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Single„phase, capacitor run, induction motor with 

a solid rotor has been investigated in detail and an 

analysis is attempted on the basis of the rigorous 

solution of the pertinent electromagnetic field problem. 

The Important performance parameters have been derived 

along with the equivalent circuit. The considerations 

for the design of the auxiliary winding capacitor and 

the choice of the flux density have been stated and the 

procedure broadly indicated. 

iii 



i 
1.  INTRODUCTION 

Polyphase induction motor with solid rotor has been 

l  analysed in sufficient detail in recent years -05  . Apart 

from the analysis and performance evaluation, certain 

design outlines have also been indicated. These investiga-

tions have shown that the solid rotor induction motor in 

the polyphase case, does have a performance comparable to 

that of the conventional induction motor. The efficiency 

is reasonably high though not quite as high as in the 

conventional case. Other characteristics are more or less 

the same though the rotor temperature rise is considerable, 

consequently its application is rather limited. The idea 

behind the use of solid rotor is largely to elllminate the 

laminated rotor construction and economise on the rotor 

cost. The ruggedness of the solid rotor can also be a 

consideration of secondary importance. 

One important area, where the use of solid rotor may 

be of appreciable practical importance, is the field of 

single phase motors. Single phase induction motors are 

normally in the fractional horse power range and used 

largely for domestic appliances suchas fans, mixers etc. For 

such low output machines the efficiency of the device is not 

an overriding consideration, and the cost factor assumes 

appreciable importance. Further, the ruggedness has also to 

be considered. This possibility of the application of the 

solid rotor in single phase motors has received little 



2 
attention so far and it is here that the cost reduction 

may evantually over weigh the lowered efficiency criterion 

and make the proposition considerably more feasible.  

In the material to be presented here, a single phase 

capacitor run solid rotor induction motor has been 

considered. This has been chosen since by and large most 

domestic fans are of this type. The derivation of perform-

ance equations and the equivalent circuit is based on the 

rigorous solution of Maxwell's equations for the linear 

case with due consideration having been given to the 

hysteresis in the rotor material by assuming a complex 

permeability. 
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2  • NALYSIS 

2.1 Boundary Conditions 
Consider the developed view of the induction motor as 

shown in Fig. 1. Both the rotor and the stator surfaces 

have been considered smooth with a uniform air gap in 

between. 
Assume two co-ordinate systems x, y, z and x' , y', z' 

fixed to the stator and rotor, respectively. The active 

length of the induction motor is very large compared to 

its air gap, and hence z and z' co-ordinates are ignorable 

and the problem reduces to a two dimensional one. Further, 

the air gap is very small when compared to its radius, and 

therefore the annular gap region can be transformed Into a 

rectangular region without appreciable error. 

If the rotor is rotating at an angular speed ws, the 

relationship between the two co-ordinate systems is given by 

T 
= x' + r  - t 	 (2.1) 

and 
y = Y' 	 (2.2) 

where, 

w r 	= Angular velocity of the rotor in radians 

per second. 

T 	= Pole pitch in meters. 

t 	= Time in seconds. 

The air gap region, shown as region I in Fig, 1, is a 

current free region, and hence laplace Equation for the 
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magnetic scalar potential is satisfied, which Is given by 

v2 Tm  = 0 	 (2.3) 

The rotor shown as region II in Fig. 1, is subjected to a 

harmonicaly time varying magnetic field, and hence satisfies 

the diffusion equation given by 

C7 H - iw 8  /u 0 
	

(2.4) 
where, 

H a Magnetising force in amperes per meter. 
w a  = Slip frequency of the rotor in radians per second, 

= Permeability of the rotor in heneries per meter. 

Conductivity of the rotor in mhos per meter. 

A harmonically time varying magnetizing force gives 

rise to a magnetic field vector 1 which also varies harmon-
ically with time and is in time phase with the H vector 
provided the magnetisation characteristic is linear. Since 

the rotor is made of magnetic material e.g. mild steel, due 

to the hysteresis effect the magnetisation characteristic 
would be non-linear and consequently the magnetising force 
would give rise to a magnetic field which contains harmonics 
apart from the fundamental component. Further the fundamental 

component of the magnetic field vector lags the magnetizing 

force by an angle ? , which is known as hysteresis angle. 

In what follows, the harmonics produced due to non-linear 

nature of the magnetisation characteristic would be ignored. 

This would amount to approximating the hysteresis loop by an 
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ellipse and the problem would become a linear one. Under 

such conditions the diffusion equation (2.4) takes the form, 

p2 ,F~, - iw $ u CT'exp (.j\ 	= 0 	(2.5) 

Egs.(2.3) and (2.5) now require a set of suitable 

boundary conditions for the complete solution. 
Consider the auxiliary and main windings on the stator 

as sinusoidally distributed in space and this again amounts 

to ignoring the harmonics in the mmf waves produced by the 
two windings. The two windings are in space quadrature and 

the same voltage is applied to the two windings. The windings 
will carry sinusoidal currents of supply frequency, and 
evidently the current in the auxiliary winding will lead the 

current in the main winding by an angle 0 due to the presence 

of capacitor in the auxiliary winding. Thus, the mmf at the 
stator core-air gap boundary can be expressed as 

Hxl 1= 2 A Cos T x Sin w t- 2 A' Sin Tx Sin(w t+8) 

y = 0 
	

(2.6) 

where 

2 A = Magnitude of the mmf produced by main winding, 
and 

2 A'= Magnitude of the inrnf produced by auxiliary winding., 

On expanding and rearranging the terms, the above equation 
yields, 

Hxi 1=(A + A' Sin 8) Sin {w t - T x) 

y =O A' Coo 0 Cos (cwt - T x) 
+ (A- A' Sin B) Sin (et +fix) 
+ A' A, S O Los (W L +3 x) 	 (1'7) 



and 

( A - A' Sin g) = A2  Cos 52 

A' Cos 0 	= A2 Sin 82 (2.9) 

Substituting, 

( A + At Sin 0) = Al Cos 61 
A' Cos 9 = Ai Sin 6i 

7 

(2.8) 

in equation (2.7), one obtains 

HXl  ! M Al  Sin (wt - 	x - $1) 

y0 
+ 1 Sin (w t + X + 622 ) 

Al Im  exp. 3(Wt - 7  x -. al) 
T 

+ A2  Im  (cat + 1 X + F2 ) 
where 

Al  = [A2  + Al 2  + 244' Sin a] 2  

al = tan l A' Cos 9 
(A+A' Sin @) 

and 
A2 0 CA2  + A, 2 - 2AA' Sin 8 J 2  

82 M tan1 	A' Cos 8 

( A- A' Sino) 

(2.10) 

(2.11) 

(2.12) 



as, 

2  V 
=0 

aye 
(2.15) 

m 

aX2  

L 

It will be recognized that the first term of 

Equation (2.10) represents the forward field and the second 

term represents the backward field of the conventional, 

revolving field theory. 

