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Automatic control systems engineers have mostly 

relied on block diagram techniques and signal flow graph 
methods for analysing the performance of the system. 
These methods have a distinct advantage over the use of 

differential equations in that they serve gs visual 
reminders of cause-and-effect relationships in the phys-

ical system. 

In this work, the physical system has been 
represented by its structural diagram as proposed by 
Aiaerman(  . The advantage of such a representation is 

that the elements in any system may be represented as 
links. 

Linear systems including that having time lags 
have been considered and analysed. The effect of a para-

meter (gain or time constant) on the system stability is 
found out using D-partition technique. For unstable 
systems stabilising devices have been used. The transfer 
functions of the stabilising devices are realised into 
physical circuits using conventional network synthesis 
methods. The transient response is plotted from the 
D-partition curve. 

Stability analysis of systems having more than 
one non-linearity has been carried out using the 
describing function technique. A practical system-voltage 

regulation of a synchronous generator- is taken and 

-V- 
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studied with (a) neglecting all non-linear effects, 

(b) considering only th+ non-linearity (saturation 

type) of the synchronous generator#  (c) considering 

the non-linearities of both the amplidyne and 

synchronous generator and Cd) considering the non -
linearities of amplidyne, main exciter and synchronous 

generator. The system is found to be unstable for 

cases (a) and (b) whereas stable for cases Cc) and 

(d) upto a particular value of frequency. Thus, the 

stabilising effect of non•linearities has been brought 

out. 
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STABILITY OF LINEAR CONTROL SYSTEM 

1.1 GENERAL 

In majority of the cases, the problem of control 
consists of establishing and maintaining over a period of 

tin** the operating state of the controlled object. This 

problem gives rise to the requirement that the system of 

automatic control should possess a definite, stability, even 

if it is acted upon by an external disturbance. 

A.M. Lyapunoff (1) first formulated the definition 

and conception of 'stability'. He defined that a system will 

be called stable if, having been disturbed from a state of 

equilibrium ald left to itself, it will, In the course of 

time tend to return to the earlier state of equilibrium. 
Let the controlled quantity has a certain value xo in the 
steady state. If the system is disturbed by means of some 
external action so that xa varies by 6 W. If the exter- 
nal disturbance is removed, then the system will be stable 

only if, 

Sian 6 (t) —"-0 	... 	(1.1) 

t .~.--' o~ 

If equation (1.1) is not satisfied then the system is un• 
Ott able. 
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In the general case of a system, the variation of 

the deviation 6 (t) can be described by a nth order differen-

tial equation, 

n 	 n - 
as 	+ al  d 

1 
16 	+ ... + s6 (t) a 0 ... (1.2) 

dt 	 dt " 

where ao, al  ... an  are constant coefficients. 

The solution of equation (1.2) is 

n 
b (t) = 	Ai  eZ1 	 ... (1.3) 

where Ai  are the integration constants and Zi  are the 

roots of the characteristic equation which is of the form 

a4  Zn  + al  Zn-1  + ... + an  0 0 	... (1.4) 

If the system has to be stable it is necessary that 
6(t)—"-O when t --+--o and this is possible only if Zi  is 
a negative real number, so that Ai  e Zit  will tend to 
zero. 	if Zi  is a complex quantity, then it should have 
a negative real part. 

A general conclusion is made that, if a linear differen- 
tial equation with constant coefficients has to be stable, 
then it is necessary and sufficient that all the real roots 
of the characteristic equation be negative and that the 
complex roots have negative real part. 
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If the order of the characteristic equation is large 
it is difficult to find out the roots of the equation and is 
often tedious. 	However, it is sufficient to determine whe- , 
ther all the roots lie to the left of the imaginary axis. 

This problem leads to the two statements. Firstly, 

given certain parameters of the system it is necessary to 
find for which 'values of the remaining parameters the system 

is stable. Secondly, if all the parameters are given it is 

necessary to determine whether the system Is stable for the 
initially chosen parameter& values. 

The first problem is solved by constructing region of 
stability and the latter by using stability criteria. 

1.2 STABILITY CRITERIA 

The stability of the system can be determined by using 

(1) Routh-Hurwitz 	criterion (2) Amplitude-phase characteris-. 
tic (Nyquist plot) (3) Root Locus method(2) . 

1.2.1 ROUTH..HJRWITZ CRITERION 

This is an algebraic method which gives the solution 

to the absolute stability of the system. The Routh-Hurwitz 
criterion is concerned with statement of conditions which must 
be satisfied by the coefficients of the characteristic equation 
of any order to ensure that the real parts of the roots are 
negative. 
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Let the characteristic equation be 

F(s) a ao  sn  + a1  sn-1  + 	... 	+ an-ls  + an = 0 

... 	(1.g) 

The necessary and sufficient conditions which must be 
satisfied for the system having the characteristic equation 
(1.5) to be stable are 

(1) All the coefficients of the polynomial have 
the same sign. 

(2) None of the coefficients vanish. 

The necessary and sufficient condition that all the 
roots of nth order polynomial lie in the left half plane of 
the s-plane is that Hurwitz° determinant 

Dk  (k = 1, 2, ... n) must all be positive. 

The Hurwitz determinant of equation (1.5) are given by 

D1* Si' 	D2 mm 	a1 	a3 
.... 	(1.6) a2 	a4  

Then Routh's criterion can be defined as 'The 
necessary and sufficient condition that all the roots of the 

polynomial F(s) a 0 lie in the left half of s-plane is that 

a0  >O; D17O; D2 7 O ..e Dn70 	... (1r7) 

The Routh-Hurwitz criterion though appears to be 
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laborious is the simplest one in the analysis of control 

systems. The procedure can be further simplified as follows. 
The coefficients are arranged in a triangular array as shown 

a0 a2 84 
a1 a3 a,5 

bi b3 b5 

Cl C3 
di 

where 	bl = a~ ' a2 	as a3 . 8 
1 

b1 $3" a1 b3 ~l = 1 of 	~ 

a6 

a., 

• ..  (1.8) 

1 a4 a© a5 b3 *  
81 
 ,... 

1 aB  s1 b5 C3 	of 	, « » 

Cl 

If all the coefficients in the first column of equation (1.8) 

are positive, then the system is stable$ If there is a sign 
change, then such a root exist in right half plane and the 

system is unstable. 

The advantage of the Routh-Hurwitz polynomial and the 

evaluation of its determinant gives a good indication about 

the stability of the system. 	However, the Routh-Hurwitz' 
criterion is invalid for non-linear systems and time lag 
systems.  Also, it indicates only about the absolute 

stability of the system and does not give any indication on 

how the system can be stabilised. 
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1.2.2 NYQUIST CRITERION (AMPLITUDE-PHASE CHARACTERISTIC) 

If the order of the systm is high and if any of the 

roots are complex, Nyquist diagram can be effectively used 

to determine the stability of the system. 

Nyquist criterion is based on 'Cauchy' principle of 

argument(2)  and'the manipulation involved is a conformal 

mapping of the imaginary axis of the s-plane on a polar 

plane defined by the loop transfer function. The procedure 

followed is 

(1) The loop transfer function is found out and 

3w is substituted for s. 

(2) The polar curve is plotted for the loop transfer 

function and 'w' is varied from zero to infinity. 

(3) The stability of the system is determined by 

inspecting both the plots and poles of the loop 

transfer function. 

The Nyquist criterion can now be defined as 'If the 

loop gain function is a stable function, the number of poles 

of F(s) that are in the right half of s-plane are zero, for 

a stable closed system, the Nyquist plot of the loop gain 

function must not enclose the critical point (-l,jO)(2) 0 

The main advantage of the Nyquist criterion is that 

the method can be used both for linear and non-linear system 
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to predict the stability of the system. 

1.2.3 D-PARTITION METHOD 

It is well known that as the gain of the control 

system is increased, the system may become unstable. The 

Routh-Hurwitz criterion or frequency response method 

(Nyquist plot) do not indicate the optimum value of the gain 
of the system. In the case of Nyquist plot if it is desired 
to study the effect of any parameters of the system on its 
stability, a family of curves must be plotted, assuming in 
plotting each curve of the family a certain relevant value of 

the fixed parameter. 

Yu.I.Neimark{ 3~ proposed a method of stability analysis, 
by use of which it is possible to determine at once all the 

values of the parameters in question for which the system 

remains stable. 

The characteristic equation (1.5) can be considered 

F(s) = a0 sn + a1 sn -1 + a2 sn'.2+  . , ., + an _16+ an = 0 

The values of a0, al, ... an may be interpreted 

geometrically as a point in the n-dimensional space, with 

axes for the values of the coefficients a0, al ... an. To 
each point of this space there corresponds a definite value 

of the coefficients a0, al .... en and consequently 

definite values of all the roots sl, s2 ... sn of the 
characteristic equation. 
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If in this polynomial space, there exists a region in 

which each point corresponds to a characteristic equation, 
all of whose roots lie to the left of the imaginary axis in 
the complex root plane, then the hyper surface bounding this 

region is called the 'boundary of the region of stability'. 

In practice it is sufficient to construct the region 
of stability on a numerical straight line (one parameter) 
or in a plant (two parameters) . 

Neimark proposed that if a polynomial of the nth 
degree has k roots to the left and (n -k) roots to the 

right of imaginary axis, as shown in Figure (l.a), and if 

all the value of the -coefficients in equation (1.5) are 
known except ao and an, then there always exist a curve 
in the plane of a©  and an. and bounds a region in which 
each point defines a polynomial having k roots to the 

left and (n-k) roots to the right of the imaginary axis 
(Figure l.b). 	Such a type of distribution can be denoted 
by D (k, n-k), where k may be any value from © to n. 
If all the roots are to the left of the imaginary axis 
D (n, 0),, is a stable system. 

The above principle is widely used in machine control 

and automatic regulating systems analysis. A spehic example 
is considered 3). 



Let the characteristic equation of the system be 

Q (s) + T R (s) a 0 	 ... (i.9) 

where Q (s) and R (s) are polynomials with constant 

coefficients and 'T' is a parameter whose effect on sta. 

bility is to be examined. T can be either a time Constant 

or gain of an individual link or a group of links. The 

limiting value of T can be determined by using Neimark's 

m ethod(3)  . 

Substituting s = jw in equation (1.9) 

Q (jw) + TRRw) = 0 

whence'' = - Q (jw) /R (3w) 	 ... (1.10) 

If w is varied from - oa to + oS then all the limiting 

values of T can be determined. The locus of points on 

the Y surface from - oA to + o , divide the whole T 

plane into regions where in all the polynomials have the 

same number of zeros to the left of the imaginary axis. 

