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In the following pages an effort has been made to
present a comprehensive picture of the effect of Induction
heating. The analysis has been made considering cylindrical
and rectangular sec¢tion for the work-piece. The approach is
made through a familiarity with what happens electrically and
magnetically inside a work~pilece being heated. Both the
electrical and thermal aspects offthe problem have been analysed
thoroughly. The mathematical expressions have been derived
for the penetration of megnetic field, distribution of eddy
currents, generated heat and the distribution.of temperature;-
in the two types of work-pleces starting}from.fﬁé fundamental -
eiectromagnetic and heat flow theory. 'The soiution of heat
flow differential equation in the case of rectangular work-
piecce has been effected by showing a direct analogy between
the heat-flow problem and a particular ffansmission-line
problem. Further an attempt has been made to give a brief

review of the development of the subject in the past.



CHAPTZER..ONE




HISTORICAL DEVELOPLIEHNTS

1.1, IUTRODUCTION:

Vhen an electric current passes through a conductor, heat
is generated according to the equation.
H=kIth. o e e (10’)

vhere,
H = calories of heat

k = 0.239

I = Current through conductor in amperes

R = Resistance of conductor in ohms.

t = time in seconds.

This equation is the basic low governing such heating by
an electriec current knovm as resistance heating. Electrical
heating methods fall in to two separate classes. In one, the
heat is transferred from a source at a high temperature to the
article to be heated. In the second, the heat is generated in
the article itself and the source of energy is not at a high

temperature.

The heat is transferred from a high temperature source by
conduction, convection and radiation or by a combination of these

rmethods, as it frequently happens in practice.

Heat may be generated directly in the article to be trcated
either by conducting a current through it or by inducing a current
in it. In the first method, wvhich is used to a limited extent,
an alternating currcnt, at a frequency of 50 ¢/s is passed through
the article, or through some part of it. In the second method,
alternating currents, are used, and the contact with the article

being heated is unnecessary. This method is known as Induction




1.2, GENERAL CLASSIFICATION:

High frequency heating comprises two distinct methods;
induction heating for electrical conductors, and dielectric
heating for materials which are normally regarded as electrical
insulators. Thus in induction heating the temperature of any
material is raised by electro-magnetic generation of heat within
the material itself, and not by any other method such as conduct-
ion, convection or radiation. The material being heated should
not be part of any electrical circuit directly supplied by
electrical conducfors from a source of electrical energy. Hence
the principles upon which high-frequency induction and dieiectric
heating are based, are-

(i) The heat produced in a current carfying conductor.

(ii) The heat produced in magnetic materials when they
| are placed in an alternating magnetic field and
(1iii) Heat produced in electrical insulators when subjected

to the forces of an electric field.

It is not surprising that early scientists soon recognised
these phenomena and considered them in their laws and theorems.
The earliest designs of electrical equibment included allowances
for copper losses, which were due to the heat produced by the
currents flowing in the electrical conductors of the apparatus.
Compensation was made for the core losses in electromagnetic
machines such as motors, generators and transformers. These
core losses are the sum of the heat losses produced by the
circulating electric currents in the magnetic circuit and the
hysteresis losses due to the subjection ofthe magnetic circuit
to an alternating magnetic field. Lastly, in the design of high

voltage condensers and cables, the insulating material was alway:



known to undergo 2 tempercture rise as a result of the losses
produced by the voltage stresses to which it was alternately
exposed. But considerable time had passed before any one consi-
dered the useful application of the principles which caused

these heat losses and developed ways and means of utilizing them

1.%, CHARACTIRISICS OF 14DUCLIICGN HEATING:

¥hen an electric condueting material, is placed within the
turns of a coil cerrying a current, a current is induced in the
material and heat is generated in it. The current is greatest
at the surface of the body and decreases as the depth below the
surface increases. Consequently the heat is generated in a thin
surface layer of the conducting materiél and reaches the inside
by thermal conduction. The depth of this layer decreagses as

the frequency increases,

The heating effect increases with the magnitude and
frequency of the éurrent in the coil, and also with the resisti-
vity and permeability of the material being heated. Hence
electric resistivity and relative permeability are the two most
important properties of the material. Resistivity depends upon
temperature, which is turn depends upon the internal power
distribution (always greatest at the surface), specific heat,
density thermal conductivity, rate of heating, and surface
thermal losses. Permeability depends upon degree of magnetic
saturation and also upon whether the temperature is below or

abhove the curie-value.

Hysteresis loss is also present when heating magnetic

materials but it is insignificant relative to eddy current loss



gince the eddy current loss increases at a much greater rate
with frequencye.

1.4, DEVELOPLIENT IN THE PAST:

Induction heating is a very spectacular process, it dates
back many years, It was in the earlier part of the nineteenth
century that first mention ¥8 made in the literature of the use
of induced currents for heating metal. By this time, Iichael
Paraday had completed his experiments with coils carrying rapidly
revérsing currents and he recorded that when one such current
carrying coil is inductively coupled with another, a voltage is
induced in the second coil. This was the birth of thetrans-
former, and the addition of a magnetic circuit to its workability
The literature discloses, that shortly after the middle of the
nineteenth century, a concernted effort was being made to use
high-frequency induced currents for heatiﬁg netals, and
numerous patents were filed in both the United States and
foreign countries describing such equipment. The objective of
most of these applications was the melting of metal, utilising
a graphite or metallic crucible heated by induction to a
temperature above that of the charge, which in turn was melted

bythermal conduction from the crucible.

Perranti and Colky(14) both presented data on an induct-
ion melting furnace, which induced currents directly in to the
charge. Kjellin(‘4) did further work along these lines and
also presented an adaptation of the 6olby design, which eliminat-
ed certain difficulties in getting the maximm amount of energy

in to the melt. These melting furnaces were all operated on
relatively low frequencies, ranging from 5 to 60 cycles, largely

because no means was available at that time for producing



electrical energy at higher frequencies.

In the eérly 1900's, Dr. E.F. Northrup(l4) invented
the high-frequency melting furnace in which the material to
be melted was not in the shape of ring, but was placed in a
retaining crucidble of non-~conducting material. During all
thig development work, however, very little interest was given
to any phrase of induction heating exéept melting, and it was
not until about 1925 that any mention is made of induction

heating for metallurdical or metal-joining applications.

Accurate methods for designing induction heating coilg12)

and of calculating their electrical performence in advance
have been available since the 1930's and are still being
improved. The papers which have made subStantial contribution
in this field are those by Dwight and Bagai (1935)(412

Baker (1944)(2), Vaughan and 7illiamson (1945)(5), Vaughan and
Williamson (1946)(7), Baker (1957)(9), Baker has been working
on this problem for years and his contribution is very note-
worthy. He has conducted long term studies of this problem

and its applicetions and has obtained very valuable information.

After 1935, Induction heating has put to some very
unusual and worthwhile industrial uses. It is felt that this
unique form of electric heating has played a very important

(8) parti-

role in the program of industralization in Mexico
cularly in view of the additional electrlic power that is
anticipated in that country. Induction & Dielectric heating
have had a spectacular growth in the United-States from 1938
onvards, upto 1948, there had been 500,000 KV of installed

pover for this type of heating in the United States, the



3 50,000,000.

1.5, IECHNICAL ADVAHTAGES OF INDUCTION HEATING:

The cdvantages of this method of heating may be summed up

under the following headings:

1. & better product
2. lore convenient operation

3+ Increased speed of production.

1. A bette ducts
Induction heating has the outstanding adventage over the

other methods due to the fact that in this method the zone to be
heated can be localized and accurately controlled. In other
methods of heating such as flame or furnace heating the whole of
the article has to be raised to temperature or even if attempts

are made to localize the heating, appreciatle heating of adjacent
parte inevitebly takes place, partly due to the heat they receive
directly from the source and partly because of conduction of heat
to them. Induction heating overcomes this trouble in two ways.

In the first placz the coil can be designed to focus the heat

only on the required area, secondly the heating time 1is very

short, so there is very little opportunity for heat to be conduct-
ed away from the heated area to the ad jacent parts. Since Induction
heating is characterised by high concentration of heat per unit
volume and close control of transmitted heat, it is particularly
suitable for surface hardening because the heat producing eddy
currents have a tendency to flow next to the surface of the charge.
If a shaft is heated to hordening temperature at its surface zone

only and is subsequently quenched, then only the surface zZone



hardens while its core remains soft. This distribution of

hardness is often desirable, because it gives the ghaft a hard
wear-reslstant surface, whereas the core remains soft and thus
avolds brittleness attendant to hardnéss. The application of
highly concentrated heat for surface hardening and forging

shortens the heating time. This is important not only because
of the saving of time in itself, but also because a short heat

interval prevents or minimises scale formation.

2. More convenient operationt
The only high temperature produced in heating by induct-

ion is at the area within the coil itself, and there is conse-
quently very little heating of other parts of the work, so that
it can be handled easily with bare hands without risk of burn~
ing. fhe absence of radiant heat and fumes from the apparatus
itself enables it to be installed in ordinary workshOpe without

the necessgity for a separate heat traatment departmenf.

3. Greater speed of production:

As the heating itself is very rapid, most jobs take
only a few seconds. Since un-necessarily large masses of metal
are not heated up, the subsequent time required for cooling in
cases where quenching is not used is reduced to a minimum. By
suitably arranging the heating equipment it is frequently
possible to carry out two or three operations at once. Induct-
ion heating is more easily adopted to continuous operation

than many heat treatment methods.

4. Saving of money:

Most of the advantages which have been enumerated above



involve a saving of money. ZIconomy is also affected in the
following ways. The concentration of heat on a highly localiz-
ed arca means that the heating is far more efficient. In many
'casea as much as 95% of the heat generated is actually used

for the purpose for which it is intended low-grade labour can

be employed since the process is entirely automatic.



CHAPTER. WO




THEORY & ANALYSIS OF INDUCTION HEATING

2.1. INTRODUCTION s
In this Chapter an analysis is made of the effect of
Induction heating. The analysis is carridd out and mathemati-

cal equations are derived for two cases.

1. Cylindrical workpiece

2. Rectangular work-piece

In order to heat a charge, itis placed coaxially inside
a coil, which isknowvm as inductor. The coil is energiséd from
a a.c. generator. The generator energises the coil and thus
an alternating magnetic flux is produced. This flux induces
electromotive forces within the charge and naturally as a
result current flows circumferentially through the cylindriesl
charge. Hence the heating effect is the result of 1%R losses
due to the eddy currents in combination with the electrical
resistance of the charge. So the theory of Induction heating
is based on the fundamental transformer principles. The heat-
ing coil theoretically'becomes the primary and the work-pilece
acte as a secohdary.which is short circuited, and similar to
the case of transformer, the closer is the coil to thefork's

surface the more intense is the transfer of magnetic flux.

5,0, HEATING OF MAGNETIC MATERIALS:

Heat producing losses are those thternal energy losses
which cause a temperature rise in the material linked by the
magnetic lines of force. In magnetic material these losses
are derived in to two classes ~ hysteresis losses and eddy

current losses. Hysteresis loss is the characteristic property
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of ferromagnetic materials. The prébﬁble cause of of hysteresis
loss is that the molecules of magnetic materials are in them-
selves small magnets, which vibrate at the same frequency as

the alternating magnetic field linking the material. The hyster-
esis loss is the heat generated by the friction between the
rapidly oscillating modecules of the material as they attempt

to align themselves with the rapidly alternating magnetic field.
Hysteresis loss is presemt 6nly in the magnetic materials, and

it ceases when the mcgnetic change point or curie point has

passed.,

‘The heat expressed by hysteresis can be expressed as

follows:

1-6 “7

x 10 ' watts per cu. in. eee (2.1)

where, -

Wh = Heat generated due to hysteresis in watts.

h = Hysteresis constant for the material.

B Flux density in lines per sq. inch.

It is noted from the above equation that the hystePesis loss
is directly proportional to the frequency and to the flux
density to the power 1.6. The equation applies strictly to
flux ranges between about 4,000 and 12,000 gausses. The value
1.6 is called the steinmetz exponent and is the average value
for silicon steel. For other materials, this exponent will

have some different value.