At the air gap-rotor boundary, the boundary conditions 

are s 
HX1  I = HX2  1 	 (2.13) 

y=g 	y'=9 

and 	
ON HYl  = /U Hy  1 	 (2.14) 

2 
y = g 	y = 9 

where$  

g = Air gap length in meters. 

Solutions of equations (2.3) and (2.5) will be obtained 

separately for forward and backward fields with the help 

of boundary conditions defined by equations (2.10), (2.13) 
and (2.14). 

2.2 Forward Fields 

The equation (2.3) in the differential form is written 

The solution of the equation (2.15) is obtained by the method 
of separation of variables, and is given by 

Tm  = eXp• J (P 1 - c) [ exp. (Cy) + c' exp.(" dy) 2 
(2.16) 



E 

where cls 	 and P1 and d are some crn stants. 

Since, 

fl 	 (2.17) m 

xxlf 	11 .and HYlr 	d m 	(2.18) 

where the subscript f denotes the field quantities for the 
forward field. 

From equations (2.16) and (2.18), one obtains, 

Hx = j 'c rexp. 3(a1 •31,01 
e +c ! e"°(Y 
1f L 	2 3 

[exp, j f i 1 ~- ax) Ecl e + a2 e y 

(2.19) 
whereclzjdc and 02 	of 

2 

s O(  
xy. 	Fen. j(@l-ax)]E cl aYa. c 	

J

2 e y 

	

y 	y i lexp• i (P 1 ~- dx GO e - 02 e J 
(2.20) 

Equation (2.19) at y = o yields, 

Hx 	* 1"PO  J (p1 • ax) J[a1 + e 	(2.21 ) 
ISO 

The boundary condition at y = o is defined by equation (2.10) , 
which reads 
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Hxlg (~A, exp. 	(wt -! x - 61J 
y 0  

Comparing equations (2.21) and (2.22), one obtains, 

Al = (wt - 5l) 
d a ~ 

and 
cl + 02 2 A, 

(2.22) 

(2,23) 

Thus, the field distribution in the air gap region is given 

by, 

Hxf 2 Litt - ax 	1) Cal e +c2 e y 

(2.24) 

dy 	- ay 
j (wt - dx -, si)] I l e -02 e 

(2.25) 

For the rotor Eqn. (2.5) can be rewritten as, 

= 0 	 (2.26) 

where 

k2 = 1 vi la Cr exp• (. j \ ) 	 (2.2?) 

and wl = ws = Slip frequency of the rotor in radians per 
second for the forward field. 

Expansion of Eqn. (2.26) in terms of its field components 
yields, 

2-  ,........ .~ 	- k Hx ~ 	0 	(2.29) 
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and 

~2 Hy,  0 Hy e 
+ ~"-  k Hyr  0  (2.29) 

y 

Let the magnetizing force in region II for the forward 

field be denoted by HX # 2f and let this be denoted by, 

H~~2f= i11(x') H2(y')  (2.30) 

where H1(x') and H2(y') are functions of only x', and y' 
co-ordinates, respectively. 

Substituting the partial derivatives from Eqn. (2.30) 
In Egn.(2.28) and rearranging $-h tc"ma, one obtains, 

1 	L2 1  _ + 1 	00 H2 	2 
-~— M-' • k = 4 	(2.31) 'Ri 	t X t 2 	11 1. 	at, y 12 

It is evident that the first and second terms in the 
above equation are constants, and let the constants be 
denoted by - oc12 and a22, respectively,, 

Thus, 

2  Hl -- 	--~.-H1 . a 	 (2.32) 
H► 	ot,X12 	1 

3. 2~ 

H2 	ok, y r2 	2 	 (2.33) 

and 	d22 = alP + k2 	 (2.34) 
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Substitution of the solutions of Eqns. (2.32) and (2.33) 

in Eqn.(2.30) yields for the forward field 

= 	exp. (-j dl x') + D exp. (j 

x 3 exp. (a2y) + D4 exp. (- a2y)j 
(2.35) 

where D't D~, D3, and D' are some constants. 

The skin depth for mold steel is considerably small 

compared to the radius of the rotor, and hence the field 

quantities attenuate to an insignificant value at 

y = .(r + g), where r is the radius of the rotor. In view of 

the above, the region 1I can be assumed to approach 

inf nity without any appreciable error, In order that the 

fie ds may be bounded in region II, it is necessary that 

D3 = D. 

Sine D3 = 0, Eqn. (2.35) can be rewritten as`, 

exp. (-.3 1x) + D2 exp. (j d2x') J 

x Eexp. (- d2' ) j 
	

(2.36) 
where Dl and D2 are some other constants," 

A sinusoidal time variation of the field quantities 

in region II has been assumed, and its inclusion in 
Eqn. (2.36) Yields, 
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11x , 2 f 2̀ [Dl exp. 3 (wlt - aix') + D2 exp. 3 (wlt + 

+o(lx')J[exp.t-a2 Y)1 	(2.37) 

Substitution of y = g in the Eqn.(2.37) results in, 

Hx, 2 f = [Dl  exp. J (wlt - alx') + D2 exp. j (wlt 

Y g + 9lx' )IEexp. (- Cc2g)J 	(2.38) 

Further # substitution of y = g in Eqn, (2.24) yields, 

xxlf I = [exp,  3 (wt - dx - 61) J 

Y ~ B 

x I al exp. (ag) + c2 exp. (- ag) ] (2.39) 

The above equation when referred to rotor co-ordinates 
system with the help of Eqn, (2.1) becomes, 

'i1   I = exp. j Ev - wr) t  

x EaI exp. (ag)+c2 exp. (- ag) 	(2.40) 

Equating Eqn. (2.38) to Eqn. (2.40) , in order to satisfy the 
boundary condition (2.13), one obtains, 

D2 = 0, wl = (w-wr) ! 1 = a ! and 

Ial exp. (ag) + a2 exp. (- xg) J[xp. (-jo1) J 
'~ 41 lexp. (- a(2g) J 	 (2.41) 



14 

Thus: 

HxI 2f = Di [exp. (-i ax' ) I [e)rp. (- d2Y' 1 (2.42) 

When the time variation is shown explicitly, one may 

rewrite the above as, 

Hx' 2f = Dl exp. i (wit- e(X' ) 	exp. (- Cr')] 

(2.43) 

Since, 

V 	= 0, and consequently 17. = 0, one obtains, 

Hy I er , 1 
x' 2t dy s 

ax' 
(2.44) 

Substituting the partial derivative of Hx42f with respect 

to x' from Eqn.(2.42) in Egn.(2.44) and integrating, one 

obtains, 

D~ :C 
Fi , 	... exp. (-j Cx') Eexp. (- (2Y') 
Y  a~ 

(2.45) 

