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Abstract

Part 1:Steady and unsteady forced convection flow and heat transfer past a long
expanded trapezoidal bluft body are investigated for the air as working fluid for Re = 1 — 150.
The wake length increases as the Reynolds number increases in the steady flow regime (
1 <Re <£47). The transition from steady regime to unsteady regime occurs between Re = 47 and
48. The total drag coefficient decreases with the increasing value of the Reynolds number up to
Re = 90 and thereafter it increases with Reynolds number. However, heat transfer as well as
Strouhal number increase with the increasing value of the Reynolds number. The maximum
augmentation in heat transfer for the expanded trapezoidal cylinder with respect to the tapered
trapezoidal cylinder is found to be approximately 146%. On the other hand, pressure drop shows
an enhancement of approximately 97% for the expanded trapezoidal cylinder when compared
with the tapered one. Simple correlations of wake length, drag, average Nusselt number and
Strouhal number with Reynolds number have also been established.

Keywords: Expanded trapezoidal cylinder; Reynolds number; Wake length; Drag; Nusselt
number; Strouhal number and Pressure loss.

Part 2:The two-dimensional numerical simulation of non-Newtonian power-law fluids
across a heated trapezoidal bluff body has been studied in an unconfined configuration. The
range of physical parameters considered as Reynolds number (Re) = 1 - 40, power-law index (n)
= 0.4 - 1.8 and Prandtl number (Pr) = 50. The flow and temperature fields are represented by
streamline and isotherm patterns for varying values of Re and n. The individual and overall drag
coefficients, recirculation length and Nusselt number are calculated for the above range of
settings. It is found that the drag coefficient decreases for 1 <Re <15 with increase in power-law
index. However, for 20<Re <40, the drag coefficient increases with increase in power-law
index. The recirculation length and average Nusselt number increase with increase in both
Reynolds number and power-law index. Finally, simple empirical equation relating the average

Nusselt number with the Reynolds number has been derived.

Key words: Power-law fluid;trapezoidalcylinder; wake length; drag; Nusselt number; streamline

and isotherm contours.
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Part 1:

Lrms

dP

Nomenclature

front side of an expanded trapezoidal cylinder, m
rear side of an expanded trapezoidal cylinder, m
specific heat of the fluid, J kg™ K

total drag coefficient (=2F, / pU>b)

friction drag coefficient (= 2F,. / pU’b )
pressure drag coefficient (= 2F,,/ pU’b)

RMS value of the drag coefficient

total lift coefficient (=2F, / pU2b)

RMS value of the lift coefficient

pressure drop

vortex shedding frequency, s

drag force per unit length of the cylinder, N m™

friction drag force per unit length of the cylinder, N m™
pressure drag force per unit length of the cylinder, N m™

lift force per unit length of the cylinder, N m™
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h local heat transfer coefficient, W m™ K!

h average heat transfer coefficient, W m~ K
H height of the computational domain, m

k thermal conductivity of the fluid, W m™ K
L length of the computational domain, m

L. wake or recirculation length, m

Nu local Nusselt number (= hb/k )

Nu average Nusselt number (= hb/k )

Nu,, RMS value of the average Nusselt number
p pressure, Pa

Pr Prandtl number (= uc,, / k')

Re Reynolds number (= pU_b/ 1)

St Strouhal number (= fb/U )

T temperature, K

T, temperature of the fluid at the inlet, K

T, constant wall temperature at the surface of the cylinder, K
t time, s

U, uniform velocity at the inlet, m s

V. component of the velocity in the x-direction, m s™



v, component of the velocity in the y-direction, m s™

X stream-wise coordinate, m

X, downstream distance, m

X, upstream distance, m

y transverse coordinate, m

Greek symbols

H viscosity of the fluid, kgm™' s™'

P density of the fluid, kg m™

Part 2:

a rear side of a tapered trapezoidal cylinder, m
b front side of a tapered trapezoidal cylinder, m

¢ specific heat of fluid, J/kg. K

G Surface pressure coefficient

. F,
Cp total drag coefficient (= 5

pU-b

Cor friction drag coefficient
Cop pressure drag coefficient
Cr total lift coefficient
Fp drag force per unit length, N/m

h local heat transfer coefficient, W/m>.K



h Average heat transfer coefficient, W/m*.K

H height of the computational domain, m

I, second invariant of rate of deformation tensor, s
k thermal conductivity of fluid, W/m.K

L Length of the computational domain, m

Lr wake length, m

m power-law consistency index, Pa.s"

n power-law index

Nu local Nusselt number (= % )

Nu Average Nusselt number

P pressure, N/m?
Pe Peclet number (=RePr)
C n—1
Pr Prandtl number (= i ($j )
k b
P, local pressure at a point on the surface, N/m”
P, reference pressure far away from the cylinder, N/m*
2-nypn
Re Reynolds number (= pYL b )
s Surface area, m’
T, temperature of the fluid at the inlet, K

T, constant wall temperature at the surface of the cylinder, K
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t time(=¢ /b/U_))

Us uniform velocity at the inlet, m/s
u component of the velocity in x direction (= g—)
\ component of the velocity in y direction (= l‘;—)
X stream-wise coordinate (= % )
Xy down stream distance of the cylinder, m
X upstream distance of the cylinder, m

. oy
y transverse coordinate (= 5 )
Greek symbols

T -T
0 temperature (= (*—‘”) )

(T, -T.)

viscosity of the fluid, kg/m.s
density of the fluid, kg/m’

p
& rate of strain tensor, s

n viscosity of the power-law fluid, Pa.s/k
¢ body force, kg.m/s

T deviatoric stress tensor

o stress tensor

Superscripts
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CHAPTER 1

INTRODUCTION

Flow around bluff bodies in both steady and unsteady regimes has been investigated
extensively due to its relevance in various engineering applications. The trapezoidal bluff
body is a typical configuration of vortex shedding bodies mounted on vortex flow meters and
is widely used in electronic cooling, heat exchange systems, offshore structures, probes and
sensors, flow metering devices and so on. However, the primary application of trapezoidal
bluff bodies is to design, construct and operate a vortex flow meter. A vortex flow meter is
differential pressure gauze which is based on the flow across a trapezoidal bluff body,
especially tapered in shape. The flow around such obstacles is more complicated than regular

geometries and very limited information is available in the literature.

Pankanin [1] made a detailed analysis of the various methods of investigating
phenomena of the vortex flow meter and observed that the bluff body most suitable for the
design of this type of device is a sharp edged trapezoidal cylinder. Xing et al. [2] performed
numerical simulations to optimize the bluff body shape for increasing the efficiency of a
vortex flow meter and observed that the tapered trapezoidal shaped bluff body serves the
purpose. Venugopal et al. [3] carried out experimental investigations on vortex flow meter
with the differential wall pressure measurement method and concluded that the tapered
trapezoidal bluff body used by them is optimum. Further, a detailed analysis of multiple
surrogates for the shape optimization of bluff body-facilitating mixing has been carried out
by Mack et al. [4] thereby explaining the importance of tapered configuration in cost
reduction for the construction of surrogates. Also, a trapezoidal bluff body is used for the
setting up of piezoelectric sensors as experimented and explained by Wang et al. [5]. Further,
trapezoidal shape finds its use in the construction of a cathode array ultrasound probe used by
medical science for diagnosis. Gee et al. [6] presented a novel technique for 3D ultrasound
probe calibration. The principle of operation is that the beam is aligned with a set of coplanar
wires strung across a rigid frame. The probe which is trapezoidal in shape is mounted on a
precision-manufactured mechanical instrument which allows adjustment and measurement of

their relative pose. The scan plane used and the imaging array is also trapezoidal in shape.



The present work is concerned with the flow and heat transfer around a long trapezoidal bluff

body for power-law fluids.

1.1 Bluff body flow

A boundary layer separation is always experienced by a bluff body when a fluid flows
past it. Behind this bluff body (here the bluff body being trapezoidal) very strong flow
oscillations is observed in the wake region. A periodic flow motion will develop in the wake
as a result of boundary layer vortex shedding from either side of the cylinder at certain
Reynolds number range. This regular pattern of vortices in the wake is called a Karman
vortex street which creates an oscillating flow at a discrete frequency. This oscillatory nature
of the vortex shedding phenomenon can sometimes lead to adverse structural vibrations
which are initiated due to the resonance of the frequencies. In order to understand the

phenomenon properly a few terms are needed to be addressed in details which are as follows:

