
MOMENTUM AND HEAT TRANSFER OF NON-NEWTONIAN
FLUIDS AROUND A SQUARE CYLINDER UNDER THE

INFLUENCE OF AIDING BUOYANCY

A  DISSERTATION

Submitted in partial fulfillment of the

requirements for the award of the degree

of

Master of Technology

in

Chemical Engineering

(With Specialization in Computer Aided Process Plant Design)

By

SHISHIR GUPTA

DEPARTMENT OF CHEMICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE

ROORKEE-247667 (INDIA)

JUNE 2013



i

Declaration

I hereby declare that the work presented in this dissertation entitled “Momentum and

Heat transfer of non-Newtonian fluids around a Square Cylinder under the influence of

Aiding buoyancy” submitted towards partial fulfillment for the award of the degree of M.Tech.

in Chemical Engineering with specialization in Computer Aided Process Plant Design at the

Indian Institute of Technology, Roorkee is an authentic record of my original work carried out

under the guidance of Dr. A.K. Dhiman (IIT Roorkee). I have not submitted the matter

embodied in this dissertation for the award of any other degree.

Place:- Roorkee Shishir Gupta

Date:- Enrol. No.-11514022



ii

Certificate

This is to certify that Mr. Shishir Gupta (Enrol. No.11514022) has completed the dissertation

entitled “Momentum and Heat transfer of non-Newtonian fluids around a Square Cylinder

under the influence of Aiding buoyancy” under my supervision.

(Dr. A.K. Dhiman)

Assistant Professor

Dept. of Chemical Engineering

IIT Roorkee



iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. A.K. Dhiman for his

encouragement, guidance and support. I would also like to thank Dr. V.K. Agarwal (Head of the

Department) for providing me with the opportunity and the resources for my dissertation work. I

would also like to extend my heartiest gratitude to all my lab mates, Ms. Vandana Gautam, Mr.

Ritwik Ghosh, Mr. Alex Denial, Mr. Ram Pravesh and Mr. Deepak Kumar Dwivedi for helping

me at every step of my project work. Finally, I would like to thank all the teaching and non-

teaching staff of Chemical Engineering Department for making my two years of M.Tech, a truly

enriching educational experience. Finally but not the least, I would like to thank to my parents

and my family and the God for their support and blessings.

Shishir Gupta

11514022

M.Tech.(C.A.P.P.D.)



iv

Table of Contents

Topic Page No.

Declaration i

Certificate ii

Acknowledgements iii

Table of contents iv

List of figures v

List of tables vi

Abstract vii

Nomenclature viii

Chapter 1 Introduction 1

1.1 Newtonian and non-Newtonian fluids 1

1.2 Non-Newtonian flow over a bluff body 3

1.3 Application 4

Chapter 2 Literature Review 5

Chapter 3 Methodology 11

3.1 Problem statement and governing equations 11

3.2 Numerical Methodology 13

3.3 Grid dependence study 15

3.4 Upstream and downstream dependence study 15

3.5 Computational domain width 17

Chapter 4 Results and Discussion 18

4.1 Validation of results 18

4.2 Flow patterns 19

4.3 Thermal Patterns 23

4.4 Individual and total drag coefficients 26

4.5 Average Nusselt number 28

4.6 Strouhal number 32

Chapter 5 Conclusions 33

References 34

Publication 37



v

List of Figures

Figure
No. Title

Page
No.

1.1 Qualitative flow curves for different types of non-Newtonian fluids 2

1.2 Horizontal square cylinder 4

1.3 Tilted square cylinder 4

3.1 Schematic diagram for the present system 11

3.2 Non-uniform computational grid arrangement around the square cylinder 14

4.1 Representative (a-l) streamlines contours  for n=0.2 at constant Pr =50 21

4.2 Representative (a-l) streamlines contours  for n =0.4 at constant Pr =50 21

4.3 Representative (a-l) streamlines contours  for n =0.6 at constant Pr =50 22

4.4 Representative (a-l) streamlines contours  for n =1 at constant Pr =50 22

4.5 Representative (a-l) isotherms profiles for n=0.2 at constant Pr =50 24

4.6 Representative (a-l) isotherms profiles for n=0.4 at constant Pr =50 24

4.7 Representative (a-l) isotherms profiles for n=0.6 at constant Pr =50 25

4.8 Representative (a-l) isotherms profiles for n=1 at constant Pr =50 25

4.9 Variation of drag coefficient with power-law index (n) 26

4.10 Variation of drag coefficient with Reynolds number (Re)at constant n 27

4.11 Variation of drag coefficient with Reynolds number (Re) at constant Ri 28

4.12 Variation of Nusselt number with power-law index (n) 29

4.13 Variation of Nusselt number with Reynolds number (Re) at constant n 30

4.14 Variation of Nusselt number with Reynolds number (Re) at constant Ri 31

4.15 Variation of Strouhal number with Reynolds number (Re) at constant Ri 32



vi

List of Tables

Table
No.

Title Page
No.

3.1 Grid dependence test for Ri=0 and 1 at Re=150 and Pr=50 15

3.2 Domain dependence test for Ri=0 and 1 at Re=150 and Pr=50 for CV=100 16

4.1 Comparison of current outcomes with literature value for Re=100, Pr=0.7
and Ri=0 and 1

18

4.2 Comparison of current outcomes with literature value for Pr=0.7, Ri=0 and
Re=10 and 40

19

4.3 Comparison of current outcomes with literature value for Pr=50, Ri=0 and
Re=100

19



vii

Abstract

Mixed convection flow and heat transfer characteristics of non-Newtonian fluid flowing

around a long square cylinder under the influence of aiding buoyancy are investigated in the

vertical unconfined configuration for the Reynolds number (Re) = 75 - 150, power-law index (n)

= 0.2 - 1 and Richardson number (Ri) = 0 - 1 for a constant Prandtl number (Pr) = 50. The values

of both Drag coefficient and Nusselt number increase with Richardson number. Drag coefficient

is observed to decrease with increase in Reynolds number but Nusselt number shows an opposite

behavior i.e. it increases with Reynolds number. In the present range of conditions, the flow of

shear-thinning fluids is truly pseudo-periodic in nature at high Reynolds numbers and/or at small

values of power-law index (highly shear-thinning fluids).

