing to differential form, 

I 	  dCM2  	CR  U (t —a)e-kl a  

dt 	T2 (1+ ki TI ) 

1-1--1 1-),  
1 e 

} 1+ ki  7,2 \ 

T2 

 

CM2 	 (4.18) 

  

(1+ ki  T2   )1  

Multiplying e T2  

dC
IA] T2   ) 

e
( 	

+ 	1 2 	1 +k T M2 	-2 

dt Ti I 

     

(14-7.  

A4 2

ki  T2  

C 
CR U(t— a) 

T2 (1 + ki T1 ) 

[1+,1 7; )p -al  

e 	' 

 

/1441 7;  ), 
7 2  e\ 

      

or 

Integrating Eq. (4.19) 
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(1-0c1  T2 )1  
1+ki  T2   )1  2 	= CR  (t — a)e-k, a 	72el 

CM 2e 
T2 (1+10) 	( 1+ k1 T2  

T 2 

a 
e (4.20) 

1+  

CM2e 	=
CRU(t—a)ekict 

T2 (1  k1 	( 1+ ki  T2  
T2  

+  

	

a[T1  k 	- 
e 	

1 	1 

T2  T 

114-k, T2 1(  
7, 1 

j 

E i+k,T,  Irt ai  
[1 — e 	T2  IL 	1 

1+ k,  T2  

2 

(1+Tk,  jr , 	ji+7kMit a]  
" e 	_ e  

1 	1 

T.) 

C
1 
 U — 	a  

CM2 — T2  (1 4- k, 
(4.22) 

K ficys-D (1+ ki  TI ) 

(11-k,T2 jit  
Ti —e 

1+k, T2  

I+k i T jft 	(I+k,T2  
— e 	

\
ft al 

e 	 72 

Ti  T2  
(4.23) 

CRU(t—a)e-k ' a 
 

where, A is the integration constant. For t = a; CM2 = 0, hence, 

C R U — e k' a  
A= 

	

	  
T2 (1+ Ic-1 7;) 

(1+1c'7i a  (1 	1 ja  
e 	) e 1-2-  

T2 Ti 

(4.21) 

  

Substituting Eq. (4.21) into Eq. (4.20), 

 

C1  U(t— ot)e-kl a  

T2 (1+ ki T) 

 

, 
(l+k1T

a 	
(1+ "171  

i e 	
i a  ( ,1 	lja  

e 	 e T2 	1 	2 	I 
1+  ki  T2 	I 	I 

T2 	T2 Ti 

or 

  

The step response function of the HCIS unit is: 

which is valid for t > a. 

Differentiating with respect to t, 
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d  (I(  Hus-D ) C R  U (t—cr)e-k'a ( 1+  IcITI 	
(i+Tki,7;), a} 	(1+k2i  /2  jit a]  

— dt 	
= kHCIS-D = 	  

(1+k T) 	T —T e 
	e 	 (4.24)  ■. 1 	2 / 

where, klicts-D is the unit impulse response function. 

Eq. (4.23) and Eq. (4.24) give the responses at the end of the hybrid unit, for the step and 

unit impulse inputs injected at the entry of the first hybrid unit. 

4.4 ESTIMATION OF POLLUTANT CONCENTRATION USING 

CONVOLUTION TECHNIQUE 

Eq. (4.23) predicts the pollutant concentration at the end of a hybrid unit for a step 

input injected at the entrance of the plug flow zone at time t = 0. For a unit pulse input, the 

unit pulse response function 6HCIS-D (4 At) is given by 

HCIS-D (not) K Hus_ D ((n —1) At) 
(n, At) = 	 (4.25) Oircis-D 	 At  

where, KHCIS-D is the step response of the first hybrid unit (= CM2) 

Let the stream reach downstream of the injection point of the pollution be 

composed of a series of equal size hybrid units each having linear dimension Ax and each 

consisting of a plug flow zone, and two unequal thoroughly mixed reservoirs, as shown in 

Fig. 4.5 Using the convolution technique, the response of the ith hybrid unit, i > 2, is 

expressed as 

	

C Ax,n At) = Loi-OAX,y)6Hus_D  (n — y +1, At) 
	

(4.26) 
7=1 

1" Unit 	 2nd  Unit 
	

3rd  Unit 	 nth  Unit 

                

C 

              

C (nAx. t) 

                

                 

T, T2 Ti  T2 a T2 a T1  T2  

       

Ax 

Fig. 4.5: Composed series of hybrid units representing a stream reach of nAx length 
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4.5 RESULTS AND DISCUSSION 

Unit pulse response functions of the first hybrid unit are computed using Eq. (4.24) 

for a = 1.70 min, Ti  = 2.3 min and T2 = 60 min, Ax = 200 m, u 20 m/min, 	= 0, 0.1, 1.0 

per min, and compared with analytical solutions of advection dispersion and decay 

(ADDE) model in Fig. 4.6. There is a marginal difference in peak concentrations in the 

unit pulse response functions of hybrid model and the ADDE model. This difference is due 

to the space discritisization in the hybrid model. The unit step response function obtained 

from the present study is close to that obtained from ADDE model. For k1=0.1 per min, the 

peak concentration reduces and time to peak decreases. 

Making use of the values of above set of parameters (a, T1, T2, Ax, u) the unit step 

response functions of HCIS-D model have been generated for values of k1  = 0 and 0.1 per 

min at the end of 1st, 2nd, 4th and 5th  hybrid units and are shown in Fig. 4.7. From Fig. 4.7, it 

can be seen that, as the pollutants move from the near field to the far field, the C-t 

distributions undergoing first order decay get more and more attenuated and the peak 

concentrations reduces largely in comparison to those without decay. Comparing those C-t 

profiles in Fig. 4.7, the pollution threat to the down stream can be evaluated by fixing 

norms for pollutant injection. 

Unit pulse responses of the HCIS-D model using Eq. (4.24) have been computed 

with decay rate co-efficient, k1  = 0.0 and 0.1 per min, at the end of 1 st 2nd 4th and 5th 

hybrid units for a = 1.7 min, Ti = 2.3 min, T2 = 6.0 min, u = 20 m / min and Ax = 200 m 

and presented in Fig. 4.8. From Fig. 4.8, It can be noted that for k1 = 0.1 per min, the peak 

concentration enormously reduces and time to peak decreases, as number of hybrid unit 

increases. At the end of 4th  and 5th  hybrid units, the peak concentrations show 3.35E-03 mg 

/ L and 5.06E-05 mg / L respectively for given pulse input (=1 mg / L) of finite duration 

(At = 0.05 min). 

Variations of Peak concentration with number of hybrid units, n for different values 

of decay rate co-efficient, k1  (0.0, 0.05, 0.1 and 0.25 per min) have been plotted in Fig. 4.9 

for a = 1.7 min, T1 = 2.3 min, T2 = 6.0 min, Wp = 10 m, DB = I m, A = 20 m2  and Ax =200 

m corresponding to P, = 4, u = 20 m/min, DL = 1000 m2/min. Fig. 4.9 shows that the 
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0 
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HCIS for k, = 0.0 per min 
ADDE for k1=0.1 per min 
HCIS for ki  = 0.1 per min 

10 	 20 	 30 
Time in min 

pollution threat to downstream, reduces greatly for higher decay rate co-efficient than that 

for lower one. 

Fig. 4.6: Unit pulse responses of ADDE model (u = 20 m/ min; DL = 1000 m2/ min and 

at 200 m) and HCIS-D model (a = 1.7 min; T, = 2.3 min; T2 = 6.0 min; Ax = 

200 m) for decay rate co-efficient, k1 = 0.0 and 0.1 per min. 
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Fig.4.9: Variation of Peak concentration with number of hybrid units, n for different 

values of decay rate co-efficient, k1  (0.0, 0.05, 0.1 and 0.25 per min) for a = 

1.7 min, T1= 2.3 min, T2= 6.0 min, Wp = 10 m, DB = 1 m, A = 20 m2  and Ax 

=200 m corresponding to Pe  = 4, u = 20 m/min, DL  = 000 m2/min 

4.6 CONCLUSIONS 

1 

	

	A hybrid model is developed adopting first order reaction kinetic along with 

advection and dispersion of non-conservative pollutant which is injected at the 

source. 

2 

	

	For the peclet number greater than 4, the response of the Hybrid Cells in Series 

model for step and instantaneous input matches with the response of Advection 

Dispersion Decay Equation (ADDE) model for the same inputs. 

3 

	

	To predict the concentration of non-conservative pollutant, the decay rate co- 

efficient (k1 ) for the pollutant load can be determined from the Laboratory 

experiments. 

4. 

	

	Flexibility of the HCIS model for adopting reaction kinetics along with basic 

transport processes has been demonstrated 
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CHAPTER 5 

POLLUTANT TRANSPORT WITH 

DE-OXYGENATION AND RE-AERATION 

5.1 INTRODUCTION 

A stream system gains as well as loses oxygen. It gains oxygen from the 

atmosphere and from aquatic plants. Running water, because of churning, dissolves more 

oxygen than still water. Respiration by aquatic lives, decay of pollutants, and various 

chemical reactions consume oxygen. The decay of pollutant is assumed to be governed by 

a first order reaction kinetics (Streeter and Phelps, 1944; Rinaldi et al. 1979; Thomman and 

Muller, 1987). Wastewaters from sewage treatment plants often contain organic materials, 

which are decomposed by microorganisms using oxygen in the process. Other sources of 

oxygen-consuming waste include storm water runoff from farmland or urban streets, 

feedlots, and failing septic systems. Oxygen is measured in its dissolved form as dissolved 

oxygen (DO). If more oxygen is consumed than is produced, dissolved oxygen levels 

decline and some sensitive aquatic lives may move away, weaken, or die. DO levels 

fluctuate seasonally and over a 24-hour period. They vary with water temperature and 

altitude. Cold water holds more oxygen than warm water and water holds less oxygen at 

higher altitudes. Thermal discharges, such as cooling water used in a power plant, raise the 

temperature of water and lower its oxygen content. Aquatic lives are most vulnerable to 

lowered DO levels. Hence, correct prediction of DO in an aquatic environment is 

imperative to maintain the ecosystem and control the waste load. Streeter and Phelps 

(1944) gave a generalized equation relating the rate of the biochemical oxidation of 

pollutants and the dissolved oxygen concentration. Young and Beck (1974) proposed 

continuously stirred tank reactor (CSTR) by joining assumptions of hydrology and 

chemical engineering to account the BOD-DO reactions and the dispersion in the channel. 

Rinaldi et at (1979) defined the auxiliary variable which relates the dissolved oxygen 

deficit and BOD load to get the solution for the approximated streeter-Phelps dispersion 
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model. In this chapter, considering first order decay along with advection and dispersion, 

DO concentration has been simulated by making use of hybrid cells in series model 

incorporating de-oxygenation and re-aeration. 

5.2 STATEMENT OF THE PROBLEM 

The conceptualized hybrid model (HCIS-R) consisting of a plug flow zone and two 

thoroughly mixed zones with unequal residence time, all connected in series is shown in 

Fig. 5.1. 

Plug flow zone 	1St  mixed zone 

where 
C(0, t) = CR ; CD() (0, t) = SDO -Do; 
xi  = a u; x2  = (a+T j) u; x3  = (a+Ti+T2) u 

2nd  mixed zone 

Transport 

Re-aeration 

De-oxygenation 

Fig. 5.1: Conceptual hybrid unit to represent the transport, decay and re-aeration 

processes. 

Let the initial concentration of pollutant in each zone be C,. The boundary 

concentration changes from C, to CR. Let initially the DO concentration, CD0(x, 0) be equal 

to SDO, where SDO is saturated DO concentration. In the plug flow zone, the fluid gets 

replaced in time a. The pollutant looses some fraction of its concentration due to decay 

while transported to downstream by consuming oxygen at a certain rate, k j. At the same 

time, re-aeration takes place depending upon the DO deficit. In the first thoroughly mixed 

zone, whose filling time is Ti , the fluid gets thoroughly mixed before entering to the 

second thoroughly mixed zone that has filling time T2. De-oxygenation and re-aeration 

processes take place in all the zones of the HCIS model, and both follow the first order 

reaction kinetics. The flow rate is Q m3  / unit time and is under steady state condition. It is 

aimed to predict the DO concentration in the hybrid unit. 
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5.3 FORMULATION OF MODEL 

5.3.1 Derivation of DO Concentration in the Plug Flow Zone 

Let us consider a plug flow zone of volume, 170, through which a non-conservative 

pollutant is transported. Within the plug flow zone, the concentration of the pollutant in a 

control volume of size, Ax, is taken as C (x, t). Due to the decay process, some fraction of 

the pollutant concentration is lost, and then the remaining pollutant is replaced by the 

following plug and moved forward in a time interval At. For the decay of pollutant, the 

dissolved oxygen is consumed from the stream water. At the same time, oxygen gets 

replenished to the water from atmosphere at a specific rate. Let the concentration of 

dissolved oxygen be CDO. Under a steady state flow condition, the mass balance equation 

for dissolved oxygen (DO) is 

QAtCD0 (x, t) — kr ildxqx,t)At + k2 i1AxiS no — C 1)0 (x,t)iAt = QAtC Do (x + Ax, t + At) (5. 1) 

where, A is cross sectional area of the flow, CDO (x, t) is DO concentration, C (x, t) is the 

BOD concentration, SDO is the saturated DO concentration. 

Applying Taylor series of expansion 

C „(x,t)+ 
ac" (x' t) At + ac"" (x' t) Ax + a ac „(x, t) At 

at 	ax 	ax 	at 
= -k1 AAxC(x,t)At + k2 AAX[S Do - C 00 (x,1)1At 

Let, Q = u A. 

Ax} - QAt {C 1,0 (x , t)} (5.2) QAt 

Simplifying Eq. (5.2) reduces to 

uA 
aC Do(x,t) 

At + ttA  
acD°(x

'
t) 

Ax -k,A6xC (x,t)+ 	 [Sr~o  -C Do (x, t)] 	(5.3) 
at 	 ax 

Dividing both sides by A u At and equating Ax I At = u 

ac Do (x,t) uac,„(x,t) 
= kiC (x,t)+ k21Six, - Cr~o  (x, 

at 	ax 
(5.4) 

Eq. (5.4) can be alternatively obtained applying Euler's principle. 

For the BOD, the following differential equation has been formulated in chapter 4: 
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aC (x,t) +u aC (x,t) 
(5.5) xt) = 	kiC (, at 	ax 

The initial and boundary conditions for Eq. (5.4) and Eq. (5.5) are 

C (x, 0) = 0, 	x>0; (5.6 a) 

C (0, t) = C R , 	i`O; (5.6 b) 

C (au,t)= 0, 	0<t<cr; (5.6 c) 

C Do  (X, 0) = S Do  , 	X > 0; (5.6 d) 

C Do  (0 , t) 	S Do  — DO  , 	t > 0 . (5.6 e) 

where Do is the boundary deficit in dissolved oxygen concentration due to the entry of 

waste water with lesser dissolved oxygen. 