Such a curve is called the 'D-partition' curve on T plane. 

In order to determine the number of zeros to the 

left of the imaginary axis the 'hatching rule' proposed by 

N eirmark is followed. In the D-partition curve from w = 

to w a 0 and then to w a + oZ 0  the left hand side of 

the curve is hatched. When traversing from hatched side 
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to the unhatched side, one root to the left of the imaginary 

axis is lost. 	Conversely, when traversing from unhatched 

to the hatched side, one root to the right of the imaginary 

axis is lost (Figure 2) . 	If the largest numbers of zeros 

are to the left of the imaginary axis then that region will 

be stable provided the number of zeroes to the left of the 

imaginary axis is equal to the order of the characteristic 

equation. 

If the D-partition curve is plotted then the Amplitude-

Phase Characteristic can be determined easily from the 

D•partition curve. It is also possible to determine the 

margin of stability of the system in terms of phase and the 

degree of oscillations which determine the magnitude of the 

peak on the APC of the closed-loop system. 

If K is the overall gain of the system then consi-

dering it as a variable parameter, the D-partition curve is 

plotted in terms of the complex parameter K. A possible 

form of O-  partition curve in terms of R is shown in 

Figure (3) . 	Let the closed-loop transfer function is of the 

form 

Ks  '(jw) 	------- -K 	 (1.11) 
lK + 	• w 

Then the characteristic equation is K + 	W W 0 

... (1.12) 
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whence R 	_ M ~ W  ... (1.12a) 

In Figure (3.a) KO is the value of gain at w = 0 and 
is denoted by vector ' ab' . The value of the denominator of 
the equation (1.11), for a given frequency wC and some 
selected value of Kp is denoted by the vector 'bc'. Then 
the amplitude value of equation (1.11) is defined by the 
ratio ab/bc and its phase is ( (w0). 	In the same manner 

the amplitude characteristic can be determined for different 
band of frequencies. A possible type of Amplitude-Phase 

Characteristic (APC) is shown in Figure (3.b). 	The peak of 
the characteristic may be determined directly from Figure (3. a) . 
A circle is drawn with centre as 'b' touching the fl-partition 

curve. The ratio of ab/bd is the peak amplitude of the 

Amplitude-Phase Characteristic. 

The critical frequency or margin of stability. may 
be determined from Figure (3.b) in which the Amplitude-Phase 
Characteristic of the open-loop system is drawn. A unit circle 
is drawn with centre as 1 0' and its inter-section with the curve 

gives the critical frequency (cut-off frequency). If this 
frequency is 'we', then for control period 't', the following 
inequality is obtained(3) 

S 	t .0 	- 
wc 	we 

... 

It may sometimes be tedious to draw the D-partition 
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curve of the variable parameter or it may be possible that 

the characteristic equation contain two or more variable 

parameters. ` If such a case exists, Meerov's and Aizermans 

method of structural stability' 4)  are more suitable to 

datermine at the outset, whether system is stable. 

1, 2.4 STRUCTURAL STABILITY 

The system may be represented by its structural 

diagram. The structural diagram is represented in terms of 

links, the advantage of which is that the • original structural 

diagram do not change even if the parameters are changed. 

If xout and  xin are the output and input quantities 

and the closed-loop transfer function may be of the form 

d (s) L (xout)  = K(s) L (xin) 
	. . . (1.14) 

where d (s) and K(s) may be polynomials. 	A specific 

example may be considered to explain equation (1.14). The 

linear differential equation of the system or the link may 

be of the form 

T 
d 
-r- xc  + x =K 	 ... x  dt 	out 	f n 

If the initial conditions are assumed to be zero, the 

Laplace transform of equation (1.15) is 

(Ts  + 1)  xout = K xin 	 ... (1.16) 
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In equation (1.16) , d(s) is (Ts+l) and K(s) = K. 
Aiz etman(4) proposed the . name for d(s) as 'the inherent 
operator' and K(s) as 'the action operator', or' 'the 
operator coefficient of amplification'. 

The elements that are most frequently encountered 
in control systems are 

(Ts+l), (Tess + Ts + 1), Tess + 1, To and Ts'-]. 

They have a special significance in control theory and 

separate names and agreed notation are given to them(4). 

They are as follows: 

1) An element for which d(s) = (Ts+l) is called 
'single capacitance' or 'aperiodic' and is denoted 

by a square (0 ) 

2) An element for which 'd(s) = Tsss + Ts + i is 
called 'oscillatory' and is designated by a 
rectangle (~) 

3) An element for which d(s) = Tess + 1 is called 
'conservative' and is designated by a shaded 

rectangle ( 7) 

4) An element for which d(s) Is is called 
'astatic' or 'integrating' and is designated 

by a circle (0) 

5) An element for which d(s) Ts*l is called 
'unstable' and is designated by a triangle (V) • 
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The action operators K(s) are often encountered in 

the following forms: 

.K; K + la s. K + 	/e + 'tS'~ 

In the case K(s)  K = constant, the actions on the element 

are called static. If K(s) = K + ps it is called first 

derivative action and if K(s) 	K + ps+ Ysa it is called 

second derivative action. 

With the use of the types of above notation any phy. 

sical system can be represented easily by its structure 

consisting of links. In this work the above method of re. 

presenting elements by their respective links is adopted* 

1.2.5 CRITERIA OF STRUCTURAL STABILITY( 

The criteria of stability may be used not only in order 

to determine the conditions of stability but also to study the 

general properties connected with stability for the whole class 

of control systems• If the properties of the system are 

known it is possible to make a number of inferences about the 

stability of a system from its scheme without using the cxi. 

tercia of stability. 

Aizerman(4) in his classical work gave a number of 

criteria which can be used to predict the stability of the 

system. A brief description of the methods are given here. 



a) The Conditions for the Structural Stability of 
Single-loop Systems without Derivative action 

If 'q' is the number of astatic stages (having 
d(s) = s), 't' is the number of unstable stages (having 
d(s) = Ts4) and 'r' is the number of conservative stages 
(d (s) = Tasa+l) in the system, and n is the degree of 
the polynomial d(s), then the structure will be stable if 

(a) q + t < 2 and (b) n z 4r. The inequalities must 

be simultaneously satisfied. 

b) The Conditions for Structural Stability in 
Single.1oop Systems with Derivative action 

If positive first derivative action is present in a 

single-loop system, the characteristic equation of the system 

is of the form 

D( ) + Rs + K = 0 	.1. 	 (1.17) 

Equation (1.17) can be written in the form 

D(s) + K(s) = 0 	 ... 	(1.17a) 

where the degree of K(s) may be n and is less than the 

degree of polynomial D(s) , m. 

The necessary and sufficient condition for structural 
stability of the system having one first derivative at one 

point of the circuit is q + t 4 2 



(c) If in addition to the first derivative the second 

derivative also exists in the system then the characteristic 

equation may be of the form 

D(s) + Ms1 + Rs + K = 0 	.... 	(118) 

where 	M 	and R are positive numbers, 	equation (1.18) may 

be represented as equation (1.17a) . 	Here 	K(s) is the product 

of factors of the form (Ris+K) 	and (Miss + Rs + K) and 

Ri, Mi and Ki are positive non-zero numbers. 

Assuming that D(s) consists of factors of the form s, 

Ts-1; Tass+l, Ts+l and T1s'e+Ts+l, K(s) is a Hurwitz poly-

nomial. If p represents q + t + 2r and p is the integral 

part of the fraction p/2 and N a n + m then the conditions 

for the structural stability of system containing the deriva-

tive actions are determined by the following theorem. 

In order that the system with characteristic equation 

( ~i..17a) in which 0(s) is the product of s, Ts+l, Tasa +Ts+i, 

T 2sa+1 and Ts-1 and K(s) is a Hurwitz polynomial, shall be 

structurally stable, it is necessary and sufficient that 

the inequality 

m > q+ t" l 	•• r 

be satisfied and that one of the inequalities in Table 1. 

depending upon the values of in and n be satisfied. 
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TABLE 1 

in 	0 ~ m g 0 and t in 	odd 

A even 	N>4 p 	N > 4 p -1 	N> 4j° w2 

L odd 	N>4 	N '4F 	N > 4f +1 

If the system is a multi loop system, it is 

possible to decompose the system into single-loop systems. 

Meerov's method of structural stability may be applied and 

is as follows. 

The characteristic equation of any closed-loop 

system may be represented as 

n+1 	 y 
Tr (1+Tis) + KD+1 ... K ~+n TN+1s "TT (,+TjS ) 4 (1+T) 
i=1  

t K, K z • • • • K9 K2)+n +1 KN 1+TN+i6) 	_ 0 

... (1.19) 

Substituting K,,+Z, KD+2 ... f~+n = K, 

equation (1.19) may be divided by K and using the notation 

in a 1/K equation (1.19) becomes 

... (1.20) 



.2O. 

` Equation (1.20) may be written in the form 

m 	F (s) N2 	+ F (s) 	0 	 ... (1.21) N 1  

If now m-'0 ie. , K - - , the equation (1.21) degenerates 

as FN  (s) = 0 	 ... (1..22) 
1 

In •rder that the original system be stable the 
following conditions shall be satisfied. 

(1) The degenerated equation must be a Hurwitz 
polynomial. 

(2) If N2  is the degree of polynomial FN  (a) and 
2 

N1  is the degree of polynomial FN  (s), then 
1 

the necessary and sufficient condition for the 

structural stability of the system is N2.-N1= 2. 

In addition to the above the following conditions 

must also be fulfilled. 

(a) If N2-N1  = 1, the relation Bo > o must hold 

good where Bo  is the coefficient of highest 

power term in ' FN  (s), and Ao  is the coeffi. 
2 

cient of highest term in  

(b) If N2-N1  a 2, then 'the condition 

B 	A 
" 	7 0,  

0 	0 

Here Bo  and B1  

must be satisfied. 

are the coefficients of the 
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first and second highest power terms of the 

polynomial FN 
2 
 ($) and Ao  and Ai are the coeffi-

cients of the first and second highest power 

terms of the polynomial F.i(s) respectively. 

(c) If N2 -N1 3, the system is unstable. 

The above methods are mainly used in this work. 



CHAPTER II 

STRUCTURAL SYNTHESIS OF LINEAR CONCTOL SYSTEMS 

2,1 INTRODUCTION 

The representation of a linear physical system by 

structural diagram is an useful tool in its design of such 

systems. The design of a control system mainly deals with 

the quality of the system. The problem of quality in turn 

deals with the numerical values of parameters of the linear 

system represented by its links. Also, a system has to be 

designed to meet certain requirements namely whether the 

system is stable in its given form and meet the required 

speed of response, steady-state offset, limited overshoot 

and damping. In most of the design problems certain date 

viz, speed of response, overshoot and steady-state offset 

are usually assumed and the parameters are so varied that 

the system remains stable with large values of overall gain. 