Keywords

Square cylinder, Aiding buoyancy, Streamline, Isotherm, Drag, Nusselt number, power-law

index
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CHAPTER - 1

INTRODUCTION

Non-Newtonian fluids are found to be industrially significant; hence researchers have

tried to elucidate the role of non-Newtonian character of fluids heat transfer phenomena for

obstacles of different shapes flooded in the flowing fluids. The impact of non-newtonian

behavior on momentum transfer is also a subject of research. Nearly all commonly found

non-Newtonian fluids such as polymer in fused state, pulp and paper suspensions or

industrially viable systems (such as colloids and foams) show evidence of non-Newtonian

characteristics displaying either pseudo-plastic or dilatant behavior in nature or time-

dependence, etc. These materials are generally found to be processed under laminar flow

conditions owing to the fact of their high viscosity.

1.1 Newtonian and non-Newtonian Fluids

1.1.1 Newtonian fluids:

Newtonian fluids are those fluids which follow the viscosity law of Newton which states that

the shear stress acting on the surface of flowing fluids is directly proportional to the negative

of velocity gradient. The viscosity law by Newton is given by











dy

dv


Where  = shear stress

 = viscosity of fluid









dy

dv
= negative of velocity gradient

Every gas and the majority of liquids that have simple molecular structure and low molecular

mass are normally falls in the Newtonian fluids category. The most common example of

Newtonian fluids are water, benzene etc.
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1.1.2 Non-Newtonian fluids:

Fluids that do not follow a linear relationship of stress and strain are known as non-

Newtonian fluids. Usually these are intricate mixtures such as liquid solution of polymers.

A Power-law or non-Newtonian fluid, is a normal Newtonian fluid with the relationship for

shear stress, τ denoted as

n

y

v
k 













Where  = shear stress

k = non-Newtonian consistency index

n = flow behavior index (dimensionless)











y

v
= shear rate or velocity gradient

1.1.2.1 Time-Independent behaviors:

(a).Bingham-plastic: These fluids oppose

small forces to change their originality but flow

easily under bigger shear stresses. Stress at

which fluid is just in the condition of flow is

known as yield stress. For example: tooth-paste,

jellies.

(b). Pseudo-plastic: Mostly non-Newtonian fluids are pseudo-plastic in nature. For these

fluids, viscosity reduces with amplification in velocity gradient. The well known example of

pseudo-plastic fluid is blood. These fluids are also known as Shear thinning fluids because

their viscosity is reduces rapidly with shear rate. For pseudo-plastic fluid, n is always less

than 1 where n is flow behavior index.

(c). Dilatant fluids: For dilatant fluids, viscosity enhances with enhancement in shear rate.

They are rare, but there are some examples like suspensions of starch and sand. These fluids

are also known as shear thickening fluids. For dilatant fluids, n is always greater than 1.

Figure 1.1 Qualitative flow curves for different
types of non-Newtonian fluids [27]



3

1.1.2.2 Time reliant behaviors: These fluids are reliant upon extent of shear.

(a). Visco-elastic fluids: These are those types of fluids that have elastic properties, which

allow them to come into their original position when a shear force is released. For example:

white portion of egg.

(b). Rheopectic fluids: Fluids for which viscosity enhances with the increase in applied

shearing force time are known as rheopectic fluids. Examples of the rheopectic fluids are

suspension of gypsum in water.

(c). Thixotropic fluids: For these fluids, viscosity reduces as time (for application of

shearing force) passes. Jelly paint solutions are the examples of these types of fluids.

1.2 Non-Newtonian flow over a bluff body

Heat and flow of fluid are usually moreover unbounded or bounded. A few problems

associated with numerous of the properties of both unbounded and bounded flows. The

unbounded flow pattern is an ordinary one for lowering and rising of temperature of fluids in

numerous commercial uses. Buoyant force lays a great impact on flow and heat transfer

properties when velocity of fluid is not very large and thermal gradient is relatively large. The

influence of natural and forced convection is analogous in similar situations. The decay of

vortices is also a matter of concern.

When the buoyant effects are added to the flow, it powerfully affects the flow and

thermal structures. These effects are of prime importance in two situations when velocity is

low and temperature gradient (from obstacle to flowing fluid) is very high. Buoyant effects

are quantified by the parameter known as Richardson number. It yields demarcating line of

natural convection from mixed one. The current study is concerned with the vertical flow of

fluids (n ≤ 1) around a cylinder of square cross section. The heat transfer is contributed by

both kinds of convective modes (forced and natural). The geometry arrangement of single

square cylinder can be categorized in common into  the  cylinders  which  are  horizontaly

placed  and  the  cylinders  which  are  tilted  with  an  angle  α  from  the  horizontal.
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Figure 1.2: Horizontal square cylinder Figure 1.3: Tilted square cylinder

The most general arrangement of single square cylinders is the horizontal square cylinder,

which is likely the arrangement most encountered in practice. The  tilted  square cylinder  is

not  so  common  as  the   horizontal  one.

1.3 Application

The case we are interested here is that of horizontal square cylinder which are very simple in

configuration. Experimental analysis of the fluid flow and eddy dynamics about this simple

configuration of single horizontal cylinder gives us the basic understanding about the flow

around the buff bodies and it can be further implemented for more complex and larger scale

structure such as two or more than two cylinders in side by side configuration. For illustration

the flow across the tube banks working in process industries and particularly in power

production and oil industry and river flow vegetation etc. Hence, the study of Reynolds

number and Prandtl number (in case of heat transfer) would result in a clear understanding of

many real life applications.
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CHAPTER - 2

LITERATURE REVIEW

A vast amount of literature is available for the momentum and thermal exchange

around obstacles of different cross sections impacted by buoyant force. Badr [1] studied heat

transfer phenomena between flowing fluid and cylinder of circular cross section for the flow

defined in laminar range. Two contradicting issues have been analyzed, first one is when the

imposed flow is in the positive y-direction and second is when it directed vertically

downwards. He reported that the upward flow regime is observed for the Reynolds number,

Re = 5, 20, 40, 60 for the different values of Grashof number while there exist a downward

flow. He analyzed the simulations for steady mixed convection flow for the parameters, Re =

1 – 40, Ri = 0 – 5 and Pr = 0.7 and reported that average Nusselt number shoots up to 41%.

Gandikota et al. [2] has examined the upward flow of fluids (n ≤ 1) with an immersed

circular body. Buoyant force is incorporated in heat transfer properties from the circular body

at different temperature from the fluid. They have studied the effect of aiding buoyancy

which is characterized by Ri > 0 and opposing buoyancy which is characterized by Ri < 0.

