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Synopsisg

Automatic control systems engineers have mostly
relled on block diagram techniques and signal flow graph
methods for analysing the performance of the system.
These methods have a distinct advantage over the use of
differentiasl equations in that they serve as visual
reminders of cause-and-effect relationships in the phys-

ical system.

In this work, the physical system has been
represented by its structural diagram as proposed by
Aizerman(A).'The advantage of such a representation is
that the elements in any system may be represented as

links.

Linear systems including that having time lags
have been congidered and analysed. The effect of a para-
meter (gain or time constant) on the system stability is
found out using D-partifion technique. Foxr unstable
systems stabilising devices have been used, The transfer
functions of the stabliliging devices are realised into
physical circults using conventional network synthesis
methbds. The transient response is plotted from the

D-partition curve.

Stability analysis of systems having more than
one non-linearity has been carrled out using the
describing function technique. A practical system-voltage

regulation of a synchronous generator- is taken and

V-
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studied with (a) neglecting all non~-linear effects,
(b) considering only the non~linearity (saturation
type) of the synchronous generator, {c) consldering
‘the non-linearities of both the amplidyne and
synchronous generator and (d) considering the non-
lingarities of amplidyne, main exciter and synchronous
generator. The system is found to be unstable for
cases (a) and (b) whereas stable for cases {¢) and
(d) upto a particular value of frequency. Thug, the
stabiliﬁing effect of non-linearities has been brought

out,



CHAPTER 1

STABILITY OF LINEAR CONTROL SYSTEMS

1.1 GENERAL

In majority of the cases, the problem of control
consists of establishing and mailntaining over a period of
time, the operating state of the controlled object. This
problem gives rise to the requirement that the system of
automatic control should possess a definite stability, even

if it is acted upon by an external disturbance.

AM, Lyapunoff(l) first formulated the definition
and conception of 'stability', He defined that a system will
be called stable if, having been disturbed from a state of
equilibrium and left to itself, it will, 4in the course of
time tend to return to the earlier state of equilibrium,

Let the controlled quantity has a certain value X, in the
steady state. If the system is disturbed by means of some
external action so that x, varies by 8 (t). If the exter-
nal disturbance is removed, then the system will be stable

only if,

lim 6 (t) """"—O ese (101)

t - 0Zi
If equation (1.1) is not satisfied then the system is un-
stable,
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In the general case of a system, the variation of
the deviation & (t) can be described by a nth order differen-
tial equation, |

n n-1 |
B, 48l S’-;;F%ﬂa- ot a8(t) =0 L. (1.2)

at"

where a_, a; ""an are constant coefficients.

The solution of equation (1.2) is

n
1) (t) = 2 Ai ‘zi ti cese (1-3)

- =l
where A; are the integration congtants and Zi are the
roots of the characteristic equation which is of the form

Znﬂl + ,.. ¥ an = Q “se (104)

n
% Z |
If the system has to be stable it is necessary that
6(t)—0 when t —~05 and this ig possible only if Zy is
a negative real number, 8o that Ai ] Zit will tend to
Zero. it Z1 1s a complex quantity, then it should have

a negative real paxt,

A general conclusion is made that, if a linear differen-
tial oquafion with constant coefficients has to be stable,
then it is necessary and sufficient that #11 the real roots
of the characteristic equation be negative and that the

complex roots have negative real part.
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If the order of the characteristic equation is large
it 1s difficult to find out the roots of the equation and is
often tedious. However, it ig sufficlent to determine whe- -

ther all the roots lie to the left of the imaginary axis.

This problem leads tq the two statements. Firstly,
given certain parameters of the system it is necessary to
find for which values of the remaining parameters the éystem
1s stable. Secondly, if all the parameters are given it is
necessary to determine whether the system is stable for the

initially choasen parameters values.

Thé first probiem is solved by constructing region of
stability and the latter by using stability criteria.

1,2 STABILITY CRITERIA

Thé stability of the system can be determined by using
(1) Routh-Hurwitz criterion (2) Amplitude-phase characteris-
tic (Nyquist plot) (3) Root Locus method(z).

1.2.1 ROUTH.HURWITZ' CRITERION

| This is an algebraic method which gives the solution

to thQ abéolute stability of the system. Th§ RoutheHurwitz
criterion is concerned with statement of conditions which must
be satisfied by the coefficlents of the characteristic equation
of any order to ensure that the real parts of the roots are

negative.



Let the characteristic equation be

F(s) = a, 8" + a "l s 3,18+ a, =0

ver (1,5)

The necessary and sufficient conditions which must be
satisfied for the system having the characteristic equation
(1.5) to be stable are

(1) All the coefficients of the polynomial have
the same sign.
(2) None of the coefficients vanish.

The necessary and sufficient condition that all the
roots of nth order polynomial lie in the left half plane of
the s-plane ig that Hurwitz' determinant

Dp (k=1, 2, ... n) mugt all be positive.

The Hurwitz determinant of equation (1.5) are given by

Pr=ap Dp= |3 3

a, a4 ceve (1.6)

Then Routh's criterion can be defined as 'The
necessary and sufficient condition that all the roots of the
polynomial F(s) = O lie in the left half of s-plane is that

30 70; 01708 D2>' 0 ... Dn70 vee (1‘7)

The Routh-Hurwitz criterion though appears to be
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laborious is the simplest one in the analysis of control
systems. The procedure can be further simplified as follows.

The coefficients are arranged in a triangular array as shown

% Y 8, 2%
! 3 2 b
by by by
€1 3
dy ave (1.8)
8y 8/ ™ AN @n a, a - an a
1 "
b, an~ ~a, b by a. = ay b
2, 83 8 O3 | 21 85 1 s
clz cl . 03” cl geoe
¢, b
dlz l 3 "'bLCS‘
Cl :

If éll the coefficients in the first column of equation (1.8)
are positive, then the system is stable.' If there 1s a sign
change, then such a root exist in right half plane and the

system is unstable.

The advantage of the Routthurwifz polynomial and the
-evaluation of its determinant gives a good indication about
the stability of the system. However, the Routh-Hurwitz’
criterion is invalid for non-linear systems and time lag
systems.  Also, it indicates only about the absolute |
stability of the system and does not give any indication on
how the system can be stabilised.
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1,2,2 NYQUIST CRITERION (AMPLITUDE-PHASE CHARACTERISTIC)

If the order of the systm 4is high and if any of the
roots are complex, Nyquist diagram can be effectively used

to determine the stability of the system.

Nyquist criterion i¢ based on 'Cauchy' principle of
argument(z) and ‘the manipulation involved is a conformal
mapping of the imaginary axis of the s-plane on a polar
plane defined by the loop transfer function. The procedure
followed is

(1) The loop transfer function is found out and
jw is substituted for s.

(2) The polar curve is plotted for the loop transfer:

function and 'w' is varled from zero to infinity.

(3) The stability of the system is determined by
inspecting both the plots and poles of the loop

transfer function,

The Nyquist c¢riterion can now be defined as 'If the
loop gain function is a stable function, the number of poles
of F(s) that are in the right half of s-plane are zero, for
a stable closed system, the Nyquist plot of the loop gain
function mugt not enclose the critical point (-l,jO)(z).

The main advantage of the Nyquist criterion is that

the method can be used both for linear and nonlinear system
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to predict the stability of the system.

1,2.3 D-PARTITION METHOD

It 15 well known that as the gain of the control
system is increased, the system may become unstable, The
Routh~Hurwitz criterion or frequency response method
(Nyquist plot) do not indicate the optimum value of the gain
of the system, In the case of Nyquist plot if it is desired
to study the effect of any parameters of the system on its
stability, a family of curves must beplotted, assuming in
plotting each curve of the family a certain relevant value of

the fixed parameter,

\

Yu.I.Neimark(a) proposed a method of stability anaiysis.
by use of which it is possible to detexmine at once all the
values of the parameters in question for which the system

remains stable.

The characteristic equation (1.5) can be considered

F(s) = ag " + 3 1 +'n2a"'2 + .ot a, 18t a =0

The values of 3gs 81+ ees 3, may be interpreted

geometrically as a point in the n-dimensional space, with

axes for the values of the coefficients 3 2y ... 3 To

n‘
each point of this space there corregponds a definite value

of the coefficients 3gs @) ... a, and consequently

n
definite values of all the roots 8y, 8y «+o 8, of the
characteristic equation.
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If in this polynomial space there oxists a region in
which each point corresponds to a characteristic equation,
all of whoge roots 1ie to the left of the imaginary axis in
the complex root plane, then the hyper surface bounding thig
region is called the 'boundary.of the regioﬁ of stability(4)'.

In practice it 1s sufficient to construct the region
of stability on a numerical straight line (one parameter)

or in a plane (two parameters).

| Neimark proposed that if a polynomial of the nth
degree has k roots to the left and (n-k) roots to the
right of imaginary axis, as shown in Figure (1.a), and if
all the value of the-coefficieﬁts in equation (1.5) are
known except a, and an.‘ then there always exist a curve
in the plane of ay and a,, and bounds a region in which
each point defines a polynomial having k roots to the
left and (n-k) roots to the right of the imaginary axis
(Figuré 1.b). Such a type of distribution can be denoted
by D (k, n=k), where k may be any value from O to n.
If all the roots are to the lgft of the imaginary axis
D (n, 0), is a stable system.

The above principle is widely used in machine control
and automatic regulating systems analysis. A spé?ic example
is considered(3).



Let the characteristic equation of the system be
Q(s) + TR(s) = O veo (1.9)

where Q (s) and R (s) are polynomials with constant
coefficients and 'T' is a parameter whose effect on sta~
bility is to be examined, T can be either a time constant
or gain of an individual link or a group of links. The
1imiting value of T c¢an be determined by using Neimark's
method(3). |

Substituting s = jw in equation (1.9)

- Q (Jw) + TRGW)= O

whence T = = Q (Jw)/R (jw)  eee (1010)

If w 1s varied from - o3 to + 03 then all the limiting
values of T c¢an be determined. The locus of points on
the T surface from -o3to +o® , divide the whole T
plane into ‘regions where in all the polynomials have the
same number of zeros to the left of the imaginary axis.

