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S YNOPSIS

4
A}

L.S. Pontryagin's Maximum principle is applied
to the problem of determining the operation of a combined hydro-
steam generating system for the minimum generating costs. The
dispatch formulae havé been derived for power systems using various
operating characteristics governing the dynamics of the systems.
A gradienf technique has been described for the determination of
the optimum control Trajectory using the maximum principle.

The numerical treatment is given to the economical
operation of a simplified model system. Variable hydraulic head
is considered at the hydro station. The system operation is
assumed for short-range. The merits of the Maximum principle

have been discussed as a new technique for obtaining solution of

economic problem.



INTRODUCTION :~ _2-_ | o '

Recent trends towards economical aspects of the intégrated
. Power Systém Operation has given much importance for investigation
of the methods for the Optimum load. scheduling between individual::
unit at stations and between stations in the Power System., A
State of Activity has cherecterised the past decade in the economic
poﬁer dispatch field. Various papers have been written,,incorperating
different combinations of the enumerated features in formulating
the problem. Still some new methodsjfor}solution of the problem
are to be introdﬁced‘for the efficient and satisfactory results at
the same time reducing the-eomplexity in computation. | |

The long range problem involves a prediction of the
probable flows, for at least a year in advance, of rivers and
their tributaries above the dam sites. After the amount of water
that is to be available at each dam site‘for use within the specified -
period of say a day or a week is determined from long range study,
the use of this water in conjunction with steam to supply the load at
& minimum cost of delivered power is the'short-range study, which
is the main concern of the present one et hand. Stated briefly the
short-range problem resolves itself into the determination of the
optimum load allocation among hydro and thermal stations, all of
which have peak capabilities, while the hydro stations are constrained
to use & specified amount of water. The reservoir storage~capacitiee are
small so that over the span of 24 hrs the variation in withdrawals
caused significant variations in head. The~permiesible variations of
withdrawals and discharge are confined to boundary intervals. The
reservoir is assumed to be located in close proximity so that the

transmission losses are relatively small factor in an optimum schedule

for the hydro plents.
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In the combined system operation the problem appears
to be a variational one and thus the mein objective is to minimize
the integzated fuel cost of thermal plants. This has to be
achieved only by the well-planned usage of water to attain maximum
economy. The complexity of this problem is due to the variety of
constraints to which they are subjected. The method of'solution must
be able to produce schedules fast enough so that they may be used on
‘daily basis. |

142+ GENERAL REVIEW:=-
Since last many years different techniques have been

developed for the solution of the~probleﬁ and also have been appiied
successfully to several existing systems in operation. Pierre~Mass'e
formerly of the Electricitede France, is among the originatbrs éf
these methods. He is concerned with ppefations over long period
of times The complexity of this decisive problem'is due to its
stoéhastié nature.

Upto 1955 very little had been published relative to
optimum loading of combined hydrothermal s&stem. The major
step in the solution of this problem was the development of classical
caleulus of veriations [14} [25} [26} [27k gradient methods [2],
[24]; Dynamic progremming [6],[7] ,[26] and the maximum principles
of L.S., Pontryagiri's [157,[19]. The real difficulty in adapting
the calculus of variation approach to any existing physical systen
is that all variables must be made time dependent. For a typicale
hydrocubic plent, this leads to complicated expressions, subjgct
to many non-~linear cdnstraints. Though in some cases the Lagrangian
multipliers and adjoint variables have identical appearance and also

have the similar treatment, but the correspondence between them

breaks down when the magnitudes of forcing functions are limited;
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such cases cannot then be handled by classical calculus of variation.

Prof R.J.Cypser [24] has derived a-reletion for the load
division among hydro and steam stations, the hydro being subject to
water restraints. Cypser's relation is non-linear, and.thus does |
not lend itself to & solution either by Numerical iteration or by
meangdf an analog computer of ﬁetwork Analyzer types -John J. Carey
[11] has tried to linearize Cypser's relations so that it may be
solved by algebraic methods etcs. He has ignored minimum loading or
peacking capability of the individual plant in thé methematical
formulation of the optimum loading problem: In the problem a total
generation curve is assumed instead of a total load curve. In the
analysis the consideration of all operating restraints with the
exception of that on water usage has been omitted to simplify the
mathematical formulation.

V.S.Shakhanov(Moscow) [41 has argued that the method of
relative increments should be adopted as the theoretical basis for
computer programming. rFor the past fourty years ever since the
work of some authors, the mathematically substantiated variational p
principle of equal differential,consﬁmptian of fuel (or water)
has been used for determining the economical load'distribution
between inddividual units at stations-and begween stations in the
Power systems., Without exception, this principle is the foundation
of all methods and means of load distribution proposed in every part
of the world; the works of Bolotov, Kirchmayer etc., including
the "method of relative increments* and the methods which employ
the operation of "gradient descent".

LyK. Kirchmayer in his paper [14] aldngwith several other
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authors have used variational methods to develop cobrdination
equations for use in the digital computer solution with series plant
multiple chains of plants, and intermediate reservoirs. These
techniques have beenvapplied in a program which integrates the
hydraulic and steam resources‘uptp a week's period; The output
consists éf hourly’plant loading which will provide onerations at
minimum fuel costs. The cqmputer program developed for the solution
of this problem requires as input: (1) gas fuel availability at each
steam plant hourly, (2) gas and oil fuel priceé at each steam plant
(3) incremental heat-rate curves for each steam unif, (4) Hydro and
steam unit availability and minimum and maximum hourly capability.
(5) estimated system hourly load demand, (6} incremental water rate
curves for each hydro plants, (7) desired storage water releases, an
(S)Traﬁsﬁission loss coefficients. 4 mathematical model is construct
where by means of conversion coefficients, the hydro curves are
effectively converted to incremental plant cost curve. The computer
proceeds to simulate economic system operation in hourly steps in
accordance with the theory of edqual incremental costs. At the end of
the specified time interval, the water withdrawn is compared with
that scheduled for withdrawal. The conversion coefficients are
ad justed and the search repeated_untill the computed amount of water
withdrawvn are equal to that scheduled.

A.Arismunandér and F.N.Noakes, have also derived [ 13]

time dependent functional eQuations using calculus of variations.

Necessary and sufficient conditions are given to establish the facte
The paper proves that several previously developed eQuations for
short-range optimization are eqQuivalent, and that these formulae

are simplified forms of the general equations developed here.