1.1.1 Flow Separation: When the boundary layer travels far enough against an
adverse pressure gradient that the speed of the boundary layer relative to the object falls
almost to zero, flow separation is said to occur [7- 8]. The fluid flow becomes detached from
the surface of the object, and instead takes the forms of eddies and vortices. In aerodynamics,
flow separation can often result in increased drag, particularly pressure drag which is caused
by the pressure differential between the front and rear surfaces of the object as it travels
through the fluid. For this reason much effort and research has gone into the design of
aerodynamic and hydrodynamic surfaces which delay flow separation and keep the local flow
attached for as long as possible. Examples of this include the fur on a tennis ball, dimples on
a golf ball, turbulators on a glider, which induce an early transition to turbulent flow regime;
vortex generators on light aircraft, for controlling the separation pattern; and leading edge
extensions for high angles of attack on the wings of aircraft. The flow reversal is primarily
caused by an adverse pressure gradient imposed on the boundary layer by the outer potential

flow. The stream-wise momentum equation inside the boundary layer is stated as

2
u@u: 1dp+vau

os  pds oy
where s, yare stream-wise and normal coordinates. An adverse pressure gradient is
when dp/ds >0, which then can be seen to cause the velocity to decrease along and

possibly go to zero if the adverse pressure gradient is strong enough [9].
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1.1.2 Wake: A wake is the region of recirculating flow immediately behind a moving
or stationary solid body, caused by the flow of surrounding fluid around the body. In fluid
dynamics, a wake is the region of disturbed flow (usually turbulent) downstream of a solid
body moving through a fluid, caused by the flow of the fluid around the body. In
incompressible fluids (liquids) such as water, a bow wake is created when a watercraft moves
through the medium; as the medium cannot be compressed, it must be displaced instead,
resulting in a wave. As with all wave forms, it spreads outward from the source until its
energy is overcome or lost, usually by friction or dispersion. The formation of these waves in
liquids is analogous to the generation of shockwaves in compressible flow, such as those

generated by rockets and aircraft traveling supersonic through air

1.1.3 Vortex Shedding: In fluid dynamics, vortex shedding is an oscillating flow that
takes place when a fluid such as air or water flows past a cylindrical body at certain
velocities, depending to the size and shape of the body. In this flow, vortices are created at
the back of the body and detach periodically from either side of the body. The fluid flow past
the object creates alternating low-pressure vortices on the downstream side of the object. The
object will tend to move toward the low-pressure zone. The boundary layer separates from
the surface forms a free shear layer and is highly unstable. This shear layer will eventually
roll into a discrete vortex and detach from the surface (a phenomenon called vortex
shedding). Another type of flow instability emerges as the shear layer vortices shed from
both the top and bottom surfaces interact with one another. They shed alternatively from the
cylinder and generate a regular vortex pattern (the Karaman vortex street) in the wake. The

vortex shedding occurs at a discrete frequency and is a function of the Reynolds number.

1.1.4Aerodynamic Loading: In consistency with Newton’s second law of motion it
can be stated that an integration of the linear momentum inside a control volume surrounding
the circular cylinder can provide information of the aerodynamic forces (lift and drag) acting
on the cylinder. Consequently, there must be also an oscillatory up and down force acting
periodically on the cylinder. This periodic forcing exerting on the cylinder body is

responsible for the vortex-induced vibrations as described earlier.

1.1.5 Momentum Balance: This concept can be used to determine the external force
acting on an object. Usually, there is a momentum deficit in the wake profile along the
stream-wise direction as relative to the incoming momentum upstream of the

object. Therefore, a simple balance of the momentum flow in and out of the control volume
4



surrounding the object suggests that there is net force acting on the object. This net force
along the flow direction is called the drag. Averaged velocity profiles of the flow past a
circular cylinder is provided as a general representation of the wake flow field. Selected
profiles at several representative regions also presented for reference. Near the bluff body,
flow separates from the surface. Immediately behind the bluff body, a recirculation region
exists with a strong reversing flow. The region between the cylinder and the end of the
recirculation region is called the vortex formation region. Further downstream, the two
separating shear layers merge and the velocity profile presents a typical wake profile. It is
clear that there is a deficit in the center of the wake. This deficit in the momentum flow is the

direct result of drag force acting on the cylinder.
1.2 Power law fluids

A Power-law fluid, or the Ostwald—de Waele relationship, is a type of generalized Newtonian

fluid for which the shear stress, 7, is given by

iy
oy

Where K is the flow consistency index (Pa.s"), ou/0y is the shear rate or the velocity gradient
perpendicular to the plane of shear (s™"), and # is the flow behavior index (dimensionless).
The following quantity represents an apparent or effective viscosity as a function of the shear

rate (Pa.s):

n-1
ou
/ueﬁr = K[g]

Also known as the Ostwald—de Waele power law, this mathematical relationship is
useful because of its simplicity, but only approximately describes the behavior of a real non-
Newtonian fluid. For example, if n were less than one, the power law predicts that the
effective viscosity would decrease with increasing shear rate indefinitely, requiring a fluid
with infinite viscosity at rest and zero viscosity as the shear rate approaches infinity, but a
real fluid has both a minimum and a maximum effective viscosity that depend on the physical
chemistry at the molecular level. Therefore, the power law is only a good description of fluid

behavior across the range of shear rates to which the coefficients were fitted.



Power-law fluids can be subdivided into three different types of fluids based on the value of
their flow behavior index:

n Type of fluid
n<l Shear-thinning fluids
n = 1 Newtonian fluids

n>1 Shear-thickening fluids

Shear-thinning fluids: Shear-thinning is an effect where a fluid's viscosity—the
measure of a fluid's resistance to flow—decreases with an increasing rate of shear stress.
Another name for a shear-thinning fluid is a pseudoplastic. This property is found in certain
complex solutions, such as lava, ketchup, whipped cream, blood, paint, and nail polish. It is
also a common property of polymer solutions and molten polymers. Pseudoplasticity can be
demonstrated by the manner in which squeezing a bottle of ketchup, a Bingham plastic,
causes the contents to undergo a change in viscosity. The force causes it to go from being
thick like honey to flowing like water. The study of such phenomena is called rheology. All
materials that are shear thinning are thixotropic, in that they will always take a finite time to
bring about the rearrangements needed in the microstructural elements that result in shear
thinning [10].A common household example of a strongly shear-thinning fluid is styling gel,
which primarily composed of water and a fixative such as a vinyl acetate/vinylpyrrolidone
copolymer (PVP/PA). If one were to hold a sample of hair gel in one hand and a sample of
corn syrup or glycerine in the other, they would find that the hair gel is much harder to pour
off the fingers (a low shear application), but that it produces much less resistance when

rubbed between the fingers (a high shear application).

Newtonian fluids: In continuum mechanics, a fluid is said to be Newtonian if the
viscous stresses that arise from its flow, at every point, are proportional to the local strain rate
— the rate of change of its deformation over time [11 - 13] which is equivalent to saying that
those forces are proportional to the rates of change of the fluid's velocity vector as one moves
away from the point in question in various directions. More precisely, a fluid is Newtonian if,
and only if, the tensors that describe the viscous stress and the strain rate are related by a
constant viscosity tensor that does not depend on the stress state and velocity of the flow. If
the fluid is also isotropic (that is, its mechanical properties are the same along any direction),

the viscosity tensor reduces to two real coefficients, describing the fluid's resistance to

6



continuous shear deformation and continuous compression or expansion, respectively.
Newtonian fluids are the simplest mathematical models of fluids that account for viscosity.
While no real fluid fits the definition perfectly, many common liquids and gases, such as
water and air, can be assumed to be Newtonian for practical calculations under ordinary
conditions. Newtonian fluids are power-law fluids with a behavior index of 1, where the

shear stress is directly proportional to the shear rate:

These fluids have a constant viscosity, u, across all shear rates and include many of the most
common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and
other gases. While this holds true for relatively low shear rates, at high rates most oils in
reality also behave in a non-Newtonian fashion and thin. Typical examples include oil films

in automotive engine shell bearings and to a lesser extent in gear-tooth contacts.

Shear-thickening fluids: A shear thickening fluid, also called a dilatant, is a Non-
Newtonian fluid where the shear viscosity increases with applied shear stress. This behavior
is only one type of deviation from Newton’s Law, and it is controlled by such factors as
particle size, shape, and distribution. The properties of these suspensions depend on Hamaker
theory and Van der Waals forces and can be stabilized electrostatically or sterically. Shear
thickening behavior occurs when a colloidal suspension transitions from a stable state to a
state of flocculation. Such behavior is currently being researched for use in body armor
applications by companies like Dow Corning with their Active Protection System. A large
portion of the properties of these systems are due to the surface chemistry of particles in
dispersion, known as colloids. This can readily be seen with a mixture of cornstarch and
water, which acts in counterintuitive ways when struck or thrown against a surface. Sand that
is completely soaked with water also behaves as a dilatant material. This is the reason why
when walking on wet sand, a dry area appears underneath your foot. Rheopecty is a similar
property in which viscosity increases with cumulative stress or agitation over time. The

opposite of a dilatant material is a pseudoplastic.



CHAPTER -2

LITERATURE REVIEW

The present work is concerned with the forced convection flow and heat transfer
around unconfined trapezoidal cylinder (tapered and expanded) in both steady and unsteady
regimes. It is hence useful to briefly review the previous works on the momentum and heat
transfer around a cylinder of trapezoidal cross-section and the effects of physical parameters

on flow and heat transfer characteristics.

Steggel and Rockliff [14] demonstrated the effect of after body geometry on the
vortex shedding characteristics of bluff bodies by investigating the viscous flow around
rectangles. They stated that the after body geometry has a significant effect on the shedding
characteristics due to interaction of the rear edge of the body with the separated shear layer
which is formed on the body and which oscillates as a result of the shearing at the rear edge.
With longer bodies and with the ones with greater relative vertical dimension at the rear end,
the presence of the body surface limits the oscillation and hence the possible lift force is
generated. Similarly, Singha and Balachandra [15] investigated the coherent structure
statistics in the wake of a sharp-edged bluff body placed vertically in a shallow channel and
concluded that the wakes formed behind bluff bodies are found to contain a considerable
number of coherent structures of both senses of rotation. The maximum size of the structures
can be as big as twice the width of the bluff body.