They take the range of engineering parameters as Ri = 0.5 to -0.5, Re = 50 to 150 with two

values of blockage ratio () = 0.02, 0.25. It was found that flow around the cylinder shows

an unsteady intermittent character in the preferred variation span of Re for free convection

(Ri = 0). They also reported for the heat transfer, that there is an increase in Nusselt number

at a more rapid rate outside the critical Ri, at the same time as it remains approximately

constant in the opposing buoyancy case i.e. for Ri < 0. Srinivas et al. [3] examined the

steady momentum transfer and thermal exchange properties between fluid and horizontal

cylinder at a constant temperature for mixed convective case, which is engrossed in constant

density non-Newtonian fluids. They performed the experiment in such a way that the

direction of obligatory flow and the motion produced by the buoyancy effect are same. They

have selected the ranges of parameters as the Re = 1 to 40, Ri = 0 to 2, n = 0.2 to 1.8, and Pr

= 1 to 100. They stated that there is a similarity in the wake size behavior in the same manner

as which was observed for special case of Ri = 0 which characterizes forced convection. They

reported that both drag coefficients and average Nusselt number are reliant on the rising

character of buoyancy property and the dimensionless flow defining factors like Prandtl
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number. With the fluids with n = 0.2 to 2, they concluded that there is an increase in the drag

coefficient and heat transfer with an increasing tendency of pseudo-plasticity of the fluid.

The present study incorporates a long square cylinder immersed in a flowing fluid.

The literary body of knowledge is not scant for this shape of the bluff body although circular

cylinder finds a wide industrial occurrence. Okajima [4] carry out an experiment to describe

the unbounded flow across a cylinder of square cross section. He has taken the value of

parameters as Re = 410270  . Further, he has utilized finite difference method to implement

numerical simulations coupled with an isolated vortex scheme to determine the continuation

of a transitional value of Re at which the flow patterns change drastically along with Strouhal

number. Nakabe et al. [5] examined the buoyancy aided effect on the fluid flow limited by

planar walls around a cylinder of circular cross section by the use of finite-difference scheme.

The velocity at the inlet is defined by a parabolic equation so as to ensure the wall effects.

They considered three flow patterns: (a) Influence of positive buoyancy at values of Reynolds

number = 80 and 120, and Richardson number Ri = 0 to 1.6, and blockage parameter, =

0.15 and 0.3; (b) Effect of negative buoyancy at Reynolds number = 50, Richardson number

−1 to 0, and = 0.15; and (c) Results of transverse-stream buoyancy for a fixed value of

Reynolds number 80 and = 0.3. They provided three important findings: First, that value of

Richardson number which marks the decrease of eddy shedding collapse with enhancing

value of  at fixed Reynolds number, second is the value of Richardson number at which

eddy shedding collapse, augments with Reynolds number at constant; and third one is the

value of Reynolds number at which eddy shedding begins to raise with enhancing  at

constant Ri. Tamura et al. [6] numerically predicted the non-uniform pressure distribution

on the obstacle of square cross section with different inclinations. They have employed the

direct finite difference scheme for the simulations in place of turbulence model. At very high

Re = 104 - 106, to prevail over numerical unsteadiness, they introduced third-order upwind

method for the convection terms. They reported that the computational outcome which

explains phase variation on the surface of the cylinder mitigates to a great extent. This brings

in complex correlations along the time-axis. But they could not find clear distinction in the

variations in the variety of elevated frequency. Abu-Hijleh [7] numerically calculated the

results for the laminar mixed convection correlations flow at unlike angles of hit for an

constant temperature cylinder in traverse flow. This study covered a wide range of

parameters: 200Re1  , 350  and   ,where κ is buoyancy parameter and γ is
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angle of hit of fluid stream flowing towards the inward direction. They reported an alteration

in the average Nusselt number, comparative to the situation of cross flow, increases about

20% for aiding buoyancy while it decreases up to 30% for opposing flows.

Turki et al. [8] analyzed the 2-D momentum transfer and thermal exchange between

air which is laminar in nature flowing across a heated square cylinder. They have selected

range of parameters for the study as Re = 62 – 200, Ri = 0 to 0.1 whereas the wall

confinement was fixed at 0.25 and 0.125. The results demonstrated the occurrence of

disintegration of the Karman vortex street as it also occurs for the square cylinder at a

transitional value of Ri = 0.15, which was already reported in case of cylinder of circular

cross section at Pr = 0.71. They established that the transitional value of Re comparative to

the Re at which transition from steady to intervallic flow rises, when β increases, in pure

forced convection. They found for the case of mixed convective thermal exchange, that the

transitional Re compared to the value of Re which marks the changeover from steady to

intervallic flow, reduces when there was an enhancement in Richardson number, While there

was an amplification in the nature of Strouhal number (St) with rising Ri.

Sharma and Eswaran [9] studied the result of buoyant force effects on the flow

configuration and thermal exchange nature across cylinder of square cross section in upward

traverse flow. They studied the momentum transfer and thermal exchange uniqueness across

a cylinder of square cross section kept at a fixed thermal condition. They investigated the

influence of positive and negative buoyancy, for the range of parameters of Re = 100, Pr =

0.7 (fixed) and Ri = -1 to 1. They concluded that there is a wide difference in heat transfer

nature in steady flow in comparison to the intervallic flow region, and later one has greater

heat transfer. With increasing in Richardson number (Ri), they observed that the length of

average circulation enhances in the intervallic flow, while it reduces uniformly in the steady

flow range. They reported that the drag coefficient averaged over time axis becomes less than

zero when value of Ri ≤ -0.25. They stated that there is an increasing nature of Strouhal

number due to the fact that the speeding up on the surface of cylinder on boundary layer with

increasing Ri. Sharma and Eswaran [10] have investigated the consequences of channel-

confinement for varying wall confinement of 0.10, 0.30 and 0.50 on flow patterns around the

square cross sectional bluff body. They have also studied heat transfer behaviors from a

square cylinder at a relatively higher temperature by incorporating the buoyant force effects

i.e. aiding for Ri greater than one and opposing buoyancy for Ri less than one. They have

selected the parameters as Re = 100 and Pr = 0.7. To find out heat transfer characteristics,



8

they have examined the fact that surface Nusselt number enhances with increse in the channel

confinement as well as Richardson number. Paliwal et al. [11] have researched steady, two

dimensional and unbounded flows of non-Newtonian fluids fof n = 0.5 -1.4 around a square

cross sectional cylinder. The range of engineering parameters employed are  Re = 5, 10, 20,

30 and 40, Peclet numbers, Pe = 5 – 400 at fixed wall temperature as well as fixed heat flux.