Showing the time variation explicitly in Egn.(2.45) yields, 

-j Dla( 'y'2i, 	.`...'.- lexp. j (wit 

x 	app. ( ' :(2y') 	 (2 * 46 ) 

At y a g, Eqn. (2.46) yields, 

_ 	[exp.  i (wit - °(x f ) J 
Y = g 

x 102P. (u (2g)] 	 (2.47) 
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Eqn. (2.25) for y 11 g can be rewritten as, 

Hyl  = j lexpo(vt - dx - 61) I 
y = 6 

xlei exp. ((g)-c2  exp. (.s dg)J 	(2.48) 

In terms of the rotor eo-ordinate system, the above 

equation may further be express as, 

Ay f  i  , 1 = i [exp. Jaw - wr) t - 'CX' 	d3  
y = g 

x Eel exp. (ag) 	2 exp. (- O(g) 1 
(2.49) 

The application of boundary condition (2.14) to Eqns. (9.47) 
and (2.4'9) yields, 

J /uo  [e-%P . Bw - wr)t 'Cx' ft 8 1 
X I  al exp. (ag) - a2  exp. (- Ccg)I 

j,A10  

°C 2 

x [exp. (- i*2g) 

[exp. j (wlt - dx') I 
(2.50) 



16 

It follows from the above equation that, 

E ci exp. ( (g) • 02 exp.(- dg) j exp. (ri dl):J 
Di 	

/ttr 
	(.~ d2 g) 	(2.51) d2 le". 

Constants el, 02, and Dl are related to each other and Al 
by the Eqs. (2.23) , (2.41) , and (2.51) and are rewritten 
here for convenience. - 

el +c2 -Ai 	 (2.23) 

exp. (Cg) + c2 exp.(- xg) J 1exp. (•J 51)J 

1 [ ®xp. (. d28) 	 (2.41) 

ta, exp. (g) - c2 a rp. (- Mcg) J [exp. (r.i dl)J 

Dl a fur 
~ r 

a2 	exp. (-øC2g) 
	

(2.51) 

The solution of the above three simultaneous equations 
yields the values of the constants as, 

Al h »~2 *( 
rJ[exP.(- Cg)]  

°i = 2 

	

	 (2.52) 
~c2 cosh dg + *(,Air sinh dg 

Al 	Ext + a /ur..1 texp. fig )1 
02 

2 	°(2 cosh oCg + a IUr sinh ag 	
2.53 



1? 
D1 a Al  . 	 2  

d2  cosh dg + x fur  sinh dg 

x Exp. (a2  g - j s l) ] 	 (2.54) 

Thus, the field quantities in the two regions are given by, 

Rxlf =xp. j (wt  

x Ccl exxp. Cay) + c2  exp. (- ay)1 (2.55) 

= ' leirp, j (wt - «x - a') 

x 	cl exp. (ccy) - c2  exp.(- C(Y')1 (2.56) 

Hx 12f = D1 texp,   j (wlt 

x 	exp. (. C(2  y') 	 (2.57) 

•J Di a 
y' 2f = 	-• [exp, i (wit - ocx ) 

x reXp.  (i *2y)J 	(2.58) 

where the constants ci  a2  and Dl  are defined by Eqns. (2.52) , 
(2.53) and (2.54) respectively, 
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Further, the constant a2  defined by Eqn. (2.34) is 

rewritten here for convenience, 

a22 	a2  + k2 	 (2.34) 

But k2  jwl/u t? e , and hence, 
1. 

a2  a a2  + j wl ,u CS' e  J 2 	(2.59) 

Let the real and imaginary parts of the constant a2  be 

denoted by a and b, respectively. Writing a2  as (a+jb) in 

Egn.(2.59), one obtains, 

(a+  ) Eac 2 + i V1/uaej J2 
1 
2 

(a 2  + wl u Cr si nh \ )+ j wl  /ei a- cos \ 

(2.60) 

Taking the square of the sides of the above ecp ation and 

equating the real and imaginary parts, one obtains, 

a2  • b2  = (( 2  + w1  ,iu O' sin \ ) 
	

(2.61) 

and tab = w11u tT cos (2.62) 

Solution of the Eqns. 	(2.61) and (2.62) for a and b yields, 

1 

a 	4  + 2w1 	a2 sin + (w1 /u a) 2] 

1 

+ 2 { a2  + V1  /U C sin a ) 2 	(2.63) 



1 

and 	(b) a 2 a4  + 2 wl  p. 	2  sin +(wl/t 	) 2   

l 

- l (0( + wi/u CS" sin \) 	2 	(2.64) 
2 

2.3 Backward Fields 

Proceeding in a similar way,  one obtains the field 

distribution in region I and II asp 

Hxlb = lex P, 3  (wt + r(x ' d2  

x ci exp. (y) + c exp. ( Y) 	(2.65) 

Bylb " 3 exp. i (wt + Qcx + d2 

X c exp. (icy) - c2 exp,(- dy) (2.66) 

Hx, 2b  = D' Exp.(w2t + 
1 

(2.67) 

aDl 
Hy r 2b  = am" exp. (w2t + d' 	[exp.  1) 	(- V( ' y * ) 

2   
(2.68) 



where the subscript b means that the field quantities are 
partaining to the backward rotating field and w2 is the 

slip frequency for the backward field. 
The constants ci y a' , and D' are given by, 

cc2 • a/u 	exp. (_ cCg) 
cl 2 	 (2.69) 

E2 cosh dg + d,ttr Binh dg 

A2 
	

+ a/ur 	exp.-(ag) 
c2 2% 2 	 (2.70) 

d2 cosh dg + Q/ur sinh ag 

av 
D' = A2 	 2 
1 

cosh ag + x r sinh ag 2 

x exp. (a~ g + J s2 )J 	(2.71) 

Further, the constant cc' is given by, 
2 

_ 1 
a' 	d2 + w2 /u O a ' 	2 	(2.72) 2 	 .. 

If the real and imaginary parts of the constants +x are 

denoted by a' and b' respectively, one obtains, 

a'2 • b'2 = a2 + w2/u d" sin 2 	(2.73) 
2a' b' 	= w2 /u 0' co s Al 	 (2.74) 
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as = 2 [g4 + 2 V2 /a T a2 sin X + Ew2 ,u Cr 

+ 2 a2 + 	p 	sin \) 	(2.75) 

1 

b' 	Ec( 4 + 2 w2 A Tat sinX+ (w21i ")2 

• C ~ + w2 ~u ' sin ~1) 	2 
	

(2.76) 



3. PBRFORM$NCE PARAMETERS 

3.1 Rotor Power s 

The power flow out of a volume bounded by the surface 

S is given by 

where N is the Poynting Vector, and for harmonically time 

varying electromagnetic fields is given by, 
r 

N =Re. (xjI 	) 

Z and are the field vectors on the surface . 