Such a curve is called the 'D-partition' cuzve on T plane.

In order to determine the number of zeros to the
left of the imaginary axis the ‘'hatching rule' proposed by
Neimark is followed. In the D-partition curve from w= - &
tow=0 gand then to w= + o3 , the left hand side of
the curve 1s hatched. When traversing from hatched side
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to the unhatched side, one root to the left of the imaginary
axls is lost. Conversely, when traversing from unhatched
to the hatched side, one root to the right of the imaginary
axis i lost (Fiqure 2). If the largest numbers of zeros
are to the left of the imaginary axis then that region will
be s.able provided the number of zerves to the left of the
imaginary axis 1s equal to the order of the characteristic

equation.

If the D-partition curve is plotted then the Amplitude-
Phase Characteristic can be determined easily from the
Departition curve. It is also possible to determine the
margin of stability of the system in terms of phase and the
degree of oscillations which determine the magnitude of,the

peak on the APC of the closed-loop system(s).

If K 4is the overall gain of the system then consi-
dering it as a variable parameter, the Departition curve is
plotted in terms of the complex parameter K. A possible
form of D-partition curve in terms of K is shown in
Figure (3). Let the closed-loop transfexr function is of the

form

Kq {jw) = eos (1.11)

w
W)

]

Then the characteristic equation is K + ﬁ%}%} = 0
eee (1,12)
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Whane .K = - %{'}%} v e (1- 123)

In Figure (3.a) Ko 1is the value of gain at w =0 and

is denoted by vector 'ab'. The value of the denominator of
the equation (1.11), for a given frequency LA and Some
selected value of K, is denoted by the vector 'be'.  Then
fhe ahplitudo value of equation (1.11) is defined by the

ratio ab/bc and its phase is « (wg) In the same manner
the amplitude ¢haracteristic can be determingd for different
band of'froquoncies. A possible type of Amplitude-Phase
Characteristic (APC) is shown in Figure (3.b). The peak of
the characterigtic may be determined directly from Figurel(3.a).
A circle is drawn with centre as 'b' touching the D-partition
curve. The ratio of ab/bd 4s the peak amplitude of the
Amplitude-Phase Characteristic.

The critical frequency or margin of stability may
be determined from Figure (3.b) in which the Amplitude-Phase
Characteristic of the open-loop system is drawn. A unit circle
is drawn with centre as 'O' and its inter-section with the curve
gives the critical frequency (cut-off froquency). If this
frequency is 'w.', then for control period *t', the following

< ’
inequality is obtained(a)

X an_
W < t < W ess {(1.13)

It may sometimes be tedious to draw the De-partition
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curve of the variable parameter or it may be possible that
the characteristic equatfion contain two or more varisble
parameters. If such'a case exists, Mearov's and Aizemmans -

(3,4)

.method of ttructural‘stébility are more sultable to

determiné at the outset, whether system i{s stable,

1.,2.4 STRUCTURAL STABILITY

‘The system may be represented by its structural
dlagram, The structural diagram is represented in temms of
links, the advantage of which is that the ' original structural

diagram do not change even if the parameters are changed.

if Xout

and the closed~loop transfer function may be of the form

and Xy, are the output and input quantities

d (s) L (x

out) = K(s) L (%) es (1.14)

where d (s) and K(s) may be polynomials. A specific
example may be considered to explain equation (1.14). The
linear differential equation of the syétem or the link may
be of the form

d x

T. -—3%21 + xout L K xin . YY) (10l5)

If the initial conditions are assumed to be zero, the

Laplace transform of equation (1.1%) is

(TS + 1) X = K xin se e (1016)

out
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In equation (1.16), d(s) is (Ts+l) and K{s) = K.
(4)

Aizerman proposed the name for d(s) as 'the inherent

operator' and K(s) as ‘'the action operator', or' 'the

operator coefficient of amplification’.

The elements that are mogt fredquently encountered

in control systems are
(Te+l), (T2s® + Ts + 1), T332 + 1, Ts and Tsw=l

They have a special significance in control theory and
separate names and agreed notation are given to them(A)o

They are as follows:

1) An element for which d(s) = (Ts+l) 48 called
'single capacitance' or 'aperiodic' and is denoted
by a square ([ ])

2) An element for which d(s) = T3s% + Ts + 1 is
called _'oscillatory' and is designated by a
rectangle ( [])

3) An element for which d(s) = T%s® + 1 is called
‘conservative' and 1s designated by a shaded

rectangle ([777])

4) An element for which d(s) = Ts is called
‘astatic' or 'integrating' and is designated
by a circle ( ()

%) An element for which d(s) = Ts-l is called
'unstable! and is designated by a triangle (7).
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The action operaters K(s) are often encountered in

the following forms:

Ki K+ ps, K+ ps+ ye?

In the case K(s) = K = constant, the actions on the element
are called static, If K(s) = K+ ps it ig called first
derivative action and if K(s) = K+ ps+ ve® it is called

gsecond derivative action.

With the use of the types of above notation any phy-
sical system can be represented easily by its structure
consisting of links. In this work the above method of re-
presenting elements by their respective links is adopted.

1.2,5 CRITERIA OF STRUCTURAL STABILITY(%)

The criteria of stability may be used not only in order
to determine the conditions of stability but also to study the
general properties connected with stability for the whole class
of control systems. If the properties of the system are
known it is possible to make a number of inferences about the
stability of a system from its scheme without using the cxi-
teria of stability.

Aizerman(4) in his clagsical work gave a number of
criteria which can be used to predict the stability of the
systems A brief description of the methods are given here.
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a) The Conditions for the Structural Stability of
Single-loop Systems without Derivative action

If 'q' is the number of astatic stages (having
d{s) = s), 't' is the number of unstable stages (having
d(s) = Ts~l) and 'x' is the number of conservative stages
(d (s) = T2s%+1) in the system, and n is the degree of
the polynomial d(s), then the structure will be stable if
(a) q+ t« 2: and (b) n < ar. The inequalities must
be simultaneousgly satisfied.

b) The Conditions for Structural Stability in
Single-loop Systems with Derivative action

If positive first derivative action is present in a
single-loop system, the characteristic equation of the system
1s of the form

Equation (1.17) can be written in the form
D(s) + K(s) = O (1.17a)

where the degree of K(s) may be n and is less than the
degree of polynomial D(s), m.

The necessary and sufficient condition for structural
stability of the system having one first derivative at one
point of the circuit ig q+ t < 2
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(¢) If in addition to the first derivative the second
derivative also exists in the system then the characteristic

equation may be of the fomm

D(s) + Ms® + Rg + K= O cee.  (L18)

where M and R are positive numbers, equation (1.18) may
be represented as equation (1.17a). Here K(s) is the product
of factors of the form (Rys+K) and (M;s® + R+ K) and

Ri' My and.K1 are positive non-zero numbers.

Assuming that D(s) consists of factors of the form s,
Ta=-l; T23%1, Ts+l and T%s%+Te+l, K(s) 1s a Hurwitz poly~
nomial., If p represents q+ t + 2r and pP is the integral
part of the fraction /2 and N = n 4+ m then the conditions
for\the structural stability of system containing the deriva-
tive actions are determined by the following theorem(s),

In order thét the system with characteristic¢ equation
(1.17a) in which D(s) is the product of s, Ts+l, T2g3 +Tg+l,
T23%+] and Ts-l and K(s) is a Hurwitz polynomial, éhall be
structurally stable, it is necessary and sufficient that
the inequality

lﬂ;q+t'1 ee

be gatisfied and that one of‘the inequalities in Table 1.

depending upon the values of m and n bhe satisfied,



TABLE 1
1 1 T
R R T
i even N >4p N>4p -1 N> ap 2

B odd N>ap N>ap N >4p +1

If the system is a multi~loop system, it is
possible to decompose the system into single-loop systems.
Meerov's method of structural stabllity may be applied and

is as follows.

The characterigtic equation of any clcsed-loopu_

-system may be represented as

n+l'_

| > N S
i=1 J=t " Den-1
S =0
4+ KKy o Ky KD+n14.KN <1*TN+1‘) }
ees (1.19)

Subgti see Ky K,
stituting K:)+1, Kopo vo0 Kyyp =
equation (1.19) may be divided by K and using the notation

m= 1/K equation (1.19) becomes

eoo (1,20)
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Equation (1.20) may be written in the fomm

m Fy, (8) + By (8) = 0 | cee (Lo21)

I1f now m~>0 ie., K->, the equation (1.21) degenerates
as Fy (s) =0 ' , ‘ eee (1,22)
* 1 )

In erder that the original system be stable the
folloying conditions shall be satisfied.

(1) The degenerated equation must be a Hurwitz
polynomial.

(2) 1f N, is the degree of polynomial Fnz(s) and
Ny is the degree of polynomial FNl(s). then
the necessary and sufficient condition for the
structural stability of the system is N2—N1= 2,

In addition to the above the following conditions
‘must also be fulfilled.

(a) If Ny, =1, the relation %g >0 must hold

good where B, is the coefficient of highest
power term in FNz(s), and A  1s the coeffi-
cient of highest term in Fnl(s).

(b) If Ny-N, = 2, thenthe condition

B Ay
EL « %= 7 0, must be satisfied.

Here B, and B1 are the coefficients of the



first and second highest power terms of the
polynomial FNz(s) and Ao and Al are the coeffi-
clents of the first and second highest power
texms of the polynomial FNl(s) respectively.

- (¢} If N,-N; >3, the system is unstable.

The above methods are mainly used in this work.