However, if the system itself is large it becomes 

inadvisable to change the parameters#  In such a case, the 

stability as well as the overall gain can be improved by 

providing certain types of stabilising Iinks(3)  . 	The 

provision of more or remo'al of certain links may or may not 

improve the performance of the system and the proper choice 

and connection of the links is purely a. designer's task. 

2.2 SPEED CONTROL OF D.C. MOTOR 

The speed control of a d. c. motor is considered 
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here . as an illustrative example of structural synthesis. 

The physical system of speed control of a d. c. 

motor is shown in Figure (4) . 

In the system considered it is desired to vary the 

speed of the d, c, motor within wide limits. The speed 

control is obtained by varying the armature voltage of the 

d,c. motor with a constant excitation flux. The amplidyne 

generator is chosen as the source for supplying the armature. 

The tacho-generator is used as a comparison unit. An 

amplifier is also connected so that the system possesses a 

large gain. 

The working principle of the system is as follows. 

The voltage difference between the e.m.f. . of the tacho-

generator alt  and the reference voltage VR  is fed to the 

amplifier. The excitation winding is supplied by the 

amplified output voltage of the amplifier. The voltage 

developed across the d-axis of the amplidyne is applied to 

the armature terminals. During steady-state this ensures 

the desired speed of the motor. Due to external disturbance 

the speed of the motor will change causing a corresponding 

change in the e.m.f. developed by the tacho-generator and 

hence (V ..V) also changes.. The voltage developed by the 

amplidyne will also vary and hence the speed of the motor 

will change accordingly. 
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2.3 STRUCTURAL DIAGRAM 

The structural diagram may be drawn if the transfer 

functions of the individual elements are known and can be 

derived as following: 

(1) Assuming there is no time lag in the system, 

Va =Ka Vin.a 	 ... (2.1) 

(2) The tra nsfer function of the amplidyne may be 
determined as follows: 

If Ll and ,Rl denote the inductance and ohmic resis- 
tance of the exciting (control) winding and it is the current 

flowing in that winding, then the equation of electrical 

equilibrium is 
dil 

Rl it + Ll  = Va
dt 

... (2.2) 

Taking Laplace transform on both sides of equation (2.2) 
and denoting Tl = LIJR, 

Il (Rl + Las) = Va 

Va i.e. 	I1 = Rl l+.~ - 	... (2.3 ) 

The voltage induced in the q-axis of the amplidyne is 

Vq = K Il 	 ... (2.4) 

where KI is a constant. 
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The equation of electrical equilibrium in the q-axis 
winding is 

Vq  = (1 2  + Les) 12 	 ... (2.5) 

where i2  is the current flowing in the q-axis of the 

winding. 	Substituting equations (2.3) and (2.4) in 

equation (2.5), 

Kiy 
12 	RlR2 +Tis +T2s 	 ... (2.6) 

The voltage induced in the d-axis of the amplidyne is 

V 	'2 	 .,. (2,7) 

Substituting equation (2.6) In equation (2.7) 

K f  K2 V 
V 	 R2  1+T1s - l+T2s 

KjK2Va 
+ 1 s #Tai ... (2.7a) 

where K1 	K /Rl  and K2  K;/R2  

The transfer function of the amplidyne may be 

obtained as 

V K K 
cU + s +2s 	 (2.8) 
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The amplidyne may be either represented by two 

aperiodic links or by one oscillatory link. 

(3) The transfer function of the d.c. motor may 
be obtained as proposed by M.V. Meerov(3) . The behaviour 

of the motor is described by the following equations. 

(a) The net torque developed in the motor can be 
written as 

GDa do TM-TR= 3 57 dt . ♦ . (2.9) 

where GD2  is the moment of gyration of the 
motor, n is the rotational speed in r.p.m. 
TM  is the motor torque and TR  is the load 

resistance torque. 

(b) The equation of electrical equilibrium in the 

armature circuit is 
di 

V=a+IAR+L 	 ... (2.10) 

In equation (2.10) e is the back e.m.f. of the 
motor, R and L are the ohmic resistance and self-inductance 
of armature circuit respectively and iA  is the current in 

the armature circuit. 

Since the excitation flux is assumed to be constant, 

e=CeDn 	 ... (2.11) 
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where 0 is the flux, and Ce is the constant of 

proportionality. 

The motor torque may be expressed in terms of the 

current and flux as 

TM CM 0 iA 	... (2.12) 

where CM is the contant of proportionality. 

Assuming TR 0, then 

GD2 4a 3 dt=TM=CM0iA 	 r.. (2.12a) 

or 
is = 	0 	 ... (2.13) 

and 	diA = ~1 . GD2 
	 (2.13a) dt CM 375 dt 

Substituting equations (2.13) and (2.13a) in (2.10), 

RGD2 	do L GD2 2 v Ce on + " 	5' dt + 0 375 dt 

... (2.14) 

Introducing the notation TM = 375RGD2C 
ce 

TA = L/R and C1~ = K and dividing the whole 
e 
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equation by Ce 0. equation (2.14) may be written, in the 

form 

TM TA 	TMdt + n 	Kv 	•.. (2.15) 

The Laplace transform of equation (2.15) is 

(TM TAO O +TMs+ 1) N=K.V 	,.. (2.15a) 

Here TM Is usually called the electromechanical time 

constant and TA, the armature time constant. 

The equation (2.15a) may be represented by an 

oscillatory link or by two aperiodic links. 

The system equations of Figure (4) may be tummerized 

as follows: 

Va 	Ka Vin. a 	 ... (2.1) 

The transfer function of the amplidyne is 

v 	
K1K2 

 ,~a 	(1+T1s)l+T2s) 	 .. . 

	

The transfer function of the motor is 	` 

N 	K K3K4 	... (2.17) 
0 CTMTAs + TMs+ 	 )(1+ 4s 
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where 13 = - 1/0(1 and T4 = - 1/0(2 and d1•and a2 are the 
roots of the equation TM TAse + TMs + 1.= 0 

The voltage developed at the output terminals of 

the tacho-generator is 

VT = KsN 	 ... (2.18) 

where K,5 is a constant. 

Using equations (2.1),(2.16) to (2.18), the structural diagram 

may be drawn and the closed-loop transfer function may be 
determined. 

The structural diagram is shown in Figure (5) 

The transfer function of the closed-loop system is 
written in the forms 

VT 	 KAK K2K K K5 
R K(s) 	1+T1 s +T2s) 1+ 3s 1+T4s +KA 1K2K3K4 

♦•• (2.19) 

The characteristic equation of the single-loop is 

(].+Tls)(1+T2s)(1+T3s)(1+T4s) + %v s 0 	... (2.20) 

where Kov = KAKlK2K3K4K~. 
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The following numerical values are chosen for synthesis 
purpose. 

T1  = 0.1 sec, 12 = 0.1 sec, TM  = 0,5 see, 

Tarm  = 0.01 sec, K1K2  = 10, K3K4  = K = 1, Ka= 20 

13  and 14  may be found by determining the roots of the 
quadratic equation 

TM Tarm $2  + ,TMS. + 1  = 0  
0.5 x 0.01 sa +0.5s+ 1s0 

The roots are al  = - 2 and °C2 

13  = - 1/6ti  = 1/2 = 0.5 sec 

and 	14  = _ l/d2  = 1/98 = 0.01 sec 

It may be assumed that the static-error of the 
system should not exceed 0.0012,. duration of the regulating 
process must not exceed 0.3 sec and the overshoot has to be 
limited to 18 percent. Then the conditions governing the 
steady-state offset define the required overall gain of the 
order of 

Kov 0.0012 800 

Substituting the numerical values and Kov  in equation (2.20) 
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(1+0.1x)(1+0.1s)(1+0.5s)(l+0.Ols)+800 M 0 	... (2.21) 
0.0000594  + 0.0061s3  + 0.11782  + 0.71s + 801 = 0 

The Routh'Hurwitz polynomial may be used to 
determine the stability of the system. The Routh-Hurwitz 

polynomial is as follows 

s4  0.00005 0.117 801 
s3  0.0061 0.71 
s2  001112 801 

$1  .54.60 

sO 	801 	 ... (2.22) 

Since there are two sign changes in the first 
column it may be deduced that there are two roots in the 
right half plane and hence the system is unstable. 

The unstable system can be stabilised either by 
varying the parameter values or by providing a stabilising 
link, (Appendix A). The stabilising link is connected in 
the system as shown in Figure (4) . The transfer function 

of the stabilising link is obtained as 1 	and is 
represented in the structural diagram as shown in Figure(6). 

The transfer function of the closed-loop system 
with the inclusion of the stabilising device is 
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v vt 
R 

KA(1+rs) 

(1+Ti  s) (1+t's) + K1K2KArs (1+T3s) (l+T4s ) 

+ K1K2K3K4K5KA(1+T's ) .. • (2.23) 

The characteristic equation is 
4 
ST (1+Tis) (1+Ts) + K1K2KArrs(i+T3s) (1+T4s)+ Kov(1+rs) = 0 

... (2.24) 

The stability of the system may be determined 

using Meerov's criteria. 

Equation (2.24) is divided throughout by K1K2KA  

and denoting m = K̂ K , equation (2.24) becomes 

4 
m 11 (1+Ti  s) (l+r s) + T s (1+T3  s) (1+T 4  s) + K3K4K5  (1+T s) = 0 

... (2.25) 

The above equation is written in the form 

m FN2 (s) + FN1(s) = 0 	 ... (2.26) 

If KXK2KA  tends to infinity, m tends to zero and the 

equation (2.26) degenerates to 

Ts (1+T3s)(1+T4s) + K3K4K5(1+Ts) = 0 	 ,*to (2.27) 

The above equation should satisfy Routh•Hurwitz conditions. 
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The time constant T of the stabilising device is 

unknown and it can be so chosen that it will satisfy the 

conditions of stability at any value of gain K1KAK4. 

This will be true only 

>TT~4 	 ... (2.28) 
3 4 

i e. , 1' > 0— 5 x ©.Ol = 0.005 
+ 	0. 0.01 	... (2. 28 a) , 0.5 	1 	51 

1' can be chosen to be 0.1 sec. 