Goujon-Durand et al. [16] experimentally investigated the vortex shedding from a
trapezoidal bluff body. They obtained the scaling laws for the evolution of the global mode
describing the envelope of the peak to peak amplitude velocity oscillation in the wake flow
downstream of the body. Vortex emission behind cylinders with trapezoidal cross-section has
been experimentally studied in air-water vertical two-phase flows by Hulin et al. [17] which
is verified and analyzed by using optical fiber probe measurements. Lee [18] numerically
studied the early stages of the symmetrical wake flow developments around a tapered
trapezoidal cylinder for Re = 25 - 1000. The flow starts with no separation and the
symmetrical standing zone of recirculation develops aft of a trapezoidal cylinder with the
advancement of the time. Miau et al. [19] made a detailed study on the low-frequency
fluctuations in the near-wake region of a trapezoidal cylinder with low aspect ratio at high

Reynolds numbers. Chung and Kang [20] studied the Strouhal number from tapered
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trapezoidal cylinders for Reynolds numbers of 100, 150 and 200 at varying height ratios (0.3
— 1). The Strouhal number has minimum values at height ratios of 0.7 and 0.85 for Reynolds
numbers of 100 and 150, respectively. The movement of the flow separation point from the
rear to front corners and the change of secondary vortex strength are important factors in
determining the shedding structures. El Wahed et al. [21] performed a numerical study of
vortex shedding from different shaped bluff bodies, of which tapered trapezoidal bluff body
is one at high Reynolds numbers. They stated that the regular vortex shedding is rapidly
achieved in the case of a tapered trapezoidal bluff body as compared to other obstacles.
Kahawita and Wang [22] carried out the two-dimensional (2-D) numerical simulations of the
Benard von Karman hydrodynamic instability behind trapezoidal bluff bodies. They reported
that the influence of the trapezoidal height is the dominant on the value of Strouhal number,
when compared with the effect of the smaller trapezoidal base width. Venugopal et al. [23]
did experimental investigations on the vortex flow meter with the differential wall pressure
measurement method. They demonstrated that the vortex flow meter comprising of a
trapezoidal cross-section is one of the major contributors in the field of flow metering. The
accuracy, reliability and rangeability are factors which place vortex flow meters ahead of
other differential pressure devices. Recently, Dhiman and Hasan [24] investigated the fluid
flow over a heated tapered trapezoidal cylinder in both steady and time-periodic regimes (Re
= 1- 150) for air as working fluid. The onset of flow separation is observed to exist between
Re =5 and 6. The critical value of the Reynolds number (i.e., transition to periodic unsteady)
exists between Re = 46 and 47. The drag coefficient is found to decrease with the increasing
Reynolds number in the steady regime; however, the drag is observed to increase with
Reynolds number in the unsteady regime. The Strouhal number and the average Nusselt
number increase with the increasing value of the Reynolds number.

On an expanded trapezoidal bluff body, Lee [25] employed a stream function-vorticity
formulation to describe the unsteady flow field for Re = 25 - 1000. Pressure contours, surface
pressure coefficient and drag coefficient are studied through the streamline flow field. Main-
flow and sub-flow regimes are identified through an analysis of the evolution of the flow
characteristics. Chen et al. [26] performed the 2-D flow around a porous expanded
trapezoidal cylinder. At large Darcy number, the Reynolds number has to be higher before
the vortex shedding phenomena occurs and the fluctuation-amplitude of drag coefficient
decreases. The effects of the stress jump parameters are provided for Reynolds number range

20 - 200. Recently, Dhiman and Ghosh [27] made a detailed analysis of the momentum and
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heat transfer across an expanded trapezoidal bluff body. They stated that the wake length
increases as the Reynolds number increases in the steady regime (1 Re 47). The transition
from steady to time-periodic regime occurs between Re = 47 and 48. The total drag
coefficient decreases with the increasing value of the Reynolds number up to Re = 90 and
thereafter it increases with Reynolds number. However, heat transfer as well as Strouhal
number increases with the increasing value of the Reynolds number.

Because no information is available on non-Newtonian momentum and heat transfer
characteristics over a bluff body of trapezoidal cross-section, as far as we know, it is
appropriate to briefly include non-Newtonian studies around other similar obstacles, e.g.
square and triangular cylinders, in the unconfined domain. Evidently, sufficient information
is accessible in the open literature on the flow around square and triangular bluff bodies at
low Reynolds numbers. For instance, Dhiman et al. [28] studied the 2-D flow of power-law
fluids over an isolated square cylinder for and, where n is the power-law index. The shear-
thinning fluid behavior increases the drag above its Newtonian value; whereas, the shear-
thickening behavior reduces the drag below its Newtonian value. Nevertheless, as the value
of the Reynolds number is gradually increased, the role of power-law index diminishes.
Subsequently, they [27] reported the forced convection heat transfer (1< Pr<100) to power-
law fluids from a heated square cylinder for the same range of settings as in [26]. Simple heat
transfer correlations for estimating the value of mean heat transfer coefficient are derived.
Moreover, they [28] investigated the steady mixed convection flow and heat transfer to
Newtonian and power-law fluids from a heated square cylinder for Re=1-30,n=0.8 - 1.5
and Pr = 0.7 - 100. The effects of Prandtl number and of power-law index on the Nusselt
number are found more prominent than that of buoyancy parameter for a fixed Reynolds
number. Similarly, Paliwal et al. [29] studied the steady momentum and forced convection
heat transfer of power-law liquids past a square cylinder for a range of rheological and
kinematic conditions as Re = 5 — 40, n = 0.5 - 1.4 and Peclet number (Pe) = 5 - 400.
However, these computations have been performed by using uniform grid structure.
Likewise, for the case of a triangular bluff body, excellent momentum and heat transfer
results in the unconfined domain can be found elsewhere [30]. Prhashanna et al. [30] stated
that the effect of power-law index gradually diminishes with the increasing Reynolds number
for shear-thinning fluids (n<1) at low Reynolds numbers ( 1<Re<30). Shear-thinning

behaviour is seen to promote heat transfer under otherwise identical conditions, thereby
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making it possible to achieve 50 — 60% increase in heat transfer over and above that in
Newtonian fluids.

Thus, to the extent we know and based on the above discussion, no work is reported
on power-law fluid flow and heat transfer over a long trapezoidal bar besides having
numerous engineering applications. Accordingly, the aim of this study is set to fill this gap in
the literature and to investigate the momentum and heat transfer across a trapezoidal bluff
body for power-law fluids in the range of Reynolds number and power-law index (thereby
including shear-thinning, Newtonian and shear-thickening behaviours) for a Prandtl number
of 50. The value of Prandtl number up to around 50 are severally dealt in chemical,
petroleum, oil and gas industries in the processing of organic fluids like glycols, glycerols,
and petroleum fractions. Moreover, due to high viscosity of such process streams, the

Reynolds numbers are not high [31 - 33].
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CHAPTER -3

PROBLEM STATEMENT AND METHODOLOGY

The work has been divided into the following two parts:
Part 1: Momentum and heat transfer across an expanded trapezoidal bluff body
Part 2:Non-Newtonian power-law fluid flow and heat transfer across a tapered trapezoidal

bluff body at low Reynolds numbers

3.1. Problem statement and governing equations

Part 1: The 2-D, incompressible and laminar flow (flowing from left to right) across
a long expanded trapezoidal cylinder (rear face width, » = 1, front face width, @ =0.55 and
cylinder height in axial direction, » = 1) is considered in an unconfined domain, as shown in

Fig. 1. At the inlet, the flow is uniform and isothermal with a velocity, U and a temperature,
T, . The trapezoidal cylinder is maintained at a constant temperature of 7. (>7. ). The

upstream distance from the inlet plane to the front surface of the trapezoidal cylinder ( X, ) is

set as 125 and the downstream distance between the rear surface of the trapezoidal cylinder
and the exit plane (X, ) is taken as 22 5, with the total length of the computational domain (
L) of 355 in the axial direction. The height of the computational domain (A ) is used as 30

b in the lateral direction. These distances are chosen after a thorough numerical study and

the details are provided below in this section after boundary conditions.

The governing continuity, x- component and y- component of Navier-Stokes, and
thermal energy equations in their dimensionless form for the present system as stated by Bird

et al. [36] can be written as:

Continuity equation

ov.
v, +—2=0 (1)
ox Oy
x-Momentum equation
oy 2 2
v, owy) oY) _ e, 1 ar§+al§ @)
ot ox oy ox Rel ox oy
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y-Momentum equation

ov, N oy, N oy, _ —8_p+i 82Vy . aZVy 3)
ot ox oy dy Rel ox* o’
Energy equation
ov.e 2 2
90,00.0) 00 __1 (56 26 )
ot ox oy RePr{ ox® oy

In equations (1) — (4), the Reynolds and Prandtl numbers are defined as
Re=bU,p/ pand Pr= uc, / k, respectively.

The boundary conditions (in their dimensionless form) for the unconfined flow and
heat transfer across a heated expanded trapezoidal cylinder can be written as

o At the inlet boundary, V. =1,V =0and 8=0

*  On upper and lower boundaries, 0V, /0y =0, V,=0and 06/0y=0
®  On the surface of the trapezoidal obstacle, V., =0, V, =0and =1
o At the exit boundary, oV, /0x=0;0V,/0x=0 and 00/ox=0

The governing equations (1 - 4) along with above noted boundary conditions are

solved by using a finite volume solver Ansys Fluent [37].