CHAPTER 11
STRUCTURAL SYNTHESIS OF LINEAR CONCTOL SYSTEMS
2,1 INTRODUCTION

The representation of a linear physic;1 system by
structural diagram is an useful tool in its desian 6f’suéh
systems. The design of a control system mainly deals with
the quality of the system. The problem of quality in tumn
deals with the numerical valﬁes of parameters of the linear
system represented by its links., Also, a system has to be
designed to meet certain requirements namely whether the
system {8 stable in its given form and meet the required
speed of response, steady-state offsét; limited overshoot
and damping. In most of the design problems certain data
viz, speed of response, overshoot and steady-state offset
are ugually assumed and the parameters are so varied that

the system remains stable with lafge values of overall gain,

However, 1f the system itself is large it becomes
inadvisable to change the parameters, In such a case, the
stability as well as the overall galn c¢an be 1mproved by
providing certain types of stabilising links(3). The
prpvision of more or remowal of certain links may or may not
improve the performance of the system and the proper choice

and connection of the links is purely a. designer's task.

2.5 SPEED CONTROL OF D.C. MOTOR

The speed control of a d.c. motor is considered
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here as an illustrative example of structural synthesis.

The physical system of speed controi of a d.c.

motor is shown in Figure (4).

In the system considered it is desired to vary the
speed of the d.c, motor within wide limits. The speed
control is obtained by varying the armature voltage of the
dec. motor with a constant excitation flux. The amplidyne
generator is chosen as the source for supplying the ammature.
The tacho-generator is uged as a comparison unit, An
amplifier is alsoc connected so that the system possesses a

large gain,

The working principle of the system is as follows,
The voltage difference between the e.m.f. "of the tacho-
generator Vt and the reference voltage VR is fed to the
amplifier. The excitation winding is supplied by the
amplified output voltage of the amplifier., The voltage
developed across the d-axis of the amplidyne is applied to
the armature terminals. During steady-sfate this ensures
the desired speed of the motor. Due to external disturbance
the sbeed of the motor will change causing a corresponding
change in the e.m.f. developed by the tacho-generator and
hence (Vo-V.) also changes. The voltage developed by the
amplidyne will also vary and hence the speed of the motor
will change accordingly.
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- 2.3 STRUCTURAL DIAGRAM

The structural diagram may be drawn 4f the transfer
functions of the individual elements are known and can be

derived as following:

(1) Assuming there is no time lag in the system,

Vo= K Vo | ees (2,1)

(2) The transfer function of the amplidyne may be

determined as follows:

If Ll and.Rl denote the lnductance and ohmic resisge
tance of the exciting (control) winding and 1; is the current
flowing in that winding, then the equation of electrical
equilibrium is

di

1

Taking Laplace transform on both sides of equation (2.2)
and denoting T, = Ll/R1

Va

ioe’ I = " eee (2.3)
The voltage induced in the g-axis of the amplidyné is
9
Vq Kl Il * e (204)

where Ki is a constant.
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The equation of electrical equilibrium in the g~axis
winding is -
Vq = (R2 + LQS) 12 v (205)

wheré 12 is the‘curtent flowing in the q-axis of the
winding, Substituting equations {2.3) and (2.4) in
equation (2.5),

_Ki‘v.

I. = ““““rrﬂa“ayrr““_"y vaee (2.6)
2 Rlﬂz *Tls +T23
The voltage induced in the d-axis of the amplidyne is

V = Ké 12 s e (207)

| Substituting equation (2.6) in equation (2.7)

KKV
i} X2 Vq
v RlR2(1+rls§{1¥rézT

K K2V ' ’
1"2"a
= + ls +T29 PRPEY (2073)

where K = K|/R and K, = K;_,'/a2

The transfer function of the amplidyne may be
obtained as

\'A
Vor TOTaeTT (20
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The amplidyne may be either represented by two
aperiodic links or by one oscillatory link.

(3) The transfer function of the d.c. hoto} may
be obtained as proposed by M.V. Meerov(a). The behaviour
of the motor is described by the following equations.

(a) The‘net torque developed in the motor can be

written as
= GD2 dn
TM"TR - 75 dt e (2.9)

where GD2® i1s the moment of gyration of the
motor, n is the rotational speed in r.p.m.
TM is the motoxr torque and TR is the load

resigstance torque.

(b) The equation of electrical equilibrium in the
armature c¢ircuit is

di
V=e+i,R+L E?ﬂ cee (2.10)

In equation (2.10) e 1ig the back e.m.f. of the
motor, R and L are the ohmic resistance and self-inductance
of amature circuit respectively and 1, is the current in

the armature circuit,

Since the excitation flux is assumed to be congtant,

e = CGQH eee (2011)
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where ® 1s the flux, and C, 1is the constant of

proportionality.

The motor torque may be expressed in terms of the

current and flux as
TM = CM o iA eee (2.12)
where Cy is the contant of proportionality.

Assuming TR = 0, then

GD*?

375 dt Ty=0Cy 01, re. (2.123)
°r 1 GD® d

~i_ GD® dn

1A = CM@ 375 a{ L (2.13)

dai
and __A_._l GD? d3n ‘

at =~ Cu® 375 dt¥ vo. (2.13a)

Substituting equations (2.13) and (2.13a) in (2.10),

RGD® dn, L GD2® 4%
v= Cun+ = 5%“5 t T T8 375 dt
s o0 (2.14)

2
Introducing the notation Ty = 375569 C, &%

T, = L/R and . and dividing the whole
A Co
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equation by C, ¢, equation (2.14) may be written, in the
form

T, T, S23+ Ty H+n = kv coe (2.15)
The Laplace transform of equation (2.15) is

(Ty Tps® + Tys + 1) N = K.V Ve (2.153)

Here TM is5 usually called the electromechanical time

constant and TA, the armature time congtant.

The equation (2.15a) may be repregented by an
oscillatory link or by two aperiodic links.

The system equations of Figure (4) may be summzrized

as follows:

Va =K, Vin.a eee (2.1)
The transfer function of the amplidyne is

K
v 1% (
= v 2.16)
Va (1+T155(I+T251

The transfer function of the motor is

| KK
N K _ 3 eoe (2,17)
V=TT T,8° + Tys*l) - (1+’T“")Tf"i""‘)‘as T s
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where T3 = - l/Rl ang T4 = - 1/*2 and dl'and <, are the
roots of the equation Ty TAsa +Iys+ 1=0

The voltage developed at the output téiﬁinals of

the tachoegenerator is

VT = KE)N - . vee (2-18)
where K5 is a congtant.

Using equations (2.1),(2.16) to (2.18), the structural diagram
may be drawn and the cloged-loop transfer function may be

determined.

The structural diagram is shown in Figure (5)

The transfer function of the closed~=loop system is

written in the form:

Voo KCa] K, Ky KKK Ky |
= K8) = TRTRTI,a (BTae (iFT
V; (THT, ) (1#T,8) (T+T 58 ) (14T 8 )+K, K KKK Ko

eeo (2,19)

The characteristic equation of the single~loop is

(1+T,8) (1+4T,8) (14To8) (14T 4s) + K = O eeo (2.20)

where Kbv = KAK1K2K3K4K5.
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The following numerical values are chosen for synthesis
purpose.
Tl = 0,1 sec, Tz = 0,1 sec, TM = 0.5 SGC.r

Tymm = 0-01 sec, KK, = 10, KoK, = K = 1, K,= 20

T3 and T4 may be found by determining the roots of the

quadratic equation

T. 2 ‘ -
Ty T,y 8" * Iys+ 1 =0

0.5 x0.01 s+ 0.5 +1=0

The roots are € = -2 and €, = -98
T, = - 1/'etl = 1/2 = 0.5 sec
and T, = - l/'c(2 = 1/98 = 0.01 sec

It may be assumed that the statlc-error of the
system should not exceed 0.0012, duration of the regulating °
process must not exceed 0.3 sec and the overshoot has to be
limited to 18 percent. Then the conditions governing the
steady-gtate offget define the required overall gain of the

order of

1
Kov = To00I3 = 800

Substituting the numerical values and K ,, in equation (2.20)
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(1+40.18)(140.18)(1+0.%8) (140.018)+800 = O eeo (2.21)
0.000058% + 0.0061¢3 + 0.11782 + 0.71s + 801 = O

The Routh«Hurwitz polynomial may be used to
detexmine the stability of the system. The RoutheHurwitz

polynomial is as follows

4 0.00005 0.117 801
3 o0.0061 0.7

2 o,1112 g0l

1 s4.60

8
s

so 801 ' \ L (2022)

Since there are two sign changes in the first
column it may be deduced that there_aie two roots in the

right half plane and hence the system is unstable.

The ungtable system can be stabilised either by
varying the parameter values or by providing a stabllising
link, (Appendix A). The stabilising link is connected in
the system as shown in Figure (4). The transfer function
of the stabilising link is obiained as IE%; and is

represented in the structural diagram as shown in Figure(6).

The transfer function of the closed-loop system

with the inclusion of the stabilising device 1is



!L _ Klggx3x4K5KA(1+fs)
VR ﬁ (1+Tis)(1+fs) +.K1K2KA79(1+T33)(1+T43)
A=t
+ K1K2K3K4K5KA(1+TS) vee (2.23)

The characteristic equation 1is
4
JL (147T;8)(1473) + KKK, TS(14T38) (14T y8)+ K, (1475) = O

ves (2.24)

The stability of the system may be determined

using Meerov's criteria.

| Equation (2.24) is divided throughout by KKK,
and denoting m = e o , equation (2.24) becomes
K1KoKa

A .
m 'ﬂ‘(1+ris)(1+vs) + Ts(l+133)(1+T43) + K K5(1+Ts) = 0
izl

3¥4
ees (2.25)

The above equation is written in the form

m FNz(s) + FNl(s) =0 voo (2.26)

If KleKA tends to infinity, m tends to zexo and the
equation (2.26) degenerates to

Ts (14T,8) (14T ,8) + KoK Ke(l4Ts) = O | oo (2,27)

The above equation should satisfy Routh-Hurwitz conditions.
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The time constant T of the stabilising device is
unknown and it can be so chosen‘that it will satisfy the
conditions of stability at any value of gain K K,K,.

This will be true only if(a)

T,T
3T4
TR, e (2
1o, 7>23Z0l. 29932 0,01 oo (2.282)

T ¢an be chosen to be 0.1 sec.

Substituting the numerical values in equation (2.27), the

equation becomes

0.1s {1+0.58)(14+0.018)+4(1+0.1s) = O
0.000% $3+0,0518% + 0.58 + 4 = 0

8% 0.0005 0.%

s? 0,051 4

s 0.46

s° 4

The degenerated equation (2.27) indicates the system

as stable.