Solution for C(x, 1)  i.e. for Eq. (5.5) is given in Chapter 4. 

( x \ 	x \  i.e. C (x, t) = C, U t — — exp 	— 
\ 	 u 

given BOIL input, CR at the entry. 

; this is the response of the plug flow zone for the 

Considering DO deficit D = Spo— CDO 

ac_ 	ap 	acDo  
and ft' at 	at 	ax 	ax 

Substituting these derivatives in Eq. (5.4) 

(5.7) —{aD +u aD},—lc,C+k2D 
at 	ox 

Substituting C(x, t) in Eq. (5.7): 

( aD 
+u

aD 	 —
x 

exp — 
u, 

— k2 D  (5.8) kl {C 	t R U 
at 	ax 	, 	u 

Taking Laplace transform for each terms of Eq. (5.8) 

I 	

x 

sD*  +u dDi  -- = k
1  C

R e u  e 1  — k2D 
cbc 	s 
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-s- 
dD k 	e u 

=u  c 
	 

dx  
s + k2  D (5.9) 

    

Multiplying both sides by e` u 

dD* 
 e 

 ("41  + e . 	Ls±uklx s +  k2 \  
dx 	 u 

Dt  

Simplifying 

d D*  e(s+:2)x  
C I k2-k1 Ixi 

(5.10) 

(5.11) 

u 

1 

dr 

Integrating Eq. 

( '+k2 ), 	k D" 	= 
u 

(5.10) 

( k2-k1 jr C„ 
s  'k2  — k A  

u 

where, A is the integration constant. 

At x = 0; D = Do, hence D*  = Do / s, 

D k  C A  0 1  C1 
s 	k2  —1c1  s 

Substituting A in Eq. (5.11) 

D* k C - I +)x 	 c  (N+Ix 

 D0  D  	" 
rk2

"
k1 

 L 
(sk2  

eu 	 e  u
k2

)  
k2  — k, s 	 k2  — k, s s 

or 

* 	k C 	-!`x D=1 " eu eu 
k2  — 

-v 
tr 	 k, _ x  e  

	

+ Doe u 		 (5.12) 

Taking inverse Laplace transform for Eq. (5.12) 

D = C „ 

Hence, 

- kl v 	- k2 x 	r 	
k2 x  

e u —e u U t-- +Doe u U t-- 
\k2 — k 
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CDO  (X, t) = SDO — {C R( 
 k  \ 
k2 — k1 ) 

  

k, 
--A 	12 X 

e u — e u x _ k2 x 	x + Do e u U 
u 

 

 

The dissolved oxygen concentration at the end of plug flow zone is 

	

CD0 (au,  t) = SDO —  CR 	
k1  	r e-k,« _ edk2ai , r u (t — a)+ Doe- k2crU (t — a) 	(5.13) k2 — k1 i L 

where, Coo (au, t) is DO concentration at the end of plug flow zone (mg/L). 

5.3.2 Derivation of DO Concentration in the First Thoroughly Mixed Zone 

The effluent from the plug flow zone is the influent to the first thoroughly mixed 

zone. Decay of the pollutant takes place in the first thoroughly mixed zone. Therefore, 

dissolved oxygen is consumed. Simultaneously re-aeration takes place. Over a time period 

At, the mass balance for dissolved oxygen is 

11 AC = 	
k  

	

0 —  CR 	
, 	Le kia — e k2a1U (t — a) + Doe k2aU (t — a)}}QAt 

(5.14) 

— C DoQ At — ki VI C At + k2V,(S Do  — CD0 )At 

where V1 is the volume of the first thoroughly mixed zone. In Eq. (5.14), the first term in 

the left hand side is the change in dissolved oxygen storage in the mixed zone over time 

period At, the first term in the right hand side is the DO mass out from the plug flow zone 

entering to the first thoroughly mixed zone, the second term is the mass leaving the first 

thoroughly mixed zone, the third term is the consumption of dissolved oxygen and the last 

term is the replenishment of dissolved oxygen. 

Let, Q / V1  = 1 / T1; then, 

4C DO- 
 1 
	( k,Ste_[ e-kia 	k2"]1 (t — a)+ Doe- k2aU (t — cx)} 

At 	 %■, k2 — k1 

CDO  k,C + k2 (S — C ,„) 

(5.15) 

In differential form, 
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l+k 2  7i  

di 

(5.20) 

dC 	1 
dt 	7; 

o 
 

C 	 [e-  " - e-k2a it (t - 	Doe- k2a U (t - a) 
R  k2  -k , 

CDo  k1  C + k2 (SDO  -C Do ) 

(5.16) 

dD _ 
Incorporating DO deficit D as S,—  CD° and, 

dt 	dt 
° 	 i ix 	 in Eq. (5.16) and rearranging, 

( dD (1+ k27; \  = 1
D 7; 	

{ c R  
dt  

	 jr cka - k2alti (t - 	Doe- k2a (t - a) + k,C (5.17) 
k2  - 

(14-k z 71 ),  
Multiplying both sides by e 	and simplifying, 

- 	i l+k27 1 	11 -  

De
L, T' 	= {c k 	[e- ka - 

 e- k2a1U (t -a)+Doe"2aU(t 
dt 	7; n  

(1+k:7ij i  
- 	

7 

 
(5.18) 

k, Ce (
1+1(2 T3   )1  

7! 	) 

The BOD concentration C in the first thoroughly mixed zone has been derived in Chapter 4 

C e k a and it is given by 	= C = 	 
(1+k1 T, )  

1 1+k, 7i  )it ai  

1 e U(t -a)  

Incorporating C in Eq. (5.18) 

-1-1c2  T 
)1  

Del
l +T 

	I 	k,  
\,k2- k1  ) 

[ e- ki a è k2a1U (t - a) + Doe 
[14-k 2 7‘‘  

-k,a u  a )}e  7; d 
dt 

  

1
1+k,74  

U (t -a)}e' 

(5.19) 
C „e-kla 

(1+ ki  ) 

(11, T1  ill  al 

1 e ' 

   

   

Rearranging this: 

(1+k,-.[;),-  
d De 	= — R 	 

TI 	\, k2 - k1 il l- 
1 	

k1 
	e-ka _ e- k2ai jU (t — ce)+ Doe -  " U 

ne-kla 	7. ) —e  e 

(I-hki  la  7; 
e(k2-ki)f U (1-a) di  

(l+k,T) 

Integrating Eq. (5.20) 
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(1+k27;)t  
De T' 

	

CR 	
k 	e 

\ k2 — kl 
L ' 	2  i kt a)+ Doe ' k jr -k— ea 	-k altI 	- k Ut a 1 

	

r 	 7; )
a 

e[k2-kill 

	

(1-4e2  T;  )1 	(1+k, T1  

k,  ) T 	e ii 
e 

	

1-Elf-17-; 	(1+k2 7;) 	(k2  — k, ) 
+C Re- ktc(  

(5.21) 

U(t—a)+A 

where A is the integration constant 

For t = a; D = 0, hence, 

( 
(1+k2  7i  

A= lc R 
k2 — k 

LC" 	k2a1U (t a)+ Doe- klaU (t a)l e 	 
(1+ k2 T,) 

k, 

—CRe-k' a ( 	 
1+ kJ; j  

Substituting A into Eq. (5.21) and simplifying 

De 	= CRU (t — a) 
i  l+k2 71  ji  

	

k — k 1+ k 	‘ 
k 	 ( 	1 	

l+k2 	li  

1  ( e-ka e- k2a )e  71 T
( 	), 

	

\k2 	1 \ 	2  T 1 

	

( 	
(1+/c2  71  ), 

( 	k 	-\ , ( 	1 
+C „U (t — a)e-k' a 	Tki 	e 	r' 	C RU (t a) - " e 	1  

	

0+ kJ', i  (1+ k2 7;) 	 \ k2 — k1)\,1 +k IT1 
(14-k2 7;ja  

	

e _ kia e-k2a ) 	 e  Tt 	 i  Ti k,  
—CRU(t—a)[ 

k1 	( 	 CRU (t — a)e-k' 	 
k2 —k1 (1+ k2T,) 	

'' 
1+1c,T, , 

	) 
e 

a  
7; 

]+k, 7;  

e 71 e
(k2-k')«} 

U (t — a) 

(ja  

(k2  —1(1 ) 

+ CRu 0 _ a) e- ka 	k, 	' e(
-i- 

.7i la  e[k2-kda 
1kI lj 

( k2 — ki , 	(1+ klT;) 

t+k21  
	)a 

(5.22) 

+ DoU (t — a) e-  k2a  

+k2  7, 

(  1 
 e

r) 7; , k e 
DoU (t — a )e 

1+k2 	 + k2  T,) 

l+k2 7■)1  
Dividing by 	Ti  
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1+ kJ; (1+ k,T1 ) 

k 
D =C„U — 

\k2 —k1)\1+k2 T, )  
-ka 	-k cd■ —e z) 

(l+k2 li'  

1 e 
-a] 

   

    

+ cR u ( t a )e- kia 

— c (t — ct)e-  ki. 
k, 

k —k 'i.. 2 k1 

1 
+ Dou(t—cx)e- kza 	 

0-Ek2 TI ) 

1+k2 7; 

	

1 — e 	7 ' 

[  1 	(1+.p 7i I 	)1  a] 	/14427;1[1-a]  

e 	' 	— e ' 7
; 

(l+kiTI ) 

r-kT2 71,  al l 
1 e  

(5.23) 

Hence, DO concentration is 

CDO=  SDP — D 

The dissolved oxygen concentration of the effluent from the first mixed zone is 

C  DO[(a +lau,t1 

	

( k, 	1 
k2 7-;

I  

	

+C (t a)e-kla 	 ( 

1+ kiTI 	k2 Ti  

   

( e- kia _ e- k2 a 
l+k21 N  

1 - e 
It al 

   

   

(5.24) 

+ k7i)ti 
 ai 

1 — e 

+ k2  

-cRu(t - )e-  kia 

+Dou (t — a)e- kza 

'I-kk1 7 	, 	1+k2 7i  

	

[i al 	( 	 

e 	—e 
1 

%\ k2 —k1 	1+  kiT) ) 

	

 	al 
	 1—e 

5.3.3 Derivation of DO Concentration in the Second Thoroughly Mixed Zone 

The effluent from the first thoroughly mixed zone is the influent to the second 

thoroughly mixed zone. Decay of the pollutant takes place in the second thoroughly mixed 

zone. Therefore dissolved oxygen is consumed. Simultaneously re-aeration takes place. 

Over a time period At, the mass balance for dissolved oxygen is 
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+ C (t - a)e k°7  

- C RU (t - a)e-kl a  
k —k 	l+k1 T \ 2 	1 J \ 	I 

dC „„ _ 
dt 

S Do  1 
T2  T2 	 a )  

( e- Icia _e-k2cr) 
[1+k;   )], a]  

e 

(1-1-1,c/.  7;  j]i a]  
-e 	' 

(I-4, I;  )ri a] 
e 	

L
jii a]  

L  - e 

    

} 
11+kri2 TI  j[i a] 

l — e +DOU (t - a)e- k2a  
( 

  

\, 1 +k2 T1) 

    

I

S Do  - C RU (I - a) 

    

1 

\ k2 — k11\1+ k2 T1 

( e  k i a _ e- k 2a - e 
l+k2  7i )ri  

1 

 

    

+ C „U (t - a)e 

-C RU (t - a)e- 

Ti k1  

1+ k 	1+k \ 	11T / \, 	2 T 1 

N( 1 

k2 —k1/  1+k1T11  

\ / 	1 	
1 - e 	"1 i 

	[t a] 

QAt 
(5.25) 

V2ACDO = 

( 	
1- e (144:111  +Dou (t - a)e- k2a 	 

\ l+k2 T1 

— C D0QAt — k1V2CAt + k2V2  (S Do  C Do ) At 

where V2 is the volume of the second thoroughly mixed zone. In Eq. (5.25) the first term in 

right hand side within { } bracket is the DO mass out from 1st  mixed zone or inflow to the 

second thoroughly mixed zone. 

Let, Q / V2 = 1 / T2; 

In differential form 

C" kC+k (S -C 1 2 DO DO T2   

(5.26) 

Incorporating DO deficit, D as SDO- CDO and 
dD dC,„ 

in Eq. (5.26) and rearranging, 
dt 	dt 
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1 	 1 
C 	- a) 	 

T2 	\ k - k1)\ l+k2 TI / 

+CRU(t-a)e-k'a 	" 	
1 

, 
Tk \ 

1+1(1T1 	k2 T1 ) 

( e- k i a e- k 2a 
l+k2  7;  \ 

1 — e 	7' ' 

  

  

I+ k, 1 
17 	1 	al 

1 e 

I t  al 
( 
 T
14,  7; 

-e 

1I+k 2  7;) ], a]  
1-e 	' 

\ I + k2  T1)  

1 

(1+k2  7'21  - 
De 72 7 

d 
dt 

e• 7; - 

(5.28) 

r i+k,12.11,  alb 

1-e 72) 
7  	p a] 	I  l+kiT 2  p a] 

e 	-e` 	 , 

l+k,T2 	 T2 

dD (1 + k2T2  
dt 	T2  

-C RU (t - a )e - k 'a  

+DoU(t-a)e - k 2a  

+ 

D= (5.27) 

0 ,k2T2), 

Multiplying both sides by 	72 	and simplifying 

1CaU(t-a)  
	

1 
—T2  

k2  

+C(t - a)e- ca (  Tik1 1 

-C RU (t - a) e k a
(  k1 	1 

\ 1 + 	(1+ k2  

( e - k' a — e 

l+k 2 7;)Hai  

1-e \ 

  

(
l+k2  7; ') 

7,  p 
e 

- 	 \ \ 7  

' 1   )1 a] 
e 	- e 	7i  

k2  - 	+ klTI ) 

+DoU - a)e- k 2a 	1  
0+1(2 0 

1+k2  r2 

+ kICe` 72  

} (i+k 21],  a] -  
1-e 	'I' 

The BOD concentration C in the second thoroughly mixed zone has been derived in 

Chapter 4 and it is given by 

(C
R 	

t - a)e-k' 
Cm2 =C=  

(1+k1 Ti ) 

Incorporating C in Eq. (5.28) 
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II 
	 \ 

C —1 	i—a) 	
k 
	

I 

T2 Rg 
	

\k2 —k1

1 

0 -Ek2 T 

 

i+k  
UP al 

1—e ( e- kia _ e-k,a) 

  

d 
dt 

i+k2 T2  

T2 

(l+k,7;\ 	- [1-ai 
1 e 7i + C RU (t — a)e— kia 	 

Tik, 	1  
0 + VI ) (1+ k2  T1 ) 

( 
— C R I' (t — a)e " , la 	

lc,  \ 	1 

.k2  — ki i  (1 + ki T1 ) 
e 	

7" 