Eddy current losses are resistance losses due to current
circulation in the material, resulting from electromotive

forcesdinduced by varying induction. If the magnetic material
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is replaced by some non-magnetic metal the hysteresis loss
vill be eliminated but the eddy currents will still be induced
and hence heat generated. Therefore magnetic as well as non-
magnetic materials respond to Induction heating, eddy current

loss is proporticnal to the square of the frequency.

Then the frequency of the alternating magnetic flux is
inereased, hysteresis & eddy ocurrent losses increase. The
eddy current loss, however increases at a much greater rate
than the hysteresis loss. At frequencies of the order of
10,900 cycles and more the eddy current loss is predominant
and the hysteresis loss is negligivle. Hence in most offhe
induction heating applications the hysteresis loss ls insigni-
- ficant relative to eddy current loss and therefore for all
practical purposes, the hysteresis loas drops completely from

the picture.

2.3, BLLCLROMAGH=IIC EQUATION

Following Iiéi‘.imell, equations can be written, when an
alternating current is pacsed through the winding of the coil,
which sets up an alternating flux through the section of the

specimen;

V X ﬁ :I ‘ o so e es e (?12-)

— 0B

V X E = - at »e ¢ o0 (203 )

V. B :0 e LR 4 @O4)
Also, by ohms law-

E:_p.j__. e & s 0 (254)
Where,

H = liagnetizing force vector.
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I = Current donsity vector.

B = Fux donsity vector.

E = Electric field intensity vector.
P = Resistivity of the material

v = (kY

30:»*
Fow from equation (2.2) ana (2.5),

Vz H =

or - -
' Vv H = v x ‘7} E

Combining equation (2.3) and (2.6),

vivz B =o L+ VXE

or, 2_ -
-VH+ V. H = =

But from equation{i{Z.4) we have,

Vo§=o

0

it

oAV, H

-.. V. -I.{-= 00

vhere M = Permeability of the material.

Therefore, from equation (2.7),

2

o ®.__ 1 2B
VH"'ﬂ at__
or 2__ 1. 2B
vVET p 0ot

2 . A =

or v Hz oa——— -2.}.{—

P p]

3
* X 32 ) Differential operator.

oo (2.6)

cee (2.7)

.o eee (2.8)
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Equation (2.8) gives the space time variation of flux
density in the workpiece and can be used to find the flux
density distribution at any instant for any particular mode

of time variation of B.
Two cases have been analysed by the author and they
are dealt in the following pages.

».4. ELECTRIC & WAGNETIC CONDITIONS INSIDE INDUCZION HEATED
TECE: ,

3

In the following‘pages an effort ié que to improve
the general understanding of induetion heating through an
approach with what happens electrically & magnetically inside
a work-piece being hoated. 4A.l.E«L. gtd. no.p4 defines
Induction heating as the heating of a nominally conducting
material in a varying magnetic field due to its internal
losses. This definition is sufficiently general to include
not only intentional induction heating as practical industrial-
ly for different'applications but it also gggﬁudes the eddy
current and hysteresis heating which appear as core logses in

motors and transformers.

2.4.‘1.£

A long, round, solid bar of homogeneous conducting
material is located coaxially inside a solenoidal coil, as
shotm in fig. (2.1). The coil carries a sinugoidal alternat-
ing current. The configuration is used frequently in industrial
induction heating installations. The same principles apply to

more complicated cases also.

2.4.2., Qualitative Explanation-

The bar is considered to be composed of many thin coaxial
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sleeves. The bar and coll are assumed very long =o the end
effects are neglected. The magnetic field is parallel to the
center line of bar. The primary current in the coil andfhe
induced current in the bar follow coaxial paths around thebame
center line. Resistivity and permeability are assumed to be

uniform and hysteresis loss is neglected.

The magnetic intensity at the surface of the bar (i.e.
r = a) is identical with the airgap intensity and the magnetic
field intensity outside of the solenoid is zero since the return
flux ouside of the solenocld spreads over an infinitely large
area, thus reducing the flux density to zero. The field distri-
bution is the same for any cross—section perpendicular to the
axis of the cylinder and 1t varies only with the distance from
the center line and is independent of the coordinate ©, leading
to the unidirectional flowlof flux.

2.4.3. Ihin Twdarz olerge Inside the Coils
The magnetic field intensity in the outer most sleeve

is equal to the airgap intensity. The total flux surrounded

by this sleeve induces a voltage in the sleeve. Therefore, a
current flows circumfereﬁtially in the sleeve. The magnitude

of this current is determined by the induced voltage and the
resistance of the sleeve,for the time being if the solid charge
is considered to be made up of only one sleeve, it acts as if

a thin walled tubuler metallic charge is inserted coaxially
inside the solenoidal coil. The variable magnetic flux surroun-
ded by the charge induces ﬁoltages and currents in the charge

in a similar manner as in the secondary of a transformer,
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consisting of one turn which is short circuited. Since the coil
is energised by a constant alternating current, an alternating
field intensity Ho resulte in the interspace between the coil

and the tubular charge as shown in fig. (2.2). Similar to the
current I, in the coil, a current I, circulates circumferentially
in the charge and produces a magnetic inténsityzxﬂo which is
constant through-~out the space surrounded by charge and which

is zero for any point outside. The resulting fleld intensity

at any instant can be regarded as a result of superposing the
magnetic intensities caused by the currents in the coil & charge.

The magnetic intensity in the space surrounded by the charge is

=

v ET3 ‘e . (209)
1 =HO+AK° .

where,

H, = Intensity produced by the coil current alone.

A Ho = In tensity produced by the charge current alone.

The induction or flux density in the space surrounded by the

charge is-

B, = m H, ces .. (2.10)
lagnetic flux surrounded by the charge is-

g, =B, a°m = p H, o o (2.11)

where,
2 = Radius of the charge
The vector diagram for this case is shovn in fig.(2.3)

and can be explained as follows-

“he e.m.f. Ly generated in the charge A by flux ¢1 is
lagging 90° behind it. Overcoming the resistance of the path
E, causes a current IA to flow through the charge which obviously
is in phase with E,. @&, and H, are parallel vectors AH_ is
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parallel to 1. Hence B being the vector difference of H, &
AH  from equation (2.9) follows as OP. The flux ﬁo in the

interspace between the coll and charge 1s parallel to Ho’

An inspection of the vector diagram shown in fig.(2.3)
reveals the following interesting pointae:

(1) The magnetic intensity H  outside the charge is rcduced
to intensity H1 as it penetrates the charge. This effect is
due to the circulation of eddy currents in the charge and is

knowvm as screening effect.

(2) The flow of current causes 8 time lag between the two
intensities i.e. they are not in phase, H1 lagging behind Ho
and therefore the flux #4 surrounded by the charge lags
behind the flux @, outside of the charge.

2.404. S
After the analysis of a thin tubular charge, the case

of a 80lild cylindrical charge can be analysed by considering

the charge to he medo up by a large number of thin walled
tubular sleeves which are telescoped in to each other. The

eddy current heating of a sobid charge 1s approached by conslder-
ing the current distribution in the individual thin walled slee~

ves and then reducing the thickness of the sleeve towards zero.

The charge is shown diagrammitically in fig.(2.4), in
vhich 84, S,, 83.......SN ess atec. refer to the different
sleeves which constitute the charge and the thickness of each

gleeve is A r.

Ho is the intensity outside of the charge and H1, Hz,

H3........J§n.....etc. s are the intensities which emerge from
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the sleeves 51, Sz, 83......... Sm""' etc. reopectively.

From the case of a single thin walled slceve, it is
expectod that the mognetic intensity Ho will be reduced by a
certain percentage after penetrating the sleeve 5, (fig.2.4)
snd that it will emerge from sleeve 81 as the intengity H1,
it is also expected that the emerging field intensity H1 will
lag behind the entering 1htensity Ho' The vectors of the
magnetic intensities are shovm on a large scale in fig.(2,5).

The angle OIP between ZSHO and H, was 90° in the case
of a single sleeve (fig.2.3), but now in this case it can not
remain 90° as shovm in fig. (2.5). The reason for this dis~
gimilarity is that in the case of a single sleeve the current
11 flowing in sleeve S, is determined by the electromagnetic
action of the sleeve 81 only, but in this case it is no longer
determined by the electromagnetic action of sleeve 31 only,
but also by the clectromagnetic action of all the other sleeves
i.ce. By, 83......SH.....etc. vhich are inside of sleeve 31.

The current I1 in sleeve 51 is a function of the total
flux surrounded by slecve 51. ow this flux is a function of
the different currents in all the sleeves. Therefore the
magnetic intensity Ho, by penetrating sleeve S1, of thiclmess
A r, emerges as intensity H.', lagging by an angle A« behind
Ho and is reduced in magnitude by a definite percentage of its
entering value. The magnetic intensity H, now enters the
slecve 32‘ Since the wall thickneass of the glceve S1 and 82
is the same, it is obvious thatihe emerging intensity H, from
sleeve 82 i1l lag behind H1 by the same angle A< , as H1 was
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lagging behind Ho in slecve 51. The ratio of reduction of

HT1 to Hz is therefore equal to Ho to 31.

These assumptions are justified by leading to inter-
dependent systems of magnetic intensities & fluxes, electro-

magnetic forces and currents, which fulfill #£11 physical

requirements.

The vector diagram is shown in fig. (2.5). Let~

H*l H2 Hm

H— = F— = vreveses 7= ses = q = Constant -(2-12)
s} 1 m-1

OPI = IP2 = 2P3 = AX = Constant ' (2.13)

The triangles P01, P12, 223 .... etc. are similar
(two homologous sides and one included angle A These

geometric relationships aro mathematically expressed, by-

-__ - (m ax) COt
Hm - Ho e . F "0 ) . (2014)

as shown in Appendix I.
where,

f = Angle between H and 4 H_. fig. (2.5).

A = Phase angle of Hm Welsbte Ho.
¢(=.‘. m.- AX . “ne ere (2‘15)

. "d\COt' ' '
. Hmagoc Foo. . aw | (2016)

Equation (2.16) shows that the locus of magnetic intensity
is a logarithmic spiral.
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2.4.6, Mathematical Analysig-

The external energy source in induction heating is the
magnetizing force of field intensity,for this reason it is
of great importance to determine Bow this field intensity is
distributed throughout the work-piece. The field intensity
created by the alternating current, in turn induces the heat-
ing current in the work-plece, which bears a direct relation
to it. Therefore, the distribution of magnetic field intensity
gives a direct indication of the distribution of heat and

temperature gradient in the work-piece.,

From equation (2.8) 72 H = ?’;(.. 3_%_ .

Reducing the above edquation to cylindrical coordinates
and assuming unidirectional flow of flux (i.e. in the axial
direction ), the equation left to be solved ig-

14 -y L m e (2a7)
r dr dr _P ot

where, the field is independettt of coordinate @ and it
varies with the distance r from the center line of the bar.

And for a radius a of the section, the boundary condit-

ions are established as below!

at r=a, H = HO i.e. at the surface.

= UO Cos o t.

# Re ( U, ed ¥y,

4

and at r = 0, i.e. at the center 'H' will have some finite

value however smaller it may be.

Now aspuming a solution for (2.17) of the form-
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H= U (r) Cos & t.
= Re [ U(r) o3 ¥*.
where, U(r) is a function of r only.