The average power over a cycle is given by, 

	

R= Rel 	(SxH  

	

2 	— — a 
(3.1) 

Consider the region 1, use is made of Maxwell's equation, 

= ,. 	 (3.2) 

to evaluate the D T field in the air gap region. Expanding 

Eqn.(3.2) into its components, and comparing the field 

quantities along the three axes, one obtains, 

z a Ey 	a Hx 

•ay  o at 

dE 	aZ 	a xy 
~w ~ ..,~+ww. 'rte,[ • 	 .r,...r.. 

a5 	ax 	~° a t 

x 	t/410 at 

s Ey a Ex  a z 

(3.3) 
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It follows directly from Eqn. (3.3) that, 

EZ 	Hxlf 
ay 	at 

Hxlf is given by Egn.(2.55)y and which is rewritten here 

as 

Hxl f _ txp. j (wt - Ocx - 61) J 

x[c., exp. (cCy) + c2 exp. (- ccy)1 (3.5) 

From Egn.(3.4), one obtains, 

Ezlf = - /'a j a tx ~ 	dy 	 (3.6) 't 

Subatitutien of the partial derivative of Hxi with respect 
to time from Eqn. (3.5) in Eqn.(3.6) and integration results in s 

E zlf = —~- 	exp. (-i) (ax + 61) 

x el exp. (ay) - c2 exp. 1- dy) 	(3.?) 

Considering per meter length of the rotor,( x) . ds is 
given bye 

CE x i.). 	= - ( Ezlf Hxlf) dx 	(3.8) 

Hence, 

= CEzit Hxlf ) dx 	(3.10) 
Considering a two pole machine, without any loss of generality, 

and substituting Eqn. (3.10) in Eqn. (3.1) , one obtains the 
expression for power enering the rotor surface as, 
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F f = 2 Re I Ezlf 	HXlf dX  (3.11) 
0 

Y = 6 Y = g 

E 1f 	= 	 exp. - 3 (dX + 61? 
~ ~  d 

Y g 

x 	el exp. (cg) - e2 exp.(' 9g)1 (3.12) 

Consider the term Eel exp. (dg) c2 exp.(- ccg)J in the 

above equation. Substitution of the, values of el and 02 
from Eqns.(2.52) and (2.53) gives, 

[c1 exp. (cCg) -• 02 exp.(" a(g)3 

Al 	(a2 • o( fur) - (a2 + a fur 

a2 cosh dg + at/Ur sinh dg 

Al apr 
(3.13) 

(d2 cosh acg + aur sinh o(g) 

As Cg <<1, approximation of cosh e(g = 1 and sinh dg = ctg and 
substitution of these values in Eqn. (3.13) results in t 

cc, exp. NO - 02 exp. (-Cg) J 

` Al a /ur 
(3.14) 

(a+IC2i4ar ) + jb 



LI 
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Hencep 

Ezlf 	
Al 
	 xp. 	(dx + dl) 

+ 2 + b y = g 	ge 3 
(3.15) 

Further, 

H~clf " [exp. (-i) (ax + dl) 
Y = O 

x al exp. NO + a2 exp. (- c(g) j (3.16) 

Substituting the values of ci and c2 from Eqns. (2.52) and 
(2.53) in Egn.(3.16), and after approximation one obtains, 

(a+ jb) 
Hxlf J = ̀  Al • 	2 

Y g 	(a + ~ /Ur g) + fib 

	

X Eexp.-3 (ccx + 61) J 	(3.17) 

	

It follows from Eqn. (3.17) that Hxif 	is given by, 
y g 

(a - 3 b) Half 	Al 
Yag 	(a+d2/urg) - jb 

x [exp. 3 (ex + d1) J 	(3.18) 

Thus, 

r. 	— * 	3 4w,ua*ib)  
Ezlf Hxif I = 	+ d3 	2 	2 

	
(3. 19a) 

(a 	/lir g) + b 
Y= g Y= g 	 1 



and 	_ 
Re [z1f I 

Y = g 

.m 

1= 
Y g 

2 
A1. w /u b 

(a+ 0t2 /qtr g) 2+b2 

(3. 19b) 
Substitution of Eqn. (3.19b) in Eqn. (3.11) yields the expression 

for rotor power pertaining to the forward field asp 
2 

Al w /► b T 
Pf = 

	

	 (3.20x) 
(a+ a2/ur g)2 + b2 

b 
and 	p.f 	 (3.20b) 

Proceeding in a similar way, one obtains the expression for 

power entering the rotor surface pertaining to backward field ai 
2 

P w,u b' T b  
(a'+ c(2 /~71, , g) 2 + b'2 	

(3.21a? 

and 	(p. f.) = 	b' 
(3.21b) 92 + W2 

Ist 	J 2 2 

3.2 Rotor Losses: 

The power loss in a conducting medium for harmonically 

varying fields is given by, 

Plf --1 j 1 J 12 dv 
2 6" V 

Considering per metre length of the rotor, the above 
expression reduces to 

1 	2T oo 	2 
glf 	2T o j 	J 	dx' dy' 	(3.22) 

B 
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where J is the current density in the rotor and T is the 

conductivity of the rotor material. 
Since, J = O and E has only z component at the 

rotor surface, it follows that J has only z component. 

is given by the relation,, 

Vx H = L 
Expansion of the above equation and after ccrnparision of 
the co-efficients, one obtains, 

r 
J sf 	2f • 	 ( 3.23) 

ext 	ay e 

The field distribution in the rotor given by Eqns. (2.5?) 
and (2.58) is rewritten as, 

Hx'2f '2 D1 lexp. (-J *(X') J exp. (- 2i' )J (3.24) 

-j Dla 
Hy'2 f = --~---~ lexp. (-3 e(x'

J 
Eexp. (- 23")J 2   

(3.25) 
Substitution of the p~, rtial derivaties of N,2 f and Iiy92f 
w, r, t y' and x', respectively, in Eqn. (3.23) results in, 

Jzf = D1 [exp. (-j dx') 	exp. (- cC2y' ) 

x22 - d2 
dL 2 

(8.26) 
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From Egn.(2.59), 

a2 -C23 J w ~c 
e 2 	1 

wi p o exp. ( 2 • `) 	 (3.27) 

The constant Dl defined by Eqn. (2.54) is reproduced asp 

Dl 0 Al 	C(2 

d2 cosh dg + C,4ar sinh ag 

x [exp, (a2g - j al) 

