
ANALYSIS OF PROTECTIVE RELAY, 

PERFORMANCE BY MEANS OF 
RELIABILITY THEORY 

A Dissertari©n 

submitted in partial f4ohnent 
of the requirements for the Deg-Pee 

of 

MASTER OF ENGINEERING 

POWER SYSTEM ENGINEERING 

By 

JUGAL KiSHORE 

of:RO4RKE C~` 

 L  
D;,Tr D-,1,2X68 

IbEPARTMENT OF ELECTRICAL ENGINeERING 
UNIVERSITY OF ROORKEE 

ROORKEE 
August, 1968 



CERTIFICATE 

Certified that the dissertation entitled "Analysis of 

protective relay performance by meansf reliability theory" 
which is submitted by Sri JUGAL KISHORE in partial fulfilment 

for the award of the Degree of Master of Engineering in Power 

System Engineering of University of Roorkee is a record of 

student's own work carried out by him under our supervision 

and guidance. The matter embodied in this dissertation has 

not been submitted for the award of any other Degree or Diploma. 

This is further to certify that he has worked for a period 

of 8 months from December 196? to July 1968 for preparing the 

dissertation for Master of Engineering at the University. 

ROORKEE 
Dated: Aug. /4)  1968. 

(T.s.M. RAO) 
Professor and Head, 

Electrical Engineering Department, 
University of Roorkee,  

ROQRKEE  

v,cv 
(K.B. MISRA) 

Le6turery 
Electrical Engineering Department, 

University of Roorkee $  
• ROORKEE 



ACKNQWLEDGEMENT 

The author wishes to express his profound sense of 

gratitude to Dr. T.S.M. Rao, Professor & Head of the 

Electrical Engineering Department, University of Roorkee, 

Roorkee for his kind $  able and inspired guidance at every 

stage of the preparation of this dissertation, even in the 

midst of busy official duties 

The author also expresses his thanks to Mr* K.B. Misra, 

Lecturer in Electrical Engineering for his valuable 'suggestions 

and discussions throughout, to bring out the dissertation in 

this form. 

($1 GAL SHORE) 



CONTENTS 
Pa 

SYNOPSIS 

LIST OF SYMBOLS 	 ..• 	.•• 	1-2 

INTRODUCTION 	 ... 	... 	3-5 
CHAPTER 1 "Concepts of Reliability Theory" 	... 	6-10 

1.1. Definition of Reliability 

1.2. Mathematical Concepts 
l0. Properties of Conditional failure rate 

CHAPTER 2, "Statistical Distributions" 	... 11-28 
2,►1. Classification of Various distributions 

2.11..1. Conditional Distribution functions 
2,1.2„ Unconditional Distribution functions 

2.2, Application of Different distribution 
functions 

2.2.1. Life Distribution 

2,2.1.1, Region of early failures 
2.2,1..2. Region of Chance or random failures 
2,2,1.3. Region of wearout failures 

CHAPTER 3_ "Non-Maintained and Maintained Systems" 	29-56 
3.1. Non-maintained systems 

3.1.1, Reliability models of series configurat-
ion 

3.1.2. Reliability models of parallel standby 
configuration 

3,1.2,1. Reliability models of parallel 
standby with off line equipment failure, 

3,1.3. Reliability models of parallel dedundant 
configuration. 

3.1.4. Reliability function of state dependency 
models. 

3.1.5. Reliability models of Imperfect switching 

3.1.6. Comparison of parallel standby and parallel 
redundant sys-tems.  



AAPTER 4 "Selective and non-selective operation 
of Relays" 	 ••s 	a.. 	57-86 

4.1. Analysis of Relay Selectivity 
4„1.1. Analysis of gain In Selectivity 

4.2. Analysis of Relay failure 

4.2.1. Analysis of Reduction In probability of 
.failure 

4.3. Working conditions of protective relays. 

CHAPTER 5 "Failures in Conventional and Unconventional 
Relays" 	 .. 	... 	87-9a:. 

5.1. Gradual Failures 
5.2. Sudden or random failures 
5.3. General considerations 
5.4. Precautions for maximum reliability 

CHAPTER 6 "Analysis of Component Failure in Electronic 
and .Electrical Circuits" . «. 	... 	94-108 

6.1. Failure Classification 
6.2. Environmental considerations 
6.3. Failure analysis 
6.3.1. Resistors 
6.3.2. Capacitors 
6.3.3, Semi-conductor 

CHAPTER 7 "Reliability Evaluation" ... 	006 

7.1. Prediction of Module Reliability 

7.2* Prediction of Equipment Reliability 

7.2,1. Use of switching circuit analogy 

7,3. Advanced Mathematical and Statistical 
Techniques. 

7.3.1. Application of Boolean Algebra. 

109-122 

7.3.2. Baye's theorem as applied to Reliability 
evaluation. 



Pa e 
7.3.3. Monte-Crarlo Techniques 	» .. 
7*3.3.1. Random component simulation. 
?.3.3.2, Performance Simulation. 

CONCLUSIONS 	... 	 ... 	123.126 
APPENDICES 	 ... 	 . , . 	127.131 
REFERENCES 	 ... 	 ... 	132-135 

s 



SYNOPSIS 

The statistical information about the failures in the

working of devices can be used for improving the construction of 

existing ones and developing new ones as well as in the analysis 

of their production. This calls for development of the general 

methods of Reliability Theory to make it suitable for the failure 

analysis of protective schemes of large Power Systems. Failure of 

a protective scheme may lead to great financial loss and adverse 

consequences. Therefore the failure analysis of a protective 

scheme needs thorough investigation. The present work discusses 

mainly the followings 

1. General methods of Reliability Theory, including the 

discussion of different failure distributions. 

2. Failure analysis of maintained and non-maintained systems 

for different mathematical models usually encountered in Reliability 

analysis. 

3. Component failures, their reasons and the effect of their 

failure on the system containing these components. 

4. Protective relays whether conventional or otherwise operate 

under different conditions and this calls for modification of 

reliability principles for application to their failure analysis. 

5. Detailed analysis of Selective and non-selective operation 

of relays. 

6. Different techniques of reliability evaluation of a complex 

system and their usefulness in reliability assessment. 



LIST OF SYMBOLS 

So 	.. Fixed number of components 

M , 	 . Number of components failed out of Mo  

Ks  '.. Number of components survived out of Mo  

d 	Differential 

R(t) ,. Reliability function (R) 

F(t) .. Failure function (F) 

f(t) ,, Failure density, function (f) 

A .. Failure rate 

B ; • Time between two consecutive failures (1/A) . 
h(t) .. Failure rate function. 
a,b .. Emperical derived parameters or constants 
t ,. Time 
in .. plumber of trials 
n .. Number of occurance out of in trials 
p ,. Probability of success occurance 

q , , Probability of failure occurance (i-p) 

k .. Average number of failures 

a Laplace operator 

dt Small time interval 

v .. mean wearout life 

u ,. Standard deviation of the mean life time from the 

mean life v. 

N ., lambert 	of events 
C ,. Constant 
w(t) .. Deterioration function 
d (t) .. Instantaneous damage function. 
G .. constant of integration 
T .. Total life time 
x .. Number of equipments or components. 

y, 
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P .. Probability of surviving 

Failure rate probability of on line equipment 

Af  .. Failure rate probability of off line equipment 

As  .. Failure rate probability of switch 

TV  .. Time at which wearout starts. 

Tb  .. Debugging time 
&(t) .. Repair distribution function 

r .. Repair rate 

A(t) ; . ` Availability functi 

MTTF .. Mean time to failure 

tuber of series elements 
Number of parallel elements 

q .. Probability of appearing the undesired output signal - 
of one element (probability of non-selective action). 

q' .. Probability of non-selective action for scheme. 

q l  ..► Probability of failure for an element. 
qj .. Probability of failure for scheme. 

qa  .. Actual probability of nonselective action. 
ye  Gain in selectivity 

Ya  . Reduction in probability of failure. 
1 u 2 , . Elements 1 and 2 are in parallel (or gate)- 
1 0 2 ,. Elements 1 and 2 are in series (and gate).., 
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INrRODU T, TION 

In the last few years reliability has become of prime concern 

to an Engineer or Technologist as the complexity of his system 

grows more and more. With the advancement of space technology, 

reliability has taken an important place, as each constituent 

part or system of a space vehicle has to function properly during 

its operative life for a successful experiment. The cost of 

failure to operate successfully may be quite high. 

Generally the cost of unreliability is not only the cost of 
the failed item$  but of the associated equipment as a whole, which 

is damaged or destroyed as a result of failure#  due to inter--

dependancy between components in a complex system. To a power 

Engineer the reliability of protective scheme is equally important, 

since the failure of a protective sheme whose function primarily 

is to protect the equipment under abnormal conditions, may lead to 

heavy loss of money, time and also human life. 

Recently, there have been efforts (22  27)  in the direction of 

making reliable operation of protective schemes. Studies have been 

carried out to analyse the underlying theory of the reliable 

operation of protective relays.  

In the present work, the author has tried to analyse the 

successful operation of relays through the existing concepts of 

Reliability theory as such reliability Is a new and rapidly 

developing field, New Ideas and methods are appearing constantly 

and in this context one can safely say that reliability is a field 

in which theory of today may become the fact of tomorrow or other-

wise. 

In the first chapter the author has explained the mathematica: 
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concepts of reliability and different factors on which it is 

dependent or depends. 

In the second chapter of this dissertation the quthor 

elaborately discusses the different statistical distributions 

necessary to represent the failure phenomenon of any component 

or equipment. Some of the distributions have been deduced for 

a combination of two failure functions and with the assumption of 

different failure rates. Aiso . discussed in Chapter-2 is the 

common life curve and possible, appropriate distribution: , - funct-
ions describing a particular zone of this curve. Applications of 

different distributions have been indicated clearly. 

Depending on system maintenance the . failure analysis B.ms 

been done In Chapter 3 of the dissertation. Di 'ferent system 

configurations have been considered for the analysis of maintain-

ed and non-  maintained. systems using proper mathematical models. 

Importance of maintenance has been stressed with the help of 

proper graphs. 

As the relays differ in respect of their operation from other 

conventional components which are , constantly In use during their 

life time, the reliability theory, before it could be applied to 

relays, needs certain modifications, The relay must operate when 

desired but should not when not required *  This discriminative 

requirement Is called selectivity of the relay and must be present 

for reliable operation. The selective and non»selective features 

of protective relays have been analysed thoroughly in Chapter-4. 

A general study of component configuration has been studied with 

the help of the computer (IBM 1620) and optimum values of 



probability of failure and probability of non-selective action 

have been found out for different configurations. One can select 

from the charts of Chapter-4, the optimum values of these two 

variants as per requirements during the design stage. 

The critical review has been carried out for component 

failure analysis in Electrical and Electronic circuits in Chapter-6, 

The mode of these failures of different electronic components have 

also been discussed. The author performed some experiments on 

carbon composition resistors and found results consistant with the 

theory as per detail given in Chapter-5. 

Chapter sJ discusses the causes of common failures in convent-

ional and unconventional relays with particular emphasis on reasons 

of change in relay contact resistance. Certain preeautions..needed 

to ensure,  a reliable operation of relays have been, described*  

In the last Chapter the author has given different techniques 

for the evaluation of reliability of a system. Techniques for 

reliability evaluation of complex systems such as non-series 

parallel etc., have been studied through the Bayesian theorem. 

Out of tolerance failures can be analysed effectively by the Monte-

Carlo method. The method of approach and related flow chart have 

been given for the use of the Monte-Carlo method. 

In short the effort has been to present the modified reliabi-

lity- approach for the failure analysis of protective schemes using 

conventional and unconventional (static) relay circuits, 

5 
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, bRCEPT5O RELIABILITY THEORY_ 

1.1. Definition of Reliabilityz 

In its general form "Reliability is a probability of 
success". L widely accepted definition reads "Reliability is 

the probability of a device performing its purpose adequately 

for the period of time desired under the operating conditions 

encountered in practice". More specifically reliability expresses 

the number of chance of an equipment to operate without failure 

for a given length of time in an environemtn for which it is 

desired . 

1.2, Mathematical Concepts l2) 

if Mo, number of components (same type) are repeatedly tested 
and out of which Mt the number of component fail and Ms number of 
components which survive then,. 

M0 = Ms + Mf 	..i 	«., 	(1.1) 

from equation (1.1) it is clear that if number of surivival 

components - increases then the number of failures decreases 
exactly by the same amount, M. increases. So reliability of 

components surviving at any time t is defined as 
M 	M 

R(t) = M..AS . 	M.--.+M 	 .•. 	(1.2) 
o 	s f 

and rim .larl,y j 
M 

F(t)  .fes+ 	. ,,'n,. 	 • i +f 	 i ~+) 

R(t) + F(t) =» 1. (which is evident also) 

M R(t) 	Mme- 	- =1- 	 ... 	(1.4) Mo 	M0 

differentiating (1.4) , 

7. 



M 

d R(t) 	(x.- 	-) 

=* 

c 

*Er 
as Mo is constant- 

from (1.5) , 

M , 	T° t R(t) 

whichh is the rate at which component fails- 
ButM.=M© -Ms 

therefore, 

	

M 	d Ms 
dividing (1.6) by Ms 

d 
( 	!,~ 	M. MQ , ... 	fit} 

The left hand side is defined as the probability of failure per 

survival component and will be called the failure rate A. 
a 3 	 ~.M~ d 

	fl(t) icè  

or 
 R(t) 

or 
A.dt= - 8 R t 

Integrating 
t 	R 
fA.dt = - f dR ) -► loge R(t) + Constant 
0 	 0 

but when t = .0 R(t) = 1 
hence- 

	

R(t) 	e f 



t 
exp ( f Adt) 	• .. 	 r • 	(1.?) 

0 

B::4 or A 

where, 
B is the time between two consecutive failures.. 

In the above derivation no assumptions have beef made about 

the failure rate As  and therefore A may be a constant,any variable'  
a differential or a integral Function of time to Therefore 

equation (1.7) can be represented as reliability function in most 

general way. The equation (l7) can be applied to all possible 

kinds of failure die tribution functions. 

From equation (1.5) it is clear that 	(t) represents 

the slope of R(t) at any point to This slope is always negative 

right from t = 0 to when t -= Infinity. in equation (1.5) 	Ntf  

which represents the frequency at which failures take place at 

any time t provided z1Dne of the components is replaced.  

is plotted against t¢  the time distribution of the failures of 

all the original No  components is obtained. If M 	Mf  
p 

is plotted against time, then failure frequency curve per component 

is obtained. It is thus a unit frequency curves  called the failure 

density curve t(t) or generally denoted by f. 

or 	` f w  

F(t) 
0 

or 

a 

(from equation 1.3) 

d Mf 

 

substituting this in equation (1.8) 

f(t) = 	F(t) 
or 



to 

t 

F(t) = f f (t) dt 	.. 	... 	(1,9) 
0 

equation (1.9) shows that the probability of failure at any time 

t is the area under the failure density curve taken from t*0 to to 

R(t) = 1-F(t) 

As the area under the density curve is always unity,.. 00 
i.e. ff(t).dt  = 1. 

C 

or 	E 	- 
f f (t)dt+ ff{t) dt=1. 
0 	 E 

or 
R(t) = f fct)dt 	,.. 	... 	(1.10) 

1.3, Properties of Conditional failure rate As 

The failure rate A, which has been defined earlier in 

general, is a function of time t9 i.e. 

Ah(t) 	 ... 	~r • 	 (1.11) 

The conditional failure rate of a life or failure distribut-

ion plays an important role in reliability analysis. The correct 

knowledge of this failure rate h(t) uniquely determines the failure 

density function,, failure function and reliability function or 
some other related function,  

t 
H(t) 

=f 
b(t) dt 	•.. 	 .•r 	 (1,12 

0 or 	R(t) 
	fth(x) dx 

0 

and the failure, density function can be defined as 

t(t) = h(t)..e-R(t) 	 . 	.... 	(1.13) 
The failure distribution is- _Rtt) 

F(t) 	 t f(t) at = i a 	... 	(1.14) 

0 	V 

and the reliability function R(t) = e t) 	... 	(1 x..5) 
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STAT  TIC AL  DISTRIBUTIONS 

To analyse any statistical data available ]  the knowledge 
of different' distribution function is essential. All events 
behave according to some law or the other although being random 
in nature. It is possible that a particular distribution function 

may not exactly represent the history of events, but it may still 
be done with some tolerance on the closeness, 

2.1. Classificati©n 'of 'Various distributions: 

2.1.1. Conditional distribution functions:  
If the probability of failure of a component in time 

interval t to (t + dt), provided it has survived to time t is 
independent of t. This means that component does not age or 
wearout but fails due to some severe adverse sudden conditions 
for example, sudden over voltages, short circuit or severe shock. 
This corrosponds to 

h(t) = A (constant failure rate) 
hence- 

t 
H(t) =f h(t) dt 

A t 

or Rf t) ? a-Ah1t 	s . ♦ 	 • . 	(2.1) 
equation (2„1) is called an Exponential Distribution. 