The difference in the degrees of £he two polynomial
FNl(s) and FNz(s) should not be greater than 2 (as discussed

in chapter I).
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In this case N2-Nl = 2, Then the condition for a

By fl
stable systom is 55-A0;>0. - In this example,

By = TToTaTy # TiToT, T + T)TRT,T + T,T.T,m+ T,T,T,r
Ao = T3T4T

Al = T(Is+ I4) =T T3+TT4 -

B, A
i1 1 1 1 1
BO A0 1 2 T

+ U%T + 5%61 > 0

With the introduction of stabilising link connected
as shown in Figure (4) an - unstable system tends to become

gstable.

The optimum value of the gain may be obtained by
‘plotting Departition curve in terms of K,ye From the
characteristic equation (2.24),

(1+Tis)(1+fs) *+ KKK, Ts (1+T35)(1+T4s)

ov (1 + 7s)
eoe (2.29)
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(140, 1Jw) ( 140, 1 Sw) (140.5w) ( 1+0.01 Jw) { 1+0. 1 jw)
K = + + (1+
ov °* _ (l+0.l jws

e (2030)

(1-10.388w? + 0,0065 w?)+3(20.81w - 0.1777w®
+ 0.000005w°)

. (T+0.T1 3w

ve. (2.308)

The D-partition curve is plotted by varySng w

from O to + o3 and the curve is shown in Figure (7). From
the D-partition curve it can be deduced that the system is
stable in the region 'ab’,

The largest value of the gain with which the gystem
will be stable is K = 63350, This value of gain is very
large for the system to satisfy the required specifications.
In order to obtain the optimum value of gain K, the real
response frequency eharacteristic(s) may be drawn from the
Departition curve so as to obtain the loweét ﬁeak along the

real response frequency characteristic. (Appendix B).

An initial value of gain is asgumed to be nearer K
i;a. 800, the real response frequency characteristics are
drawn 4n Pigure (8a) and Figure (8b) for K = 1000 and
K = 1300, An observation of the two figures indicates
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that the gain K = 1500 is nearer to the optimum value since
the peak occurs at a value of R(w) = 0,923,

In order to ensure that the overshoot is éimited '
Kb
to 18 percent, a circle is drawn with a radius ~%-
« K «1. f
with its centre at -%—— (where kb is the optimum value

v

of the gain), 4in Figure (7).

The overshoot is limited to 18 percent provided the
system gain does not exceed the length of the diameter K+l

of the circle.

~ 1In Figure (7) the circle is drawn with a radius
of 12001 _ 750,5 and with its centre at 3%J<L

= 749,5., The circle passes through the point K which
denctes the optimum value and hence the overshoot does not

exceed 18 percent.

The critical frequency of the system may be obtained
by dropping a perpendicular from the point K onto the
Departition curve. If w, is the frequency at which the
intersection occurs, then the duration of transient process

is given by(s)

< <L té'v%‘!i"' s (2-29)
c

' 2 [n
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In Figure (7) w_ is obtained as 29 rad/sec. ,

Hence the duration of transient process is

4n
<t < 33

g

= 0,108 < t <« 0,435

* The initlal assumed value of duration of transient
process 1s whitin the limits of the equation (2.29). One
of the requisites of a stable system is that the transients
should die down in a short interval of time. The trangient
process may be obtained graphically from real response
frequency characteristic using Floyd's method of Trapezoidal
approximation {Appendix C).

In this example, the real response frequency charac-
teristic shown in Figure (8a) is chosen to detdrmine the
trangsient process. The transient process obtained from

the real response characteristic is shown in Fig (9).

A visual examination of the curve in Figure (9)
indicates that the transients die down rapidly thereby

ensuring a stable system.
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FIGURE - ©
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GHAPTER III

STRUCTURAL SYNTHESIS OF TIME LAG CONTROL SYSTEMS

3.1 INTRODUCTION

Control systemg like hydraulic, pneumatic and
mechanical process may be encountered with puie time lag,
s0 that the output will not begin to respond to a transient
input, until after a given time. Because of this time lag
effect the transfer functions of these systems are no

longer quotients of polynomial.

: The time lag systems possess very low value of
critical gain., The possibility of increasing the gain

and tonstructing such systems are of very important pract-
$cal significance. In general the system may contain one

or many time lag elements in it.

3.2 TIME LAG SYSTEM

The synthesis of time lag systems plays a vital

role in process control. An illustrative example is

(3)

strip thickness in the cold rolling mill is considered.

considered herein'”’/. The automatic regulation of the

The physical system is shown in Figure (X0). -

The distinguishing property of the system ig the
fact that the thickness of the strip is measured not at
the point of rolls but at some distance ' f' away from

them. Hence the signal of thickness variation is received
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by the system after some time lag determined at the
rolling speed v by

=l vee (3,1)
and T 1is known as the time lag or time delay in seecs.

3.3 WORKING PRINCIPLE OF THE TIME LAG SYSTEM

In figure(X0) the measuring element is an\inductive
thickness gauge, When the strip thickness deviates from
the prescribed value a_vcltaéa appears at the output of the
thickness meter whiéh 1s fed to the input of the amplifier—,.
A, The output of the amplifier energises the control
winding of thé amplidyne generator. The output of the ;
émplidyne is supplied to the armature of a d,c. hOtor which
drives the roll feed screws, The amplified output voltage
of the thicknéss gauge fed to the armature of the driving
motor causes it to rotate éb &arying approximately the

clearance between the rolls.

3,4 STRUCTURAL DIAGRAM

The structural diagram may be drawnwith the following

assumptions:

(a) It may be assumed that the thicknes% indicator
represents an aperiodic link, The deviation of
thickness from the predetermined value is denoted
by ® and if the voltage at the output of the
thickness indicator is V., then,

(l*Tl _a_g) V't = KIQ ‘ oo (302)
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where Tl and Kl are the time constant and

gain of the indicator respectively.
(b):The equation of the amplifier may be_written as
Vo = KaVp | | eo (3.3)
(c) The equation of the amplidyne is

(WTAR (14T, S)vp, = KKaVp vo (3.0)

vd) The equation of the d.,c, motor is

s 3 ' .
(T4T5 'g't-l + T4 g'{ +1)n = K4VA .o (3.5)
Since n = g{ Ql ’ .0 (3.6)

where ®; is the relative variation of the motor shaft
angle of rotation. Equation (3.5) can be modified as

T, 42 e -

{e) The time lag equation of the link with delay
is of the form

o = 0 (t-1) ve (3.7)

Substituting s = d/dt and assuming initial conditions
to be zero, the Laplace transform of the above equations

are



VT(AB) K
> "(1+Tls ’

VA(S)

%)

|
>7<

Veals) K
ACHE z

o, (s) K
. S ST

Vrals)
and O(s) = 0y(s) &7 « (3.8)

Using equation(3.8) the structural diagram is drawn
as shown in Figure(ll).

The characteristic equation of the system is

s(l+Tls)(l+T23)(1+T33)(l+T4s+T4fss’)+K1K2K3K4KA9'8T =0
.o (3.9)

The operator equation of the system in the open=-
loop condition is
K v‘e"'.T |
Wie) = - '(1+T157(1+728)%1+T38)(1*T48*T4T55')

.. (3.10)

where

Kov = KyKoKaKyKa
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Thgknumerlcal values are chosen to be as follows:
T} = 0,01 sec, Tp = 0.05 sec, = Ty = 0.1 sec,

'l'4 = 0,2 sec, T5 = 0,05 sec,

K1K4= 0.1 ' KzKakA = 100,
T = 0.1 sec

Agsuming the limiting value of T to be zero and
substituting the numerical values of time constants and
gains in equation (3.10), W(jw) (Amplitude-Phase
characteristic for the limiting value of T) is obtained

as
10

Wil IW) = = JuTTR0.013wI (170,053 (T 0. 3 (170 2
+0.2%x.05( jw) ®)

The above equation on simplification becomes

| 10
( -0, 36w*+0.00295w? -0 .0000005w6) +3( w=0.0485w3+0.000075w> |

=

oo (3.11)

The Amplitude-Phase charécteristic ig obtainad by
substituting different values of w from O to + &
The APC is shown in Figure(12). The intersection of unit
circle with the Attenuation-Phase characteristic occurs

at w, =6 rad./sec. The maximum vzlue of T 4is given



by the relation,

va = e(wo)/wb and for a stable system

the condition

T L Tb should be satisfied.

In this case To is very small, and almost zero.

Hence the system with the gi#en parameters is unstabla.

In order to obtain a stable system with an infinitely
large galn a stabllising device is introduced in the system
and is connected as shown in Figure(l3). The chosen stabile
ising link is a transformer whose trangfer function is
expressed as T;s/1+Tys, where T; 4is the time constant

of the device.

The characteristic equation of the modified system

may be obtained as

(14T, 8) (14T 8) (14 T48) (14T ;84T To8%) (147 8) s%T
+KAK2K3 [‘rlﬁ( 1+T18) ( 1+T43*T4T559 ) 3 es‘r

+KpKy KoKaK, (147 8) =0 ..(3.12)

Dividing equation(3.12) by KaK,K;e®" and substituting

m = ?;%;E; » equation (3.12) may be wnitten in the form
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m[(1+rls)(1+129)(1+T3s)(1+T43+T4T5s3)(1+713)s}
+ 71§(1+Tls)(1+T43+T4T593)s

+‘K1K4(1+‘rl$) B-ST =0 ., (3013)

If the gain KAK2K3 is increased to infinity m
tends to zero and the equation(3.13) degenerates to

TJ‘S(l*Tls)(1."1‘43*‘1.4‘1‘533)‘ + K1K4(1+Tls)ens‘r = 0
.o (3.14)

The limiting value of T and the stability of the
modified system may be determined from the Amplitude-Phase
characteristic by chosing a proper value of Tye Also Ty
- must be so chosen that the system is stable. In this
example, T is assumed to be 0.5 sec. Then the equation of
the Amplitude-Phase Characteristic for the limiting value
of T=0, is obtained from équation (3.14)

Ky Ky (147, Jw)
wlim(jm =- Tl(JW)%(l“’leWT(l"Td’jW"T Tth’W, ,

Cee (3.18)

Substituting the numerical values of Tl,T4,T5.K.lK4 and Ty,
the equation (3.15) becomes

Wygm(Jw) = _._____T__1q1£hlil&9;?%wl
lim 0.6{-w?) (1+0.01jw) (1+40.2Jw-0.01w¥)
= 4 d
(0.6w!-0.0072w45+jio.126w’-0.00006w5)

.. (3.16)




The Amplitude-Phase Characteristic is obtained by
substituting diffsrent values for w from O to + o0 ,

A unit circle 1s drnuh with §ts centre at orxigin
and the intersection of the circle with the curve glves
W, and sngle of intersection is 8(w,), as shown n
Figure(13),

The maximum value of 7 is determined by using the
relationship

T w ——— | oo {3.17)
G.‘ L] 0.@5 i.co

Since the initial value of T is qriatar than the
1imiting value ¥or the system would be perfectly stsble.