- Slip Boundary
Expanded Trapezoidal
- Cylinder H2

V,=0,V, =0,0=1

Figure 1: Schematics of the flow around an expanded trapezoidal cylinder in the unconfined
domain

13



The second order upwind scheme is used to discretize convective terms; whereas, the
diffusive terms are discretized by central difference scheme. The second order implicit time-
integration method is used here and the dimensionless time step is set to 0.01. To determine
the optimum value of the time step, three values of the time step (0.1, 0.01 and 0.005) are
studied at Re = 150. The relative difference in the values of physical parameters (drag,
Nusselt and Strouhal numbers) is observed about 2.9%. While the corresponding difference
in the values is found less than 0.5%. The resulting algebraic equations are solved by Gauss-
Siedel iterative scheme. The residuals of the continuity, x- and y- momentums and energy
equations are used of the order of 10™° in the steady regime and of the order of 10?° each in

the unsteady regime.

Part 2: The two-dimensional unconfined laminar flow and heat transfer
characteristics have been determined for power-law fluids around a long tapered trapezoidal
obstacle. The schematics of the present flow system are presented in Fig. 2. The fluid flowing

from left to right is uniform and isothermal with a velocity U_and a temperature T, at the

inlet. The tapered trapezoidal cylinder is maintained at a constant temperature of T, (> T,

).The upstream distance (X,) is 12b, downstream distance (X;) is 205 and the height of the
computational domain (/) is 300 in the lateral direction. The front face width of a trapezoidal
cylinder (b)= 1, rear face width (a) = 0.5b, and cylinder height () = 1 with the total length of
the computational domain (L) = 335 in the axial direction are used in this work. These values
are decided after a thorough investigation.

For an incompressible, 2-D and laminar flow, the dimensionless form of the continuity
equation, the x- component and y-component of Cauchy’s equation and thermal energy
equation as stated by Bird et al. [36] are given below:

Continuity equation:

ou Gv:

—+—=0 5
ox Oy ®)

x- Momentum equation:

0
%_}u%_kva_u:_a_p_;’_iﬁ i (6)
ot ox Oy ox Rel ox oy
y- Momentum equation:
0 0
@+u@+v@=_a_p+i i_ki (7)
o ox oy oy Rel ox oy
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Energy equation:

00 00 00 1(0°0 06
—tU—+V——=—| (8)
ot ox Oy Pelox™ oy
The power-law fluid behaviour is represented by
r;=2ng;  (Lj=xY) (€))
and
n=(1,/2)""" (10)
where
2 2 2
12/2:2(6—”[) +2 ou + 6_u+@ (11)
ox oy oy Ox

In this study, thermo-physical properties of the streaming fluid are assumed to be
independent of the temperature. The viscous dissipation and the buoyancy effects are also
neglected such that the present work is applicable to situations where the temperature

difference is not too large and for moderate viscosity and/or shearing levels.

— Slip boundary

Trapezoidal cylinder H72

| _u=0,v=10,0=1 H
R i {a=0.5p ——— == —m oo

R | / Slip boundary

Figure 2: Schematic diagram for unconfined flow around a heated tapered trapezoidal bluff
body
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The boundary conditions in their dimensionless form can be written as: At the inlet

boundary: u=1, v=0 and =0 ;0n upper and lower boundaries: du/dy=0, v=0 and
060/ 0y =0;0n the surface of a trapezoidal bluff body: u =0, v=0 and@=1; and At the exit
boundary: Ou/ox =0, ov/ox=0and98/ox =0. The continuity, the x- and y-components of

Cauchy’s equation and thermal energy equation along with above noted boundary conditions

are solved by using a finite volume method based commercial solver Ansys Fluent [37].
3.2. Numerical methodology

Part 1: The computational grid structure used in this work is generated by using
Ansys workbench, as shown in Fig. 3. The grid consists of 123848 quadrilateral cells with
each side of the expanded trapezoidal cylinder having 100 control volumes. A very fine grid
of cell size of 0.004 5 is used around the obstacle; however, the largest grid size of 0.45 is
used away from the obstacle. Three non-uniform grids (55348 cells, 123848 cells and 220206
with 50, 100 and 150 control volumes, respectively on each side of the cylinder) are tested for
the grid dependence study for Re = 150 and Pr = 0.7. The percentage deviations in the values
of the mean drag coefficient, average cylinder Nusselt number and Strouhal number for the
grid size of 123848 cells are found to be about 2.1 %, 1.7 % and 1.5 %, respectively as
compared to the values for the grid size of 55348 cells. However, the corresponding
differences for 220206 cells are only 0.6 %, 0.3 % and 0.5 %, respectively as compared to the
values for the grid size of 123848 cells. Therefore, the grid size of 123848 cells is found

appropriate to generate further results in the present study.

The upstream dependence is checked at three values of upstream distances of 105, 12
b and 14 b at Re = 1. The relative percentage deviations in the values of total drag
coefficient and average cylinder Nusselt number are found to be less than 1.9% and less than
1.5%, respectively for X, = 125 as compared to the values of the total drag coefficient and
the average cylinder Nusselt number at X, = 105 for X4 = 225 and H = 30b. The
corresponding deviations in the values of total drag coefficient and average cylinder Nusselt
number are found to be less than 0.6% and less than 0.4% for X,= 1254 and 145 .Therefore,
the upstream distance of 125 is used in this study.

Similarly, three values of downstream distances of 205, 225, and 255 are being
used to fix the downstream distance and the study is carried out at Re = 150. The relative

differences in the values of overall drag coefficient and average cylinder Nusselt number are
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found to be less than 1.6% and less than 1.2%, respectively for X4 =225 and 205 . However,
the corresponding differences in the values of total drag and average cylinder Nusselt number
are found to be less than 0.3% and less than 0.1%, respectively for Xq =225 and 255 . Thus,

the downstream distance of 22 5 is found adequate for the generation of results.

The height of the computational domain is fixed by varying the value of the domain
height (H) from 205 to 305 for Re = 1, 100 and 150. The percentage deviations in the values
of the total drag coefficient and the average cylinder Nusselt number are found to be about
3.4 % and 1.3 %, respectively for the domain height of 205 as compared to the values of 30
b for the Reynolds number of unity. For Re = 100, the corresponding percentage deviations
in the values of mean drag coefficient, average cylinder Nusselt number and Strouhal number
are found to be only about 0.3 %, 0.4 % and less than 0.4 %, respectively. However, for Re =
150, the corresponding percentage deviations in the values of mean drag coefficient, average
cylinder Nusselt number and Strouhal number are found to be only about 0.5 %, 0.2 % and

0.7 %, respectively. Thus, the height of the computational domain of 304 is utilized here.

35

10 T30
X

Figure 3: Non-uniform computational grid structure around an expanded trapezoidal
cylinder

Part 2: In the current framework, the identical non-uniform grid structure used in our

recent study [24] is utilized for the generation of new results. Briefly, the computational grid
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consists of 1,20,520 cells (with each side of a trapezoidal cylinder having 100 control
volumes) with a very fine grid of cell size of 0.004h; near the obstacle and the largest grid
size of 0.4b; away from the obstacle is found adequate. The 2-D, steady/unsteady, laminar,
segregated solver module of Ansys Fluent [37] is used to solve the incompressible flow on

the collocated grid arrangement.

0 10 20 30

Figure 4: Non-uniform computational grid around a tapered trapezoidal bluff body

In addition, constant density and non-Newtonian power-law viscosity modules are used. The
second order upwind scheme is used to discretize convective terms; whereas, the diffusive
terms are discretized by central difference scheme. The second order implicit time-integration
method is also used and the dimensionless time step is set to 0.01 as the smaller value of the
time step produced negligible changes in the values of the physical parameters considered.
The resulting algebraic equations are solved by Gauss-Siedel iterative scheme and the
residual of continuity, the x- and y- components of velocity are used of the order of 10" in
the steady regime and of 10%° each in the time-periodic regime. Similar to [24], the upstream
and downstream distances of 1256 and 20b respectively in the axial direction, and the domain
height of 3054 in the lateral direction are found adequate in this work. The computational
domain used for the present study has also found to be consistent with the experimental set up

of Venugopal et al. [23] for the flow around a tapered trapezoidal cylinder, where the
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upstream and downstream distances are fixed at 25b and 15b respectively. Nevertheless,
Venugopal et al. [23] conducted their study for Re ranging from 1.1x10° to 3x10° and the

present results are limited to low Reynolds numbers.
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CHAPTER -4

RESULTS AND DISCUSSION

Part 1: In the present numerical investigation, forced flow and heat transfer around a
long expanded trapezoidal cylinder are examined systematically in both steady and unsteady
regimes for Re = 1 — 150 (in the intervals of 10) for the air as working fluid (Pr = 0.7). The
additional calculations are also carried out to determine the transition from steady to time-
dependent regime. The various engineering parameters such as drag and lift coefficients,
Strouhal number, local and average Nusselt numbers and pressure drop are calculated for the
above range of settings. The representative streamline and isotherm contours are provided to
understand the flow and thermal structures around the expanded cylinder under consideration.
The results thus obtained after numerical simulations have been compared with the reliable
results available in the literature and also compared with square and tapered trapezoidal

cylinders.

Part 2: This section provides the details of numerical computations, which have been
performed to investigate the momentum and heat transfer around a long trapezoidal bluff
body in the unconfined domain, for Reynolds number (Re) = 1 - 40, power-law index (n) =
0.4 - 1.8 and Prandtl number (Pr) = 50. The global quantities like drag coefficient, wake
length and Nusselt number are evaluated for shear-thinning (1< 1), Newtonian (n = 1) and
shear-thickening (7> 1) liquids. The results thus obtained have been compared with the
reliable results available in the literature and also compared with that of a long square bluff
body. The maximum augmentation in heat transfer is calculated for the present flow system
as well as with respect to a square cylinder. In the end, simple empirical equations relating
the average Nusselt number with Reynolds number and power-law index are derived. These
simple expressions can also be utilized to determine the intermediate values of the average

Nusselt numbers in the range of settings covered in the present study.