-

While other variational methods solve problem in a point by point
manner, his approach solves for whole interval to be optimized as
integral units. It formulates four necessary and three sufficient
conditions to guarantee the attainment of the required optimum
sdlution. The first necessary condition is given in the form of
general equations for the thermal and hydro plents, while the
other six conditions are actually tests to establish this true
optimum. The third necessary condition is given in two identical
forms fo allow flexibility in whatever compufational method may
be employed. Dur to variable end point problem to be complex, only
fixed optimizing periods are conéidered. |

The more successful study of the problem is extended by
several authors including B.Bernhotlz, using dypamic programming.
Anstine in his article [3] has used Dynamic programming with
successive approximation to determine optimized dispatches for the
operation of two series connected variable head reservoirs. B.
Bernhotlz published several papers [61[73,81[9]1 [101 concerning
the present problem and deal with the equally important but
mathematically neglected problem of economic operation of an electric
power system over short-period of time, say 24 hours. An iterative
procedure for determining economic daily schedules is presented,
in which successive system schedules are determined each yielding
a greater profit than the preceding. A realistic model of‘part
of the system operatedlby Hydro-electric power Commission of
Ontario contains 16 sources of generation. Because of the constraints
on water usage, each hour's operation cannof be considered separate-

ly sc that the problem involves 16 x 24 = 384 variables.

The author has extended his wokk in six parts. While in
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previous two papers the author describes how to obtain the minimum
minimorium by using an iterative procedure in which successive
hydro schedules are determined with the property that the correspond-
ing minimum costs of thermal generation decreases monotonidally,
in these papers, the iterative procedure is explained in terms of
examples and restricted to system with one thermal station and a
number of hydro stations. In his 3rd part of scheduling the thermal
sub-system using constrained steepest Descent governing edquations
of some complexity havé been derived using classical variational
method, and employing Lagrange multipliers, but a'complétely
rigorous solution had yet to be given because of the omission, in
forming the problem, of inequality constraints fixing the ranges
of station outputs. To include these he has used an alternative
approach, called "Constrained steepest descent" or the “gradient
projection method". The problem of determining which unit to
operate is not treated here. It is éssumed that the unit to be
operated, and the times they are brought on and taken off the time,
are known. Second part of this paper shows how to utilize the
result of first papér in scheduling a system consisting of any
number of fixed head hydro stations and any number of steam stations.
In the ninth article the maximum station output is approximated by a
concave differential function of discharge. In the last publication
of his paper the criterian of an optimum schedule is maximum system
profit rather than maximum fuel cost on aséumption that the energy
may be brought and sold across inter-connection.

| Recently the computational approach to the problem of
most economical operafion has been made by a few authors employing

L.S. Pontryagin's maximum principle. E.Be. Dahlin and D.¥.C.Shen
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have done remarkable work in the field and have considered all
possible aspects coming into system operation. They have also
considered river transport delay and wave phenomena in this
dispatch formulae. Hano ete. in their paper [191 have presented the
solution for economical operation of a simplified model system and
the long term operation of a multi-reservoir syétem. The relaxation
method is successfully applied to the solution of optimal water
usage policy. He has also made comparison betweeh the maximum
principle approach and dynamic pfogramming. |

From the computationsl analysis of the problem it has
become evident that the maximum principle is a powerful tool, in
comparison to other computational procedures, not oﬁly for the
treatment of engineering problems, such as time-minimal control of
ser#o—ﬁechanisms, but also as a new technidue of mathematical
programming for the treatment of problem in mathematical economics.

The study underlying here at hand is to utilize the
maximum principle by Pontryagin [1] .+ The most outstanding advantag:
over several others is its great generality with respect to '
permissible system characteristics. Only dynamic programming has a
similar range of application. The two-point boundary problem always
arises in the problem of optimal control, whether one uses classical
calculus of variations or Pontryagin's equations. It is the major
digficulty of the method. Pontryagin's principle have been greatly
effective fort the successful results in the problem of terminal

control of Servomechanisme

Uptill now a very few applications of the maximum principle
as a new approach to mathematical programming, have been made.

Everyone finds difficulty in determining the initial wvalues of the

adjoint variables to a system. A4s will be shown later that the
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Maximum Principle in Association with a Gradient Technique for the
determination of optimum control and Trajectories has been found
most rapid and accurate method to overcome these difficﬁlties in
comparison to other procedures. All the additional Compiexities
arising due to the movement of state and central variable within
the permitted boundary have been effectively anticipated. Actually
these are the obstacles in'easy'application of this method. Some
modifications are made by changing the hard constraints into soft

constraints and also making use of some inherent prpperties of the

problem.
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THE MAXIMUM PRINCIFLE APPROACH TO THE DISPATCH PROBLENS
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2.1. STATEMENT OF THE PROBLEM:-

A combined hydro-thermal system can be operated
optimally with respect to fuel cost. This leads to an integral
type of cost function which can be minimized with methods like
Pontryagin's maximum principle. A degree of compiexity is
introduced by consideration of variable heads at the hydro station.
The object is to cbtain an optimum allocation of generated power
tp meet load requirements which act as a constraint on the
problem.

Daily operation may be considered as a deterministic
process. Those elements, such as future load demand and water head,
which are’stochastic when viewed in the long term can be assumed to
be knovn 24 hours in advance. The complexity of this problem is due
to the large number of variables and the variety of constraints to -
which they are subjected. The method of solution should be such thai
it can allocate the optimum load schedules fast enough so that they
may be used on a daily basis.

Theoperation of the combined system is analyzed for
different operating characteristie governing on the mode of operatio:
of the system. For rigorous mathemetical analysis a simplified
model of the system consisting of one hydro station and one thermal
station as shown in fig. 1. is considered. It is aésumed that
the stations are jointly supplying electric power to a load centre,
through a system of lossless transmission lines. A prediction of
future load as a function of time is assumed available and is shown
in fig. 1A on a daily load dema;d basis. Likewise, all necessary

information with regard to future water availability at the hydro
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power plants is assumed known. The hydro plant efficiency and
the incremental cost of the hydro have been neglected. The
starting cosf of the steam plant may be neglected if it is in the
operation all the time. |
The water storage in the reservoir, the'rate of water
inflow and the rate of water discharge is expressed‘by the

following relation, neglecting the effect of overflow etc.

T Ji - uy (1)
where:
. . .th ‘ 3
Xy = water storage in the reservoir of i plant (m”)
Ji = water inflow into the reservoir of ith plant
(m3/sec.)
u; = water discharge from the reservoir of

i plant (m3/sec.)

The choice of uy is restricted by its upper and lower limit)for
the hydraulic turbine has its limited capacity specified by its

rating and therefore uy is bounded as follows:i-
Yomex 2 M7 Y min

Where u. and u, are the upper and lower limit of.

i max i min
the discharge, respectivelye.
The hydraulic head is dependent upon the reservoir
capacity and thus, the power output of the hydro plant may be
expressed as

W, o= f (xi,ui) ) (2)

WheI'e i=1,2 sesosseel

th

W.= hydro power developed at the i'" plant (megawatts)
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Since the total generation of the combined system equals the

total lozd demend on the system at that instant, the power balance

equation
N ~
>S. + S W =D (%) (3)
PEL] 1 =t 1 .
Where:
N = total no of steam plants
S. = Steam power developed of the 3% steam plant (Mws)

i
D(t) = Total load demand at time t(megawatts)

It is also specified that the steam unit operates with
both meximum and minimum generating limit i.e.