- (1+1,,T 	
— e 	7

i f( a] 	( I-421;  lit a] 
; 	;1` 

+DoU (t — a) e k2a 	
1 
	1—e 

(1+k2 T,) 

`1+k;  T,  )FI  
7; 	j  

 

   

(1-42 7.2 ),  
e,' T2  

( 	( 
 7.2 
1-kI7 Zit,  aj \  

CR U(t —a)e-kla 	1(1    1— e 
+ 1c1 7;) (1+ ki  T2 ) 

(t1,, /2  

e 
_ 

	 p al 	fl+ki72  \I], 	 (1+k,1;\1  al 

CR  U(t — a)ek'a 	
k   e  , 	/ 	 e 	 J 	 e 	)1  

(1+ ki  T1 ) (T, —T2 ) 
(5.29) 

Integrating Eq. (5.29) 

CRU(t—ce)  	
1 	-ka e 

	

1+ k2 
	) 	ka) 

+C RU (t — a )e—  kla (  Tk1 ) 	1  

	

\‘ 1+1‘17 	(1 + k2 7;) 

(1 T2   :1 	 -7  \ (11,7,ia  (7, 2  1  
e 	I' e 	' 	e 7'12  i  

1+ k 2 T2 	T1  —T 2 

rl+kz  7Z 

De 7; 	= —C RU (t — a)e 
( 1 

k2 -1(1) (1+k1T) 

(l+k, 11 	[1-r-k 272 	(1-4,7; 	 11-42  

T e 	 T e` ' 	ec 1 - ) 	 ,/ 	) 	 T 	' TT, ,  

[T(1+ k2T2 ) — T2  (1 + kiT,)] 	T —T2 

	

fl+k2T2)1 	(1+1c2 7,ja  17,-12 )
1 
 

T 	T7 1 	e" 	T e ' e' z 
+DOU (t — a)e 

	

(1+ k2 7;) 1+ k2 T2 	TI —T2 

	

( 1-42 7.2 ), 	 ■ 

1 	T,e( 	)  	 ja (k,-k,), 
CR  (t — a)e-kla 

(1+k,7;) (1+ k, T2) 1 + k2 7; 	k2  — k, 
J_ 

il+k,T2) 	\- 

El 7.2 )" e(k2 -01  
CR  U(t —a) e-kla 

	k1  (1 -1-k, Ti ) (7; —r2 ) 

where A is the integration constant. 

1+k,7, \
a 

 (1-1-k2T2 ) (1-4,7;)], 

TT,e` 	e 	7;  
[7; (1 +k2T2)—T2(1+kiTill 	k2 — kI 

+ A (5.30) 
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kD _ Do (t)= DoU (t a 
e

—  k2a 

1+ k2 T1 ) 

/1142 T2)17 

e ` T2 

(5.35) 

T1  — T2  

i+k2  
1 k2  T2 	L 	72 P a] 	k2  T1 	1 )1'  aj  

T2  e  

Let the step response corresponding to the boundary deficit oxygen perturbation be 

designated by KD_Do (t). 

From Eq. (5.32) 

Doti 	— a K  D-DO 	= 
— k 

e 

1 
\ 1+Ic72 )11  al  

( 	 +k, 72  4, 
(5.34) 

1 — e ` 	} 

r l+k, 7; 

-F k 2 T2  

1 k2  jr , a] 	al  
T 	 72 	,j.  e 	' 	— e 

-T2 

A unit step response function KD_Do u (t) can be defined by substituting Do  = 1 in Eq. 

(5.34). Differentiating KD_Do (t) with respect to t, the impulse response pertaining a 

boundary impulse deficit Do is obtained as: 

A unit impulse response function ko_Do u (t) is obtained by putting Do = 1 in Eq. (5.35). 

5.4 DERIVATION OF DO DEFICIT AT SECOND AND SUBSEQUENT 

HYBRID UNITS 

The oxygen deficit, due to the transport of pollutant, at the end of the nth  hybrid unit 

can be obtained using successive convolution. Let the pollutant concentration at the end of 
(n_ms1)th hybrid unit be designated as C (n-1. t). Method for computation of C (n-1, t) has 

been explained in chapter 4. Let the time span be discretised into m equal interval. 

Applying convolution technique, the dissolved oxygen deficit 

mtv 
DcR (n,t)=- fC (n-1,t)k„_„.nu  (t — t)d-c = f C (n —1,T) k 	„. (rnAt — cit 

0 	 0 

41 	 2A/ 

f C (n —1, t) kD CRU  (mAt — i)d-c + f C (n —1, t) k 	(mAt — t) di 
0 	 At 

mAl 

+....+ 	C (n —1, t) kD_CRU  (mAt --c)ch 
(rn-1)41 

(5.36) 
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where At is step size and t = m At. Between an interval (y-1) At to y At, an average rate of 

perturbation is 

C[n —L(y —1) At] + C[n —1,7Atj 
C (n —1, T) = 

	

	(7 —0 At < T < yAt 	(5.37) 
2 

Ai 
Let fli-p_cR u  (MAt — dr be designated as .5 p_cRu  (M, At) 

Sri u  (M , At) = K D_c, R u  (M At) — C D_cn u  ((A1 — 1) At) 	 (5.38) 

Selecting  a time step size At, (M , At) can be generated for different integer value of 6D-C u R   

M. 

Then, 

DcR (n,m At) 	(n —1,y At)6 p_c,„ (ni 	+ 1,At), 
Y=1 

n> 2 	 (5.39) 

Similarly, the oxygen deficit, due to the boundary deficit, at the end of the nth 

hybrid unit can be obtained using  successive convolution. Let the response at the end of (n- 

t 1 ) h  hybrid unit be designated as Do (n-1, t). Let the time span be discretised into m equal 

interval. Applying  convolution technique 

mat 
D po  (n, = Do  (n —1,T) k p_ pou  (t — t)d-r = Do  (n 	(rnAt — -t)ciT 

0 	 0 

At 	 2At 

= 5Do  (n —1,'t) 	(mAt — T) dT 	Do  (n — 1,-c) k D_ D„u  (mAt T)ch 
o 	 at 

mat 
Do  (n —1,T) IcD_ Dou  (in At — T)dl 

(5.40) 

At < T < yAt 	(5.41) 

(5.42) 

Between an interval (y-1) At to y At, an average Do is 

Do  (n 
Do [n —1,(y 	-F Do [n — 1,y At] 

= 	  
2 

A( 
Let ficD_Do  u (MAt —T) di be designated as 5 D_ Do  (M, At) 

0 

dD_ Dou  (M, At) = K D_ Do u  [M Ati— K D_ Do u  [(M 	At] 

Then, 

(Y -1  
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DD  (n,n2 At) -- 1D0  (n —1,-yAt)8D_ Dou (m y +1, At), 	n> 2 	 (5.43) 
7=1  

The total deficit, D (ii, m At), at the end of the nth  hybrid unit is obtained by adding Eq. 

(5.39) and (5.43). At the end of the nth  hybrid unit, the dissolved oxygen concentration is 

then obtained by: 

CD( ) (n, M At) = SD°  - D (n, m At) = Soo— (DcR (n, m At)+DD0 (n, m At)} 	(5.44) 

5.5 COMPARISON OF HCIS-R MODEL WITH STREETER-PHELPS 

DISPERSION MODEL 

Streeter-Phelps model for BOD-DO which incorporates dispersion component is 

described in the form (Source: Rinaldi et al., 1979) 

ac _ 	
-
F52r2 , 

u a  DL 	 kC 
at x 	ax 

aD 	 2 =—u aD
+DL aD 

 +k C—k D 
at ax ax 	 2 1 2 

(5.45) 

(5.46) 

where C is the concentration of the pollutant (ML-3), D is the DO deficit (ML-3), u is the 

flow velocity (LT1 ), DL is the longitudinal dispersion co-efficient (L2T-1), k, is the decay 

rate constant (T-I ), k2 is the re-aeration rate constant (T1 ), x is the distance (L), and t is the 

time (T). 

The initial and boundary conditions for Eq. (5.45) and Eq. (5.56) are: 

C (x, 0) = 0, 	x > 0 ; 

C(0,0= CR , 	t > 0; 

CD0  (x, 0) = St° , 	x > 0; 

Coo (0, t) = S Do  — Do  , t > 0 . 

Rinaldi et al. (1979) incorporated an auxiliary variable, a in terms of C and D as follows: 
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a= D+ 	C 
k2  

or D a 	k
,C 

- k2  

(5.47 a) 

(5.47 b) 

Differentiating Eq. (5.47 b) 

ap as k,  ac 
at 	at k, - k2  at 

aD as  k,  ac 
ax ax k, — k2  ax 

52D 52a lc, a2c 
axe ax2  kl -k2  ax2  

Substituting D and its derivatives in Eq. (5.46) and incorporating Eq. (5.45), one gets 

aa — = —u Oa  — + D a2 a k2a 
at 	ax 	axe 

Thus Eq. (5.45) and (5.48) are similar. 

Solution to Eq. (5.45) has been given (Source: Rinaldi et al., 1979) as: 

(5.48) 

  

kit} 	 (5.49) k (x,t)= 	,  C" x  exp 
2tVnkt 

(x-ut )2 

4DLt 

  

where k (x, t) is an impulse response function. 

Therefore, the solution for Eq. (5.48) can be obtained by replacing IQ by k2  and C by a. The 

solution of DO deficit equation can be deduced from Eq. (5.47 b), as: 

D(x,t) =  C" x    exp{ 
2tV7cD„t 

(x— ut )2 

4DLt [

k, exp (—kit) — exp (—k2t 
k2  

 

(5.50) 

  

The DO concentration can be obtained by subtracting D(x, t) from saturated DO 

concentration (Sao). 
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One can conveniently solve Eq. (5.46) numerically using any scheme. For the 

purpose of demonstration, Eq. (5.46) as been solved numerically by explicit finite 

difference scheme of forward and central differences in time and space respectively. 

The finite difference form of Eq. (5.45) is 

C(x,t+At)--C(x,t)
= u 

C(x+Ax,t)—C(x—Ax,t) 
At 	 2Ax 

C(x+Ax,t)-2C(x,t)+C(x— Ax,t) 
+ 	 k1C(x,t) r. 	

(Ax)2 

The finite difference form of Eq. (5.46) is 

(5.51) 

D(x,t+At)—D(x,t) 
u

D(x+Ax,t)—D(x—Ax,t) 
At 	 2Ax 

D(x+Ax,t)-2D(x,t)+D(x—Ax 
+ 	(x.t)- k2 D(x, t) 

(5.52) 

   

or 

D(x,t + At)= D(x,t) 1 2D At  k2At (6a)2  
uAt DI  At 

2Ax (Ax)2 
+D(x Ax, t) 

(5.53) 
+ D(x Ax,t) uAt +  D, At At 

2Ax (AK)2  
kr(x, t) At 

where C (x, t) is the analytical solution of Eq. (5.45). 

Letting x = i Ax, t =j At 

2D At  D(ij +1) --,D(i,j) 1 	' )2 k2At 
(AO 

uAt D, At 
2Ax (Ar)2 

+ D(i j) 

(5.54) 
uAt D, At
2Ax (Ax)2  

+k,C(i,j)At + D(i —1, j) 

where i =1, 2, ..., lmax andj= 0, 1, ..., Jrnax,-  D(0, j)= Do 

Unit impulse response function is given by 

j) 	  
D(i'J+ dt 

= (5.55) 
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The impulse response functions computed using the HCIS-R model, by Rinaldi approach, 

and explicit finite difference scheme are compared in Fig. 5.2 for the following set of data 

at a distance, x 200 m: a = 1.7 min, T1 = 2.3 min, T2 = 6.0 min, ki  = 0.1 per min, k1= 0.3 

per min, Do = 0, CR = 50 mg / L, u = 20 m / min, DL  = 1000 m2  / min. The space and time 

grid size have been chosen as 20 m and 0.05 min in such a way that uAt > Ax / 10, to avoid 

numerical oscillation. From Fig. 5.2, it can be noted that the response of the HCIS-R model 

is closely matching the numerical solution of Streeter-Phelps dispersion model. The results 

obtained from Rinaldi approach does not match with numerical solution. 
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Fig. 5.2: Impulse responses of HCIS-R model, Numerical solution of BOD-DO 

Equation with dispersion (Eq. 2.19), approximate Streeter-Phelps model 

with dispersion (approximated from Eq. 2.19) 
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5.6 RESULTS AND DISCUSSION 

The temporal variations of dissolved oxygen concentrations (CD0) at the end of 1St 

hybrid unit of size, zix = 200 m are presented in Fig. 5.3 for Do  = 0, a = 1.7 min, T, = 2.3 

min, T2 = 6.0 min, ki = 0.3 per min and 1c2 = 0.1 per min for impulse inputs of non-

conservative pollutant (BOD = 50, 100, 170 mg / L), which consume the dissolved oxygen. 

The dissolved oxygen concentration at saturated level, SDO is taken as 9.1 mg / L. From the 

figure, it is seen that CDO attains minimum value between 5 to 6 min resumes the saturation 

level after 20 min. For a higher BOD of 170 mg / L, the minimum Coo becomes nearly 

zero. BOD load more than 170 mg / L would result in septic condition. 

For k1  = 0.1 per min and k2  = 0.3 per min, all other parameters remaining the same 

the DO concentration — time profiles have been plotted in Fig. 5.4. This shows quick 

recovery in oxygen level even for higher BOD load (170 mg / L) due to the higher re-

aeration rate co-efficient (0.3 per min). Comparing Fig. 5.3 with Fig. 5.4, it could be seen 

that the oxygen sag curves are flatter for higher re-aeration rate co-efficient. 

A Situation has been assumed with no decay and no re-aeration by considering, 

very small value of ki  and k2. Fig. 5.5 shows the DO concentration is equal to the saturated 

DO (Spo = 9.1 mg / L). For lower values of k1 and k2, it shows minimal dissolved oxygen 

deficit. 

Step response functions (Cumulative DO curve) of a hybrid unit computed using 

Eq. (5.33) are presented in Fig. 5.6 for the following set of data: Do = 0; a = 1.70 min; Tj = 

2.3 min; T2  = 6.0 min; Ax = 200 m; kl = 0.1 per min; k2  = 0.3 per min; CR = 50 mg / L; The 

Dissolved oxygen concentration is equal to saturated level until time I = a, and decreases 

with time and reaches 2 mg / L at 18 min, then after the variation with time is very 

minimum. Fig. 5.6 also shows the impulse response function (Oxygen sag curve) and DO 

deficits. It can be noted that the critical low dissolved oxygen, about 8.1 mg / L. is shown 

at 5 min in DO sag curve; however this is within the allowable limit. 

