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SYNOPSI S 

L.S. Pontryagin's Maximum principle is applied 

to the problem of determining the operation of a combined hydro-

steam generating system for the minimum generating costs. The 

dispatch formulae have been derived for power systems using various 

operating characteristics governing the dynamics of the systems. 

A gradient technique has been described for the determination of 

the optimum control Trajectory using the maximum principle. 

The numerical treatment is given to the economical 

operation of a simplified model system. Variable hydraulic head 

is considered at the hydro station. The system operation is 

assumed for short-range. The merits of the Maximum principle 

have been discussed as a new technique for obtaining solution of 

economic problem. 
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INTRODUCTION:- 

Recent trends towards economical aspects of the int€grated 

Power System Operation has given much importance for investigation 

of the methods for the Optimum load, scheduling between individual,.: 

unit at stations and between stations in the Power System. A 

State of Activity has characterised the. past decade in the economic 

power dispatch field. Various papers have been written,. incorporating 

different combinations of the enumerated-features in formulating 

the problem. Still some new methods. for solution of the problem 

are to be introduced for the efficient and satisfactory results at 

the same time reducing the complexity in computation. 

The long: range problem involves a prediction of the 

probable flows, for at least a year in advance, of rivers and 

their tributaries above the dam~' sites. After the amount of water 

that is to be available at each dam site for use within the specified 

period of say a day or a week is determined from long range study, 

the use of this water in conjunction with steam to supply the load at 

a minimum cost of delivered power is the short-range study, which 

is the main concern of the present one at hand. Stated briefly the 

short-range problem resolves itself into the determination of the 

optimum load allocation among hydro and thermal stations, all of 

which have peak capabilities, while the hydro stations are constrained 

to use a specified amount of water. The reservoir storage capacities ar( 

small so that over the span of 24 hrs the variation in withdrawals 

caused significant variations in head. The permissible variations of 

withdrawals and discharge are confined to boundary intervals. The 

reservoir is assumed to be located in close proximity so that the 

transmission losses are relatively small factor in an optimum schedule 

for the hydro plants. 
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In the combined system operation the problem appears 

to be a variational one and thus the main objective is to minimize 

the integrated fuel cost of thermal plants. This has to be 

achieved only by the well-planned usage of water to attain maximum 

economy. The complexity of this problem is due to the variety of 

constraints to which they are subjected. The method of solution must 

be able to produce schedules fast enough so that they may be used on 

daily basis. 

1.2. GENERAL REVIEW:- 
Since last many years different techniques have been 

developed for the solution of the problem and also have been applied 

successfully to several existing systems in operation. Pierre Mass e 

formerly of the Electricitede France, is among the originators of 

these methods. He is concerned with pperations over long period 

of time. The complexity of this decisive problem is due to its 

stochastic nature. 

Upto 1955 very little had been published relative to 

optimum loading of combined hydrothermal system. The major 

step in the solution of this problem was the development of classical 

calculus of variations [141 [251 [26], [27} gradient methods [2] 

[24]; Dynamic. programming [ 6J, [7 ] , [26 ] and the maximum principles 

of L.S. Pontryagiri's [153,[19], The real difficulty in adapting 

the calculus of variation approach to any existing physical system 

is that all variables must be made time dependent. For a typical• 

hydrocubic plant, this leads to complicated expressions, subject 

to many non--linear constraints. Though in some cases the Lagrangian 

multipliers and adjoint variables have identical appearance and also 

have the similar treatment, but the correspondence between them 

breaks down when the magnitudes of forcing functions are limited; 
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such cases cannot then be handled by classical calculus of variation. 

Prof R.J.Cypser [24] has derived a relation for the load 

division among hydro and steam. stations, the hydro being subject to 

water restraints. Cypser's relation is non-linear, and.thus does 

not lend itself to a solution either by Numerical iteration or by 

meang6f an analog computer of Network Analyzer type.,John J. Carey 

[11] has tried to linearize Cypser's relations so that it may be 

solved by algebraic methods etc. He has ignored minimum loading or 

peacking capability of the individual plant in the methematical 

formulation of the optimum loading. problem: In the problem a total 

generation curve is assumed instead of a total load curve. In the 

analysis the consideration of all operating restraints with the 

exception of that on water usage has been omitted to simplify the 

mathematical formulation. 

V.S.Shakhanov(Moscow) [43 has argued that the method of 

relative increments should be adopted as the theoretical basis for 

computer programming. For the past fourty years ever since the 

work of some authors, the mathematically substantiated variational p 

principle of equal differential. consumption of fuel (or water) 

has been used for determining the economical load distribution 

between individual units at stations-and between stations in the 

Power systems. ( Without exception, this principle is the foundation 

of all methods and means of load distribution proposed in every part 

of the world; the works of Bolotov, Kirchmayer etc., including 

the "method of relative increments* and the methods which employ 

the operation of "gradient descent". 

L.K. Kirchmayer in his paper [14] alongwith several other 
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authors h .ve used variational methods to develop coordination 

equations for use in the digital computer solution with series plant 

multiple chains of plants, and intermediate reservoirs. These 

techniques have been applied in a program which integrates the 

hydraulic and steam resources upto a week's period. The output 

consists of hourly plant loading which will provide onerations at 

minimum fuel costs. The computer program developed for the solution 

of this problem requires as input: (1) gas fuel availability at each 

steam plant hourly, (2) gas and oil fuel prices at each steam plant 

(3) incremental heat-rate curves for each steam unit, (4) Hydro and 

steam unit availability and minimum and maximum hourly capability. 

(5) estimated system hourly load demand, (6) incremental water rate 

curves for each hydro plants, (7) desired storage water releases, an 

(8)Transmission loss coefficients. A mathematical model is construct 

where by means of conversion coefficients, the hydro curves are 

effectively converted to incremental plant cost curve. The computer 

proceeds to simulate economic system operation in hourly steps in 

accordance with the theory of equal incremental costs. At the end of 

the specified time interval, the water withdrawn is compared with 

that scheduled for withdrawal. The conversion coefficients are 

adjusted and the search repeated untill the computed amount of water 

withdrawn are equal to that scheduled. 

A.Arismunandar and F.N.Noakes, have also derived [13] 

time dependent functional equations using calculus of variations. 

Necessary and sufficient conditions are given to establish the fact: 
The paper proves that several previously developed equations for 

short-range optimization are equivalent, and that these formulae 

are simplified forms of the general equations developed here. 



U 
While other variational methods solve problem in a point by point 

manner, his approach solves for whole interval to be optimized as 

integral units. It formulates four necessary and three sufficient 

conditions to guarantee the attainment of the required optimum 

solution. The first necessary condition is given in the form of 

general equations for the thermal and hydro plants, while the 

other six conditions are actually tests to establish this true.  

optimum. The third necessary condition is given in two identical 

forms to allow flexibility in whatever computational method may 

be employed. Du ie to variable end point problem to be complex, only 

fixed optimizing periods are condidered. 

The more successful study of the problem is extended by 

several authors including B.Bernhotlz, using dynamic programming. 

Anstine in his article [31 has used Dynamic programming with 
successive approximation to determine optimized dispatches for the 

operation of two series connected variable head reservoirs. B. 