If the probability of failure in the time interval t to 
(t+dt) is not constant (as assumed above) but varies linearly with 
time- 

i.e., h(t) -= a.t 
t 

H(t) = f at dt 

at2 

12 
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R(t) = exp ( ° a.t2) .. , 	 i•.  (2.2) 

Now considering a more general case i.e. probability of 

fai'ure in time interval t to (t+dt) is given by- 

h(t) = 
a70 

E (t) L ttb-1 d, = ~b 
J 
a 

R(t)e= e _t
b /a 	

ss. 

i(t)= 
htbl ..~.~.,~. 

a 

b>O 

t > 0 

•r 	(2.3) 

	

... 	(2.4) 

equation (2.3) is known as Weibull Distribution. 

If the probability of failure in t to (t+dt) is taken as 

ab.ebt i.e. it varies exponentially, . 

h(t) = abwebt 	 a>0 
then! 	 b>O  

R(t) exX_a(ebt 111 	t> 0 
,..  (2.5) 

equation (2.5) is known as Extreme Value Distribution. 
The modified extreme value function can be derived if- 

h(t) = e 	 b>O 
t>0 

and R(t) = exp 	- (et - 1)1 	... 	(2.6) 

which Is known as Modified Extreme Value unction. 

The fundamental difference between the Weibull and Exponential 

distribution is that an exponential law admits only one parameter 

model while the Weibulls model(3) consists of a class of two 
parameter models of statistical reliability function. In Weibullts 

distribution 

R(t) = e't~
./a  

.♦. 
 

110  (2.7) 
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where a and b are the empirically derived. parameters. From 

equation (2.7), it is clear that the two parameter(4)  model 
permits greater flexibility in curve fitting. As a - specific 

example if b = 1 the Weibull distribution turns out to be an Expon- 

ential distribution and if b = 2 the general form of Gaussian error 

curve is obtained as -a special case. A better fit to empi-Hicalr'dkta 

can be obtained with two parameter model than with a single para 

meter model. However, If a better fit is the sole criterion of 

acceptability t the two parameter models can be used and further 

improvement's loan be made by adding third and even, a fourth para-

meter also. 

for : Weibull Distribution- 

' 	. 	*"tb1  and •P(t)  
a 

Then except for the degenerate Exponential law case (b=1) 

failure rate is not constant with time. This checks out with 

immediate idea about fa .lure mechanism, particularly wearout 

phenomeri . If this function is to be fitted to the wearout .end 

of an empirical distribution then_b must be greater than one, 

where/upon F(t) becomes initially very large and later tends to 

zero as time increases - to infinity, which is indirect contradict-

ion with any known and reasonable aging process. 

If the Weibuli distribution Is justified then some additional 

provision analogous to the protocols are adopted.  
end 

Typically the wearout/of the failure rate curve is of more 

interest and hence b must be greater than one. The burn-in period 

is then defined irrelevant by the assumption that relay contacts 

are sufficiently aged before the test begin to reduce burn-in type 
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failure. 

To fit the entire range of the classical failure rate curve 

by assuming that observed failure rate really aggregate of the 

failures due to different causes and subjected to different -

laws. This argument(S) provides a failure density function of 

the form; 
,~ 	b 	. 	b 

f (t3 a3tbl 1 e.t 1/e • b3 tb2 l est 2/a •. o. 	(2.8) 

where b1 Z 1 and b2 > I 

and a3, b3, al and a2 all are greater than one. 

An other type of the failure distribution can be derived 

from the bionomial theory of distribution which is the probabi-

lity of exactly n, occurance out of.m trials is given by, 

C. 	•.  

u pf fl qfl 
	

.4. 	l 
t 

'r.. 2 ..9 ) 

in-which p represents the probability of,non occurance of events 

(failure) and q •(i-p) , the probability of occurance. It is 
assumed that p thereby q also remains constant throughout an 

independent trial. 

In case of reasonably good equipment the failures will 

be small in number and the probability of failure will be small. 

As q approahces to zero and - m - approaches to infinity in such a 
way that the product mq~k i.e, the expected or average number of 

failures remains finite, 

From the definition of m, q ffi and p=(l" m) Now 
substituting these in equation (2.9) and substituting the limits 

as m approaches to infinity and simplifying the equation (2.9). 

The equation (2.9) can be rewritten as 
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Lim 	(m) ' 	n (1~ k m"n. I m- (n mMn m 	rn 

, 	 n or L ~y IYE ~ ti~a ?mgnj 	0_k (Appendix' i) 	•,. 	(2010) 
• 

or P(m,n) 	~, 	•s 	 •s• 	 sri 	(2.11) 

k'= average number of failures during time interval t 

which can be replaced by (A.t), if A is the average failure rate. 

Then,t n e-A.t 
P(t) 	h , 	.. . 	... 	(2.12) 

The equation (2012) is known as Poisson's density function, 

It is interesting to note that Poisson process directly 

leads to another well-known distribution known as Gamma distribut-

ion. If instead of obtaining the probability of n failures upto 

a time t, it is desired that the probability of failure at a 
specified time should be exactlyno one can deduce the Gamma 

distribution. For the Poisson distribution the random variable 

is the number of failures while for the Gamma distribution the 

time is a random variable. Thus Gamma distribution(6) can be 

obtained by differentiating the Poisson distribution and is of 

the form, 

P (s) = 	in Laplace transform A 	(stl)n 

The inverse of this expression iso 
n n-1 

Pn(t) ` A.t 
 . (ii-].)! 

n nMA 
or f(t) = 	t(n-liT e-Ast 	.. s 	a,. 	(2.13) 

equation (2.13) is known as Gamma failure density function. 
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R(t) =1 :1)& a-A.t dt 	... 	... 	(2.14) 

t n n-1 
F(t). 	J 	~.;y 	

,~0-A.t dt 	
►•r 	... 	(2r ) 

0 

Besides, the 'distributions described above there exists 

an Important distribution known as Normal or Gaussian distribution. 

Failure density function. f(t) is defined as- 2. 

2u A 
f(t) = 	e 	... 	,. 	(2.&6) 

u 'a a 

p t t 	 ' 

where v mean wearout life 

	

u 	standard deviation of the life time from the 

m ean life v. 

23C 
--- a 	It. 	... 	... 	(2.17) 

„Y t..v 2 
t 	 2u2 --- --r-- e 	at. 	... 	(2,.18) 

0 

U ✓ t-~v.....~.. 

The value of N Ln the expression of, u is the number of events over 
which = (t-v)2 is made. The, plots for density function,, reliabi- 

lity function and failure function for different cases are given 
In Figs.(2.1*o 2.5) . 

2.1.2. Unconditional Distribution Functions: 

In the previous analysis it is assumed that failure rate 



TAME (t) --_ 

09 

a •6 -1 

041 

0.2 

0 
8 	28 38 	 43 

/a 

O' 	T 
28 
	

3,0 
	48 

71ME () --~ 

f/G . 2.1 FX,PONENT/A4D/57Q/BUT/ON 



05 	 10 	 1.5 	 1.0 	 25 

TIME (t) — 	— 

3.0 3.5 	d•o 

i 

(t)= /-exp(- t ) 

i-b :1 
2. 

3-b:3 

IS 	20 	15 	3.0 	3.S 	40 

T/" (t) ---+ 

0.5 	/0 

/•2 

/•O 

/f) 08 

a6 

o•4 

0.2 

O 
.S 	/•o 	i•S 	2-o 	2.5 	3.0 	3.S 	4.0 

TiME(t) --~ 

F°v' . 2 2 WE/S41 4 D/ST,Q/8UT/ONS 



2 

fi' exp(-(e')] 

/-b=/ 
2..b: 
3-e 4 

a is 	2-o  

ri yfe () -- 
3 S 	4•a 

,y 	 '00)=EXp (b(etf) J 
i 	 L 

1-b=! 
2-bs 2 

5 	/•O 	/•S 	7.0 	3's 	3 0 

T/,E (i') -----► 
35 	4.0 

3 .b :4 

S 	 /-O 	/•5 	2-0 	2.5 	3.0 	;•S 	4.0 

F/G 

 

.23 2/c/ED EX T0Eti1E 1~4L 1/E Q/ST,IBUTON 



6 

•6 

2-n= 2 

4 	 3-ns ~ 
2 

2 
3 

5 	/ o 	'.5 	2•0 	25 	3.0 	3.5 	4.0 

T'ME (t) 	- 

— t ------r - -- 	r— _— 	-- -- °- r— 	- r- 
1.0  ;•5  2-0  2-5  3.0 	3•S 

t 
m)_rp Jnr _4t 

0 

40 

/• O 

9 

6 

•4 

2 

0 

/ 3 

2 	30 i 

L'/G 2 	D/5Ti?/BZJT/ON5 

4: 

1-n: 2 
3-n = 3 

3.5 4.0 



(f U)1 
exp 

1-2 u~ J 

v-u 

00 

A'()~ 	 d ~nexp(2 	t 
L 

v u 	 2.' 	 v-U 

rinlE  

F(f ~J u 
 

exp 2(J- 

r --r.._ _ _ 

v•u  v  v-u 

F'/G . Z •5 NC4', 1I.4L D/STP/BUT/ONS 



23 

does not depend upon the past history of the operating conditions 

i.e. only conditional probability, of failure has been considered. 

But the above idea has been further extended{7)  in the following 

mariner. 

If an item is made up of i independent components. In the 

course of time one component after another fails, and there Is 'a 

critical number of failures d, such that entire system fails 

when d of its components have failed. Thus number d depends in 

general on the , items under the assumptions. 

(1) 	The conditional failure rate depends upon the elapse of 

time t and instantaneous damage at time tin the following 

manner s  

h(t) = v(t), d(t) 

where w(t) is the deterioration function, 

and d(t) is instantaneous damage at time t. 

(it) 	If at time t an item has sustained damage and j of its 

components have failed, at that time, then each of the• 

remaining (i.j) components, is exposed to damage by 
4111  

From the first assumption, which clearly states that 

conditional failure rate can be divided into two parts, wearout 

and severe shock#  overloads, over voltage or short circuit which 

may cause damage at any time. 

Taking the case where- 

-k w(t) 0 and d(t) = C 

the emponential distribution is derived. 
If 	w{t) = a 
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w(t) = at + G where G = Constant of integration 

Also when t = 4 w(t) = C 

therefore G = 

hence w(t) = a.t. 

and d(t)=C 

Then h(t) = a.t„o. 
t 

H(t) 	f a.t.0 dt. 
0 

a,Gt2  
2 

and 	R(t) , = eXp.1 ,•  a,C t- 	.. 	... 	2.19) 2 

t  f(t) = a.0 t exp.1-  . t I 	... 	i}. 	(2,20) 2 

Taking another general form 

w(t) = a and d(t) b ebt 

v(t) = a.t 

Then h(t) = a,t b ebt  

and therefore H(t) = a ebt  (t - 	+ 1 

R(t) = e t) 
-dR(t) 

f (t)  = dt 

The second assumption states that irreversible and cumulat-

ive damage occur in the item in the course of time, as the 

components fail one by one, remaining components are exposed to 

an increased share of total damage. However the deteriat&tion;'of 

component will remain unchanged g  regardless how mfr of the 

components have £ailed. Assuming that critical number of failed 

components is d, then the density function t(d,t) is given by- 
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f(d It)= 	_ 	12 f w(t)d (t) dt Idi ' expo. _2 ~W(O.d(t)dt o 
•+» (2.21) 

As a special case when component does not deteriorate 

Iw(t) Al and that the damage is assumed to be constant than 

above equation can be written as- 
d~l 

f (dyt) 	dt ; e 	.» s 	(2s22) 

which is density function of Gamma distribution. 

2,2. Application of Different' Distribution Functions: 

The exponential distribution has constant failure rate 

and this property limits its use In many of the reliability models. 
Since failure rate is constant it imparts an impression that a 

component at any time during the life span T was new and placed in 

operation just then. The probability of failure of a component at 

any time t after it is put to use is same as for the remaining life 

(T-t) such as electric fuses etee This does not very much simulate 

the actual conditions encountered in practice. However in many 

cases$ this model may be used effectively with reasonable tolerance. 

The Weibull and Gamma functions with parameter 'a' greater than 

one have increasing failure rate as time increases* The modified 

extreme value and Norma3. distributions also have an increasing 

rates. These items under close control of both the manufacturing 

process and the' condition of tests a Normal theory of failure 

seems to be consistant with the data* 'However many life length 

distribution occuring in practical applications are not Normal 

because they are markedly skewed where the normal distribution is 

symmetrical. 
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The Gamma distribution(a)  is extremely useful in fatigue 
and wearout studies t  Weibuil family of distributions have increases 

ing failure rate fora is greater than one, but in this case 

failure rate is nribounded, This type of distribution is also useful 

to describe fatique failures, vacuum tube failure and ball bearing 

failures etc. 

2.2,1. Life Distributions 

Failure rate vs. time curve if plotted from empirical 

data on actual system, resembles the theoretical curve closely 

enough to make a consideration of the later worthwhile from a 

practical standpoint* 

A theoretical failure rate vs, time curve is shown in 

Fig.2«6. This curve can. be divided into three distinct regions 

viz, early failure s  chance or random failure and wearout failure 
zone. 

2.2.1.1. Region of Early Failure: 

In this region the failure rate is initially very high 

but shows a tendency to decrease shappely with time„ These 

failures are due to defects in manufacturing and poor quality 

control techniques or during the assembly of an equipment, a poor 

connection may go through unnoticed. These failures can be eliminat-

ed bit debugging' or 'burn-in' processes. 

The debugging process consists of operating an equipment for 

a number of hours under conditions of actual field use. The 

weak or substandard component fails in the early hours of the 

cporation,. These failed components are replaced by, good components 

and only then the equipment is released for service. The burn-in 
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process consists of operating at lot of components under actual 

working conditions for a number of hours and then using only 

those components which survive$ for the assembly of the equipment. 

Generally early failure follows an exponential law of failure 

distribution with reasonable tolerance. 

2.2.1.2, Region of Chance or Random Failures 

These failures can not be eliminated either from good 

debugging techniques or even the best maintenance practices. 
These failures are caused, by sudden stress accumulation beyond 

the designed strength of the component. The chance failures 

occur at random intervals irregularly and unknowingly. It is 

difficult to predict chance failures, however they obey certain 

rules of collective behaviour so that the frequency of their 

occurance during sufficiettly long period is approximately 

constant. 

2,2.1.3. Region of Wear-out Failures 

In general the .failure increases slowly as the item 
reaches the end of its useful life. These failures occur when 

the equipment is either not properly maintained or not at all 

maintained* In most of the cases wear-out failures ~9} can be 

prevented by periodic inspection and replacing the equipment or 

component before wear-out takes place. This region obeys closely 

Normal failure distribution law. 
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ICON-MAI NTS AI NED AND MAI NTAI DsYSTEMs 

In general maintenance policies can be formulated into two 

categories viz. 

Non-maintained and Maintained systems. 

3.].. Kort-maintained Systems: 

The non-maintained systems are those systems where the 

maintenance action is not at all taken during the useful life of 

an equipment. While describing the reliability of a given system 

it is necessary to specify: 

Ci) The equipment failure process. 

(ii) The system configuration which describes hour the 

equipment or the component is connected and the mode 

of their operation. 

(iii) The state in which the syste-m is to be defined as 

having failed. 