The impulse response functions for ki = 0.1 and 1.5 per min with BOD load of 100 

mg / L have been computed and presented in Fig. 5.7 for the following set of parameters: 

Do = 0; a = 1.70 min; T1 = 2.3 min; T2 = 6.0 min; Ax = 200 m; k2 = 0.3 per min. From this 
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figure, it can be noted that the DO concentration reaches to saturation level at 14 min when 

IQ is 1.5 per min where as, it takes more than 20 min when k1 = 0.1 per min. This is because 

for higher decay rate co-efficient, higher amount of dissolved oxygen has been consumed 

and for the same value of k2 higher amount of DO aerated. 

For a constant value of kl (= 0.1 per min) and k2 = 0.3 and 1.2 per min, the impulse 

response functions have been computed and presented in Fig. 5.8 with the following set of 

parameters: Do  = 0; a = L70 min; T1 = 2.3 min; T2  = 6.0 min; dy = 200 m. It shows very 

quick recovery of dissolved oxygen level for the higher value of k2  than for the lower value 

of k2. 

The impulse response functions at distances 200, 400 and 600 m from the point of 

injection of BOD load (150 mg / L) have been computed using Eq. (5.44) and are 

presented in Fig. 5.9 for the following set of parameters: Do = 0; a = 1.70 min; T1  = 2.3 

min; T2  = 6.0 min; dy = 200 m; k1  = 0.3 per min and k2 = 0.1 per min. It shows the DO 

concentration at 400 m is within allowable limit for bathing, recreational purposes and it 

shows slight risk for drinking purpose, where as the critical low DO at 600 m is about 8 mg 

/ L. Having kl  = 0.15 per min and k2 = 0.1 per min and keeping other parameters same as 

mentioned above, the impulse response functions have been computed and presented in 

Fig. 5.9. It shows at 200 m, minimum DO concentration about 3.2 mg / L and DO 

concentration at 400 m is within allowable limit for drinking purpose. 

The variations of dissolved oxygen concentration, CDO, and deficit, D, with time for 

different values of boundary deficit (Do = 1, 2 and 5 mg / L) in the first hybrid unit have 

been presented in Fig. 5.10 for the following set of parameters: a= 3.6 min; T1 = 4.5 min; 

T2  = 6.9 min; dx = 300 m; k2 = 0.3 per min, BOD input, CR = 0. From the plots, it can be 

noted that the variation of CDO and D occurs linearly with respect to values of Do. 
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Fig. 5.3: DO concentration - time profile for different BOD load (CR) with k1 = 0.3 per 
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Fig. 5.4: DO concentration - time profile for different BOD load (CR) with IQ = 0.1 per 

min and k2 =0.3 per min (a=1.7 min, T1=2.3 min and T2=6.0 min) at x=200 m. 
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Fig. 5.7: DO concentration for different values of kj (0.1, 1.5 per min) and k2  = 0.2 per 

min; BOD load, CR = 100 mg / L; DO at Saturation = 9.1 mg / L; a= 1.7 min, 

T1= 2.3 min and T2 = 6.0 min. 
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Fig. 5.8: DO concentration for different values of k2 (0.2, 1.2 per min) and k1 = 0.1 per 

min; BOD load, CR = 100 mg / L; DO at Saturation = 9.1 mg / L; a= 1.7 min, 

T1= 2.3 min and T2 = 6.0 min. 
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Fig. 5.10: Variation of CDO and D with time in the first hybrid unit for BOD input, CR 

= 0 and different values of boundary deficit (Do = 1, 2 and 5 mg / L) 

5.7 CONCLUSIONS 

A hybrid model is developed adopting first order reaction kinetic along with advection and 

dispersion of pollutant and first order re-aeration to predict the DO concentration where as 

the classical Streeter and Phelps (1944) model incorporates first order de-oxygenation and 

re-aeration only. For the peclet number greater than 4, the dissolved oxygen deficit and DO 

sag curves has been plotted for different BOD load at the entry. To predict the 

concentration of DO for the given BOD load, the decay rate co-efficient (k1 ) for the 

pollutant load can be determined from the Laboratory experiments and re-aeration rate co-

efficient (k2) can be estimated from any suitable empirical equations. Flexibility of the 

HCIS model for adopting reaction kinetics and first order re-aeration along with basic 

transport processes has been demonstrated. The response of the HCIS-R model is closely 

matching the numerical solution of Streeter-Phelps dispersion model. The results obtained 

from Rinaldi approach does not match with numerical solution. 
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CHAPTER 6 

PARAMETER ESTIMATION OF HYBRID MODELS 

6.1 INTRODUCTION 

Parameter estimation of a model is an inverse problem. An inverse problem can be 

solved if the direct problem has been solved a priori. Basically the HCIS model is a three 

parameters model. These parameters are: a, T1  and T2, i.e. time taken by the flowing fluid to 

fill the plug flow zone and the first and the second thoroughly mixed zones respectively. The 

HCIS model is a promising one to simulate advection dispersion governed pollutant transport 

in natural streams. The HCIS model has the flexibility to incorporate additional processes like 

adsorption, retardation or decay and growth of pollutants along with advection and dispersion. 

In chapter 3 the HCIS model has been used to simulate the pollutant concentration 

incorporating adsorption of a conservative pollutant. Due to inclusion of this additional 

process, the HCIS model becomes a four parameters model. The parameters are: a, T1, T2 and 

RD when sorption of pollutant is considered with advection and dispersion. Among these 

parameters, a, T1, T2 are the time parameters, RD  is adsorption rate co-efficient. Estimation of 

these parameters of the HCIS model holds importance in the simulation of concentration time 

profile of a particular pollutant in natural streams. The unit impulse response function has 

distinct characteristics such as: time to peak, a peak concentration, a rising limb, and a falling 

limb. The characteristic of the unit impulse response function, which could be used for 

identification of parameters are: time to peak, and peak concentration. Time to peak is 

obtained from the relation corresponding to: 

dk 
dt p 

= 0 	 (6.1) 

where, k is the unit impulse response and tp is time to peak. 
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Differentiating Eq. A3 with respect to t and equating the differential at tp to zero, time to peak 

is obtained as: 

t, 
( 	■ 

In 
T + 
2/ T —T 2/ 

The peak concentration, which occurs at time to peak (tp), is given by: 

(6.2) 

(6.3) 

( 	( T 
T2 111  

e- 
Ti — T2 

"T 
T2  In 

T 
e- 	 

2  

T — T2 
k(tp). 

 

T —T 1 	2/ 

    

Time to peak and peak concentration of the HCIS model simulating adsorption can be 

obtained numerically from a given C- t profile. The parameters of a conceptual model can be 

determined by many methods, Viz., i) method of moments, ii) method using first moment, 

time to peak and peak concentration, iii) Least squares optimization, etc. Among these 

methods, least squares optimization has been found to be most effective method. 

6.2 LEAST SQUARES OPTIMIZATION 

The least squares optimization method has been used by many investigators (Jones, 

1971; Synder, 1972) for identification of parameters of linear or non-linear hydrological 

models. The least squares optimization method requires observed response at some sampling 

site downstream of the injection point for finding the parameters of the system. It involves 

minimization of squares of deference between observed and computed responses obtained 

with an initial guess of the parameters. The well known Marquardt Algorithm is a technique in 

which parameters of a model are estimated by performing minimization of the squares of the 

error. 

The least square optimization technique has been used to estimate the parameters of the 

following models; the basic HCIS model and the HCIS model for simulating adsorption of 

pollutants. 
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6.2.1 The IICIS Model 

The unit impulse response function obtained from the HCIS model representing only 

advection and dispersion of pollutant over time is given by: 

  

(t —a)} 
T2  

 

 

exp l(t —a)} exp 
1 

 

U(t —a)  k(t)= 
Ti  T2  

(6.4) 

 

   

where, k (t) is the unit impulse response function, U (t – a) is a unit step function, a is the 

filling time of the plug flow zone, T1  is the filling time of first mixed zone and T2  is the filling 

time of second mixed zone. 

Let k0 (iAt) be the observed concentration at any section of stream over time. Choosing 

any guess value of the parameters as a*, T1  and T2 , the response can be computed as kc  (a* , 

Ti t , T2*, iAt). Using Taylor series of expansion and neglecting higher order term, the 

concentration for values of parameters a =a*+Aa; TI =T/ *+ AT1 ; and T2 –T2*+ AT2  can be 

written as: 

     

kc  (as  + Aa,T,*  + AI; , T2*  + AT, , iAt) = 
kc(iAt)+

alc. 
 Aa 

as 
ak 	ak 

 AT, + 	 AT, 	  
aT2  

 

a.. 7i., 72* 

(6.5) 

   

    

The sum of the squares of the error, e, corresponding to the new values of parameters is: 

2 

  

ko  (iAt)— 

  

  

kc (iAt) + ak
à 

 Aa 

Olcc 	ak, 
+—ATI  + —LA 

aTI 	aT2  

(6.6) 

a. 	, T2* 

Since Aa = a - a t ; AT1  = 1'1-T1t ; and AT2  = - 1724  

    

_ 2  

 

    

      

E =I ko  (iAt 
kc (iAt)+ 2kcja—as ) 

as 
ak +(T,—T,* )+ 5kc (T, al; 	aT2  

  

(6.7) 
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The square of the error will be zero or minimum, when the values of parameters are exact 

values, i.e. derivatives of g with respect to the parameters equal to 0. Differentiating Eq. (6.7) 

with respect to a, T1, and T2 and equating to 0, three equations are obtained. These can be 

expressed in matrix form as follows, 

- A (1,1) 
A(2,1) 
A(3,1) 

A(1,2) 
A(2,2) 
A(3,2) 

A(1,3) 
A(2,3) 
A(3,3) 

Aa 
ATI  
AT2  

= 
 B(1,1) 
B(2,1) 

_ B(3,1)_ 
(6.8) 

where, the elements of the matrices are been given in Appendix C. 

Applying matrix inversion, the values of Aa, ATI and AT2 are: 

Aa 
ATI  
AT 2 

	

A(1,1) 	A(1,2) 	A(1,3) 

	

A(2,1) 	A(2,2) 	A(2,3) 

	

_A(3,1) 	A(3,2) 	A(3,3) 

1  B(1,1) 
B(2,1) 
B(3,1) 

(6.9) 

The new values of a, TI and T2 are then obtained by adding the Aa, ATI  and AT2  with 

the earlier values of a , TI *  and T2 By iterative manner, the parameters are being updated 

until the modulus of the difference between two successive iterated values for each parameter 

is less than the accuracy limit chosen. 

6.2.2 The HCIS Model with Adsorption (HCIS-A) 

The unit impulse response function, which describes the temporal variation in 

concentration of the pollutant predicted by the HCIS-A model, represents the adsorption along 

with advection and dispersion, is given by Eq. (3.65). Though the unit impulse responses 

function (Eq. 3.65) is not in functional form, its partial derivatives with respect to parameters 

can be found numerically and Eq. 3.65 can be considered to determine the model parameters. 

Let ko (iAt) be the observed concentration at any section of stream down stream of the 

point of injection. Choosing any guess value of the parameters as a* , T14 , T2*  and RD*  the 
. 

response can be computed as kc (a*, T2 , T2 *, RD*, iAt). Using Taylor series of expansion and 
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neglecting higher order term, the concentration for values of parameters a =a +A a; TI =Ti + 

AT]; T2-=T2*+ AT2; RD = R +ARD  can be written as: 

    

Oa* 	+AT,,T,*  +612 ,R,,iA0= 
kc(iAt)+

ak,   
Aa+

ak
c 	 AT, as 	a7; 

+ 	c AT 
Olcc 
	 AR 

aT, 	aR, 

 

(6.10) 

   

    

The sum of the squares of the error, e, corresponding to the new set of parameters is: 

2 

k (0,1-)+ aakac Aa + aakT: AT, 

ak,  AT  + 	AR 
4-  a  T2  2 oRD 

D 
 

*, 	T2*,RD.  

  

ko (iAt)— 

  

  

Since Aa = a - a ; AT,/  = 	AT2  = T2 - T2*  and ARD = RD— RD  

2 

a 	, 7 2*  ,R1; 

(6.11) 

(6.12) 
Icc (iAt)+:k  

{ 	
c (a a*)+akc  (T — aTi  i 

ko(iAt)— aka, a 
, 	*\ ak , 

+ 	 q' T )+ 	c V? —R `) a  T  2 2 	aRD  D 	0 

The square of the error will be zero or minimum, when the values of parameters are exact 

values, i.e. derivatives of E with respect to the parameters equal to 0. Differentiating Eq. (6.12) 

with respect to a, T,, T2 and RD and equating to 0, four equations are obtained. These can be 

expressed in matrix form as: 

A(1,1) A(1,2) A(1,3) A(1,4) Aa B(1,1) 
A(2,1) A(2,2) A(2,3) A(2,4) B(2,1) 

(6.13) 
A(3,1) A(3,2) A(3,3) A(3,4) AT2  B(3,1) 
A(4,1) A(4,2) A(4,3) A(4,4) ARD  B(4,1) 

The elements of the matrices are given in Appendix C. the matrix in the left is the Jacobian 

matrix. Applying matrix inversion, the values of Aa, AT,, AT2  and ARD are 
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Aa 
ATI  
AT, 
AR D 

A(1,1) 
A(2,1) 
A (3 ,1) 

21(4 ,1) 

A(1,2) 
A(2,2) 
A(3, 2) 
A(4,2) 

A(1,3) 
A(2,3) 
A (3 , 3) 
A(4,3) 

A(1,4) 
A(2,4) 
A(3, 4) 
A(4,4) 

-1 
B(1,1) 
B(2,1) 
B(3,1) 
B(4,1) 

(6.14) 

The new values of a, T1, T2 and RD are then obtained by adding the Aa, AT1, AT2, ARD 

with the initial guess values of a t, T1* , T2*  and RD*. The parameters are updated until the 

modulus of the difference between two successive iterated values for each parameter is less 

than the accuracy limit chosen. 

6.3 OBSERVED DATA 

Synthetic data are used for testing the efficacy of the least square optimization method 

suggested here. Moreover synthetic data should be used for checking the efficacy of a model 

(Mishra and Jain, 1999). For an assumed set of parameters, the response of the system is 

computed using the suggested model. The mean and standard deviation (Sd) of the computed 

response are found. Random error with zero mean and certain percentage of Sd as standard 

deviation is added to the response. These responses containing the random errors are 

considered as the synthetic observed data to solve the inverse problem by least square 

optimization. 