Bernhotlz published several papers C6a,[7a,1$7,[9], [10] concerning 
the present problem and deal with the equally important but 

mathematically neglected problem of economic operation of an electric 

power system over short-period of time, say 24 hours. An iterative 

procedure for determining economic daily schedules is presented, 

in which successive system schedules are determined each yielding 

a greater profit than the preceding. A realistic model of part 

of the system operated by Hydro-electric power Commission of 

Ontario contains 16 sources of generation. Because of the constraints 

on water usage, each hour's operation cannot be considered separate-

ly so that the problem involves 16 x 24 = 384 variables. 

The author has extended his wok in six parts. While in 
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previous two papers the author describes how to obtain the minimum 

minimorium by using an iterative procedure in which successive 

hydro schedules are determined with the property that the correspond-

ing minimum costs of thermal generation decreases monotonically, 

in these papers, the iterative procedure is explained in terms of 

examples and restricted to system with one thermal station and a 

number of hydro stations. In his 3rd part of scheduling the thermal 

sub—system using constrained steepest Descent governing equations 

of some complexity have been derived using classical variational 

method, and employing Lagrange multipliers, but a completely 

rigorous solution had yet to be given because of the omission, in 

forming the problem, of inequality constraints fixing the ranges 

of station outputs. To include these he has used an alternative 

approach, called "Constrained steepest descent" or. the "gradient 

projection method". The problem of determining which unit to 

operate is not treated here. It is assumed that the unit to be 

operated, and the times they are brought on and taken off the time, 

are known. Second part of this paper shows how to utilize the 

result of first paper in scheduling a system consisting of any 

number of fixed head hydro stations and any number of steam stations. 

In the ninth article the maximum station output is approximated by a 

concave differential function of discharge. In the last publication 

of his paper the criterian of an optimum schedule is maximum system 

profit rather than maximum fuel cost on assumption that the energy 

may be brought and sold across inter-connection. 

Recently the computational approach to the problem of 

most economical operation has been made by a few authors employing 

L.S. Pontryagin's maximum principle. E.B. Dahlin and D.W.C.Shen 
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have done remarkable work in the field and have considered all 

possible aspects coming into system operation. They have also 

considered river transport delay and wave phenomena in this 

dispatch formulae. Hano etc. in their paper [19 ] have presented the 

solution for economical operation of a simplified model system and 

the long term operation of a multi-reservoir system. The relaxation 
method is successfully applied to the solution of optimal water 

usage policy. He has also made comparison between the maximum 

principle approach and dynamic programming. 

From the computational analysis of the problem it has 

become evident that the maximum principle is a powerful tool, in 

comparison to other computational procedures, not only for the 

treatment of engineering problems, such as time-minimal control of 

servo-mechanisms, but also as a new technique of mathematical 

programming for the treatment of problem in mathematical economics. 

The study underlying here at hand is to utilize the 

maximum principle by Pontryagin [1J . The most outstanding advantage 

over several others is its great generality with respect to ' 

permissible system characteristics. Only dynamic programming has a 

similar range of application. The two-point boundary problem always 

arises in the problem of optimal control, whether one uses classical 

calculus of variations or Pontryagin's equations. It is the major 

difficulty of the method. Pontryagin's principle have been greatly 

effective fort the successful results in the problem of terminal 

control of Servomechanism. 

Uptill now a very few applications of the maximum principle 

as a new approach to mathematical programming, have been made. 

Everyone finds difficulty in determining the initial values of the 

adjoint variables to a system. As will be shown later that the 
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Maximum Principle in Association with a Gradient Technique for the 

determination of optimum control and Trajectories has been found 

most rapid and accurate method to overcome these difficulties in 

comparison to other procedures. All the additional Complexities 

arising due to the movement of state and central variable within 

the permitted boundary have been effectively anticipated. Actually 

these are the obstacles in easy application of this method. Some 

modifications are made by changing the hard constraints into soft 

constraints and also making use of some inherent properties of the 

problem. 



CHAPTER-II 

THE MAXIMUNI PRINCIPLE APPROACH TO THE DISPATCH PROBLEMS 
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2.1. STATEMENT OF THE PROBLEM:- 

A combined hydro-thermal system can be operated 

optimally with respect to fuel cost. This leads to an integral 

type of cost function which can be minimized with methods like 

Pontryagin's maximum principle. A degree of complexity is 

introduced by consideration of variable heads at the hydro station. 

The object is to obtain an optimum allocation of generated power 

to meet load requirements which act as a constraint on the 

problem. 

Daily operation may be considered as a deterministic 

process. Those elements, such as future load demand and water head, 

which are stochastic when viewed in the long term can be assumed to 

be known 24 hours in advance. The complexity of this problem is due 

to the large number of variables and the variety of constraints to 

which they are subjected. The method of solution should be such ths..1 

it can allocate the optimum load schedules fast enough so that they 

may be used on a daily basis. 

Theoperation of the combined system is analyzed for 

different operating characteristic governing on the mode of operatioi 

of the system. For rigorous mathematical analysis a simplified 

model of the system consisting of one hydro station and one thermal 

station as shown in fig. 1. is considered. It is assumed that 

the stations are jointly supplying electric power to a load centre, 

through a system of lossless transmission lines. A prediction of 

future load as a function of time is assumed available and is shown 
0 

in fig. 1A on a daily load demand basis. Likewise, all necessary 

information with regard to future water availability at the hydro 
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power plants is assumed known. The hydro plant efficiency and 

the incremental cost of the hydro have been neglected. The 

starting cost of the steam plant may be neglected if it is in the 

operation all the time. 

The water storage in the reservoir, the rate of water 

inflow and the rate of water discharge is expressed by the 

following relation, neglecting the effect of overflow etc. 

dxi  
dt = Ji — ui  (1) 

where: 

xi  = Water storage in the reservoir of ith  plant (m3) 

Ji  = water inflow into the reservoir of ith  plant 

(m3/sec.) 

ui  = water discharge from the reservoir of 

ith  plant (m3/sec.) 

The choice of ui  is restricted by its upper and lower limit for 

the hydraulic turbine has its limited capacity specified by its 

rating and therefore ui  is bounded as follows:— 

ui max 7 ui ' ui min 

Where ui max and ui 
min are the upper and lower limit of 

the discharge, respectively. 

The hydraulic head is dependent upon the reservoir 

capacity and thus, the pourer output of the hydro plant may be 

expressed as 

IVi  _ f (xi,ui ) 	 (2) 

where 	i = 1,2 ........r 

Wi= hydro power developed at the ith  plant (megawatts) 
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Since the total generation of the combined system equals the 

total load demand on the system at that instant, the power balance 

equation 
N 
XSi+ 	i =D (~) 

	
(3) 

Where: 

N = total no of steam plants 

Si = Steam power developed of the 2th steam plant(~lffws) 

D(t) = Total load demand at time t(megawatts) 

It is also specified that the steam unit operates with 

both maximum and minimum generating limit i.e. 

Si max > - Si 7 Si mirz 

Where: 

Si man and Si min are the maximum and minimum limit of 

the steam unit for operation. 

The problem is to determine the drawdown at the 

hydro stations and the generatinn of the steam units over the opti- 

mization interval under the condition that the total fuel cost over 

the optimization interval is minimized and the total generation 

of the systems equals the total load demand. 

The objective can be stated in mathematical terms 

as the minimization of a functional 

,-  
f0 =~Fi (Si)dt 	 (4) 

0 

INhere : 

T = length of optimization interval (time) 

Fi(Si) 	= Cost per unit time of operation of steam unit 

No. i (Rs/time) 
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The minimization of the functional has to be achieved 

for steam generation and the water discharge as control variables. 