Substituting d2 (a + jb) and approximating cosh ag and 

sinh ag in the above equation, one obtains, 

(a + jb) 
Dl = Al (a+ ~2 	exp• (a + jb)g - j 81] Ea 	Ur g)+ jb 

(3.28) 
Substitution of o(2 = (a + jb), the value of (a2 - d2) 
from Eqn. (3.26) and the value of Dl from Eqn. (3.27) in 
Egn.(3.25) yields, 

3 = [J Al (wl,a d') Xa + 3b) exp. a(g-y' ) 

x [,exp.-J(bg + dl + xx? +  

1 

[
Ba+ a2,/ur g)+j C(a + ib)]  

It follows from the above equation that, 
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2 al. [vl/a  r] [exp.2a(g-y')  J 

	

I.
T z,f I 
	 (3.29) 

(a+a2 /ur g)2 + b2 

Substitution of Eqn. (3 ,28) in Eqn.(3.22) results in, 

1 	A,. (w1 ,4 T) 2 	2T a° 
if 2 ff' (a+ 2p g)2 + b? 	o 9 

lelp-2a(ey')] dx' dy' 
AA(wl ,µ ) (wl,au T) 

 (3.30) 
2a ~f a+ a 2 fu,. g) 2 + b21• 

Substituting the value of (wl p p`) = 2ab Sec T from 

Eqn. (2.62) in the above equation, one obtains, 

AiwlAbT Sec 

	

plf ~ 	2 	2 2 	 (3.31) 
(a+ (t ,tr g +b 

The power loss given by Eqn.(3.30) includes hysteresis loss 
also. However, if it is assumed that > = 0, the above 
equation ire uses to 

Aj wl /u b T 

	

p1f ~ 
	

(3.32) (a+ a2/1r g)2 + b2 

From Egna. (3.20) and (3.31) one verifies the well known 
relation, 

Slip Rotor copper loss = 
Rotor Input 
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A similar analysis for the backward field shows that, 

P A w2 	b' T lb 

	

	 (3.33) 
(a'+ 0t2 ~atr g)2 + b'2 

3.3 Torque Developed: 

The general expression for the force is given by, 

F 	1 ( J xB) dv 
V 

For harmonically varying fields, one obtains the time 

averaged force as, 

Faq = 	Rel (J x8 ) dv 	 (3.34) 

From Fqn. (3.26) , the current density is given by, 

(j wl iii ~ Dy) leap, (4 j °Cx' • a(2Y' a.j N ) J 
J ~ 
Zf 

	

2 	 (3.35) 

Further, 

Rx' 2f = A Rx' 2f 	 (3.36) 

and 	By' 2f = /u Hy' 2f 	 (3.37) 

only the tangential component of the force would contribute 

towards the production of the torque, and therefore only 

the x component of the force given by, 

a 
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Egn.(3.34) need be considered. Expanding (J x B*) into its 

components and considering only the x component of the final 

expression, one can write, 

1iX 	 ( lu 7 zf H y' 2f ) 
x component 

(3.38) 

Substitution of Eqn.(3.38) in Eqn, (3.34) gives the tangential 
component of the force on the rotor per meter length of the 
rotor as 

F = 1/u Be I1r (J~f' f,*) dx' dy' (3,39) 
tf 2 o g 

From Eqn. (3,35) , it follows that? 

~► 

 

I;! W1 1U cr D1 Jjexp. (.j ax' - d2y' -~ a )J 
d~ 

(3.40) 

Substitution of d2 = (a + jb) in Eqn, (3,4©) results in, 

wl 3 s Ii i z 	u 
(a ♦ Jb) 	 (3.41) 

From Eqn. (3.5e) , 

-ii DZa 
y' 2f 	 - a ---~ [exp. ("j °(a! :..t [exp. f - oC2yt)]  

-'j  D1 
(3.42 (a + jb) 
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Taking the conjugate of both the sides of the above equation 

yields, 
* 	3 D1exp. (ax'+by' )i r+exp. (~aY' ) 

	

Ny' ~ 	 ( a - Jb) ( 3.43) 

It follows from the Eqns. (3.41) and (3.43) that, 

Jzf Hy~2f '" EVI /u ' D1 D1* c̀J 

x [exp.-J(c(xl+byl +2 i[exp.(-ay t )i 

I [exp.j(c(xt+by1~tOxp.(-ay') J 

(a2 + b2) 

Noting that D1 D1 = 1D112 and taking the real part of the 
above equation, one obtains, 

1(Vl/U Tco s A) a ID112  exp. - (2ay' 
Re j  

(a2 + b2) 
(3.44). 

Substitution of Egn.(3.44) in Egn.(3.39) results ins 

1 (w , p a" cos N) (a /u) ID112 2T oo 
,*tf 2 . 	2 + b) 	jo j exp. (+2ay') d:

2 	(a  2 	g 

2 
(w1 ti C3'aos2)(d/1 T) ID11 

,.d ,..
r
exp._(tag) 

2a (a2 + b2) 

(3.45) 
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The constant Dl given by Eqn. (3.28), after approximation, 

is rewritten asp 

(a+ jb) 
exp. ~a+jb)gs-j 8fl 

(a+ ~2 Jar 6)+~ b 

It follows from the above equation that, 

2 	2 (a2 + b2) [exp. (tag) I 
(3.46) 

(a+ 1(2 r g)2 + b2 

Combining Egns.(3.45) and (3,46), one obtains, 

42 (w11U ("cos A) (a,ti T) 
Etf = 	 PCZ 	 (3.47) 

2a j a + 	g)2 
# b2 J 

	

Noting that radius of the rotor r 	, the expression for 
the torque is given by e 

2 
Al. (wl A Cr cos \) (ac /a T) T 

Td ev. f 	 it 

2a i a + c(2 Or g)i+ b2J 

Since a = ~ , the above equation results in s after the 
substitution of the value of (wl/u T cos A,) from Eqn. (2.62): 

T 	Al /u b T 
d ev. f

n 	
(3.48) 

(a + a2/ r g)2 + b2 



with the help of Eqns. (3.20) and (3.48), one again 

verifies the well known relation. 

Torque = Rotor input in synchronous watts. 

A similar analysis proves that the torque due to the 

backward field is given by, 

2 
A2 	bi T 

Tdev.b = 	 (3.49) 
(a + a

2 
 ur  g)2  + b'2  

34 
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4, EQUIVALENT CIS T 

The basic voltage equations for the main and auxiliary 

windings are, 
d Um 

r imII + JWX1m II + ddt 	(4.1) 

.w 	1 - V = rla Y2 + 3Vxla 12 + Jvc 12 
~ 

d Ua 

+ dt 	 (4.2) 

where subscripts in and a refer to main and auxiliary 

windings, respectively, 

and 

V = Supply voltage in volts. 

I = Current in a winding in amperes. 

x1 Leakage Reactance of a winding in ohms. 

r = Resistance of a winding in ohms. 

C = Capacitance in the auxiliary winding in farads. 

U = Flux linkages of a winding in Webers. 