Substituting the numerical values in equation (2.27), the 
equation becomes 

0.16 (l+0.5s) (l+O.Ols)+4(1+0.1s) ffi 0 

0.0005 s +0.05l* s+ O.5s + 4 0 

sa 0.0005 0.5 

$2 0.051 4 

sl 0.46 
O 4 

The degenerated equation (2.27) indicates the system 

as stable. 

The difference in the degrees of the two polynomial 

FNl(s) and FN (s) should not be greater than 2 (as discussed 

in chapter I). 
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In this case N2-N1  a 2. Then the condition for a 
BA 

stable system is 	 In this example, 

BO  = T1T2T3T4r 

B1  = TIT2T3T4  + T1T2T4T + T1T3T4r + T2T3T4'r + T1T2T3r 

Ao  = T3T4T 

Ai '= Y(T3+ 14) = r T3+TT4  

81 A1  
0 A 	1 	2 

With the introduction of stabilising link connected 
as shown in Figure (4) an'' unstable system tends to become 
stable. 

The optimum value of the gain may be obtained by 
plotting D-partition curve in terms of Kov. From the 
Characteristic equation (2.24). 

(1+Ti  s)(1+) + K1K2KA  rs (1+T35) (1+Ta5 ) 
ov 	 (},+Ys) 

... (2.29) 
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(1+0. 13w) (1+0.13w) (1+0.53w) (1+0.013w) (1+0.13w) 

Kov 	 ~ 1+0.1 3w)  

... (2.30) 

(1-10.388w' + o. cog w4) + 3 (20.81w - ©.1777w5 
+ 0.0t 	5 

... (2.30a) 

The D•partltion curve is plotted by varying w 

from 0 to + c and the curve is shown in Figure (7) . From 
the D .partition curve it can be deduced that the system is 
stable in the region 'ab'. 

The largest value of the gain with which the system 

will be stable is K a 6350. This value of gain is very 
large for the system to satisfy the required specifications. 
In order to obtain the optimum value of gain K, the real 

response frequency characteristic(3) may be drawn from the 
D •partition curve so as to obtain the lowest peak along the 

real response frequency characteristic. (Appendix We 

An initial value of gain is assumed to be nearer K 
i.e. 800, the real response frequency characteristics are 

drawn in Figure (8a) and Figure (8b) for K a 1000 and 
K m 1500. An observation of the two figures indicates 
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that the gain 	K a 1500 is nearer to the optimum value since 

the peak occurs at a value of R(w) = 0.923. 

In order to ensure that the overshoot is limited 
K+1 

to 18 percent, a circle is drawn with a radius 2 - 
K •l. 

with its centre at -}-- (where ko  is the optimum value 

of the gain), in Figure (7), 

The overshoot is limited to 18 percent provided the 

system gain does not exceed the length of the diameter Ko+l 
of the circle. 

In Figure (7) the circle is drawn with a radius 

of 1-- -±-- = 750.5 and with its centre at 1500-1  

749.5. The circle passes through the point K which 

denotes the optimum value and hence the overshoot does not 
exceed 18 percent, 

The critical frequency of the system may be obtained 

by dropping a perpendicular from the point K onto the 
D »partition curve. If we  is the frequency at which the 

intersection occurs, then the duration of transient process 

is given by(3)  

L 4 t 	 ... (2.29) we 	we 
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In Figure (7) w4 is obtained as 29 rad/sec. • 

Hence the duration of transient process is 

a 0.108 	t 	4.435 

The initial assumed value of duration of transient 
process is whitin the limits of the equation (2.29). ©ne 
of the requisites of a stable system is that the transients 
should die down in a short interval of time. The transient 
process may be obtained graphically from real response 
frequency characteristic using Floyd's method of Trapezoidal 
approximation (Appendix C). 

In this example, the real response frequency charac-
teristic shown in Figure (8a) is chosen to detdrmine the 
transient process. The transient process obtained from 
the real response characteristic is shown in Fig (9). 

A visual examination of the curve in Figure (9) 
indicates that the transients die down rapidly thereby 
ensuring a stable system. 
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CHAPTER III 

STRUCTURAL SYNTHESIS OF TIME LAG CONTROL SYSTEMS 

3.1 INTRODUCTION 

Control systems like hydraulic, pneumatic and 

mechanical process may be encountered with pure time lag, 

so that the output will not begin to respond to a transient 

Input, until after a given time. Because of this time lag 
effect the transfer functions of these systems ace no 

longer quotients of polynomial. 

The time lag systems possess very low value of 

critical gain. The possibility of increasing the gain 

and constructing such systems are of very important pract-

i eal significance. In general the system may contain one 

or many time lag elements in it. 

3.2 TIME LAG SYSTEM 

The synthesis of time lag systems plays a vital 

role in process control. An illustrative example is 

considered herein. The automatic regulation of the 

strip thickness in the cold rolling mill is considered. 
The physical system is shown in Figure (10). 

The distinguishing property of the system is the 
fact that the thickness of the strip is measured not at 

the point of rolls but at some distance ' ' away from 

them. Hence the signal of thickness variation is received 
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by the system after some time lag determined at the 

rolling speed v by 

... (3,1) 

and T is known as the time lag or time delay in secs. 

3.3 WORKING PRINCIPLE OF THE TIME LAG SYSTEM 

In figure(1O) the measuring element is an inductive 
thickness gauge. When the strip'thickness deviates from 

the prescribed value a voltage appears at the output of the 
thickness meter which is fed to the input of the amplifier 
A. The output of the amplifier energises the control 
winding of the amplidyne generator. The output of the 
amplidyne is supplied to the armature of a d, c. motor which 

drives the roll feed screws; The amplified output voltage 

of the thickness gauge fed to the armature of the driving 

motor causes it to rotate so varying approximately the 

clearance between the rolls. 

3.4 STRUCTUE AL DIAGRAM 

The structural diagram may be drawnwith the following 
assumptions: 

(a) It may be assumed that the thickness indicator 

represents an aperiodic link, The deviation of 

thickness from the predetermined value is denoted 

by ' and if the voltage at the output of the 

thickness indicator is Vt, then, 

(l+rid) Vt 	K14 	 .. (3.2) 



-44- 

F 
I DC MOTOR 

l 	 A!APDJL 	 CONST 

NDUC TIVE F LE ME NT 	 STABILISING 
LINK 

	

7 r 	A 	i 

AMPLIFIER 

F►GURE - 10 
PHYSICAL FEET. ESENTATiON OF TAME LAG SYSTEM 

K I T, 	KA 	K 2 12 	t 	T4 	T5 	S 	C :;T 

1 	- 1 	r 	1 	F 
	

r  1 

k4 

FIGURE 1t 

STRUCT jRA, DIAGRAM CAF 1~+E ADV. SYSTEM 



_45_ 

where Tx and K1  are the time constant and 
gain of the indicator respectively. 

(b) The equation of the amplifier may be written as 

VA a  KART 	
.. (3.3) 

(c) The equation of the amplidyne is 

(1+T . (1+T3 at) vM w K2K3VA 	.. 

d) The equation of the d. c. motor is 

(T4T5 	+Tat+l)n=K4VA 	 .. (3.5) 

Since n dt  01  ' 	 .. (3.6) 

where 01  is the relative variation of the motor shaft 
angle of rotation. Equation (3.5) can be modified as 

(T4T5 	+T4d +1)d 01 =K4VA at 
.. (3.6a) 

(e) The time lag equation of the link with delay 
is of the form 

0 _ Gl(t -T) 	 .. (3.7) 

Substituting s = d/dt and assuming initial conditions 
to be zero, the Laplace transform of the above equations 
are 
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K 
U(1+?1$ 	0 

VA(s) 
Vr s) 0 KA  ~ 

VRA(s) 	K2K 
VA (sr 	fl+T2s)(l+T3j)  

K 
~.~ ..~ s i : 4T5s +T4s+l)  
RA 

and !(s) 	= '01(s) e"sr 	 •. (3.8) 

Using equation(3.8) the structural diagram is drawn 

as shown in Figure(ll). 

The characteristic equation of the system is 

s (1+Tls) (l+T2s) (l+T3s) (1+T4s+T4T5s's)+KK K2K3K4KAe-s" ` 0 
.. (3.9) 

The operator equation of the system in the open-

loop condition is 

K e-s' 

s l+Tls 1+'T2s l+T3s l+ '4s+T4T5s 

.. (3.10) 

where 

Kov = KKK2K3K4KA 
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The numerical values are chosen to be as follows: 

Tl 

 

= 0.01 sec, 	12 = 0.05 sec, - T3  u 0.1 sec, 

T4  a 0.2 sec. 	15  = 0.05 sec, 

KIK4- 0.1 , K,2K3KA  = 100, 

T 0.1 sec 

Assuming the limiting value of r to be zero and 
substituting the numerical values of time constants and 
gains in equation (3.10) , W(jw) (Amplitude-Phase 
characteristic for the limiting value of T) is obtained 
as 

10 
Wlim(  iw) 	" jw lt0.Ol jw 1+0.05 jw 1+0. l jw l+ . 2 w 

+0.2x.05(jw) s) 

The above equation on simplification becomes 

10 
(-0.36w2+0.00295w4-0.000000516)+ j (w•0.0483ws+0.000075w5  

.. (3.11) 

The Amplitude-Phase characteristic is obtained by 
substituting different values of w from 0 to + 06  
The APO is shown In Figure(12). The intersection of unit 

circle with the Attenuation-Phase characteristic occurs 
at wo  = 6 rad./sec. The maximum value of T is given 



by the relation, 

To  = 8(wo)/wa  and for a stable system 

the condition 

T 4 To  should be satisfied. 

In this case To  is very small, and almost zero. 
Hence the system with the given parameters is unstable. 

In order to obtain a stable system with an infinitely 
large gain a stabilising device is introduced in the system 
and is 'connected as shown in Figure(13). The chosen stabil. 

ising link is a transformer whose transfer function is 

expressed as Tls/1+Tls, where T1  is the time constant 

of the device. 

The characteristic equation of the modified system 

may be obtained as 

(I+Tls) (1+T2s) (l+T3s) (l+T4e+T4T3sa ) ( l+Tls) sear  

+KAK2K31Tis(l+Tis) (l+T4s♦T4TSss$esT  

+KAK1  K2K3K4  (1+rl  $ ) 	 = 0 ..(3.12) 

Dividing equation(3.12) by KAK2K3e$T  and substituting 

m = KAK2K3 equation (3.12) may be w':itten in the form 



Re W (J w) 

F.GuRE - 12 
A-p c. OF THE ORIGINAL UNSTABLE SYSTEM 
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+ rls(`1+T1s) (1+T4s+T4T5s5) $ 

+. KiK4(l+r1s) a-sT 
	

=0 •. (3.13)
,  

if the gain KAK2K3  is increased to infinity m 
tends to zero and the equation( 3.13) degenerates to 

rls(l+Tls)(l+T4s+T4T,ss)s + K1K4(1+rls)e sr  = 0 

.. (3.14.) 