The choice or control ui  is to be determined for a given load 

demand D(t) and the initial and final storages of water as 

xi(0) and xi(T), respectively. 

It is convenient to define a new variable 

x0(T) = 	 T 	F±(Si)dt 	(5) c-i 
' 	 e 

Clearly, x0(T.) = f0 	and x0(0) = 0 

The problem can now be restated for employing the maximum principle 

in the following terms: 

Define a vector X = JXO'X. Xx+1} whose initial and final 'states 

are X(0) _ [x0(0), xi(0), o} 	and X(T) =.{x0(T),xi(T),T } 

respectively, and the dynamics of the systems are governed by the 

following differential equations for a given time—dependent 

function D(t) as 

dx0 _ F
i 1 (S•) 	 (6) dt  

dx- 

dt = J1—u1 	 (7) 

dxr+1   
dt = 
	 (8) 

where the new state variables xr+1  is clearly specified as 

xr+1(0) - 0 

xr+1(T) T 

Therefore, the dynamic system to be controlled can also be described 

by the state equations 
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dX _ f (X,u,t) 	 (9) dt - 

Where X and u are vectors of dimension "n" and "r' respectively, 

r with r ` n . The all initial and in terminal states are specified 

as 

xi(0) = x0(0) , i = 1,2 ......n 

Xi(T) = xi(T), i = 1,2 ......m 	n 	(10) 

Given the system (9) with boundary conditions (10), 

the problem is now to determine the admissible control u which 

minimizes the performance index 
T 	 , 

x0(T) = fL(x.u,t)dt 	 (11) 

2.2  APPLICATION OF MAXIMUM PRINCIPLE: 

With reference to the optimizing condition of the maximum 

principle, which states that optimal control here is the one which 

minimizes the corresponding Hamiltonian function: 

H = p0 	Fi(Si) + 
	

pi(Ji-u1)  + pr+1 	(12) 

where: 

pi  are the auxiliary or adjoint variables. 

From the macimum principle p0 	0 and it is equal to -1 for 

a homogenous adjoint equations which is admissible in the present 

problem. It is also marked that pr+1  is a constant and does not 

influence the maximization of H. The above relation (12) is 

solved further and the problem can, therefore, be simplified by 

considering the maximization of 



in ui space. 

CBH 
U 

Within the boundary, because of minimization. 

M 
	

(14) 
0 

N 	' 

H' = -- 	Fi(Si) + (13) 

The components of ui are restricted within or on the boundary 

Similarly the components of Si are restricted within or on 

the boundary in Si space. Within the boundary because of minimizat- 

ion. 

3 H - 3 

The adjoint variables, p(t) are defined by the Hamiltonian system 

dx _ ~H 
dt = 	pi - 

(16) 

dpi _ 	_H 	 (17 ) dt 	i 

The applications of the maximum principle are analyzed for the 

following specific cases: 

2.3. SOLUTION FOR SPECIFIC CASES 

The system can be characterised as follow: 

2.3.1 • CONSTANT HEAD HYDRO PLANT 

The computation time and the difficulty of converging 

to the solution is strongly dependent upon the number of 

differential equations and boundary conditions for the state 

variables at t = T 

The hydro power developed is expressed in equation (2) 

as a function of water storage and the water discharge, can be 
approximated by the following relations: 
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'i = HO (1 + cxi ) ui 	 (18) 

Where 

HO = the basic water head (in meters) 

C is the correction factor for the change of water 

head because the hydraulic head will vary with the change of 

reservoir capacity. When the cross-section area of the reservoir 

is very large, then the water head correction factor for the change 

of water storage for the simplified model system will be 

negligibly small. 

. The cost function F(S) can be approximated by the 

following quadractic function of power developed by the steam 

unit i.e. 

Fi(Si) = aiS1 + ai + 1S2 	(1v) 

Since 	dpi _ 	a H 
dt 	-  

With reference to equation (18) 

dpi 	dFi 
dsi HO Cui 

for C=0 we find that 	d ? = 0 and hence the adjoint variable 

pi is a constant. The effect of this can be seen on the increment- 

al cost of the thermal plant. 
Maximizing Hamiltonian function w.r. to ui 

aH 	- 
c~ ui = E • 	Wi a u - pi 0 

i 

dF. 
we find, 	dS 	- the incremental rate of the thermal plant No. is 

i 
pi/ HO(1+Cxi) 
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Therefore, we observe that for C =0 and pi  to be a constant, 

the incremental rate is also constant. 

2.3.2. CONSTANT HEAD WITH LINEAR DISCHARGE: 

Sometimes for simplicity to a great extent, in addition 

to the previous assumption of constant heads hydro plants, it can 

also be assumed that the hydroplants have linear operating 

characteristics, with thich the following equations apply: 

D (-u1) 
w.aW 	- mi 	 (20) 

for i = 1,2 ......r 

where 

mi  = a constant for each hydro plant integrating 

equation (18). 

(Ji  —ui) = In W1 +mi' 
	

(21) 

where 

= constant determined by the known function w1(u) 

Making use of the power balance equation (3) together with 

(13). 
Y 	 Y 

HH = -Fi  (D(t) - 	W1) + Z pi (m1Wi + m1) 	(22) 

It is seen in the above relation (21) that the first term 

is always constant for any variation of 'Ni  as long as E i 

is constant. The last term will have the same property if 

pimi  = constant = K 
	

(23) 

The usefulness of the above relation can be experienced when 

desired for the numerical solution of the problem. 

2.4.GENERAL_ RESULTS FOR THE OPTIMUM LOAD ALLOCATION:- 

2.4.1. Variable head hydro plant with negligible lines losses. 
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The usefulness of the maximum principle is realised 

when it is utilized here for allocation of optimum load among 

the power generating plants. 

For convenience let us assume that Si for 

i = 2, 3 N and W1 for i = 1,2 .....r are 

independent variables. Thus, the power balance equation can be 

written in the modified form 

	

Si + 	S1 + ~1Y =D(t) 

Therefore, from equation (24) 

DS _ 

 

-1. 

7(S1 
. _ -1 
I 

The Hamiltonian function is also written in the form 

	

H' = -F1(S1) - 	Fi(Si) + 	pi(Ji-ui) 

From equation (27) utilizing relation (14) 

aH 	dP1(D1) aS1 aW 
2 u1 = 	dS1 	r 	ui 	i- 

(24)  

(25)  

(26)  

(27)  

or 	dF (S) 	 p 1 1 	 i ------1 = _ 	 (28) dS1 	 a S1 	a W. 

The partial derivative - of equation (18) w.r. to ui is given by 

ai 
~u 	= HO (1 + Cxi ) 	 '(29) 
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Substituting (26) and (29) in (28) we have 

dF1(S1) 	pi 	 (30) dS1 _ HO 1 +Cxi 

where 

dF,(Sl ) 
dS1 	is defined as the-incremental rate of the 

steam plant No. 1. 