In order to determine whether the system will
remain stable with increase in gain, the Departition curve

for the system is drawn,

Departition curve may be drawn from equstion {3.12).
Resrranging equstion (3.12), )

(14T 8)(16T50) (14Tae) (T oo™+ T 8¢1) (2e7 0) 0™
*KAKoKa{ T 8( 20T, 8) (T, Tys 4T ju01) 50"

* KK (1478} ] = © .o (3.128)

The above squation may be simplified and expressed in
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term of KoK Ka.

{ (141, s 1+ Todw) (14T Jw) (T, T5( Jw) ®

#T 43w 1) xgw( 147y 3w) |

KRk, = — .. (3.19

Ty 3wl 14Ty 3w) [T, T ( Jw) 24T 1w 1]
+KyK4 (147 Jw) @30T

Substituting the numerical values in equation(3.19) and
simplifying |

R, = 8=, .. (3.20)

where,

Nr = (-9.6x10 " w9+3. 205::10'2 4-4.55x10"5w6)

= Iy 84%5%10 2w

-3x10'7w )

+5(w=2.645x10

Dr = [(-6x10'1 24+7.2x10" w4)+3( -1. 26x10'1w’+6x10 Sﬂ

+ [(0.1430.06w) ¢™0+ 1 3% ]

The D-partition curve is obtained by substituting
different values for w, from O to o% « The curve

obtained is as shown in Figure(16).

From D-partition curve obtained it can be deduced that
the system with introduction of stabilising link is stable
for all values of gain, KpK;K,.
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3.5 PHYSICAL REALISATION OF THE STABILISING LINK

The stabilising device used in this example is
a'transformer. Its transfer function may be derived as
follows. In Figure (14), the stabilising transformer

under no-load conditions is shown.

If R.1 and L1 are the resistance in ohms and
inductance in henries respectively, then,
The output of the transformer is

Vougls) = MsI;(s) vee (3.22)
where M '13 the mutual inductance between the two
windings.

The transfer function of the stabilising

transformer is

Vout(s)  MsIy

= . eoe (3.23)
Vin's) (11+Lls)I1

Assuming M = L, and T, Tepresents the ratio L,/R,
then 1

Vou (s) - ‘f'l,s,

Vina’, (1+Tls

IN the illustrative example, T is 0.5 sec. A suitable
combination of R; and L,, within the practical limits is

Justifiable. For example, R, may be chosen to be 1 ohm,
then 1113 0.5 henries.



CHAPTER IV

STRUCTURAL SYNTHESIS OF AUTOMATIC VOLTAGE REGULATION
OF A SYNCHRONOUS GENERATOR

4.1 INTRODUCTION

The method of structural synthesis may be applied
to the automatic voltage regulation of o synchronou# generator
to obtain a stable and high gain system. An unstable system
c;n be stabilised by providing stabilising links. The proper
choice of stabilising links and the connection of them play
a vital role in the synthesis of such systems. If the
original system is large (i.e. the degree of the polynomisl
of the characteristic equation ig high) then the provision of
_the stabilising link complicates the system.

A new method is proposed below to stabiliae,a linear
unstable gystem by considering the non-linear effect of the
elements in the system without the inclusion of any stabili-
sing device. | |

The automatic voltage regulation of a synchronous
generator is considered as en illustrative example. The

'physical system is shown in Figure (17)(5).

4,2 WORKING PRINCIPLE OF AUTOMATIC VOLTAGE REGULATION

There are many types of voltage regulators that are
used in practice. Voltage regulators are used to control

the voltage of a synchronous genegrator at a desired value.

The physical system has in its forward path an

amplidyne, a main exciter and the synchronous generator.
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In its feedback path it has a potential transformer and

a rectifier,

The working principle of the system is as follows.
The main exciter is a shunt wound machine with amplidyne
as its exciter. The amplidyne opts it-self as an amplifier,
since its large'output can be controlled by a small input.
‘The generator field, in turn, is excited by the main exciter,
The potentialltransformer is connected to the output of the
synchronous geneiator and the out put of the poténtial
transformer is rectified and fed directly to the second
excitiné winding of the amplidyne. A current transformer
and a magnetic amplifier are usually connected in the feed
.back'path. The current transformer is used to take care of
change in load disturbances and the magnetic amplifier is
used to amplify the out put signal from the alternator.
In this analysis an unloaded system is considered and the
ﬁrovigion of current transformer and the magnetic amplifier
do not serve any purpose. Hence they are omitted in the

original physical system.

If the voltage output of the sfnchronous generator
‘decreases the voltage at the secondary of the potential
transformer aiso decreases and therefore the voltage
applied to the exciting winding of the amplidyne 1s reduced.
Thig brings in a decrease of m.m.f. produced by the feedback
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winding thereby causing a net increase in the resultant
Am.m.f. because the main m.m.f. being a greater one is
opposed by the feedback winding m.m.f. The net increase
in the field flux will cause an increase in the output
voltage of the alternator trying to keep the woltage at a

constant value.

4,3 STRUCTURAL DIAGRAM OF THE SYSTEM

 The structural diagram may be obtained by deriving
the linear differential equations of the system. With the
help of Figure (17), <the equations are derived as follows.

1. Vhlis the applied reference voltage of the
first exciting winding of the amplidyne and
Vb is the feedback voltage applied to the>second‘
winding of the amplidyne. It may be assumed
that the two windings are identical. The
‘directions of the currents flowing in the two
windings may be assumed to be as shown in

Figure (17). Then,

Multiplying equation (4.1) by Ms and (4.2) by
(RI*LIS) ’



bl

) (Ry+Lys)3-M2g%

oo (4,3)

similarly,

Cvee (4.8)

: 1 - VR( Rl"' L1$ )"’vbMS
f) (R1+Lls)‘4was‘

The voltage induced in the qeaxis of the amplidyne
is proportional to the difference of the currents
Ifl and Ifz. Assuming L =M

(v,-V,)
| - RT'D -
Ifl,lfz RT1e2Ts where T, LI/RI
K, (V,=V, )
e 1. R b where Kl = l/Rl see (405)
(l+2Tls)

2. The transfer function of the amplidyne may be

obtained as follows.
The voltage induced in the g-axis of the

amplidyne

eq = Kq ¢d LI (4»6)

In Laplace transform

] | \
Eq = %(Ifl-xfz) ( Since (bd = Ifl-Ifz) ’

vee (4.7)



—62«-

where K' is the number of volts induced in the

2
q-axis per unit control field current in amps.
AISQ Eq = 12(R2+L23) ev e (408)

From equations (4.7) angd (4.8),

I

Ky L
Tt R (e Ty - )

ees (4.9)

The voltage induced in the d-axis of the amplidyne
Ls ey =Ky i, ... (4.10)

‘ wheTe Ké is the number of volts induced in the

d-axis‘circuit per ampere in the g-axis.
or Ed = K'a 12 ' PPN (4-103)

But Ey = I,(RytL,s)

Kf 1

E' Y
3
13 = Tﬁg‘rgﬂ = RS re 38) vos (4.11)

KpKallg ~I¢, )
® b2 oo (4.12)
(LT 8] (14T ,s) e

where (Ky=Kj/R, and Ky = Ki/Rj)
3. The voltage in the main exciter {¢

VME = KA 13 ' s e (4013)
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5.

6.
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The current flowing in the altcrhato: field is

v .

ME
Ifg = “"TI—‘—'R4 +T4S) LI (4.14)
subgstituting equation (4.13) in equation (4.14)

K, I
4 : '
Ieg ™ TTTTZ%T , where K, = K,/R,
eos (4,15)

The voltage induced in the synchronous generator ig
Vt = KSIfg .oul(dolé)

substituting equitions, (4.5), (4.12), and (4.15)
in equation (4.16), Vt 1s obtained as

KK K (V,=V, )
Ve = +21 3 ::5' T +¥ +1,8) -.(4.17)
. 18 2% 38 4%

The transfer fuﬁctlon of the potential transformer
may be derived by assuming that the transformer

is operating at no-load (Figure 18).
From Figure (18)

Ygut

Assuming Ll = M

Vout ~ Ls '__Ii__
Vin = (Bl+r15) (I*TS)
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1f V,,¢ and Vs, are denoted by V, and Vg Tespectively

" then the transfer function of the potential trans-

former is

v Tss
vi- n T;-T;—if-— 0 (4018)

7. The voltage applied to the rectifier is Vs and
its corregponding output is Vb and 15 given by

the relation

v | eoo (4.19)

Vb= K6 s

By substituting equations (4.18) and (4.19) in

equation {4.17), the closed-loop transfer function can be

obtained as

. Ky K KoK KaK Tas
A % 2°3°4 % 5
[;t+ 1427, 8) (141, 8){ 14T s 1+‘4s)(l+T55) vt]
. Ky KoKaKaKs — v
+20,8)1+T,8) 1% a8) L1+ 43) R

eeo (4.20)

 on simplification equation (4.20) yields

;3 K KKK Ke( 14Ty s) .. (4_21y~
R

Tt e)ek, Toe
<=
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Equation (4.21) 1s the closed-loop transfer function of the
system shown in Figure (17).

where Kov é K1K2K3K4K5K6

The block diagram and the gtructural diagram may be
represented as shown in Figure (19) and Figure (20) respect-
ively.