The limiting value of r and the stability of the 
modified system may be determined, from the Amplitude-Phase 
characteristic by chosing a proper value of ri. Also rl  

must be so chosen 	that the system is stable. In this 
example, rl  is assumed to be 0.5 sec. Then the equation of 
the Amplitude-Phase Characteristic for the limiting value 
of r=0, is obtained from equation (3.14) 

K K (i+r jw) 
Wlim( jw) 	rl  ,iw 1+Tl  jw 1+T45wtfT4T5  w 

Substituting the numerical values of T1,T4,T5,K1K4  and 
the equation (3.15) becomes 

slim( iW) 	4.6 -w 1+0.01 jw 1+0.2jw.0.O1w 

(6.6w -0.0072w4 + 0.126w .0.00006w ) 

.. (3.16) 



The Aip1itudasPhse Characteristic Is obtained by 
substituting different values for w fry 0 to + ao , 

A unit circle is drawn with its centre at' origin 
and the intersection of the ci rcle with the curve gives 
eQ and angle of intersection it e(wa ). as shown in 
Figure(1s) . 

The maximum value of 
xelitionship 

is determined by using the 

wo  •. (3.17) 

W!4 "` t/ 9 s.c. 

dinc* the tnttl*1 value of 7 is greater than the 
li*iting value 'rot the system would be perfectly stsbl•. 

In order to determine whether the system will 
rrsain stable with increase in gain, the O•psrtltion curve 
for the system is drown. 

D-partition curve way be drawn frog equition (3.12). 
Rearranging equation (3.12), 

(i+Tls) (1+T2s) (i#T3s) (T,4T ,.'+T4s+1) (i.+r1s) srsr  

+KAK2K3{tls(l+Tls) (T4T5s+T4s+ .)sO'r  

+ KIK4  l+ 'ls) I - 0 	 .. (3.18) 

The above equation may be simplified and expressed In 
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FIGURE- 15 
A-P CHARACTERISTIC ç 	n1 S`(StEc 	VVITr1 THE STABILISING LINK 
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term of KAK2K3. 

~(1+T,jw)(I+T2Jw)(I+T3JW) (T4T5(jw)x  
+T4 jw+1)x jw(1+T1 jw) 3 

A 	` 't'1 jw(1+T1 [T4T5(jw) jw) 	a+T wt1. 4 

+KlT 4(l+TlJw) a-3WT 

.. (3.19 

Substituting the numerical values in equation(3.19) and 

simplifying 

.. (3.20) 

where, 

Nr =_ (-9.6x10-~'wa+3.2O5x1O-2w4 -4.55xlO-5w6) 

+J(w-2.645x10- ws+1.845x14-3w5 

-3xl0-1w7 ) 

Dr 	[(.6xlO-1*2+7.2xl0o*3w4)+j(-1.26xlO"w,9+6xlO-%5)] 

+ [ 	
] 

The D-partition curve is obtained by substituting 
different values for w, from 0 to oZ 	. The curve 

obtained is as shown in Figure(1,6). 

From D-partition curve obtained it can be deduced that 

the system with introduction of stabilising link is stable 

for all values of gain, KAZK3. 
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3.5 PHYSICAL REALISATION OF THE STABILISING LINK 

The stabilising device used in this example is 

a transformer. Its transfer function - may be derived as 
follows. 	In Figure (14), the stabilising transformer 

under no-load conditions is shown. 

If R1 and L1 are the resistance in ohms and 

inductance in henries respectively, then, 

Vin(s) ffi (R1+Lls)I1(s) 	... (3.21) 

The output of the transformer is 

Vout(s) 0 Ms11(s) 	... (3.22) 

where M is the mutual inductance between the two 

windings. 

The transfer function of the stabilising 
transformer is 

v ut(s) 	MsI1 
--~-~---` 	 ... ( 3.23) v1 (s) 	(11+Lls)Ii 

Assuming M = L1 and Ti represents the ratio L1/R1 

then 1 

Vou (s) 	rl ~ 
iv nts) 	(1 

IN the illustrative example, ^r is 0.5 sec. A suitable 
combination of R1 and L1, within the practical limits is 
Justifiable. For example, R1 may be chosen to be 1 ohm, 
then TI is 0.5 henries. 



CHAPTER IV 

STRUCTURAL SYNTHESIS OF AUTOMATIC VOLTAGE REGULATION 
OF A SYNCHRONOUS GENERATOR 

4.3. INTRODUCTION 

The method of structural synthesis may be applied 
to the automatic voltage regulation of a. synchronous generator 

to obtain a stable and high gain system. An unstable system 

can be stabilised by providing stabilising links. The proper 
choice of stabilising links and the connection of them play 
a vital role in the synthesis of such systems. If the 
original system is large (i.e. the degree of the polynomial 

of the characteristic equation is high) then the provision of 

the stabilising link complicates the system. 

A new method is proposed below to stabilise a linear 

unstable system by considering the non-linear effect of the 

elements in the system without the inclusion of any stabile -

sing device. 

The automatic voltage regulation of a synchronous 

generator is considered as an illustrative example. The 

physical system is shown in Figure (17) (5) . 

4.2 WORKING PRINCIPLE OF AUTOMATIC VOLTAGE REGULATION 

There are many types of voltage regulators that are 

used in practice. Voltage regulators are used to control 

the voltage of a synchronous generator at a desired value. 

The physical system has in its forward path an 

amplidyne, a main exciter and the synchronous generator. 
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In its feedback path it has a potential transformer and 
a rectifier. 

The working principle of the system is as follows. 

The main exciter is a shunt wound machine with amplidyne 

as its exciter. The amplidyne opts it self as an amplifier, 
since its large output can be controlled by a small input. 
The generator field, in turn, is excited by the main exciter. 
The potential transformer is connected to the output of the 
synchronous generator and the out put of the potential 
transformer is rectified and fed directly to the second 
exciting winding of the amplidyne. A current transformer 

and a magnetic amplifier are usually connected in the feed 
back path. The current transformer is used to take care of 
change in load disturbances and the magnetic amplifier is 
used to amplify the out put signal from the alternator. 
In this analysis an unloaded system is considered and the 
provision of current transformer and the magnetic amplifier 
do not serve any purpose. Hence they are omitted in the 

original physical system. 

If the voltage output of the synchronous generator 

decreases the voltage at the secondary of the potential 
transformer also decreases and therefore the voltage 
applied to the exciting winding of the amplidyne is reduced. 
This brings in a decrease of m. m. f . produced by the feedback 
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winding thereby causing a net increase in the resultant 
m,m.f. because the main m.m.f. being a greater one is 
opposed by the feedback winding m.m.f. The net increase 
in the field flux will cause an increase in the output 

voltage of the alternator trying to keep the voltage at a 
constant value. 

4.3 STRUCTURAL DIAGRAM OF THE SYSTEM 

The structural diagram may be obtained by deriving 
the linear differential equations of the system. With the 
help of Figure (17), the equations are derived as follows. 

1. VR  Is the applied reference voltage of the 
first exciting winding of the amplidyne and 
Vb is the feedback voltage applied to the second 
winding of the amplidyne. It may be assumed 
that the two windings are identical. The 

directions of the currents flowing in the two 
windings may be assumed to be as shown in 
Figure (17) .. Then, 

V R = (R1+Ll s) I f  - Ms I f 	... (4.1) 
1 	2 

V b  = (R1+L1s) 1f 2- Ms I f1 	... (4.2) 

Multiplying equation (4.1) by Ms and (4.2) by. 
(R1+ Lis). 
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V Ms+Vb(R1+L1s) 
lf2 	(R1+Lls) s-M*ss 	

t ...4.3 
 

similarly, 

VR(R1+Lls)+VbM$ 
1 1 s 	(R1+Lls) G .Ms'sa 	 . •, 

The voltage induced in the q.axis of the amplidyne 

is proportional to the difference of the currents 

I and Z . Assuming L = M l  f 	f2  

(V,p-Vb) 
I fl -1 f2= Rl +2 1$  where T1  = L1/ill  

Kl(vR-  vb) 
a 	

where Ki  = h Rl  .. , (4,5) 
(1+2Tis)- 

2. The transfer function of the amplidyne may be 

obtained as follows.  

The voltage induced in the q-axis of the 

amplidyne 

eq 	K g Od 	 ... (4.6) 

In Laplace transform 

Eq 	4(If 
1 
 -1 

f2
) (since d  = T f  -I f ) , 
 1 2 

••. (4.7) 
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where K2 is the number of volts induced in the 

q,.axis per unit control field current in amps. 
Also E = 12(R2+L2s) 	 ... (4.8) 

From equations (4.7) and (4.8) , 

I 

-- 2. . 	+~` 	(where T2 L2 ) f f2 	2(l+ 2s) 	 82 

... (4.9) 

The voltage induced in the d-axis of the amplidyne 

is ed 'Fd K L/'~ 	 ... (4.10) 

where K' is the number of volts induced in the 

d-axis circuit per ampere in the q"axis. 

or Ed = K~ '2 	 ... (4.1©a ) 

But Ed z` 13{ f3+L2sY 

E 	KI2  
3:3 ẁ  	'~ R3(IT) 	... ( 4.11) 

112K3t i f •'f ) 
2 1+T2s 	2s) 	...  

where(K2 K/R2 and K3 =K/R3) 

3. The voltage in the main exciter is 

VME = K 3:3 	 ... (4.13) 
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4. The current flowing in the alternator field is 

VME I fg 	R4(1+T4s) .#. (4.14) 

substituting equation (4.13) in equation (4.14) 

K I 
K/R4f I fg * ( ♦ s , where K4 ~ 4 

4 
... 

5. The voltage induced in the synchronous generator is 

Vt W 	Ifg 	 ... (4.16) 

substituting equations, (4.5) , (4.12) , and (4.15) 

in equation (4.16) , Vt is obtained as 

V 	KlK K3K4K5(VR-Vb) 	.. (4.1.?) t 	+ is +T2s +T3$ ♦ 4s) 

6. The transfer function of the potential tran8former 

may be derived by assuming that the transformer 

is operating at no-load (Figure 18). 