With reference to equation (19) 
dF1 (S 1 ) 
dS 	- 	a1 + 2a2...S1 	 (31) 1 

Substituting (31) in (30) we have 

a1 + 2a281 _ pi 

H0(1+Cxi) 

• S 	pi 	- a,~ 	1 (32) 
1 	HO(1+Czi) 	2a2 

Now with Si for i = 2,3 ....N, as another control variables we 
s 

can write from equation (15) as 

-bH 	_ 0 
a Si 

or - 	dam) 	dF 	
= 0 	(33) 

d 1 	asi 	d i 

With reference to equation (25) 

dF1 (S1) 	dFi (Si ) 
(34) 

dS1 dSi 

The relation obtained above in equation (34) establishes 

an important result determining the optimum load sharing between 
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the steam plants. This can be stated: For economical loading, 

the incremental rate of the input cost of each thermal station 

must be equal. 

On the other hand this also shows the advantage of 

using maximum principle in the light of t203 , where the 

rigorous treatment of Lagrangian multiplier is given while arriving 

at the same result. 

2.4.2. Variable Head hydro plant with Line Losses: 

The losses will be function of power transmitted 

through the transmission lines and therefore, the power balance 

relation in this case modified to 

Si + 	Wi - D(t) +L S,w) 	 (35) 

where 

S = N - dimensional vector defining the generation of 

all steam units(megav~atts) 

Irl= Vector defining the generation of all hydro stations 

(megawatts) 

With the above assumption of one steam unit as dependent variable 

we have from equation (35) 

_S1 	 -6L 	a L 	_ S1 
z Si + 	a s; 	+ 	-6 Si 

or 	
S1 _ -(1 -- __ ) / (i - a . } 	(36) 

1 	i  

With reference to equation (33) together with (36) 
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aL 
dF1 (S1) 	(1 - 	dF1(S1) 

dS1 	 (i- B L ) 	- 	dSi 
8 S1 

or 

dF (S1) 	 dF 
dS1 / 	(1 - as1 ) _ ~s 1 / (1 -- as.

x 
) 	(37) 

~.  

The result obtained in equation (37) can now be compared with 

equation (34) where the losses were ignored. We find that one 

extra factor in the denominator of equation (37) appears on both 

sides. This factor has been, called in [20 ] as PENALTY FACTOR. 

Thus, the statem::nt of economical load allocation changes with 

a slight thodification of penalty factor in the denominator of -the 

incremental rate of the fuel cost. 

2.5. SIMPLIFIED MODEL SYSTEM:- 

The problem is simplified considering only one thermal 

plant and one hydro paint jointly supplying a load centre throggh 

a system of lossless transmission lines. The idea behind the 

consideration of this simplified model system is to extend it for 

further investigation of mathematical treatment for satisfactory 

and rapid solution. 

With reference to equation (3) for the existing system 

Si + W1 = D(t) 	 (38) 

The power developes by the hydroplant 

W1 = H0' (1 + Cx1 ) u1 	 (39) 

Equations (3$) and (39) combined together 
D -S1 

U1 - HO(1+C~1)  if 'min  u1  u1 max 
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= u1 max 
	if u1 >,u1  max 

=u1 min 
	if u1 	u1 min 	 (40) 

With the above constraints on the choice or control u1 it should 

be understood that the state variable x1 is also restricted 

between its boundary values. Thus, if the overflow and emptying of 

reservoir is not permitted the state variable must lie between the 

two end conditions. Where the state variable is defined in the 

present case as 

dx1 

dt 	= J1 - u1 (41). 

The power developed from steam plant for optimum condition is 

defined from equation (32) 

S1 — 	p1 	a1 	2a1 	(42) 
HO(1+Cx1) 	2 

The value of steam generation S1 obtained from equation (42) should 

always lie within the steam station generation limits. Supposing 

at any instant the steam generation crosses either of the maximum 

or minimum limit of generation then at that time the water discharge 

or the choice of u1 has to be modified so that it again comes in 

the operating region. 

The adjoint equation which defined in equation (17) 

can be expressed here for one hydro plant as 

L'1 

dp1 	~H 
dt - 	1 

dp1 _ ZH 	as 	aw1 	 (43) dt _ 
- ~ S1 , • W1

•
a_..x1 

s 
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With the above references of equations we can also write as 

dt - (a1  + 2a2  S1) ( -1) (HO u1C) 

= - HO C U1  (a1  + 2a2  S1) 	(44) 

Ultimately we have a set of two differential equations (41) 

and (44) which have to be solved for the optimization interval. 

As it is specified that the state variable x1  has been defined by thf 

relation (10) and therefore, at the end of the optimization interval 

it has to be satisfied and converged to its initial value. 



CHAPTER III 

MATHEMATICAL  TREATMENT OP THE DISPATCH PROBLEM 
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3.1 • TWO POINT BOUNDARY VALUE PROBLEMS: 

Pontryagin's equations defined in equations (16) and 

(17) give rise to the general forms of system equations. For the 

present case of simplified model system which have been expressed 

as 

dx1 	'aH 
dt 	` a p1 

(i) 

and 

`- ~H 
dt  

d - HoC u1 ds F 1 	 (ii) 
1 

where the state variable is--defined as 

X1(0) 	= X1(0) 

X1(T) 	= x1(T) 

Therefore, it is a set of simultaneous differential equations with 

an incomplete set of prescribed conditions. The solution for adjoins 

variable p1 has to be adjusted such that it finally satisfies the 

prescribed boundary conditions. 

For the purpose of numerical solution itis convenient 

to separate ordinary differential equations into two classes, accord-

ing to the position of the associated prescribed conditions. If all 

such necessary conditions are given at one point in the range of the 

independent variable they are usually called initial conditions, 

and the differential system is of "initial value" type. When more 

than- one value of the independent variable is involved the condition 

are called boundary conditions, and the differential system is of 

"Boundary value " type. 
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Here for the state variable x1 , we have one condition 

at each and or boundary of the range of integration. A problem 

of this kind we call a "boundary-value* problem, and this definition 

is extended to all problems in which two separate points are 

involved in the prescribed conditions, here called "boundary 

conditions". 

Two-point boundary conditions arise in all sorts of 

physical problems. In the light of theAbove introduction to the 

2-point boundary problem we find that the load dispatch problem 

analysis with the application of maximum principle is always a 

case of two-point boundary value type. This situation always appears 

in variational problems. 

In the above forms of general equations it is eliminated 

by the minimization of H subject to any constraints. Such generalized 

constraints cannot be included in the treatment by classical calculus 

of variations. 

The solution of (ii) is not complete without a 

specification of the boundary conditions. We have to minimize the 

performance index defined in (11) by choice of u1(t). This 

minimized form of integral (11) is defined to be the cost function. 

V CX (0), 0]= Min 	T  1 	u  1(t) IL (X1,u1,t) dt   

By definition of the cost function V in equation (iii), 

V (x1(T), T) = 0 
	

(iv) 

In other words, the minimized performance integral must be zero 

when the lower limit of integration equals the upper limit. It 

follows from (iv) that 
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dx1  I 	- =0 
t =T 

or 

C p1 
dx1 
	=0  

t =T 

(v)  

(vi)  

Two cases arise: 

(a) Fixed end—points 

x1(T) is specified, hence, because dx1  =0 equation (vi) 

is sptisfied. 

(b) Free end—points 

x1  is subject to variations, dx1  is not zero, and 

therefore to satisfy equation (vi) 

p1(T) =0 	 (vii) 

From the above classifications of the fixed and free end points 

we find that oxer present general forms of equations representing 

the simplified model is a fixed end point two point boundary value 

problem.  

3.2. METHODS OF SOLUTION: 

In the following paragraph we examine some of the 

proposed ways of attacking this problem. 