25 2 51 mim

5 i

i max
Where:

and S, are the maximum and minimum limit of

Si man i min

the steam unit for operation.

The problem is to determine the drawdown 2t the
hydro stafions and the generatinn of the steam units over'the opti~
mizétion intefval under the condition that the total fuel cost'bver
the optimization interval is minimized and the total generation
6f the systems equals the total load demand.

The objective can be stated in mathematical terms

as the minimization of a functional

-
£y = [%}i‘i(si)d% | (4)
Q . . .
Where:
T = length of optimization interval (time)
F(85) = Cost per unit time of operation of steam unit

No. i (Rs/time)
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The minimization of the functional has to be achieved
for steam generation and the water discharge as control variables.
The chdice or control u; is to be determined for a given load
demand D(t) and the initial and final gstorages of water as
x;(0) and x;(T), respectively.

It is convenient to define a new variable

SSCEN S S NCHLE (5)

Clearly, xy(%) = £, and x43(0) =0

The problem can now be restated for employing the maximum principle

in the following terms:

Define a vector X = {XO,Xi,Xx+1)' whose initial and final states
are X(0) = {x,(0), x,(0), 0} and X() ={x(T),x;(1),T}
respectively, and the dynamics of the systems are governed by the
following differential eqQuations for a given +time-dependent

funetion D(t) as

dx _
-, 0 ’
w = Fi(5;) (6)
dx; '
N | (7)
dx '
r+1 _ 1 | _ (8)

dat 7
where the new state variables X1 is clearly specified as

Xpyq(0) = 0

xr+1(T) =T

Therefore, the dynamic system te be controlled can also be described

by the state equations
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- r ) (9)

| Where X and u are vectors of dimension "n%" and "r" respectively,

§with r < n . The gll initial and m terminal states are specified

as

1’2 ....O.n

X;(0) = x,(0) , 1

it

X5 (T) = = 1,2 eeseeesll SN (10)

I
o
[
”~~
H
SN’
-
=
I

Given the system (9) with boundary conditions (10),
the problem is now to determine the admissible control u which

" minimizes the performance index

XO(T) = J[Ti(x,u,t)dt o (11) \

2.2 APPLICATION OF MAXIMUM PRINCIPLE:

With reference to the optimizing conditien of the maximum
principle, which states that optimal control here is the one which

minimizes the corresponding Hamiltonian function:

. N i
H = p, ?:, Bi(85) + 2 p; (95-u5) + 2., (12)

where:t

p; are the auxiliary or adjoint variables.
From the maximum principle Py = O and it is equal to -1 for
a homogenous ad joint equations which is admissible in the present
problem. It is also marked that_pr+1 is é constant and does not
\ influence the maximization of He The above relation (12) is
golved further and the problem can, therefore, be simplified by

considering the maximization of
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N

H' = "Z, Fi(sil) + i‘_ p; (95 =uy) - (13)

The components of u; are restricted within or on the boundary

in u; space. Within the boundary, because of minimization.
2H '
= 0 » (14)
§ui

Similarly the components of S; are restricted within or on
the boundary in Si space. Within the boundary because of minimizat-

ion.

_5§; =0 x/// (15)

The adjoint variables, p(é?)are defined by the Hamiltonian system

o 2B ' (16)
dat i

dp; _ 2m

> (7)

The applications of the maximum principle are analyzed for the

following specific cases:

2.3, SOLUTION FOR SPECIFIC CASES

The system can be characterised as follows:

2.%3.1. CONSTANT HEAD HYDRO PLANT

The computation time and the difficulty of converging
to the solution is strongly dependent upon the number of
differential eQuations and boundary conditions for the state

variables at t =T

TheAhydro power developed is expressed in equation (2)

as a function of water storage and the water discharge, can be
approximated by the following relations:



W, = HO (1 + ex;)uy (18)

iy
fl

Vhere

HO = the basic water head (in meters)

C is the correction factor for the change of water
head because the hydraulic head will vary with the change of
reservoir capacity. When the cross-section area of the reservoir
is very large, then the water head correction factor for the change
of water storage for the simplified model syste% will be
negligibly small.

The cost function F(S8) can be approximated by‘the

following Quadractic function of power developed by the steam

A

unit ioéo
2 o
Fi(S;) = 8;8; + a; + 18] | (1
Since dp; aIi‘ .

at -~ 0%,
With reference to equation (18)

ap: ar.
1 1
& - T@s, O Cuy
C= find that  OPi '
for C=0 we fin a —3—— = O and hence the adjoint variable

p; is a constant. The effect of this can be seen on the increment-
. al cost of the thermal plant.

Maximizing Hamiltonian function w.r. to uy

2H d Py 28, W
= - 'a— . b i Ps = 0
oy Si awi 'aui 1
dF:.L _ ‘ .
we find, 35 = the incremental rate of the thermal plant No.i..
’ i

Pi/ HO(1 +Cx4)
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Therefore, we observe that for C =0 and Py to be a constant,

the incremental rate is also constant.

2e3e2 CONSTAN®T HEAD WITH LINEAR DISCHARGE:

Sometimes fof simplicity to & great extent, in addition
to the previous assumption af constant heads hydro plants, it can
also be assumed that the hydfoplahts have linear operating

characteristics, withvhich the folloWing equations apply:

2 (3;-u;)
e . (20)

for i = 1,2 eeveser

where

.mi = & constant for each hydro plant integrating
equation (18).
Iy muy) = mg W 4w | (21)

where

m;' = constant determined by the known function Wi(ui)
Meking use of the power balance equation (3) together with
(13).

¥ ¥ , _

H& = -F; (D(%) - ?_;‘ W) o+ ‘Z='pi (mgW; + my) (22)
It is seen in the above relation (21) that the first term
is always constant for any variation of W; as long as L Wy
is constant. The last term will have the same property if

p;m; = constant = K | (23)
The usefulness of the above relation can be experienced when

desired for the numerical solution of the problem.