They have used finite difference scheme to discretize the governing differential equations.

Afterward, Dhiman et al. [12] re-examined the same crisis by incorporating a much finer

grid in a finite volume scheme. The parameters are varied as Reynolds number 1 ≤ Re ≤ 45,

power-law index 0.5 ≤ n ≤ 2. The convective terms are discretized by using a higher order

discretization scheme. Hence, findings by them are prone to be highly trustworthy as

compared to Paliwal et al. [11]. In steady flow regime it can be deduced that, the effect of

power-law index gradually mitigates as the Reynolds number increases. Dhiman et al. [13]

explored the momentum transfer and thermal exchange behaviors of an isolated cylinder of

square cross section placed symmetrically in a planar slit in cross flow. They selected the

wide domain of limits as 1 ≤ Re ≤ 45, 0.7 ≤ Pr ≤ 4000 for Peclet number, Pe ≤ 4000 and

blockage ratio, β = 0.125, 0.167 and 0.25. They achieved relationships for thermal exchange

in the non-variable flow region at isothermal conditions and fixed heat fluctuation state line

situation on the square cylinder in cross flow. Singh et al. [14] calculated the buoyancy

outcome on the wakes of circular and square cylinders for the range of Reynolds number, Re

= 87 - 118 and Richardson Number, Ri = 0.049 - 0.173. They used temporally resolved

schlieren imaging scheme to determine the qualitative flow visualization and quantitative

measurements of dynamical behavior of vertical structures. It can be inferred that eddy

formation behind the square/circular cylinder can be controlled by heating the cylinder.

Dhiman et al. [15] considered the consequence of Pr on the momentum transfer and thermal

exchange behaviors of a square cross sectional cylinder which kept at constant temperature

confined within a channel under the influence of cross-buoyancy. They reported the

mathematical results for the domain of engineering boundary as 1 ≤ Re ≤ 30, 0.7 ≤ Pr ≤ 100

for the maximum value of Peclet number = 3000 and Richardson number, 0 ≤ Ri ≤ 1 for a

wall confinement of 12.5%. They stated that effect of the Ri on the drag coefficient and the

Nusselt number is as analogous as in the matter of the unbounded mixed convective case. For

the domain of parameters deliberate by them, they reported that the rate of Nusselt number

increased about 5% with reference to the convection defined by Ri = 0. Biswas et al. [16]

examined the eddy formation around a cylinder with temperature gradient in a transverse-
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flow at low Re in the presence of thermal buoyant force. They have taken the option of Re as

10 to 45. They found that the flow shows a non changing behavior in the nonexistence of

thermal buoyant force. They reported that asymmetry of wake and periodicity of flow can

happen at minor Re in comparison to convection defined by Ri = 0. Paramane and Sharma

[17] investigated the consequences of revolution on the momentum transfer and thermal

exchange across a cylinder in the presence of transverse-stream buoyant force. They have

examined the buoyancy-induced eddy formation across the revolving cylinder in the fixed

wall temperature state. They have taken air as the working fluid while the the range of

engineering parameters for which the study is carried out as Re = 40 to 100 and dimensional-

less rotational velocity (α) was changing from 0 to 8 and Ri was taken as, Ri = 0 - 1. They

reported that the Nusselt number shows an inverse relation with rotation at the same time as it

shows a proportional relation i.e. it increases with buoyancy effect. Sarkar et al. [18]

numerically examined the mixed convective heat transfer from two identical square cylinders

in cross flow. The range of parameters was taken as Re = 100, Pr = 0.7 and Richardson

number, Ri = -1 to 1 has been taken. They stated that for meticulous cylinder spacing, vortex

shedding is observed up to Richardson number of 0.25. From their report, the highest heat

transfer set up at the front face of second cylinder. Rao et al. [19] considered momentum

transfer and thermal exchange from a square cross sectional cylinder for the non-Newtonian

fluids. They presented the results on streamline and vorticity contours around the obstacle.

They have chosen an array of engineering parameters as Reynolds number, Re = 0.1 – 40,  Pr

= 0.7 – 100 and n = 0.2 – 1.4. They concluded that there is a need of a longer upstream region

as the value of the Reynolds number is gradually reduced for obtaining the results which are

free from numerical errors. Dhiman et al. [20] calculated the wall property across the square

cross sectional cylinder at steady flow situation in the presence of transverse buoyant force.

They performed numerical simulations in the non-changing flow field for the array of Re = 1

– 30, Ri = 0 to 1 for blockage ratios of 0.125 and 0.25 at a constant Pr = 0.7. They reported

that cylinder average Nusselt number is insensitive towards the variation of the values of the

Richardson number for the constant values of Reynolds number and the blockage ratio.

Chatterjee and Mondal [21] examined the influence of thermal buoyant force on the

momentum transfer and thermal exchange. They observed the eddy formation at the rear of a

cylinder of square cross section in traverse flow. They take a low range of Reynolds numbers

for the study. They have taken the range of engineering parameters, Reynolds and Richardson

numbers as Re = 5 to 40 and Ri = 0 to 2 while taking the unchanging value of Pr = 0.7 and a
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= 0.05. They concluded that the Nusselt number found to be escalating in nature with

Reynolds number. The reason behind that the elevated heat transfers due to the augmented

convection by the fluid. It can be easily examined that average Nusselt number is found to

increase a little under the vital Ri, while the quickness of amplification in Nusselt number

increases above the vital Ri. Sasmal and Chhabra [22] investigated the orientation effect on

laminar natural convection from a heated square cylinder in power-law fluids. They

performed numerical simulation on the governing differential equations describing the fluid

flow and heat transfer over broad domain of non-dimensional variables like Grashof number,

Gr = 10 to 105, Prandtl number, Pr = 0.72 to 100 and n = 0.3 to 1.8. They concluded that a

square cylinder at α = 0 experiences more drag than that at α = 45 under the same

conditions. Sharma et al. [23] premeditated the consequence of positive buoyant force on the

mixed convection momentum transfer and thermal exchange across a long cylinder of square

cross section in the vertical unconfined model. They reported the results for the wide domain

of variables as Re = 1 to 40 and Ri = 0 to 1 at the constant Pr = 0.7. They stated that the wake

length reduces on enhancing the Ri for a fixed value of Re. They also stated that the local Nu

is lower for the forced convective case in comparison to the convective case defined by Ri =

0.5 and 1. The drag coefficient is found to be diminish with elevated values of Re but this

drag coefficient shows an inverse trends i.e. it enhances with enhancement in value of

Richardson number.