The methods of finite Differences probably the most 

common approach adapted in the past has been the application of the 

calculus of finite differences, for example Fox [291. He takes 

full account of the difference correction but it becomes a process 

ofsuccessive approximation. Now, in applying the method of finite 

differences to nonlinear equations, an iterative process is required 

in any case. It is probably preferable therefore to avoid an 
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iterative cycle inside another such cycle. The alternative 

approach is the so-called deferred approach to the limit. 

Furthermore, one must anticipate that, because the 

solution may not be unique, an approximate solution may be 

required to ensure that convergence occurs towards the right 

solution. The method of relaxations could be employed but group 

relaxations would be essential. The generalized Newton process is 

perhaps the convenient one and was employed. 

The methods of Linearized solution, steepest Ascent 

(Descent) of the Hamiltonian and Boundary iterations have been 

used for the solution of two point boundary problems but their 

applications are limited for the load dispatch problems. 

Some new methods e.g. Binary Search Technique developed 

in [191 and Relaxation methods for Computer solution disscussed in 
[151 have been applied effectively for the power systems dispatch 

problems using the maximum principle. 

In [19J the authors have mentioned the Binary Search 

Technique to obtain the optimal Control Variable. The Control 

variable first easumes its largest admissible value, and the 

Hamiltonian is calculated. A slightly smaller value is then assigned 

to it, and the corresponding Hamiltonian is computed. If the former, 

is greater, the former control variable is optimal one. If not, 

the smallest value is then assigned to ie, and the corresponding 

Hamiltonian is computed.. Similarly, the Hamiltonian for a slightly 

larger value, say Umin + 4U, is computed. If the former is greater, 

the optimal control is 	If not, the arithmatic mean of the. 



upper and lower limits(umax + linin)/2 is assigned and the 

corresponding Hamiltonian is computed. If H C (um ax + umin)/2J~ 

H [(Um + umin )/2 - . UJ , the optimal control should lie ax  

somewhere between u 	and (u ax + umin )/2. If H [(umax + umin )/2] < max 	m  

H [(umax + umin)/2 - .4U], the optimal control should be between 

umin and (umax + umin)/2' This perturbation procedure is repeated! 

Until the optimal control is obtained with an error of permissible 

order. They have also shown the analytical method to obtain the 

optimal control in the case of the simplified model system. 

Dahlin and She, have also solved dispatch problems 

using maximum principle. They have developed easy relations which 

are very conveniently tackled for computer solution. Hamiltonian 

function for variable head is finally expressed in the same form s ir. 

the problem with negligible head variations. In that case, all the 

adjoint variable were constants. Therefore, the problems is 

simplified further. 

3.2.4. Proposed Gradient Method: 

It is purely a new technique to be applied forthe 

solution of load dispatch problem of power systems. The effectivenes 

of the method is yet to be tested for a practical problems.. A 

means alleviating the difficulty of the determination of a 

suitable initial choice of unknown boundary values is presented. 

Therefore, this removes the major- difficulty of the problem because 

it was the main drawback associated with all method employed so far. 

The complete explanation of the method is given in the following 

paragraph. 
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3$ GRADIENT TECHNIQUTES 

Gradient methods establish only certain necessary 

conditions which must be satisfied by an optimum solution although 

in some cases the conditions also are sufficient. The term optimum 

indicates a solution satisfying these necessary conditions. Some 

where it is also known as an Indirect method. We hc.ve seen that the 

Pontryagin's maximum principle results in a set of differential 

equations which lack a complete set of boundary conditions at each 

end of the solution interval. This gradient technique is employed 

to complete either set of boundary conditions and thereby provide 

the optimum solution. 

Briefly it can be understood as follows: 

The technique uses the Pontryagin's maximum principle to eliminate 

the control variables fromthe system equations. The result is a 

set of simultaneous first-order differential equations which have 

an incomplete set of boundary conditions. In order to complete the 

boundary conditions at the initial or terminal points, an 

auxiliary cost function is introduced. This cost, function is designed 

so that its minimization will lead to a specification of the 

unknown boundary conditions. The gradient method [23] is used for 

minimization of the auxiliary cost function. 

The mathematical application of the gradient method 

is explained in the following steps: 

The Hamiltonian defined in equation(12) can also be written 

H 
s=i 

l 	Pif 	for po  = -1 	 (45) 
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The auxiliary variables, p(t), are defined by Hamiltonian system 

in equation (16) and (17) 

where, 

xi  = fi 	for i =0, 1 .......n 

Application of maximum principle provides relations, frequently 

explicit, from which each component of Control Variable (u) may 

be determined, given t, x and p. In general, it is not possible 

that u can be solved explicitly in terms of X(0) and p(0) 

satisfying equation (10) . It is, therefore, proposed to determine 

p(0) by gradient technique. As stated above in order to accomplish 

this technique, a secondary cost function involving the specified 

terminal conditions is introduced. 

If Vectors X and p are combined to form the 

2n + 2 dimensional Vector 

Y 	X J
_ p 

then this cost function may be defined as 

+l 

= 	AiEi [ yi(T)  - 	(46) i=c 

The Ai's are constants which are zero for those final states which 

are unspecified. Typical Ei  are 

E1  _ 

 

[y1(T) - yi(f) 	2 

(f) n 
E  . 	lyi (T)  - y2 	I 	; n, I positive integers. 

y.(T) and y(f)  are the terminal value of y at the end of the i 
optimization interval i.e. at t = T and the final specified value, 

respectively. 
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Provided that the terminal condition (10) can be 
achieved, it is clear that emin =0. If the y(o) producing this 

minimum is found, the corresponding y(t) is the optimum 

trajectory. In attempting to find the proper  y(o) by an iterative 

procedure, supposing that at the jth step, someestimate, namely, 

yl (o)', does not minimize (46) 	, 	i.e. ~ 	0. A change in 
designated  	 ~ _ d,yl(o), is then desired such that c~ ` ~_ (<O 

Expending  ~' about  yX(o), 

_ 21 [ y ~ (o) -+ higher order terms. 
 1 

a=a •.... (47) 

The heightr order terms may be neglected provided the vecotor 

length  11A y't(o)lf is sufficiently small. The condition 

Q 6? < Q is then satisfied if 

Q yi(o) _ —K~ 
[Dyi(o)

i=1,2 ...2n+1 

 ••• 	(48a) 

or 

y(o) = —K'GRADt~ 	 (48b) 
y( o)J 

The notation GRAD JY(0)J'C~ signifies the gradient of C-a_ with 
respect to y(o). Equation (48) expresses a suitable choice for 

'6 y (o) , provided K, is sufficiently small. The choice of K;, 

Ai and Ei have got remarkable effect on the convergence properties. 

GRAD 6 i is now determined as follows: 

Let us assume first that the maximum principle yields explicit 



and 

.[Fi II _ 	J _ Fj (t) ki   (53{ 
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functions u, u = u(x, p,t). These relations may be usedto 

eliminate u from 16 & 17 with the result that 

- 	X = g (Y, t) 

It is proved that [28J 

GRAD ej= d1(o) 

EYoJ 

where 

d!' (t) = -F~ (t) da(t) 

(49)  

(50)  

(51)  

d (T ) _  
L ykT) 
	3 k =0, 1, ...2n + 1 (52) 

Equation (51) represents the adjoint system for the linearized 

form of (49) . The term of (53) are evaluated from knowledge of 

?(t). Starting with the boundary condition (52), (51) is 

numerically solved backward from T to 0 yielding dk(o) which 

together with (48) and (50) yields the desired increment a Y!(o). 