To investigate the robustness of least squares optimization method, random error with 

higher percentage of standard deviation ranging from 0 to 20 % of Sd are added for generating 

synthetic observation data. Using these synthetic observation data, the parameters of 

respective models are estimated and compared with original values of the parameters, which 

had been used to generate the synthetic observation data. The comparison is made in Tables 

6.1 and 6.2 for HCIS and I4CISA models respectively. 
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Table 6.1: Comparison of the estimated parameters with the true parameters (a = 1.7m 

in, T1 = 2.3 min, T2  = 6.0 min) for different % of Sd for HCIS model 

S. No 

% of Sd in 

synthetic 

observed data 

a*  (min) TI *  (min) T2*  (min) Accuracy level 

1 0 % 1.701 2.281 5.999 0.00001 

2 5 % 1.704 2.272 6.03 0.00001 

3 10 % 1.694 2.32 5,879 0.00005 

4 15 % 1.721 2.253 6.1 0.0001 

5 20 % 1.75 2.199 5.897 0.0001 

Table 6.2: Comparison of the estimated parameters with the true parameters (a = 1.7m 

in, T1 = 2.3 min, T2 = 6.0 min, RD = 0.1 per min) for different % of Sd for HCIS-A model 

S. No 

% of Sd in 

synthetic 

observed data 

a*  (min) Ti*  (min) T2*  (min) 
RD*  (per 

min) 

Accuracy 

level 

1 0 % 1.7105 2.3002 5.9967 0.0996 0.00001 

2 5 % 1.704 2.27 6.01 0.103 0.0001 

3 10 % 1.742 2.255 5.937 0.105 0.0001 

4 15 % 1.712 2.31 6.058 0.099 0.0001 

5 20 % 1.735 2.139 6.021 0.109 0.0001 

The parameters are estimated with reasonable accuracy by least square optimization 

method. Using synthetic data containing random error with standard deviation of 20 % of Sd 

the parameters could be estimated closely to the true value. 
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6.4 SELECTION OF APPROPRIATE MODEL 

The zeroth  and 1st  moment of the unit impulse response, observed at a sampling site 

downstream of the point of injection, or synthetically generated, can be determined 

numerically (Kafarov, 1976) as follows, by taking r = 0 and 1 respectively: 

(k(t,)(t
jr++1 1  —t:+ 1 ) 

r +1 
M r 	 n 

-  
(6.15) 

k (t,) At 

where, Mr  is the rth  moment, k (t,) is the unit impulse response. 

If the zeroth  moment is approximately equal to 1, then there is no loss of pollutant, i.e. 

the pollutant mass is conserved. For this case, there may be either i) advection - dispersion or 

ii) advection — dispersion — adsorption of pollutants. 

For a given C-t profile (observed or synthetically generated), using least squares 

optimization, the parameters of the model can be estimated from steps explained either in 

section (6.2.1) or (6.2.2). Solving the inverse problem by the HCIS model for a given C-t 

profile, tracer velocity (2) can be estimated using the relation: 

Ax 
a +7; + T, 

(6.16) 

where, Ax is the size of the hybrid unit, a, T1, T2 are estimated parameters of the HCIS model. 

If the tracer velocity (ii) and the mean flow velocity (u) are approximately same, then 

pollutant transport is governed by advection and dispersion only and the parameters estimated 

by the HCIS model are correct. It is found that the HCIS-A model fails to estimate the 

parameters from the synthetically C-t profile that has been generated using HCIS, because 

some of the elements of inverse matrix (Eq. 6.14) become very large during the matrix 

inversion. The least square procedure yields results if the accuracy level is low of the order 

0.01. But in that case the tracer velocity and the mean flow velocity do not match. 

For another set of data, if the tracer velocity, found from the estimated parameters 

using HCIS, and mean flow velocity are not equal, then it can be concluded that there are 

114 



some additional processes taking place along with advection and dispersion of pollutant. One 

of the additional processes may be adsorption of pollutants. In that case, both the HCIS model 

and the HCIS-A model estimate their parameters. Between these two models, the appropriate 

model is to be chosen using the following procedure: 

1) Estimate the mean of the distribution M; (= 	+ T2) using parameters of the HCIS 

model. If the first moment (Hi ), from Eq. (6.15), is greater than mean of the 

distribution (MI* ), then there is an additional processes taking place along with 

advection and dispersion, Therefore, the estimated parameters of the HCIS model are 

not pertinent. 

2) As an additional check, tracer velocity u (= Ax / (a + T I  T2)) can be compared with 

mean flow velocity. If it and u are not equal, then the adsorption is taking place. 

Therefore, the estimated parameters of HCIS-A model are pertinent. 

Fig. 6.1 shows the procedure in a flow chart for identifying the appropriate model and the 

model parameters while solving the inverse problem from one C-t profile. 
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Initial Guess of Parameters: 

I. for Peclet Number: 4 <P,< 8 
(Ghosh et al. 2004) 

a = (0.04 * 21,c2)/DL  ; 
TI  = (0.05*Ax2)/DL 
T2  = 	- (0.09 * dx2 )/D1  

2. for Peclet Number: P,> 8 

(Ghosh et al. 2004) 
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Fig. 6.1 Flow chart showing the procedure to select an appropriate model and 
estimation of its parameters to simulate given observed data (C-t profile) 
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6.5 RESULTS AND DISCUSSION 

Efficacy of the procedure for solving the inverse problem as described above is 

shown considering the following two sets of synthetic observation data. One set of data are 

generated making use of HCIS model ( Ax = 200m, a = 1.7 min, T1  = 2.3 min and T2 = 6.0 

min) and the other set of data are generated making use of HCIS-A model Ax = 200m, a = 

1.7 min, Ti  = 2.3 min, T2 = 6.0 min, and RD = 0.1). The observation data are generated at 

two sampling sites, which are located at a distance of 200m 1000 m and 2000m 

downstream from the point of injection. The flow velocity, u, in the stream is 20m/min. 

Random errors, with zero mean and standard deviation 5% of Sd, are added to obtain the 

synthetic observation data. 

The synthetic C-t profiles, generated using HCIS model have the following 

characteristics: at x = 200m, the time to peak (tp) = 5.276 min and peak concentration ( k, ) 

= 0.0918. 

The synthetic C-t profiles, generated using HCIS-A model have the following 

characteristics: at x = 200m, the time to peak (tp) = 4.954 min and peak concentration ( ) 

= 0.0842. 

Let us consider the first C-t profile. The zeroth  moment (M0) of the profile is found 

to be equal to 1. Using least squares optimization, the parameters of the HCIS model are 

estimated with an accuracy of 0.00001 as: a = 1.704 min, T1  = 2.272 min and T2  = 6.03 

min. Hence, from Eq. (6.16), the corresponding tracer velocity is 19.988 m / min, which is 

approximately equal to the mean flow velocity (20 m / min). This implies that advection 

and dispersion processes govern the pollutant transport and the parameters, estimated using 

the HCIS model, are pertinent. 

Let us use the same set of data (the first set) and apply the HCIS-A model for 

solving the inverse problem. For the accuracy 0.00001, the iteration procedure does not 

converge. The elements of the inverse matrix diverge and become unbounded. However, 

for a lower accuracy of 0.01, the iteration converges and the parameters of HCIS-A model 

are estimated as: a = 1.671 min, T1  = 2.918 min, T2  = 4.428 min and RD  = 0.266 per min. 
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The corresponding tracer velocity is 22.18 m / min, which differs from the mean flow 

velocity (= 20 m / min). The tracer velocity is over estimated. The C-t profiles at 1000 m 

and 2000 m down stream computed with the estimated parameters are compared with the 

observed C-t profiles and presented in Fig. 6.2. It can be noted that responses of the HCIS 

and HCIS-A models reasonably match with observed C-t profiles. However, HCIS-A 

doesn't give tracer velocity equivalent to the mean flow velocity. Hence, the HCIS-A 

model is not an appropriate model to simulate the given C-t profile. 

For the second C-t profile generated with HCIS-A, the zeroth  moment (M0 ) is 

found to be 1. Applying the HCIS model for solving the inverse problem, the parameters 

are estimated as: a = 1.724 min, T1  = 1.882 min and T2  = 7.012 min. The corresponding 

tracer velocity from Eq. (6.16) is 18.18 m / min, which is not equal to the mean flow 

velocity (20 m / min). The tracer velocity is under estimated. This implies that the 

adsorption process is taking place along with advection and dispersion and selection of the 

HCIS model for solving the inverse problem is not pertinent. 

The HCIS-A model is next applied to estimate the parameters from the second C-t 

profile. The parameters are estimated as a = 1.704 min, T1  = 2.27 min, T2  = 6.01 min and 

RD  = 0.103 per min with an accuracy tag of 0.0001. The corresponding tracer velocity is 

found to be 20.03 m / min, which matches with the mean flow velocity (= 20 m / min). 

Hence, the HCIS-A model is identified as the appropriate model to simulate the parameter. 

C-t profiles at 1000 m and 2000 m down stream are computed with estimated parameters 

are compared with the second set of observed C-t profiles. It can be noted that, from Fig. 

6.3, responses of the HCIS model shows moderate difference with observed data where as 

HCIS-A models reasonably matches with observed second set of C-t profiles. Also, 

parameters estimated using HCIS do not yield tracer velocity matching with the mean flow 

velocity. Hence, the HCIS model is not simulating the given C-t profile. 
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Fig. 6.2: Observed and Computed C-t profiles by HCIS (a = 1.704 min, T1 = 2.272 
min, T2  = 6.03 min) and HCIS-A (a = 1.671 min, T1 = 2.918 min, T2  = 4.428 
min, RD =0.266 per min) models with estimated parameters at x = 1000 m 
and 2000 m down stream. 

0.03 
	 Observed 

Computed by HCIS with estimated parameters 

Computed by HCIS-A with estimated parameters 

40 
	

80 
	

120 
	

160 
	 200 

Time in min 

Fig. 6.3: Observed and Computed C-t profiles by HCIS (a = 1.724 min, T1  = 1.882 
min, T2  = 7.012 min) and HCIS-A (a = 1.704 min, T1 = 2.27 min, T2  = 6.01 
min, RD =0.103 per min) models with estimated parameters at x = 1000 m 
and 2000 m down stream. 
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6.6 CONCLUSIONS 

In order to identify the suitability of the HCIS or HCIS-A model for a particular C-t 

profile, it is required to know the corresponding parameters of the HCIS and HCIS-A 

models. In this chapter, the parameters of the HCIS and the HCIS-A models are estimated 

using least squares optimization method for a given sets of observed C-t profile. The 

suitability of the model is identified by comparing the tracer velocities estimated using the 

parameters of the HCIS and the HCIS-A models with the mean flow velocity. If the two 

velocities match, then this means that the corresponding model is suitable and is more 

appropriate to the given situation and the vice-versa. This helps in selection of the 

appropriate model for a given C-t profile. 
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CHAPTER 7 

PERFORMANCE EVALUATION OF HYBRID MODELS USING 

FIELD DATA 

7.1 INTRODUCTION AND STUDY AREA DESCRIPTION 

In recent years, the growing industrialization and urbanization are the main reasons 

of increasing pollution threats and public concerns towards health related issues. With the 

advent of sophisticated computational tools and investigation technologies, much attention 

is being paid to derive pollutant's transport phenomena more close to reality. Rivers are 

uncontrollably used as a sink to the pollutants. This in turn deteriorates the water quality 

and spoils the eco-system maintained by the rivers. Rivers have limited assimilation 

capacity to the pollutants. Disposal of pollutants in excess to the assimilating capacity of 

the river would not only affect the health of water but would also damage the aquatic life 

marinated by the river. Thus, study of pollutant's transport in a stream/river is essential to 

correctly evaluate the state of pollution threat at downstream locations from the source and 

for regulating disposal of pollutants in rivers such that the eco-system remains safe from 

any incoming threat. 

The river Brahmani is one of the major rivers in India. Many stretches of river runs 

in Orissa state where a numerous industries located near the river are discharging their 

effluents to the river as on today. The consequence is that, many stretches of the river are 

under the grim of pollution exceeding the limiting level of BOD load. As per National 

Water Commission's survey (NWC report, 2000), the stretch of 310 km down below 

Rengali dam is most polluted due to, the effluents from aluminum, steel and fertilizer 

industries and due to the mining and urban activities. The pollutants are discharged to the 

River Brahmani through its tributaries; Tikira, at 25 km, Nandira at 75 km and Bangura at 

95 km down below the Rengali Dam. In this Chapter, the river stretch (57 km) from 

Rengali dam to Talcher has been chosen for study. Talcher is affected seriously by the 
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waste water discharged by river Tikira, main tributary of river Brahmani. This stretch is 

reported by central pollution control board as D class, i.e., it is designated to use for 

propagation of wild life and fisheries, which has the following criteria: 1) pH 6.5 to 8.5, 2) 

Dissolved Oxygen 4mg/1 or more, 3) Biochemical Oxygen Demand 5 days 20°C 3 mg/I or 

less. Due to increasing quantum of pollutants, water quality of this stretch deteriorates. 

Hence it is imperative to predict the fate of pollutant and to regulate the pollutant disposal. 

The catchment area of the river at upstream and down below Rengali dam receives 890 to 

2850 mm / year rainfall. The study stretch between two locations Rengali Dam and Talcher 

having lat-long, 85°02' E - 21°17' N and 85°13' E - 20°57' N respectively, is presented in 

Fig. 7.1. 

7.2 DATA REQUIREMENT 

In order to evaluate the performance of hybrid model, various data, collected from 

the river stretch of 57 km, have been used, viz. flow data, river bed soil sediments and 

water quality/pollution data. Most of the data are collected from a dissertation report (Palo, 

2002) and central pollution control board (CPCB) web site. 

7.3 FLOW DATA AND ROUTING 

Daily released flow from Rengali reservoir and flow in Brahmani River observed at 

Talcher have been used in this study. The release from the reservoir varies between 500 

m3/s and 2500 m3/s during monsoon months (June to October). During non-monsoon 

months (November to May), the flow reduces and it varies between 125 m3/s and 500 m3/s. 

The study reach of the river has a general bed slope of 1 in 5600. The flow from Rengali 

dam has been routed through various sections of the reach using Muskingum-Cunge 

method (Appendix E) up to the location where Tikira joins, and the flow hydrographs of 

Tikira is added and routing is proceeded up to Talcher. The observed flow data at Talcher 

is compared with the computed flow data at Talcher. Some difference of flow between 

computed and observed hydrographs during monsoon period is found. This is because of 

the unaccounted contribution of intermediate catchments during rainy season. A correction 
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in flow is therefore necessary. Some fraction of Tikira's flow is assumed to be the 

catchments' contribution. Adding this, again the routing is done to get corrected flow 

hydrograph at various sections up to Talcher. Fig. 7.2 shows the flow hydrograph of 

various sections before and after correction. The computed and corrected flow data of 

various sections have been categorized in to two segments, viz, monsoon and non-

monsoon periods by considering moving average approximation over a season. Due to the 

low flow during non-monsoon period, assimilating capacity of the river is limited. Hence, 

analysis of flow and pollutants' transport during this period is imperative. 

Fig. 7.2: Computed Flow Rate of River Brahmani and Tikira at specific locations 

The flow rate with out and with correction just after Tikira is shown Fig. 7.3. Observed and 

computed flow rate at Talcher before and after correction are shown in Fig. 7.4 and 7.5. 
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Fig. 7.4: Observed and computed flow rates before correction at Talcher 
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Fig. 7.5: Observed and computed flow rates after correction at Talcher 

The average flow rate during high and low flow period at Talcher is presented in Fig 7.6. 