From Figure (18) 

Vin = (R1+Lls)I1 

Vout = Ms Ii 

Assuming L1 = M 

• V0 Lis ` 	_. 
Vin 	 R1+ 1s) (l+rs) 



If Vout and,Vin are denoted by Vt and Vs respectively 

then the *transfer function of the potential trans- 
former is 

~  
Tg1. 

t 
.. . (4.18) 

7. The voltage applied to the rectifier is Vs and 
its corresponding output is Vb and is given by 

the relation 

Vb =K6 Vs 	 ... (4.19) 

By substituting equations (4.18) and (4.19) in 

equation (4.17) , the closed-loop transfer function can be 
obtained as 

KK2K3K4K5KTye V

L
vt+ 1+2T,s 1+ 2s + 3 s 1+ 4 s + 5a t 

K K2K3K4K5 	 V 
+ is + 2s + 3s + 4s 	R 

... (4.20) 

on simplification equation (4.20) yields 

V 	KK451#) 
	

see (4.21) 

R 	ff(l+xis)+KovT5s 
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Equation - (4.21) is the closed-loop transfer function of the 
system shown in Figure (17). 

where Kov = K1K'2K3K4K5K6 

The block diagram and the structural diagram may be 
represented as shown in Figure (19) and figure (20) respect. 
ively., 

In order to determine whether the linear system is 
stable, the following numerical values (.6, 7) substituted 
in the equation (4.21 ,) . The numerical values are 

K1==0.001, K2 =442.5, K3 =25, K4 =10, K5 =150 

K6  = 1.5, T = 0.003, T2  = 0.08, T3=+ 0.03, 

T4  = 0.05 and T5  = 0.3. 

Routh-Hurwitz criterion is applied primarily to 
determine the stability of the system. The characteristic 
equation of the system may be obtained from equation (4.21). 

5 
`(T (1+Ti  s)+Kov  T5s = 0 
1=i 

... 	(4.22) 

substituting the numerical values in (4.22), the character-
istic equation may be written as follows. 

(1+0.006S)( 1+O.08 s) (1+0.03x) (l+0, 05s) (1+o. 3s) 

+2400x0.3! a 0 	... (4.23) 
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simplifying, 

2.17xlO 7 s5+5.1x10 5s4+2.86x10 888+5.87x10 292  
+720s+1 = 0 , .. (4.24) 

the polynomial has no missing terms and the coeffi-

cients are all positive, hence it satisfies the necessary 

condition of stability' The absolute stability of the system 

may be found using Routh-Hurwitz criterion. The Routh's 

tabulation is 

S . 2.140" 7̀  2.86x10 3 	720 
$4 5.1x10"5  5.87x10'2 	1 

3 2.42xlb"3  720 
s2  -14.7 1 

sl  720 
80 1 

... (4.25) 

There are two changes in the sign of the elements 
in the first column indicating that two roots of equation 
has positive real parts and hence the system is unstable. 

The synthesis of the linear system to obtain a 

stable system depends upon the proper choice of the stabi-
lising link and its connection. The method is essentially 
same as that discussed in Chapter I. 

As a trial, a stabilising transformer whose transfer 
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function is 1 s/l+Ts is introduced in the system across 

the terminals of the amplidyne. The corresponding structural 

diagram is shown in Figure (21) . The transfer function of 
the closed-loop system is 

Vt 	 K1K., ,K4i5(1+Tgs) (1+-rs) 

~R 	TT(i+iis)(l+T$)+K1K2K3rs(l+T4s)(l+T5s)+KovTga(1+Ts) 

.•. (4.26) 

The equation of the closed loop system is obtained by 

equating the denominator of the above expression to zero. 

That is 

5 
TT (1+Ts) (1 vrs)+ KjK2K3rs(1+T4s) (1+T5s)+K0 T5s(1+rs)#0 
a=1 

... (4.27) 

substituting in = l/K1K2K3 and rearranging the terms, 

equation (4.27) can be written in the form 

in -jf (l+ri s) (1+Ts)+-rs (1+T4s) (l+T5s)+K415K6T5s (1+Ts) = 0 

... (4.28) 
Equation (4.28) is of the form 

m F (s)+F (s) = 0 
H2 	H1 

Hence Meerov's stability criterion can be applied to determine 
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whether the closed-loop system is stable with the introduction 
of the stabilising device. 

In equation (4.28) the highest order of polynomial 
in F.2  is 6 and the highest order of polynomial in .•N1  

The difference. of N2  and Ni  is greater than 2 and hence the 

system is unstable. It can be deduced that system remains 
unstable even if the stabilising link of the form rs/1+Ts is 

introduced in the system. 

A stabilising device whose transfer function is of 
the form 	I+Ts)  is connected across the amplidyne z+,rG 

terminals. The corresponding structural diagram is shown in 
Figure (22) . The characteristic equation of the closed-loop 
system is obtained as 

5 
Tf  

... (4.29) 

Equation (4.29) can be written in the form 

m IT (1+Tie)(i+ors)+[rts(l+rs)(l+T4s)(1+Tgs) 
ti=4 

+K4K5K6T5s(i+Ts)] 0 ..(4.30) 

where m a l/K1K"2K3. 

The system tends to be stable since N2-N1  a 2. 
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Z( s) 	rs l+T 
l+Ts 

Q.2 1+d.1 
(11+©.2s; 

4.1 s+14 	0U85+105) 	... (4.31) s+ 	s+5 

The following is derived with the help of second Cauer's 

method. Dividing the numerator of equation (4.31) by its 
denominator, Z(s) can be written in the form 

0.1 [s+ 	5J. 

Simplifying the above equation 

Z(s) = 0.1 s + 	....~.w 
Ols 

The network realised is shown in Figure (23) , 

However, many practical systems are encountered with 

non-linearities. That is, the practical systems contain 

elements which are not linear in the sense of being describable 

by linear differential equations. It is proposed here to 
synthesize a system considering its non-linearities and it is 
justifiable In practice. 
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Expanding equation (4.29) and denoting 

B0 = TIT2T3T4T5T 

Bl = T112T3T5'r+T1T2T4T&r+T1T3T4T5Y+T2T3T4T&r 

+T1T2T3T4T5+TlT2T3T44 

AO TT4T5T 

Al T T4'r+T T5 r+T4T5T 

If the system is to be stable then the condition 

	

B1 	A 
- ~1 > 0 must be satisfied. 

	

0 	0 

Choosing T = 0,1 sec and r = 0.2 sec and substituting 

the numerical values of all the time constants, 

0 0 

Hence the system will approach stable operation. 

4.4 PHYSICAL REALISATION OF THE STABILISING DEVICE 

The stabilising device may be physically realised by 

using either Foster's method or Cauer's method of synthesis. 
Assuming that the transfer function of the stabilising device 

as an impedence function the stabilising device may be 

realised as follows. 
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4,5 NON..LINEARITI£S ENCOUNTERED IN THE SYSTEM 

As mentioned in the previous paragraph, the non-

linearities may be expressed by none-linear differential 

equations (8) and the solution of such equations are tedious 

and time consuming. An approximate technique has been 

developed simultaneously by C.Goldfarb (U.S.S.R.)9  

Tustin A) 0(U. K.) , and B. Kochenbeiger.  'l.  Such a technique 

is usually termed as Harmonic•balance method or frequency 

response method or describing function technique, all the 

names being synonymous. 

The describing function method has attained great 

popularity because of ease in computation and also this 

method is useful if the order of the system is very large. 

4.6 DESCRIBING FUNCTION TECHNIQUE 

Describing functions are employed to represent the 

non-linear elements by their approximate linear amplitAde sensi-

tivi transfer functions. The method is based on the 

assumptions that if a sinusoidal signal is applied to a 

non-linear element the resulting output can be represented 

by its fundamental Fourier component and the linear elements 

of the system attenuate all higher harmonics. 

The describing function of the non-linear element 

which represents the ratio of fundamental Fourier component 

of the output to the sinusoidal input can be det ermined(2), 
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when the describing function of the non-linear element 

is known. 

The illustrative example shown in the block diagram 

Figure (24a), may be considered to study the stability 

analysis using describing function method. The Figure (24b) 

represents the system with its nor -linear element replaced 

by their describing function Ne. 

The closed-loop transfer function of the system 

is given by 

G (jw) G (iw) N 
R w 	1+Gi 	2 2j w Gw)N 	 • • • (4.33: ) 

e 

for the existance of self oscillation is R(jw) a 0 
i.e., 	1+G1(w) G2( jw) Ne 	0 	 ... (4.32) 

The equation (4.32) may. be written as 

G (3w) = -1/Ne  where G( jw)== Gl( jw)G2(,Sw) , .. (4.33) 

Equation (4.33) may be represented as a single 

graphical interpretation. The functions G(5w) and 
may be plotted in a complex plane and the intersection(s) 

of these two curves determine all possible frequencies and 
amplitudes of oscillation of the system. The stability 
analysis is usually done with the help of frequency response. 
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4.7 STABILITY ANALYSIS BY FREQUENCY RESPONSE METHOD 

In the Nyquiet plot, the G(jw) curve may be consi• 

dered as a linear frequency locus and -l/Ne  as the locus of 
the critical point corresponding to (.1,30) point in the 
linear system theory(2)  . The relative positions of G(5w) 
locus and 4/1'e  indicates the stability condition of 
non-linear system, The following criteria is usually 
applied to determine the stability of the non4inear.system. 

(a) When the (-i/Ne) curve lies to the left of the 
G(jw) locus (with increasing velu+a of w) or 
not enclosed by the G(jw) locus there the non-

linear system is stable. 

(b) When the («I/Ne) curve lies to the right of 
G(jw) locus, that is lies completely inside the 
G(jw) locus, then the system is unstable. 

(c) If there are intersections between the two 
loci, sustained oscillations exist in the system 

depending upon the number of intersections. 

The effect of the non-linearity on the dynamic 
properties of the system can be studied-  using Nyquist plot. 
The automatic voltage regulation may be chosen for such 
analysis. 
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4.8 EFFECT OF SATURATION OF THE SYNCHRONOUS GENERATOR 

CASE 1 

The synchronous generator may be assumed to operate 

under saturated conditions. The non-linearity may be 

represented by a blank square block in the structural 

diagram Figure (25). 

The describing function for the saturation type 

of non-linearity may be derived as shown in Appendix.- i) 

The characteristic equation of the system with 

non-linearity in the synchronous generator is 

KKKK KN(A)Ts 
1+  1+2T 1s l±T2s l+T 3s l+T 4s 1+T5s 	0 

or 	T( (l+T i s)+KovNi (Ai )T S s 	O 	 ... (4.34) 
{=i 

Therefore. 

K°" 	 ... (4.35) 
T (l+T s) 
j= ! 

The describing function N1(A1) for the saturation 

type of non-linearity is obtained as given in appendix. 