4.1 Validation/Benchmarking of results

Part 1: The validation of present numerical methodology is made with the limited
results of Chen et al. [26] and Lee [25] on the expanded trapezoidal cylinder. In the present
study, the dimensionless wake length is found to be about 1.21 and this is in line with the
results of Chen et al. [26] of 1.19 at the Reynolds number of 20. Therefore, an excellent

agreement exists between present results and that of Chen et al. [26]. However, when a
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comparison is made between the present results to that of Lee [25], it has been observed that

a significant deviation exists between the two studies. For instance, while the drag coefficient

is found to be about 1.12 from the results of Lee [25] at the Reynolds number of 50, the

present results recorded it to be about 1.39 for the same value of the Reynolds number. The

prime reason behind this is that the grid size used by Lee [25] for the computation is much

coarse (19481 cells) than that used for present study (123848 cells). Also, the domain of

study for Lee [25] is around one-third of that of the present study. In addition, the

inconsistency in the numerical results is due to modeling error, discretization error, numerical

error and accuracy of the scheme as explained by Roache [38].

Table 1: Validation of the present results of Drag coefficient (Cp) and Strouhal number (St)

with the literature values for unsteady unconfined flow regime at Re = 100

Source Co % Deviation of Cp St % Deviation of St
Present work 1.3045 - 0.1610 -
Patnana et al. [39] 1.3409 2.71 0.1657 2.84
Baranyi [41] 1.3460 3.08 0.1630 1.23
Cheng et al. [42] 1.3200 1.17 - -
Mettu et al. [43] 1.3020 0.19 0.1600 0.62
Henderson [44] 1.3490 3.30 - -
Sivakumar et al. [45] 1.3250 1.55 0.1641 1.89
Mittal [46] 1.3220 1.32 0.1644 2.07
Clift et al. [47] 1.3300 1.92 0.1670 3.59
Ding et al. [48] 1.3250 1.55 0.1640 1.83
Liu et al. [49] 1.3500 3.37 0.1640 1.83

Since an anomaly exists between the present results and that of Lee [25], the present

work has been validated with Patnana et al. [39 - 40] for the fluid flow and heat transfer
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across a cylinder at a high value of Reynolds number (Re) = 100 (Tables 1 and 2). The
maximum deviations in the values of physical parameters like drag coefficient (Cp), Strouhal
number (St) and Nusselt number (Nu) have been observed to be as low as about 2.71%,
2.84% and 0.95%, respectively. Tables 1 and 2 also illustrate the comparison of present
results with the literature values [41 - 53] and the percentage deviations for each of the

physical parameters analyzed. This validates the present numerical solution procedure.

Table 2: Validation of the present results with the literature values of Nusselt number (Nu)

for unsteady unconfined flow regime at Re = 100

Source Nu % Deviation of Nu

Present work 5.1042 -

Patnana et al. [40] 5.1530 0.95
Baranyi [41] 5.1320 0.54
Karniadakis [50] 5.1529 0.95
Mahfouz and Badr [51] 5.3100 3.88
Lange et al. [52] 5.1280 0.46
Whitaker [53] 5.2600 2.96

Part 2: The benchmarking of present Newtonian results on a tapered trapezoidal bluff
body is carried out in our recent study [24] and hence it is not reported. Similarly, the present
numerical methodology has been benchmarked in [24] for the flow across a heated expanded
trapezoidal cylinder in the unbounded configuration. Because no work is available for non-
Newtonian flow and heat transfer across a trapezoidal bluff body, the computations have been
carried out for the unconfined circular cylinder and validated with the numerical results of
Sivakumar et al. [54] and Bharti et al. [S5] for extreme values of Re and n at Pr = 50. The
values of drag coefficients for n = 0.6, 1 and 1.8 are found to have a deviation of about
0.51%, 0.48% and 0.30%, respectively at Re = 1, and only about 0.09%, 0.01% and 0.07%,

respectively at Re = 40. Correspondingly, the average Nusselt numbers for n = 0.6, 1 and 1.8
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are found to have a deviation of about 0.28%, 1.22% and 0.01% respectively at Re = 1, and
about 0.34%, 1.01% and 1.02% respectively at Re = 40.

4.2. Flow patterns

Part 1: The flow pattern is represented by streamline contours around the long

expanded trapezoidal cylinder in both steady and unsteady regimes. Streamline contours are a
group of constant velocity lines in the domain of present study which help in the analysis of
fluid flow characteristics and also in identifying the nature of flow (i.e. steady or unsteady).
Figures 5 (a-d) display the streamline contours in the vicinity of the expanded trapezoidal
cylinder in the steady regime (Re = 1, 10, 20 and 40). On the other hand, in the time-
dependent regime, Fig. 6 (a-1) exhibits the instantaneous streamline contours at different
values of Reynolds numbers.
In utter contrast to the nature of the flow separation for the tapered trapezoidal cylinder [24],
where the onset of flow separation occurs between Re = 2 and 3, the flow separation for the
expanded trapezoidal bluff is observed below Re = 1. Further, if a comparative study is
carried out for the flow past an expanded trapeze and that for a square block [28, 57], it is
observed that flow separation occurs earlier for the expanded trapezoidal cylinder than the
square block. This is due to the fact that the separation of flow in the case of a tapered
trapezoidal cylinder occurs from the rear corners as well as the top and bottom surfaces of the
tapered bluff body [24]. However, in the case of an expanded trapezoidal cylinder, the flow
separation occurs only from the rear corners of the bluff body for the range of conditions
covered in this work. This accounts for the difference in the Reynolds number range for the
onset of flow separation for the expanded and the tapered trapezoidal bluff bodies. Also, the
expanded trapezoidal cylinder is a more streamlined body as compared to the other two
because the front side of the expanded trapezoidal cylinder has a length which is half of that
of the tapered and the square cylinders. This can be emphasized with affirmation because the
present work focuses for flow starting from Re = 1 and the Reynolds number range goes up
to Re = 150. It was profoundly observed that the flow separation already existed during
simulation for Re = 1.

The two wakes formed behind the obstacle (i.e. behind the expanded trapezoidal
cylinder) are symmetric along the mid plane in the steady regime for the range Re = 1 — 47
(Fig. 5). As expected, the size of the vortices behind the rear surface of the trapezoidal
cylinder increases with the increasing value of the Reynolds number in the steady flow
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regime. This nature is found to be similar to that of the flow across a square [15, 16] and a
tapered trapezoidal [24] cylinders. Broadly, the wake region for the expanded trapezoidal
cylinder is found to lie in between square [28, 57] and tapered trapezoidal [24] cylinders, as
can be seen in Fig. 5 for the range of settings covered in the current study. Whereas, with
further increasing the value of Re, this behavior is not existent any more and the wakes
formed behind the bluff for the range Re = 48 - 150, are no longer symmetric around the

central axis.

13#m.‘.‘|‘ 13m‘.‘|‘.”

Figure 5: Streamline contours for Re = 1, 10, 20 and 40 in the steady regime

While discussing about the transition of flow from steady to unsteady periodic regime it can

be vividly stated that it occurs between Re = 47 and 48 for the expanded cylinder. In order to
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demarcate between steady and time-periodic regimes, the values of the physical parameters
like drag and lift coefficients, and Nusselt number are monitored and plotted with time.

18 18- 18 18

a) Re=50, =T b) Re=50, =T/4| ¢) Re=50, =2T/4 d) Re=50, t=3T/4
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Figure 6: Instantaneous streamline contours for (a - d) Re = 50, (e - h) 100 and (i - 1) 150 in
the unsteady regime

Further, the streamline contours have also been scrutinized to determine the type of flow.
Figures 7 (a, b) present the transition from steady to time-dependent regime by streamline
contours for Re = 47 and 48, though it depends upon the ratio of front width to rear width of
the expanded trapezoidal cylinder. When comparing this transition regime to that for the flow
across a tapered trapezoidal cylinder [24], it is observed that it occurs later for the expanded
cylinder as it is more streamlined body than that of the tapered one. The transition for the
tapered cylinder is found to occur between Re = 46 and 47 [24].

Because the flow is found to be (periodic) unsteady in the range Re = 48 — 150, the
instantaneous streamline contours for the Reynolds numbers of 50, 100 and 150 are
illustrated in Fig. 6. Here, the instantaneous streamline contours are shown for four
successive moments of time (i.e., T, T/4, 2T/4 and 3T/4), which span over the whole time
period. It is also observed that from the next moment onwards (i.e., after t = 3T/4), the flow

behavior gets repeated. Clearly, similar to a tapered trapezoidal cylinder [24], the vortices in
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the separation bubble start to separate alternatively, but at the trailing edge of the expanded
cylinder. Similarly, vortices are observed to disappear in the far downstream field for both

tapered and expended trapezoidal cylinders.
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Figure 7: Temporal variation of (a, b) streamline and (c, d) temperature contours for Re =
47 and 48

Part 2: Flow patterns are represented by streamline contours, which are a group of
constant velocity lines in the domain. Figures 8 - 12 illustrates the streamline contours at
different values of Reynolds number (1, 5, 10, 20 and 40) and power-law index (0.4 - 1.8). It
can be observed from these figures that for shear-thinning liquids (n < 1), the flow is attached
to the surface of the long trapezoidal obstacle at Reynolds number (Re) for any value of
power-law index (n) (Figs. 8 and 9). In other words, there is no separation of flow from the
tapered cylinder because of the dominance of viscous forces at low Reynolds numbers (

Re <5). The flow; however, begins to separate from the trailing edge of the cylinder at Re =
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10 for n = 0.6 (Fig. 10).