Thus, from the above discussion, it can be summarized only Sharma and Eswaran

[9], Singh et al. [14] and Sharma et al. [23] have researched with supportive buoyant force

around a cylinder of square cross section in the unsteady unconfined perpendicular flow

system. Still, conversely, there is no work existing entire research work for the square bluff

body in the presence of buoyant force given by Ri > 0 in the non-Newtonian unsteady

unbounded domain. Therefore, the purpose of the current research is to explore the effect of

positive buoyant force on momentum transfer and thermal exchange for the fluid defined by

power-law index, n < 1 around a square cylinder at Reynolds numbers, Re = 75 to 150 and

Richardson number, Ri = 0 to 1 for the fixed Prandtl number, Pr equel to 50.
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CHAPTER - 3

METHODOLOGY

3.1 Problem statement and governing equations

Suppose the two dimensional physical model of unsteady, forced flow over a heated

long square cross sectional cylinder (size D) at a fixed temperature wT in a non-Newtonian

fluid flowing upwards in opposition to gravity. The streaming fluid has uniform temperature

T and velocity U as shown in figure 3.1. For physical understanding of the model, it is

required to execute unbounded flow condition, the bluff body is artificially restricted by two

symmetric slip walls. The square bar is kept at a constant temperature of Tw .The total height

of the channel in upstream and downstream direction are symbolized by L (= Xu+Xd). The

space from the entering space to the front face of the bluff body is Xu and the space between

the rear surface of the bluff body and the outlet space is Xd. The dimensions of the channel

are so selected that mitigate the consequence of the inlet and exit edge circumstances on the

flowing pattern near the cylinder. Cylinder is centered at downstream distance Xd on the

vertical symmetric axis.

Figure 3.1: Schematic diagram for the present system
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The bluff body experiences buoyant force owing to the density difference (with

temperature) near the square cylinder. Heat transfer is purely by natural convection at Re = 0

(no imposed flow) while at high Re buoyant forces are insignificant (forced convection). It is

obvious that there exists in between both free and forced convection; the proportion of which

is determined by another parameter Richardson number (Ri). As we are considering the

buoyant force effect owing to the density difference we cannot assume constant density ( ρ ).

A well known Boussinesq expression,   00 TTβ1ρρ  gives the density variation with

temperature but this can be applied only when the change in the density is not very large.

Here 0ρ is the density at the reference temperature (T0). At constant transport properties

viscous rakishness are minor and the thermo-physical properties except density (heat capacity

c, thermal conductivity k, viscosity, non-Newtonian flow parameters m, n) are taken as to be

independent of thermal gradient. With both two assumptions, we are restricted to apply the

above model only for small temperature differences and low to moderate viscosity levels.

In the presence of these circumstances, the momentum and heat transfer incident are

directed by the continuity, momentum and thermal energy equations, presented here in their

dimensional type as follows:

(a). Continuity  Equation:

0. U (1)

(b). Momentum Equation:

0.. 





 



 UU
t

U
(2)

(c). Energy Equation:

0TkT.U
t

T
Cρ 2

p 





 



(3)

where  is the density of the fluid, U is the velocity of flowing fluid with its

components xU and yU in x- and y axis, respectively,  is the body force,  is the stress

tensor and T is the temperature. The stress tensor  is defined as the sum of the isotropic

pressure p and the deviatory stress tensor  and is given by Eq. (4)
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  pI (4)

For incompressible fluids, the rheological equation of state is given as

)(2 U  (5)

where )(U , is the components of the rate of strain tensor and defined by Eq. (6)

    TUUU 
2
1

)( (6)

The viscosity  , for power-law fluids, is given by Eq. (7)

2/)1(

2

2









n
I

m (7)

Where n is the non-Newtonian flow index of the fluid (n < 1 means to a pseudo-plastic fluid;

n = 1 involve Newtonian fluid; n > 1 direct to a dilatant fluid), m is the non-Newtonian fluid

consistency index and I2 is the second invariant of straining rate tensor , which is defined by

I2= )(2 2222
yxxyyyxx   . The mechanism of the straining rate tensor is associated to the

velocity factorss in Cartesian coordinates as pursues:

























x

U

y

U

y

U

x

U yx
yxxy

y
yy

x
xx 2

1
&; 

Boundary Conditions:

The dimensional boundary circumstances for unbounded constant temperature

momentum transfer and thermal exchange across a square cross sectional cylinder may be

given in following form:

At the inlet boundary: xU = 0, UU y and  TT (isothermal flow) (8)

On left and right margins: xU =0, 0 xUx and 0xT  (9)

On the exterior of the square cylinder: xU =0, yU =0 and wTT  (10)

At the exit boundary: 0 yU x , 0 yU y and 0yT  (11)

3.2. Numerical methodology

The principal equations have been solved numerically using finite volume scheme oriented

commercial package ANSYS FLUENT. In the present study, the computational grids with

diamond cells of non-homogeneous spacing are created by the use of industrial grid unit

GAMBIT. The fine grid size of 0.005D is clustered around the square bluff body to highlight

the boundary layer effects. The two-directional, unsteady, laminar scheme is used to solve the
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constant density flow on the grid configuration. Quadratic upwind differencing method

(QUICK) is used to simulate the convective components of the correlation of the momentum

and energy. A semi-implicit scheme for the pressure coupled relationships (SIMPLE) was

taken for explaining the pressure-velocity decoupling.

Power-law model is implemented to incorporate the non-Newtonian behavior and

density variation is effected by the Boussinesq expression. The maximum error standard of

10-20 is used for the continuity element; and same for x-and y directional factors of the

velocity and temperature have been followed in the study. Also it has been assumed that the

solution has converged if there is no variation up to 4th digit in the drag values and at the

same time lift coefficients are of the range 10-5 to 10-6 when it has shown more than 10 series

in time record. The non uniform computational grid for the present study is shown in figure

3.2.