~ In order to determine whether the linear system is
stable, the following numerical values (.6, 7) substituted

in the equation (4.21.). The numerical values are

Kl = 0.001, K, = 42.5, Ky = 25, K, = 10, Kg = 130
K6 = lt5. Tl = 0.003. T2 = 0.08, TB:"' 0|03.

T, = 0.05 and Tg = 0.3,

4

Routh-Hurwitz criterion is applied primarily to
determine the stability of the system. The characteristic
equation of the system may be obtained from equation (4.21),

5 .
T (l+Iis)+Kbv Tgs = O  eee (4,22)

44

substituting the numerical values in (4.22), the character-
istic equation may be written as follows.

(1+o.ooes)(1+o.oas)(1+o‘033)(1+0.055)(1+o.3s)
4+2400x0,38 = O ces (4,23)
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simplifying,

2.17x10"75%48,1x10 2 %2, 86x10 263+ 5. 87x 107242

+7208+)1 = 0 ,.., (4,24)

The polynomial has no missing terms and the coeffie
cients are all positive, hence it satisfies the necegsaxy
condition of stability+ The absolute stability of the system
may be found using Routh-Hurwitz criterion. The Routh's
tabulation is |

S 2.18x10°7  2,86x10"% 720
4 5,1x10™°  s5,87x10°2 1
e 2.42:_(10"’3 720

2 a7 1

1

s ces (4,25)
] 720
¢ 1

There are two changes in the sign of the elements
in the first column indicating that two roots of equation

has positive real parts and hence the system is unstable.

The synthesis of the linear system to obtain a
stable system depends upon the proper choice of the stabi-
lising link and its connection. The method is essentially

same as that discussed in Chapter I.

As a trial, a stabilising transformer whose transfer
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function is 7Ts/1+Ts is introduced in the system across

the terminals of the amplidyne. The corresponding structural
diagram is shown in Figure (21). The trinsfer function of
the closed~-loop system is

| K1K2K3K%K§£1+T55)(1+75)

= . ————

5 ' )
K
R 3{(1+ris)(l+fs)leK2 3Ts(1+T4s)(l+T5s)+K°vT53(l+Ts)

< 4'ﬁ_<

.o (4.26)

The equation of the closed-loop system is obtained by
equating the denominator of the above expression to zero.

That is

-5 .
Tf(l+Tis)(l+Ys)+~K1K2K378(1+T4s)(;+T5s)*Kva5s(1+Ts)u0

. .t:i

ees (4.27)

subgtituting m = 1/K1K2K3 and rearranging the terms,
equation (4.27) can be written in the form

m '% (1+Tis)(l+Ts)+Ts(1+T48)(1+T5s)+K4K5K6T5s(1+Ts) =0

i=1

eos (4.28)

Equation (4.28) is of the form

m Fy ()48 (s) = O

Hence Meerov's stability criterion can be applied to detexmine
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whether the cldsed-loop system 1s stable with the introduction
of the stabilising device.

In equation (4.28) the highest order of polynomial
in FN2 is 6 and the highest order of polynomial in FNl is 3,

The difference of N, and N, is greater than 2 and hence the

system is unstable. It can be éeduced that system remains
unstable even if the stabilising link of the form Ts/1+7s is
introduced in the sygtem.

A stabilising device whose transfer function ig of

the form I%é%%l&l is connected across the amplidyne

teminals. The corresponding structural diagram is shown in
Figure (22). The characteristic equation of the closed-loop

system is obtained as

5 B
lL‘1+Tis}(1+fs)+K1K2K375(1+Ts)(1}149)(1+rss)+xbv155(l+78)ag
ees (4.29)

Equation (4.29) can be written in the form

m T, (14T, 0) (17a)+ [Ta(1979) (14T 40) (14T48)
+K KK Tos(1+8) | = 0 ..(4.30)

whera m = 1/K1K2K3'

The system tends to be stable since NQ-N1 = 2,
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2(s) = Tpiels)
. 9.2s(1+0.1s)
+0.2s
. O.1s(s+10 0.1(g%+10 '
= ———(J;-&Sr—)— = -T.s-'("-gT_—a s (4031)

The following is derived with the help of second Cauer's
‘method., Dividing the numerator of equation (4.31) by its

denominator, Z(s) can be written in the form
= 3s
0.1 [s+ s+$]'
Simplifying the above equation

Z(s) = 0,18 + -l
o+ &
<7 0.1s

The network realised is shown in Figure (23),

However, many practical systems are encountered with
non-linearities., That is, the practical systems contain
elements which are not linear in the sense of being describsble
by linear differential equations. It is proposed here to
synthesize a system considering its non-linearities and it s

Jugtifiable in practice.



Expanding equation (4.29) and denoting

BO = T1T2T3T T51’

a
B, = TyT,T T T ﬂ'zT TgT+T, T,T 475&1'21'31 ATaT
*TlT2TaT415+TlT2T3T41
Ay = TT,T,T |
Al =T TAT+T T57*14T57
If the system 1g to be stable then the condition

B A
5'5 - -A-6>0 must be satisfied.

' Choosing T = 0,1 sec and T = 0.2 sec and substituting

the numerical values of all the time constants,
2R ok cokm e P -l ok
By ~ Ay = 0.003 .08 ° .-0.03 “0.1 ~0.2

Hence the system will spproach stable operation.

4.4 PHYSICAL REALISATION OF THE STABILISING DEVICE

The stabilising device may be physically realised by
using either Foster's method oxr Cauer's method of synthesis.
Assuming that the transfer function of the stabilising device

as an lmpedence function the stabilising device may be

realised as follows.
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4,5 NONJLINEARITIES ENCOUNTERED IN THE SYSTEM

As mentioned in the previoug paragraph, the non~
linearities may be expressed by non-linear differential
equations (8) and the solution of such equations are tedious
and time consuming. An approximate technique has been
developed simultaneously by C.Goldfarb (U.S.S.R.)?
Tustin A.lO(U.K.), and B, Kochenbetgerll. Such a technique
1s usually termed as Harmonic-balance method or frequency
regponse method or describing function technique, all the

names being synonymous.

The describing function method has attained great
‘p0pu1ar1ty because of ease in computation and also this
method 1s useful if the order of the system is very large.

4.6 DESCRIBING FUNCTION TECHNIQUE

Describing functions are employed to represent the

" nonelinear elements by their approximate linear amplitwde sensi-
tive transfer functions. The method is based on the
‘assumptiens that if a sinusoidal signal is applied to a
non«linear element the resulting output can be represented

by its fundamental Fourier component and the linear elements

of the system attenuate all higher harmonics.

The describing function of the non-~linear element

which represents the ratio of fundamental Fourier component

of the output to the sinusoidal input can be doterminad(Q),
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when the describing function of the non-linear element

is known.

The 1llugtrative examp;e shown in the block diagram
Figure (24a), may be considered to study the stablility
analysis using describing function method. The Figure (24b)
represents the system with its non-linear element replaced

by their describing function N ..

.The closed-loop transfer function of the system

is given by

clw) . G, (3w) G,(Jw) N

R(. \\V l‘*Gl(JﬂGz‘ jW)Ne

... (4.31;-)

for theléxistéhce of self oscillation is R( Jw) =0
f.e., 14G;(3w) G (w) N = O .o (4.32)

The equation (4.32) may be written as
G (jw) = -1/N, where G( jw)= Gl(ijGz(Jw) ...(4,33)

- Equation (4.33) may be represented as a single
graphical interpretation. The functions G(jw) and -I/N
may be plotted in a complex plane and the intersection(s)
of these two curves determine all possible frequencies and
amplitudes of oscillation of the system. The stabllity

analysis is usually done with the help of frequency response,



_75_

R (S) - ION | ]
___*‘I. LINFAR bt e :gENAR - LINEAR

FIGJRE- 24 (Q)

c(s)

DIVISION OF SYSTEM INTO LINEAR AND NON-LINEAR ELEMENTS

| RC:‘."””+? - ge (yw) [ [ Ne;} - ‘G <dw)! g
g— L i .__-! - :
b

FIGURE - 24 (D)

NON-LINEAR E.EMENT KEPLACED BY ITS DESCRIBING FUNCTION



4,7 STABILITY ANALYSIS BY FREQUENCY RESPONSE METHOD

In the Nyquist plot, the G(jw) curve may be consi-

dered as a linear frequency locus and -1/Ne as the locus of
‘the eritical point corresponding to (-1, 30) point in the
linear system theory(z). The relative positions of G(jw)
locus and ~1/N, indicates the stability condition of

" none«linear system. The following c¢riteris is usually
applied to determine the stability of the nonslinear.system.

(a) when the (-1MN_) curve lies to the left of the
G(Jw) locus (with increasing value of w) or
not enclosed by the G(3w) locus then the non-

linear system is stable.

(b) When the {~1/N,) curve lies to the right of
G(jw) locus, that is lies completely inside the
G(Jw) locus, then the system is unstable.

(e) 1f there'are intersections between the two

loci, sustained oscillations exist im the system

depending upon the number of intersections.

The effect of the non-linearity on the dynamic
properties of the system can be studied using Nyquist plot.
The automatic voltage regulation may be chosen for such

analysis.
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4.8 EFFECT OF SATURATION OF THE SYNCHRONOUS GENERATOR

CASE 1

The synchronous generator may be assumed to operate
under saturated conditions. The non=linearity may be
represented by a blank square block ln the structural
diagram Figure (25).

The describing function for the saturation type

of non-linearity may be derived_as shown in Appendix-D .,

The characteristic equation of the system with

non-linearity in the synchronous generator is

l] +
T ¢ | (4.34)
or 1+T,8)+K__N,(A,)T.s = O vee (4,34
T (14T 8)+K N, (A))Tos
Therefore, :
K_ ‘l‘ss
(R = e (4.39)

;Wi (1+T,8)

The describing function N,(A,) for the saturation
type of non-linearity is obtained as given in appendix.