The flux linkage U for both the windings will be a 
function of the currents II and I2. The total normal 
component of the magnetizing force in the air gap is given 

by the sum of Eqns. (2.56) and (2.66). At y = 0, the above 

mentioned Eqns. sum to give the total normal magnetizing 

force at the stator core-air gap boundary asp 



Hy = 3 [exp. J (wt- dx • 6l) J [ a1 - 021 
y ~ a 

•i exp. i (wt + O(X + 62)]1c 	a3 

(4.3) 

The constants cl and c2 are given by Egns.(2.52) and (2.53), 

respectively. Thus, 

(cl 02) 	1 	c0 
g, :(g 

 

• 

2 	2 

.0(g ocg 

x ~2 coshag+a( jur sinhetg 

Substituting 0(2 = (a + jb) and approximating one obtains, 

(a + jb)g +/lar 	 3 Ol 
(a+a2 ur g)+jb 

(4.4) 

where kl and ®i are some other constants. 

Similarly, 

	

(a'+jb')g +iur 	 02  

(a'+ a2/ur g)+Jb' 
(4.5) 

Substitution of the value of (cl - c2) from Eqn.(4.4) and 
(c 	cL) from Egn.(4.5) in Egn.(4.3) yields, 
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Hy I = ~► i Ai k1 exp. j (wt - c(x - 8i + 81) 
y = 0 

- A2 k2 exp.3 (wt + ax + 52 + 82) 

•• k1 [exp. 3 tart • o( r + 91) J 

xEA, cos 51 - j Al sinal 

•► k2 exp. J (wt + ax + 02)1 

x [A. cos b2 + i A2 sin 62 

(4.6) 

It follows from Eqns. (2.8) , (2.9) and (4.6) that, 

R7 	 k1 [exp. j (wt - dx + ®1)] 
y O  

r 	is 
x 	A-i A' e 

• k2 [exp. i Cwt + d3r + 82) 

x A + I A' e3 Q 	 (4.7) 

Let A = kw1 I1 and A' = v2 12 
where kw depends on the winding design. Replacing A and A' 

by kWj Il and k I21 respectively, in Eqn.(4.7), one obtains, 
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Hy, 	= .. j kl [exp,3 (wt - c(x + 81) 
y=o 

j8 
x k i I1 J ic 2 I2 e 

8 
• k [exp.iwt + Ocx + 02 k ~1 I +3 k,,2 12 e 

..i 

(4.8) 
After additirn and substraction of the term - 3 

x [sitp.3 (wt - ax + e2) 1 i I + J kw2 12 e3 8 	! Eqn. (4.8 ) 

takes the form, 

iy 	 ' exp. j (wt axe~wl I1 (k1 0 8+ k2e382) 
y 0 

+ ~ 3 	I eJ()(k a e2 k eu8l) 2 	2 	2 

• k2 a 8 [exp. j (wt + der) + exp. j (wt - mcx~ 

x kw Ii + 	r2 12 a 3Q 	 (4.9) 1 	~ 

Eqn.(4.9) expresses ify ' 	in two types of fields one of 
y = 0 

whish is purely rotating and the other is purely pulsating. 
The rotating part of Hy I 	is given by, 

y = 0 
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A
yr 	P. (wt - ax)Il Il(k~,®~ + e Q2 aw 	k2 

0 

	

 k eu8~') ''``~ 	(4.10) +~ kw2 I 	e 2 	2 	1 	J 

and the pulsating part of Hy f is given by e 
y=0 

A 	21 cos ccx k e392 cos wt + j sin wt]  

y=0 

r 	je 
x kwl I1 + 3 kw2 12 a Js2Jk200soCx  

X: = exp. i (wt + e2) ][k l I1 + J kw2 12 

(4.11) 
It is now unnecessary to carry on the term exp. j (wt) , as 

dt a 3w for the rotating field as well as for the pulsating 
field. 

Thus, the rotating part of Hy 	can be expressed as, 
y = 0  

L 'ii 8♦
~ e  

y = 0 

#3 1c 	2 egg (1c2 e302 . k1 e3~l) 	(4.12) 
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and the pulsating part of Hy $ is given by, 

y0 

H 	23 k
2 

cos DCX eel tkvl 11+ ~ 	12 ®A
YP  	~r2  

Y om̀  0 	 (4.13) 

Both the windings will have flux linkages due to 

rotating andpulsating parts of the magnetic field. Let the 

flux linkages due to rotating and pulsating components of 

the field be denoted by Ur and Up respectively. Thus, 

Urn = Umr + Hmp 
	 (4.14) 

and U. = Uar + T ap 	 (4.15) 

The main and auxiliary windings are assumed to be 

sinusoidally distributed in space and are in space 

quadrature. It is also assumed, of course arbitrarily, that 

the distribution of the main winding is a cosine function 

and that of the auxiliary winding is a-vesine function. Thus, 

the winding distribution of the main winding is given by 

kwl 

 

e 	and that ofthe auxiliary winding is given by 
e ccx . Hence the flux linkage of the main winding 

due to rotating component of the magnetic field is given by, 

Hmr =/ac, 	1 Ayr (6,Y) Ik,,, e 	d 6 dx o -~c 
y= 0 

(4.16) 
/QSa12,~ 

MRAI U/RRARY UN!VRI?SITY OF ROSAS 
ROORKEE. 
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where 6 is a dummy variable. 
Substitution of H,(6 ,y) + from Eqn. (4.10) in Eqn. (4.16) 

results in, 

301 	302 
U - o kr1I1(kia +k2e ) 

-+ j k z e 8. (k 2 e 82- k 	 )J• ~  2  1 

T 	3 ecx 	+x - 3 	8 
x ,f 1 1 a 	dx ! 	e 	d6 

o  ~x 

s ki/uo 	1 (k1 a .+ k e ) d 	kwl  

-~- 	I jo C 	A2 . k e 01 ) 	(4.1 ~'a) r2 2 ® it2 	1 

Ump is given bye 

T 	x 	'. 