The simplest hypothesis$ from mathematical point of view, 

is to assume that equipment fails in accordance with negative 

exponential distribution. This assumption .  helps to use Markor- 

process(10  	which gives simple homogeneous linear differential 
equations with constant coefficients,  

• There is plenty of experimental and operational information 

available to justify the use of exponential failure law. Cahrat(12)  

is one of the earliest investigators to show the statistical 

nature and further studies have been done by others (12,14) , who 

clearly indicate that exponential distribution adequately tallies 

-Ta 

with the statistically determined failure distribution. Although 

certain components within an equipment may not exibit the  
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exponential failure pattern,, the equipment will generally behave 

so t  provided the components are replaced as and when they fail, 

so that their ages become mixed after some time. This phenomenon is 

demonstrated in reference (15).- 

Many types of failure distribution functions have been describ-

ed in Chapter 2 but infact the failure pattern of complex electronic 

circuits is much more complicated $  to be thoroughly described by a 

simple statistical failure model. This does not mean however that 

no reasonable statement can be made about equipment failure distribut-

ion but the, correct approach is to select proper failure distribution 

function which will be very close to any standard distribution. 

For non-maintained. systems, the reliability function R(t) 

gives the probability.tbat.an,eqiipment will not fail in the given 

interval of operating time (Olt). From this other functions can 

also be derived very easily. For non-maintained systems the follow-

ing configurations have been considered as shown in Fig.(3.1), 

which are- 

(1) Series, (ii) Parallel Standby (iii) Parallel redundant . 

(iv) State Dependancy (v) Redundant with imperfect switching* 

3..1. Reliability Models for Series Configuration: 

In the derivation of reliability function R(t) for series 

configuration the following important assumptions will be made: 

(.) 	The system will be completely inoperative when any one of 

the x equipments or components will fail. . 

(ii) The probability of failure of each equipment is independent 

of the remaining (x-l) equipments, 

(iii) The probability that any one equipment will fail in the time 

interval t, (t+dt) is A.dt, provided it has survived upto 
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time t. 

(iv) Cumulative probability of failure of z equipments in 

series idli be xA. 

The transition matrix is prepared as follows: 

0 	1 
0 rlivxA 	0`" 

'=1 	1 
for initial conditions$ when t 0 all equipments are operative. 

i.e. ` P0(t) = © if t o ® 

1if t=0 

The above transition matrix gives$ 

PO(t+d ) " P®(t) I i" xA. 	+ 0(dt) 	t i • 

or :o(t* dt)P°( ) = P() =  dt 	© 	4 

or Pa(t) =A P0(t) 	*.. 	~. 

The solution of equation (3.2)vill be of the form- 

P0(t) 3 ® f̀it 	I.. 	•.i 

or R(t) = ?0(t)  

if? 

(3.2) 

(3.3) 

The reliability of series configuration can easily be written 
as 

R(t) =$ PX 	... 	... 	(3.4) 
3.1.2. Reliability Models for Parallel Standby Configurations 

In this type of configuration only one equipment 

is 'operating but when it fails a standby equipment is switched 

on to the line and the failed equipment is taken off the line. 
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The process continues until all (x-.1) equipments have failed. 
The following assumptions are made: 

U) The system will fail when all the x equipments have 
failed 

(ii) The failure probability of each equipment is indepen-
dent of the remaining (x-1) equipments. 

(iii) Switching is perfect. 

(iv) The equipment can only fail while in the operating 

positions with conditional probability A,dt. Thus 

off line equipment can not fail until switched on 
to the line. 

The transition matrix is formed as below: 

	

0 	1 2 	3 .,.6 x 
0 X i.L) 	A 	0 	0 	. s.. 	0 

1 	0 	(1-A 	A 	0 .... 0 1 

	

pµ21 0 	0, 	(1 ) 	A ... 0 

	

0 	0 0 	0 ,.,. 1 

For simplicity only three equipment redundant system is 
considered.. ' 

The transisitiori matrix gives the following equations. 

P0(t+dt) P (t) I l.A dtl+P1(t) A dt +0(dt) I 
P(t+dt) P (t) I 1-A dti+P (t) A dt + 0(dt) l  ~.  2  ,« (3.6) 

P2(t+dt) P2(t) Il»Adtl +P3(t) A dt.+O(dt) I 
Reliability functiaiR(t) = Po(t) + P1(t) + P2(t) 	... (3.6) 

The following Linear differential equations are obtained from 

the set of equations(3.5) 



PQ(t) = -A P0(t) 

Pi(t) = -A P0(t) - AP1(t) 

PI(t) -A P1(t) -A P2(t) 

The solution of set of equations (3.7) is as follows 

Po(t) a 0-At 	 I 

P1(t) ` ' l  ewAt 	
... 	(3.8) 

P3(t) = 2t
) 3 a-At 

Hence R(t) PO(t) + P1(t) + P2(t), 

e( 1+ 	t, + At ) 	... 	(3.9) 

The reliability function for x redundant standby systems 

can be generalized by induction method from equation (3.9)-  

R (t)  e
~ 

=  1  .•.  ...  (3.10) 
X w=0  I 

Fig.(3.3) shows a plot of two parallel standby redundant config-

uration reliability function as compared with reliability function 

for a single equipment system. 

3.1.2.1. Reliability Model of Parallel Standby with. off line 
Equipment failure: 

In the foregoing analysis it was assumed that the off 

line equipment does not fail but if it is assumed that off-line 

equipment also has some probability of failure A~.dt, but_ switching 
is still perfect* The other assumptions are the same. 

The transition matrix is formed only for two redundant 

systems for simplicity. 

3,5 
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0 	1 	2 

0 r 1-(Ao+A ►) 	(Ao+A f ) 	0 

1  0  1-A0  Ao 

I 
21 0 	0  

The following linear equations are formed from the above 

matrix. 

P©(t+dt) = P° (t)%I-(Ao+Af )&tl + ©(dt) 	
(3»11) 

P©(t+dt), = .Pl(t) I (Ao+AA)dtl +P1(t) I1-A0dt*fO(dt)I I 
The set of equations (3»11) gives the following differential 

equations. 

PI(t) = - (Ao +A) P0(t) 	I 

PI(t) = (A0+A,)P0(t) 	AOPI(t) I 

but 
R(t) 0 P0(t) + P1(t) 

The solution of equations is- 

P©(t) = exp I-'(A©+ Af.)tJ 	 I 
tA't 	X3.13} 

P1(t) 	A 	te ' ~. ~- 	` 
a 	 o 

therefore- 

R(t) e Ao+At)t + o f A.t 	Ac 	eb(Ao+Af)t 
A1, 
	 .». (3.14) 

3.1.3. Reliability Models of Parallel Redundant 3ystem6 '' 917' 18: 

In this type of configuration all the x equipments 

are sharing the total load equally (operating simultaneously). 

The reliability function is derived with the following 
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assumptions, 
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(i) The system will be inoperative when all the x components 

or equipments have failed, 

(ii) The probability of failure of each equipment is independ-

ent of remaining (x-1) equipments 

(iii) Each equipment is having same failure rate. 

(iv) The probability of failure in the time interval t,(t+dt) 

is Adt, provided it Is operative at time to The transit-
ion matrix is formed as below: 

0 2. 2 3 x 

0 111 xA xA 0 0 	. iR , # 0 

1 0 1-(x-1)A' (X-1) A 0 	....  0 

P 	2 10 0 1-'(x-2)& (x.2)A... 0 

x Q 0 0 .0 QJ[ 

For .  simplicity, three parallel redundant systems have been 

considered,, and. generalised reliability function for x equipment 
has been formulated. 

The following equations are formed from the above matrix- 

P0(t+dt) 	P0(t)H1-3AMtL+ 0(dt) 

P1(t+dt) = Pa(t) .3Adt+P (t) ji-2AdtI+O (dt) 	• , 	(3.15) 

P2(t+dt) 	P1(t)2Adt + P2(t)il-A dtD+0(dt) 

The set of equations (3.15) give the following linear differential 

equations. 



Po(t) = "3A P0(t) 

P (t) 	3AP0(t) - 2A1(t) 	 ♦ A ♦ 	 R N 1~ 

PI(t) = 2AP1(t) - AP2(t) 	I 

The solution of set of equations (3.16) is - 

P0(t) = e-3At 	 I 

P1(t) = 3e 2At _ 30-3At 	 .. ' 

P2(t) 30 At , 6e-2At + 3e~3At 	I 

But 
R(t) = Po(t) + P1(t) + P2(t) 

3e-At - 3e0'2At + Qw3At  

A (3.16) 

(3.17) 

(3.18) 
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For two parallel stern- 

R(t =2et _ e h2At 

If P=e t 
Then R(t) for general x parallel system will be given by- 

R t)z = 1-(1--P)x 	.•. 	.. a 	(3,19) 
if each equipment has different failure rate, then-

s.1-(1-P1) (i-P2) 	..,,.(l-px) ».. 	(3,20) 

.g.(3.3) compares the reliability functions for both stand-by 

and parallel redundancy of a two equipment system against normal-

ised time. 

3.14. Reliability function for State Dependency Models: 

In the previous models it was assumed that the 
probability of failure during the time interval t, (t+dt) is 

constant, which in general is not true. For example two 
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equipments are operating in parallel and sharing an equal amount 

of load, If one of the equipments has failed then the entire load 
is transferred on to the other equipment. This will definitely 

increase the probability of failure) assuming that it was operat» 

ing with failure rate A. It the above fact is kept in view then 
it is necessary to develop such models in which failure rate 

changes with the state of the system. Assuring that transition 

probabilities are linearly related with the state of the system. 

i.e9 f 

Ax  = A(x+l) (Linear Mar 	roeess) 

or Axdt = A(x+l) dt 	... 

The transition matrix is formed as follows$ 

3 0 l 2 3 x 

0 14 A 0 0 .,. 	01 

-1 Q 1- 2A 2A 0 ... 	0 

p= 0 0 1-3A 3A ... 	0 

I • 

0 0 • a •ij.  

To simplify, three parallel state dependency models have been 

donsiderBd. 

The following linear equations are formed from the above 

matrit for the ease under consideration. 

PoCt +dt) = Po (t) 11-Adtl+ O(dt) 	I 
P1(t+dt) = P1(t) Adt + P1(t)1l-2AdtI+O(dt) 1 	(3.22) 

P2(:t+dt) = P1(t) 2Adt +P2(t) X1 3AdtJ•s$(dt) X 
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The above set of equations (3,22) gives the following differential 

equations. 

P'0(t) 	-A P©(t) 	I 

Pl{t) = AP(t) .*2AP1(t) 	..a 	... 	(3,23) 
I 

p'(t) = 2AP1(t)4 3AP2(t) 

The solution for equations (3.23) will be. 

po(t) = e-At 

1' (t)  = 	 At  e-2At 	 ... 	(3.24) 
1 

P2  (t) = e-At „ 2e 2At + e -3At 	.. . 

But R(t) = Po(t) + P1(t) + 

3e"At , 3e,'2At + e  3At ... 	... 	(3.24) 

Fig.(3.4) illustrates this phenomena for' 1, 2,3 equipment 
systems. 

3.1.6. Reliability Models of Imperfect Switching$ 

In the previous analysis of standby redundant systems 

it was assumed that switching Is perfect i.e switbh can not fail. 
Bt switch can also sometimes fail and has a failure rate of As. 
If this is a redundant standby system with equipments X and Y with 
a switch S. It is assumed that X is on to line and has failure 
rate A and Y is veli' to line which can not fail. However switch S 
can fail at any time. The acceptable stages are as follows 

(I) Only X or Y fails C) - ,SY or XS! 

(ii) Only S fails (S) - RSY 

(iii) X! and S are operating - XSY. 
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The transisition matrix has been formed as below: 

X8Y Y Y 	8Y x` S Y s 7 

0 TSY 1-to+Ae3 As A  0 0 0 

6 4 

3 XSY X 	0 1-A A 0 0 

2 XSY 0 0 1-(A+A5)A5 A 0 

P=3 X3Y 0 0 0 	1 0 0 

4 XSY 0 0 0 	0 0 

5 X Y .. 0 0 0 	0 0 1 

The transition- matrix gives the following linear equations 

Po(t+dt) = Po(t) Il-(A♦Ae)dtl +O(dt) 	
f 

P'(t+dt) = P (t)Aedt +Pl(t) Il Adt j +0 (dt) 	(3,25) 

P2(t+~.t) = Po(t)Mt + P2(t)11-(A5+A)dt I +{l(dt) 

The above , set of equations gives the f©llowing differential 
equationso 

Po(t)  44A+As) P0 (t) I 

P 1 (t) = A P t~ - AP t 	 .. 	... (3.26) so 	l 	I 

P(t) 	AP0(t)' (A8 +A) P2(t) 

The solution of these differential equations (3.26) is 

Po(t) = es)t 
P1(t) = a-At  

P2(t) = At ems'{A♦As)t 
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But 
R(t) = P0(t) + P1(t) + P2(t) 

C a.At  + At a"(A+As)t  t. • 	 ..•. 	..6 (3.27) 

This can be seen that If As  = 0 i.e. switching Is perfect then 

equation (3.27) becomes- 

RR (t) * 0-'At (l+At) 

This function for reliability is same as Reliability f1 nct on 

for two parallel redundant standby system, 

3.1.6. Comparision of Parallel Standby and Parallel Redundant 
Systems 

Examination of Reliability models in non-maintained 

systems for standby redundant and parallel redundant, reveals 
that reliability of standby redundant system is greater than 

parallel redundant system for the same number of equipments as is 

observed from 1g.(33). If the same is considered for imperfect 

switching conditions, equating the reliability functions of two 

equipment parallel redundant and two equipment standby with 

imperfect switching. 

2 e*"At  «► e4 2At = e-At + At ems` A AS)t 

which gives.. 

log C_,I- -. `t)/At 	 41 	 ,.. (3.28) 

If the above ratio holds good both system will have the same 

reliability, But if As/A is less than right hand side of 

equation (3,28), the standby system with imperfect switching 

will be preferred. 

3 „2, Reliability Models for Maintained Systems: 

In the case of non-maintained systems it was assumed 
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that failure distribution function can be represented by negative 

exponential distribution i.e. 

P(t)  

so that the probability of conditional failure in time Interval 

t,(t+dt) is Mt. 

Similarly in case of maintained systems the same type of 

assumptions hold good. It is assumed that most of the failures 

can be repaired in a short time; while the items that fall 

infrequently take a long time for repair. Therefore the equipment 

repair distribution is exponentially distributed as G(t)l e t, 

and in the same way it can be shown that probability of complete 
Ing a'repair in time Interval t,(t+dt) is rdt, provided it was 
not completed at time t. 

in case of maintained systems one has to develop forward 

and backward differential equations which describe the transit- 

ions 9  back and forth from state to state. But in the case of 

non-maintained systems only forward differentials equations were 

required because the state can not reset back once it ha4oassed. 

In maintained systems when an equipment fails it is immediately 

detected, the repair is started and time to failure and time to 

repair each is Independently exponentially distributed. 

In the case of non-maintained systems one is primarily 

concerned with two figures of merit, the first is reliability 

function and the second is mean time to failure. But for 

maintained system there are two more additional figures of merits 

which are usually of interest. The proportion of time in which 

the system will be in acceptable state is some times referred as 

to system availability. Another figure of merit is reoccurance 



time. The length of time for an equipment to return to an 

acceptable state from a failed state Is sometimes referred as 

mean single down-time. Considering the single equipment operat-R 

ing continuously, if a record is kept as to when the equipment 

is operating or, down for a period of time it is possible to 

describe its availability as a random variable defined by a 

distribution function B(A) 

O 

-----r 7/41E 

The availability is simply the average value of the function 

over all possible intervals. 

3.2.1, Single Equipment Systems 

In the case of nonmaintained systems the Markou process 

was used to define the reliability functions but for maintained 

systems one will be more concerned with the Availability function. 

3.2,.2,E  Availability Functions 

The method of expressing the probability is same as in 

the -case of nonmmaiotained systems except that in maintained 

system transition is possible In forward and backward instead of 

forward direction due to possibility of system to be repaired* 

Sidgle equipment will have two states; State zero the system is 

operating $ State one when system is failed and under repair, 

The transition matrix can be formed as follows 
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0 	I 

0 r I-A  

P =  .1 
1 	r' 	lac 

The above matrix gives the following equations- 

Po(t+dt) = Po(t) (1-Adt) +P3(t)r.dt +O(dt) 
.,. (3.29) 

Pi(t+dt) = Po(t).. dt+p1(t) (1-r.dt)+O(dt) I 

The term O(dt) in both the equations represents the probability 

of two events taking place in $ (t+dt) with is negligible. 