2.4. GENERAL RESULTS FOR THE OPTIMUM LOAD ALLOCATION:=

2.4.1. Variable head hydro plant with negligible lines losseg.
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The usefulness of the maximum principle is realised
when it is utilized here for allocation of optimum load among
the power generating plants.
For convenience let us assume that Si for
i=2,3% N aﬁd Wi for i = 1,2 «...e are
independent variables. Thus, the power balance equation can be

written in the modified form

N y » :
Sy + Z—;Si + Zw = D{t) . (24)
Therefore, from equation (24)
DS, | '
1
Com— = =1 (25)
o5,
’351 .
-~ = - (26)
i
The Hamiltonian function is also written in the form
N v
H' = "F1(S1) - ;;1 Fl(sl) + él pi(Jl-ul) (27)
From equation (27) utilizing relation (14)
28 _ B 25 2%
ouy - a5, oW KN i
= 0
or dF1(S1) _ 1€>_,L :
= - (28)
a5, 28 ~
0%y W,
T

The partial derivative-of equation (18) w.r. to u; is given by

r1A
ouy

= Ho (1 + Cxy) . (29)
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Substituting (26) and (29) in (28) we have

drg(5y) Py (30)
as, ~ HO(1+0=x; )

where
d}i‘1 (S1 )
steam plant No. 1.

is defined as thefincfeméntal rate of the

With reference to equation (19)
ds,

a; + 22,8, o (31)

Substituting (32) in (38) we have

P;
aq + 2a231 =
HO(1+Cx; )
. ! p'
e o S1 = L bt 8.1 } -2-.;— (32)
HO(1+Cxi) 2

Now with Si for i = 2,3 +...N, as another control variables we
? . )

can write from equation (15) as

i

DH -
35; = O
o aF, (54) 3jiL_ ) daF, (8y) o (33)
dS.1 DSi ‘ dSi
With reference to eqQuation (25)
dF, (S,)
1 95 (54) (54)

dS, - asy

The relztion obtained above in equation (34) establishes

an impdrtant result determining the optimum load sharing between
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the steam plants. This can be stated: For economical loading,
the incremental rate of the input cost of each thermal station

must.be equal.
| On the other hand this alsb shows the advantage of
using maximum principle in the light of [201] , where the
rigorous treatment of Lagrangian multiplier is given while arriving

at the same result.‘

2.4.2., Variable Head hydro plant with Line Losses:

The losses will be function of power transmitted
through the transmission lines and therefore, the power balance
relation in this case modified to

Lﬁsi + gf' W, o= D(t) +L(S,W) (35)
where
S = N - dimensional vector defining the generation of

all steam units(megawatts)

Vector defining the generation of all hydro stations

=
1}

(megawatts)
With the above assumption of one steam unit as dependent variable

we have from eQuation (35)

%, ., _ 2L , L. 054
255 = 25 25, " 25;
or 25 2Ly (g - 2 (36)

55, = -1 - 3F;

i ‘331

With reference to equation (33) together with (36)



aF, (S,) (1 - gEF') aF. (5. )
15, ) i L 3 (54
a5, (1- 2L ) 454
054
or
ar, (S1) dF
= /(- Sy s /- 2 o

T i i

The result obtained in equation (37) can now be éompared with
equation (34) where the losses were ignored. We find that one
extra factor in the denominator of equation (37) appears on both
sides. This factor has been called in [20] as PENALTY FACTOR.
Thus, the statem:nt of economical load allocation éhanges with

a slight modification of penalty factor in the denominator of - the
incremental rate of the fuel cost,

2.5, SIMPLIFIED MODEL SYSTEM:~-

The problem is simplified considering only one thermal
plant and one hydro palnt jointly supplying a load centre throggh
a system of lossless transmission lines. The idea behind the
‘consideration of this simplified model system is to extend it Hr
further in%estigation of mathematical treatment for satisfactory
and rapid solution.

With reference to equation (3) for the existing system

S, + W, = D(t) (38)

1 1
The power developes by the hydroplant

W, = HO' (1 + Cxq)u, ' (39)
Bquations (38) and (39) combined together

S
D - 1 . .
Y = THo 1+CE,) if wyy, € 9y o<Wy max
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= U max ' if 4 2y max

. ihf u; < uy min (40)
!

With the above constraints on the choice or control uy it shduld
‘be understood that the state variable x, is also restricted
between its boundary values. Thus, if the overflow and emptying of
reservoir is not permitted the State variable must lie between the
two end conditions. Where the state vaﬁiable is defined in the

present case as

Ay 1 ‘ |
—é-{:— = J1 —U.1 (41)

The power developed from steam plant for optimum condition is

defined from equation (32)

P } 1 '
S, = { —_— - a Pra— (42)
! HO(1+Cx4) T2

The value of steam generation 5S4 obtained from eguation (42) should
always lie within the steam station generation limits. Supposing

at any instant the steam genmeration crossés either of the maximum
or minimum 1iﬁit of generation {then at that time the water discharge
or the choice of uy hés to be modified so that it again comes in
the operating region.

The adjoint equation which defined in equation (17)

can be expressed here for one hydro plant as

e A : &
dt -~ X4
or
a1 __ e, 259, oW (43)

at 251 W4 2x1
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With the above references of eQuations we can also write as

dp1
at =

(a1 + 2a, Sq) ( =1) (HO u,C)

Ultimately we have a set of two differential equations (41)

and (44) which have to be solvéd for the optimization interval.

As it is specified that the state variable x, has been defined by the
relation (10) and therefore, at the end of the optimization interval

it has bo be satisfied and converged to its initial value.



CHAPTER III

MATHEMATICAL TREATMENT OF THE  DISPATCH PROBLEM
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3.1« TWO POINT BOUNDARY VALUE PROBLENS:

Pontryagin's equations defined in equations (16) and
17) give rise to the general forms of system eQuations. For the

present case of simplified model system which have been expressed

as
S A ¥
at - dDPy
and
8 _ _ 2H_
at - -DX1
= - HoC u, %4 .
1 ag: (11)

where the state variable is defined as

X,(0) = %,(0)

X, (1) = x4(T) '
Therefore, it is a set of simultaneous differential egquations with
an incomplete set of prescribed conditions. The solution for adjoini
variable P4 has to be adjusted such that it finally satisfies the
prescribed boundary conditions.

For the purpose of numerical solution itis convenient
to separate ordinary differential equations into two classes, accord-
ing to the position of the associated prescribed conditions. If all
such necessary conditions are given at one point in the range of the
independent variable they are usually called initial conditions,
and the differential system is of "initial wvalue" type. When more
than one value of the independent variable is involved the conditions

are called boundary conditions, and the differential system is of

"Boundary value " type.



25—

Here for the state variable Xq9 We hsve one condition
at each end or boundary of the range of integration. A problem
of this kind we call a "boundary-value* problem, and this definition
is extended to all problems in Which two separate points are
involved in the prescribed conditions, here called "boundary
conditions".

Two-point boundary conditions arise in all sorts of
physical problems. In the light of thedbove introduction to the
2-point boundary problém We.find that the load diépatch problen
analysis with the application of maximum principle is always a
case of two~point boundary value type. This situation always appears
in variational problens.

In the above forms of general edquations it is eliminated
by the minimization of H subjéct'to any constraints. Such generalized
constraints cannot be included in the treatment by classical calculus
of variations.

The solution of (ii) is not complete without a
specification of the boundary conditions. Ve have to minimize the
performance index defined in (11) by choice of u1(f); This

minimized form of integral (11) is defined to be the cost function.

v [x,(0), 0] = ﬂjnt) fL (X1,u1,t) dat - (iii)

By definition of the cost function V in equation (1ii),

vV (x(T), T) =0 (iv)
In other words, the minimized performance integral must be zero

when the lower limit of integration egquals the upper limit. It

follows from (iv) that
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v ‘J )
[ X4 dx1
t =

(v)

il
o

T

or

(vi)

il
o

[ ]

t =T

Two cases arise:

(a) Pixed end-points

x1(T) is specified, hence, because dxq =0 equation (vi)

is sptisfied.