	

Ump -- /aa o kw1 cos Otx dx -I H 	(8,.3r) 	da 

y=O 
Substitution of ityp($,y) f from Eqn.(4.13) in the above 

y0 
equation yields, 

302.IE 2 	rl 	t1 I 	Iw2 2 

T 	+x 
x I' oos ax dx I cos a(6 d 6 0 	-x 

0 	 (4.1'7b) 



Thus, 

UU   mr 

	

k  i,uo T 	I (k e301  + 	2e ®2  ) 
cC 

30 
12  e 	(Ic2  e 	Ic1 	1 )] 	(4.18) 

The distribution of the auxiliary winding is given by 

3 kW2 0 J Qcx  and hence  

ar 	3 Norl 11(k1 	2 

+ 3 1 12 e je  (kz  ej$2-k1 eje  ) 

T 	3(x 	x 
X I j k, 2  a 	dx I e 	dd 

0 	 •X 

k/10 
T 	 1 k 11 (kl eJ ®1  + k2 eJ02  ) 

	

d 	x  

A- 

 

#3 k2 12 e tk 0JE)2. k1  eel} 	(4.19) 2  

Uap  is given by, 

Tx 
U  ap =  - /uQ o Ix  HYP (6,y)   ( kw2  ein ax d5 cox 

y  (4.20) 

Substituting the value of H 	from Egri. (4.13) in 
yp 

Eqn. (4.20) , one obtains„ 	y 0 

42 
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e2 	 9 

dap • 2 3 k'v2 Juo k2 ® (k i I l + is I2 d ) 

T 	 +~t 
x ! sin (x dx I cos da d6 
a 

~x T k2 e
3

®2 23 kW 	j8 _ 	2 0 [(XV I I +j 	Il e 

(4.21) 

The total flux linkage of the auxiliary winding is given by 

the sum of Egns.(4.19) and (4.21), which reads, 

~ k2/uo T va 	
11~r 	a~2~}- k e') +x 	lkw,  k2 	1 

—♦i k I2 eA (k1 a -'♦ k2 eeE)2) w2  (4.22) 

Substitution of Eqns. (4.18) and (4.22) after multiplication 
by (3w) in Egns.(4.l) and (4.2), respectively, yields, 

— 	— 	k1WNo T _ 	Al 302 It =rlm  •_II + Jw Xlm 11 + 	I1(kie +k2e ) 

+ 	k w,10 T I 30 	302 	381 
2 e Fk2 a +k1 e ) 	(4.23) 

r. 
12 	3 k2w, oT1 e 

V = r2a I2 + jw x ,a 12 Jwc 	d 

x(kl eJE)l +k2eje) 

•w ~kw•2/°TI1 [~2 e+ k1 e30'J 	(4.24) L  

In Egns.(4.23) and (4.24) ® indicates the phase of 

I2 w.r. to I1 and hence replacing 12 e3 by 12, one obtains, 
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-- 	— 	3w kw1 /o T V = rlm Il + jwxim I1 + 	cc 	I1 

x (k eJ91 + k2 $J02) 1  

+ wkwl~r2/~oT..~~ 	~9 
a 	I2Fk2 e 2+k1a 

A
l) (4.25) 

1 _  
V = r 	 Jwc 

	

ia 12 + 3w x1a 12 	+  Wo 2  

x (k 6Jigl + k2 e() 2 ) 1  

	

w kwl k 2 /0o T 	( ei°2 4 k e 
O 
1) (4.26) d 	i 	 1 

Eqns.(4.25) and (4.26) can be rewrltten' as, 

V - Z11 I1 + Z12 I2 
 (4.27) 

V ` Z12 I1 + Z22 12  (4.28) 

where, 

3w41/uoT r 391 	J8 
Z11 •= rim + 3w xlm + 	ki e +k2 e 

(4.29) 

z _ + wkw1 krt2/uo T e8y+ ®i81 	(4.30) 
1 

z  r + ~w x  ~3  3w k 2 /uo T 

22 i$ 	is
+ 

J
+

wc 

x kl ejo'1 + k2 eJig2 	 (4.31) 
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One concludes from Egns.(4.27) and (4.28) that the 

impedance matrix of the single phase motor is given by, 

IZ~ - rZll 	Z121 	(4.32) L _22  Z22 

and is non reciprocal. 

The non-reciprocal nature of the impedance matrix rules 

out the equivalent circuit representation in terms of purely 

passive circuit elements, such as resistances, inductances 

and capacitances. The most convenient representation $ thus, 

is in terms of a network constrained by a gyrator as is 

shown in Fig.2. 



Z 
	 7., 

V 

)q 	__ 

-z12 -[  

FIG 2. 



47 

5. pJESIGNC3NSIDERATIONS 

5.1 Choice of the Capacitors 

While designing a capacitor run single phase induction 

motor, one should aim at exploiting fully the presence of 

the capacitor in the auxiliary winding for the betterment 

of performance Viz,, better power factor, and a higher value 

of efficiency and torque. This can be done by a proper 

choice of capacitor value and the ratio of the effective 

main winding turns to that of the auxiliary winding so that 

the backward field is reduced to zero. 1owever, this condition 

can be achieved at only one value of slip, and therefore the 

choice of capacitor value and turns ratio kt 	should be 

such that the motor operates under balanced conditions at 

full load slip or at very near to the full load slip. The 

most suitable value of capacitor and turns ratio kt 	can 

be obtained with the help of the equivalent circuit shown 

in Fig. 2, one Can, thus, write, 

V=Z11 11 +Z12 12 
	 (5.1) 

and V=-Z12 11 +222 12 	 (5.2) 

The values of Zll, Z12, and Z22 are given by Eq,ns. (4.29), 

(4.30), and (4.31) and are rewritten herefor convenience a 
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jl~o  yll = rj + 3 w a~ + 	 kl a +k2 e 

(5.3) 

Z 

	

V kwl k 2/uo T r eJ02 - k e3el 	(5.4) w 	 k 
12 	a 	j 2 	1 

1 
Z22 rla + jw Xla * jwe 

2 
+ 3 w w2 410 T k e ~ + 	ej82  

a 	1 

 

After  approximation, one obtains the values ki e  and 

~e 
k2 e 2 from Eqns. (4.4) and (4.5). asp 

k ejel  1 	(a+0(2/u2, g) + 3b 

0( 1,2, 	a + 0(2/ur g) 	3bJ = 	 (5.6) 
(a + 0C2 P211 g) 2 + b2 

382 	0( a J3a' + °(3Ar g) ' jb'J 
k3 e 	= 	 (5.7) 

( as + 0(2,41 g) 2 + 0 

Substitution of Eqns. (5.6) and (5.7) in Eqn.(5.3) results in, 

Z11 = rim + jw aim + IJW  kwi ,Nf TJ 

(a + d"pr g) .. Jb # (a' + ot21iir g ) _jb' 
(a + 0(2,,ur 6)3+ b2 	(a'+ 0(2/ur g)2 + b'2 



After rearranging the above Eqn., one obtains, 

Z11=r1m +3wxlm+ [wk l ,u TJ 

m 

b + 3(a+ '(2 /lr 8) 
x 	 + 
{ a+ x2 ~.r g)2 +b2 

(p + 3 q ) 	(w kw1ju T) 

b+ 3 (a+a2 /. g) 

(a+ <2 /ur g)2 + b2 

Let 

b'+3 (a' + cc2 /ur g) 

(a'+ d2 /41r g)2 +b'2 

(5.8) 

(5.9) 

and 
b'+3 (a'+ c(2 /u1 g ) 

(p' + 3 9) = (w 	T) 	(a'+ 2 	g) 2 +b 
'2 (5.10) 

Ar  

Now Eqn. (5.8) can be rewritten as, 

Z11 = (rim ♦ 3wx1111 + p + jq + p' + 3q' ) 	(5.11) 
Let the impedances Z12 and 222 be referred to the main 
winding and the referred impedances be denoted by Z12 and 
Z 2 respectively. Thus, one can write from Eqns.(5.4) and 
(5.5)' 

Z12 = j kt Up ' + 3q') - (p + 3q)I 
	

(5.12) 

Z22 = kt ~rla + 3 w x14 + p + 3 q + P' + 3 q' + , 1... 
3wc 

= kt [(rl,+ p + p') + 3(wxla + q+ 
6 

where xc = w o 	 (5.13) 



Approximation and substitution of Eqns. (5.11) , (5.12) 

and (5.13) in Eqns.(5.1) and (5.2) yields. 