The set of equations (3.29) gives the following differential 
equations 

P%(t) = -AP0(t) + rP1(t) 

PI {t,} = A P0(t) • rP1'(t) 

At t -= 0 the system was operative with the initial conditions, 
P0(t) - 1 P1(0) = 0, but taking into consideration the case when 

repair just started the system is down i.e. 

P0(0) = 0 	P (0) 	1 

Taking Laplace Transform of equation (3.30) and simplifying- 

P(s) g __fi+ r 
8(S+A+r) 

Availability function Is designated by K(t), which is the inverse 

of 

or  
A(t) = £ DPo(s) Z=Po(t)= r. + r - O'(r+A)t J 

1 (3.31) 
and 1A(t) ' P1(t) r A '~ r A e10(r+A)t 

	I 



If the system was initially failed 

i.e. 

P0(0) =0 Po(1) =1 

r  A(tO Po(t) 	+ 	e A 	t I ...  (3.32) 
39  r   

and - A 7(r+A)t 1 	t) '1(t) 	r+A + r+A Q.. 

If t becomes large, the equation (3.31) and equation (3.32) 

become the same. This indicates that after the system has been 

operating for some time, its behaviour becomes independent of 
starting point, 

As described earlier that availability function is an average 

value of the function over all intervals - 

i.e. 	 P 
A(t) = -T f A(t)dt 

0 

In this case for instance- 

A(t) - 	+ r A 

when t --v 
A() s -- T A 

$-(r+A 	... ... {3.33) 
(r+A) T 

..x 	.. 	•.. (3.34) 

This condition is sometimes referred as steady state availability. 

3.2,3, Steady-State Behaviour: 

For all cases, where it is possible to go from one state 

to another over a long period of time, then- 

pi  = Lima Pi(t) always exists.. 

This means that steady state solution can be found by setting the 
derivative, P(t) = 0. Then system of differential equations 
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So 

x 
reduces to an ordinary algebriac equations to solve as 	Pi= 

w=0 
The equation (3.30) turns out to be 

0 - -A Po(t) + r P1(t) 

0 A P0(t) 2P1(t) 

and Po(t) + P1(t) 	1. 

This gives- P©(t) r  A and P 	r  

With the above results it is clear that many complex 

problems can be solved in the steady-►state#  Now considering the 

problem, where the equipment is subjected to two types of repair, 

when the equipment fails for the first time a partial repair is 

performed which restores the system to operation, however it 

increases the probability of failure* After it has failed second 

time through repair is performed which brings the equipment to 

good as, new condition. If A,1  is. the failure rate when equipment 

has been through a complete repair and A2  when it is between 

through and partial repair (A3  > A1) . Similarly rl  is the repair 
rate for partial repair and r2  the repair rate for a complete 
repair (r3  < r1). This gives four states in which the system 

remains at any time t. - 

(I) 	(State - 0)- The system is operating after a complete 

repair has been performed. 

(ii) (State - 1).- The system has failed and a partial repair 

is being performed. 

(iii) (State • 2)- The system° is operating after the completion 

of partial repair. 

(iv) (State - 3)- The system is failed and a complete repair is 

being performed so that it can again come to state zArn. 



Thus only state zero and two are acceptable. 

The transition matrix is formed as belowx 

S/ 

0 1 2 3 

0 Il-A1 Al 0  0 
J 

1 0 1.r1  r 0 

P 	2 1 	0 0 1-As ' 2  

r 0 
0 

The matrix gives the following egttions -0 

Po(t+dt) = Po(t) (1-A1dt) + r2  P3(t) + 0(dt) I 

P1(t+dt) = Po(t) Aldt + P1  (t) (1-r 	dt) +O(dt) 

P2(t+dt) = P1(t) r1  dt + P2(t) (1-A2dt) +0(dt) ••• 

P3(t+dt) P2(t) A2dt + P3(t) (1-r2dt)+ 0(dt) 

#... (3 036) 

The set of equations (3.35) gives the following differential 
equations. 

Po(t) = -Al  P0(t) + r2P3(t) 

P (t) = Al  P© (t) - r1P1(t) 

P(t) = r1P1(t) - - r2P2(t) 

P3 (t) = A,2P2{t)' - r2P3(t) 

Equating these equations (3.36) equal to zero and simplifying 
keeping in view that. 

P0 (t) +P1(t) + P2 (t) +P3 (t) = 1 

But the acceptable states are PO(.t) and P2(t)-
Hence 

A("C) 	P0(t) + P2(t) 



sz 

2A r r2  
AA2r1 + lr2+A1 1+r1r2 

If A1= A.2  a A 

and r1  -- r2  a r 

then A) 	r  

This is the same as equation (3.34),  

3.2.4. Reliability Functionss 

in the previous sections steady-state or long term 

behaviour of the system has been considered* The steady-state 

solution of differential equation gives an idea about the 
proportion of the time the system remains in the failed and repair 
state s  from which it is easy to determine the system availability. 

In many cases one may be interested in examining the time 

dependent behaviour of the failure and repair process in order to 

make some statement about the probability that tys tem will not 
reach to failed state within the time (O,t), This is the 
reliability function.. 

In order to find an expression, for reliability function of 

maintained system one can employ the same transition matrix as above 

with the exception that it is so defined that transition can not be 

made out of state x, the state of system failure. 

Considering the most simple case of two equipment standby 

redundant system with one repair man transition matrix can be 

formed as follows$ 

0 	1 	2 

0 	1 -A 	A 	0" ' 
I 

P= 	1 I 	r 	1- (r+A) 	Al 

0 	1_1 
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This matrix gives' 

P©(t+dt) = P0(t) (1-Adt)+P1(t),rdt +O(dt) 

P1(t+dt) = P0(t) Adt + PI(t) I1_(r+A)dtl+O(dt)j 
	

... (3.37) 

P2(t+dt) = P1(t) .Adt + P2(t)dt + ©(dt) 

The set of equations (3.37) gives the following differential 
equations* 

PI(t) = *-A PQ(t).+ rP1(t) 

P' (t) = A P (t)- (A+r)P f t) 	I 	... 
1 	0 

Ph(t) = AP1(t) 

initial conditions are 

PO(0) =1, P1(0) = 0, P31(0) 'ft 0 

and  R(t) = P0(t) + P1(t) 

•. 	... (3.3w) 

Solving the set of equations (3..38) by Laplace Transform 

~A(k+r+s) 	O{A +r+s) 
a +(2A +r)+ A 	(s-s) 

Pl(s) - 	s s - s 
l2 	2 

-(2A +r) +r3 +4Ar 
where sl 

-o(gA+r) 	43 + 4t r 
s3 

2 
a' 

P0(t) 	J (A+r) -a1I ~ e"slt + X (A+r)-s3 e s̀2t 
 1 s2 

P1(t) = 	(e s̀1t 	e 2t ) 

R(t) = P0(t) + P1(t) 
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s2es'lt asl e's2t 
= 

— 	 ... 	... (3.39) 
s 1Ops2 

The difference between the reliability functions for maintained 

and non-maintained systems Is shown in fig. (3.5) . 

3.25. Non*Markov Process: 

In the previous analysis it is assumed that failure 

distribution is exponential but if It is assumed that- 

F(t) =i At ,Ate"At 

and repair distribution G(t) = l- e t 

From failure distribution it is clear that it goes through 

exponential phases each of average length 1/A. 

Therefore one has to d; ignate three states instead of 
two where the equipment. goes through one exponential distribution. 

The repair process Is commenced when the system reaches state 2, 

since state 01 and I are operating states. 
matrix 

The transistion Awill be of the form" 

r 1 2 

0 	1 »A A 0i 
I 

P' 	1 	0 1-A A 	I 
• I 2I 	r . 0 1-rJ1 

Steady-state availability function A(c) a P0(t) + P1(t) 
forming the differential equations from the matrix and solving 

by Laplace Transform. 

.A ( °v ' 	L! 	..w`.."~ a • ♦ ... 	(3.4©) 
• 2" +A 

on the otherhand if• 
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G(t) = 1 .e'rt . ,. rt e t 

and F(t) - 1 . e`At 

Then transisition matrix will be- 

0 	1 	2 

0 	1iA 	0 	A 

P 	 r 	I-r 	o 
HI 	 I 

2 	o 	r 	1-r _X  
System is only available in zero state. 

After solving the differential equations formed $  from 
the above matrix. 

which gives- 
A( 	= ;+, 1 	... (3.41) 

S6 
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SELECTIVE AND NON»SELECTIVE OPERAT) ON OF RELAY 

Every protective relay must meet •two main requirements ~} 

.) It should not operate when it is not required to do so. 
This discriminative requirement is known as selectivity 

of the relay. 

Cii) It must operate when it is 'required. 

To meet the first requirement there arise two different 

cases -of disturbance of selectivity. Faults may take place on 

the particular component 'which may give rise to some operative 

signal, which disturbs the selectivity i.e. the signal is present 

when unnecessary. Another cause of disturbance of selectivity 

is; no signal is emitted, when necessary. A good relay must 

distinguish these two cases! It is simply wrong to add up all 

the instances of the disturbance independent of the particular 

class of fault because, 

(i) Back-up arrangements which raise the reliability in 

respect of selectivity, increase the probability of 

failure or vice-versa., 

(ii) With a disturbance of selectivity of one or the other 

class, the probability of non-selective action is not 

the same as the probability of failure,, and their 

economic consequences differ as well. 

It is assumed 'thattault on any component may lead to 

unwanted signal and disturbs the selectivity.' Thus the selectivity 

can be increased by duplicating the component by using the same 

type of components, and arranged in such a way that output signal 

only appears when all the components arranged as above are 

operative. If the probability of appearing of the undesired 



signal in the output of one of the element is denoted by q 

(q< l) the probability of false operation in Fig.(4.1.l.) is 

qt = qm' because qm' q, hence selectivity is increased. 

However if the element fails, this increases the probability 

of failure. Denoting the probability of failure of one element 

by qly the probability of the output signal of the same element 

appearing is pZ = l'-ql, the probability of the output signal 

through m, elements is pr',  while the probability of failure 

is qj = 1 •pM e. 

or qj = 1 1- (lwgl)m' I 

since 1 1 OM (l- ql)m* I > q1, the probability of failure is 

increased-. 

If the elements are duplicated in .tlarallel as in Pig.(4.i.2,) 

then probability of signal output is qj = qn t 

since i' < q1  hence probability of failure decreases } but the 

probability of non selective action is given by 

q' = I. (i-•q)n' 

since q' q, the probability of non selective action is increased. 

Keeping in view the above statement, some compromise has to 

be made by arranging some series-parallel elements in such a way 

that probability of non selective action is decreased as well as 

probability of failure is also decreased. 

The circuit as shown in Fig..(4.l.3,), has been analysed as 

a general case, (the circuit (4.1.4) is converse of it)$ in which 

there are m, elements in series with n, elements in parallel. 
Algebric equations have been framed for different values of m, 

and a,. 
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4.1. Analysis for Relay Selectivity$ 
Case 1 	for n, = 2 1 	m, = 29  3, 4, 5, 6. 

6r 

The following inequalities should be satisfied. 

1- (1.q2)2 	q 	or q-2q2  + q4  > 0 

1 - ( i-q3) 2 	q 	or g2q3  + q6  > 0 

1 w. (1q4)2 	q 	or q 2q4  + q8  >- 0 	... 

1 C1-45)2 	q 	or q-2g5  + q10>. 0 	... 

1- (1,-q6)2  C  q 	or q-2q6  +  

(4.1) 

(42) 

(4.3) 

(4.4) 

(4,5) 

Case 2s 

when n, 3, m, 	2,3,4,,5 %6 
The following inequalitits should be satisfied, 

1 (1-q2) 3  4 q or 	q.3g2  + 3q4  q6> 0 .. . 
1 (1 92)3  4 q or 	q-3q3  + 3q6  - 49>, 	3 ...* 

1_ (1'sg4)3  C q or 	q'3g4 + 3q8 q12 	a.. 
1 (1'q5)3  < --q or 	q-3g5  + 3g10-q15  a. 0... 
1 (1'-q6) 3 	/- q or 	q-3q6  + 3g12• q18>, 0... 

(496) 

(4r.7) 

(4.88) 

(4.9) 

(4,10) 

Case 3: 
when n, = 4 ! m, = 2, 3, 4y 5, 6. 

The following inequalities should be satisfied. 
1 (1*q2) 4 < q 	or q-4q2+6q4'- 4q6+q8  > 0 

1 (1q3)4  < q 	or q-4q3+6q,- . 4qg+q 	0 

1 	1-q4)4  4 q 	or q-4q4+6q8- 4g12+q16  0 

1 (1.g5)4  ,C q 	or q.4g5+6q10,4q15+q20 >, 0  

1- (1-q6)4  4 q 	or q-4g6+6q „'4g18+q24  >r  0 

(4,11) 

(4,12) 

(443) 

(4.14) 

(4.15) 
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Case 4* 

when n, = 5, 	m, = 2jL 3' 4, 5, 6 

The following inequalities should be satisfied. 

1 w c1 25 q or q-5q2+10g4 " 10g6+ 5q8-q10 >. 0 (4.16) 

1 - (I-q3)5 < q or q-5q3+10g6 - 10g9+ 5q'2 	15>, 0 (4.17) 

I - (1-q4) 5 4 q or q-5q4 +10g8 - 10q+5q16-q2 >. 0 (4.18 ) 

1: = 1-g5)5 < q or q-5q5+10g10„ 10g15+5q20q25~. 0 (4.19) 

]: - (1-g6)5 < q or q-Sq6+10g12- 10g18+5g24-q30,, 0 (4.20) 

Case 5: 
when n1 6 	m, = 2,. 3$ 4, 5'' 6,, 

The following inequalities should be satisifed. 

	

. - (1-q2)6. q or q~-6q"+45g4-20g5+ q8--6 q .0, q 12 >, 0 	(4.31) 

1- (1-q3)6< q or q-6g3+15q6.20q9+15g1Z-6q15+q 	, 0 	(4.22) 

1 - (i..g4)5< q or q-6q4+15g8-20g12+15q16,'6q20+q24~ 0 	(4.23) 

1 (1-q5)6< q or q_6q6+15g10_20q15+15q20.06q2$+q30~ 0 	(4.34) 

1 - (l-g6)6z. q or q-r6q6+15g13-2Og18+15q24M~q30+q36~, 0 	(4.25) 

Since 

q>0 
and . (q-1) ' 0 
i.e. 0 4 g 4 1 
From the above 25 inequalities the optimum acceptable value of 

q is found out and tabulated as shown below: 
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Table 4.1 

gn,mt I q22 ' q23 t 	q4 q25 q26 Case Cae q 	
*- '0.618 '0.84 ' 	0.92 # 0.95 ' 0.96 

qn, ' q32' q33 ' 	q34 q35 t q36 Case 2 
q t 0.«388 ' 0,68 ' 	0.81 1 0486 0.905 

gnfm # q4~ a43 '44 X45 q4~ Case 3 
q t 0.29 t 0.058 ' 	0,725 $ 0.08 ' 0.855  

m `2  .q53 q54 (L55 q56~ Case 4 
q ' 0,22 f 0,52  • 0.66 1 0.755 ' 0.81 

1 q62 ' q63 ' 	q64  q65 qf6 Case 5 
q ' 0.18 ' 0.46 ' 	0.62 '; 0.72 1 t O.78 

4.1*1* Gain in Selectivity: 

The gain Ye = f(q) in selectivity is obtained as the ratio of 
the probabilities of non selective action of one element to the 

probabilities of non-selective action of the circuit of i.(4.1.3) 
for different values of n, and m,, 
Case l:  

for n,. = 2, m, 	2$ 3, 49 S 6. 
Ye(22)   ... 

	 .. • (4.26) 

2 	q 	2q-q3  

Yc (2,3) 	---
q -'

= -__ 	' , 	
... 	... (4.27) 

Ye(204) w 	L- I., ~` ' 2q„q. 	 ... 	... (4.28) 2q  

Yc(2,5) = 	q 	= 
2q 
q q 	 .4 • 	

H 

(4.29) 
2q .ql 	-q 

Yc(2,6) = 2q~ 
q 	

«w.  ... (4.30) 
'”q. 	2q`q 
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rA 

Case - 28 
for n,  3f  m, = 2, 39 4, 59 6 

Yc C3,2)  	-1 5~-- 	... 	... (4.31) 
3q "3q +q 	3q-3q + q 

Yc (3 ,3) 	9 	. . ., 	... .. 	«.. 	• .• (4.32) 
3q 3q +q  3q 3q + q.. 