(b) Free end-points

xq is subject to variations, dx; is not zero, and
therefore to satisfy equation (vi)

p4(T) =0 | (vii)
From the above classifications of the fixed and free end points
we find that 6ner present general forms of equations representing
the simplified model is a fixed end point two point boundary value

'problem.

3.2+ METHODS OF SOLUTION:

In the following paragraph we examine some of the
rroposed ways of attacking this problem.

The methods of finite Differences probably the most
common approach adapted in the past has been the application of the
calculus of finite differences, for example Fox [297] . He takes
full sccount of the difference correction but it becomes a process
ofsuccessive approximation. Now, in applying the method of finite

\

differences to nonlinear eqQuations, an iterative process is reQuired

in any case. It is probably preferable therefore to avoid an
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iterdtive cycle inside another such cycle. The alternative
approach is the so-called deferred approach to the limit.

Furthermore, one must anticipate that, because the
solution may not be unique, an approximate solution may be
reQuired to ensure that convergence occurs towards the right
solution. The method of relaxations could be employed but group
relaxations would be essential. The generalized Newton process is
perhaps the convenient one and was employed.

The methods of Linearized solution, steepest Ascent
(Descent) of the Hamiltonian and Boundary iterations have been
used for the solution of two point boundary probleﬁs but their
applications are limited for the load dispatch problems.

Some new methods e.g. Binary Search Technique de&eloped
in [19] and Relaxation methods for Computer solution disscussed in

[15] have beeﬁ applied effectively fof the power systems dispatch

problems using the maximum principle.

In t19j the authors have mentioned the Binary Search
Technigue to obtain the optimal Control Variable. The Control
variable first essumes its largest admissible value, and the
Hamiltonian is calculated. & slightly smaller value is then assigned
to it, and the corresponding Hamiltonian is computed. If the former,
is greater, the former control variable is optimal one. If not,
the smallest .value is then assigned to ie, and the corresponding

Hamiltonian is computed. Similarly, the Hamiltonian for a slightly

larger value, say Umin + 4U, is computed. If the former is greater,

the optimal control is Win® If not, the arithmatic mean of the.
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upper and lower limits(umaX + up..)/2 is assigned and the
corresponding Hamiltonian is computed. If H [(umax + umin)/é]>
H E(umax + upi,)/2 - AU], the optimal control should lie .
somewhere between u .. and (umax + umin)/Z. If H [(umaX + umin)/é]<
H [(umax + umin)/z - 4U], the optimal control should be between
Wiy, ond (umaX + umin}/é. This perturbation procedure is repeated,
Until the optimal control is obtained with an error of permissible

~order. They havé also shown the analytical method to obtain the
optimal control in the case of the simplified model s&stem.

Dakhlin and Shew have'also solved dispatch problems
using maximum principle. They have developed eaéy relations which
are very'conveniently tackled for computer solution. Hamiltonian
function for variable head is finally expressed in the same form:s ir
the problem with ﬁegligible head variations. In that case, all the
ad joint variable were constants. Therefore, the problems is

simplified further.

3.2.4. Proposed Gradient Method:

It is purely a new technique to be applied forthe
solution of load dispatch problem of power systems. The effectivenes
of the method is yet to be tested for a practical problems.. A
means alleviating the difficulty of the determinstion of a
suitable initial choice of unknown boundary values is presented.
Therefore, this removes the major difficulty of the problem because
it was the main drawback associated with all method employed so far.
The complete explanation of the method is given in the following

paragraph.
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3+3 GRADIENT TECHNIWES

Gradient methods establish only certain necessary
conditions which must be satisfied by an optimum solution although
in some cases the conditions also are sufficient. The term optimum
indicates a solutiqn satisfying these necessary conditions. Some
where it is also known as an Indirect method. We haove seen that the
Pontryagin's maximum principle results in a set of differential
equations which lack a complete set of boundary conditions at each
end of the solution interval. This gradient technique is employed
to complete either set of boundary conditions and thereby provide
the optimum solution.

Briefly it can be understood as follows:

The technique uses the Pontryagin's meximum principle to eliminate
the control variableé fromthe system equations. The result is a

’set of simulteneous first-order differential equations which have

an incomplete set of bouﬁdary conditions. In order to complete the
boundary conditions at the initial or terminal points, an

auxiliary cost function is introduced. This cost function is designed
so that its minimization will lead to a specification of the

unknown boundary conditions. The gradient method [23] is used for
minimization of the auxiliary cost function.

The mathematical application of the gradient method
is explained in the following steps:

The Hamiltonian defined in equation(12) can also be written

H = ipifi_fo

() }\ = SE p;f, for p, = -1 (45)
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The auxiliary variables, p(t), are defined by Hamiltonian system
in equation (16) and (17)
where,

Xi=fi fOI‘i:O, 1 PR ¢!

Application of maximum principle provides relations, frequently
explicit, from which each component of Control Variable (u) may

be determined, given t, i and p. In general, it is not possible
that u can be solved explicitly in terms of X(0) and p(0)
‘satisfying equation (10) . It is, therefore, proposed to determine .
p(0) by gradient technique. As stated above in order to accomplish
this technidque, a secondary cost function involving the specified
terminal conditions is introduced.

If Vectors X and p are comwbined to form the

fn + 2 dimensional Vector

- - [3],

then this cost function may be defined as

“an+1

£ = Z;AiEi [y;(D) - Yé(f)] (46)

The A;'s are constants which are zero for those final states which

are unspecified. Typical Ei are

B, [yi(T) _ yi(f) ] 27

+ L]

i |3}i (1) -3,

3 n, Y positive integers.
yi(T) and y(f) are the terminal value of y at the end of the

optimization interval i.e. at t = T and the final specified wvalue,

respectively.
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Provided that the terminal condition (10) can be
achieved, it is clear that gmin =0. If the y(o) producing this
minimum is found, the corresponding y(+t) is the optimum
trajectory. In attempting to find the proper y(o) by an iterative
procedure, supposing that at the jth step, some estimate, namely,

v* (o), does not minimize (46) , i.e. g # 0. A change in y (o)
designated AY (o), is then des1red such thet Ag = "“ 5‘ <O

Expanding E about yz( 0),
7nn )' .
AEJ l: ]A)/{)(o) -+ higher order terms.
0y, (o
¢ . (47)

The heightr order terms may be neglected provided the vecotor
length ||A yz(o)” is sufficiently small. The condition

AE’ < @ is then satisfied if

- &
& - g’ [—2& _ i |
A yi(o) = =K, [ayi(o) ] ’ i=1,2 ...2n+1
' cee (48a)
or .
A v (o) = -K.,'GRADéj' (48b)