Nl(Al) 	-, 

 

L 	1-(-1 ) 31  + Sin 	] 
1 	 1 

... (4.36) 
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FIGURE - 25 
STRUCTURAL DIAGRAM WITH A NON-LINEAR ELEMENT 
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Assuming Ae - 1 and separating Ka from the non linear 
element, equation (4.36) may be written as 

N1(A1) =. r 	1,.( A ) s + j, 	 sin-, 	if Ai > Ae 
~, 	1  

I if 	 ... (4.37) 

N1(A1) may be evaluated for different values of 
Al and hence [-1/11,(A.1)] can be plotted on a polar graph. 

The values of Al and N1(A1), [-1/'N1(A1)1 are tabulated in 
Table 1. 

The right hand side of equation (4.35) which represents 
G(jw) locus, can be plotted in a Wyquist plot by substituting 

different values of w varying from 0 to +oó . The numem 
rical values of time constants and gain are chosen from 
section (4.3) . The equation for G(jw) locus may be obtained 
as 

K T e 
G() 	l+2T18 1iT2s I+T3s- .1+T4s l+ 5s 	(4.3$) 

In the complex plane putting s a Jw and substituting the 

numerical values, 



M8©. 

G( w) 
ffi  72© 

+0. 	w +(3.©8Jw + .,03Jw 	. 93w +4. 
...  

The amplitude and phase of G(jw) for different 
values .of w are calculated and the graph plotted. The 
locus G(3w) is drawn in Figure (26a). 

The (4,41(A1)) plot is superimposed in G(jw) 
locus in Figure (26b). 	. 

It can be deduced from the graph that the system 

is unstable as the (-l/t!l(Al)) curve is enclosed by G(Jw) 

locus. 

A stable system may now be obtained by either 

varying the parameters of the system or the non-linearity 

itself. C,N. Shen(13 and A.K. Mabalanobisi 14) provided - a 

known non-linear element in the feedback path and stabilised 
the system. 

However, to provide another non-linear element, 

most commonly adopted in practice it complicates the 
original system. It.is proposed in this work to use one 

of the linear elements in the forward path as a non-linear 
element and its effect on the stability of system is 
analysed: 

Io 5~ b12 
•4. 	;L 1.1

...̀  	
J~ ~~ r~fV (1 n' - 

1Lt1  



FIG Uf E• 26 (a) 

G (jw) LOCUS 



i 

FIGURE- 26 (b) 

G (JU1) PLOT AND - N~ PLOT 
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4.9 STABILITY ANALYSIS WITH TWO NON..LINEARITIES 
IN THE SYSTEM 

The method of analysis of two non-linear elements 
existing in the system was proposed by E.A. Freeman. His 

method of analysis using describing function was illus-

trated by an example of torque limitation and backlash. 

The describing function method applied to a system 

having two non-linear elements provides a criterion of 

stability, An illustrative example, is chosen to describe 

the method proposed by Freeman. 

In Figure (27) gl to g5 are linear elements which 

may or may not be frequency dependent and nl and n2 are 

two non-linear elements with vector gains Nl(All 	and 

N2(A21 ) respectively. However, in order that the input 

to second nonlinear element is sinusoidal, g2 and g3 

have to be frequency dependent so that the harmonics are 

attenuated by their low pass filter characteristics. 

The transfer function of the cloyed-loop system 
of Figure (27) is, 

0 	Gib G3G4Hi(A) N2(A21w) 
R 	+G1G2 	~N1 AI 	A2, 	• .. ( 4.40) 

The characteristic equation is 

l+G1G2G3G4G5N1(Al)N2(A21 w) = 0 	...(4.41) 



r 	+ i~ } c r1 n21 	1 94 

L 

 

FIGURE- 27. 
BLOCK DIAGRAM HAVING TWO NON-LINEARITI ES. 



The relationship between Al and A2 may derived 

from Figure (27) as 

A2 	N1(Al)G2(jw)G3(jw) I Al 	... (4.422) 

the describing function for the second non-linearity 

is 

N2(A2,w)5in"'~ As + 	..(4.42a) A2 	A2 

The describing function of the second non-linear element, 
N 2(A2,w), may be written as 

N2 INl(A1)G2(iw)G3( jw) I A1,wj 	 ...(4.43) 

From equation (4.43) , it can be deduced that as 

for as the system is concerned the two non-linear elements 

may be represented by a single non-linear element. 

The equation (4.41) may be written as 

1+G1G2G3G4r5 Ne(A,w) = 0 	 ... (4.44) 

where Ne(A,w) = N1(A1)xN2(A2,w) 

From equation (4.44) 

L = G1G2G3G4G5 = G(jw) 	..•(4.45) 
e 

The Nyquist plot of the right hand side may be 



plotted for different values of w varying from 0 to + o , 

to obtain G(jw) locus. The describing function of 

N2(A2,w) is same as that of N1(Ai) except that A2  is 

to be calculated for various values of w and Al, 

N 1(A1) 	and N2(A2.w) are given by the equations, 

N1(A1)  2  Sinabl 	s  + 
C 	Al  A 1  Y..( 	) a  A x 

and 	N2(A2,w) 	= L 
A 

ISin"= + A2  
A 
A2  ± 

A 
A'2  

...(4.46). 

For different values of A1, A2  the describing 

functions of N 1(A1 ) and N2(A2 ,w) may be obtained and their 

product may be determined. From the product (-l/ 1e) can 

be calculated. The plots of (41/Ne) and G(jw) may be 

superimposed and the stability analysis can be carried out 

using Nyquist criterion. 

4.10 SATURATION OF THE AMPLIDYNE CONSIDERED 
AS A SECOND NON.LINEARITY 

In the example of automatic voltage regulation system, 

the amplidyne is assumed to operate with saturation besides 

the synchronous generator. The corresponding structural 

diagram is shown in Figure (28). 

#1  is the amplitude of sinusoidal input signal-to 

the amplidyne and A2  is the sinusoidal input signal to the 



K1  T, 	ICJ 	K2 T2 	K3 T3 	K4 T4 	N2 	K5 

H HJ E 
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FIGURE - 28 
STRUCTURAL DIAGRAM OF THE SYSTEM HAVING TWO 

NON-LINEAR ELEMENTS 



synchronous generator. It is assumed that A$ = .1 p.u, 

In both cases. NI(A1) is obtained for different values 

of Al  from 0 to 100 p.u. , using fiquation (4.36) . Now A2  

is given by the relation 

K2K3K4  N1 (Al) 	t 2  w + w + 4jw 	Al 

.., (4.47) 

For different values of w and Nl(A1), A2  is determined 
and is tabulated. N2(A2,w) is calculated for a particular 

frequency and for different values of Al , using equation 

(4.46) . The values obtained are tabulated in Table 2. 

.. The product of 1/ it  (Al) and 1/ 2(A2, w) is 

obtained and interpolated with G(3w) locus in Figure (26). 

It is observed that if w is varied between 0 to 60 rad/sec 

the system.tends to become stable and if w is above 60 rad/sec 

the system becomes unstable. 

Therefore, the effect of the second non-linear 

element tends to stablise a basically unstable non-linear 
system upto a particulat value of w. 

4.11 TRANSIENT RESPONSE OF THE SYSTEM 

The transient response of the system may be 
obtained directly from the polar plots(16)  . The method 
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is as follows. A particular amplitude may be chosen on 
locus and a straight line is. drawn from 0 passing 

through G(jw) locus to C, Figure (29a,b and c). The point 
C rep'resents a particular selected signal amplitude as 
(" -1, jo) and the scale'of the plot is defined by OC = 1.0. 

Using this Scale and OC as the negative real axis, M circles 

can be added, locating a tangency with G(jw) locus and thus 
defining the peak amplitude M and the resonant frequency 
wr. This procedure may be repeated for a number of signal 
amplitudes in the desired range of values. 

A plot betw*en wr  and M indicates the transient 

response of the system, Figure (30) . prom Figure (30) it 
can be deduced that the transients die down indicating that 

the system satisfied the stability conditions. 

4.12 SATURATION OF THE 'MAIN EXCITER CONSIDERED 

CASE 3 

In order to analyse the effect of third linearity 

on the system stability, the saturation of the main exciter 

is also considered. The structural diagram is shown in 

Figure (31). 

The characteristic equation of the above system 

may be obtained as 



FIGURE-29 (0.) 

DETERMINATION OF Mp AND wr  ASSUMING DC -= )UNIT HAVING 1V10 
NON-LINEARITIES FOR THE SYSTEM 
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FIGURE= - 29 (b) 

DETERMINATION Or Mp AND wr ASSUMING OCR  = I UNIT 
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FIGURE-29  CC) 

DETERMINATION OF Mp AND Wr ASSUMING O C = I UNIT 
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FIGURE - 3O 

ANSIENT RESPONSE OF THE Sti.STEM ,iv TERMS OF - ." AND Mp 
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Ji (1+Ti s)+K©vT5sNe = 0, 

	

 

where Ne N1(A1)N2(A2,w)N3(A31w) 	... (4.48) 

Therefore, 

KOVT55 1  
" ~e 	T (1+Tie) 

N1(A1),N2(A2,w) and N3(A3,w) may be obtained as follows. 

For a particular input signal to the first non-

linear element, the describing function for the non-linear 
element is obtained as 

A 	A 
N1(A1) 	[sin 	A 

1 
+ C A

1 	
1-( 	) $1 .. (4.5©) 

Assuming that the saturation of the amplidyne begins at 

As = 1 p.u., the above equation can be written in the form 

N, (A1 ) 	I sin-1 L + LJ1..( —) s .. (4.5Oa) 
1 	1  

if Al>A$ 

= 1 if Al<As 

N1(Al) is obtained for different values of Al. 

The input to the second non-linear element is a 

frequency dependent. The amplitude of the input signal 

A2 is 
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FIGiRE - 31 
STRUCTURAL DIAGRAM WITH NON-LINEAR ELEMENTS  IN THE SYSTEM 
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A2 = I NI(A,) 
K2K3 

+T s l+T s~ I Al 2 	3 
... (4.51) 

substituting s a jw, 

A2 * 1N1(A1) 
K2K3 

( +T2 jw) (1+T3Jw`Y Al r.. (4.51a) 

The input signal amplitude to the second non-linear element 
is obtained for various value of Ai and w Justifiable to 
the practical limits. 