Tc(394) 	," .12 ` «.. 	... (4.33) 
3q 3q. +q 	3q 'meq + q 

' c (3y5) 	.4 . ... 	«. (4«34)•3 3 	5 844  

Yc (3,6). = 	6 12 q 	3q3q+q 11 	U.. 	. (4.35) 
3q 3q•  

Case - St. 

for n, 	4, 	m, 	2, '3 =  Al 5, 6 

Yc(4,2) = 
q «.. 	..._ 	6r 	= 

	

4g2-6q 	8 
~......- - 	«*« 4q-6q +̀4q  U7 	••  

w4. 	(4.36) 

4q "o6q ' 4q -6q ' 4q -q ! 	 q 

Ye (4,4) q 	8 * 	12 	1 
4 	6q 	4q 	q 

". 
 44 'meq +4q 	~t  

... 	(4.38) 

YO(405) 

	

q 	2 

 

4q  6q  +4q  q 

	

..~..9 _ " 		1 
4q -6q  +4q  q 

Ye (4,6) ... . 	(4.44) 
4q -6q 	+4q 	**q : 4q -f1 	+4q 	"`q 



Case - 4: 

for nt 	59 	m, = 2t 3, 4i~ 5, 6. 

C' 
YC (5,2) 	0 	.~.. 	.....-..9~. (4x.41) 

5q2 	'-10q +1.Oq -54 +q 	5q-10q' +lOq X59 + q 

5q -10q +10q -Sq +q 5q "1©q +10q +5q -Sq 

Ye (5,4) -- 	q 	= 	- - 	., 	
(4643) 

S x-3.0 +10 -5 + 24 5 	+10 1 5 q ~, 	4, q 	q +q 	q 	q 	~1 q q 

q 9 	(4.44) 5 	25  5q 10q +10q 5q +q 5q 10q +10q -5q+ q 

Yo ,f) 	 (4.45) 
5q6.10q + .eqa -5g24+q30 5q .10q +1bg1 -5q +q 

Case a 5s 
for n, = 6$ 	m, = 23 3# 41 5s 6* 

4 

6q -15q +R0q _15q +6q1 . q12 6q-15q +20q -15q +6q ..q 
•ai (4.46) 

q. 
YC (5t3)  

6q -15q +20q +15q +6q 5-g18 6q2. ,15q +20 +6q1- -15q - -ql 
(4.4?) 

q 
1 o (694) 6q4-15g5+24q'2i15g16+6q2©-q, 4 

... (4.48) 

To (6, 5) 	 . 1 6q -o1Sg1 +20q -15g2 +6q -q fie -15e+20q -.15q 6q - q 9 
4 . * (4.49) 

'5- 
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Ye (606) 6q -lSg
l̀ +20q »j5q *6q -q , 6c 6- q ' 20q -15q +6q .q 

(4.50) 

The function Yeuf(q) for different cases are plotted in Figs. 

(4.2 to 4.6). The computer programme for the plotting of the 

curve JYc=f (q)1. for the case n,6, m, = ' 2,3=4,5 and 6, has, been 
given in Appendix 2.. 

From the curves it is clear, that gain appears (Ye 1) , if the 
different values of q are less than that the values shown in 

table (4,1) for different configurations and increases as q decreases 
i.e. increasing the reliability of the element. 

4,2 Analysis of Relay Failure: 

Case 	1:''  

when n, 	21 m, = 2, 3, 4, 59 6 

The following inequalities must be satisfied: 

1'. (li.q )2 2 < q, or (2q1 - q ) -q1 :o 	... 	... (.53) 

1o» ' (l.gl)312 < ql or (3q1 - 3q, +qj)2 .qj, 0 	... (4.52) 

1- (l-q1) x`12 < q1 or (4q1-6q +4q3-q1) 2» qy < 0 	:. (4.53) 

or 5q . .Oq +10q~ 54+q) -q1 < 0 	... (5.54) 

3 (l q1)6 z- ql or (6q1-l5gi+20g-i5q +6q qy )2-q1, 0 0 6 6 (5.55) 

Case - 2s 

when n, = 3, 	m, = 2a 3, 4, 59 6', 
The following inequalities must be satisfied. 
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Ii(1-q1)2J3 q1 or (2q1"g1)3q1 < 0 	"" 	(4.56) 

3 
11•(1+q1)313 q1 or (3g1.34 +qj) - q1 -4 0 	... 	(4.57). 

I1 (1-q1)'1J3 . q1 or (4 1-6q +4q-q)3 -q1 < 0 	. 	(4,58)  

i1-(1yg1)5I3 z q1 or . (5q1• .0q +10gi a.5q +q1)3 -q. < 	'0 	(4.59) 

t 
or (6q1-15gj+24gj-15gj+6g3. )'.q1 <_0 (4.60) 

Case - 3: 
for n, = 41 	m, 12 2 j  3, 4, 5, 6. 

The, following inequalities must be satisifed. 

or (2t 1-qj)'1 - q1 	0 	,.. (4.61) 

or (3q1-3q +qi)4-q3 	0 	«.. (4,62) 

	

- 1~►g~,34 ~` 4 q.1 or (&q1-64 +4q-4)'1 q1, 0 ... 	(4,63) 

11(1-q1)514< q1 or (5g1i-10q +30q m54+gj)4*q1, 0 	(4.64) 

or (6q1-► .5q1+20g1- .5q1+6q ~-c 1~ 4- q~ < 0 (4.65) 

Case •~* 4: 

nt 1 6}  m1 = 21 3, 4, 5, 64 

The following inequalities must be satisfied.. 

ly (1 q1) 21 	qy or (2q1' qj) 5r-g1 < 0 	.s. 	(4.66) 

or (3g1.3q +q)5-q1 <_ 0 	a0a 	(4.67) 
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1-(1-q1)g 5 4ql or (4q1-6ql+4q -qi)5-.ql 0 «.0 	(4*68) 

	

j l { l-gj) MI5 4 q3. or (5q1-10q~+104l-5q1 +q) q1 < 0 	(4,69) 

or (6g1-~15qj*20gj-~15q 6qi-q1~ 5~-q1 '0 (4,70) 

Case '0' 5s 
for n, 	6, m, = 2,3,4,5,6. 

The inequalities given below must be satisfied. 

ll-(l, gl)216z ql or (2q1-ql)6 -q <0 	A r • i . K 	 (4.71) 

l-(1-q )3 6 ~. ql or (3q1-3q, + qi)6 ► q14 0 	... 	(4,72) 

*l-(1-g1)4)6 ' ql or (4q1-6q, +4q1 -q)6 -ql< 0 	.(4.73) 

3. (l-q1)5 5 	q1 or (5q1-10q 	+l0q, -5q, +ql)6- q1 < 0 	(4.74) 

11 (l-gl)616 < ql or (6q1-15q+ 20q~-~l5g1 +64.q )6 q10 _ (4.75) 

From.the above,25 inequalities the optimum acceptable value is 

calculated and tabulated as shown below: 
Tabe42 

nam #q~I 	,q 	,r 	r 	1.. 
Case-1 	22 	. 24 	25 	i 26 

q 	-0,382 , 0.16 , 0.08 , 0.05 	, 	0.04 

ase 	qj. ntm+ q3. 32 s4. .,33) ' 	• 4l. 	' qi 435 	' 	 . .36 
C-2  

	

* n_9*19 I n_Ain I -n_IQ t 	I 
q tnlm~ 4t, 	42 Case-3 lq  . • ' tql . #  
I q 	'0.71 1 042 • 0.275 0 	0.192 ' 	0.145 

Case 1 1 	52 -4 153 154 55 . 56 
q 	! 	a 2 , f 	4 • 

ql n j m' 4 	62 Cas a-5 ql 63 tl 54 ~ 9 . f 5 1(11(66)  
41 	'0.82 '0.54 '.0.38 '0.282 1 	0422 
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4.2.1. Analysis of Reduction in probability of failure 

The reduction in probability of failure 7o (n, , mt )=t (ql) 
is defined as the ratio of probability of failure of one element 

to the probability of failure of the scheme under consideration 

for different values of m,and n,. 

Case - la for n, 	21 ml 2,3, 4,5'6. 

!o(2,2) _q  2~2 	l 	76) 
(2q1 ql) 	q1(2-q) 

Yo(2 3)  (3q1-3q) gl(3.3ql+q1}3 

 

 y  a  • 
1  .  

Yo(2,4).,.,. ,. 	 3. 	 (4.78) 
(4q1.'6q1+4q  wq1) gl(4„6ql+4q2i ,qj) 

Yo(2, 5  
(5q1- .0q +lagl-5gftq1)2 q1(5-lOg1+iOgZ"5q1+q3) 

Yo(216) 	q 6 	1 	6 
(figl- 5q1+24g1- .5q +6ql-ql~ q1(6-l5g1+2Og1 'l5g1+6ql~q1) 

... 	(4.80) 

Case • 2$ 
when n1   31 m, = 2,3,4,5,& 6 

Yo(3,2)  2 3  2 	3 3  ~..  (4:81) 

Yo(3,3) 	". 	 ... 	(4.32) (3q1-3ql+q1) 	111 (3 -3qZ+q1) 

Yo(3,4)  =  l 	(4.83) 
(4g1-6q1+4q1-ql ) 	q1(4-6q1 +4q, - ql) 
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3 4 32 	 4 3 484) 
(5g1.1©q +lbq1-'5q~+q1) . q2 (5-10g1+lOg1.6q1+q1) 

Yv(3#f~}~ 	q' 	 ~ 
(6q,-35gi+20q,•15gi+6ql-q1) ql(6-15g1+2©q1-i5q +6q -q.) 

... 	(4.85) 

Case-3r 
when, n, = 4 mi .= 2,3,4,5 f6.. 

Yo(4f2) 	q 	-~-- 	 . 	(4.86) 
(2q1-) 

	

q] 4 	q1(2-q)  

Yo (413) -.. 	1 	1 	 (4.87 #w* 
(3q1- Sq1 +q1) 	g1(3.3q1 + q ~" 

Yo (4,4) Z Z 	4 	" ~.•..W'-.~..,~ 3 4 	(4,8$) 
(4g1»6q1+4q1 "' qi) 	q,1(4.6g1 +4q1 -q1) 

YO(4~5) 	q ^~~ •I ■ M YY f~~Y11Y~I~YYti111 Y~I~i 	' - 

(5q1 w 1®qq+1Ogi -5q, +4)4 

...  (4.89) 
q(5-1og1 + 2agl w 5q, + q,4) 

Yo(4i6)=  ql 
(6qi:i5q +2Oq, - 15q +6q -qj) 

, rwYrrr.n.~iY~r~r_lrr+wrn~l•~•rri - ronin..rr*Yrr_.rYrirrr_r 	♦ !► 	 (4.90) 

gj(6*3.5q1+20gj-15gZ +64 .isgl) 4 

Case - 41 
When as 	5t mt = 2!3,4,5,,6; 

._ 	 l 	 .w« 	(4.91) 
(2q1 ql) 	4 (2-q1 ) 
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To(5,3) =-~-- 2 - - 5 a 4 .. 	:- (4.92) 
(3g1.3q1 + q1) 	q1(3-3q1 + q1) 

Yo(5,4) 	2 3 . 	4. 	.2 5 (4.93) 
(4q1-.6q1+4q1 "ql) 	q1(4-6q1 +4q1 "'q1) 

Y©(595) =i' r~r w • 	Mrrrrl'" ii 	-•~ 	- i 	 • 

5qZ*-1Ogii + iOq5qi +q)5  

	

3'I.. 	(4.94) 
q3(5-l0gl + 10g i5gj +q )5 

(6q, *154 + 2O1  5q  

.,.~.a......,. 	4 	 . 	(4..963 
qj%6-15q, +20g10-l5q, +6gioql 

•Case 5t 
when a, 	6, m, = 2,3,4,5,6. 

Yo(6,2) = 	2 	5 	1 	 (4.96) 
(2q, -q~ l ) ' 	~1i (2 - q1) 6 

Y€ (6,3)= 	ql 	= 	- 1 	►.. 	(449?') 
(3q1-3q+ q33) 6 	q' 1 (34.3g1 +qi 

Yo(6,4) - -.~ 	- 6 	5 	~- 	3 g 	(4.98) 
(443""6q]+4q3"43) 	g1(4n6q1+4q3 " Q 

4i 
Yo(6,5) 

( 5q1 1Ogl +i0q~ - 5qi +q ) 6 . 

4 	... 	(4499) 
q(5-1Ogl +1Oq , -5q, + ql)6 
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qi 
Ya(696) 

(6g1'15ql +24q -l5q, +6q, -ql)6 

(4o1©0) 

q(6"15g1+2©41. 'r15
g1 +6q1 " q1)~ • • • 

The function Yo=f (ql) for different cases has been 

plotted in .gs.(4.7 to 4.11). From the curves it is clear 

that gain appears (!o' l)if q,l. Is less than the values indicat-

ed in Table (4«2) for that particular scheme# and increases with 

decreasing values of ql, thus increasing the .reliability of the 

element. Here the probabilities q & q, are regarded as referring 

not a_ particular .specimen, but as requirements which must be 

satisfied by any specimen. Thus the actual'probability q of _ 	 q 
each specimen must satisfy the condition# 

Q 4qa _<q 

with an understanding of the probability q, even if q 0.5 it 

is impossible to replace the element by the opposite element 

as assumed in reference (21) '> -~ ",=2 arid ?7,22 

The computer programming for the plotting of Yo=f(q1) 

for the case n., 4 6 and m, 2,3,4!5,6 has been given in 

Appendix 3 

The chart given below provides a complete idea about 

the probability of non-selective action and probability of 

failure of relay circuits$ with different configurations. 

$2 
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__„__ 	m I (Series elements) 
#0 *1 *2 ' ' 3 44 ' 5 

ie It 

.382  .612 .71 .78 „82 
(.618) (.388) 	(«29) • (.22)  (.18) 

(.84) 
♦ 6 ♦ 2 

(.68)  (*58) 
.42 

(.52) 
.48 

(.46) 
.54 

4 (.92) (.81) 	(.?25) («66)  (.62) 
rr14 , .192  .245 	.28 

(.95) ( 486) 	(.808) (.755) (.72) 

p.04 *.{5$55)'~~.~.45 
(.81) 	(.78) 

*.22 
*6 * {  (.►05) 

The values .entered with in brackets denoted the probabi-

lity of non-selectivity, and those without are probability of 
failure. It is evident, if the probability of failure is 

decreased, the probability of non-selectivity increases. One 

has to get a compromise between these two, to have a relay scheme 

with minimum probability of failure and also the probability of 

non-selective action* If the components in relay assembly are 

properly debugged and reasonably reliable, then the criterion 

of selection for a particular configuration mainly depends on 

probability of non-selectivity. From the chart it is also 
evident that one will be tempted to use configurations as (314), 

(3,5) and (3,6) for almost equal values of probability of non-

selective action and probability of failure, 

4.3. Working Conditions of Protective Relays: 
Relay protection works under different conditions, 

because if a fault occur on a relay protection device which can 
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lead to failure of the protection, this still does not mean 

that failure has taken place. For failure to occur it is 

necessary that conditions must be produced before rectification 

or replacement of the damaged element, in which the particular 

device would have to operate, i.e. the element of the electrical 

system being protected by the device must be damaged. 

Thus the probability of failure is basically dependent on 
P 	, 

the coincidence of two events, failure on the protection device 

and fault on the element of the system being protected. 

hence, 

(4.101) 

where qj is the probability of such a fault on the relay 

device which can, produce a missing operation, and q" is the 

probability of fault on the protected element for which the 

particular relay device must operates 

From this it is clear that faults are possible on the 

relay protection which may cause non-selective operation Is 

also possible ith a fault on the output device which are 

usually very reliable. Non selective .  operation on relay 

protective gear is much probable under conditions when some 

of the main organs on which the action of the relay depends, 

must ,operate and selectivity depends only on some of them. In 

this case a.fault on this element may lend to a non-selective 

action of the device as a whole. 