S;y(o)}

The notation GRAD {y(c>)}5jL signifies the gradient of gi with

respect to y(o). Equation (48) expresseé a suitable choice for

Aya(o) , provided K, is sufficiently small. The choice of K,

Ai and Ei have got remarkable effect on the convergence properties.
GRAD é‘i is now determined as follows:

Let us assume first that the maximum principle yields explicit
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functions u, u = u(x, p,t). These relations may be usedto

eliminate u from 16 & 17 with the result that

5 - .x] S N (49)
P
It is proved that [287]

GRAD €j= a* (o) (50)

{Y(oy

where
&t () = -P* (1) a*(%) (51)
. . J ’ ,
le{(T) - [_____...._35 ] kK =0, 1, ¢..20n + 1 (52)
3yk(T) L]
and
Med 7. [2Bi_T_ 5
[7,]- [Byk ]- () (53)

Equation (51) represents the adjoint system for the linearized
form of (49). The term of (531 are evaluated from knowledge of
Yi(t). Starting with the boundary condition (52), (51) is
numerically solved backward from T to O yielding di(o) which
together with (48) and (50) yields the desired increment AY9 (o).
Commencing with an initial choice of p(o), the p
components of Y(o) are successively adjusted using (48) until the
auxiliary error function is erbitraerily close to zero. Alternativel&
iterations may be continued until successive pi(o) are arbitrarily

close.
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3.4, GENERAL EWUATIONS OF THE SIMPLIFIED MODEL

The boundary conditions prescribed for the variables
are "hard" constraints and the solution is not feasible with the
application of the gradient technidque. It is, therefore, desired
to modify these "hard" constraints into "soft" constraints.

Introducing a new control variable

al = v, - (Ymax * Umin)/? (54)

and state variable Xq is modified to (x1 ) 2m

where X4

i1 = the upper limit of the state variable x,

m = a constraint > 1
It is now intended to employ the arctan function to simulate
saturation of the forecing function, instead of using the constiraint

|uq] & 1 on the simple term u,

For the existing system there is a set of simultaneous
differential equations expressed in equations (41) and (44) which lac
a complete set of boundary conditions at each end of the solution
interval. In order to complete the boundary conditions at the
initial or terminal points, an auxiliary cost function is introduced.
Thus, defining cost function.

dxo Xy 2m
= ( . ) b By (8,) (55)

The cost function is designed so that its minimization will
lead to a specification of the unknown boundary conditions.

From power balance equation

Ky (1 + Cxq)u, + 8 =D (56)
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where K is the conversion factor from Kg.m. to Mw.

Therefore,

9, = D - KHo (1+C§1) uy

1

The state equation (41) is now modified to

-u_ . +
dxy Ynax Ymin -1 1 Ypax

at 1~ 0 tan =~ u’ -

o e 00

(57)

min

(58)

If the cost function F1(S1) in equation (55) is replaced by its

quadratic function of thermal power developed, it becomes

ax X 2m
o 1 2
it = <x1) +ag 5y + a, By

Substituting for §, from equation (57) '

dXO ‘X‘l 2m v
=T =(x1) +‘a1{D-KHo (1+¢x1)u1}

2
+ a, {D-—KHO (1 + Csy) u1} -

(59)

(60)

Eliminating uy from above for its assumed function of arctan

X 2m .
ax 1 b .
0 . mx min -1 1:
e = (x1 ) + a4 {D-KHO (1+Cx1) ( 7 tan u

umax+umin)}
+ 23
‘ Upax Ymin =11 UpaxtUpig ]2
+ a, ¢ D -KHo (1+Cx1) ———— tan u+ = )

For simplicity let D-KHo(1Cxy) ( umax';;‘min con~Tuls

(61)

u u_ .
max+ min

p)
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Using the Maximum principle the Hamiltonian is

X
1
e f(3)
%4
u +U_ . .
max “min max min tan"1u1)

+ oy (- 2 N T

2m

+ a1(A1) + aQ(A1)2;}

: Ceeeens (62)

Now u' to meximize H

?H_
ou!

- =0

or 6 = -a, {-KHO (1 +Cx1) K, 1 }
+ 1
- a,f4,)2

-KHo (1 + Cx,) X 1 1T -p.x 1
1 1 — 1™ """—2——"-'—
. u'” +1 u' “+1

where,
£ = Ynax "Ymin
L n
K. = Unax Umin
2 2
. Py

or ay + 2a, (A1) =
KHo(1+Cx1)

or

: P
- (4) = ”5%“'* . -2y
2 KHo(1+Cx1)

Substitute p1/KHo (1 +Cx1) = (B1)
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or

KHo (1 +Cxy) (K, tan™' u' + K,)

=D - {(81)-—a1 } . 1

8
oxr .
-1 D 1

K,tan u'+K=—-—-(———-——7-{(B)-a}

or V

-1 D ’ X
ten” ' =g o TTrOR —.{(B ) -a } 1 )
KK Ho(1+0x,) VU RR Ho( 140k, ) X,

Ceveess  (63)

Substituting for u' in(61)

dxo ( x1‘)2m : {( ) .
= = + a B,) -a } 1
'dt X, . 1 1 1 2a2

,+ a5 [{(B1) -a1} 1 ] 2

2a2

or

dx X ‘ ,
o _ 1 1 2 2

3t ‘( % ) t e, {(31') '31} (64)

Equation(58) after eliminating u' becomes

dX1

v 8T TRRG(R0R,) A W0 e KHo(i+0x,) 2
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or
dx :
1 1 , 1
T =9 - KHo(1+0x4) [D ‘{(31) '31} 2a, ] (65)
Since dp1 ?H
: t =7 VX4
or
2m-1
dv1_ om [ ¥ - -1
—— —— S———— - '
T i, (i1 + &, { KHo (K1tan u' + K2)C}
+ a, 2(A1) {-KHo (K1tan-1u' + KQ)Q}
or
dp - 2n-1 ,
e ) et
— =l c
dt ¥, X1 14+Cx) KHo(1+Cxq) Za, (1+0%;)
[ +2a, (B ) -a
o) ) 1
or
2m-1 '
oo (B (B, 2R -{(B.,) -a
it = Tx, X, 1 (1+6x,) { 1 1}
¢ ] (66)
2a2(1 + Cx1) .
dpo 0
T = (67)

(Since P, = -1)

It is observed that the above.set of differential
equations represents a non-linear system, not only because of

arctan (u'), but because of the performance integrand when

m>1.
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These four differential eqQuations 11,12,13, and 14

are, in general, characterising the simplified model of the

system. The actual numerical solution is accomplished in the

following steps.