Fig. 7.6: Seasonal average computed flow rate at Talcher 

The average flow rates at various sections in each season computed by Muskingum-Cunge 

Method are presented in Table 7.1. 
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Table 7.1: Average flow rates at various sections of River Brahmani 

Locations 
Flow Rate in m3/s 

Monsoon period Non-monsoon period 

Rengali Dam 951 196.55 

Location before Tikira joins 940.8 195.98 

Location after Tikira joins 1153.69 239.72 

Talcher 1101.98 238.62 

7A PARTICLE SIZE ANALYSIS FOR THE BED MATERIALS OF RIVE] 

BRAHMANI AND SILT FACTOR 

Bed samples from pre-decided locations along the length have been collected and 

analyzed in the laboratory to obtain the grain size distribution. Sieve analysis (dry test) and 

Hydrometer analysis (wet test) were carried out to obtain grain size distribution. The plot 

of particle size versus percent of finer is shown in Fig.7.7. The mean grain size estimated 

using the Eq. (D7) is found to be 0.149 mm. The silt factor (6) corresponding to this grain 

size estimated as 0.6141. 

0.0001 	 0.0010 	 0.0100 0.025 mm  0.1000 	 1.0000 
Particle size in mm 0.2 mrn 0.535 mm  

Fig. 7.7: Grain size distribution curve of bed sediment samples collected from 

Brahmani. 

10.0000 
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7.5 REGIME CHANNEL CONCEPT 

Considering the flow rate and silt factor the channel geometry has been estimated 

using regime channel concept (Eq. D2 to Eq. D6) and presented in Table 7.2 and 7.3 for 

non-monsoon and monsoon seasons respectively. 

Table 7.2: Channel geometry estimation corresponding to average flow rate (Non-

monsoon) and silt factor 

Location 

Average 

Q (m3  1 s) 

Average 

U (m/s) A (m2 ) H (m) W (m) S 

Rengali Dam 196.55 0.8977 218.6499 3.2150 68.01 5.52E-05 

before Tikira 

joins 
195.98 0.8973 218.1214 3.2119 67.91 5.52E-05 

after 	Tikira 

joins 
239.72 0.9279 257.9935 3.4349 75.10 5.34E-05 

Talcher 238.62 0.9272 257.0065 3.4297 74.93 5.34E-05 

Table 7.3: Channel geometry estimation corresponding to average flow rate 

(Monsoon) and silt factor 

Location 

Average 

Q (m3  1 s) 

Average 

U (m 1 s) A (m2 ) H (m) W (m) S 

Rengali Dam 951 1.1675 813.4651 5.4377 149.5985 4.24E-05 

before Tikira 

joins 
940.8 1.1654 806.1878 5.4181 148.7941 4.25E-05 

after 	Tikira 

joins 
1153.69 1.2057 955.5705 5.7994 164.7713 4.109E-05 

Talcher 1101.98 1.1965 919.7432 5.7114 161.0363 4.14E-05 

The above stream geometry has been estimated by regime channel concept. Regime 

channel width corresponding to flow rate, Q = 2500 m3  / s which occurs during monsoon 
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period is computed as 242.37 m. From satellite image (Google Earth) the average width at 

three cross sections during monsoon period near Talcher is measured and found to be 250 

m. The regime channel depth could not be compared with the actual depth of flow due to 

absence of observations. For the purpose of analysis of pollutant transport, the regime 

channel width and depth computed for different flow are assumed to be appropriate. 

7.6 DETERMINATION OF LONGITUDINAL DISPERSION CO-EFFICIENT 

Adopting the empirical equation proposed by Seo & Cheong (1998), the 

longitudinal dispersion co-efficient has been estimated and tabulated in Table 7.4 & 7.5. DL 

changes between source and Talcher due to the change in channel geometry for a particular 

season due to the inflow from external sources. 

Table 7.4: Estimated longitudinal dispersion co-efficient during non-monsoon period 

U. (m/s) U (m/s) W (m) H (m) DL  (m2ls) 

0.0417 0.8977 68.01 3.2150 431.5445 

0.0417 0.8973 67.91 3.2119 430.7427 

0.0424 0.9279 75.10 3.4349 490.0522 

0.0424 0.9272 74.93 3.4297 488.611 

Average 460.24 m2/s 

Table 7.5: Estimated longitudinal dispersion co-efficient during monsoon period 

U. (mis) U (m/s) W (m) H (m) DL  (m2/s) 

0.0476 1.1675 149.5985 5.4377 1184.3133 

0.0475 1.1654 148.7941 5.4181 1176.1638 

0.0484 1.2057 164.7713 5.7994 1340.2817 

0.0482 1.1965 161.0363 5.7114 1301.4983 

Average 1250.56 m2/s 
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7.7 RIVER REACH DISCRETIZATION AND PARAMETER ESTIMATION 

The river stretch between Rengali dam and Talcher of length 57 km has been used 

for the study, In order to use hybrid model to predict the pollutants transport, the hybrid 

unit size (Ax) has to be chosen such a way that the peclet number should be equal to or 

more than 4. By having estimated u and DL, Ax is chosen as 3000 m in the reach between 

Rengali dam and Tikira confluent site, and 3857 m in the remaining reach up to Talcher. 

Having estimated values of u (55.65 m / min), Di, (29359.92 m2  / min) 

corresponding to the average lean flow rate, 239.17 m3  / s, the parameters of the hybrid 

model (a, TI and T2) are estimated using the relationships, given in flow chart (Fig. 6.1), 

as: a = 20.267 min, T1  = 25.335 min and T2 = 23.706 min. The reach length of 27 km (from 

Tikira confluence up to Talcher) is covered with 7 hybrid units of size 3857 m. 

7.8 POLLUTION DATA 

Water quality data at different locations in river Brahmani and its tributary, Tikira, 

are collected which include pH, Temperature, BOD, DO, Coliform. In the study reach a 

point load of pollution is discharged by river Tikira into the river Brahmani at 30 km down 

stream from Rengali dam, According to CPCB survey, 2980000 m3  / day of waste water 

due to industrial, domestic and mining activities are discharged. The water quality data of 

the reach in river Brahmani before Tikira joins have been given in Table 7.6 as: 

Table 7.6: Water quality data in river Brahmani 

Locations pH Temperature (°C) BOD (mg / L) DO (mg / L) 

Rengali dam 7.9 27.6 13.6 7.7 

Before Tikira joins 7.8 27.7 12.6 7.3 

The rate of discharge of waste water and chemical constituents for the months from 

November to May are presented in Table 7.7, it can be noted that the BOD load through 

Tikira is nearly steady. 
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Table 7.7: Water quality data in river Tikira 

Month Discharge (m3  / s) BOD (mg / L) DO (mg / L) 

November 18.1 216.8 3.4 

December 15.4 218.9 3.3 

January 13.7 221.6 2.9 

February 13.5 223.5 1.5 

March 13.2 225.6 1.5 

April 12.5 228.6 1.2 

May 13.3 229.5 0.9 

The waste water with the above chemical constituents is discharged in to river Brahmani at 

30 km down from the Rengali dam. Using the dilution equation the boundary deficit of DO 

in river Brahmani down stream of confluence is found as 1.76 mg / L (assuming DO at 

saturation as 9.1 mg / L) and the BOD is 24.03 mg / L. The decay rate and re-aeration rate 

constants are adopted as 0.23 and 4 per day respectively from Palo, 2002. 

7.9 SIMULATION OF BOD 

The parameters of the hybrid cells in series model (a, T1 and T2 ) are ascertained for 

corresponding flow. The decay rate constant, k1 has been taken as 0.23 per day (Palo, 

2002). Temporal variation of the BOD concentration at the end of first hybrid unit of size, 

3857 m is simulated using HCIS-D model. The impulse response is compared with the 

response of ADDE model in Fig. 7.8. The impulse response simulated by HCIS-D model 

matches with the impulse response generated by ADDE model. 
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Fig. 7.8: Impulse response functions of HCIS-D and ADDE models at 3.857 km from 

Tikira confluence for Q = 239.17 m3  / s, CR  = 24.03 mg / L; u = 55.65 m / min 

= 29359.92 m2  / min, Ax = 3857 m, a = 20.267 min; T1  =25.335 min; T2 = 

23.706 min and k1 = 0.23 per day 

The river reach, between Tikira confluence and Talcher, is discretized into 7 hybrid units. 

By convoluting, the state of BOD concentration (impulse and step responses) at Talcher 

are predicted and presented in Fig. 7.9 and 7.10. 
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Fig 7.9: Impulse response functions of HCIS-D model at different locations from 

Tikira confluence for CR' 24.03 mg / L, k1= 0.23 per day, Q = 239.17 m3  / s, 

a = 20.267 min; T1 = 25.335 min and T2 = 23.706 min, u = 55.65 m / min and 

Ax = 3857 m. 
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Fig 7.10: Step response functions of HCIS-D model at different locations for CR = 

24.03 mg / L, kl = 0.23 per day, Q = 239.17 m3  / s, a = 20.267 min; TI = 

25.335 min and T2 = 23.706 min. 

As seen from Fig 7.9, due to the impulse injection (CR = 24.03 mg / L) at Tikira, the peak 

concentration of BOD at Talcher is approximately 0.1 mg / L which is observed at t = 450 

min. The concentration of BOD at Talcher is presented in Fig. 7.10. The maximum 

concentration at Talcher is about 22.5 mg / L due to continuous discharge of waste at 

Tikira. At Talcher the concentration attains its maximum level in 800 min after waste 

disposal. It is observed, the BOD concentration in river Brahmani down stream of Rengali 

dam site and prior to the waste disposal site at Tikira is already 12.6 mg / L. Thus to satisfy 

the water quality requirement of 3 mg / L as BOD at Talcher, the effluent dumped to river 

Brahmani between Rengali and Talcher including that of Tikira requires prior treatment. 

In order to analysis the effect of reduction in flow rate on BOD concentration, 1/3 

of average lean flow rate (79.72 m3  / s) is considered. Corresponding u and DL  are 

estimated as 46.34 m / min and 14528.69 m2  / min respectively. The Ax, that satisfies Pe > 

4, is 2450 m. The corresponding parameters of the HCIS model are estimated as: a = 16.53 
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min, T1  = 20.657 min and T2  = 15.687 min. The reach length of 27 km is represented by 11 

hybrid units. Using, this set of parameters, the BOD concentrations (impulse and step 

responses) at Talcher are predicted using convolution technique. The variations in BOD 

concentration are presented in Fig. 7.11 and 7.12. 
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Fig 7.11: Impulse response functions of HCIS-D model at different locations from 

Tikira confluence for CR = 43.61 mg / L, k1 = 0.23 per day for flow rate, Q = 

79.72 m3  / s and corresponding parameters: a = 16.53 min; TI = 20.657 min, 

T2  = 15.687 min, u = 46.34 m / min and Aoc = 2450 m. 
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Fig 7.12: Step response functions of LICIS-D model at different locations from Tikira 

confluence for CR = 43.61 mg / L, IQ = 0.23 per day for flow rate, Q = 79.72 

m3 / s and corresponding parameters: a = 16.53 min; Ti  = 20.657 min, T2  = 

15.687 min u = 46.34 m / min and Ax = 2450 m. 

Due to an impulse injection of BOD (43.61 mg / L) at Tikira, the maximum BOD 

concentration at Talcher is 0.2 mg / L. For continuous disposal of BOD load at Tikira, the 

maximum BOD at Talcher is about 40 mg / L. Thus with reduction of flow, the water 

quality will further deteriorate. Therefore, the industrial effluent at Tikira needs prior 

treatment before it is dumped to the stream. 

The state of water quality during peak flow period is analyzed by considering average high 

flow rate (1127.84 m3  / s) during monsoon period. Corresponding u and DL  are estimated 

as 72.07 m / min and 79258.42 m2  / min respectively, and the corresponding parameters of 

the HCIS model are estimated as: a = 22.99 min, T1 = 28.74 min and T2  = 41.92 min for 

the size of the hybrid unit, Ax = 6750 m. The reach length of 27 km is represented by 4 
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hybrid units. Using, this set of parameters, the BOD concentrations (impulse and step 

responses) at Talcher are predicted using convolution technique. The variations in BOD 

concentrations are presented in Fig. 7.13 and 7.14. 
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Fig 7.13: Impulse response functions of HCIS-D model at different locations from 

Tikira confluence for CR = 15.13 mg / L, k1  = 0.23 per day for flow rate, Q = 

1127.84 m3  s and corresponding parameters: a = 22.99 min; T1  = 28.74 

min, T2=41.92 min, u= 72.07 m / min and Ax = 6750 in. 
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Fig 7.14: Step response functions of HCIS-D model at different locations from Tikira 

confluence for CR = 15.13 mg / L, k1= 0.23 per day for flow rate, Q = 1127.84 

m3 s and corresponding parameters: a = 22.99 min; T1  = 28.74 min, T2  = 

41.92 min, u = 72.07 m / min and Ax = 6750 m. 

Corresponding to an impulse injection of BOD (15.13 mg / L) at Tikira, the maximum 

BOD concentration at Talcher is 0.05 mg / L. For continuous disposal of BOD load at 

Tikira, the maximum BOD at Talcher is about 14 mg / L. Degradation of pollutant within 

the reach is very low even for high flow, due to very small value of k1 . Therefore, such 

BOD load for which k1 is small is to be treated prior to its disposal to Tikira. 
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Fig. 7.15: Unit step response functions for different values of kj during lean flow (Q = 

239.17 m3  / s) 

In Fig. 7.15, the influence of parameter, lc] on unit step response function is compared. 

Low value of IQ means less bio-degradable. Therefore the step response BOD load attains 

higher values in comparison to that for higher kl values. 

7.10 SIMULATION OF DO 

Having the estimated values of hybrid model parameters (a, T1  and T2 ), BOD load 

corresponding to the decay rate constant, kJ, assuming re-aeration rate constant, k2, and 

boundary DO deficit, Do, the impulse response function for DO concentrations are 

simulated using HCIS-R model at 3.857 and 27 km from Tikira confluence point. The 

variations of DO concentrations are presented in Fig. 7.16. 
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Fig. 7.16: Impulse response functions of HCIS-R model at different locations from 

Tikira confluence for CR = 24.03 mg / L, boundary deficit, Do = 1.76 mg / L, 

kl = 0.23 per day, k2 = 4 per day, Q = 239.17 m3  / s, a = 20.267 min; T1  = 

25.335 min, T2 = 23.706 min, u = 55.65 m / min and Ax = 3857 m. 

For continuous BOD input of 24.03 mg / L injected at Tikira confluence point with 

boundary deficit, D0 = 1.76 mg / L and k1= 0.23 per day, k2 = 4 per day a ----- 20.267 min; T, 

= 25.335 min and T2  = 23.706 min., the step response function at Talcher is simulated and 

presented in Fig. 7.17. 
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Fig. 7.17: Step response function of HCIS-R model at Talcher for CR = 24.03 mg / L, 

boundary deficit, Do = 1.76 mg L, kl  = 0.23 per day, k2 = 4 per day, Q = 

239.17 M3  s, a = 20.267 min; T7 = 25.335 min, T2= 23.706 min, u = 55.65 m 

/ min and Ax = 3857 m. 