Figure 3.2: Non-uniform computational grid arrangement across the square cylinder
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3.3. Grid dependence Study

The grid dependence study is performed with three non-uniform grids having total number of

cells (104625,117500,130375 with 75,100,125 control volumes across the square cylinders)

at Reynolds number Re=150 and Richardson numbers Ri = 0 and 1. Table 3.1 clearly shows

that at Ri = 0 the drag coefficient (CD) bears the percentage deviation of about 0.04% for

control volume CV = 100 which is less than 0.18% at CV = 75. Similar behavior is shown at

Ri = 1 with 0.13% deviation at CV=100. Further, at Ri = 0 the time-averaged Nu shows a

percentage deviation of about 0.23% for control volume CV = 100 which is less than 0.35%

at CV = 75. Similarly at Ri = 1, the deviation is 0.23% at CV = 100 in comparison to 0.31%

for CV = 75. Hence, considering the computational span required and the exactness of the

results obtained, the present statistical study is conducted for the grid range of total cells

117500 with CV = 100 on every side of the square cylinder.

Table 3.1: Grid dependence test for Ri=0 and 1 at Re=150 and Pr=50
S. No. Grid size

(cells)
CV on each side
of square obstacle

CD % deviation Nu % deviation

Ri=0
1 104625 75 1.4657 0.18 20.4292 0.35
2 117500 100 1.4637 0.04 20.4044 0.23
3 130375 125 1.4631 20.3572
Ri=1
1 104625 75 1.6012 0.25 24.9852 0.31
2 117500 100 1.5993 0.13 24.9661 0.23
3 130375 125 1.5972 24.9077

3.4. Upstream and Downstream dependence studies

Effect of upstream and downstream space on the present numerical analysis is carried

out to ensure that the results are free from any domain effects. Upstream dependence study is

employed for the upstream distances of 5.5D (106500 cells), 10.5D (117500 cells) and 15.5D

(129400 cells) at Re=150 and a fixed value of Pr = 50 for a range of Richardson number, Ri =

0, 1. At Xu = 10.5D, the relative divergence in the time-averaged cylinder Nu and total drag

coefficient are reported to be less than 0.52% and 2.16% respectively at Ri = 0 in comparison

with Xu = 15.5D at Xd = 35.5D and H = 40D, while deviation in same parameters is 1.11%

and 3.65% respectively for the Xu = 5.5D. Similar observation at Ri = 1 states the relative

percentage deviations in the  average cylinder Nu and total CD to be 1.26% and 0.3% for Xu =
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10.5D and for Xu = 5.5D it is 2.01% and 0.41%. Hence, it is wise to use the upstream space of

10.5D for the production of novel outcome.

Downstream dependence study is conducted for the distances of 30.5D (110500

cells), 35.5D (117500 cells) and 40.5D (124300 cells) at Reynolds number Re = 150 and

Prandtl number Pr = 50 at Richardson number Ri = 0, 1. At Xd = 35.5D, the comparative

variation in the time-averaged cylinder Nu and total CD reported are less than 0.003% and

0.01% respectively at Ri = 0 in comparison with Xd = 40.5D at Xu = 10.5D and H = 40D

while deviation in same parameters is 0.02% and 0.05% respectively for the Xd = 30.5D.

Similar observation at Ri=1 states the relative percentage deviations in the average cylinder

Nusselt number and total drag coefficient to be 0.002% and 0.007% for Xd = 35.5D, while for

Xd = 30.5D, it is 0.004% and 0.03% respectively. Therefore, the downstream distance is fixed

to be 35.5D. These results are shown in Table 3.2.

Table 3.2: Domain dependence test for Ri=0 and 1 at Re=150 and Pr=50 for CV=100
S. No. Grid Size

(cells)
Length CD % deviation Nu % deviation

Ri=0
Xu Effect
1 106500 5.5D 1.4852 3.65 20.5247 1.11
2 117500 10.5D 1.4637 2.15 20.4044 0.52
3 129400 15.5D 1.4329 20.2994
Xd Effect
1 110500 30.5D 1.4632 0.05 20.3998 0.02
2 117500 35.5D 1.4637 0.01 20.4044 0.003
3 124300 40.5D 1.4639 20.4037
H Effect
1 52500 20D 1.4853 3.45 20.4794 0.82
2 117500 40D 1.4637 1.95 20.4044 0.45
3 182700 60D 1.4358 20.3128
Ri=1
Xu Effect
1 106500 5.5D 1.6113 2.01 24.9953 0.41
2 117500 10.5D 1.5994 1.26 24.9661 0.30
3 129400 15.5D 1.5795 24.8924
Xd Effect
1 110500 30.5D 1.5997 0.03 24.9668 0.004
2 117500 35.5D 1.5994 0.007 24.9661 0.002
3 124300 40.5D 1.5993 24.9657
H Effect
1 52500 20D 1.6073 1.45 24.9827 0.18
2 117500 40D 1.5994 0.95 24.9661 0.12
3 182700 60D 1.5843 24.9373
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3.5. Computational Domain Width

After fixing the upstream and downstream distances the width of domain is further

checked to yield reliable results. Domain width is varied as, H = 20D (52500 cells), 40D

(117500 cells) and 60D (182700 cells) in the x - direction (upward flow). The parameters

used in this analysis are Re = 150 and fixed Pr = 50 at Ri = 0 and 1. At H = 40D, the relative

percentage divergence in the time-averaged cylinder Nu and total CD reported are less than

0.45% and 1.95% respectively at Ri = 0 in comparison with H = 60D at Xu = 10.5D and Xd =

35.5D while the deviation in same parameters is 0.82% and 3.45% respectively for the H =

20D. Similar observation at Ri = 1 states the relative percentage deviations in the  average

cylinder Nusselt number and total drag coefficient to be 0.12% and 0.95%,while for H = 20D,

it is 0.18% and 1.45% respectively. Hence the computational domain defined by Xu = 10.5D,

Xd = 35.5D and H = 40D is found to be efficient enough to carry out the present investigation.



18

CHAPTER - 4

RESULTS AND DISCUSSION

In present study, simulations are performed for Reynolds number, Re = 75 - 150 in

the step of 25 and power-law index (n) = 0.2, 0.4, 0.6 and 1 to show the influence of non-

Newtonian behavior characterized by n < 1 (Pseudo-plastic fluids) on the vertical flow

around the square bluff body. The effect of Richardson number (Ri), power-law index (n) on

streamlines and isotherm contours is studied thoroughly.