Therefore from equation (2.17),

1
- d d Jaty o
?EEH;[&[U(Z')& 1]—%

1
A2 Re | U (x) e"“”}}

. f ¢ 2k
Suppressing the 'Re' symbol, and div1ding throughout
3 a)t

by the common:factor e

1 (l‘.‘ ): “'{"‘U.jd

r P
or ' T
vl R Y U S j ' . W .U
dr2 r dr )0
or,
820 , L 4 Je 42& U = 0
dr2 r d4r y
or, - 3
d
2 1. U, ,
+ - = 0 ehe (2018)
drz r dr 32
where,v 02 - ..f_.._ sse (2.19)
. = }l-w
now,

-9
K= Py Jlog = 4Tx107" U
and W= 2T f=
Wherey . = Relative permeability.

and £ = frequency in ¢/s.
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Then equation (2.22) reduces to the simple form,
U= A Jo(mr) 'y e (2023)

nowat r=a, U = U, (at the surface)

e, A = =Jo_
J, (ma)

Substituting the value of A in equation (2.23),
J_(mr)

H = Re (U, ed@%),
o3 (o) ot |l
= Re %_Uo' 3§~TE§Y- . ed ';

| éincé H, = Re ( u, e ¥t
J (mr)

..'. _ ﬁ = Ho. ~3§TE;T i‘_ cen

The Bessel function J (mr) has the form of an infinite
(1)

series and is given by=

now,

(2.24)

4 {mr)® .imr)s

( 2
Jo(mr)z"-“mg"l‘-(r

2 22,42 T 92 42 62 52 42 c2 g2
' ﬁ . oo'o (2025)
"NOowWw m = ‘""c""

te Jy (mr) = 3 (/=3 ,gn) -1+ j(zén) - (r/e)t o

22,42
3 (r/c)® . (:/b)a oo
824262 22.4%.6%.82
“caw ) (2&26)

Putting r/c = x we have,

L
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Substituting these values in equation (2.19),

2 P - ~P2§;109
° T 4 Tx 10"9./<rx2nf 8 K.f
9
10 : ,
o.c C = 'ﬂ{/“‘ (p‘/l: ) /2 1431199
9
let 8 =c42 = 1-u ( £—31Q')§ em. eee  (2.20)
r

The quantity 's' is known as reference depth and is of
great importance. 's' nas the dimension of length from

equation (2.18) we get,

2 -
a<u 14U 2 o

where, 2

m = - 3/02
Equation (2.21) is Bessel's differential equation and its
(11)

general solution is given by
U=4AdJd, Jmr) + BE (mr) eee  (2.22)

In the a2bove equation,

A & B are arbitrary constants,

Jo(mr) is & Bessel function of the first kind and

zeroth order.

Ko(mr) is the Bessel's function of cecond kind and

zeroth order.

Since Ko(mr) becomes infinite as r approaches zero
and since the magnetic intensity must have a finite value at

r = 0, we may drop this function from the solution.

Therefore B=0
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Then equation (2.22) reduces to the simple form,

U = A Jo(mr) o s L N ] (2.23)

now at r=a, U=70, (at the surface)

o e U =1}J° (ma)

e A = Do
J, (ma)

Substituting the value of A in equation (2.23),
J_(mr)
U= Uo7 (ua)

now, - ;
' H = Re (U. ejwt).

Re {Uo' W . e"'”'J ]

i

Since H, = Re ( R 2 9%
I J (mr)
. H - HO. mﬁ' s s (2024)

The Bessel function J (mr) has the form of an infinite
(11)

series and is given by-=

2 4 6 ()8
I () = 1 -2t fmods e e ..
° 22 22,42~ 92.42.62 52 42 62 g2
1/-3 “e e (2.25)

‘! ’ Ao N ——
nowv ms= Py

2 4
e 3y (ar) = 3, (/=] .-g.-),.:”j(a;éa) - (rfe)? o

22,42
] AN €973 S S
8%.42.62 22,42 .62.8°

«e e (2026)

Putting r/c = x we have,
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§, &/=3. z/e) = I, (/=7 . x)

2 4 6
XL i x
= 14+ -3 +
22 52, 42 22, 42,62
8
~& + cene .ee (2.27)
22442 62 .82

Then the real and imaginary terms are separated, two separate
scries are obtained. The real terms form a series which
Kelvin named ber (x), the real part of thc Bessel function,
vhile the other series is called bei (x), the imaginary

part of the Bessel function, where,

4 8 12
ber{x) = 1 - Z. + X &
22,42 22.42,62.8 2 22,42.62.8%2.102.12°
P eee  (2.28)
and, 2 6 10 =
bei(xz) = —2 - >4 4 b. 4 —— "t e
2 22, 42.62 T 52,42 2 o2 003
oee (2.29)
Hence, J (mr) =J, ( V=3 er/c) = ver (r/c)+j bei (r/c)
vee  (2.30)

Therefore from equation (2.24) we héve,
ber (r/c) + j bei.(n/b) | :(2’31)
° ver (a/c) + j vei (a/c)
ber (n/c) + J vei(r/ec)

. H
. = = T 2632
E; ber (a/c) + 3§ vei (a/c) (2.32)

=

I
. H = A %_ber (r/e) + § bei (:/c)ii ' (2.33)
where, . H ... (2.34)

ber (a/c) +3j vei(a/c)
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Current denslty
.
i = = 28 = - ﬁr'i_ber‘(r/b) +j bei'(:/eig

r 2r (2035)
At the surface r = 4,
i, = -%-{@u"(w®)+3 bﬁ)(m@{} (2.36)
h |
oFs i ber' (r/c)+j bei' (r/c)
X (2.37)
ig ver' (g/c) +3 veit(a/c)

§ i, i g_ber'? (x/c) + vei*?(z/c) 4t (2.38)
1a § 1 ver'? (a/c) + bei'z(@/c) _g.'. '

This ratio 1 /1, is plotted for different values of (a/c)
in fig.(2.6), which gives the current distribution in the

cylinder.

From the above curves given in fig.(2.6), it is investi-
gated that the gkin effect is not so0 pronounced at the lower
values of a/c, but is very mauch pronounced at the higher values
of a/c, for egample studying’the curve for a/e = 4, we find
that 1r/’1a = 0.5, at r/c = 2.8, or we can say that the current
density has dropped to 50% of its surface value at a radius
of 2.8/4 or T0% of the work radius i.e. the current density
has dropped to half the value at the surface at 30% of the
work radius in from the surface, therefore,the skin effect,

is not so pronounced.

Now studying the curve for a/¢c = 12, it is noticed that
the current density drops to 50% of its surface value at
r/c = 11, i.e. at a radius of 11/12 or 92% of its work radius
or in other words the current density becomes half at a radius

only 8% in from the surface, so obviously it results in a
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pronounced skin effect.

For a fixed value of radius the severity of skin-effect
is determined by the guantity c¢ which is equal to 5/4/5;
where s is the reference depth. The reference depth which
first appeared in equétion (2.20) is inversely prOportiénal
to the square root of frequency. Hence higher the frequency,
smaller is the vaiue of referehce depth and more pronounced
is the skin-effect, which has been justified from the curves

also.

Many examples can be simply derived by approximating
equation (2.37) for the large values of r/c i.e. when either
the frequency of the induced current or the work radius at |

the point considered is large, The Bessel functions can be

(11)

written under these conditions as

r/cy2

ber(xr/c) = ﬁ . Cos ( ==
| r/c 42
bei (r/c)= ~B———— * Sin (

V2 n’r7c
r/c /2
ver'(r/c) = S————— * Cog (

vV2mrx/e
r/c 42

bei'(r/c) = =%———— , Sin (

vyerx/c c/2

From equation (2.37).we have,

i, ber' r/c + J bei' r/c
i

]

a ber' a/c + j bei' a/c

r .u
gr( Qn'.a/c)_& . 41/0/2—)(1,_&) [Cos(_c,72+’§)+jSin(§/§+ %)
2m.x/c xiCos(’g?éé-IaL)* ;;Sin('a'aé%)

u

{n =z0)
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Since ¢f2 = s = Reference depth.
and let a -r = x = Distance from the surface
The equation (2.39) reduces to-

x/s ~jex/8
s €

i -
. (a/0)t.e oo (2.40)

1a

The above equation indicates that at a depth x
where X = » the phase of the current dgkity has been
retarded by or -(-g-'?/% s+ The phage will ‘v

ersed

completely, when x=s+u =42 «. ¢ T

Then in that case as a and r both become very large,

the equation (2.40) further reduces to:

i

3-:!- = e" x/s see (2041)
a
This equation is plotted in fig. 2.7.
It is seen that when x = g
ir ) 1
ia e
or,
i, = (1/8) i eer (2.42)

"Equivalent current depth".

l.e. 1 reduced to 36.7% }of its surface valn X = Be
Thig i S

By a similar analysis we have-

-x/8 |
H, =H, e ces (2.43)

The curve plotted in fig.(2.7) gives only approximate
results but the fig.(2.6) gives the accurate results. The
difference lies in the fact that fig.(2.6) is based on the
accurate formula in equation (2.38), which tdces in to

account the effects of the current flow from the appod te
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gide of the cylinder, whereas fig. (2.7) is based on the
approximation in equation (2.41), which assumes no effect

from the current on the opposite side.

However, fig. (2.7) can be used with reasonable
accuracy when 8 £1/5 a, i.e. the current depth is less

than one fifth of the radius.

-

2.4.7. Zatal Mux and Power in a Solid Cylipder:
Considering the elementary ring of radiqg r and width
r as shown \in fig. (2.8), if §. is the total flux in the

ring then,

gpo=M H. 2w, Sr. (2.44)

The total flux @, . inside the area enclosed by the

ring at r is given by integrating equation (2.44)-
r

Brp = f/LHr21rr. ar
’ 0

Putting the value of H from equation (2.33),

r
Fop=2TH [ A (ber 2=+ j bei r/c)oredwe  (2.45)
o C

From thé properties of Bessel function, we can write the
N

following useful derivatives' ')

bei' (r/c) = %3 r vet (r/c) dr. ces (2.46)
and  pert (rfe) = v Jr vei (z/e) ar vee  (2.47)

.°e from (2.46)

‘{r ver (r/c) dr = re bei' (r/c) cee (2.48)

end,
Jr vei (r/e) ar

- rc ber' (r/c) cee (2.49)
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Substituting equation (2.48) and (2.49) in equation (2.45)

3’ 4T e |
e Pin = 2T E'c bei'(r/c)j + jl-rec ver'(r/c)} g
L o 2o

i
= 27 L.A. re g—bei' (x/c) - 3§ ver' (r/c)}

Substituting the value of constant A from equation (2.34),

bei'(r/c)~3 ber'(r/c)

- "= . «H oo(2o
Por = (2T foxe) By { ber (a/c)+J bei (ab) 4 50)

B r-a, Pir =%a

where 9’3 = Total flux inside the work-piece.

vei'(a/c)-j ver'(a/c) Pg . (2.51)
bver (a/c)+j bei,(a/c) &

o f = ( 2T Jlagece) HO[

After raticmalising Equation (2.51) we get, .
| (vei'a/c-3j ber'a/c)(ber a/c+j bei a/c)
g, = (2mjacc. H)

" per?(a/e) + bei? (a/c)

‘oo (2.52)
2

Now area of the work-piece is given by Aw = Ta

Hence from (2052) bei'a/c ber a/c_'ber’a/c bei a/c)- —l
2 A Bjecohy Jmm&_m_wsﬁ.mg)j
a8 8 ber® aje + bei? a/c
- L 2 (2053)
or, . < |
Po = MH, A, (P - Q) = g, - 19, Ceee (2454)
whera,lp 20 E bei'a/c ber a/c~ ber's/c bei a/c % (2.55)
, -8 ber® a/c +bei’ a/c
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and’a - 2¢ § vei' a/c. bei a/c+ber' a/c ber a/c -E.. (2.56)
a 'ber2 a/c <+ b612 a/c -

These are called the P and Q functions of the cylinder.

Iotal power in the cylinders:
The heat generated in the solid cylinder is derived

by considering the total current flowing in the shell of
width §r in 1 cm. of work length.

The current flowing through the shell is given by~
I, =i, . {r | cee (2057)

The resistance of the shell is given by-

N = gr ] ) | e e
Therefore, the power or heat dissipation loss is-
2 2 :
Integrating over the complete radiue; the power loss per cm.

”
length is-

a
Pt: ji§,2ﬂ'.f-r.dr PP (2059)
Putting the value of i, from (2.35),

. a :
- 2
Pt = dr Lé%“” «e2NMP .2 (ber'2 r/b+bei’2 r/e)dr.
o .