Commencing with an initial choice of p(o), the p 

components of Y(o) are successively adjusted using (48) until the 

auxiliary error function is arbitrarily close to zero. Alternatively 

iterations may be continued until successive p1(o) are arbitrarily 

close. 
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3.4. GENERAL EQUATIONS OF THE SILFLIFIED MODEL 

The boundary conditions prescribed for the variables 

are "hard" constraints and the solution is not feasible with the 

application of the gradient technique. It is, therefore, desired 

to modify these "hard" constraints into "soft" constraints. 

Introducing a new control variable 

u1  = u1  - ('max + umin)/2 
	(54) 

and state variable x1  is modified to (Xi 	2m 

X 
where 	 1  

3E1  = the upper limit of the state variable x1  

m = a constraint ' 1 

It is now intended to employ the arctan function to simulate 

saturation of the forcing function, instead of using the constraint 

U1  14 1 on the simple term u1  
For the existing system there is a set of simultaneous 

differential equations expressed in equations (41) and (44) which lac 

a complete set of boundary conditions at each end of the solution 

interval. In order to complete the boundary conditions at the 

initial or terminal points, an auxiliary cost function is introduced. 

Thus, defining cost function. 

dx 	x1 	2m 

dt 	= 	X 	+ F1(S1) 	(55) 
1 

The cost function is designed so that its minimization will 

lead to a specification of the unknown boundary conditions. 

From power balance equation 

KHo  (1 + Cx1)u1  + 1 = D 	(56) 
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where K is the conversion factor from Kg.m. to Mw. 

Therefore, 

S1 = D - KHo (1+c 1) u1 	(57) 

The state equation (41) is now modified to 

dx1 ` 	umax-umin tan-1 u1 _ umax+umin 
dt 	1 	n 	2 

.... 	(58) 

If the cost function F1(S1) in equation (55) is replaced by its 

quadratic function of thermal power developed, it becomes 

dxo 	x1 2m 	2 

dt 	x
1 

) 	+ a1  S1 + a2 ~1 

Substituting for S1 from equation (57) 

dxo 	x1 12m 

dt 	

- (x1 )2m 
x1 j 	+ a1 	D - KHo (1 + Ox1)u1J 

2 
+ a2 ~ D - KHo (1 + Cs1 ) u 

(59)  

(60)  

Eliminating u1 from above for its assumed function of arotan 

dx 	 x 2m 	u 

dto 	x ` 	+ a, D-KHo (1+C x1) ( mx min tan-1u1 
1 	 \ 

+ uminl 
2 	J 

um umin -1 	umax+umi. + a2 D -KHo (1+Cx1 ) ( 	 tan u1+ 	2 )j 
.... 	(61) 

For simplicity let D-KHo(1Cx1)I U - U. tan-1u 1+ umax+umin 1 
` 	7T 	 2 	J 

= (A1) 
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Using the Maximum principle the Hamiltonian is 

2m 

H = 	+ a1(A1) + a2(A1)2 

1 

+P (J _ umax+umin 	umax umin 
tan 1u1 ) 1 	2 	 ~t 

. . . . . . . . 

Now u' to maximize H 

-bH 	=o b u' 

(62) 

or 0 = -a1 f KHo (1 +Cz1 ) K1 r-1 --  ,2 u + 1 

-a2[A1 )2 

-KHo (1 + CX1 ) K1 	1 	_p1 K1 
, 
u2 +1  

where, 

K _ umax %in 
1 	 ]1- 

umax+umin K2 = 	2 

p1 
or a1 + 2a2 (A1) _ 

KHo(1+Cx1) 

or 

1 	p1 
(A1) = 	2a2 	KHo( 1+Cx ) 	rat 1 

1 

u'2+1 

Substitute p1/KHo (1 +Cx1 ) = (B1) 
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KHo (1 +Cx1) (K1 tan-1 u' + K2) 

=D- f (B1) -a1 1 	
2a2 

1 

K1 tan 1 u' + K2 = KHo 1+Cx 	{(B1 )  -a1 	1 
1 	2a2KHo(1+Cx1) 

or 

tan-1 u' _KKDHo(1 +Cx1 ) - ~ (B1) -all a KK Ho +C 	K2 1 

...... 	(63) 

Substituting for u' in(61) 

dxo 	x 2m• 

dt 	1 (x )+ a1 	} -a1 3 	1 
1 	' 2a2 

	

+ a2 [((B1) _a13 	
1 2 

2a J 2 

or 
2m _ 	

1' 
dxo 	

/ 	+ 	(B1.
) 2 	a2 dt 	( x 	4a 	- 1 3 	(64) 

	

1 	 2 

Equation(58) after eliminating u' becomes 

dx1 
=J-K._ 	D 	f(B ) _a1 	1 

dt 	2 	KHo 1+Cx1 	+ 	1 	1 	2a2KHo 1+Cx1) +K2 

or 

w 

C 
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or 

dt 	` J 	KHo(1+Cx ) E D  f(B1 ) -a1} 2a 	(65) 
1 	 2 

Sinc.e 	dp1 	-0 H 

	

dt 	7c x1 
or 

2m-1 

dtlr  xm 1+ a1  f-KHo (K1tan u' + K2)C 3 
C\x1 J 

+ a2  2(A1) f -KHo (K1tan 1u' + K2)CJ 

or 

rx1  
dt 	5E1 	l x1 

CD 	p1 
- 	1+Cx1  ) 	KHo 1+Cx1 ) -a1 2a 1+Cx 2 	1 

[a1+2a 2 f(Bl ) _a13 	1  
2a2  1 

or 
2m-1 

dp1 2m  fl 
dt - x1  

dpo  _ 
dt ` 

CD 
- 

(B1)  L 1+ex1) -(B1) _ail 

C 	 (66)  
2a2(1 + Cx1 ) 

(67) 

(Since po  = -1) 

It is observed that the above,. set of differential 

equations represents a non-linear system, not only because of 

arctan (u'), but because of the performance integrand when 
m > 1. 



These four differential equations 11,12,13, 	and 14 

are, in general, characterising the simplified model of the 

system. The actual numerical solution is accomplished in the 

following steps. 

3.4. CONSTANTS CHARACTERIZING THE SIMPLIFIED MODEL SYSTEM 

Constants Nomenclature & Value 
Unit 

Maximum water storage i1  (m3) 115.2 x 104  

Minimum water storage x1  (m) 0 

Basic Water head Ho (m) 20.00 

Maximum water head Ho (m) 28.00 

Maximum water discharge u(m3/s) 130.00 

Minimum water discharge um  m3/s) 2.00 

Maximum hydraulic output W (Mw) 35.85 

Maximum thermal output S (Mw) 30.00 
'maK 

Minimum thermal output S 4(Mw) 0 

Water inflow J(m3/s) 100.00 

a1  a1  (Rs/lbw.Sec. ) 2.75 

a2  a2  (R.s/Mw2.Sec) 0.052 
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3.5. NUNLERICAL SOLUTION 

The set of differential equations representing the 

model have to be solved simultaneously. The solution obtained will 

give the optimum operating point at a certain instant. 