The describing function of the second non-linear 

element is obtained as 

N2(A2,w) _ 	[ Sin-1 As + 	1_( ±1 ) a 
2 2 

 
A2 

... (4.52) 

Assuming that the saturation of the main exciter occurs 

at A a I p. u. , 

N2A2 ( ,w) a 	[Sin-' Al + 1 l-( 	) a] if s 2 A2 A2 

s 1 if A2 As 	 ... (4.52a) 

The input signal to the third non-linear element 

A3 is also a function of frequency. The signal amplitude A3 
is given by the equation 
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K 3 
A3 '~ I( N1(A1) 	

K2 

(l+T2 jw (l+T3jw)  
K 

N2(A20) +T4iw Al 

...(4.53) 

The describing function for the third non-linear element 
is 

N3(A3,w) a n[Sin"1 A + A3 14►() a 	if A3 > AS 
3 3 3 

1 if A3<As 	 ... (4.54) 

Assuming that the saturation occurs at 1 p.u. in the 
synchronous generator, 

(A3,w) =  [Sfn"1 A + q 1"( A ) s~ 3 3 3 

...(4,54a) 

The product of Nl(Al) and N2(A2,w) and N3(A3,w) 

is obtained and -11Ne is superimposed on the G(3w) locus. 

The above calculations are done using Digital Computer. 

It has been found that the -1/N, curve is enclosed 

by G(jw) locus only at a very high value of frequency. 
Hence it may be deduced that the system is stable for all 

practical purposes. 



TABLE .. 1 

CASE..]. DESCRIBING FUNCTION FOR ONE NON ..LINEAR
ELEMENT 

Al  N1(A1) 1,411(A1) 

1.2 0.9208 1,0859 

6,2 0.2046 4.888 

11.2 0.1136 8.8037 

16.2 0.0785 12.725 

21.2 0.0606 16.648 

31.2 0.0408' 24.49 

	

51.2 	 0.0288 	40.015 

	

100.0 	 0.01192 	83.87 

200 	 0.003 	333.33 



TABLE - 2 

DESCRIBING FUNCTION VAUJ85 FOR TWO NON..LINEARITIES 

Al 	i 1/(A1 ) i 1 	(A,., w) 	 1,41k 	w rad/s Qo 

1.2 1.0859 0.9217 x104  0.1008x105  0 

11.2 8.8037 0.1061 xlO 0.9341x105  

21.2 16.648 0.1062 x105  0.1768x106  

31.2 24.496 0.10623x105  0.2602x106  

41.2 32.345 0.10623x105  0.3436x106  

51.2 40.194 0.10624x105  0.4270x106  

1.2 1.0859 0.2962 x104  0.3216x104  20 

11.2 8.8037 0.3409 x104  0.3002x105  

21.2 16.648 0.3413 x104  0.5682x105  

32.2 24.496 0.34138x104  ' 0.8363x105  

41.2 32.345 0.3414 x104  0.1104x106  

51.2 40.194 0.3414 x104  0.1372x106  

1.2 1.0859 0.78706x303  0.8547x103  40 

11.2 8.8037 0.9061 x103  0.7977x104  

21.2'  16.648 0.9069 x103  0.1509x105  

31.2 24.496 0.90717x103  0.2222x105  

41.2 32.345 0.9072 x103  0.2935x105  a  

51.2 40.194 0.90727x103  0.3647x105  

C©rttd .... 



•. 

1.2 1.0859 0.2886 x103  0.3134x103  60 

11.2 8.8037 0.3324 x103  0.2926x104  

21.2 16.648 0.3326 x103  0.5538x104  „ 
31.2 24.496 0.3327 x103  0.8151x104  

41.2 32.345 0.3328 x103  0.1076x105  

51.2 40.194 0.33288x103  0.1337x105  

1.2 1.0859 0.1327 x103  0.1447x103  80 

11.2 8.8037 0.1528 x103  0.1343x104  

21.2 16.648 0.1529 x103  0.2546x104  

31.2 24.496 0.15298x103  0.3747x104  

41..2 32.345 0.15299x103  0.4948x104  

51.2 40.194 0.1530 x103  0.6149x104 



CONCLUSIONS 

The machine control problems has been analysed 
and synthetised using structural diagram technique. 

The speed control of a d.c. motor and also a system 
involving time lag were analysed from stability point of 
view. Both the systems with the chosen parameters were 
found to be unstable. In order to obtain a high gain 
stable system, a suitable stabilising device and the. 
inter connection of it has been found out. The transient 

response is plotted using D-partition curve. 

The effect of non-linearity on the system 

performance has been studied using describing function 
technique. The automatic voltage regulation of a 
synchronous generator is considered as a specific example. 
The above system has been found to be totally _stable in 
the linear case and also when one non -linearity is 
considered- However the system attains a stable operation 
upto a particular value of frequency, w, when two non -
linearities are considered in the system. It has been 
further found that the system is absolutely stable when 
three non-linearities In the system are considered. It 
can be said that a totally unstable linear system becomes 

absolutely stable when all the non-linearities in the system 
are taken into account and the omission of non-li.nearities 

in practitc,  is erraneous. 

-/01- 



The study of automatic voltage regulation of 

a loaded synchronous generator with non-linearities 
encountered in the system can be taken up for further 

study. 



R 	\Jo LLt 

Vin 	K CS) 

CT 

C 	J 

Rc 
F,GukE - 32 (ct) 

STA~3IL1'SING DF-VICE 

FlGUR'E - 32 (b) 
CLOSED- LOOP REGULATING SYSTEM 

Im 

K PLANE 

b 

wl v u'n 

FIGURE - 32 (C) 
D-PARTITION CURVE WItH RESPECT TO 1 HE GAIN 



APPENDIX .• A 

The transfer f iantction of the RC circuit may be 

derived as follows. 

In Figure •(32a) 

Vin 	Ri + Cs 

and 
Vout  12 Ri 

Eliminating i from the above equation 

Vou t 	R 
in 	( a+  

Rcs.  
` 1+RGe 

Denoting the time constant of the stabilising link by 

RC = 'r, then 

yout  

-(04- 



APPENDIX . B 

REAL RESPONSE FREQUENCY CHARACTERISTICS 

The closed loop transfer function of the regulating 

system shown in Figure (32.b) may be written as 
i 

K( s) * Xout 	KW 
	 1) 

in 	 +KWs 

The Attenuation-Phase Characteristic of the closed-loop .system 

is 

K{ jw) 	KW )  
3+KW w 

ljw where KW( jw) =- 	Q w 	 ... (3) 

1s the equation of the Attenuation-Phase Characteristic of 

the open-loop system. 

The characteristic equation of the closed loop system is 

obtained as 

1+ KW(s) =0 

Whence the equation of the D-partition boundary is 

K = .. N jw 



The D-partition curve may be of the form as shown in 

Figure (32c). 

The section ab equals K, the section av equals 
Q(Jwl ) 

for the frequency wl  and the section by is I 	Q(jwl  ) 

	

the sum K + 	
w1 	

The amplitude may now be obtained 

from the ratio ab/bv for the given frequency. 

The phase may be determined by measuring the angle 

between the vector Ev and the negative abscissal half .axis, 

denoted by ° 

The real response frequency characteristic may be 

obtained as 

	

R(w) 	by  Co s oc 

If a perpendicular is drawn from point a to the vector bv, 
then 

bg = ab Cosa 

Hence R(w) = bg/bv 



APPENDIX - C 

TRANSIENT RESPONSE FROM REAL RESPONSE 

If H(s) , a function of s, and h(t) , a function 

of to are related as 

OQ 

H(s)= 	h(t) e•st dt 

The inverse transform may be done with the help of 
a contour integration of Bromwitch as follows, 

C -r ioa• 

. h(t)--_ 	H(s) est ds. 

c-joo 

where there is no singularity on the right ha' f of the 
complex s-plane. 

If s= jw, the above transformation becomes 

00 JC 

h(t) _ ~ 	H(jw) et dw 

The contour integration may be done along the real axis as 

no singularity is encountered. 

Thug, 	 o0 

. h(t) 	► 	H( iw) *iwt dw 

If the real part of the H(jw) is an even and the imaginary 

part of H(jw) is an odd function of w, then it may be shown 

that 

- /07- 



00 

h(t) 	Ja.  [H(jw)]  Cos wt dw 

provided the following conditions are fulfilled, 

(1) there is no poles on the right half of the plane, 

(2) Lt H(jw) =.4, or a finite quantity, for the 

integral to be finite, 

(3) the overall transfer function H(jw) is expressible 

as a quotient of polynomial, in w, the order of 

the denominator being greater than the numerator 
at least by unity. 

However, the above integral may be evaluated for 

arbitrary variation of H(jw) by the method due to Floyd, 

as follows: 

Considering the transfer function plotted in Figure 

(32d) , and drawing straight lines to represent it appro* 
ximately the lime function may be shown equal to 

V° 	Sin wn t 	Sin ant 
h(t) a R 2 An - w —,~ --  

m=~ 	n 

where 

A,' r1 w1, A2 are2. 

wl = (Wb+wa) /2. W2 a (wc+wb) /2, 

J'l = (wb-Wa)/2, 4& = (wc-wb)/2 
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The response due to en unit step function is obtained 

as 	 1  

f(t') =h(t) dt 
0 
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APP ENDIX ..D 

The describing function for the saturation type 

of non linearity may be obtained as follows. 

In Figure (32c) , for X > Ag, with x = X Sin wt 

and y = KsXSinwt, then the describing function is defined 

as 

Ll N 	a K, where Yi is the fundamental 

Fourier component of the output y. When X exceeds the 
saturation level Ag, the output signal y is distorted and 
the Fourier expression of y(t) is given by 

. y = Y1 Sin wt + Y3 Sin 3 wt + .... 

zn 

where Yi = 	y Sin wt d(wt) 
0 

IT(2 

~ —x4 f y Sin wt d(wt) 
0 

Therefore, 
wk ~ 

Yy ffi  JKXSinlgwt d(wt)+ 

0 

wt 
n K5X - ~ - 4 Si n2wt 

11(2..

K8Aa Sin wt f  d(wt) 
CA w CAI 	Li 

R(z 
1 Co wt) -! 

0 	 we,, 

A 
KsX 1/2( wt1•1/2 Sin2wt1)+ 1 Co~cwti 

-/12- 



- (13- 

Now ti is defined by 

XSin wti = As 

Sin wt1 = A8/X 

Hence Coswtl 	1.-Sin8wt1 	1-( 	) 0 

Sin2wt1 = 2Sinwt1 Goawti 2 
/I..( 
 }$ 

Thus 	
~ 

4K X  a  Sin -1  s yi ~ 2 	 - - I 

 
N 	X~ - -- 	- 	1-~ 	) +Sin s̀ may

. 

x 

For a particular input of X = Al 

if A1 A8 

I if Ai < A5. 
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