3+4. CONSTANTS CHARACTERIZING THE SIMPLIFIED MODEL SYSTEM

Constants Nomenclature & ¥alue
Unit
Maximum water storage i1(m3) 115.2 x 10%
Minimum water storage x1(m3) 0
Basic Water head Ho (m) 20.00
Maximum water head Ho (m) 28.00
Maximum water discharge um”émB/s) 130.00
Minimum water discharge %mﬂPB/S) 2.00
Maximum hydraulic output W (Mw) 35485
Maximum thermal output S éMw) 30.00
Minimum thermal output S , (Mw) 0
Water inflow J(m3/s) 100.00
a, a4 (Bs/Mw.Sec. ) 2.75
a, 8, (is/Mw” . Sec) 0.052
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3.5. NUMERICAL SOLUTION

The set of differential eqQuations representing the
model have to be solvéd simultaneously. The solution obtained will
give the optimum operating point at a certain instant.

After eliminating iw, from (16) and (17) making

use of the Maximum principle, for its explicit function, we have

obtained:

M Ay, T 'deo‘
dt at
dy1 dx1
& |= |Tat =g (y,t)
dyo dpg
dt at
a4y dpy

at 4t J
e . -

(B1)= Y3/ KHo (1+Cy1) for X, = y1 and Py = y3

or
- - 2m -
FEXQ 62!-) +—_—— {(B )2 -a2
at 7 Tfa, 1 1
dy4 | 1 | 1
T |= 7 = EHo(ivey;) [» -{(8)) -2} 2a, ]
dy2
Tt 0
dy3 2m-1 '
3 2m ( V1> D
———— — - B - -
L] LN Y1 | (B) (1+Cy4) {(By) - aj)
G ] (68)
2a2(1+Cy1)

. . in &
The numerical solution of (68) is accomplished simultaneously 1
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step~by-step method of integration

A

lees y 4 = ¥, + ¥, O4 (69

n+1

Thus, an initial guess value of Y3 is assumed Which is in the

. present case V3 = 0.01 and a nominal prajectory is obtained for

yq for the optimization interval of 24 hours or a day. It is
observed that the terminal value obtained for y,; does not converge
to its fixed'boundary value. A complete computer programme on an
IBM 1620 has been written and shown in Appendix for the forward

numerical integration of the ebove set of simultaneous differential

!

equations.

Since the boundary condition is not satisfied an
iterative procedure is followed for the initial correction of the
guess value of MEL @his procedure of initial guess value modificatiol
is followed in the following equations:

With reference to equation (53)

o B

; 8 8, 08 V6o
j N ES) o o 0
or PO(t) = yo 3y1 ’03’2 ADYS

'Og1 ;081 084 084
W, 0y, Y, 3
8o 8 98 8o
’byo ’ay-] ]y2 ’by3
'Dgz '—agz V€3 Dgé ,
_33’0 ’by1 3&'2 ‘0}'3 1 (70)

105245
BNIRAL LIEVASY SHiiEkSITY O Coode
ROORKEE.
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Equation (70) when treated with (68) yields

r— ey
0 ?f_g 0 08,
?Yo VY3
‘03’1 ?Y;
0 0.0 0
0 %5 o 283
B ’33’1 bY3
Denote <B2) = G
KHo (1+Cy,)°

i

08 | y 2m-1
0 2m ( 1 ) LRV

LR Y Y1 Y9 2a
2

‘08@ yB(BZ)

o3 2a2KHoC

g
(A = (B2) {ND - (B.])/'a2 + a1/2a2}

57,
2m=-2
0y _ ¥

{ZD ; ®1/a, - 3 (31)/2a{§

. |
%? = (3)) {-D - a/2a, + (B;)/a,} (72)

i

From equation (51) we have
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. = '

'.do [0 28, ¢ 28 7 T1e, 7
ayo 33’3 .
d, 0 e84 o 084 a,
_ ‘an, 'Dy3

dy 0 o o0 0 a,

: 08 28

d 0 283 3 d
- BJ N ay'] 'by3 J L 3_]

® e 0 e o0 (73)

where

qd represent the first derivative with respect to t
at jth step. The initial values of 4 for backward solution i.e.

to say that at time T, d is determined from equation (52) which give:

J - -
dp (1) = 15§;TTT . kK =0,1 oee0.2n +1

where
the auxiliary error function £ is assumed as

2
£ =(r4(m) = 10°)

Therefore, we find from above relation that

a,(1) = 2(y,(r) -10°%)
dz(T)‘= 0
dj,('ﬂ) =0

Equation (73) which has to be solved backward can now

be written in the following modified form
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.~ 2m-1
[d, 0 2m (iil _ B (Ey)
Y9\ ¥ 28y
d, 0 (85) {D-(B)/ap+a,/2a,)
d,, 0 0
ds 0 2m{2n-1) (y12”4
Ry 5 ¥ "579_
(Bg )Y3C .

+ {2D+a1/a2 ~3(B,)/

(1+Cy1)

2a.1 }

Thus, the equation (75) is solved backward on the nominal trajector

0 yz(Bz)
2a2KHoC
0 1

28, K2H02(1+Cy1)2

0 (8,) {-D

3

-a1/232+(B1)/a§J_

obtained from equation (68) with the initial conditions at t = T

given in equation (21).

Therefore, from the valué of d obtained

at t =0, the relation (50) is established because-dJ(o) is now

known.

Once GRAD {y(O)}éJ is known,zsyj(o) is calculated.

Where in the present problem k' is assumed to be one.
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The complete computer programming is shown in Appendix.
After making increment of 4§yj(0) in the initial guess value of
¥z, the forward solution is again started. This process of
iteration continues till it converges to its optimum value. The
optimum trajectory for yf which is #hewam in fig. (3).

From this optimum prajectory obtained for Xqs the
control variable uy is determined and the optimal control is
plotted in fig. (4)._The optimum load sharing of each plant on

hourly basis have been shown in fig. (5) and (6).
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The prewgious Chapters have presented a brief
discussion of the problems involved in optimizing the load
dispatching of a combined hydro thermal power system. A new techniqu
utilizing Pontrgagin's maeximum principle, has been suggested for the
numerical calculations of the solution.

One of the main advantages of the suggested gradient
technique in association with the maximum principle was found to be
the ease with which the iterative procedure would be started. The
difficulty}actually experienced with previous methods was thus slow
rate of convergence if the initial choice of the starting values
were not suitable. Thus, for example, the method of finite
differences reQuires the selection ofa priming trajectory snd two
separate computations in order to carry out A?—extrapolation.

' Similarly'the binary search technique presents a laborious and
‘time consuming method. The gradient technique, on the éther hand,
was able to converge quite rapidly to the desired solution even when
the initial choice of the boundary values was very different from the
final value. Thus it look only four iterations to arrive from an
initial choice p = 0.01 to a final value of p=56.3862

| However, a disadvantage with the present technique is
its inability to handle "hard" constraints directly instead of
changing them to "soft" constraints. Considerable computational
difficulties were experienced in trying to make the "soft"
constraints approximate the given actual constraints to a reasonable
degree. In a numerical problem, for example, the computer over-

flowed for m >4. It is felt, however, that the gradient techniques

offer a considerable improvement in ease of computation over the

techniques being used so far and that further investigation along



~46-
these will prove to be useful, especially if the present technique
can be modified to handle"hard"constraints directly.