¢
A 2 ] 4
Py =5 «2T. fo a.ce (ber a/c ber'a/ctveia/c.bei’a/c)
¢ o \ | ,
' s e (2'60)
. ‘ LA|2 . k .
S By=t 2m. f.a (ver a/c ber'a/c+bei a/c+bei'n/c)

- (2.61)
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g_ bor a/c.ber'a/c+bei a/e bei'n/c
Po=2T f Hﬁ.a/c

bor? a/c-c-boiz a/c

‘oo 2.62)
ber("@gé) bor' ('QE’) - (

o p,amwz.@{ ) nes! (/on/n) |
% o © . 2
horly2a/5) %+ [ves (/2a/s) 1
| vee  (2.63)
or,
P, (watts for unit length) = 21rH§ - f +0ofa., P,
' e (2468)
_vhere,

3 vor(y20/0) bver' Wéa/a)*bei(//?a/a)bgi’(féa/a)
ver Wéa/s)}zﬁ [ vei (ﬁa/a)]z

=

see (2‘65)

If tho length of the work-picce is 1_ cms.
Then,
| o, a
Total power P, = 2T Hj P . =— P. 1_ watts (2.66)

In the equation (2.66), H, 48 in Ampore turns/cm.

The functions P and a/s.F can be plotted as a function
of a/s, the rod ius measured in terms of the skin-thickness,
they are cshomm in fig.(2.9) and fig. (2.10) respectively.

The valucp of the functions P and a/o. P  correspond-
ing to differont valuen of a/s are tabulated in the tablo
lo.2.1.
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a/c = ia/b= a R&/B-
v2e/s la/e/2 /2 ber'“a/e + bei e/ C.
0.5 354 0.011 0.0039
1.0 707 0.087 0.0615
1.5 | 1.06 04260 0.276
2.0 | 1.414 0.488 0.690
2.5 | 1.77 0.660 1.17
3.0 | 2.12 04764 1.62
3.5 | 2.48 0.805 2,00
4.0 | 2.83 0.826 2.34
4.5 | 3.18 0.840 2.67
5.0 | 3.54 0.855 3.03
10.0 7.07 04930 6657
20.0 |14.14 0.965 13.65
30.0 |21.2 0.972 20.60
50.0 |35.4 0.980 5 [34.70
70.0 |49.5 0.985 48,70
100.00 | 7070 0990 70.00
140.00 |99.00 0.999 99.00

It is seen that when a/s is less than unity the

quantity a/s.F is approximated quite well by the expression
% (a/e)a' Under this condition the power per unit length is

Pp=% T Hﬁ f (a/e)*

then a/s is greater than 5 the quantity a/s.F. becomes

(2.67)

approximately a/s, so that the power per unit length ig-
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TABLE 2,1
a/c = fa/e= : 'F[ o) +hed (a/e)hel’ (a/c) }a/s.I’.
'Vﬁa/s o/o/2 /2 ver'2a/c + bei’ g/ec. !
0.5 .354 0.011 0.0039
1.0 707 0.087 0.0615
1.5 | 1.06 0.260 0.276
2.0 | 1.414 0.488 0.690
25 177 0.660 1.17
3.0 | 2.12 04764 1.62
3.5 | 2.48 0.805 2,00
4.0 | 2.83 0.826 2.34
4.5 | 3.18 0.840 2,67
5.0 | 3.54 0.855 3,03
10:0 | 7.07 04930 6457
20.0 |14.14 0.965 13.65
30.0 |21.2 04972 20.60
50.0 |35.4 0.980 54 |34.70
70.0 |49.5 0.985 48.70
100.00 |70+70 0.990 70.00
140.00 [99.00 0.999 99.00

It is seen that when a/s is less than unity the

quantity a/s.P is approximated quite well by the expression

3 (a/s)a’. Under this condition the power per unit length is

P, = 2T Hﬁ 7 (a/a)4

Vhen a/s is greater than 5 the quantity &/s.F. becomes

L N 4

(2.67)

approximately a/s, so that the power per unit length is-
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P,=2T H§ . f. ofs oo (2.68)

t
The curve dravm in fig.(2.10) can be used to estimate the
power sbsorbed per unit length of the cylinder when the

impreseed field Ho ias known.

A plot of function F as seen in fig. (2.9) helps to
establish the upper limit on the frequency necessary for
efficient coupling.

| In equation (2.63) Ho nas been regarded as a constant

| from this we draw the implication that the current in the
exciting solenoid has been geld constant. Therefore the

power lost in the solenoid is proportional to the radio fre-

h quency resigtance of the solenoid. For the copper conductor
used in the solenoid, the rétio of radius to skin thiclkness
is usually large i.e. the sﬁin thickness is very small. Now
since the skin thickness varies inversely as the square root

of frequency so that the resistance varies directly as the
square root of frequency. Thus vhen the function F is plotted,
we have effectively divided out the by (1/8) i.c. by tho |
square root of froguency in (2.64). Hence the curve of fig.(28
may be regarded as being proportional to the ratio of the

powver absorbed in the cylinder to the power lost in the
exciting solenoid. It is seen from fig. (2.9) that, when

a/s is greater than 2.25, the lmnee of the curve has been
passed, and the value of F remains ncar about 1.0, irrespective
of the value of a/s, that is to oay that no grect benefit

is derived by increasing the rotio a/s beyond 2.25, Increcs-

ing the ratio a/o means reducing the skin thickness which
is achieved by increassing the frequency. Hence it ie not
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very useful to increase the frequency further beyond the point

corresponding to a/s = 2.25. The frequency corresponding to

a/a = 2.25 1s defined as the critical frequency for effective

coupling to a cylinder.

e have from equation (2.20)-

8 = _1._‘(2131Q2j§
2 Tr- ﬂr.f

Putting a/s = 2.25 or s = a/2.25 and denoting the

frequency as this point as f -

2.35 T 5 1 ook,

or 9
£ = (2.25)<.. ng——-—
c 4 Tr2 | /r.a
or,
r, - 128.5zx10%/

c
/lr.a

vhere,

f. = Critical frequency in cycles.

\f = Resistivity of cylinder in ohm-cm.

y

= Relative permeability-of the cylinder.

2
]

Radius of the cylinder in cm.

(2.69)
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2,5, POVER AND FLUX IMDUCED IN FLAT METAL SHLETS OF
RECTANGULAR CROSS SECTIOL:

By using an analysis similar to the preceding section,
the field distribution in a rectangular slab can be derived.

The author has derived the distribution for two cases.:

(1) Current flow in metal sheets of great thickness.
(2i) Current flow in metal sheets of limited finite
thickness.

2.6, CURRENT FLOW IN METAL SHEETS OF GRBAT THICKNESS:

The sheet is shown in f£ig.(2.11), in vhich, the
dimension x, measures the distance from the boundary to the
point of examination. Considering the one dimensional
system, the magnetic intensity varies with the distance =x,
assuming the unidirectional flow of flux, mathematically

equation (2.8) reduces to-

> Mo _3m e (2.70)
2x2  F ot

%
To solve the equation (2.70) let us assume a solut-

ion of the forme

t
H (x’ t) = Re [U(x).ejaJ I (2.71)

vhere U(x) 1s a function of x only and 'Rel indicates
'Real part of it',

Discarding 'Re' symbol and substituting the above
assumed solution in equation (2.70)-
jut  4a.u jwt

N o 5
® dx2 .P d ¢ e
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or, U 0
2~ =3 1 cee (2.72)
w2 P
= JE v ces (2.73)
¢
or, .
a
—g——- - 2 U = 0 sen (2.74)
a2 =X
where, —_
d? = J—_'a 1“ ¢« @ j( /2)
c? c?
-
Cex=4y o1, AL
e ¢
= 21,"' (Cos T/4 + j Sin T/4)
= .
c N2
Since ¢ 2 = s (from equation 2.20)
o.o ok = "L"'?"i = e e (2075)

3}

Solution of the differential equation (2.74) is given by

- X KX
U=A¢ +B e . (2.76)

vhere A and B are the arbitrary constants.

It is seen from the equation (2.76), that the
second term becomes infinite as the distance x becomes

very large. Since U £ o , at =x =

The constant B = 0

Therefore, the cquation (2.76) reduces to-

- xx
U = A e Q ee (2077)

nowr at the surface i.e¢ x = 0.
J ot
H= HO = UO Cos W t = Re (UO e ¢ )

ioe' atx=09 U :U

~



from (2.77) A = U,

= - -;—-(14-3). H .e

7x °

-xX
e @ U = Uo e« ©
Putting the vslue of from equation (2.75)-
- o
ST e (1+3) 5
o L N ]
Jawt
u.o HﬁUCOS &thRe (er )
| -(1+j) ex/8 j @t
o.o H=Re,{U°e. ‘ 2 i se e
S Jwt
Since Re (U, e ) =H,
We have from (2.79)-
| -(1+3)x/s
H = H .« € / ‘se e
(0
-x/s8 =3 x/s
C = H. e B - |
D
: -x/8
= & .
H.e [ Cos - j Sin 3 ‘]
From equation (2,35) we have-
R
vhere, ix = Current density.
now, 1x = %‘
where, E = Electric Intensity.
and P = Resistivity
. E H
. . f = - ax
or ‘
- E_
. . ax = - P .« ea
From equation (2.80) we have,
o H -(1+3) .x/s

LI ]
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(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)
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From (2.82) and (2.83)-

- (1+3) /8.
= %2'11;4 + Hy e
] ' -{1 .
e Mhp.u. e (1+3).2/ vor  (2.84)
= (%‘i)f. H . e-x/s‘ e ~J ?/s e (2.85)

or ‘ =
" Ba= ‘(hj)ﬂ. H . ex/a ;Gos x/s - j Sin x/as
vee  (2.86)
Consider the fig.(2.12), in which a long column

of metal with a cross-section of 1 square cm. is shown.

The current density flowing across the area, b,

is from (2-84) &"

~(1+j)x/s
i (Amperes per sq. cm.) = %— = (%J)H .€

o ’
oo (2.87)
The total current flowing through the side of the

columri under the patch a, which is 1 cm. on a side, is
X= o
It = f iodx ‘ PR (2.88)
x=0
Substituting (2.87) in equatim (2.88)-

x =% ~(1+3) x/=.

I,G:glgi)no f o ax .
x =0
[ -(1+3)x/sf=°°
2 - o e
x=0
= H cee (2.89)

From equation (2.89) we see that the total integrated
current It is in phase with the magnetic intensity at the

surface and is equal to the surface magnetic intensity.
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The power dissipated as heat in the 1little cube of
. _ Eg .
which the area b comprises one face is T where the

absolute value of E is used. Then the power density is

from equation (2.85)-

-2x/8
g‘- s Hi L e ° fz
P(watts for cubie cm.) = <5 . ,
8 Vg
| ' 2%/
P(watts for cubic cm.) = g§-j’- Hg . € ' (2.90)
8 ’ .

when expression (2.90) is integrated throughout the length
of the columm, the total power in the columm beneath the

patch, a, which has unit area is found to be-

Pt(watts for square cm. of surface)-

X =% X = . 5 "'23(/8} ‘
- 2
Pt-j jg—,"c‘?onoce
x=0 x=0
2
H
= "'——"'. f L (2'91)
On mbstitutigg (2.89) in (2.91)-
I . ‘
%
Pta P .f 'K es (2093)
Substituting (2.91) in (2.90)-
-2x/s
P (watts per cubic centimeter)= %— Py. e (2.93)

From equation (2.87), the current density is given by-
-x/8 =3} x/8

2

At the surface i.e. vhon x = 0

;
i =(-§3)Ho.

0

Hence, - _
= o J;/S. e j X/S ‘ (2094)

in/io v



or,

-:{—x—- = ‘ e..x/sl L_,"' (X/30180/1r ).e

o

Similarly from equation (2.93)-

-2x/8

= e see

rd
*ﬂ“

0

vhere, P

0= Power density at the surface

(2.95)

L I J

(2.96)
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The values of ix/io and Px/?o are tabulated in table
no.(2,2) and are plotted in f£ig.(2,15) against the vadues

of x/s.