After. eliminating it, from (16) and (17) making 

use of the Maximum principle, for its explicit function, we have 

obtained: 

r  dyo 1 	[ dxo  

dt dt 

dy1  dx1  

dt dt 	- 

dy2  dp0  
dt dt 

	

dy3 	dp1  

	

dt 	dt 

= g (y,t) 

(B1) = y3/ Kilo (1+Cy1 ) for x1  = y1  and p1  = y3  

or 
2m 2 

dto 	+ a-  ((B1 )2  - a1 } (Y 	.4 1 	2 

dy1  
dt - 

dy2 
dt 

dy3  

dt 

1  - KHo(1+cy1  ) ED  - `(B1 ) a1} 2a2 

n 

2m-1 

	

ym 

	

	
/Y4\ 

	 - 

(B1) (i+c 1 ) -I(B1)  - all 

	

1 	1  

C 	(68) 
2a2  ( 1 +Cyy 

The numerical solution of (68) is accomplished simultaneously in a 
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step-by-step method of integration 

i.e.  yn+ 1 = yn + Yn 	 (6 9)  

Thus, an initial guess value of y3 is assumed which is in the 

• present case y3 = 0.01 and a nominal trajectory is obtained for 

yJ for the optimization interval of 24 hours or a day. It is 

observed that the terminal value obtained for y1 does not converge 

to its fixed boundary value. A complete computer programme on an 

IBM 1620 has been written and shown in Appendix for the forward 

numerical integration of the above set of simultaneous differential 

equations. 
Since the boundary condition is not satisfied an 

iterative procedure is followed for the initial correction of the 

guess value of y3. this procedure of initial guess value modifieatio: 

is followed in the following equations: 
With reference to equation (53) 

or P(t) 

F~(t)  
L~Yk J 

-bgo 	-0 go agoo 
Y 	aY1 ~Y2 	_bY3 

ag1 lb g1 -g1 _g1 
ayo ZYl Y2 "bY3 
-0g2 -g2 a g2 ag2 
by0 "aY1 _bY2 `aY3 

g 	 • 	 g3 

.e a y0 	-b y1 	2 	-y3 (70) 

I52 3 
.k( 4t Uikt: 	,:ir k5/1Y i 

ROORKL. 
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Equation (70) when treated with (68)'yields 

0 	-0go 0 	_go 
'0 yo 	'Y3 

_ 0 	'ag1 0 	-091 
F~ (t) 	 _Y1 	 -0Y3 

0 	0 0 	0 

0 	-Og3 0 	-6g3 
_l 	 -0Y3 

Denote (B2) = 	C 

KHo(1+Cy1)2 

ago 	2m 	y1 	 B B --- 	
2m-1 _ 

	

-r- 	 1 	2
- 	 )-6Y1 	Y1 	Y1 	2a2, 

_ 	Y3(B2) 

-OY3 	2a2KEoC 

~g1 _ 

	

Y1 	(B2) f D - (B1)/a2 + a1/2a2} 

2m-2 
-b g3l __ 2m(2m-1) 	) 	+ 	(B2) y3C 

	

by 	" Y 

	

1 	(y ) 2 1 	(1+Cy1) 
1 

f2D  + al/a - 	(B1 )/2a
1 2 

'D g3 
Y 	(B2) 	-D - a1/2a2 + (B1 )/a2} 	 (72) 
3 

From equation (51) we have 
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"d 	' 0 -6ga 	0 ago d 

0 
. o eYo a Y3 

d1 0 ~g1 	0 d1 
aY1 -6Y3 

d2 0 0 	0 0 d2 

a3 o ~g3 	o ag3 d 
ay1 ay3 

... ... (73) 
where 

represent the first derivative with respect to t 

at jth 	step. The initial values of d for backward solution i.e. 

to say that at time T, d is determined from equation (52) which gives 

dk (T) = E 
LYT J k ~ 

k _0,1  .....2n +1 

where 
the auxiliary error function £ is assumed as 

=(y1 (T) 
2 

- 106 

Therefore, we find from above relation that 

do(T) = 0 

d1(T) = 2(y1(T) —106) 

d2(T) = 0 

d3(T) =0 

Equation (73) which has to be solved backward can now 

be written in the following modified form 
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0 	2m!1 
2m-1 (B

1)(B2) 0 	Y (B2) 	:1 
Y CY 1 	1 	2a2 	2a2KEioC 

0 	(B2) f D-(B1 )/a2+a1/2a2} 	0 	1 
2a2 K2Ho2(1+Cy1)2 if 

d2 	0 	0 	 00 

d3 	0 	2m 2m-1 	Y1 2m-2 	0 	-D 

1 	y1 

(32)y 3C 	-a1/2a2+(B1)/a 

+ (1+Cy )
12D+a1/a2 -3(B1)/ 

1 

2a1 

Thus, the equation (75) is solved backward on the nominal trajector 

obtained from equation (68) with the initial conditions at t = T 

given in equation (d1). Therefore, from the value of d obtained 

at t =0, the relation (50) is established because•dO(0) is now 

known. 

Once GRAD [y(0)3. 	is known, Qy~(0) is calculated. 

Where in the present problem k, is assumed to be one. 

No 

d1 

A 

d, 

d; 

d, 
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The complete computer programming is shown in Appendix. 

After making increment of A y3(©) in the initial guess value of 
y3, the forward solution is again started. This process of 

iteration continues till it converges to its optimum value. The 

optimum trajectory for yJ which is thewn in fig. (3). 

From this optimum fibra jectory obtained for x1 , the 

control variable u1  is determined and the optimal control is 

plotted in fig. (4)-. The optimum load sharing of each plant on 

hourly basis have been shown in fig. (5) and (6). 
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CONCLUSION 

The previous Chapters have presented a brief 

discussion of the problems involved in optimizing the load 

dispatching of a combined hydro thermal power system. A new techniqu 

utilizing Pontrragin's maximum principle, has been suggested for the 

numerical calculations of the solution. 

One of the main advantages of the suggested gradient 

technique in association with the maximum principle was found to be 

the ease with which the iterative procedure would be started. The 

difficulty actually experienced with previous methods was thus slow 

rate of convergence if the initial choice of the starting values 

were not suitable. Thus, for example, the method of finite 

differences requires the selection ofa priming trajectory and two 

separate computations in order to carry out A2-extrapolation. 

Similarly the binary search technique presents a laborious and 

time consuming method. The gradient technique, on the other hand, 

was able to converge quite rapidly to the desired solution even when 

the initial choice of the boundary values was very different from the 

final- value. Thus it look only four iterations to arrive from an 

initial choice p = 0.01 to a final value of p_ 56.3862 

However, a disadvantage with the present technique is 

its inability to handle "hard" constraints directly instead of 

changing them to "soft" constraints. Considerable computational 

difficulties were experienced in trying to make the "soft" 

constraints approximate the given actual constraints to a reasonable 

degree. In a numerical problem, for example, the computer over-

flowed for m '4. It is felt, however, that the gradient techniques 

offer a considerable improvement in ease of computation over the 

techniques being used so far and that further investigation along 



these will prove to be useful, especially if the present technique 

can be modified to handle"hard"constraints directly. 

The usefulness of the maximum principle is well realised i 

physical study of the system. For instance, some important features 

of mathematical analysis are directly giving the behaviour of the 

systems operation. The incremental rate of the fuel input to the 

thermal plant was found to be constant for the water head correction 

factor C =0. This shows that the thermal output will remain constant 

as a function of time when it is in the combined operation of hydro 

plant whose water head variations are negligible. 