For analyzing the effect of low and high flow on DO concentration, the low flow rate is 

considered as 79.72 m3  / s (1/3 of lean flow) and the high flow rate as 1127 m3  / s (average 

flow in monsoon period). The BOD inputs, boundary deficits, flow characteristics, 

longitudinal dispersion co-efficient and parameters of hybrid model corresponding to the 

flow rates are given in Table 7.8. 

Table 7.8: Parameters estimated corresponding to the low and high flow rates of river 

Brahmani 

Q 

(m3/s) 

u 

(m / s) 

DL 

(m2/ s) 

CR 

(mg/L) 

DO 

(mg/L) 

Parameters of hybrid model Ax (m) 

a (min) Ti (min) T2 (min) 

79.72 0.77 242.14 43.61 2.4 16.53 20.657 15.687 2450 

1127.84 1.20 1320.9 15.13 1.48 22.99 28.74 41.92 6750 

0 
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Making use of these sets of data for low flow, impulse and step responses of HCIS-R 

model are simulated and presented in Fig. 7.18 and 7.19 respectively for IQ = 0.23 per day 
and k2  = 4 per day. For high flow, impulse and step responses of HCIS-R model are 

simulated and presented in Fig. 7.20 and 7.21 respectively. 

9.08 — 

9.07 — 

at 2.45 km 

9.06 

0 	 200 400 	 600 	 800 
Time in min 

Fig. 7.18: Impulse response functions of HCIS-R model at different locations from 

Tikira confluence for CR = 43.61 mg / L, boundary deficit, Do  = 2.4 mg / L, 

kJ,  = 0.23 per day, k2 = 4 per day, Q = 79.72 m3  / s, a = 16.53 min; T, = 

20.657 min, T2 = 15.687 min, u = 46.34 m / min and Ax = 2450 m. 
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Fig. 7.19: Step response function of HCIS-R model at Talcher for CR = 43.61 mg / L, 

boundary deficit, Do = 2.4 mg / L, k1  = 0.23 per day, k2  = 4 per day, Q = 

79.72 m3 / s, a = 16.53 min; T1 = 20.657 min, T2 = 15.687 min, u = 46.34 m / 

min and Ax = 2450 m. 
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Fig. 7.20: Impulse response functions of HCIS-R model at different locations from 

Tikira confluence for CR = 15.13 mg / L, boundary deficit, Do = 1.48 mg / L, 

k1 = 0.23 per day, k2 = 4 per day, Q = 1127.84 m3  / s, a = 22.99 min; T1  = 

28.74 min, T2  = 41.92 min, u = 72.07 m / min and Ax = 6750 m. 

D
O

 C
on

ce
nt

ra
tio

n  
in

  m
g  

/ L
  

800 

143 



10 

9 

8 — 

7 — 

8 
i i i —i 

0 	 200 	 400 	 600 	 800 
Time in min 

Fig. 7.21: Step response function of HCIS-R model at Talcher for CR  = 15.13 mg / L, 

boundary deficit, Do  = 1.48 mg / L, kl = 0.23 per day, k2 = 4 per day, Q = 

1127.84 m3  / s, a = 22.99 min; T, = 28.74 min, T2 = 41.92 min, u = 72.07 m / 

min and Ax = 6750 m. 

As seen from Fig. 7.21, the DO concentration during monsoon period is above 6 mg / L 

which is required DO concentration for class - C type river reach. 

7.11 CONCLUSIONS 

1. River width computed using regime channel theory for high flow matches with 

actual river width observed from satellite data. The Longitudinal dispersion co-efficient 

can be ascertained from the river geometry predicted using regime channel theory. 

2. A hybrid CIS model can be used successfully to predict stream water quality down 

stream of the pollutant disposal site. 

3. Consequent to BOD load disposal at Tikira, the minimum DO level during lean 

flow period at Talcher is about 3 mg / L. During high flow period, the minimum DO level 

is 6 mg / L. 
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4. 	The BOD concentration (which has very small k1 values) at Taicher during lean 

flow period is 40 mg / L, and during high flow period is 14 mg / L. The BOD at Taicher 

exceeds the limiting value. Hence the waste needs treatment prior to its disposal. 
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CHAPTER 8 

SUMMARY AND CONCLUSIONS 

8.1 GENERAL. 

The applications of conceptual potential alternatives to the ADE model, namely the 

CIS and the ADZ models have their own limitations. The CIS model has limitation toward 

simulating advection component, while the ADZ model faces complexity in selecting the 

model order. The HCIS model simulates advection-dispersion governed solute transport as 

depicted by the ADE model under steady and uniform flow conditions closely when size of 

the basic process unit of the HCIS model is equal to or greater than 4DL  / u or when the 

size of the basic process unit is chosen satisfying the condition Peclet number, Pe= (Ay 

u)/DL . 4. The parameters (a, Ti  and T2) of the HCIS model have been determined from the 

measurement of single C-t profile without invoking measurements of u and DL. In the 

HCIS model, pure advection is represented by an explicitly derived time parameter, and the 

model also represents the advection and dispersion components implicitly by two time 

parameters, whereas, in the ADE model, both advection and dispersion are represented 

implicitly by u and DL. The HCIS is a simple semi- analytical model and can accommodate 

non-homogeneity character of the system. 

8.2 CONCLUSIONS FROM PRESENT STUDY 

Alike in the ADE model, natural adsorption and desorption, transient storage, 

growth and decay components can be incorporated into the HCIS model. Thus, the HCIS 

model seems to have overcome the weaknesses of the ADE, the CIS, and the ADZ model. 

For resolving environmental issues, it is necessary to predict the pollutant transport more 

accurately by incorporating possible additional processes along with advection and 

dispersion. Considering the strength and the flexibility of the HCIS model, it has been 

extended to the study of solute transport in streams for resolving the model complexities of 

various processes like adsorption/desorption, and non-conservative nature of the pollutants. 
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In the present study, the adsorption/desorption mechanism for a conservative as well as 

non-conservative substance have been analyzed using the HCIS model. A linear non-

equilibrium isotherm for exchange of pollutant between the soil column and the 

mainstream water has been considered along with advection and dispersion. Incorporating 

an adsorption rate co-efficient in each of the three compartments in the HCIS model, i.e., 

the plug flow zone and two thoroughly mixed reservoirs of unequal residence time, a 

conceptual hybrid-cells-in-series model coupled with adsorption (HCIS-A) is developed. 

The HCIS-A model is a four-parameter model representing three time parameters and one 

time-reciprocal co-efficient. An analytical solution in continuous time and space domain 

for transport of solute in a plug flow zone, where adsorption takes place, has been obtained 

using Laplace transform technique. A Hybrid Cells in Series model comprising a plug flow 

zone and two thoroughly mixed reservoirs has been derived to simulate advection-

dispersion and adsorption governed solute transport in streams in discrete space domain 

and continuous time domain. The unit step response and the unit pulse response functions 

of the HCIS-A model have been derived. Due to the addition of the adsorption process 

with advection and dispersion, peak concentration reduces, falling limb of C-t profile 

smoothened and long tail produced in concentration distribution. These characteristics of 

the C-t profiles for a conservative pollutant in a stream with adsorbing stream bed and soil 

sediments are in the expected lines. The characteristics of the concentration-time profiles 

generated by the HCIS-A model have been compared with explicit finite difference 

numerical solution of ADE with non-equilibrium adsorption. 

A hybrid model is developed adopting first order reaction kinetic along with 

advection and dispersion of non-conservative pollutant which is injected at the source. For 

the peclet number greater than 4, the response of the Hybrid Cells in Series model for step 

and instantaneous input matches with the response of Advection Dispersion Decay 

Equation (ADDE) model for the same inputs. Flexibility of the HCIS model for adopting 

reaction kinetics along with basic transport processes has been demonstrated. 

A hybrid model is developed adopting first order reaction kinetic along with 

advection and dispersion of pollutant and first order re-aeration to predict the DO 
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concentration. The classical Streeter and Phelps (1944) model incorporates first order de-

oxygenation and re-aeration only. For the peclet number greater than 4, the dissolved 

oxygen deficit and DO sag curves have been plotted for different BOD load at the entry. 

Flexibility of the HCIS model for adopting reaction kinetics and first order re-aeration 

along with basic transport processes has been demonstrated. The response of the HCIS-R 

model closely matches with the numerical solution of Streeter-Phelps dispersion model. An 

in depth study has been done to analyze comparison of the solution obtained by Rinaldi 

approach with numerical solution indicates that the solution by Rinaldi approach differs 

much from numerical solution and over estimates DO deficit. 

The HCIS, HCIS-A and HCIS-D are linear transport models governing of a single 

pollutant. The HCIS-R model is a combination of two linear models incorporating decay 

and aeration. The unit impulse, unit pulse and unit step response functions are fundamental 

characteristics of a system. Using these basic response functions, the transport of the 

pollutant in the stream for varying pollutant input can be predicted. 

In order to identify the suitability of the HCIS or HCIS-A model for a particular C-t 

profile, it is required to know the corresponding parameters of the HCIS and HCIS-A 

models. In this study, the parameters of the HCIS and the HCIS-A models are estimated 

using least squares optimization method for a given sets of observed C-t profile. The 

suitability of the model is identified by comparing the tracer velocities estimated using the 

parameters of the HCIS and the HCIS-A models with the mean flow velocity. The model 

for which the estimated tracer velocity matches with the mean flow velocity is the 

appropriate model. This helps in selection of the appropriate model for a given C-t profile. 

River width computed using regime channel theory for high flow matches with 

actual river width observed from satellite data. The Longitudinal dispersion co-efficient 

has been ascertained from Seo & Cheong's (1998) empirical formulae having river 

geometry predicted using regime channel theory. 

The hybrid CIS model has been used to predict stream water quality down stream 

of a pollutant disposal site in an Indian river (River Brahmani) successfully. During high 

and low flow periods the BOD concentration at Talcher attains a value of 14 mg / L and 21 
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mg / L respectively. Since the river flow has limiting assimilation capacity for the 

pollutant load, prior treatment of waste load at Tikira the effluent disposal site is essential. 

By assessing the assimilating capacity of the River Brahmani particularly in the stretch 

between Rengali and Talcher, regulation for pretreatment of waste has been suggested 

before dumping to the river. 

8.3 SCOPE OF FUTURE STUDY 

In nature adsorption/dissorption processes may follow non-linear, non-equilibrium 

isotherm. The study could be extended for adsorption/dissorption processes following non-

linear, non-equilibrium isotherm. 

Depending upon nature of river/stream (influent or effluent), the pollutant transport 

is influenced by the aquifer's interaction. The HCIS model usage can be extended to study 

the pollutant transport in influent and effluent streams. 

Modeling of thermal discharge to the streams holds importance in modeling of non-

conservative pollutant transport. The study can be extended to incorporate temperature 

effects while modeling non-conservative pollutant transport. 

In a stream the sediment transport governs the pollutant transport; therefore the 

effect of sediment transport on pollutant transport needs to be investigated. 

The pollutants are discharged near the bank of a river; near the disposal site the 

entire width of the river does not take part in transport. In such situation, the river having 

large width can not be treated as a linear channel, therefore the transport of pollutant to be 

studied as a two dimensional process. 
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APPENDIX A 

(Ref Chapter 2) 

Al. The HCIS Model 

The physical processes of solute transport in the HCIS model as shown in Fig.A 1 

are described as follows: in the plug flow zone, the influent solute undergoes a pure 

translation without any change in its concentration, and then enters to the first reservoir 

where it gets thoroughly mixed before entering into the second thoroughly mixed reservoir. 

             

Q CR 
Vo 

           

            

            

           

 

Plug flow zone. 
Time, a 

         

             

1st  thoroughly 	 2nd  thoroughly 
mixed reservoir. 	mixed reservoir. 
Time, Ti 	 Time, T2 

Fig. Al: The first process unit of the HCIS model 

For a step input boundary concentration, CR, in a one-dimensional steady and 

uniform flow system, with an initial concentration, Cl, the governing differential equation 

for the effluent concentration from the first hybrid process unit, C I  for t > a (Ghosh et al, 

2004) is: 

dC 	C 	C 	 C —C_U(t—a) 	(t —a)r 
dt 
	 + T   U(t — a) + 	  exp 	 

2 2 	 T2 	 _ T 

in which a is the time to fill the plug flow zone or the residence time of solute in the plug 

flow zone (T); U(t-a) is the unit step function; T1  and T2  are the residence times of solute 

in the 1st  and the 2nd  thoroughly mixed reservoirs (T). Solving Eq. Al for initial condition 

= C, = 0 at t =a, and boundary concentration, CR  = 1, the response function of the first 

hybrid unit to the unit step input concentration is obtained as: 

(Al) 
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T 
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7; 	T -T exp 	 

	

1 2 	
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where, K (t) = the unit step response function, a= Vo/ Q ; TI  = V1  / Q ; T2 = V2/ Q ; Q= 
flow rate (L31-1); Vo, V1, and V2 = volume of the plug flow zone, 1st  and 2nd  thoroughly 
mixed reservoirs respectively (L3). The unit step function, U (t-a) for t > a = U (+ve) =1; 
and for t < a = U (- ye) = 0; and t = time reckoned since injection of solute. Eq.2 is valid 

for a. 

Differentiating K (t) with respect to t, the unit impulse response function, k (t), 

which describes the fundamental behaviour of a system, is obtained as: 

; 	 (A2) 

The characteristics of the unit impulse response function given by Eq.A3 are time 

to peak, and peak concentration. The time to peak is given by: 

t 	= 
P 

and, the 

k(tp)= 

TT l 
1 	2 In 

(  

g_(t-a) 

\ 	2/ 

concentration, 

+ 

exp 

a 

which occurs 

T 	In 
2 

( 	• 

2 

at t= tp  , is: 

T In 
I  

( T 
T 

, 	2 „I 

(A4)  

(A5)  

T 
1 

peak 

-T 
2/ 

TT i 	2  T -T 
I 	2 

exp 
T -T 

2 

These two characteristics equations (Eqs.A4 and A5) can exclusively be used for 

estimating the model parameters. In Eqs.A2-A3, T, # T2 but they are interchangeable and 

the interchange does not affect the C-t profile, time to peak, and peak concentration. 

The parameters a, T1 and T2 can be estimated by several methods, such as: (i) 

method of partial moments, (ii) a method that uses the zeroth  partial moment, the time to 

peak and the peak concentration, and (iii) the least squares optimization. The least squares 

optimization using well-known Marquardt algorithm (Marquardt, 1963) has been found 

more flexible in estimation of parameters than the other two methods (Ghosh et al., 2004). 
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C(n Ax.t) 
oo 
T i  T2 

Unit-1 

Ax 
Unit-n 

Assuming that the river reach downstream of a point source of pollution is 

composed of a series of equal size hybrid units each having linear dimension, Ax and 

consisting of a plug flow zone, and two unequal thoroughly mixed reservoirs as shown in 

Fig.A2. 