TABLE No.2.2

x/s gix/ioze_xle Phase Angle of i/1, Px/ro=;2 x/s
| = ~(x/8,180/m)°

0 . (.74 1 0° 1

0.25 | 778 ~14.3° .606

0.5 606 - -28.6° «368

1.0 +368 -57.2° 0.136

1.5 223 ~85.8° 0.05

2.0 0.136 -114,.4° 018

2.5 0.082 -143.0° 040067

3.0 0.05 171.6° 0.0025

Fig.(2.14), shows the vector current density relations in

the metal, and fig.(2.15) shows the Relative current-

density and power density in the metal for different values

of X/ﬁo
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The current density for a number of distances below
the surface is shown in fig.(2.14). It is noted from this
figure that ‘he current density lags in phase as we go
deepor in to the material, and the current density decreases
rapidly.

Fig.(2.15),vhich shows the relative current density
as a function of the distance from the surface, reveals
that at a depth equal to the skin thickness, the current
dénsity is 36.8% of the density at the surface. On the
same diagram the relative power density is 13.6% of the
density at the surface. Therefore, it is interesting to
note that over 965 of the total power is lost in a layer

equal to the skin thickness.

GCHo8S5

BUEAL UBRARY UVERSITY 06 RS-
Zeery



4]

2.,7. POVER AND FLUX INDUCED IN A RECTANGULAR SIAB OF LIMITED
THICKHESS:

The clab is shown in fig.(2.13), referring to it

let-
t = thickness of the slab.
w = width of‘the 8lab.
and 1.,. = Axial length of the slab.

The distence x is measured from the centre line a2s shown

in the figure, and it measures the distance from the centre to

the point of examination.
Mathematically the equation to be solved is given by
(2070)"

o B K 3y
Dxan f 0t

Jaut
Agsuming & solution H (x, t) = Re L U(x).e 1 as

in the seetidtn (2.6), the solution of the differential equation

is siven by from equation (2.76),

- <X <X o
UzA.e +Bo e PO - from (2076)

where A & B are arbitrary constants.

o = 1—§i - ' ... from (2.75)
The constants A and B determinate from the boundary conditions

given below.

In a plate of thickness 't', the distribution must be
symmetrical about the center line of theplate. Thus any
quantity at x = + t/2 and x = - t/2 must be identical. This
implies that A = B in the equation (2.76).

Therefore the equation {2.76) reduces to-
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- X X oKX .
UzA[e + e 1
= 2A cosh«x ces (2.97)

In order to determinate the constant A in (2.97)

we take the surface boundary condition in to account.
J ot
ie. At x= +t/2, H=H =Relue [

or x a2+ /2, U=V,

Hence from equation (2.97),

= =t
Uo = 2A cosh 5
',l A - UO/Z. COBh.’(t/z s 00 (2098)

Substituting this value of & in (2.97)-
_ Cosh A x eee (2.99)
U =Uss Cosh w 1/2 ~
.. H=Re (U.ejq}t) = Re (Uo.Cosho(x.ej QH;/Cosh <t/2 )

'« H=H_ . Coshxx/ Cosh X t/2 (2.100)

Putting the value of from (2.75)~

H - H 8 s (20101)

It can be shovn mathematically that-

Cosh (1+3j) @ = Cosh @ Cos 8 - Sinh © Sin ©
ees  (2.102)
Rationalising (2.102) we get,
Cosh (1+3)8 = {-é (Cosh 20 +Cos 20)}%(p
ces (2.103)
where, tan @ = tonh & tan @
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~ Utilising the relation given in (2.103), in (2.101) we get,

{Cosh -2-% + Cos ex I8

H =B g 1| _
x °{Cosh-:—+(los ':T' 1 €9~ 9,

'Where’
tan 531 = tanh §-— $an -?-JB‘-

and tan 92 = tanh 2: tan-'g-

(2.104)

Hence equation (2.104) gives the field distribution

through the slab.

2.7.1. Total fiux in the slab:

The total flux within the slab is given by-

- t/2
¢w= 2 f /'('ch w. dx ses

Putting the value of H_ from (2.101) we get-

53‘?:2 j ﬂ'W. Ho = 1) x/s dx

Cosh(1+3) t/2s

Z}LOW.HO t/2

(2.105)

= J Cosh (1+3) x/s.dx.

Cosh(1+3)t/2s K

il

r 2 /l‘Lo We HO } t/2
(""&"" .
i Cosh(1+3)¢ ey ) fSimb (1+j)x/%§

/28 o
2 foow B, (2 Stnn(1+3)t/28 .. (2.106)
= oVie . \
1*3 77 Cosh (1+j)t/28 -
t %
. 2 fowe Hg Sinlyz » Cos g3 » JCoshyy Singo
01‘, = "
v 1+] COBh.gs oos-—~ jSinh Z Sin %E

L (2.107)



44

After rationalising equation (2.107) and making

aome mathematical manipulations, shown in Appendix 2, we get,

K ty_ i _ t
- A {131nh ~ +5in2)-3(Sinh £ 51ngl§
osh 2= + Cos E—)
con (2.108)

tthere,
A, = w.t = Area of the slab .ne (2.109)

Equation (2.108) can be written as-

o= JBye Ape (P = 3Q) = g~ 38, (2.110)

P
p o B g Sinh§+$in ‘ng_g cee  (2.111)
=3 +
Cosh s * Cos p
and, £ %
T 4 t
Cosh r + Cos r

P and Q functions are extremely valuable and are tabulated

in table (2.3).

®he P & Q functions 5are plotted for different
values of %’- in fig. (2.16). It is seen from the graph
that for ;;—- 725, the values of P and Q@ are equal. Alsgo
tvhen %" 78, P=Q= 8/t,
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TABLE (2.3)

P & Q FUNCTIONS FOR DIFFERENT VALUES OF t/g

P Q

1 0
0.967 0.161
0.68 0.406
0;373 0.364
0.248 0.263
0.200 0.202
| 0.165 0.166
0.143 0.143
0.125 0.125

45
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CHAPTER 3
THERMAL CONDITIOMS

3.1. LNTRODUCTION

This chapter deals with the temperature distribution in
the work~-piece. The measure cause of the conduction of hesat
encountered in Induction heating is the skin effect. Due to
gkin-effect tie heat is generated inside the surface of the
metal, and this amount of heat falls oft'exponentiﬁlly-toward
the center of.thepiece, just as the current drops towards
the center. The power generated (or the heating effect) falls
of f from the surface about three to four times agfapidly as
the current effect. Therefore while considering the Induction
heating applications, the relationbetween the heat depth and

current depth is of considerable importance.

3,2, INFLUENCE OF TSMPLRATURE ON THE PHYSICAL PROPERTIES
OF METAL:

The major factors in heat and temperature distribution
are current depth, time and heat conduetivity. Current depth
is a function of frequency, resistivity and permeability.

The characteristic physical properties of the metal (emmissiv-
ity, resistivity, thermal conductivity and permeabil;t§) play
an important part in induction heating. During the heating
process most of these properties changé ih value, so it is
very important to know their relationship to temperature. In
general, the resistivity increases with %emperature in nearly
all metals and hence the current depth increases with tempersa-
ture. Usually this increase in resistivity is linear with

temperature rise, so the average or integrated resistivity



47

between room temperature and the final required temperature
can be used to drive & reasonably approximate value for the

average current depth.

Fig.(3.1) and (3.2) show the integrated resistivity of

pure aluminium and common steel alloys respectively.

The values of thermal conductivity usually rise with
temperature, the exception being steel whose thermal conducti-

vity falls with temperature.

Permeability varies congiderably with temperature end
thereby effect the current depth and power input to the
work-piece since they are the functions of permeability. In
general, the permeability becomes unity at temperatures
between 1275 and 1600°F, depending upon the intensity of the
magnetising field and the alloy content-of the steel,

Hopkinson(16)

showed that for very weak fields, the
permeability actually rises, whereas in strong fields it
falls off rapidly at 1400 to 1475° F to about one-hundredth

of its value. The followling table gives the magnetic change

points of some common metals(17)'
TABLE 31
Metal ces +++ Temperature, °F,
II‘OR e e cesr i1420¢
CObalto [ ) s e e 2105
Nickel > *e . W 680
Carbon steel (medium) ... 1330

This critical temperature is called the curie point.



s MECROCHNM ~Cm,

“TY

S5

—

INTZaRAT LD R

N
e

~
—_ ——

[N

U
-7

§ -

—r

+ —

<|>——~

200

i
1
—_— N S —— S
Zoo Goo 800 {000 ‘200

e de = LNbe rebod au8laelNioy

(ahibe L lobed 2rol. fuve Luapeloture o

—f— - o]
1 ,
]

o]
TEMPERATURE | F

‘,,

(VIS JEAVID S VL TR o ¢

P
£y

1400

Alwind e,



/oo
-

t
9
W

W - TWHOQOY LW

- ——

P

. Jm__ .

n o
. I S
-+ “ \//a
N
e e e - . — — e Q
Co
| | _
// _ _
\ | | .
,/r B | _
[ / 1 i "R
| | |
"
_ ; |
, : : ! .
— et oo - - S T S P
@ @ Q 2 Q R

- ALniasisly O34vyo3dANTg



4%

3.3, SPLCIFIC HEAT EFFECTS:

In order to use the average specific heat over a
certain renge of tcmperature, it is converted to Pounds
per kilowatthour. Pig.(3.3) ehows the Pounds per kilowatt-

hour of Aluminium, steel and copper.

The definition of Pounds per kilowatt-hour (1b.per

Kwhr) is as followss

1b/Kvhr = ”K‘E'.%g‘- (3.1)

where,

A® = Temperat'ure rise, °F,
~kg = Average specific heat over A 9.

The thermal or useful power required to raise the

temperature by A9 is obtained from-

1h/hrs (3.2
Py = 1bv/Kvhr 3-2)

3.4, HEAT LOST BY RATIATION AND CONVECTLION 3

The radiation loss is given by-

Pp=3Te (Tg~~ Tﬁ ). 10712 wvatts/sq.in. (3.3)
vhere »
e = emissivity coefficient of the surface.
Te = surface temperature, °K,

T, = Ambient temperature, °K.

Fig.(3.4) shows a set of curves for typical metals.

These figures are based on a normal surface of work-piece.

Convection loss encountered in Induction heating is

very small so it can very well be neclected.
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oF
3.5, THE DIFFERENTIAL ECUATION, HEAT-FLOW IN ONE DILIENSION:

The differential equation of heat flow is established,
by restricting the problem to flow in one direction or dimen-
sion. Therefore, the limiting condition is that heat flows
only in the x-direction and under this condition a small
rectangular box within the body of the material is examined.
This box shown in Fig.(3.5), has a width of 1 cm, a height of
1 em., and a(ff:?th dx. Heat may be generated in each cubic

centimeter b§ electrical means.

Let H = Rate of heat generation in gram-calories
per second per cubic centimeter.
H is a function of both time and distance.
Heat generated within the smallbox, in a short time interval
dt is given by-

QO = Ho dxe dtt *ea P (3.4)-

The temperature at the point O is U°c.- Then the increase

in heat stored in the box during the time, dt, is -

Q1 = VW K — 3‘(2 dt . dx sy R XY (3.5)

v =E§;;3ity of the material

Ks = Specific heat of the material.

there »

U
The temperature gradient at point 0 is ( gx )o*
The gradient at point B on the right hand face of the bais
3T U Py w1 oax
(ax)B"'(TY-) %_ bx)}oa

and the gradient at point A on the left hand face of the

box is -
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U U 2U
G340 = 5o - {ax T )} 2
Q

The heat flowing out through the face at A in time dt is-

Q2 = k ( )A. dto ss 0 PES (306)

where,

k, = Thermal conductivity of the material

The heat flowing out through the face at B is-

2 U
Q3 = - kc “ax )Bcdto

Pape ™

Prom the conservation of energy,

Q°=Q1+Q2+Q3.