V 	p + pl) + j (q + q')J 

+ J k 12 (P' + Jq') - (p + jq)J  (5.14) 

V= -j ktIl ( 	- (p + jq) 

+ 12 kt (p + p') + J(q + q') 	- j xe 	(5.15) 

It follows from the Eqns.(5.14) and (5.15) that, 

ll=v. kt L'A'P') +   J (q+q' J. ,xc + j kt 3p'+Jq ')-(A+3q 

D 

+ kt(q•gt f 3 +3 k (q+q')-kt(p-p')-xc 

D 	 (5.16) 

V (P+P' )+I(q' 9' ]+j kt (Pl+jgl )-(P♦jq~ 

D 

=V' 	 (5.17) D 
where, 

D =(P'A'P' )+,~ (q+q') kt [(P+p')+J(q+qI~-jXc 

2 	 2 
• kt [(pt+jqf) . (P+Jq) 	 (5.18) 
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or balanced operation at desired slip it is necessary 

that the magnitudes of I1 and 12 be equal and 11 and I2 be 

in phase quadrature! 12 leading I. Equating the magnitudes 

of I1 and 12 from the Fgns. (5.16) and (5.17) , one obtains, 

2 	 2 

kt( p+p l)+kt( q-q')  + kt(q+g l)2•kt(P`P')Ox  

E )+kt(q'q') + (q+q')-kt(p•p' 

Simplification of the above equation results in s  

(k 1) (p+P' )2+{q+q' }2  _ 4 kt(k2•1) tpq'-p'q)J 
t 

	

= xc 2kt  (q+q') • 2 k*  (p•p') - etc 	(5.19) 

In order that 12  leads 11 in time phase by 900 , it is 

necessary that $  

tan-1 (q  + q')  - kt  (p- 
pt) 

(p+p')+kt  (q- q') 

..tan rl  kt(q + q') 	kt (p • p')  - xc 
kt (p + p') + kt (q - q' ) 

it 
2 
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Simplification of the equation yields, 

xc  = 2kt  . kt[p2+q2+p'2♦q'2 ]+(l+kt)(p'q•pq'3 

(5.201 

Thus, with the help of Eqns.(5.19) and (5,20) one can 

determine the values kt and xQ  for balanced operation at 

any desired slip. 

The general solution for the above set, however, can 

not be given explicitly since it involves higher order 

equations and one has to resort to the usual numerical or 
graphical means. 

5.2 Choice of the Flux Density: 

The total rotor power is given by the sum of Eqns. (3.20a) 
and (3.21a). Under balanced operating conditions, the power 

corresponding to the backward field reduces to zero, and 

therefore the total power is given by, 
2 

Al w ,uubT 
p 	 (5.21) 

Ja+f 
 

c( 2/ur  g) +b 

The rotor efficiency under balanced conditions is 

( l - S ) and is maximum. As pointed out earlier, turns ratio 

kt and the capacitor can be suitably chosen to obtain balanced 

operation at any desired slip, normally full load slip. Under 

these conditions $ one can find, for a given mmf,  , a suitable 
value of the flux density so that the rotor input is maximum. 



53 

From the knowledge of proper value of the flux density in 

the air gap region at the given slip the number of turns 

in the main winding can be determined. The value of turns 

ratio kt  determines the no of turns in the auxiliary 

winding. 
However, the determination of a suitable value of the 

flux density depends on a-  number of involved relationships 

e.g. the variations of the constants a and b. In order to 

obtain the general idea of these variations curves have 

been plotted indicating their nature. Fig.3 shows B V/S H,, 

,fur  V/S H and ) V/S H curves for mild steel. Fig.4 has been 

drawn for a single phase induction motor of 5 em rotor 

diameter. The conductivity of the rotor material has been 

taken as 0.6 x 107  mhos per meter. Fig, 4 shows the 

variation of a, which is defined by Eqn. (2.63) with slip for 

different values of flux density. Fig. S gives the variation 

of b with slip for different values of flux density. 

Egn.(5.21) can be rewritten as, 

F 	 b )ar 	 (5.22) 
2 
	 E(a  + 2/Ur  g 7 2+  b2  

For constant mmf the right hand side of Eqn. (5.22) is 

proportional to the rotor input and takes values depending 

upon the flux density. With the help of the information 
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available about the variations of /ii,., a and b with ~3 

in Figs. 3, 4 and 5 respectively, the variation of 

P with respect to B has been plotted in Fig.6 
Ai w /uo 

at 10 per cent slip. 

Another consideration would be the allowed power density 

in the rotor. This of course would depend on the permissible 

heat dissipation. It would be necessary to provide fins and 

ducts at suitable places since rotor heating would be 

appreciable. 
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6. CONCLUSIONS 

In the foregoing study the solid rotor single phase 

capacitor run induction motor has been completely analysed. 

The analysis has been based on the formulation and the 

rigorous solution of the pertinent electromagnetic field 

problem. 

Performance parameters such as rotor power, rotor 

losses and rotor torque, have been calculated for the 

general case of unbalance and the equivalent circuit derived. 

For the design of the auxiliary winding capacitor the required 

condition for the existence of the purely rotating field 

has been stated and the relevant expressions have been 

derived. 

It can be seen from the material presented here that the 

equivalent circuit of the machine can not be represented by 

means of purely -passive bilateral elements since it is non-

reciprocal in nature. Here a gyrator has been utilized for 

the required circuit representation. 

From the design angle it can be seen that the two 

important criteria are, the choice of the auxiliary winding 

capacitor and the operating flux density. As has been shown 

in detail these depend on certain involved relationships and 

one has to resort to numerical or graphical methods for their 
solution. 



Due attention has not been given so far to the utility 

of the solid rotor for single phase operation. The 

investigations presented here indicate certain possibilities. 

Further work in this area can now establish the extent of 

its use and adaptability in the practical field, 
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