Pxperiences have shown{22  that most of the non-selective 

actions of the relay protective gear take place at the time of 

short circuit outside the action zone of the protection. Now 



assuming q1 as the probability of faults of protective devices 

which can cause slow non-selective action and qA, q'....q , are 

the probabilities of these which can cause non-selective action 

under some external conditions or other. While the probability 

of these external conditions are denoted by q3, 	The 

total probability of non-selective action is. 

gnon-s` 1- (11gA) (l-q#q  q) (1 	q).. . .' (1-q, qn" t) (41102) 

for small values of qA, 

gnonws q2 + q 	+ q4 q4" •.»qq,q , 	.`« 	(41103) 

U' 

a1
2 q l  qal  where q2 l 	... 	(4,.104) 

If it is assumed that q2 ft 0 and•gg 1* q4" .....qj,= q" 

then 	 I  

gnon*s = q " 	q'  ` 'q t  4 `l 	... 	(4.105) 
ai-3  

UI 
where 	q' = 	qa 

a1 3 

This indicates that probability of nonselective action 

and failure of protection not only depends on the probability 

of faults on the corresponding element, but also on external 

conditions. The values of qo  and gnon.s are determined from 

statistical data. 

The probability of non-selective action or of failure 

during the interval of time T is- 



anon-s {t, '2 
 1.enon-s +t 	 I.. 	 (40146) 

Where ano 	is the rate of the non-selective action. 

If 	Is very very small,#  then ,equation (4,106) can 

be expanded and neglecting the higher powers- 

= a 5  .t •.` 	 •.. 	(41107) 

The value of gnon»e can be defined approximately as the ratio 

of the number of protective operation which acts non-selective 

during time is  to the total number of protective operation. 



C 
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FAILURES IN C~NYRNTIONAL Ali') tfliGON'VR16TION'AL RELAYS: 

The failure or defectiveness is caused by sudden or random 

failures or by deterioration of the characteristic of the compo-

nents used in the relay circuits,, such as slackening of springs, 

increasing contact resistances etc. The failure of relay is 

defined as either total breakdown or an unsatisfactory operation 

beyond the permissible limits. These may be due to dirty contacts, 

open circuits in fine wire coils (docs►), wrong setting or incorrect 

adjustment. In the case of total breakdown the damaged or failed 

part Is completely replaced by a new part of the same character-

istic, while unsatisfactory operation means a fine adjustment is 

required such as (greater senstivity,.tensioning of springs$ 

reduction of contact ,resistance etc.). It has been estimated( . 
24$25)that line contacts have about half the resistance of square 

flat contacts of the same length* The cylindrical contacts at 

right angle provide the most reliable arrangement of relay contact 

without concentrating the current at an actual point which wouitd 

tend to burn and erode away. 

Silver is the most widely used metal for relay contacts 

since it has the lowest resistance, copper circuits are not used 

in relays because the resistance of clean' new copper contact is 

eleven times that of silver ones and oxidation raises the resist-

ance of copper contacts several hundred thousand times. The 

resistance of the contacts is partly that of the contacts themselves, 

which depend upon their material and dimensions, partly of the 

actual contacting surface as explained above. For clean dry 

silver contacts R 	1 where R is resistance in ohms Y is 

the contact pressure in Grams. For silver 'o 0.8 and X depends 



upon contact shape and dimensions. 

The resistance of a clean contact has also (25}  been 

expressed as Q/2x where Q is the resistivity of the metal and 

x is the radius of the contact area, x -l.11 Y.z/B where 

Y contact pressure in Grams, z =radius of two cylindrical rods 

in contact at right angle (in cros.) and E is the elastic modulas 

of the metal used. 

A special problem exists in relays with poor ventilation 

especially in sealed units., High resistance polimers can appear 

on the contacts due to organic emanations from coil insulation, 

specially where traces of iron or copper are rubbed into the 

surface during manufacture{26  Contacts containing palladium are 

the most affected and gold plated the least. 

In general the failures in the relay can be divided into two 

main categories$ gradual failure and sudden failures. 

Sol, Gradual Failures: 

The gradual failures depend upon the duration of operation 

because the variation with time of the relay parameter to some 

extent, depends upon the aging of the elements which may be due 

to physico-chemical change of structure, The most affected parts 

are damaged due to large number of operations of breaking 

excessive currents for which it is not designed, Due to the 

pitting of the contacts the contact resistance is increased. So 

the gradual failures are associated with slow random variation of 

one or several characteristics .f^the elements, These changes in 

characteristics may be determined by environmental factors, the 

nature of their work etc. Usually in the first instance most 

rapidly changing parameter of the relay should be considered which 
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is said to be decisive. This parameter may be regarded as random 

variable which can have any value with some tolerance (previously 

specified). Hence the probability of fault free operation of a 

relay during time t is given by 

 ( t) = P (Rt  C Ht perms)  

where at perms  is the permissible limit of the most rapidly 

changing parameter. 

Because the varying .parameters are monotonically increas- 

ing and decreasing function of time t. The parameter Ht  varies 

during time t under the action of a number of factors (climatic, 

mechanical etc.), In many cases it can be assumed that these. 

factors are independent of each other. According to L aounov's 

theorem the distribution.  law of R, at any time t, is almost normal. 

This fact has also been confirmed by NM. Zul. and F,A. Kuliev 

through experiments on double auto reclose circuit*  It has also 

been established, for instance, that even if packing of the best 

quality is used 10% of the packed apparatus Is damaged (28).. 

5 2. Sudden Failures 

These types of failure arise due to sudden changes in the 

vatues of one or several parameters of the relay circuit, examples 
are burnout of valves #  breakdown of-capacitors, shorts-circuit in 

reactor windings etc. The failures may be dependent or independent 

of each other, but for simplicity it is assumed that these are 

Independent of each other.. In this type of failure the parameter 

value passes abruptly beyond the permissible limits, tending to 

zero or infinity, These failures are random in nature and follow 

the exponential type behaviour. Hence under these conditions the 



reliability R(t) Is given by the expression- 

R0(t1i  t2) = exp " IA (t) dt I 	•., 	(5.2) 

where Mt) is the failure rate during the time interval t1  and t2. 

As has been seen, gradual failures in relay systems behave 

like normal distribution$  where as sudden failures behave as 

exponential distribution, If it is assumed that these two types 

of failures are independent of each other the probability of 

duceessful operation is given by- 

R{t) = R(t). Re(tit  t2) 	.. o ` 	*.. 	(5•3) 

where Rf (t) is the reliability function of normal distribut- 

ion (for gradual failures). 

5.3. General Considerations* 

The relay performance may be affected due to friction 

developed in the bearings because most protective relay bearings 

run dry. The most common type of bearing for precision relays such 
as in the induction type is a pivot and Jewel bearings, For special 

application, requiring high sensitivity and low friction a sipgle 

ball. bearing 9)  running between two cup shaped sapphire jewels has 

been used* The moving coil type relays are most effected by mechani. 

cal. vibrations than an induction cup type because the distance 

travelled by the cup type relay is too small. The static relays 

are least effected. Most of the cols which are made of fine wires 

are liable to subsequent failure on open circuit„ usually near one 

of the leads but some times at the kink or crossed turns $  due to 

fine wires having been eaten through by corrosion. Failures from 

this cause are much more common when coils are connected to the 

positive end of the d.c. circuit$  because the coil became the 
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electrode to which the acid ions are attracted. There is a states 

tical evidence that coils wound with 0.006 In* wire are no less 

liable to failure than those Bound with 0,002 in. wire, although 

they may take somewhat longer time to fail. 

5.4. Precautions for Maximum Reliability: 

The relay should be designed for high contact pressure 

under all operating conditions,.. If necessary$  it should be 

augmented as the contacts are approaching abd almost closed. 
F 

This is done in certain modern relays 3°  for instance $ by a 

notch in the induction disc, 

The relay case should be made dust proof and provided 

with a filter breather to eciva ise the pressure inside and 

outside the ease without allowing the dust to get in* 

Pine wire relay coils and trip coils should have well 

braced junction between the coil wire and the outside lead so 

that stress on the latter will not cause an open circuit# Acid 

fluxes or acid providing insulation should be avoided. Mechanical 

removal of enamel from the wire should be avoided. In genera., 

a.c, coils should use wire not less than 0,05mm , dia.and d.c. coil 

not less than 0,1 mm dia, Coils should not be connected directly 

to the pos :five , side of d,.c supply unless all these precautions 

have been taken, 

Maintenance testing should be done without disturbing the 

switch board wiring, and infrequently except by the conditions of 

severe humidity; new untried components etc. Infreqz ent mainten' 

ante eliminates the risk of relay failure due to improper adjust 
ment by an unexpert psrsonne1, which is one of the commonest 
causes 
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Adequate maintenance can often anticipate failures due 

to a.c. wiring faults, including multicore cables and current 

transformers. Failure to trip due to loss of a.c. potential 

can be prevented by an overvoltage alarm relay connected across 

secondary potential fuses: 

Where devices are used which are too recent for comprehen.' 

sire reliability statistics to be available, they should be 

connected so that their failure or deterioration does not cause 

undesirable tripping or failure to trip. For instance#  transist- 

ors should be protected not only against voltage surges but also 

preferably should be protected so that the selectivity of the. 

relay does not depend upon the drift in the transistor character- 

istics, 
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The failures in electronic and electrical components can 

cost time, effort, and even life. Most of the reliability 

programmes concentrate upon failure prevention. Reliability 

principles have established certain concepts of failure rate 
acceleration. 'These may be due to Increasing stress of temperat-
u.re, voltage or power. However )  all failures do not have similar 
effects, few of them are catastrophic, while' others have negiligib 
effects. But to have smooth operation, the failures should be 
minimised. Environmental conditions also play an important role 
while considering the component 'failures under actual working 

conditions. The evaluation of 'extremely low failure rate in 
Laboratory is practically Impossible within reasonable length of 
time and with limited number of components. The reduction of 
time to failure can be obtained by artificial methods like accel-

erated test on capacitors, which some times present many problems 

in actual life testing. The text also givesri an idea about the 
remedies to different types of failure. 

6.1. Failure Classifications 

In general the failures of electronic and electrical 

components may be classified Into four major groups, viz; Catast-

rophic, Intermittent, Out of tolerance and Mal-adjustment. 

6.1.1. 'Catastrophic  failure (31)  takes place when either a part 
is completely damaged or shows a gross change in its character-

istic; examples that may be quoted. are; shorted vacuum tubes $  
open or short-circuited resistors and capacitors, a leaky valve, 

a stuck relay or a broken switch. This type of failure some-

times can be minimized during the design of a component, but some 
eatastronhin fnhlurA ern .rnnr'nrn in n=+rrrs_ '+iiia 4-ha riea4eFP%e,. 



can not be expected to eliminate all such failures. 

6,.1.2. Intermittent failures are also unpredictable, and the 

designer can do very little to reduce them. This type of failure 

is periodic in nature and takes place within the piece part itself, 

hence this must be corrected during the design of a component 

itself rather than in. the design of an equipment or a system. 

6.1.3. Out of tolerance failure results from degradation, 

deterioration, drift and wear-out. The examples are the drifting 

of resistance and capacitor's values, wearing out of relay contacts 

bearing etc. and solenoid valves etc. These changes may take place 

due' to time, temperature, humidity or altitude. When the gradual 

changes are considered collectively the characteristic of the 

components, reaches a point where these are not acceptable, that 

is to say there is a gross change in the parameter itself whici 

inturn changes the performances beyond permissible limits and the 

component is said to have failed. 

Some times random selection of a component out of a 

manufactured lot may lead to unacceptable parameter value or it 

is also possible that the component had proper value at the time 

of assembly just nearer to the tolerance value and there happens 

a major drift in the parameter as itis put into operation and 

thus leads to failure of 'the circuit s  fabricated; 

As an example several lots of resistances and capacitors 

in lower and higher ranges anges were tested and their values measured 

quite accurately, commensurate with their values and what the 

author has observed is reported below$ 

in the lower range a large number of resistance having 

face values as 68 ohms, carbon composition with 10% tolerance 

were tested and it was observed that only 7% of the lot had value 
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exactly as 68 ohms and about 11% had lower than that and, he 

remaining 82% had values higher than 68 ohms. It may be noted i 
that the minimum value of resistance measured was 63 ohms and 

maximum as 76 ohms whereas according to the tolerance specified 

the lower and higher limits should be 6L.2 ohms and 74.8 ohms* A 

curve showing the parameter value and the probability of incidence 

of the value equal or less than that is shown In fig, (6.1) for 

the resistance . value of 68 ohms,, and for other components in 

figs . (6.2 to 6.4) . 

Similarly$ in higher range side the resistance chosen was 

3.3 Kohms. Also capactors of 200 pf and .04 micro-farad, (gaper 

insulated) were tested and the results observed for all these 

components are listed in 'table 1. 

'Tab  le I 

''Value, accor- 'Observed 	'Probability Probability Probabi. 
Component ding to toler- values of oceuranre of values lity of 

ante. ' of exactly occurance values 
the nominal greater occuranc 
value. than less thi 

nominal the nom, 
nal v 

Mi n. Max. Min. 	Max. values. 

Resistanov 61.2 74.8 63 76 	7% 82% 11% 
68 ohms 
Resistance 2.97 3.63 3*0 3,.45. 	18% 37% 45% 
3.3K ohms 
Paper - 230 350 	0,0% 100,% 0.0% 
Capacitor 
200?? 
Paper .- - ,...,036 .0435 	18% 56% 26% 
Capacitor 
.04Micro- 

farad 

6.1.4. Maladjustment failures are generally due to human errors. 

These failures take place by unproper adjustment of the equipment 

or component as well as the abuse of adjusting device due to lack 
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of understanding of the adjustments and the capabilities of the 

component. The examples are increasing and decreasing the sensiti-

vity of a relay through hair springs. These failures are difficult 

to evaluate and to avoid, but their effects must be considered durii 

assessment of the reliability of an equipment or component. 

6.2. Environmental Considerations(32933)s 

While describing the nature of component failures !  it is 

very necessary to take into consideration the environmental 

effects which play an important role in describing the hehaviour 

of components under actual working conditions. These can broadly 

be classified under 'the following headings; Shock & Vibration$  

Heat Transfer, Corrosion & Biological growth and Chemical action. 

6.2.1. Shock and Vibrations 

These are probably the most controversial areas in the 

• environmental testing of electronic and electrical components 

• like electronic tubes, relays and other parts. One should simulate 

the actual environmental stresses that the item will encounter in 

the actual field use. The characteristic of any part under the 

above test should be stable during the test period. The most 

frequent failures due to vibration are: 

(1) Flexing of electrical leads which support resistors and 
capacitors. 

(2) Damaging the vacuum tubes, electric bulbs etc. 

It is advisable that the equipment should be mounted on 

shock resistant material like synthetic rubber to reduce the 

effect of vibration. Special instruments which can provide monitor• 

ed shock & vibration are used to detect the presence of foreign 

particles in transistors and diodes. The same can be used to 

determine their structural rigidity. 
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6.2.2. Heat Transfer: 

Poor heat transfer is a major problem in electrical and 

electronic circuits. The heat generated may be due to I2R losses t  

hysteresis losses or eddy current losses. This results in physical 

damages or help in accelerating the chemical reaction rates. The 

semi-conductor devices are much sensitive to temperature and most 

effected. 

The common methods of heat transfer in electrical & electronil 

equipments are (i) free convection (ii) forced air cooling (iii) 

conduction (iv) radiation and (v) vaporisation cooling. 

Convection being slow even when sufficient air space is 

provided, the technique is only applicable when dissipation is 
less than 0.25 watts per square inch under normal atmospheric 

conditions. Forced cooling Is used when the dissiptation Is upto 

2.0 watts per square Inch. Radiation is the most effective method 

of heat transfer. Vaporisation cooling is used when dissipation 

is more than 7 watts per square inch. The conventional way of 

vaporisation cooling is through refrigeration. The chart, given 

in Appendiz.49 gives an idea about the temperature precautions, 

which should be taken into consideration in designing an equipment. 