'.I.‘hﬁs,
H, dx. dt =¥. K V| ax dtkl-——-( )_gdxdt
* * b ¥ S 'at ® - cLax L ] [ ]
0
e é s e (3’7)
or, U 32U | ( |
) = ° &3. a -’kc . -"5-';2_ cen see (3'8)

This is the differential equation of heat flow in one

dimension.
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3,6, SOLUTION OF HEAT CONDUCTION ECQUATION IN THE CASE OF
CYLINDRICAL ViORK..PIFECE.

The following assumptione are made:

(i) There is no axial variation of the temperature.
(ii) There is no angular variation of the temperature.

(iii) There is no convection in the air-gap i.e. the air-
gap 1s fairly small,
(iv) Thermal conductivity of both air and solid are not

temperature dependent,

(v) At time t = o (mitially), every thing is at room
temperature.
(vi) Initial temperature is uniform through out.
Let;
Oa = Ambient temperature.

r = Radial distance from the eenfer,? cm.

a = Radius of the ¢ylinder, cm.

Hence in cylindrical co-ordinates, the heat conduction equat-~

ion to be solved ig-

2 - _
°0 . 01 28 - 1. .20 =0 ... (3.9
arz r -

Where, k

- k = Thermal diffusivity (k = -,;ffis-f)
now let us call a function-

U=6-896
a
Then since Ga is constant, we can write-

2y _ 29 2y _ 2% dy_ _dg
vr T Br 0 T, 2 T2 and T 3= Ty
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Hence with zero initial temperature, the equation (3.9)

can be written as:

'S
20U 12U 12U
2 T Tk ge =0 (0=r<a, t-0)

L (3010)
This equation ig to be solved with the boundary condition
that at the surface-—

.?.y_. 3? ' sse (3011).

i.eo. At T = 3, kc ™ o

where, -
P, = Sufface power density, cgl/sec./sq.cm.

The subsidiary equation is-

0T, 1 8- & T - o0
are r dr v
or, . =
Qz-ﬁ + _1___ QU -qz -6 k1 0 > 6 e 0 (3012)
. drz r dr
where, >

qQ = ‘f‘ s ( p being the Laplace operator) ,(3.12a)

The equation (3.12) is to be solved with the boundary

condition that at the surface=
- au.  _o
ioeo At r = a, kc dr = p e s s s (3.13)

Hence the solution is given by

.fi = A Io (qr) + B KQ (qr) eo e se e (3014)

where,
A and B are the arbitrary constants-

Z,(ar) and Ko(qr) are modified Bessel's functions of
zeroth order and first and second kind respectively. Since
Ko(qr) tends to infinity at r = 0, it is excluded from the

solution and then we have-
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T =4I (ar) e (3015)

- 1)
L 4 U g——- —

N - i_Io (q'rii = A-aylger) oee o (3016)
Hence from (3.13) and (3.16),

P
0

P

Koo Ao q.I, (q.a) =

c'
or P
A = o
p.kcoq_c I1 (q.a)

putting the value of q from (3.12a)-
Pok

oee coe (3.17)

A =

Putting the value of constant A in (3.15), the solution is-

P kk. I, (qr)

‘—__ _Q o e LI 4 (3018)
v = 3/2 y .1 (qa)
P Xty
Solving the equation (3.18) with the help of inversion
thoérem(zz), the temperature Ur at a distance r from the

center after a time t iscgiven by- kfzt .
- n

o® 2 d(r. Br/a)

Ur = X, E}zfg ¥ ;ﬁE‘" “& 2 ;EE °° ':E?JO(F:; i
eee CLeee (3.19)

where, _

Ur = Temperature in °c¢, at any distance r from the

center.

P, = Surface Power density, cal./sec./sq.cm,

a = Radius of cylinder, cm.

k, = Thermal conductivity, cal./sec./cm./%c.

kX = Thermal diffusivity = 1ﬁ«s"

t = time in seconds.
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Xs = Specific heat, cal/gm/°C
¥ = Density gms/cu.cn.
r = Radius (voriedble), com.

62 = Positive roots of J1( ) =0

Jo(x)= Bessecl's function of first kind & zero order.

The expression given in (3.19) can be simplified by
using the dimensionless function T, where-

ket

? = cos (3.20)
a2

Substituting the value of T from (3,20) in (3.19)=-

P.a [ 2 A4 _2,B2 J (r.R
ura—%i§2m+ *’-"-3-‘;‘;-2 Z e Fn.‘l‘(?r /)
¢ i 2a ne E; JO(E;)
oo (3.21)

The summation series in eqn. (3.21) becomes zero by making T

greater than 0.25 and eqn. (3.21) reduces to-

2
( 27 + 2;5 -3) . (3.22)
c 2a

P .a
o)
Up =
The values of the function U/ (Po.q/kc) are calculated
for different values of T, corresponding to various values of
r/a, and are tabulated in the table no.(3.2). The calculations
for this are made on digital computer and the sample programme

is showm in Appendix 3 (progromme no.2).
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In fig.(3.6) the eqn. (8.21) is plotted for Ur/(Po.a/kc)
as a function of r/a for different values of T. The interest-
ing fact investigated from fig.(3.6) is that up to T = 0.25,
the heat flow is in transient state, with the surface rising
faster than the center. Above this value a "steady-state”
condition is achieved and all points on the radius rige at
the same value; acssuming that ail other values in eqn. (3.19)

rerain constant.

After the steady-state condition has been reached, ean.
(3.22) can be used to determine the temperature difference
between surface Us and center Uc’ by usirg the values r/a =1

and r/a = 0. Therefore,

P .a _ . '
UB = _'1%'—' (2T+ %) v , ' ses ' (3023)
C ‘
P -8 :
and U, = —— (2T - %) | ces (3.24)
(4]
Pooa ’
. » Usﬁuet k Y . . e ‘ !3-25)
[«
P .a 2
U - U = 9 . "I:- LA (3.26)
r c 2kc 32 :

All these cquations are based on the assumption that
radiation losses are negligible and that the heat is generated

at the surface, so corrections are to be made for both factors.

3,7. CORRECTION FOR PINIGE CURRLNT DEPTH:

The correction for the finite current depth, and therefore
for power generation inside the surface, is contained in the

following equation, the proof of vhich is given in Appendix 4.



T=-25
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. P.a § 2 X(x, r/a) -1
‘ 1 2
U, = Uc = gkc { :2 - ky ( Z(kz) ) j (3.27)

where,

X(k, r/a) = bere (kz.n/a) + beil (x, r/e)

Z (kz) = ber k, ber' k, + bei k, bei' k

2 2 2°
k2 = k.‘ a

Here k1 is a function of current depth such that

1 § (3.28)

Equation (3.27) is based on the assumption that
gufficient time t1 has elapsed so that all points on the
radius areAriaing at a uniform rate, i.e. T20.25 in eqn.

(3.20).

The time t for this value of T is given by~

kt k .t
T o= "-'L' =. L 1 = 0025 s (3.29)
a? ¥, Ks'a‘? _
or _ Yk .a®
f,1 = 41{0 cor (3'30)

The surface~to~center temperature differential is given
by putting r/a = 1, in eqn. (3.27) =
Po'a r1 1 X(k2)"1 _§

Us - Uc = - ﬁ;‘. ER§E7“—_ —g ' (3.31)

e

3,8, CORRECTION FOR RADIATION LOSSES:

Radiation losses are the difference between total and

net power inputs.

let~

P, = Total power input, cal sec.”! sq.cm

1

Pn = Met or effective power input (after radiation).



Then eqn. (3.31) is corrected for radiation losses by the

following equation-

X. (kz

P .n 1
R i{T [(P;/Pa 3 T )}a (3.32)

or
U - U= P . P (P /P, k) (3.33)
2k n"a® 72
where,

P.(P /P, k,) is the correction factor given by

I X(k,) -1 471
F (R /P,y k) =1 - { (-——-—75,—-)( kz ){Z(kg }_g
- (3.34)

when the radiation losses are negligibly small, Pn/Pa~v1,
and P, -» P . Eqn. (3.32) then gives the same results as
eqn. (3.31),

Converting egns. (3,29) and (3,33) in to practical units

dr fys,
0.084 Pn.a
where,
U, -0, = Surface-to-center differential . %,
Pn = Net péwer inrut, watts per sq.inch.
a = Radius, inch.
kc = Thermal conductivity, cal sec.'1, cmf’, °c“1

~ = Density, 1b. per cuv.inch.
The correction factor F (P /P, k,) is plotted on Pig.(3.7)

for different values of the ratio of radius to current depth a/s.
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The temperature distribution throughout the radius is

determined by taking the generalized version of eqn.(3.32)-

P .a I 22 X(kLr/a)d 3

- 1 1
U,-Up = 2k, g_ a2 (Pnﬁa) (1:2)l 2(k,) _%

Cees (3.36)

3,8, ILLUSTRATIVE EXANPLE:

The following data has been choosen for the calculation

of heating time and surface-to-center temperature differential.

lHetal | cas ere Alumininm

Temperatﬁre rise, AU ..s 875°F(70 to 945°F)
Production rate ... - ««s 4500 Ib per hour
Radiue, a cea «+¢ 8.5 inch

Length, 1w ves «+o 40 inch

Thermal conductivity overAU, k, ... 0.40 cal en 'sec” oe”
Density ¥ “os ves 0,096 1b per cu.in.
Specific heat over AU, Xs . 0.250

Permeability, W vos 1

Frequency, £ coe +ees 60 cps

Resistivity at &, f (from fig.) ... 5.45 micro-ohm-cm.

.

Agsumed Room pemperature ese TO°F,

First, the time of heating t is determined from the mass

of the billet M and the given production rate-

2

= (3.5)2.(40) (0.096) = 148 1b.

(A :
Therefore Heating time, +t = - x 3600 lb;hr =

1

4500

= 118 sec.
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The factor T is given from egn. (3.20)

k .t

wﬂksaz

=

(0,40) (118)
(0,096 x 453.5/2.549)(0.250) (3.5%2.54)2

(0.,40) (118) (2.54)
(0.096)(453.5) (0.250) (3.5)%

it

= 0090

This volue of T is greater thon 0.25; therefore the steady-
gtate heating time has been reached and equation (3.35) can

be used.

The time at which the conditions change from transient

to steady-state can be evaluated by putting T = 0.25

% T ”‘KSQQ
k
C

_(0.25) (0,006) (0,250)(3.5)2(453,5)
(0.40) (2.54)

il

= 3208 86C.

Therefore up to 32.8 sec, the heating is in a tronsient state
with the surface rising faster than the center. Lectal pounds
per kilowatt hour from fig. (3.3) = 16.2 1b/Kw hr. Hence
from eqn. (3.2), the ureful thermal power density in to the

work is calculated as-

P = 278 KWQ

4
t T  16.2
vhere Pt is the required thermal power.

The net power density is-

P, x 10° P, x 10°
Py = Sirface area = 2T.o 1
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(278) (10)7 .
= @ () G.5) (@) = 316 vatts/sq.in.

Now the current depth B is=-

g = %;;‘(%f%gg)% cm. (from eqn.2.20)
ORI towe S
= 1.52 cnm.
.*. Ratio %— = 22X 224 . 585

Radiation at the given temperature is found from fig.(3.4).
This is~

P = 6 watte /8q.in.

Therefore the toial power-density input is Pa—
P, = Ph +P_ = 316 + 6 = 322 watts/sq.in.

P
The ratio -0 = _316 _ 4 gaq
7, 302

Using the curve of P /P_ = 1.0 from fig. (3.7), the value of
| ' a_ _
F(Pa/Pn, ke) is 0.82, at o~ = 5.85.

Finally eqn. (3.5%5) is used to determine the actual surface

to=-center temperature differential.

0.084. Pn.a

°
. Lo

(0.40)

= 190°F0
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SOLULION OF HEAT ~LOw DIFFEREWTIAL rvUATIUN IN yHE

CASE OF RuCTaLGULAR . ORK-PIECE

4.1, LUTHODUC TOil:

The differential equation in single dimension was establish-

ed in section (3.5) and is given by-

2
2 g «.. from egn. (3.8)

)
M%;{- -k,
?x

In this chapter, the solution of the above differential equat-
ion is effected by showing the direct analogy between the

heat-flow problem and & particular transmission-~line problem.