Figure 8: Streamline contours for power-law index (n) = 0.4 - 1.8 for shear-thinning (a -
¢), Newtonian (d) and shear-thickening (e - h) fluids for Re = 1

For the power-law index of unity (i.e., Newtonian case) the onset of flow separation is
reported to occur between Re = 5 and 6 for a tapered trapezoidal obstacle in the unconfined
domain [24] (Figs. 8 - 10). Along the same line, for another similar bluff body, i.e., a long
square cylinder, the onset of flow separation exists between Re = 1 and 2 [28, 57]. For the
case of shear-thickening liquids (n > 1), it can be noticed that at Re = 1 and 1<n <1.6 the
flow is un-separated from a long tapered trapezoidal bar (Fig. 8). However, with gradually
increasing power-law index (7 >1.6), the flow separates and vortices develop downstream of
a cylinder (Fig. 8). Therefore, it can be stated from Figs. 8 - 12 that with the increase in the
value of power-law index for a fixed value of Reynolds number inception of flow separation

occurs early.
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Figure 9: Streamline contours for power-law index (n) = 0.4 - 1.8 for shear-thinning (a -
¢), Newtonian (d) and shear-thickening (e - h) fluids for Re = 5

As soon as the flow starts to separate from the obstacle, it leads to the formation of two
standing wakes downstream of a tapered cylinder. Similar to a long square bluff body [28,
57], as the value of the Reynolds number increases the size of symmetric vortices also
increases. Furthermore, with the increasing value of the power-law index for a constant value
of Reynolds number, the wake region increases in size. Eventually, it can be found for shear-

thickening liquids (n > 1), the time-periodic behaviour starts at Re =40 for n>1.4.
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Figure 10: Streamline contours for power-law index (n) = 0.4 - 1.8 for shear-thinning (a -
¢), Newtonian (d) and shear-thickening (e - h) fluids for Re = 10
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Figure 11: Streamline contours for power-law index (n) = 0.4 - 1.8 for shear-thinning
(a - c), Newtonian (d) and shear-thickening (e - h) fluids for Re = 20
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Figure 12: Streamline contours for power-law index (n) = 0.4 - 1.4 for shear-thinning (a - c),
Newtonian (d) and shear-thickening (e - h) fluids for Re = 40

4.3 Thermal patterns

Part 1: The effects of Reynolds number on thermal structures around an expanded
trapezoidal bluff body are investigated for Re = 1 — 150 in both steady and unsteady regimes
at Pr=0.7. Figures 13 (a-d) present the isotherm contours in the steady regime for Re =1, 10,
20 and 40. Obviously, the thermal effects are observed to be more prominent at the low
values of Reynolds number as viscous forces are more dominant in the steady regime. As the
value of Reynolds number is increased gradually, it is observed that temperature fields decay
in the steady flow regime with the increasing Re. Because the flow field is steady for the
range, the symmetry in the temperature field about the mid plane can be seen in Figs. 7c and
13. For the range of Reynolds number of in the steady flow regime, isotherms are observed
to be turning towards the rear surface of the expanded trapezoidal cylinder. This nature again
finds suitable agreement with the isotherms of a tapered trapeze as well, where the turning
occurs in the range of Reynolds number of in the steady regime. It clearly highlights the
effects of geometry and shape on the heat transfer rate.

The instantaneous isotherm contours for four successive moments of time for the
time-dependent regime, which span over the whole period are presented at different values of

Reynolds numbers for the air as working fluid in Fig. 14.
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Figure 13: Isotherm patterns in the steady regime (Re=1, 10, 20 and 40)

Similar to the instantaneous flow profiles, the isotherms also seem to possess the nature of
alternating reversals and the temperature street behind the cylinder is formed. It can be seen
from these figures that the wavering motion of isotherms increases with the increasing value
of the Reynolds number. Also, the disturbance on the larger base width of the trapezoidal
cylinder increases with the increasing value of the Reynolds number.

Similar to a square [28, 57] and a tapered trapezoidal [24] cylinders, the maximum
crowding of isotherms is observed on the front surface of the expanded trapezoidal bluff
body. This is quite evident from the thermal patterns in Fig. 14, thereby resulting in higher
heat transfer from the front surface of the expanded trapezoidal cylinder as compared to other

surfaces of the expanded cylinder.
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Figure 14: Isotherm profiles for (a - d) Re = 50, (e - h) 100 and (i - I) 150 in the unsteady
regime

Part 2: Isotherm contours for Re =1, 5, 10, 20 and 40 in the steady regime are shown
in Figs. 15 - 19 respectively for n = 0.4 - 1.8 and Pr = 50. It is also needed to be highlighted
here that numerous petroleum products and ethylene glycol-water mixtures have Prandtl
numbers up to ~ 50 or so [33 - 35]. Further, as the heat transfer from the cylinders is guided
by the flow, the isotherm patterns can be classified in the same way as the streamline patterns
mentioned in the previous section. The symmetry in the temperature field about the mid-point
can be observed as the flow is steady for Re <40 (n = 0.4 — 1.8) (Figs. 15 - 18) and for Re =
40 (n = 0.4 — 1.4) (Fig. 19). The flow becomes time-periodic at Re = 40 for n> 1.4. As
expected, for shear-thinning, Newtonian and shear-thickening behaviors (0.4<n<1.8), it
can be found that with increase in Reynolds number the temperature field decays. On the
other hand, with the increasing value of power-law index, the temperature field becomes

more intensified.
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Figure 15: Isotherm contours for power-law index (n) = 0.4 - 1.8 for shear-thinning (a - c),
Newtonian (d) and shear-thickening (e - h) fluids for Re = 1

g) Re=5n=1.6

Figure 16:Isotherm contours for power-law index (n) = 0.4 - 1.8 for shear-thinning (a - c),
Newtonian (d) and shear-thickening (e - h) fluids for Re = 5
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Figure 17: Isotherm contours for power-law index (n) = 0.4 - 1.8 for shear-thinning (a - ¢),
Newtonian (d) and shear-thickening (e - h) fluids for Re = 10

It can also be seen that at low Reynolds number the isotherms are more prominent as
conduction is intensified, e.g., at the value of the Reynolds number of unity.

The isotherms are observed to be turning towards the rear surface of a tapered
trapezoidal cylinder for the range of Reynolds number20<Re<40at Pr=50 and n =1 in
the steady regime (Fig. 18). For shear-thinning fluids (n< 1), the turning of isotherms is
observed at Re = 40 and » = 0.4 (Fig. 19). However, for shear-thickening fluids (n> 1), the
turning in isotherms is seen to initiate at Re = 10 for n = 1.4 (Fig. 17); thereby throwing light
on the fact that with the increasing value of power-law index, the inception of turning of

isotherms occurs early.
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a) Re=20n=10.4 d)Re=20n=1 g) Re=20n=1.6

Figure 18: Isotherm contours for power-law index (n) = 0.4 - 1.8 for shear-thinning (a - c),
Newtonian (d) and shear-thickening (e - h) fluids for Re = 20
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Figure 19: Isotherm contours for power-law index (n) = 0.4 - 1.4 for shear-thinning (a - c),
Newtonian (d) and shear-thickening (e - h) fluids for Re = 40
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4.4 Wake Length

Part 1: Figure 20 shows the variation of the wake or recirculation length for the
expanded cylinder with Reynolds number in the steady regime along with the literature
values for the tapered [24] and the square [57] cylinders. The wake length is the length of the
closed near wake and it is measured from the rear surface of each cylinder considered here.
Similar to a square cylinder [57], the recirculation length for an expanded cylinder increases
linearly with the increase in Reynolds number. The wake length is slightly higher for the
expanded cylinder than that of the square cylinder up to Re = 10; however, for Re > 10, an
opposite trend of the wake length is observed with the increasing difference in the values of
wake lengths for the two obstacles. Figure 20 contains the values of the wake length for
2 <Re <45as the onset of flow separation for the square cylinder is reported in between Re
=1 and 2, and the transition to unsteady exists after Re = 45 [57]. When a comparison is
made between the recirculation length formed behind the expanded trapezoidal cylinder and
that behind the tapered trapezoidal bluff body [24] for different values of Reynolds number, it
has been observed that the recirculation region did not even exist for Re <5, for the case of
tapered trapeze which is in contrast to that of the expanded cylinder, where the wake region
exists at those corresponding values of Re. The main reason behind this is that the onset of
flow separation exists for Re < 1 in case of the expanded cylinder; whereas, it occurs at the
Reynolds number range of 5 < Re < 6 for the tapered counterpart [24]. Further, it is observed
that the size of the wake for the expanded cylinder is bigger than the tapered one for the range
of Reynolds number1 <Re <30. However, for Re = 40, it has been found that the wake
length is higher for the tapered trapeze. This anomaly is due to the fact that the separation of
flow in the case of tapered trapezoidal cylinder takes place from top and bottom surfaces
along with the rear corners. However, in the present case of an expanded cylinder, flow
separation occurs only from the rear corners because of its streamline shape for the range of

settings covered.