6,2.3. Corrosion and Biological growths 

Because, the environment contains many deteriorators like 

oxygen, Carbon dio .dei  dust, chemicals etc. Numerious types of 

parts like vacuum tubes, batteries and capacitors are susceptible 

to chemical action and biological growth. To cope up with this 
difficulty, the specification of the component should withstand 

the specified levels of temperature, humidity, fungus, rain, dust 

etc. 
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6.2«4. Chemical Actions 

The material of electronic components can undergo change, 

in a number of ways. Some of them are chemical interaction with 

other materials and modification in the material itself (recrystillia 

ation, phase change of changes Induced by irradiation). To avoid 

this '  corrosion resistant materials should be used as far as possible, 

6.3. Failure Analysiss 

To have a complete. idea about the mode of failure of 

electronic and electrical, components I  an analysis of different 

types of components is given belowtv 

6.3.1. Resistors 

6.3.1.1. Carbon Compositions 

A survey of the existing literature indicates that the frequent 

types of failures in carbon composition resistors are due to resist-

ance drift(34) 1  a decrease or an increase in resistance. The former 

may occur due to change in moisture contents, and the latter due to 

carbonisation which causes curing of binders and the third type 

resulting from curing and cracking of the resistance element. The 

cracks will normally occur at the hottest point or at the centre of 

the resistance element'. Also excessive 'external bet such as 'manual 

soldering operation or excessive temperature cycling will cause 

failure in the vicinity of lead termination where the mismatch of 

thermal coefficient is the greatest. Experimental results obtained 

in the Laboratory on the pattern of failure of these resistances are 

in agreement with the above analysis. Figs.(6.5) and (6.6) show 

the nature of failure of some of the resistors put under test*  Figs. 

are quite explainatory and stands as evidence for the mode of failure! 

discussed above. 

6.3.1.2, Metal Films 
In metal film resistances, the drift characteristic is 



Fig .6.6 
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very much important If the long term reliability of the part is 
taken into consideration. Generally, there are four obvious 

reasons of failures of these metal film resistors. One may be 

scratched film which ofcourse does not cause an immediate failure 

but may cause a premature failare. Another Is due to cracking of 

the substrate where the fracture finally interrupts the film 

continuity and the other two are due to lifting of the metal film 

from the substrate, 

6 43.1,3, Wire Wounds. 

Very low resistance units may fail due to short circuit-

ing of the turns,. Twisting or pulling of the leads may create an 

open circuit due to poor holding power of the leads, The failures 

may also be due to uneven distribution of winding, componM and 

other irregularities. 

6.3«2. • Capacitors: 

6,3.2.1, Paper and Mayler Dielectric Capacitors: 

Basically, a capacitor consists of two metal film 

foils separated by a dielectric material. A large number of 

capacitors get damaged clue to external causes such as the pierc-

ing of a few layers of tIB foil which results in short-circuit, 

The other two of failures are due to severe vibration in which the 

capacitor may lose its leads resulting in an open circuit. But 

some of the faults may be due to the deformation of internal 

sleeves if it is not inserted carefully. The life of capacitors 

under consideration varies inversely to some power (p) of the 

applied voltage(35)  which mathematically can be represented as 

follows: 
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(_•Y
I ) = ( -`..-gyp 	• .. 	• .. 	(6.1) 2 	vl  

where LI  and L2  being the mean life of mayler capacitor 

under test corresponding to the applied D.C. voltages Vl  and V2. 

The best exponent for the inverse power rule ranges from 2 to 7(36  
but different investigators -  suggest different values for the 
exponent 'p' however, several authorities have shown that a factor 

of 4 to 6 for most of the capacitor appiications(37i 38)  is reason-
able in practical ranges of voltage and temperature. 

The effect of temperature on the life of capacitors can also 

be established by the following relationship $  

1og14( 	..) = C (-i.. - 	. ) 	... 	(6.2) 
1 	1k 	2k 

where C is any constant. 

The above equation relates the mean life ratio to a difference of 

the above inverse of the temperature in degrees on Kelvin scale. 

From test results for a particular group the value of constant C 

can be determined. 

6,3.2.2, Tantalum: 

The most frequent type of failure mode in tantalum foil 
capacitors is the shorted units $  which may result due to the 

application of reverse bias; generally such units will display a 

colour corresponding to specified test voltages. 

6.3.2.3. Solid Tantalums 

The failure mode is very high leakage or nearly shorted 

units. The most probable cause of these failures may be the 

trapped impurities, some of the units may be found fractured which 

might be resulted from shock damage. 

6.3.3. Semiconductors: 
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6.3.3. Semicondueborsz 

The most frequent failures in semiconductor devices are 

due to thermal, electrical and mechanical abuses. It is needless 

to mention the tremendous difference between passive and semi-

conductor diements, A new 500 volt paper capacitor may withstand 

10,000 volts momentarily without failure, a power resistor may be 

able to take a power overload pulse of 100000 or more times the 

normal power rating for a micro-second; while a diode or transistor 

however has no such over-load or over voltage capability. The semi-

conductor devices may fail or show a change in operating character-

istic in so many ways, few of them are described as below: 

6.3.3.1. Electrical Abuse: 

Thermal considerations are of utmost importance in the 

reliability of semi-conductors devices. These points may be where 

electrical stresses or the current density is the highest or a 

point where the thermal resistivity is the highest. A power 

transistor(39  cannot dissipate heat into its surroundings because 

of its small area. Heat radiations from the transistor case is 

inadequate because of the Stefan's law. The major effects of time 

and temperature on the transistor are to reduce the value of 

current gain and to increase the value of collector cut-off current. 
9 

The effect of higher temperatures; is also to hasten the aging process 
Zenor diodes may fail due to loose soldered balls within the device. 
This may be due to over load conditions which create enough 
temperature to melt the eutictic and whisker pressure which will 

force the material out in ball shaped particle. The effect of 
temperature(40)  on the failure of transistor is shown in Fig.(6.?). 
6.3,3.2, Mechanical Defects: 

Some packages are inherently more susceptible to 

mechanical damage then others. The imnronerly wattAd nrvstn . 
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becomes more a mechanical problem in the extreme cases. Cracked 

crystals are another form of mechanical defects. The failure in 

the transistor may be of two types; an open circuit due to loss of 

internal solder connection to collector base or emitter and a 

short between collector and emitter. The open circuit may be 

caused due to poor construction. Other types of mechanical defects 

may be responsible ,for some of the alloyed- through shorted 

devices }  for example mettalic deposits bringing the glass feed 

through on the inside of transistor case. The most common 

failure of Zenor diodes, seems to be a rounding of the breakdown 

knee of sufficient severety to finally affect the operating 

region. 

6.3.3.3, Surface Conditions: 

Most of the failures in semi-conductors are the change 

in surface conditions.. The changes are due to the effect of 

time and temperature because the effect of higher temperature is 

to hasten the aging process. Thermal conditions may give 

reproducible and reversible , cyclical changes or irreversible or 

permanent changes. 

The surface conditions during the test or use can, also 

result in the component becoming in-operative due to the , variat-' 

ion of the true characteristic beyond permissible limits 

The purpose of failure analysis Is to emphasize the 

importance of an accurate failure analysis in any test programme. 

Accurate failure analysis is truely the cornerstone of the 

corrective action that will be taken to improve the reliability 

and performance of electronic and electrical equipments. 
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RELIABILITY EVALUATION 
n1~Pw~lr 

Techniques useful in the analysis and prediction of equipment 

reliability have developed rapidly during the recent past. Concurrer 

tly with this development, emphasis has been placed on the accurnu-

lation of failure rate data on parts and the measurement of relia-

bility of existing equipments in order to provide numerical signi-

ficance to the various mathematical expressions used in describing 

the reliability* These efforts are being .accelerated by an increeas- 
ing recognition of the value of applying an analysis and prediction 

techniques during the design phases itself. 

The techniques available currently can be classified depend-

ing(41) on application as follows$ 

(I) Prediction of circuit or module reliability when part 

reliability, system configuration and internal and external stresses 
are given (as will be discussed in section 7..1.). 

(ii) Prediction of system or equipment reliability when 

module reliability$ equipment diagram and operational requirements 

are available (as will be discussed in section 7.2), 

(iii) Advanced mathematical or statistical techniques which 

supplement the preceeding methods under certain prescribed condit-

Ions (as will be discussed in section ?.3) . 

7.1. Prediction of Module Reliability* 

Basic technique of obtaining the module reliability is, 

the summing of the failure rates of the constituent parts 
Appropriate formulas are applied to account for the series and 

parallel configuration of the parts which compose the module. It 

has been determined that there are several ways in which the 

component can fail, viz. (i) frequently repeated failures (ii) 
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randomly occuring failures (iii) degradation failures of various 

parts. The methods of rectifying the first and third type of 

failures are explained in Chapter 2 in detail, but the methods 

to reduce the random failures are not known. The mathematical 

model giving the failure rate of the module as the summation of 

the failure rates of the constituent parts has received wide 

acceptance. The reliability of the module, in turn, is computed 

from R(t) = e~Pt, where A is the failure rate of the module. 

The use of this formula will justify the acceptance of certain 

basic assumptions. 

(i) All the0arts are operating independently, i.e. 

the probability of one part is independent of remaining parts. 

(ii) The successful functioning of each and every part is 

required forthe successful operation of the module. 

(iii) Failure rates of various parts are known, 

(iv) The parts experience constant failure rate during the 

period of operation* 

In situations where the reliability of large numbers of 

modules are to be predicted* sampling procedure Is used to 

advantage. The use of such technique does not affect the basic 

,techniques used in predictions but rather leads to the stipulat-

ion that a detailed prediction of reliability will be made for 

only the selected sample modules where, merely a quick analysis 

if any at all, of the estimated reliability will be made for 

the other modules. 

7.2. Prediction of Equipment Reliability$ 

The old technique for the numerical prediction of equipment 

reliability is based on the application of product rule and simple 
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redundancy consideration as explained in detail, while consider-

ing the •reliability models of non-maintained systems. This 

technique is valid and extremely useful where the modules compris-

Ing an equipment, operate in a simple series, .parallel or redund-

ant configuration with respect to reliability. One of the more 

mathematical treatment of reliability analysis techniques 

discusser the product rule and shows that actually it , can be 

applied with reasonable validity to a variety of situations. 

1.3,1. Use of Switching Circuit Analogy: 

Since the switch is a two state device,, either open or 

close $ it is evident that a 'switching circuit can be considered 

an analogue of any group of interconnected elements where the 

operation of such element is described as either a success of 

failure# Three important steps are necessary to use switching 

circuit analogy as the reliability prediction technique- 

(i) Preparation of circuit diagram where each component 

is represented by a switch, the open position being analogous to 

failure and closed position analogous to success. 

(ii) Derivation of formula (Transfer function) for trans-

mission through the circuit showing all combination of switch 

closures which can lend to success. 

(iii) Interpretation of formula for successful transmission 

in terms of probability of success. 

Extension of this •techniqud,  to complex multi-element 

series parallel networks have been discussed in reference(43). 

7.3. Advanced Mathematical and Statistical Techniques: 

Besides the techniques discussed in the earlier chapters 

and above, these exist some techn4ques to obtain means for 
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obtaining valid prediction of reliability. These new techniques 

are derived from the application of advanced mathematical and 

statistical procedures based on, Boolean Algebra, Baye's theorem, 

Monte Carlo methods and various distribution theories such as 

Exponential, Gamma, Welbull, Normal, Extreme value and Poission 

etc. 

The reliability models for statistical have been explained 

in detail in Chapter 2. Other mat4ematica1. techniques will be 

discussed In brief, 

7.3,1. Application of Boolean Algebras 

Boolean Algebra(̀  `, 45)  expressions can be used to describe 

how element operating state must combine simultaneously to make 

the output of the signal available. 

3.U 2 denotes all states where elements 1, and 2 are operat-

Ing in .parallel and 1E)2 corresponds to the elements operating in 

series. The following posulates are used. 

u = 1 
Xf1 =0 

xUX =x 
Xn = x . 

The following configuration are analysed with the help of 

Boolean Algebra. 

7.3.1.1. Series Systems 

It the reliability of each sub-system is , R7  and R. 

(the probability of the signal to be present at output terminal 

of each subsystem). Then the reliability of the complete system 

will be given as- 
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if the reliability of all the subsystems are equal = R, 

then- R875 tem " R 
3 

i f R = e' 't 

system 
"* 0_3At• . ~► » 	.. 	(7•1) 

7.3,1.2. Parallel Systems:  
The total probability of the signal to be present at 

the output terminals i:;"; 

Psystem"' P(xn7)uP(Y(1!'_2)a P(Zn7nY)u P(Xn!(iz) 

a P1X 11 f l-Y) .n . (i-►Z) I U P1 Y ~l (l-.x) n (.-z) I u f I z n (1-X) 1 

(l-')I uP(fit nY n Z). 
on solving- 

ystem P(X)+P(Y)+P(Z)- P. e'X) .P(Y)-P(Y).P(Z)-P(X).P(Z)+ 

P(X) .P(Y) .P(z). 
if P(X) = P(Y) = P(Z) - P = 

Ps ys tem 	P3 
Rsystem3et .. 3e"2At ~ e-3At 	... 	(7.2) 

7.3.1.3. Multistage System: 
The application of Boolean Algebra is very helpful 

when analysing the multistage systems for, demonstration taking 

a simple example of the circuit in fig. (7 ,3) ,. 

The total probability of the signal to be present at the 

output is given by the equation- 
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Psystem# P(XAznV o w)UP(Y Z i 	nW UP(Y Wn f1!)U 

P(X W Vn)uP(ZoZnZOW) 

Simplifying- 

'system P(X) *P(Z)+ ( ".p(Z)+ p(x)P(w)# P(Y)?(1)  

P(X)P(Y) p(W) . p`( C) P(Z) P(w) -'(Y) P(z) P(w)+ 

P(X)+P(T) P(Z) P(') 	... 

if, 
P(X) = (P(Y) aP(Z) 	P(W) 2tP e~'t 

then, 

psystem= 4P2 '4I'3 + A4 

or Rsyystem 
4 e'`2At «. 4 e"3 t + e 4At  

7.3.2. Bayes f Theorem as Applied to Reliability Evaluations 

As all the systems can not be reduced to either series 

or parallel or any combination of series parallel arrangement 
there exist systems which are under the class of non-series 

parallel systems. T.o find the reliability function of such 
systems, the SayeIs (lf 46) theorem may be very useful. 

Considering the schematic reliability block diagram in 

Fig.('7„4) 

Two equal paths X-X' and. TY' operate in parallel, so that 

at loas t cine of them is good and the output is assured. If X and 

Y are not reliable a third similar unit Z is introduced so that 

it can provide the output signal through V and Y'• Therefore the 

following possible operations are possible; XX', Y-Y' , Z-X' and 
Z-Y',. flow the problem is to find out the reliability of this 
arrangement# 

If the element are connected as shown in P`ig.(7.5) the 
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reliability evaluations becomes very easy. 

To findout 'the reliability model of circuit shown in 

Fig. (7.4) , the Bayes' theorem can be used which states * Xf 

X is an event which depends on one or two mutually exclusive 

events Yi  and Yj  of which one must necessarily occur, then 

the probability of occurance of X is given by.' 

P(X) =P(X,given Yi)P(Yi)+P(X, given  

	

'S. 	(7 54) 

or it can be stated as , the probability of system failure 

equals the ,  probability of system failure that a specific 

component in the system is good, times the probability that 

the component is good s  plus the probability of system failure 

given that said component is bad, times the probability that 

the component is bad or 

?system failure=  ?(system failure bf component Z is good). 

P(Z is good) + P(System-failure if component 

Z is bad). P(Z is bad) 	... 	(7.5) 

Z is a. component or unit upon which the system reliability 

depends. 

if 

Fs  = probability of system failure 

RZ  = Probability of that the component Z is good 

F = 

 

Probability of that the component Z is bad. 

From equation (7.6) a  

	

Fs  = F3 (if Z is good) RZ  + F5(if Z is bad)Fz  ... 	(7.6) 

and R0 =1-Fs  

The equation (7.6) is most powerful tool to solve the arrange- 
, 

ment as shown in Fig. (7.4) 



If Z is good the system can fail only If both X' and Y' fail % 
and because X' and Y' are in parallel the system unreliability 
if Z is good amounts to 

3 ( if Z is good) _ (1~- RX,) 

if Z is bad the system can fail only if both XX' and Y-Y' 
fail, and the system unreliability, if Z is bad amounts to- 

Z is bad) (1- R (1- RY Ry') 

Then the unreliability of the whole system is- ., 

Fs = (l.RR,)(1-R7,) R'Z + (i-RR Rr,)(1-R 11).FZ 

if components X, Y and Z are similar and having failure rate 

Al and components V and Yt are also similar with failure 

rate Alf then- 

Fs = (1-e`A2t) (1.02t) a-A'lt +Xl-e- (A1+A2) tj2(l.;Alt) 

and 	Rs = 1.(1042t)2 e1t + l,_,a- (A1+A2) t 12 (l.,e•Alt) 

... 	(7.7) 

7.3.3. Monte-Carlo Techniques (47,48,49) 

The applicatioi of statistical methods to the 

design and analysis of reliable circuits has been possible 

recently with the advent of high speed computers. Monte-Carlo 

method for reliability analysis mainly concerns the drift 

caused by out of tolerance. The problem of estimating how 

deviation from nominal component values make deviation in the 

performance of a circuit and can be best analysed by using 

Monte-Carlo techniques. The method has simplicity and intact 

closeness to reality by direct simulation. The method can 

provide information as regards the behaviour of a circuit 

under different simulated conditions. 