2K [ A l A A ]
s $ S - 8

eoo (4,36)
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Assuming As = ] and separating Ks from the non-linear
element, equation (4.36) may be written as

.

Ny(4y) = %—[ihl- 1-( ;\1-1- )2 + st %I ] if Ay > A,

= 1 if Ay <A ees (4.,37)

Nl(Al) may be avaluated for different values of
A; and hence [-l/Nl(Alﬂ can be plotted on a polar graph.

The values of A, and Nl(Al), [—l/Nﬁhlilare tabulated in
Tablﬁ 10.

The right hand side of equation (4.35)which represents
G{Jw) locus, can be plotted in a Nyquist plot by substituting

different values of w varying from O to +o0 . The nume=

rical values of time constants and gain are chosen from

gsection (4.3). The equation for G(jw) locus may be obtained

as
K . T.s

G(S) = v(l*zTIS)(l*Tzs 1+135 .1+T4s 14 55" '00(4o38)

In the complex plane putting s = jw and substituting the

numerical values,
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G(W) = TTOIGOETRITTFO-08 FwT{ 1+0- O3 FwT(T+0-O5 I T 0- 35T

ees (4,39)

The amplitude and phase of G(jw) for different
values of w are calculated and the graph plotted. The
locus G(jw) is drawn in Figure (26a).

The (-1/Ny{A;)) plot s superimposed in G(jw)
locus in Figure (26b).

It can be deduced from the graph that the system
i¢ unstable as the ('1/N1(A1)) curve is enclosed by G(jw)

locué.

A stable gystem may now be obtained by either
varying the paremeters of the system or the nonﬁlineatity
1tgelf, C.N, Shen(la) and A.K. Mahalanobit(l4) provided a

known non-linear element in the feedback path and stabilised
the'system.

However, to proyide another non«linear element,
most commonly adopted in practice it complicatés the
original system. It is proposed in this work to use one
of the linear elements in the forward path as a non-linear
element and its effect on the stabllity of sy;tcm is

analysed;‘

10519 2.
.
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FIG URE- 26 (Q)

G :
(Jw) LocCcusS
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FIGURE- 26 (b)

G (Jw) PLOT AND -—,‘;,-‘ PLOT
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4,9 - STABILITY ANALYSIS WITH TWO NON-LINEARITIES
IN THE SYSTEM
The method of analysis of two nonelinear elements
existing in the system was proposed by E.A., Freeman. His
method of analysis using describing function was illus-

trated by an example of torque limitation and backlash.

The describing function method applied to a system
having two non=linear elements provides a c¢riterion of
stability, An 1llustrative example, is chosen to describe

the method proposed by Freeman.

In Figure (27) 9; to g5 are linear elements which

may or may not be frequency dependent and ny and n, are

two non-linear elements with vector gains Nl(Al)- and

N,(A,,w) respectively. However, in order that the input
to second non=linear element is sinusoidal, 9, and 93
have to be frequency dependent so that the harmonics are

attenuated by their low pass filter characteristics.

The transfer function of the cloesed-loop system

of Figure (27) is,
R 761608 SaNy(A) NplAg,w

The characterist;c equation is

14G,6,G.G 4c;!,Nl(Al)Nz( Az.fw) =0 «ee{a,41)



i
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FIGURE - 27.

BLOCK DIAGRAM HAVING TWO NON-LINEARITIES.



The relationship between Al and A2 may derived
from Figure (27) as

Ny (A )G, 3w)Ggkdw) | Ay o (422)

A2=

- the describing function for the second non-lingarity

is
N, (A, W) = 2 | sin”1 ! + - 1-( 55)‘ .o (4, 42a)
2 3 A2 A

The describing function of the second nonelinear element,

N2(A2.w), may be written as
Nzﬂwl(Al)Gz(jw)Gs( iw) [ AI,WJ veo(4.43)

From equation (4.43), it can be deduced that as
for as the system ig concerned the two non-linear elements

may be represented by a single non-lingar element.

The equation (4.41) may be written as

146,6,6.G Gl (A,w) = O voo(4,44)
where Ne(AvW> Lo Nl(Al)m2(A2'w)
From equation {4,44)

L = =
- W 6,6,64G Gy = G{ w) v ool 8.85)

The Nyquist plot of the right hand side may be



plotted for different vé;uas‘of w varying from O to + &,
to obtain G(jw) locus. The describing function of |
N2(A2,w) is same as that of Nl(Al) except that A, is
to be calculated for various values of w and A, |

N,(A;) and N,(A,,w) are given by the equations,

_ A A A )
N (A) = 2 [sin=] —ﬁ+—§\]1~(-§)’
1'\71 x| Al Al Al i
B A A
and N,(Ay,w) = ~%— LSin'l Kﬁ + 1-( Ki )®

.o.(4.86)

For different values of Ays Ay the describing
functions of NI(AI) and N2(A2,w) may be obtained and their
product may be determined. From the product (-1/N_) can
be calculated. The plots of (-1/N ) and G(jw) may be
superimposed and the stability anal?sis can be carried out
using Nyquist criterion.

4,10 SATURATION OF THE AMPLIDYNE CONSIDERED
: AS A SECOND NON.LINEARITY

In the example of automatic voltage regulation systém,
the amplidyné ig assumed to operate with saturation besides
thd synchronous generator. The corresponding structural

diagram is shown in Figure (28).

Ai is the amplitude of sinusoidal input signal‘tq

the amplidyne and A, is the sinusoidal input signal to the
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FIGURE - 28

STRUCTURAL DIAGRAM OF THE SYSTEM HAVING

NON-LINEAR ELEMENTS
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synchronous generator. It is assumed that Ag = 1 peu,
in both cases., NI(AI) is obtained for different values‘
of Ay from O to 100 p.u., using équation'(4;36); Now A,
is given by the relation

KKK
2KaKy
Ay = | Nylay) T, Wl (T T, TW I T, 5w) N

ces (4,47)

For different values of w and N;(A;), Ay is determined
and is tabulated. N2(A2.w) is calculated for a particular
frequency and for different values of Al' using equation

(4.46). The values obtained are tabulated in Table 2.

-The product of 1IMN;(A;) and IN,(A,,w) 1is
obtained and interpolated with G(jw) locus in Figure (26).
It is observed that if w s varied between O to 60 rad/sec
the system tends to become stable and if w 1s above 60 rad/sec

the system becomes unstable.

Therefore, the effect of the second non-linear

element tends to stablise a basically unstable nonelinear

system upto a particulat value of w.

4.11 TRANSIENT RESPONSE OF THE SYSTEM

The transient response of the system may be

obtained directly from the polar plots(16). The maﬁﬁod
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is as follows. A particular amplitude may be chosen on
(-1/N,) locus and a straight line is drawn from O passing
tﬁbeQh G(jw) locus to C, Figure (29a,b and ¢). The point
c répbesents a particular selected signal amplitude as

(-1,30) and the scale of the plot is defined by OC = 1.0,
Using this salé and OC as the negative real axis, M circles

can Be added, locating a tangency with G(jw) locus and thus

 def1n1ng the peak amplitude M_ and the resonant frequency

P

w,. This procedure may be repeated for a number of signal

amplitudes in the desired range of values.

A plot between w, and Mp indicates the transient
response of the system, Flgure (30). #rom Pigure (30) it
can be deduced that the transients die down indicating that

the system satisfied the stability conditions.

4,12 SATURATION OF THE MAIN EXCITER CONSIDERED
CASE 3

In order to analyse the effect of third‘liﬁearity
on the system stability, the saturation of the main exciter

is also considered. The structural diagram is shown in

F§ gure (31) .

The characteristic equation of the above system

may be obtained as
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FIGURE - 29 (&)

DETERMINATION CF Mp AND Wwp ASSUMING OC = JUNIT HAVING TWO
NON-LINEARITIES FOR THE SYSTEM
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FIGURE - 29 (b)

DETERMINATION OF Mp AND Wp ASSUMING OC' = | UNIT
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FIGURE - 29 (C)
DETERMIN
INATION OF Mp AND Wy ASSUMING oc =1 uniT
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) | Y _
4 8 P © 20 24 28 37
W —
FIGURE - 30

ANSIENT RESPONSE OF THE SNSTEM v TERMS OF 7. AND Mp



6 .
o aq,(l+T18)+K°VT5§N%= °,
where N, = NL(AI)NQ(AZ'W)NS(AS"”) eeo (4,48)
Therefore,
K T.s
ov'D (
= o0 4. 49)
/N ffi (14T, 8) |

NL(AI)'NZ(AQ’W) and NS(AS’W) may be obtained as follows,

For a particular input signal to the first non-
linear element, the describing function for the non-linear

element 1s obtained as

A A A
- 2 -1 58,8 \l o =8 a}
N, (A)) = [sm ™ + Ay 1-( A )®|..(4.50)

Assuming that the saturation of the amplidyne begins at

Ag = 1 p.u., the above equation can be written in the form

N, (A) = %"' [ sin"} %—14 + %I\ll-( %—1- )8 }..(4.505\)
1f A)>A
= 1 if Aj<Ay

Nl(Al) s obtalned for different values of A,.

| The input to the second non-lingar element ig a
‘frequency dependent. The amplitude of the input signal
Ay is
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FIGURE - 3I

STRUCTURAL DIAGRAM WITH NON-LINEAR ELEMENTS IN THE SYSTEM



KoK4
,Nl(Al’ li+T235(1+Tas, A1 .o (4.51)
substituting s = jw,

KaKs l
A, = lNl(Al) (W Ay roo (4.51a)

The input signal amplitude to the second non=linear element
1s obtained for various value of Ay and w justifiable to
the practical limits.