4.1. Validation of Results

Table 4.1, shows the comparison of drag coefficient and Nusselt number for mixed

convection in the range Re = 100, Pr = 0.7 and Ri = 0 and 1 in the two dimensional vertical

unconfined domain with literature value. A superb conformity is found among the current

study and that of Sharma and Eswaran [9] and Chatterjee and Mondal [21]. The

percentage deviations are found to be about 1.1% for drag coefficient, and about 0.52% and

0.81% for Nusselt number in both studies at Ri = 0. However, the percentage deviations is

found to be about 0.35% for drag coefficient and about 3.87% and 0.37% for Nusselt number

in both studies respectively at Ri = 1. The slight disparity between these studies is attributed

to the unlike channel dimension and time step.

Table 4.1: Comparison of current outcomes with literature value for Re=100, Pr=0.7 and Ri=0 and 1
Source CD % deviations Nu % deviations
Ri=0
Present study 1.4925 4.0191
Sharma and Eswaran [9] 1.5092 1.11 3.9984 0.52
Chatterjee and Mondal [21] - - 3.9868 0.81
Ri =1
Present study 2.6438 4.8637
Sharma and Eswaran [9] 2.6346 0.35 4.6823 3.87
Chatterjee and Mondal [21] -- - - 4.8457 0.37

Further, Table 4.2 presents the comparison of CD and cylinder Nu for convective heat

transfer defined by Ri = 0 at Re = 10 and 40 with Sharma et al. [23] and Dhiman et al. [24].

Again, a close correspondence is observed between three studies in Table 4.2. The highest

divergence in the values of CD and cylinder Nu observed are around 0.52% and 0.38% for Re

= 10 and it has found 4.05% and 2.52% for Re = 40.
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Table 4.2: Comparison of current outcomes with literature value for Pr=0.7, Ri=0 and Re=10 and 40
Source Re CD % deviations Nu % deviations
Present study 10 3.2728 1.5565
Sharma et al.[23] 10 3.2898 0.52 1.5573 0.05
Dhiman et al.[24] 10 3.2599 0.39 1.5624 0.38

Present study 40 1.7088 2.6666
Sharma et al.[23] 40 1.7809 4.05 2.6012 2.52
Dhiman et al.[24] 40 1.7668 3.28 2.6969 1.12

Further, Table 4.3 presents the comparison of drag coefficient, Strouhal number and

Nusselt number for convective case defined by Ri = 0 at Re = 100 and power-law index, n =

0.5, 0.6 and 0.8 with Sahu et al. [25]. Again, a close correspondence is observed between

two studies in Table 4.3. The upper limit of the digression in the CD, Strouhal number and

time-averaged cylinder Nu is about 4.48%, 3.77% and 0.64% for Re=100.

Table 4.3: Comparison of current outcomes with literature value for Pr=50, Ri=0 and Re=100
Source CD % error St %error Nu % error
n=0.5
Present study 1.5515 0.1289 22.3668
Sahu et al.[25] 1.6243 4.48 0.1339 3.77 22.2247 0.64
n=0.6
Present study 1.3975 0.1475 -
Sahu et al.[25] 1.4482 3.50 0.1496 1.40 -
n=0.8
Present study 1.4177 0.1515 18.0654
Sahu et al.[25] 1.4433 1.77 0.1558 2.76 17.9642 0.56

4.2. Flow Patterns

Unsteady streamline profiles in the region surrounding the submerged square cylinder

are shown in Figures 4.1 - 4.4 for shear thinning behavior of fluid. Values of different

parameters are non-Newtonian flow index (n) = 0.2, 0.6, 0.4, 1, Reynolds number (Re) = 75,

100, 125, 150 and Richardson number (Ri) = 0, 0.5, 1. The instantaneous wake size is seen to

be smallest for n = 0.2 (shear-thinning fluid) and the largest for n = 1 (Newtonian fluid) at Re

= 75. It is easily inferred that the wake size is enhanced in both length and width with fluid

manners converted from pseudo-plastic (n < 1) to Newtonian (n = 1) for a particular

Reynolds number (Re). A qualitative explanation is provided for the above phenomena.

Shear-thinning fluids experience lesser viscosity in the surrounding area of the exterior of the

cylinder and this slowly rises away from the cylinder with the decreasing shear rate. Thus, it
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can be deduced that, shearing is restricted to a small region in the vicinity of the cylinder

which is surrounded by a highly viscous region. As expected, this virtual confinement

suppresses wake region. This clearly explains the mitigation of wake region with increasing

power-law index (n). Furthermore, the flow field shows periodicity in the entire Reynolds

number range  150Re75  in the present study, which is well in line with literature [26].

Flow separation commences from fixed corners of the square cylinder and two

asymmetric (about the mid-plane) wakes form at its rear end. This observation is well

correlated with the existing study of Chandra and Chhabra [26] who have observed similar

periodicity with semi-circular cylinder. Wakes form in due course of time, grow and

alternatively break off from the main body. The trend is repeated after a fixed time interval

thereby contributing to periodic nature. Owing to increased frequency of vortex shedding at

high Reynolds numbers, two wakes are seen to be attached at the rear surface at Ri = 0. While

at Re = 150, Ri = 1 the number of these wakes reduces to one. Hence, it is obvious that

increasing turbulence and the degree of mixed convection, reduces the wake number.

Figures 4.1 – 4.4 represents the streamline patterns for range of Re = 75 – 150, n = 0.2

– 1.0, Ri = 0 – 1 and Pr = 50 (fixed value). It can be noted from Figure 4.1 (a – l) that for the

range of Re = 75 – 150, the flow is unsteady for all Ri at n = 0.2. However, for n = 0.4 flow is

steady for Ri = 0.5 and 1 (Figure 4.2 b, c) while it is unsteady for Ri = 0 (Figure 4.2 a). Also

it can be noted from Figure 4j that the flow is symmetric about the central axis for Reynolds

number of 100 and Richardson number of 1. For all other Re and Ri at n = 0.4, the flow is

unsteady. It can also be noted the flow is steady for Re = 75 and Ri = 0.5, 1 at n = 0.6, 1

(Figure 4.3 – 4.4). This is well matched with Chandra and Chhabra [26] where similar

profiles have been obtained.
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Figure 4.1: Representative (a-l) streamlines contours for n=0.2 at constant Pr =50

Figure 4.2: Representative (a-l) streamlines contours for n =0.4 at constant Pr =50
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Figure 4.3: Representative (a-l) streamlines contours for n=0.6 at constant Pr =50

Figure 4.4: Representative (a-l) streamlines contours for n=1 at constant Pr =50
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4.3. Thermal Patterns

Isotherm profiles are used to depict the temperature field near the bluff body. The

isotherms crowd in the upstream way with growing value of Reynolds number, and/or Prandtl

number. This shows that the heat transfer increases with escalating Re as well as Pr due to

increase in turbulence, temperature gradient. The effect of non-Newtonian flow index on

isotherm profiles is observed to be largely prominent at higher values of Re, Pr. The shear-

thinning nature of fluid, described by the power-law index (n < 1) enhances heat transfer due

to progressive thinning of thermal boundary layer near the bluff body as n decreases.