36



3 - Tapered cylinder

——®—— Square cylinder

2.5

=
~
=
&
=
2
o
I
(g]
et
=
=
2
&
=

L, /b
1.5

10 15 20 25 30 35 40 45

Re
Figure 20:Variation of the wake length along with the values of tapered trapezoidal
cylinder [24] and of square cylinder [57]in the steady regime

Furthermore, as the variation of wake length (L, /b ) with Reynolds number

(Re) in the steady flow region is found to be linear, the following empirical equation is

correlated for the intermediate values of the physical parameters.
L./b=0.086Re"* (12)

When the maximum deviation from the present computed results with the values
obtained from equation (12) is calculated, it has been recorded to be as low as 1.99% for

Re =5, 0.67% for Re = 20 and 2.04% for Re = 40.

Part 2: The wake length or recirculation length is determined here as the distance
from the rear surface of the obstacle to the point of attachment for the near closed streamline
on the axis of symmetry. The wake length is found to be zero for the range of settings: Re = 1
(n<1.6), Re=5 (n<1.2)and Re=10 (n<0.6). It can be seen that with increase in Re, the
wake length increases for a constant value of n. Broadly speaking, with increase in power-law
index from 0.4 to 1.8, the wake length increases with Re. However, this trend is not obeyed at
n = 0.4. The primary reason behind this is undoubtedly due to the highly non-linear nature of

the governing equations for the high shear-thinning fluids. As expected, the wake length for
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Newtonian liquids lie mid-way between shear-thinning and shear-thickening liquids, and the

shear-thickening liquids possess the highest value of the wake length.

4.5 Individual and overall drag coefficients

Part 1: Steady and unsteady flow past any obstacle can also be quantified by
visualizing the behavior of the drag. The overall drag coefficient around any bluff body is

calculated as C,, = C,. + C,,. The variation of individual (C,,C,,) and overall (C, ) values

of the drag coefficients with varying values of the Reynolds number is shown in Figs. 10 (a -
¢). The variation of individual and total drag coefficients for the square cylinder [28, 57] and
the tapered trapezoidal cylinder [24] can also be seen in these figures. A magnified view of
Fig. 10c is also presented on the top right corner to illustrate the comparison more

extensively.

The values of friction and pressure drag coefficients decrease with the increasing
value of the Reynolds number for all three sharp edged bluff bodies (viz. expanded, tapered
and square cylinders) considered in the steady flow regime (Fig. 21a, b). The friction drag
coefficient (Fig. 21a) for the expanded trapezoidal cylinder at different values of Reynolds
number is found to have higher values than that of the friction drag coefficient for the tapered
and the square cylinders in the steady regime. The values of friction drag acting on a square
cylinder exist between that of the expanded and the tapered trapezoidal cylinders. On the
other hand, the pressure drag of the expanded cylinder (Fig. 22b) is observed to be lower than
that of the square and the tapered trapezoidal cylinders. However, the pressure drag of the
tapered cylinder (Fig. 21b) is observed to be higher for the range Re>10and lower for the

range Re <10 as compared to the square cylinder in the steady regime [57].

Similar to a tapered cylinder [24], Fig. 21(c) throws light on the fact that as we
increase the value of the Reynolds number for the case of an expanded cylinder, the value of
the total drag coefficient decreases up to a certain Reynolds number and thereafter it
increases with the increasing Reynolds number. The minimum drag coefficient is found here
at the Reynolds number of 90; however, in the case of a tapered one [24], the minimum value
of the drag is reported at Re = 50. This is due to the streamline shape of the expanded
trapezoidal cylinder. The overall drag coefficient for the expanded trapezoidal cylinder is
found to be lower than the square cylinder [28, 57] and the tapered trapezoidal cylinder [24]

for the range of settings studied. While the overall drag coefficient for the tapered trapezoidal
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cylinder [24] is found to be lower for the range 1<Re<50 and higher for the range
50 <Re <150 than the square cylinder [28, 57].

To correlate the present values of the drag coefficient for the expanded cylinder at
different values of the Reynolds numbers in the steady flow regime (1<Re<47), an

empirical equation (13) has been found adequate.
C, =0.6142 +11.6502 Re ***! (13)

While comparing the above correlation with the present computed data, it has been observed
that the maximum deviation in the drag coefficient is about 1.81% for the Reynolds number
of unity. The corresponding maximum deviation reduces to the value of about 0.74% at Re =
40. Further, the maximum deviation is only around 0.37% at Re = 47, after which transition

starts occurring from steady to unsteady regime.
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Figure 21: Variation of (a, b) individual and (c) overall drag coefficients along with the
results of square cylinder [57] and tapered trapezoidal cylinder [24] with Reynolds number
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Part 2: The drag force exerted on a long tapered trapezoidal bar is consisting of two
components, namely, viscous drag and pressure drag. The total drag coefficient (Cp) is a

measure of this drag force and it is defined as follows:

C, —ZL =C,, +Cyy (14)
pU’b

where,
2F,

ch—pU2 —j C,n.dS and CDf=pU2b o j(rn)ds

It can be observed that individual and total drag coefficients vary inversely and non-
linearly with Reynolds number for a fixed value of power-law index. It can be stated that the
contribution of pressure drag is always more than that of friction drag to the overall drag for
the ranges of Reynolds numbers considered in the steady regime. The friction drag coefficient
decreases with an increase in power-law index for a fixed Reynolds number till a certain
value of Re; whereas, a reciprocal effect is observed for higher Re. The total drag coefficient

increases with an increase in power-law index till a certain value of Re and then decreases.
4.6 Temporal drag and lift coefficients, and Nusselt number

The variation of the time history of drag coefficient, lift coefficient and Nusselt
number for the case of flow and heat transfer across an expanded trapezoidal bluff body is
shown in Fig. 22. In this study, computational fluid dynamic analysis is carried out until 10
cycles of almost constant amplitude are obtained for drag and lift coefficients, and Nusselt
number with time. The frequency of the lift coefficient is found to be twice of that of the drag
coefficient, which is consistent with Chen et al. [26]. Similarly, the frequency of the lift
coefficient is found to be twice of that of the Nusselt number. Furthermore, the instantaneous
values of drag, lift and Nusselt number in 10 cycles of constant amplitudes are utilized to

calculate their time-averaged values.
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and square [57] cylinders. The Strouhal number is observed to increase with the increasing
Reynolds number for the three bluff bodies studied in this work. A detailed analysis of the
values of Strouhal number indicates that these values are higher for the expanded trapezoidal
cylinder than that of the tapered counterpart [24] and the square cylinder [57], for any
comparable value of Reynolds number. Similar to friction drag, Strouhal number for a square

cylinder exists between the expanded and the tapered trapezoidal cylinders.
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Figure 23: Variation of (a) the RMS value of the lift coefficient, (b) the RMS value of the
drag coefficient and (c) the Strouhal number along with the values of tapered trapezoidal
cylinder [24] and square cylinder [57] with Reynolds number

Also, the difference in the values of Strouhal number for expanded, tapered and
square cylinders increases with the increasing Reynolds number. Furthermore, a correlative
relationship between the Strouhal number (S7) and the Reynolds number (Re) for the

unsteady (periodic) regime (48 < Re <150) is observed as:

St =0.0127+0.026Re"*" (15)
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The values obtained from the above empirical correlation (15) showed the maximum
deviation of about 1.60% at Re = 75 with the present computed results, which further
diminished to a very low value of only about 0.34% for Re = 150.

4.8 Local and average Nusselt numbers

Part 1: The variation in the value of the local Nusselt number (Nu) around the
surfaces of the 2-D expanded trapezoidal cylinder for the values of Reynolds numbers of 1,
20 and 40 in the steady regime is illustrated in Figs. 24a — c for the air as the working fluid.
On the other hand, instantaneous variation of the local Nusselt number for the four successive
moments of time (T, T/4, 2T/4 and 3T/4), which span over the entire period, for Reynolds
numbers of 50, 100 and 150 in the time-dependent regime has been shown in Figs. 24d - f.
Similar to a square [28, 57] and a tapered [24] cylinders, the value of the local Nusselt
number decreases on top (from B to C) and bottom (from A to D) surfaces and then increases
sharply towards the rear corners C and D, respectively. On front and rear surfaces of the
expanded cylinder, there exists a local minimum in the value of the local Nusselt number near
the middle of these surfaces. Clearly, the value of the local Nusselt number affects more on
the rear surface with time as compared to top and bottom surfaces of the cylinder in the
unsteady regime due to vortex shedding (Figs. 24d - f); however, the front surface remains
unaffected with time. However, when compared to these effects, the changes in the value of
the local Nusselt number are observed to be more prominent with the increasing value of the
Reynolds number. Overall, the variation of the local Nusselt number around the cylinder
surfaces is found to be symmetric for top and bottom halves of the expanded cylinder in the
steady regime. It has also been observed that the local Nusselt number increases with the

increasing Reynolds number.

Figures 25a and b describe the variation of the average Nusselt number (Nu) for an
expanded trapezoidal bluff body with Reynolds number in steady and unsteady regimes,
respectively. Similar to a square [28, 57] and a tapered [24] cylinders, the value of the
average Nusselt number for the expanded cylinder increases monotonically with the
increasing value of the Reynolds number in both steady and time-dependent regimes. Further,
when the value of the average Nusselt number for an expanded trapezoidal cylinder is
compared to that of a square cylinder [28, 57], it is found that the value of the average
Nusselt number for the former shows higher value than the latter for the entire range of

Reynolds number of 1 to 150. Similarly, the average Nusselt number for an expanded
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trapezoidal cylinder is always higher than that for the tapered one [24]. The effect of
streamline shape of the expanded cylinder accounts for this increase in the value of the
average Nusselt number. If compared with the square cylinder [28, 57], the average Nusselt
number for the trapezoidal cylinder is found to be higher for Re<10 and lower for
10<Re<150. The augmentation in heat transfer is also calculated at different values of
Reynolds number and is given in Table 3. The maximum percentage enhancement in heat
transfer for the expanded trapezoidal cylinder with respect to the tapered trapezoidal cylinder
[24] and the square cylinder [28, 57] are found to be approximately 146% and 141%,
respectively at Re = 150.