Fig, A2: A Hybrid-cells-in-series Model (a = time to replace fluid in the plug flow 

zone, T1 and T2  = residence times of solute in the 1st  and 2" thoroughly 

mixed reservoirs respectively, Ax = size of one unit of the hybrid model) 

Using the convolution technique, the response of the nth  hybrid unit, n > 2, is expressed as: 

C(ndx,t) = IC((n-1)Ax,r) k(a,T,T,t —r ) dr 
0 

(A6) 

where C(Ax,r) = k(a,T1, T2, r) = output of the 1st  hybrid unit. 

The first and the second moments of Eq.A3 about origin, which describe the mean 

and the variance of the C-t distribution, obtained by integration between time limit 0 and 

co, are: 

M1  = a+Ti+T2 	 (A7) 

2 M2 =a2 +2a(T1  +T2  )+2(T1  -T2  ) +6T1  T2 	 (A8) 

where MI  is the first moment (L); M2 is the second moment (L2) of the C-t distribution 

about origin. 
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(B4) 

APPENDIX B 

(Ref Chapter 3) 

Bl. 	Formulation of Equation for Pollutant Transport in Plug Flow Zone 

• y 

Fig. Bl: A control volume within the plug flow zone, considered for mass balance 

Using chain rule, derivatives of C and Cs, with respect to time, can be expressed for 

a control volume within the plug flow zone (Fig. B1) as follows: 

dC _ ac ac  dx 
dt at +  ax dt 

ac ac +u at 	ax 

and 
dCs  OCs + aC  dy 
dt 	at 	ay dt 

Since dy = 0 at 

dCs  _ aCs  
dt at 

In the plug flow zone, the rate of change of total mass in a control volume (A Ax) is equal 

to negative of rate of change of mass adsorbed in a control volume (Wp DB Ax ). 

Hence, 

ac 	 (Aar) —+u ac 
at ax 

Rewriting Eq. B5: 

= (0 wpDE Ax) aacts  (135) 

ac__ 	, 

atax 	
wpDB acs 
A 	at (B6) 
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APPENDIX C 

(Ref Chapter 6) 

Cl. The HCIS Model 

The left hand side elements of the Jacobian matrix (Eq. 6.8) are; 

A(1,1) = 

A(1,2) = 

akc (iAt) akc  (iAt) 

ce*  ,T2 
as 	as 

akc (iAt) 	akc (int)' 
aa 	aT, 

         

A(1,3). 

A(2,1) = 

A(2,2) 

A(2,3) 

  

akc (iAt) akc (iAt) 
aa 	aT2  

   

a* ,
T2' 

     

      

      

        

  

akc (iAt) akc (iAt) 
aT, 	aa 

   

a ,7;' ,Ti T2*  

     

      

        

  

akc (iAt) akc (iAt) 
aT, 	aT 

     

       

        

        

  

ak„(iAt) aka, (iAt)"1  
07; 	al; 

  

ct.,7i• ,1; 

       

ak„(idt) ak„(iAt) 
A(3,1)  

aT, 	as 

n 

A(3,2) = 

ak„(iAt) ak„(iAt) A(3,3) = L 
aT2 	aT, 

a.  ,T2*  

akc ot) akc (iAt)\ 
aT2  aT, 

a 

The right hand side elements of the Jacobian matrix (Eq. 6.8) are; 

± B (1,1) = {ko (iAt) alcc  (i At) 	ak 
aa 	

kc(iAt) c  (iAt)  
aa 

4,T2• 
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ak(i,o,t) ko (iAt) 
aT 

ak (iot)  ko (iAt) 
al; 

ak (iAt) kc iAt )  
a.z; 

lc-c(iAt)
akc(iAt) 

aT2  
7i. ,7z 

where, the derivatives coming in these matrices elements can be got by differentiating the 

unit impulse response kc(iAt) with respect to the parameters. 

C2. The HCIS Model with Adsorption 

The left hand side elements of the Jacobian matrix (Eq. 6.13) are; 

n {akc (iAt) akc (iAt)  
A(1,1) = 

as 	as 

  

 

, Tl 72, RD. 

 

 

A(1,2)=i 
akc (i6.1) akc (iAt)}  

as 	aT; 

  

  

akc (iAt) akc (iAt) 
as 	01'2  

   

   

a ,Ii•  ,7Z ,RD•  

    

 

akc (iAt) akc (iAt) 
as 	aRD  

   

   

a ,T1. 	,RD 

   

     

     

n {ak, (iAt) akc  (iAt)  
A(2,1) = E 

ar 	as cr.  , Ti.  ,T2  , RD.  

A(2,2) = 

A(2,3) = 

A(2,4) = 

 

akc (iAt) akc (iAt)  

  

a ,7: 	,RD.  

    

 

akc (iAt)  akc (iAt)  
aT, 	ar2  

   

   

a. 	, RD.  

    

     

 

akc (iAt) akc (iot) 
aT 	

} 
OR, 

 

  

      

{alcc  (At) akc  (At)} 
A(3,1) =I 

aT2 	as 
a. 	,T2.  , RD.  
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{akc. (iAt) akc  (iAt 
11(3,2) -= 

al; 	aT, 
  

 

a- 	, T2 4  ,RD' 

 

  

ak„(iAt) akoty  
are 	aT2  

ak„(iAt)  aka. (iAt) 
aT2 	aR„ 

akc (iAt) aka  (iAt) 
aR„ 	as 

Okc  (iAt)  aka, (iAt)  
aR„ 	aTi 

aka  (iAt) ak,. (iAt) 

aR, 	aT2 

akc (iAt) akc (iAt) 
aR„ 	OR,, 

A(3,3) =i 
i,1 

A(3,4) =E 
i=i 

A(4,1).i? 

A(4,2) =± 
,=, 

A(4,3) = 
i=i 

A(4,4) = E 

a , 	, Ii" , /?0" 

, 7 i *  ,T2*  , Rb" 

a* 	,T2*  ,RD'  

a ,71' ,T2*  'RD*  

a* 	, RD.  

The right hand side elements of the Jacobian matrix (Eq. 6.13) are; 

B (1,1) = i 

B (2,1) 
= 

B (3,1) = ± 

B (4,1) =± 

ko(i At)
akc (i At) 

k (i At)
akc (i At) 

a" 	, T .  , 

, 7 i" ,T2* ,1?„.  

a*  ,7;*  ,7 '2" ,/?b" 

7i' 72• R n " 

as 

0  (iAt)ak,(iAt) 

c 
as 

(iAt), 
(iAt)

akc 
al; 

(iAt) 
0  (iAt)

akc 

kc 
aT, 

aka, (iAt)  ,
i
.
A
. 

k 
aT, 

At)akc 
(iAt)  

, (t) 
ar2  

kc 
 (i At)akc (iAt) 

0 (i 
aR D OR, 

where, the derivatives coming in these matrices elements can be got by differentiating the 

unit impulse response kc(iAt) with respect to the parameters. 
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APPENDIX D 

(Ref. Chapter 6) 

ESTIMATION OF STREAM WATER QUALITY PARAMETER USING REGIME 

CHANNEL THEORY 

DL GENERAL 

Computation of the pollutant concentration along the river reach and fixation of 

size of hybrid unit in HCIS model require u and DL apriori. Flow velocity, u can be 

obtained using flow resistance equation or can be measured in the field. However the 

estimation of Di, is not straightforward. A number of approaches to estimate DL have been 

suggested by many investigators (Taylor, 1954; Fischer, 1966; 1967; 1979; Gray & Pinder, 

1976). These can be grouped as: (i) Theoretical/analytical approaches, (ii) experimental 

approaches, and (iii) empirical formulae. Each approach has its own merits and demerits. 

Interestingly, the value of DL of a river if obtained using any of the method does not match 

with the value of the other methods with hydraulic properties remaining same. Out of these 

three groups, the third group, i.e., empirical formulae, which mainly suggest estimation of 

DL, from river's bulk flow properties and geometry, are less complicated to use. The other 

two approaches require intensive database. In many riparian streams or rivers, 

measurements of hydraulic data, such as; stream geometry, flow velocity, etc. are difficult 

owing to topographical constraints. The regime channel theory that relates flow rate and 

sediment grain size distribution appears to be sound technique to determine hydraulic data 

of a stream, knowing flow rate and silt factor apriori. The present study is thus focused to 

investigate a method for determining stream bulk flow properties, which would ease out 

estimation of DL with reasonable accuracy. 

D2. EMPIRICAL METHODS 

There are numerous empirical formulae available mostly representing relationship 

of DL  = ao  d U. where, d = depth of flow, & 	= shear flow velocity = 	R S , R is 

hydraulic radius, S is the bed slope, g is acceleration due to gravity and ao  is a constant, 

which is found to have a value ranging from 8.6 to 7500 (Bansal, 1971). The available 

empirical formulae suggested by various investigators are tabulated in Table 2.1. From 
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these empirical formulae, it can be noticed that a number of formulae are of the type 

Di/ 

not constant. This makes difficulty in estimation of DL. Empirical formulae suggest that DL 

is a function of stream flow characteristic and stream geometry. By the non-dimensional 

analysis (Seo & Cheong, 1998) or by reasonable approximation of the integral relating the 

dispersion co-efficient in natural streams (Fischer, 1967), the functional relationship 

pertinent to the dispersion co-efficient has been obtained and given in Eq. (D1). 

W 0.62 L71 428 

DL  = 5.915 11(—
H 	u:"28 

The dimensionless plot of D H  against kv/ of the different empirical formulae 

suggested by various investigators is shown on log — log scale in Fig D1. The average of 

distribution of DL H 
versus w/ computed using different formulae is estimated and 

found approximately matching with the value estimated using the expression suggested by 

Seo & Cheong (1998). The plots are shown in Fig. D1. Thus, Seo & Cheong (1998) 

equation is chosen for estimation of DL. 

D3. REGIME CHANNEL CONCEPT 

Lindley's (1919) defined that when an artificial channel is considered to carry silty 

water, both the bed and banks scour or fill and depth, gradient and width changes until a 

state of balance is attained at which the channel is said to be in regime. Many investigators 

(Lindley, 1919, Lacey, 1930) recognized that sediment size plays an important role in 

determining the channel geometry. The approximate relationship suggested by Lindley 

(1919) to find silt factor is: fL = 8 Dm i/z, where fi is the silt factor and Dm  is the grain size. 

Lacey (1930) has suggested couple of empirical relationships to estimate the channel 

geometry having known the stream flow rate and the silt factor. For a regime channel 

having average stream flow rate, (Q) and silt factor (fi), the channel geometry can be 

approximated as follows; 
1 	1 

u= 0.438 Q6  /2 

H = constant. However several researchers have shown that the ratio U H = is 

(D2) 
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_ 
R,, = 0.47 Q3  f 3 

	 (D3) 

5 	1 

A = 2.28 Q6  f j, 3 
	 (D4) 

P= 4.818 Q 2 
	 (D5) 

1 	5 
S = o.0003 Q 6  fL3 

	 (D6) 

where u is the mean flow velocity (m/s), R1, is the hydraulic mean radius (m), A is the 

cross-sectional area of flow (m2), P is the wetted perimeter (m) and S is the dimensionless 

slope (m/m). 

The mean grain size is given by: 

=Dg  exp[0.5 ln(ln g )] 	 (D7) 

where, Dm  is the mean grain size in mm, ag  is geometric standard deviation of grain size 

	

1 D84 1 	D  distribution, ag 	+  50  , Dg  is geometric mean diameter =084.1  D15 9  . where 
2 

	

 50 	D15 9 

D84.1, D50 and D15.9 are the grain diameters finer than 84.1, 50 and 15.9 % respectively. 

Henderson (1966) has also suggested the concept of regime channel according to 

channel type. Although both the concepts are applicable for wide channel, however, the 

Lacey's regime channel concept holds some advantages over the Henderson's (1966) 

theory. These are: (1) field measurement of stream's cross-section can be ignored; (ii) 

sampling and analyses of streambed material are easier than measurement of stream cross-

section. 

It is clearly evident that if mean grain size of the streambed sediments is known 

then silt factor,A can be determined. Knowing fi and Q and using Eqs. (D2) through (D6), 

the channel's characteristics and geometry can be ascertained. Having known stream 

geometry and hydraulic properties, and making use of a suitable empirical formula, one 

can reasonably estimate DL. 

1 
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Fig Dl: Variation of DL/H U. versus W/H; Using empirical formulae suggested by 
various investigators for estimation of DL  in natural streams. 
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APPENDIX E 

(Ref. Chapter 7) 

EL MUSKINGUM-CUNGE METHOD (Ponce, V. M, 1989) 

t A 

n+1 
Q j+1 

ztv 

Fig El: Space-Time discretization of kinematics wave equation paralleling 

Muskingum method 

The Muskingum-cunge method can calculate runoff diffusion superficially by varying the 

weighting factor parameter X A numerical solution of the linear kinematic wave equation 

using a third order accurate scheme (C = 1) leads to pure flood hydrograph translation. In 

this, it is discretized by centering the spatial derivative and off-centering the temporal 

derivative by means of a weighting factor X. 

X (Qin+I  — Q j" )+  — X  )0'1:11 Vi+1)  +  07+1 — Vri  0711  — Q71)  = 0 	 (El) 
At 	 2Ax 

where c is wave celerity, and solving Eq. (El) for the unknown discharge leads to the 

following routing equation. 

Qr1++11  =c1Q.,7+1  + c2Q," +c3Y1+1 	
 
(E2) 

The routing coefficients are 

x 
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c(At/ax)-2x 
- 2(1--X)A-c(At/Ax) 

c(At/Ax)+2x C2  = 
- 	--x)+c(At/Ax) 

c3 = 
2(1- 	c (At / Ax) 
2(1— X)+ c(At / 

         

(E3) 

         

        

.(E4) 

        

    

	 ..(E5) 

    

where, C is courant number. To avoid the numerical diffusion and dispersion the parameter 

X and C have to be chosen as 0.5 and 1.0 respectively. D is the cell Reynolds number, 

which can be expressed as follows, 

D=  go  
So  c Ax 

where qo is the reference discharge per unit width, So  is channel bottom slope. 

The choice' of reference flow will have a bearing on the calculated results, although the 

overall effect is likely to be small. For practical applications, either an average or peak 

flow value can be used as reference flow. The peak flow value has the advantage that it can 

be readily ascertained, although a better approximation may be obtained by using an 

average value. The linear mode of computation is referred to as the constant parameter 

Muskingum-cunge method to distinguish it from the variable parameter Muskingum-clInCrP 

method, in which the routing parameters are allowed to vary with flow. 

(E6) 
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