4.2, SOLUTION OF THE 1RANSMISSIONLLINE PROBLu:

The transmission line of length a is shown in fig.(4.1).

The uniformly distributed constants of the line are-

R

i

Series resistance per unit length.
L = Series inductance per unit length,
G = Bhunt conductance per unit length.

C = Shunt capacitance per unit length.

i

At both the ends, the line is terminated in impedances.
At one end, x = 0, the line is terminated in an impedance,

Zo, while at x = a, the line is terminated in an impedance Za’

A voltage intensity E(x) measured in volts/cm., is
induced all along the line by an external force. This voltage
may be brought about by an impinging electromagnetic field or
by inserting a battery or generator in series with the line.

E(x) may be a function of both time and distance.



(A! E(v)
)

T i
= e =

¥ig. 4.1 - The transmission lino uscd as é&n
analogue to the hect-flow problew.

Fig. 4.2 - The transmission line analogeus
to the heat-flow problew.
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Let-
e = the voltage across the line at & distance x from ZO;
and-

I = the current in the line at a distance x from Zo'

Then,

2 1

3x“”RI”I‘ ot * E(x) (441)
oand, 5 3

s - ‘- —r2

5= = Gg - C 1 (4.2)

or raking use of the Heaviside differenticl operator p,

5 | .

b; = = (R+pL) I + E(x) oos (4.3)
and, '

"a .

'D}I[ = - (G +p0)8 s e - (4.4)
From (4.4), | .

o 1 21
° == T T e s

Differentiating egqn. (4.5) with respect to x, wo get-

;%g's - 1 . o2 I " (4.6)
X (G+ pC) sz
Substituting (4.6) in (4.3), we get-
E(x) = (R +pL) I 1 22 (4.7)
(G+pC) ~ 2
or
2
"}‘)"'""]":'-2“ -‘12 l = - (G’ '#pC) . E(x) se (498)
¢ x
vhere,
2 @ ( B +pL) (GepC) (4.9)

The complete solution of the differontial eguation (4.8) is
given in Apponiix (§) ond from there the solution for tho

current I at point x is~
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v=a
I(x) = {Ezg +zazo) J( E(v) Cosh Y (a +x - v) &v

V=X
v=0
+(Z§ -zazo) L/’ E(v) Cosh Y (a-x -v) dv

v=0
=X

+(Zg + zazo) ‘/f E(v) Cosh Y (a-x +v) dv
v=0 -
=0 |
+(2,2, + 2,3,) [E(v) Sinh V¥ (a +x =v) dv
=X

=0
+(2,2, - zozo) jOE(v) Sinh 7 (a=-x-v) dv
V=
=X _I
+(ZCZa - Zczo) \j.E(v) Sinh Y (a=x+v) dv .g

v=0
I B!
~=2 2_ Sinh (Va) g?ﬁ - 2,3+ (2,+2.)2_ Coth (vﬁz}

ces (4.10)

vhere,

4.3, AIALOGY BETVEEN HEAT PLOV AND TRANSHISSION LINE PROBLEI:

By making R = C = 0, the trcnemission line has only the
constants of series inductance L and shunt leakage G, as
shown in fig.(4.2). Under this condition the equation (4.7)

roduces to=-
31
E(x):pmué-'.ﬁ'énL’—'"- 1 —;—f;}—
ox
ore (4.12)

o/
<t

end cquation (4.5) reduccs to-



1 21
Q= = -d- ax ss (4013)

comparing equation (4.12) with (3.8), we see that if I(x)
is analogrus to the tomperature U, ihe followingvequalities

must exists

L= ¥ Kg (4.14)

‘é-ﬂg kc L2 I ) (4.15)
and,

E(x) = H gran - calories per second yer cubic centimeter

oo (4.16)
From equation (4.13)
121 2U
e = - c X B - kcc 7 X e (4017)

Prom equation (4.17) we see that the voltage on the line is
analogous to the heat flow across a surface and is proport-

ional to the temperature gradient.

Also,

2. =2 = pwks k, e (4.18)

7oK -
fyz = pm = p. T_'é ses (4’019)

c

4.4, HEAT FLO. PROBLEM IN A PLATE OF FINITE THICKNESS:

How the specific problem of heat flow in a plate of
thickness, a, will be treated, where the power is generated

by induced currents.

The expression for the power delivered per cubic cm.
in the case of infinite plate thickness was developed in
Chapter 2 (section 2.6), where the power density at a depdth x
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was found as-

)
i
|
hd
o
]

..ofrom egn.(2.93)

Where y

P = Power density in watts per cubic cm.

Pta Total power in watts per sq.cm.

However, for a finite thickness of metal sheet, the quantity
P, in (2.93) is no longer exactly the total power delivered

per square centimeter of surface. The total power, with the
necessary correction term is obtained in‘the following ménner.

The power density at a depath x is-

2% . -
2 ' 8
P = 3 é Pt e ‘e s (4020)
where,

P% = Apparent total power.

The tiuc -total power, Pt’ is found by integrating eqn.

(4.,20) from x = 0 to x = a.

Therefore the true total power-

X=8 _2x. 28
P, = ‘/%—'P,{:e SL.ax=P (1-¢ ?) (4.21)
=0
P
- T t ' (4&22)
or B% - -2a7s
-e

Substituting eqn. (4.22) in (4.20), the power density is

given by~ L oL 2X
8
P..e :
2. £
P = 8 [ “2&/8 "o (4.23)
1=-e

Putting %— = F , for convenience in (4.23) we get-
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Be P, e Fox

P - x “Fa (4.24)
1-e

In our analogy to a transmission line, the quantity
E(x) is analogous to the heat generated per cubic cm.,
expressed in gram-caleries per second. Since a watt is
equal to 1/4.187 gram-calories per second, we have from

(4.24)-

iy
e P,
Bx) = Dttt (4.25)

4.187 (1=~ ®)

Asguming that no energy is lost by radiation at either
gurface of the metal, that is, at x = 0 and x = a, the
temperature gradient at these two points must be zero.
Consequently in our transmission line analogy, eqn. (4.17)
reveals that the voltage at each end of the line must be
zero at all times, This implies that the line is short-
circuited at each end 1i.e. Zo = Za = 0., Substituting this

in eqn. (4.10), we get,
v=a
I(x) = h[ E(v) cosh Y (a+ x = v) dv +
V=X

=8

f E(v) cosh ¥ (a=x = v) dv. +
v=0

V=X

Jr E(v) cosh ¥ (a - x +v) dv }

v=0

~23, sinh Ya (4.26)

Substituting (4.25) in (4.26), and after carrying out the

necesgary integration, we obtain-
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. .P r“‘ 7- ""th F
I(x) = F . A - Fa."® e2 W) + 7 ( 3 2_)
4.187(1 = e~ ") L 2 (g% -v") %P7

@

geosh 'Y(a-x)—é-F’acosh'rx ]jg
b ginh 7.2

. coe (4.27)
Eqn. (4.27) is an operational equation which mist still be
integrated, To establish the temperature relationship,
substituting Z, = [pL/G ‘and v° = plé - from (4.18) and
(4.19) in eqn. (4.27) we get-

F 'P$ ' %_- —Goe-.,gx F
. +
4.18701-e”F®) 1 (£~ pn0)  JGI/6) (F-pie) *

I(x) =

Feosh{(a—x){pE}-o"F2cosk xﬁfe:ﬂ

L sinh JpIG . a ol |
. oo (4.28)
LI T B Y e
T oaerice ) T {: (¢ - p10) ’
F'IGP/I' {cosh (a-x) {pI€ - |
._o-fa TG (
(f.pzc)(sinh af pl&)
(2N (4.29)

P,
4.187(1-e"F2) " P
-Gp o X ginh a pLG+ FJGp/L‘ {éosh(a—x)@«ﬁp acoshx,iE

(‘r? - plG) sinh(a,q pLG)
cee (4.30)
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B 'Pih, R 1

(4.31)
40187( 1—8‘-}3&) P Z(P)

or I(x) =

vhere the operational function Z(p) is given by-

2o) (# - pl¢) sinh af pIG
= {-Gfpe‘F *.sinh a|plE+FlGp/L g?:osh(a-x)/]pm ke, _}3
L |

cosh xm

(4.32)
Fron eqn. (4.31), we get—
P, .G 1 2
Ig) = —oe » 3= —F - 1
4,187 B G(1-e ) Z(p)
P, .G
= —S— f(@, x) coe (4.33)
4,187 B :
Where’
g2 - 1
28, x) = + : (4.34)
' P g(1-e" FB)  z(p)

The operational relatim f£(®, x) has been solved by means
of Heaviside Expansion Theorem and is evaluated in tho
following manner-

From eqn. (4.32), we have-

. =:"F,I(}p/t.. ‘@osh(a—x)m -e/®cosh x,\l'f)f(}_}-Gpe' FZinn afpLlG
z(p) (f - p18) ainh a/pL@
ildpLG
= sinh 5;, piG =

a% coch(a~z)| pL@ ~6~"8cosn x,)—p—f@}-

Gpe P oinn ajplG |
a,/pLG

( £ - pzo)
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Then from eqn. (4.34)-

-e ~F%) p sinh (a \pl@ )

1 Y -
= (1-9 “F&) . ) "Z% (4035)

f(g,x) =

vhere,
4 p.&™ginh afplG
ﬁ{coah(g-x),\’pm -e .cosh x,\r— 5 =
Y(‘p):
1. 2L
. R2
. ’ .,.. (4036)
z,(p usinh b voe (4.37)
1 g:! ﬁl piG
let~-
Y(p)
y = Z1Zp5

By Heaviside Expansion Theorem(21) we have-

(p) {Y(p)eptl Pf(p)ep'c 1
.'Z—;G) : 1 dZ1_§ { iz, j-c- cesnee,
p=0 Py T PPy P F o~ PPy

s (4038)

vhere Pys» DPps etce are roots of Z.'(p), that is, the
values of p at which Z1(p) vanishes.

For finding the roots of Z1(p), we define an arbitrary

mumber m as followst

- m2 = pLG Y (4039)
or \pl&é = jm ves (4.39a)
Then eqn. (4.37) becomes~

Z1(p) = %ﬂﬁ . sv e (4040)
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Roots of eon. (4.40) are-

nm
a ’

m=

vhere n = 1, 2, 3.. etc. and from eqn. (4.39), the roots

are given by-
-1
Pp ® TIG

| | 2.2 .
(-25)2 - - 21 (4.41)
a® 1G

“Jhere n :31, 2' 30000 etCO

Therefore from egn. (4.381hwe have,
e 00

Y
y.-,;: ) } . _S_ {Y(Pmm_g (4.42)
- L2,0) p=0 — i a2y _2p2
2 p""‘""""dp ‘ P= 2
a~- 1@
n2 72 ‘
since s Wheren= 1, 2, 3..., etec, are the roots of
a
Z2,(p).