1(9 

Invariably, Monte-Carlo techniques constitute the 

process of working with a. model of a system, imposing specific 

inputs and using some random process to select values of compo-

nent parameters $  combining them according to some rule to 

obtain the system output. This process Is repeated for several 

runs and samples of output are obtained, from which the 

reliability information or data may be deduced. Thus Monte-

Carlo technique consists of the following steps. 

(1) A suitable random process is selected. 

(ii) Enough component information is obtained so that 

the component response distribution is estimated 

with reasonable accuracy. This shows how to 

weigh the various probabilities of occurance of 

parameter values. 

(III) A formula is obtained for the output of the system 

as a function of systems input and component 

parameters.' 

.. '(iv) Several runs are made and output is evaluated 

taking th© random parametric values. 

Mainly, , two processes are involved in the simulation 
techniques viz, random component simulation and performance 

simulation, 

7.3,3.1. Random Component Simulations 

This Involves a derivation and plotting of the 

parameter value in terms of the cumulative probability of 

incidence of that particular value or less than that parametric 

value. These Ixwp (z) f have been plotted in Figs. (6.l) , (6.2) , 

(6.3) and (6.4) for resistors and capacitors of different 
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nominal values as given in Chapter 6. This information is 

needed to simulate the component value for Monte-Carlo analysis, 

Next the relationship of that parametric value and cumulative 

probability or random number between 0 and 1.1 is given some 

mathematic formula by fitting a curve which closely follows 

the pattern. 

These curve fitting methods for different mathematical 

relations, have been shown on a comparative basis in Tables 1 

and2. 
TABLE 1- Curve Fitting for 68 ohms resistors 

p ' .1 ' .2 t .3' .4 ' •5 ' .6 ' .7 1 	•9 1 1.0 
Actual 
value 	'R 	'66.6168.2'69.0169.351 69.6169,9'7,0.6' 71.5172.8176.0 68ohms  (ohms)  s  t  is with 10% 

R=65e ' ohms 65.0'66.0'67.8'68.4 170.007..0172.4' 73.8174.2176.0 

R 	'64.3'65.6'66,9'68.2"69.5'1O.8'72.1' 73.4174.7176.0 
R=63+13p (ohms) 

R~-63+9p+ 'R  '64*O'65.0'66s.2+67.4 #68.8'70.2' Z.8' 73«4'75.1'76.0 
5p2  (ohms) 
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TABLE, 2- Curve Fitting for 3.3K ohm resistor: 

' p '0,
1 

' 0.2 ' 0.3 '0.4 ' 0.5 * 0.6 ' 0.7 ' 00.8 '0.9 '1.0 
s 

Actual 
values 	R 	''3.10 '3.175'3.2 '3,2213,25 '3.29 '3.32'3.345'3.39'•3.41 
3.3Kohms (i ohms ) 
with 10% 	 x 
-tolerance 

R 	
_ 	_  

(Kohms~3.092'3.12 1 3.18 3.20 *3.35 •'3.3 13.32 13.38 13.40'3.4; 

a=3+.45p (Kohms) 3 .046' 3.090' 3.135 3.18'3.225'3.270'3.316'3.36 '340 3.41 
R 

1 3+, fi5p rKohms 3. 3 
 

'3,12  ' 3. ?28 3.22' 3.26 '3.3 '3.333'3.36  '3.382' 3.4; 
25 2 

7.3.3.2. Performance Simulation: 

Simulation of performance is made by means of a computer 

programme for- 

= f(X1 #0 .x ) 	 •s0 	 a.a 	(7.8)  

giving the dependance of the performance parameter y on circuit 
component values x1....ç. t sually the performance function f can 
be found from the mesh and model equations for the circuit. If y 

is associated with the transient behaviour of the circuit, such as 

propogation delay the function f is likely to be extremely complex. 

This however is theoretically no hinderance to the application of 

the method, so long as f aan, be'evaluated'by the computer. 

A flow chart of Monte-Carlo method for reliability analysis 

is shown in Fig.(7.6). For each component xi we have as input a 

set of pairs of coordinate points on xi = pi(z). 

I(z , x1): =1,....1.m, 11,,...n 

If several components have the same distribution,, 

only distinct distribution may be approximated.. 
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COIt LUSI0 NS 
Reliability is based on probability and statistics. As in 

any statistical and probability calculations, a tmumptions have to 
be made, time and again, about the distribution of various kinds 
of failures which affect reliability. It should be realised that 

the realiability equations approach reality only to the extent 

that the actual distributions approach the assumed models. ' lhen-

ever a distribution is assumed it always remains just a model$  

whether It is exponential, normal, Weibu . Gamma, Extreme value 

or Poisson distribution eta* Distributions of actual samples never 

fit exactly, Therefore *hile evaluating actual available statis--

tical,data one can never be sure that the calculated value 

represents the true population* However they can be regarded as 

good estimated and pridictions, as long as they are not disproved. 

When a component exhibits a certain probability of survival or 

failure rate under certain environmental and operating stress 

conditions, the parameters change irimediately even with the slight-

est changes in stress conditions. Changes in environmental are 

quite often, drastic in the operation of one and the same system. 

Therefore the important factor in reliability prediction is about 

the laws governing the changes of failure rate with temperature, 

voltage, current and many other stresses. Correct failure rate 

can only be obtained by testing the component or equipment at 

several stress levels and then fitting the curves with the derived 

and available model. 

Three types of failures have been generally recognised as 

having time characteristics viz, initial failure chance failure, 

and wearout failure; each has associated with it a period of 

operation of the device. The initial type of failure occur ing 

at time zero or shortly there after, the chance failure occuring 
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during useful life of' the device and finally the wearout failure 

after the useful life. Exponential distribution has been found 

more appropriate for change failure* Gamma distribution is 
extremely useful if fatigue and wearout studies*  •Weibull family 

of distributions are useful to describe the fatigue failure, 

I vacuum tube failure and ball bearing failures etc. With reference 

to relay problems it . has been seen that most affected parts . of a 

conventional relay are the relay contacts, which are damaged due 

to large number of operations or breaking of excessive currents 
for which it is not designed; the distribution law for reliability 

analysis is althost normal, and the other,types.of failures which 

are due to sudden stresses behave as exponential law* 

In general the failures of electrical and electronic 

components fall under four major groups viz., Catastrophic, Inter-

mittent out of tolerance and maladjustment. Catastrophic failure 

occurs when there is a gross change in characteristic, they can 

however be eliminated during the design of the component itself. 

Intermittent failures . are' unpredictable, so a designer can, do very 

little to reduce them.. Out of tolerance failures result from 

degradation, drifting and wearout. Drifting of resistor or 

capacitor values, wearout of relay contacts and wearout of ball 

bearings are the example of this type of failure. Maladjustment 

failures are due to human error and the effect of this might lead 

to error In relay sensitivity, The author has conducted some experi- 

ments on carbon resistances; their nodo of failure is consistent 
different 

with the investigations made in/references, In some cases the para- 

meter drift phenomenon of certain components such as resistors, 

capacitors etc. does not affect the realibility of the equipment dfor 
this drift. necessarily reduces the strength of the component involved 
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but it does affect the performance of the electronic equipment, 

causing a gradual degradation of the performance. When components 

are not reliable enough, derating techniques must be used i.e. 

operating the component at half or even less of their rated 

values of voltage, wattage, temperature etc. 

Instanceswhere even extreme derating does not help and the 

component failure rate is too high redundancy techniques must be 

used in the farm of parallel or standby components* It has been 

found that the reliability of standby redundant system is higher 

than the reliability of parallel redundant system. Maintenance 

action canugive_the higher reliability. Details have been explain-

ed in Chapter-3, 

gvery protective relay scheme must meet two main, requirement 

that it should not operate when not desired„ This action is called 

the selectivity and the second requirement is $  that it should 

operate when desired. Fault on any particular element may lead to 

non-selective operation. Redundancy in general increases the 

reliability undoubtedly but a.t the same time decreases the selecti-

vity. Back up arrangements can increase the selectivity but 

decreases the reliability. It is thus difficult to have both of 

them higher, A compromise is usually rocommeaded, depending on 

the requirement of the relay circuit. To study the selective 

and non-selective behaviour of a relay scheme a most general 

configuration mf m, components in series and n t  in parallel have 
been considered $  for different configurations arising from 

, s  = 

 

2, 3, 4, 5, 6 and of  = 2'  3, 4, 5, 6. The different 
inequalities have been derived to find the optimum values of 

probabilit t of failure and probability of non-selectivity for 
the respective configurations. The plots for gain in selectivity 
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and reduction in probability of failure have been obtained with 
the help of digital computer (IBM 1620) • As is . obvious from the 
charts of Chapter 4 the author recommends the comprosing config. 

urations as n, = 3 and m, = 4,5 and 6 respectively for all 

practical purposes. However $  one has to make a choice depending 

upon other factors also, such as cost s  availability and reliabi-
lity requirements. 

Before the reliability evaluation of a system can be done the 

information about the components behaviour and as to how they 

are connected in the circuit must be obtained. .TJsually the 

arrangement of the components may be either series, parallel s  

series-parallel or.non-series-parallel The reliability evaluat-

ion of series, parallel and series-parallel configuration can 

effectively be done with the help of Boolean Algebra Techniques, 

specially in case of multistage systems. The none-series parallel 

systems can be analysed through Baye's theorem.. Monte-Carlo 

method for predicting, the performance of the system is the best 

technique available when the components are subject to drift in 

their characteristics and their parameter values. This method 

can also take into account different environmental effects 

through proper simulation,. 
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Lim I n rm" 	
n 

qn 
m 3 	moo 	k o-k 

as, 
q - 

 

and  and p=(1W m) 

The problem is to find 

Lim 	nI'~ 'nI (-} . C1. k)rn.rl 

or 

Lim 
m- q 

or= ►.m 
	i 	(l L )'  

m r-a  

Now solving- 
Urn 	nI (- m)m 
m 

• r. 

11 J.rnc- ) . 	ml .: m'~2 	a 
11 i tCt -~-p 	"" III 	+ 	► 	~~ 	)

• 

` +.}..».neglecting higher powers,1 

2 3 3k3 kn ,im 	 - 	,1~  

n  k -k 
(n)t 

Now taking 	 - - 	- o •- ------- ~ dim ~ 	mn 1~ n ~ 	...   (1.2 ). m- ~-~ 	(m-n) I m (1-. m ) 
From sterling's approximation- 
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0** 
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(m)& = 2nrm 	aim' 0m 

Putting this value in Equation (1,2) 

 m m e-m 

in 	2 m-a" (mn)mn e m"n mn (1 •) n 

Naw m-n 	(m-̀n) 	m* (1 m~ 

and (m.n)m 	(m n) (1~ „n m-h 
m 

which gives- 

Lim mnt 	-m 	m4 	1 
n-'~ 	m (T- it n (1. 	)M-n em erg mn (1 	ffi )fl 

Lim 1 
in-'J  U. 	)hen e'1(1' 	k)n 

Lim 

M--d )m n C1 	) 	en (1 L)n 

as m -- 	(1- 	)' = e'en C as before } 

and m -- r  m 

m— (1- 

m-- 

Therefore equation (1,3) is equal to - 

en amen 

or finally-  
Lint 	m ~m.n ,n I = 	® k 
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APPENDIX 2 

C C JUGAL KISHORE PLOTTING OF GAIN IN SELECTIVITY CASE 5 
DIMENSIONX(110),,Y(110),Z(ll0),W(11O),V(1.10) 
DIMENSIONA(110),B(110),C(110),D(110),R(fO) 
Q=.Ol 
D01I=1,105 
Q2=Q*Q 
Q3=Q*Q2 
Q4=Q*Q3 
QS=Q*Q4 
Q7 Q2*Q5 
QS=Q*Q7 
Q9 Q2*Q7 
Q].1 Q2*Q9 
Q14=Q3*Qu 
Q15=Q*Q14 
Q17=Q3*Q14 
Q19=Q2*Q1? 
Q23=Q4*Q19 
Q24 Q*Q23 

Q29=Q5*Q24 
Q35=Q24*Q l 
X(I)=6.+Q-15. *Q3+20. *Q5~►15. *Q7+6., *Q9-QU 
Y(I)=6. *Q2i-15. *Q5+240*Q8-15.*Qll+6.*Ql4_Ql7 
Z(I)=6.*Q3-15.*Q7+20.*Qll 15.*Q15+6.*Q19-Q23 
W'(I)==6. *Q4- j5.*Q9+20„*Q14..15,. *Q19+6.*Q24-Q29 
V(I)=6.*Q5-15,*Q11+20.*Q17-15,*Q23+6.*Q29-Q35 
ACI)=1,/R(I) 
B(I)1./Y(I) 
0(I)=1./Z(I) 

D(I) ../W(I) 
R(I)1./V(I)- 
I '(Q-1.)2,3,3 

2 Q=Q+.O1 
GOT 01 

3 Q=Q+.05 
1 CONTIN[FE 

PtJNCH1OO A.(I),B(I),{C(I),D(I),R(I),1=1,105) 
100 FORMAT (5E14.4) 

STOP 
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OF REDUCTION IN PRORAB.OF 

Ic ( 10) ,D (110) ,R(110) 
C C JUGAL KISHORE PLOTTING 

DIMENSIONX(vo) ,Y(UO) 
DIMENSIONA(110) ,B(110) 
Q=01 
DOU =1,105 
Q2=Q*Q 
Q3=Q*Q2 
Q4=Q*Q3 
QS=Q*Q4 

F2=F*F 
F3=F*F2 
F4=F*F3 
F5=F*F4 
6F  *F5 

Gz3,, S3.y *Q+Q2 
G2=G*G 
G3=G*G2 
G4G *G3 
G5 G*G4 
G6-G*G5 
H4 . "M61t.* Q+4 i * Q2i Q3 
112H *H 
H3=H*R2 
R4=H*H3 
HS=H*R4 
H6--H*HS 

FADL .CASE 5 

P=5 x-10 • *Q+10 . *Q2-5„ *Q3+Q4 
P2=P *P 
P3=P*P2  
P4=»P*P3 
P5=P* 4 
P6=P *P5 
S=6. i15. *Q+20 *Q2.15 . *Q3+6 . *Q4.Q6 
S2 3 *3 
33=5 *32 
S4 *$3 
S 5zS *34 
X56=5 *S5 
X(I)=Q5*F6 
Y(I)IIQS*G6 
Z(I)=Q5*H6 
W(I)=Q5*P6 
v(I)=Qs*s6 
A(I)=1./X(I) 
B(I)=l./Y(I) 
c(I)=1 /z(I) 
D(I)=1./W(I) 
R(I) 1.,/V(I) 
IF(Qa-1.)2,3,3 

2 Q=Q+.O1 
GGTOI 

3 Q= Q+.05 
1 CONTINUE 

PUNCH100, (A(I),D(I), C(I) ,D (I) #R(I),I=1,105) 
100 FORMAT(5E14,4) 

STOP 
END 



131 

' 	.' END  IZ4 

Thumb rules as regards precautions to prevent over heating. 

Capacitors: 

(I) Mount away from the hot parts, 

(i4) Use of radiation shields if required. 

Electron tubes: 

(I) Use heat shields designed to aid heat radiation. 

(ii) Measure bulb temperature, 

Resistors$ 

(i) Use short leads If they go to cooler parts. 

(ii) Power Resistors should be mounted vertically. 

(iii) Prevent power resistors from radiating to temperature 
sensitive parts like diodes, transistors etc. 

Semiconductor Devices 
(i) Minimise thermal resistance to chests. 

(ii) Locate away from heat sensitive parts, 

Transformers: 

(I) Minimise thermal contact resistance to cyesis; 

(ii) Provide heat radiating fins where possible* 
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