Figures 4.5 – 4.8 represents the isotherm patterns for range of Re = 75 – 150, n = 0.2

– 1.0, Ri = 0 – 1 and Pr = 50 (fixed value). It can be noted from Figure 4.5 (a – l) that for the

range of Re = 75 – 150, the flow is unsteady for all values of Ri at n = 0.2. However, for n =

0.4 flow is steady for Ri = 0.5 and 1 (Figure 4.6 b, c) while it is unsteady for Ri = 0 at all

values of n = 0.2, 0.4, 0.6, 1 (Figure 4.6 a). Clustering of isotherms at the front end of the

cylinder directly implies elevated temperature gradients thereby high value of local Nusselt

number. Downstream area shows periodicity of isotherm layers. The recirculating region is

seen to increase as flow transits from shear thinning to Newtonian behavior. A direct offshoot

of this recirculating region is the suppression of transverse oscillations. Also it can be noted

from Figure 4.6 j that the flow is symmetric about the central axis for Reynolds number of

100 and Richardson number of 1. For all other Re and Ri at n = 0.4, the flow is unsteady. It

can also be noted the flow is steady for Re = 75 and Ri = 0.5, 1 at n = 0.6, 1 (Figures 4.7 –

4.8). This is also well matched with Chandra and Chhabra [26] where similar profiles have

been obtained.
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Figure 4.5: Representative (a-l) isotherms profiles for n=0.2 at constant Pr =50

Figure 4.6: Representative (a-l) isotherms profiles for n=0.4 at constant Pr =50
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Figure 4.7: Representative (a-l) isotherms profiles for n=0.6 at constant Pr =50

Figure 4.8: Representative (a-l) isotherms profiles for n=1 at constant Pr =50
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4.4. Individual and Total Drag Coefficient (CD)

For a constant Re, the total drag coefficient (CD) is found to decrease with increasing nature

of shear-thinning behavior of fluid. This behavior is observed for the range of Ri studied i.e.

Ri = 0 to 1. We can also see the similar trend (decreasing CD) for the nature of flow moving

from mixed convection (Ri = 1) to pure forced convection (Ri = 0). Friction drag coefficient

is clearly seen to decrease with increasing Re. For a particular value of Ri it enhances with

rising power-law index. As already seen that n is found to have a strong influence at low Re

as at a higher value because the effect of viscosity is reduced at higher values of Re.

Figure 4.9: Variation of drag coefficient with power-law index (n)
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till a certain value after which it increases again. Also, with the increase in the value of Re the

drag coefficients record higher values. Initially, the drag coefficient values are the highest for

Ri = 0. However, on small increment in the n, there is a cross-over in the curves for unlike Ri

thereby emphasizing the fact that the drag coefficient value now enhances with the augment

in the aiding buoyancy behavior.

Figure 4.10: Variation of drag coefficient with Reynolds number (Re) at constant n
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Chhabra [26]. On the other hand it can be observed that with increase in the value of n, drag

coefficient decreases for a particular value of Ri.

Figure 4.11: Variation of drag coefficient with Reynolds number (Re) at constant Ri
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Mixed convection is seen to increase Nusselt number further than that in forced convection.

This effect can be observed to be more prominent at low Re than that at higher Re. Heat

transfer increase is seen to be proportional to Reynolds number, Richardson number.

Figure 4.12: Variation of Nusselt number with power-law index (n)
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Figure 4.13: Variation of Nusselt number with Reynolds number (Re) at constant n
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Figure 4.14: Variation of Nusselt number with Reynolds number (Re) at constant Ri
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4.6 Strouhal number (St)

Characterization of fully periodic flow region requires Strouhal number (St) to determine the

non-dimensional frequency of vortex shedding. Figure 4.15 explains the deviation of Strouhal

number (St) with Re and non-Newtonian flow index (n). As expected, for Newtonian fluids,

St increases with Re. With pseudo-plasticity effect periodicity of flow is observed as reported

by Chandra and Chhabra [26]. Strouhal number (St) increases as behavior of fluid flow

approaches Newtonian from shear thinning at Re=75. As Re further increases St decreases

roughly till Re=125 then again rises.

Figure 4.15: Variation of Strouhal number with Reynolds number (Re) at constant Ri
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CHAPTER - 5

CONCLUSIONS

A numerical study of flow past a heated square cross sectional cylinder in a vertical

domain, under the influence of aiding buoyancy has been reported. The ranges of the

engineering parameters are: Reynolds number (Re) 75 ≤ Re ≤ 150, Richardson number (Ri) 0

≤ Ri ≤ 1 (forced and mixed convection), n = 0.2 to 1 at a constant Prandtl number (Pr) = 50.

As predictable, for fluids having n < 1, the impact of Re, Pr, and non-Newtonian flow index

on fluid flow and thermal exchange behaviors is observed to be more complex than that on

the Newtonian fluids. For the Newtonian fluids, at lower Re the isotherms are found to be

spread out as viscous forces are dominant while enhancement in heat transfer at higher Re

has been confirmed by closely spaced isotherms for a fixed value of Ri and Pr. The isotherms

are found to cluster highest at the front, then at right and left and are least close at rear portion

of the bluff body which clearly implies that the thermal exchange rate is highest on the front

face of the square cylinder and least at the rear portion. The total drag (CD) is found to

decrease with increase in Re at fixed value of Ri. However, Nusselt number shows opposite

behaviour, as expected. Alternatively, for shear-thinning fluids, the maximum local Nusselt

number may occur at some intermediate location, similar to the observation of a semi-circular

cylinder immersed in power-law fluids [26]. Due to lower effective viscosity, shear-thinning

fluid behavior enhances the rate of heat transfer which is further aided by higher Reynolds

number. Mixed convection (characterized by Ri>0) is seen to increase Nusselt number further

than that in forced convection. As theory suggests, Strouhal number increases with Reynolds

number (Re) for Newtonian fluids. While for shear thinning fluid behavior, periodicity of

flow is observed. Strouhal number is found to reduce roughly till Re=125 then again rises.
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