The usefulness of the ﬁaximum principle is well realised 1
physical study of the system. For instance, some important features
of mathematical analysis are directly giving the behaviour of the
systems operation. The incremental rate of the fuel input to the
thermal plant was found to be constant for the water head correction
factor C =0. This shows that the thermal output will remain constant
as a function of time when it is in the combined operation of hydro
rlant whose water head variations are negligible.

In numerical solution it was observed that the value of C
- was very small and therefore, it produces less effect to the rate of
change of thermal output. Another important point to be noted with
the reference of the relation of incremental cost of thermél plant is
that with the decrease of water level the incremental cost increases
or the thermal output. The system load fluctuations for the short
period is met by the hydraulic plant. The optimal load sharing of the
steam plant is depicted in fig. 6 which shows a small increment in 1@
sharing when there is decrease in water level and, therefore, the
total load fluctuations have been absorbed by the hydro powez plant
as shown in fig. (5).

Although the computational analysis is limited to a
simplified model system, this procedure may be extended to any
number of systems in the combined operation. Naturally, the complexit]

of the problem will increase due to more numbergvariables and

varieties of constraints.
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COMPUTER PROGRANMME ON TBM 1620

THAKUR EED UOR NUM SOLUN,

DIMENSION D(24) Yo (25), Y, (25), Y3(25)
DIMENSION Dg(25), D,(25), D5(25) |
READ 3, (D(I), I =1, 24)

READ 1, A, A,, PH, YN,

FORMAT (6 F 10.0)

FORMAT (4 F 16.4)

C = 0.4/1152000.

DELT = 3600

Yo(1)= 0.

Y,(1)= 1000000.

Y5(1)= 0.01

" Yy = 1000000.

D02 I =.1,24

F12 ‘= ‘(Y‘] (I)/YM1)

Py =P ¥ Fyp
X, =P Ty
F, =PH* (1 +C * Y1(I))

FFy, = 1./(1. +C * Y,(I))
Py = (Y3(1)/F2)
Fr ~ A

PPy = Fy =~ &9

F, = (0.25/45) *(F3 * Py Py - Ay ¥ A1)
Py = D(I) - FF5/(2.0 * 4A;)

Fo = 4./Y,(I) * X,

Fg = C * D(1) % FF,

Fg = (FF5 * FF, * C * 0.5)/Ag

F,o = (Fg = Fg) * Fy

Q
-
[}

128./3.14159
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X1 + F4

DELY, = 100.0 - Fg

i

DELYo

DELY3 = F7 =-'F.lo

txj
i

(D(I)#(C,*Fy)) - FF3/(2.*A2*01*F2)-02/C1
JF F* 0.159195
AJF = JF

i

AR = AJF *2.% 3,14159
F + B -~ AF
I = I + 1

1
Yo(I1)= Yo(I) + DEL Yo * DELT

Y1(I1) = Y1(I)_+ DEL Y, * DEL T

U(I,) = SIN F(F) / (C0s F(¥))

PUNCH 100, I;, Yo(I,) , Y1(I1), Y3(I1),U(I1).
100 PORMAT (13, 4 E15.6)
2 CONTINUE

DIF = Y1(25) - Yp5

IF (ABSF(DIF) - 50000.) 5,5,6

5 DEL T, = - DEL P
p5 (1) = 0
Do (I =1, 24
J =26 - I
EE2 = Y3(J) * C%E2

EEE, = EE, * FF,



By = BEE,/2. * A,

- BBy = Y5(J)/2. * A ¥A *E,
E, = C/F,
FE, = B, * FF,
EEE, = FS/AZ

EF, =1./2 ® A, * E,
EF, = C * Y5(J) * EE, * FF,
EA, = 2. * B
EF, = 3. * Fz/2. % A,
EEg = EF; * (2. * D(I) + EA, - EF,)
EEg = (D(I) - EEE, + EA)
Eg = EE, * (~EEg)
By = EB, * (D(I) - EEE, + EA)
Eg = Fy - Es
Eg = (12./(Y1(J) * ¥,(J))) * Xy + EEg
DEL Dg = = Eg * Dy(I) - EE; * Dy(I)
DEL D, = -E; * Dy(I) - EF, * Dy (I)
DEL D = =Eg * Dy(F) - Eg * Dg(I)
D5(11) = DS(I) + DEL Dg* DEL T,
D1(I1) - = Dy(I) + DEL D, * DEL T,
Dz (I4) = D5(I) + DEL Dy * DEL T,

PUNCH 300, I,, DS(I1), D1(F1), D3(I1)
00 FORMAT (° I3,3 E 20.8)

CONTINUE

T5(%) = ¥5(1) + D5(25)

GO TO 8 '

STOP

END
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Input Data

20.
45.
50.

35,

2.5

40.
55
50,
30
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4.
5.
50.
30.

0.196

45.

55
35.
30,
1152000

45.
55

35. -

30.
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LIST OF THE FINAL RESULTS OBTAINED:

Time in  Optimum Water storage Adjoint Veriable
Hour ¥q = X4 Y3 = Pq

(In multiple of 10%)
0 100.0000 56,3862
1 100.3770 56,4173
2 100.9230 5647056
3 101.8250 57.9142
4 102.2860 58.2068
5 102.8380 5843172
6 100.8720 58.0683
7 97.9235 57.7464
8 96.2123 5742933
9 94.2866 56 .8263
10 87.6523 56.5828
11 - 81.0189 56.4256
12 83.1576  56.4662
13 8343842 56,4782
14. 8%.9852 56.4886
15. 87.6287 5645069
16.. 95.1824 5645292
17, 98.2101 56.5998
18. 98.8921 56.6086
19, 99.7658 56,6288
~ 20. 100.0860 56,6980
21, 100.1220 56.7128
22, 100.3680 56.7338
23, 100.6820 56.7421
24. 100.8680 56.7928



LIST OF THE FINAL RESULTS OBTAINED (Contd...)
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Time in  Optimum Optimum Optimum
Hour Discharge LL1 hydro power Steam power
developed W in Mw developed S in Mw.,

0] 81.15 21.40 18.60
1 80.40 21.20 18.80

2 80.20 21.00 19.00

3 77.00 20.40 19.60

4 76.60 20.20 19.80

5 94.00 25.18 19.82

6 95.00 25.05 19.95

7 95.50 25.00 20.00

8 96.50 25400 20.00

9 128.50 33.60 21.40
10 129.20 33.58 21.42
11 129.30 33452 21.48
12 - 128.20 33425 21.75
13 116.80 30.25 19.75
14 116.80 30.25 19.75
15 116.78 30.24 19.76
16 117.10 30.60 19.40
17 61.80 16.40 18.60
18 61.80 16.40 18.60
19 60.20 16.20 18.80
20 60,21 16.20 18.80
21 41.70 11.00 19.00
22 42.30 11.12 18488
23 42 .20 11.12 \ 18.88
24 42.80 11.40 18.60
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