Table 3: Percentage (%) enhancement in heat transfer for the expanded trapezoidal cylinder

with respect to (w.r.t.) the tapered cylinder [24] and the square one [28, 57]

Nu % Enhancement % Enhancement
Re Expanded  Tapered Square w.r.t. tapered w.r.t. square
cylinder cylinder cylinder cylinder cylinder

1 0.7885 0.7372 0.7033 107 112
20 2.4858 1.9876 2.0569 125 121
40 3.3693 2.5110 2.6969 134 125

50 3.7353 2.7212 2.9805 137 125
100 5.4201 3.7974 4.0440 143 134
150 6.8408 4.6787 4.8388 146 141
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Figure 24: Variation of the local Nusselt number around the surfaces of the expanded
trapezoidal cylinder for Re = 1, 20, 40, 50, 100 and 150 at Pr=0.7

Furthermore, an empirical correlation has been derived (equation 16) to obtain the value
of the average Nusselt number for the expanded cylinder in the steady flow regime (1< Re <47
). Similar heat transfer expression for the tapered trapezoidal cylinder in the steady regime can be

found elsewhere [24, 27].

(16)

This correlation has a maximum deviation of less than 2.65% with the present computed results
at the value of Reynolds number of 1 and Prandtl number of 0.7, which further drips down to as
low as about 0.04% for Re = 20.
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Figure 25: Variation of the average Nusselt number (a) steady flow with the literature values of
square cylinder [28] and tapered trapezoidal cylinder [24], (b) unsteady flow with the literature
values of square cylinder[57] and (c) the rms values of the Nusselt number with the literature
values of tapered trapezoidal cylinder[24] with Reynolds number at Pr=0.7
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Another correlative relationship (equation 17) has also been established between the values of
average Nusselt number and that of Reynolds number in the unsteady periodic regime (

48 <Re <150).
Nu =0.424Re"™ (17)

The values of the average Nusselt number obtained from the above empirical equation for the
corresponding values of Reynolds number recorded a maximum deviation of about 1.24% for
Re = 50 and a very low value of only about 1.0% for the last point of domain of our present

study, i.e. at Re = 150.

Part 2: The variation of the local Nusselt number for a trapezoidal obstacle is found
to be symmetric for top and bottom halves. The value of the local Nusselt number decreases
on top and bottom surfaces, i.e. from A to B and from D to C, and then increases sharply
towards the rear corners B and C, respectively. On front and rear surfaces of a trapezoidal
cylinder, the local minimum in the value of the local Nusselt number exists near the middle
of these surfaces. The average Nusselt number (Nu ) increases with increase in Reynolds
number for a fixed value of power-law index. At constant Reynolds number, with increase in
power-law index the average Nusselt number decreases. It can be inferred that shear-thinning
behavior (n<1) facilitates heat transfer and shear-thickening behavior (n>1) slows it down

due to a thicker boundary layer.

4.9  RMS values of drag and lift coefficients, and Nusselt number

The root mean square (RMS) values depict the measure of the amplitude of the
unsteady cylinder wake oscillations and RMS values of any quantity ¢ can be calculated as

follows:

N

z ((pt - ¢mean )2

oy = 19
¢1ms N ( )

where N is the total number of time steps in 10 cycles.

Figures 23(a, b) and Fig. 25(c) present the variation of RMS values of lift coefficient,

drag coefficient and Nusselt number, respectively in the time-dependent regime for the case
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of flow and heat transfer across an expanded trapezoidal bluff body. The variation of RMS
value of lift and drag coefficients and Nusselt number for square [57] and tapered [24]

cylinders with Reynolds number is also presented in these figures.

Similar to the cases of square cylinder [57] and tapered trapeze [24], the RMS values
of the drag coefficients increase with the increasing value of the Reynolds number (
48 <Re<150) in the unsteady periodic regime (Fig. 23b). The RMS value of the drag
coefficient for the expanded trapezoidal cylinder is observed to be higher than both square
[57] and tapered [24] cylinders for 75 < Re <150. While the opposite trend is observed for the
expanded cylinder than that of square cylinder [57] and of tapered one [24] for50<Re<75;
however, the differences in the values are small. The higher RMS value of the drag
coefficient for the expanded trapezoidal cylinder is emphatically due to the higher amplitudes
of the unsteady wake oscillations than that of square and tapered cylinders. The difference
between the RMS values of the drag coefficient of expanded trapezoidal and square
cylinders, and the difference between the RMS values of expanded and tapered trapeze show
an increasing nature with the increasing values of the Reynolds number in the unsteady

periodic regime.

Similar to the RMS value of drag, the RMS value of the lift coefficient increases with
the increasing value of the Reynolds number for the range 48 <Re<150 (Fig. 23a).
However, unlike drag, the RMS values of lift coefficient for the expanded trapezoidal
cylinder are observed to be lower than the tapered trapezoidal bluff body [24]. It can also be
observed from the figure that the RMS values of lift coefficient of square cylinder [57] is
more than that for expanded trapezoidal cylinder till Re = 100, after which an opposite trend
in the RMS values of square and expanded cylinders exists for 100<Re <150 (Fig. 23a). In
compliance with drag, the difference between the RMS values of tapered and expanded
trapezoidal cylinders is observed to be more and follows the same trend of increasing with

the increasing value of the Reynolds number in the unsteady periodic regime.

Similarly, the RMS value of the Nusselt number has also been calculated and found to
increase with the increasing value of Reynolds number (Fig. 25c) for the range
48 <Re <150and Pr = 0.7. Unlike the higher values of the average Nusselt number for the
expanded cylinder over the tapered one (Fig. 25b), the RMS values of Nusselt number
however is observed to be more for the tapered trapezoidal cylinder [24] than those for the

expanded trapezoidal bluff body.
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4.10 Pressure Drop

The pressure loss coefficient (dP) for the expanded trapezoidal cylinder has been
calculated by using the following simple equation (20) where Apis the difference in the
values of inlet and outlet static pressures and it has been made dimensionless by 1/2pU>
[56].

ap=—2P
1/2pU

(20)

Table 4: Percentage (%) enhancement in pressure drop for the expanded trapezoidal

cylinder with respect to the tapered one [24] in the steady regime

Re dP % Enhancement

w.r.t. tapered

Expanded cylinder ~ Tapered cylinder

cylinder
1 13.3855 13.9508 96
5 4.9347 5.0925 97
10 3.4379 3.6181 95
20 2.4934 2.7294 91
30 2.1033 2.3992 88
40 1.8792 22115 85

It can be stated from Fig. 26 that the pressure drop across the expanded trapezoidal
cylinder is less than that of the tapered trapezoidal cylinder. This is mainly due to the
streamline shape of the expanded trapeze. It can also be observed that for both expanded and
tapered cylinders, the dimensionless value of the pressure loss decreases with the increase in
the value of the Reynolds number for the range of settings embraced here. Further, the
pressure drop has been related to the present heat transfer results and it has been observed
that, as the pressure drop decreases the heat transfer rate increases. Also, as the heat transfer
increment accomplished by a pressure penalty, the enhancement in pressure drop is
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calculated at different values of Reynolds numbers (Table 4). The maximum enhancement in
pressure loss for the expanded trapezoidal cylinder as compared with the tapered one is found

to be approximately 97% in the steady regime.
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Figure 26: Variation of pressure loss along with the values of tapered trapezoidal cylinder
[24] with the Reynolds number
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CHAPTER -5

CONCLUSIONS

Part 1: Two-dimensional flow and heat transfer across a long expanded trapezoidal
cylinder in the unconfined steady and unsteady regimes are explored for Re =1 — 150 and Pr
=0.7.

» The wake length increases with the increasing Reynolds number in the steady regime

(1<Re<47).

A\

The transition from steady to time-dependent regime occurs between Re = 47 and 48.

» The total drag coefficient decreases with the increasing value of the Reynolds number
up to Re = 90 and thereafter it increases with Re; however, the heat transfer as well as
the Strouhal number increase with the increasing value of Re.

» Simple correlations of wake length, drag, average Nusselt number and Strouhal
number as a function of Reynolds number are established.

» The maximum augmentation in heat transfer for the expanded trapeze is found to be

approximately 146% and 141% respectively as compared to the tapered and the

square cylinders. On the other hand, the pressure drop shows an enhancement of

approximately 97% for the expanded trapezoidal cylinder when compared with the

tapered one.

Part 2: Forced convection momentum and heat transfer of non-Newtonian power-law
fluids around a long trapezoidal bar are investigatedin the range of Reynolds number
1 <Re <40 and power-law index 0.4 <n <1.8 in an unconfined domain.

» The wake length increases with increase in Reynolds number.

> As expected, with increase in Reynolds number the drag coefficient decreases in the
steady regime.

» The average Nusselt number increases with increase in Reynolds number; however, it
decreases with increase in power-law index.

» Similar to a long square bar, shear-thinning behavior (n < 1) facilitates heat transfer

and shear-thickening behavior (n > 1) slows it down due to a thicker boundary layer.
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