In numerical solution it was observed that the value of C 

was very small and therefore, it produces less effect to the rate of 

change of thermal output. Another important point to be noted with 

the reference of the relation of incremental cost of thermal plant is 

that with the decrease of water level the incremental cost increases 

or the thermal output. The system load fluctuations for the short 

period is met by the hydraulic plant. The optimal load sharing of the 

steam plant is depicted in fig. 6 which shows a small increment in lca 

sharing when there is decrease in water level and, therefore, the 

total load fluctuations have been absorbed by the hydro powet plant 

as shown in fig. (5). 

Although the computational analysis is limited to a 

simplified model system, this procedure may be extended to any 

number of systems in the combined operation. Naturally, the complexiti 

of the problem will increase due to more numberlvariables and 

varieties of constraints. 
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COMPUTER PROGRAMME ON IBM 1620 

THAKUR EBD UOR NUM SOLUM. 

DIME SION D(24) Yo (25), Y1  (25), Y3(25) 

DIMENSION D5(25), D1 (25), D3(25) 

READ 3, (D(I), I = 1, 24) 

READ 1, A1 , A2 , PH, YM1  

FORMAT (6 F 10.0) 

FORMAT (4 P 16.4) 

C = 0.4/1152000. 

DELT = 3600 

Yo(1)= 0. 

Y1 (1)= 1000000. 

Y3(1)= 0.01 

Y25  = 1000000. 

DO 2 I =.1,24 

F12  = (Y1 (I)/YM1) 

F1 	= F12 * F12 

X1 	= F1 * F1 

F2 	= PH * (1 +C * Y1(I)) 

FF2  = 1./(1. +C * Y1 (I)) 

F3 =  

FF3  = F3  - Al  . 

F4 	= (0.25/A2) *(F3 * F3 F3 	Al * A1) 

F5 	= D(I) - FF3/(2.0 * A2 ) 

F7 	= 4•/Y1 (I) * X1. 

F8 	= C * D(1) *FF2  

F9 = (FF3 # FF2 C * 0.5)/A2 

F10  = (F8 - F9) * F3 

Cl 	= 128./3.14159 



J1. 

C2  = 66. 

DELYo = X1  + F4  

DELY1  = 100.0 - F6 

DELY3'=F7=F10 

F 	= (D(I)(C1*I'2)) - FF3/(2.*A2*C1*F2 )-C2/C1  

JF 	= F* 0.159195 

AJF = JF 

AF 	= AJF *2.* 3.14159 

F 	$F-AF 

I1 	= I + 1 

Yo(I1 )= Yo(I) + DEL Yo * DELT 

Y1 (I1 ) = Y1 (I).+ DEL Y1 	DEL T 

Y3(I) = Y3(I) + DEL Y3* DEL T 

U(I1 ) = SIIyN F(F) / ( cos (P)) 

PUNCH 100, 11 ,'Yo(I1 ) , Y1(I1 ), Y3(11 ),U(I1 ) 

100 FORMAT (13 , 4 E15.6) 

CONTINUE 

DIF = Y1 (25) - Y25 

IF (ABSF(DIF) - 50000.) 5,5,6 

S 	DEL T1 	= - DEL T 

D5 (1) 	=0 

D1(*) 	= 2.*D1F 

D3(I) 	= 0. 

D0 (I 	= 1, 24 

J 	=26-I 

E2  	F2 *F2 

EE2 	= Y3  (J) * CCE2  

EEE2 	= EE * FF2 



E3  = EEE2/2. * A2 

EE3  = Y3(J)/2. * A2ikA~*E2 

E4  = C/F2 

EE4 =E4 *FF2 

EEE4 = F3/A2 

EF2 = 1 ./2 t A2 * E2 

EF3 = C * y3 (J)* EE4 * FF2 

EA1 = 2. 

EF4 = 3. * F3/2. * Al 

EE5 = EF3 * (2. * D(I) + EA1 - EP4) 

EE6 = (D(I) - EEE4 + EA) 

E6 = EE4 * (-.EE6 ) 

E7 = EE4 * (D(I) - EEE4 + EA) 

E8 =F7 -E3 

E5 = (12 ./(Y1 (J) * Y1 (J))) * X1 + EE5 

DEL D5 = - E8 * D1 (I) - EE3 * D3 (I) 

DEL D1 = -E7 * D1 (I) - EF2 * D3 (I) 

DEL D3  = -E5 * D1(F) - E6 * D3(1) 

D5(11 )  = D5(I) + DEL D5* DEL T1 

D1(I1 )  = D1(I) + DEL D1 * DEL T~ 

D3(I1 )  = D3(I) + DEL D3 * DEL T1 

PUNCH 300, I.1, D5(I1 ), D1(F1), D3(I1 ) 

.00 FORMAT ( " 13 3 E 20.8) 

CONTINUE 

Y3(#)  = Y3(1) + D3(25) 

GO TO 8 

STOP 
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Input  Data 

40. 40. 40. 40. 45. 45. 
45. 45. 55. 55. 55• 55. 
50. 50. 50. 50. 35. 35• 

35. 35. 30. 30. 30. 30. 

120 2.5 0.196 1152000. 
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LIST  OF THE FINAL RESULTS OBTAINED: 

Time in 	Optimum Water storage Adjoint Variable 
Hour y1  = x1  4  y3  = p1  

(In multiple of 10 ) 

0 100.0000 56.3862 

1 100.3770 56.4173 

2 100.9230 56.7056 

3 101.8250 57.9142 

4 102.2860 58.2068 

5 102.8380 58.3172 

6 100.8720 58.0683 

7 97.9235 57.7464 

8 96.2123 57.2933 

9 94.2866 56.8263 

10 87.6523 56.5828 

11 81.0189 56.4256 

12 83.1576 56.4662 

13 83.3842 56.4782 

14.  83.9852 56.4886 

15.  87.6287 56.5069 

16.. 95.1824 56.5292 

17.  98.2101 56.5998 

18.  98.8921 56.6086 

19.  99.7658 56.6288 

20.  100.0860 56.6980 

21.  100.1220 56.7128 

22.  100.3680 56.7338 

23.  100.6820 56.7421 

24.  100.8680 56.7928 
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LIST OF THE FINAL RESULTS OBTAINED (Contd...) 

Time in Optimum Optimum Optimum 
Hour Discharge LL1  hydro power -  Steam power 

developed. 	VW in Mw developed S in Mw. 

0 81.15 21.40 18.60 

1 80.40 21.20 18.80 

2 80.20 21.00 19.00 

3 77.00 20.40 19.60 
4 76.60 20.20 19.80 

5 94.00 25.18 19.82 

6 95.00 25.05 19.95 
7 95.50 25.00 20.00 
8 96.50 25.00 20.00 
9 128.50 33.60 21.40 
10 129.20 33.58 21.42 
11 129.30 33.52 21.48 
12 128.20 33.25 21.75 
13 116.80 30.25 19.75 
14 116.80 30.25 19.75 
15 116.78 30.24 19.76 
16 117.10 30.60 19.40 
17 61.80 16.40 18.60 
18 61.80 16.40 18.60 
19 60.20 16.20 18.80 
20 60.21 16.20 18.80 
21 41.70 11.00 19.00 
22 42.30 11.12 18.88 

23 42.20 11.12 18.88 

24 42.80 11.40 18.60 
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