The describing function of the second non-linear

element is obtained as

N,(A,,w) = %—-[ sin~! QA—-9-+{:-§ J 1+ 52 )’J

.o (4.52)

Assuming that the saturation of the main exciter occurs

at A;, =1 p.u.,
Ny(As,w) = 3 [sm‘l K‘l' %\;\‘ }‘2 )n] 1£ A_< A,
=1 if A <A, ees  (4.52a)

The input signal to the third non-linear element

A3 is also a function of frequency. The signal amplitude A,
is given by the equation
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Ay =[Ny (A)) 2" 3 N, (A ow) T A
3 7MY T 3w (14T,3w) 220" Th+Tadw) | ™1

.o (4.53)

The describing function for the third non-linear element

is ,
| A A ’ A
2 -1 ) of -2)8 |
Ny(Aq,w) = n[ Sin Ki + ” 1« Aa) ]1:' Ay> A

= 1 if Ay <A, evo{4.54)

Assuming that the saturation occurs at 1 p.u. in the

synchronous generator,

Y (Ag.w) = 2 [Sin'l %; + %— ,'1-(‘%; )%

3
«so(4,54a)

The product of N,(A;) and N2(A2,w) and Na(Aq,w)
is obtained and -1/N_ is superimposed on the G(jw) locus.

The above calculations are done using Digital Computer.

It has béen found that the -l/Ne curve is enclosed

by G(Jjw) locus only at a very high value of frequency.
‘Hence 1t may be deduced that the system is stable for all

practical purposes.



TABLE - 1

CASE-1 DESCRIBING FUNCTION FOR ONE NON.LINEAR

ELEMENT
T -~

Ay - Ny (A;) i IN(A))

1.2 0.9208 1,08%9

6.2 0.2046 4,888
11.2 0.1136 8.8037
16.2 0.0785 12,725
21.2 0.0606 16.648
31.2 0.0408" 24,49
51,2 0.0288 40,015
100.0 0.01192 83.87
200 0.003 333,32

-9%-



TABLE - 2

DESCRIBING FUNCTION VALUES FOR TWO NON.LINEARITIES

Al B IN(A) IN, (A, ,w) § 1N, g w rad/sec
1 2 3 . =
1.2 1.e8%9  0.9217 x10°  0.1008x10° 0
11,2  8.8037  0.1061 x10°  0.9341x10° "
21.2  16.648 0.1062 x10°  0.1768x10° "
31.2  24.49% 0.10623x10°  0.2602x10% "
4l.2 32,348 0.10623x10°  0,3436x10° "
51,2  40.194 0.10624x10° 0., 4270x10° "
1.2 1.0859 0.2962 x10% 0.3216x10% 20
11,2 8.8037  0.3409 x10°  0.3002x10° "
21,2 16.648 0.3413 x10*  0.3682x10° "
32.2 24,496 0.34138x10%  0.8363x10° "
41.2 32,345 0.3414 x10®  0.1104x10° "
5.2  40.194 0.3414 x10%  0.1372x10% "
1.2 1.08%9  0.78706x10°  0.8547x10° 40
11,2 8.8037  0.9061 x10°  0.7977x10% "
21,2 16.648 0.9069 x10°  0.1509x10° .
31.2  24.496 0.90717x10°  0,2222x10° .
41,2 32,345 0.9072 x10° 0.2935x10° "
51,2 40,194 0.90727x10°  0.3647x10° "
Contd ....

-99-



- 10c-

1 2 3 : 4 |

1,2 1.0859  0.2886 x10° 0.3134x10° 60
11.2 8.8037  0.3324 x10° 0.2926x10% "
21.2 16.648 0.3326 x10°  0.5538x10% "
31.2 24. 496 0.3327 x10° 0.8151x10% "
41.2 32,345 0.3328 x10° 0.1076x10° "
51,2 40.194 0.33288x10° 0.1337x10° "

1.2 1.08%9  0.1327 x10° 0.1447x10° 80
11.2 8.8037  0.1528 x10° 0.1345x10% "
21,2 16.648 0.1529 x10° 0.2546x10% "
31.2 24, 496 0.15298x10° 0.3747x10% "
41.2 32.345 0.15299x10° 0.4948x10% "
51.2 £.194 0.1530 x10° 0.6149x10% "




CONCLUSIONS

The machine control problems has been analysed

and synthetised using structural diagram technique.

The speed control of a d.c. motor and also a system
involving time lag were analysed from stability point of
view, Both the systems with the chosen parameters were
found to be unstable. In order to obtain a high gain
stable system, a suitable stabilising device and the
inter connection of it has been found out. The transient

response is plotted using D-partition curve.

" The effect of non-linearity on the system
performance has been studied using describing function
technique. The automatic voltage regulation of a
synchronous generator is considered as a specific example.
The above system has been foun& to be totally é;table in
the linear case and also when one non-linearity is
considered- However the system attains'a stable operation
upto a particular value of frequency, w, when two non-
linearities are considered in the system. It has been
further found that the system is absolutely stable when
three non-linearities in the system are considered. It
can be said that a totally unstable ]Jinear system becomes
absolutely stable when all the nonnlihaarities in the system
are taken into account and the omisgsion of non-linearities

in practice: is erraneous.

- [0} -
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The study of automatic voltage regulation of
a loaded synchronous generator with non-linearities
encountered in the system can be taken up for further

stUdY-
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FIGURE - 32 (C)

D-PARKTITION CURVE WITH RESPECT TO THE GAIN



APPENDIX « A

The transfer funétion of the RC circuit may be

derived as follows.

In Figure (32a),

and

out R
in (R+ Eg)
_ RCs
-~ 1+RCs

Denoting the time constant of the stabilising link by

RC = Ty then
;&‘A& - £

- (04~



APPENDIX - B

REAL RESPONSE FREQUENCY CHARACTERISTICS

The closed=loop transfer function of the regulating
system shown in Figure (32.b) may be written as

/
o X :
(o) = g2 - pEi e (1)

The Attenuation-?hase Chéracteristic of the closed«loop system:
is |

K(w) = pamciids cer (2)

whare KW( JW) = Kg W eve (3)

is the equation of the Attenuation-Phase Characteristi¢c of

the open-loop system.

The characteristic equation ef the closed~loop system is

obtained as

1+ Kw(s) =0

KN

Qs =0

= 14 -

Whence the equation of the D-partition boundary is
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The D-partition curve may be of the form as shown in
Figure (32¢).

The section ab equals K, the section av  equals

Q(le
-(—_T for the frequency w; and the section bv is

Q( ."Vll)
the sum K + . The amplitude may now be obtained
-le P
from the ratlo ab/bv for the given frequency.
The phase may be determined by measuring the angle

between the vector bv and the negative abscissal half-axis,

denoted by &

The real response frequency characteristic may be

obtained as

« &bk
R(w) A2 Cos«

If a perpendicular is drawn from point a to the vector bv,
then '

 bg = ab Cos

Hence R{w)= bg/bv .



APPENDIX - C

TRANSIENI RESPONSE FROM REAL RESPONSE

If H(s), a function of s, and h(t), a function

of t, are related as

=N

H(s)n /h(t) e.St dt

(o]

The inverse transform may be done with the help of

a contour integration of Bromwitch as follows,

» C +Jod ,
" h(t) = 5%3- U/p H(s) o%% ds.
C~ 10

where there is no singularity on the right half of the

complex s-plane.

If‘ g= 3w, the above transformation becomes

o0 ¢
h(t) = 35 / HUgw) oIt dw
~A3Jc

The contour integration may be done along the real axis as

no singularity 1s encountered.

Thug, o0
h(t) = g5 fﬂ(sw) 3"t 4u
=%

If the real part of the H(Jw) 1s an even and the imaginary
part of H(3w) is an odd function of w, then it may be shown
that

-[/07-
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@0
h(t) =2 | Re [H(sw)] Cos wt dw
o
provided the following conditions are fulfilled,

(1) there is no poles on the right half of the plane,

(2) LE H(jw) = O, or a finite quantity, for the
20
integral to be finite,

(3) the overall transfer function H(jw) is expressible
as a quotient of polynomigl &n w, the order of
the denominator being greater than the numerator

at least by unity.

However, the above integral may be evaluated for
arbitrary variation of H(jw) by the method du. to Floyd,

as follows:

Considering the tiansfer function plotted in Figure
(32d), and drawing straight lines to represent it appro-

ximately the 1ime function may be shown equal to

o Sinw_ ¢t Sin ALt
h(t) = 2 3 a n n
o, Now,t At

where

wy = (whw ) /2, wy = (wotwy)/2,

) = (wy=W,)/2, &, = (w -w)/2
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The response due to an unit step function is obtained

as ¢!

£(t') = /h(t) dt .

o
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APPENDIX.D

The describing function for the saturation type

of nonelinearity may be obtained as follows.

In Figure (32c¢), for X:>As. with x = X Sin wt

and y = K‘XS1nwt, then the describing function is defined

as

N =

), <

= K, where Yl is the fundamental

Fourler component of the output y. When X exceeds the
saturation level As, the output signal vy is distorted and
the Fourier expression of y(t) is given by

Y =Y131nwt""Y331n3Wt"' a8

21
where Y, = <% J/'y Sin wt d({wt)

o

Mty
- % ‘/7y Sin wt d(wt)
[o]
Therxefore, .
wt) Nra
c o[ [
Y, = [- K‘XSin wt d{wt)+ KsAs Sin Wtd(wt)]
o
bt wt
wy
4 wh A >
= & KX [«-—-2-- 4 Sin2wt, /(- ggic:.oswti’6
° !

4 A
Y, = § KX E 1/2( wty=1/2 Sin2wt,)+ ¢* Coswtl]

-2 -
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Now t; is defined by

Sin wt) = As/x

A
Hence Coswt, = {1~Sin“wtl = lef gﬁ 2

2 | Ag
Sin2wt, = 2Sinwt, Coswty = 3= 1-( = )%

Thus ‘
4K X A A A
) 1l -1
Y, = =5 {-2- [sm -2 /1-(=3)

Y 2K A A
R ['s? /i 38 )aestn ..§)

For a particular input of X = Al

2K A .
/ ~1
N = ...._...ns. [ )3 + Sin ( A )]\

1f Ay >AQ

}'m

= 1 1if A1<As.
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