Differentiating Z1(p) and multiplying by p gives-

4z (a JpI& ) cosh (aJSia) - ginh (gjgfa) |

P =
dp 2 (aJpLG)
Then, az oo
d n
P ﬁ;;ﬂ = —L'z’n- (4.43)
’ ,} -n° 3 2
p.—.
32 LG

Algo from equations (4.37) and (4.36)-
24(0) =1 e (4444)

Y(O) = "“'aEL"é" (1 - Q. rsa) TR (4-45)
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and finally-
{;( )‘I | _ '{;oa (nr-_grx ) -~ cos ( Bﬁﬂg‘)§
3 P j —n°re aLG( 1+ .13...31.'3..)
= .32"1‘6 Fz a2,

3 g__(-‘l)n - e'Fa} cos ( )

alG (1+ A;I-z—)
. B2 4

. (4.46)

Substituting the velues from equations (4.43), (4.44),

(4.45) and (4.46) in em.(4.42), we get-

-n°rPs

cos (l‘lail) e Lea®

Nzef

B _ 2 B [1-(~1)%e"F9]
Y= TG (1-¢ Fa)+ZaLG(1+ 2"_2)

Nz F2,a2
L ) (4.47)
Therefore from egqn. (4.35) we get-
| Naoy
L Te 2 R T1-(-1)" o~ F3§
£(0,x) = ae -Ra 2 -2 ?
P L aLG(1-e E ) (1 + n~ T
= Fa ] a?
i g
- _L6a“ nTx
L e cos(=; )\g
now since %—- is the operation fdt, ve gete
By 2R ° |
f(e X)a e ) .
=n Tt '
n>of 2
Z{h-(-ﬂne' Foli1- o™ 3 cos (RIE) )
2.2 2 2
- n_ n__ 1T
m2| e (1° N

coe (4.48)
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2 ¢
putting © = 5 oo (4.49)
2PFa
f(evx) = '?'f?"’ - 2(1_"‘}"'&) *
2 .2
N=pf :11.——“2-:-@
v S B A e A L o mal
T n? [ 1+ (25)2 ]

cen (4.50)

So the solution for current is given in eqn. (4.33),

vhere the funetion £(6, x) is equal to the value given in
eqn. (4.50).

Since the current I(x) is analogous to the temperature
U(x), we can write for the temperature - '
PG
U(x) = =2, £ (8, %)
4.187TF
Since P 3‘%, in terms of the thormal constants of the ‘

material, the temperature is given by-

P v.
U(x) = 8‘:5%&;‘“ « £ 0 ‘QpX) Tses (4051)

The functim f(8, x) given by oqn. (4.50) has been
calculated for different valuesof 9, the ratio x/a and the
ratio a/s. The vdues of @ arc varied from 10 to 10,000, the
x/a is varied from O to 1, and the ratio a/s is varied from
1 to 20. The values of £(9, x) arc plotted in table no.1
to table no.10. 4ll these calculations have been made on
tho digital computer and the sample progremme is showm in

Appendix 3, (programme no.t1).



THETA

10,
20.
30,
50,
100.
200,
400,
500,
7004
900,
1000,
2000,
5000,
7000,
10000,

THETA

10,
20
30.
504
100.
200.
400,
500,
T00.
900,
1000.
2000,
5000,
7000
10000,

A/S= 1.0

541659
10,1659
1541659
2541659
501659

1001659
20041659
25041659
350.1659
45001659
50041659
1000,1659
2500,1659
350041659
500041659

A/5= 10

5.1085
10,1085
1541085
25.1085
5041085

100.1085
200,.,1085
250.1085
350,1085
45041085
500.1085
1000,1085
2500,1085
350041085
50001085

TABLE NO« 40l

A/S= 245

248612
468752
68754
108754
20.8754
45048754
808754
10048754
14048754
180.8754
20048754
40048754
1000.8754
1400.8754
20008754

A/S= 540

247356
441737
53346
Te4168
12.4300
22.4301
4244301
5244301
7244301
9244301
102.4301
2024301
502.4301
702.4301
100244301

TABLE NOe 4.2

R/S= 245

245105
445204
645206
10.5206
2045206
4045206
B80.5206
100.5206
140.5206
18045206
20045206
400452086
100045206
140045206
200045206

FUNCTION F(THETA,X) AT X/A=

A/S= 560

l.8181
3.1231
42367
642949
1163042
2143042
41.3042
5143042
713042
91+3042
101.3042
20143042
50143042
70143042
100143042

FUNCTION F(THETAsX) AT X/A= 0.00

A7S= 100

2.7328
4e1634
52757
70521
10,3751
15.6822
2547104
3047106
4047106
50.7106
557106
1057106
25547106
3557106
50547106

+25

A/5= lUeU

ls1115
2.0893
249626
44,4823
Te5596
12.7766
2247966
277967
377967
477967
5267967
102,7967
25247967
352.7967
50267967

74

A/S= 20

2.728
4e158
5271
Te047
104329
14987
21.664
24478
29740
34.816
37330
624347
137347
187347
2624347

A/S5= 20

+59(
le161
le712
24761
5122
94037
15,212
17e93E
23e12¢
28el74
30.68¢
55469¢
130469¢
180.,69¢
255 469¢



THETA

10.
20e
30.
50
100
200.
400.
500,
700,
900,
1000,
2000,
50004
7000,
10000,

THETA

104
204
30,
506
100,
200,
400,
500,
T700.
900,
1000,
2000,
5000,
70006
100060,

A/8= 140

540000
10.0000
15,0000
25,0000
50,0000

1000000
200,0000
250,0000
350,0000
45040000
500.0000
1000.,0000
2500,0000
350040000
50Q0.0000

A/Sz 1,0

4.8%914
9.8%914
14.8914
24,8914
4948914
99+8914
199.8914
249,.8914
349.8914
44948914
499.8914
999.891%
2499.8915
349948915
4999.8915

TABLE NOe 4e3

FUNCTION F{THETA»X) AT X/A=

A/S= 245

240000
4,0000
640000
10.0000
200000
40.0000
80.0000
100,0000
140.,0000
18040000
200,000¢
400.0000
1000.0000
1400.0000
2000 ,,0000

A/Se 54,0

10000
20000
3,0000
%0000
10,0000
200800
40,0000
50,0000
70.0000
90,0000
10040000
200,0000
50040000
7000000
1000.,0000

TABLE NO« 4.4

FUNCTION F(THETAsX) AT X/A=

A/S= 2.5

1¢489%
344795
54793
94793
19.4793
394793
T9s4793
994793
13944793
1794793
1994793
399:4793
9994794
139944794
1999.47%4

A/S= 5,0

«1818
«8768
ls7632
3.70%0
846957
18.6957
386957
48,6957
6846957
8846957
86957
198.,6957
49846957
69846957
998 ,65958

«50

A/S= 1040

+5000
10000
105000
245000
540000
10,0000
20,0000
25,0000
3540000
45,0000
50,0000
100.,0000
25040000
350.,0000
50040000

+75

A/S= 10.0

« 0000

« 0000
+0373
*5176
28403
Te2233
17.2033
22.2032
322032
42,2032
472032
97,2032
24742032
34742032
4972032

75

A/S= 2(

o2
.1
o7t
le2F
2.e5¢C
5e0(
1040¢
1245¢
175¢
225(
2% 4 Of
5040(
125 ,0¢(
175 .0¢
250 ,0¢

AsS= 2

« 01

« Ot

o Ot

« Ot
]
13:{
N £

T 0
1l.8
1648,
19.3
b 31
119431
169431
264431



THETA

10,
20,
30,
50,
100,
200,
400,
500
700
900.
000,
1000,
000,

000,
Q00,

{ETA

10,
204
30,
504
00
‘004
00,
00,
00,
004
00,
00,
00
00,
004

A/S= 10

448539
98539
14.8539
2448539
4948539
99.8539
199.8539
24948539
349.8539
44948539
499.8539
999.8540
2499.8540
3499,.,8540
499948540

X/A= 0400

541659
1016592
1541659
2541659
5041659

10041659
20041659

25041659

35041659
45041659
50061659
100041659
250041659

350061659

500041659

TABLE NOe 445

A/S= 25

1.3573
343434
53431
Ye3431
193431
393431
7963431
9943431
1393431
179.3431
19943431
39943431
9993432
13993432
19994+ 3432

A/S= 540

«1139

« 6895
le5289
3¢4467
8.4335
18.4334
3844334
48 44334
68+4334
8844334
9844334
19844334
498 ,4334
69844334
99844335

TABLE NCe 446

X7A= +25

541085
101085
15.1085
25.1085
501085

1001085
2004108%
25041085
350.1085
450.1085
50001085
100041085
250041085
35001085
50001085

X/A= 50

540000
10,0000
15.G000
25,0000
500000

'100,0000
200,0000
250,0000
350,0000
4500000
500,0000

100040000
250040000
3500,0000
500040000

FUNCTION F(THETAsX) AT X/A= 1400

A/S= 1040

+ 0004

+ G079
«0565
3622
20824
 6eT455
167172
217171
3167170
417170
467170
9647170
24647170
34647170
49647170

FUNCTION FITHETASX} AT A/S= 140

X/A=  +75

448914
%.8914
14,8914
24,8914
49,891%
99,8914
199.8914
249.,8914
349.,8914
4849.8914
499.891%
9998915
249948915
3499.8%15
4999.8915

76

A/5= 2040

0000
+0000
«0000
«0000
40408
«6896

440409
642265
10,9652
15,8891
1803747
4343579

1183578

16843578

243,3578

X/A= 1.00

448539
98539
14.8539
24,8539
49.8539
99 +8539

199.8539
249,8539
349 .,8539
44948539
499 ,,8539
99948540
2499.8540
3499,8540
499948540



THETA

10,
20,
30.
50,
100,
2004
400,
5004
700-
900,
1000,
2000,
5000,
7060,
10600,

THETA

10.
20,
30
50
100,
200,
400,
5004
TO0
900,
1000,
2000,
5000.
7000,
10000,

x/A= 000

248612
448752
648754
10.8754
208754
4048754
8048754
1008754
140,8754
180.8754
200.,87%4
4008754
1000.8754
14004,8754
20008754

X/7A=s .00

27356
4e1737
53346
Te&l68
124300
2244301
424301
5244301
724301
924301
10244301
20244301
502.4301
70244301
1002,4301

TABLE NOes 447

X/Az o258

245105
45204
65206
1045206
20652086
40452086
805206

 100.5206

140.,5206
18045206
2005206
40045206
100045206
14005206
200045206

FUNCTION F(THETA+X} AT A/S=

X/A= 50

2.0000
400000
640000
10,0000
20,0000
40,0000
80,0000
100.0000
14040000
1800000
20040000
40040000
1000,0000
1400.,0000
2000.,0000

TABLE NO. 4.8

XA  o2%

18181
341231
462367
6¢2949
113042
213042
4143042
513042
Tle3042
913042
1013042
2013042
5013042
70143042
1001.3042

FUNCTION F{THETA+X) AT A/S=

X/A= +50

1.0000
2+0000
3.0000
540000
10.0000
2040000
40,0000
5040000
7040000
9040000
100.0000
200,0000
50040000
70040000
1000,0000

2¢5
X/Azs  oT5

1.,4894
3.4795
54793
V44T93
194793
3944793
T9e4793
99‘#793
139.4793
179.4793
1994793
3994793
9994794
1399.4794%
1399.4794

540
X/A=  «T5

+1818
«8768
147632
347050

. 846957
18.6957
38.6957
6846957
686957
B846957
98+69587
198.6957
49846957
69846957
99846958

T

X/A= 1,00

1.3573
343434
563431
9+343)
19,3431
39,3431
T9e343]
9943431
139,3431
17943431
19943431
399.+3431
99943432
139943432
199943432

X/A= 1400

«1139
«6895
1.5289
304467
844335
1844334
3844334
4844334
6844334
88,4334
984334
198.,4334
498 «4334
69844334
99844335



THETA

10,
20,
304
50.
100.
200,
400,
500
700,
900,
1000,
2000,
50004
7000,
IOQQOn

THETA

10.
20,
30.
50
100,
200,
400,
500,
700.
900,
1000,
2000,
5000,
7000,
10000,

x,A= 0'00

2.7328
441634
52757
T.0521
10,3751
15,6822
2547104
30,7106
40,7106
5047106
55.7106
105,7106
255.7106
3557106
505.7106

X/A= 0,00

247280
4.1587
52710
T«0471
1043292
14,9873
216643
2444789
2947402
34.8163
3743307
6243475
137.3475
18743475
26243475

TABLE NOs 4e9%

FUNCTION F(THETAsX) AT A/S= 1040

X/A=  +258

11115
2.0893
209626
4,4823
745596
127766
2247966
277967
3747967
4747967
5247967
1027967
252.7967
35247967
502+T967

X/A= +50

«5000
1.0000
15000
245000
5« 0000

10,0000
20,0000
2540000
35,0000
4% ,0000
500000
100,0000
25040000
350,0000
500,0000

TABLE NOe 410

X/A= 75

» 0000

+ 0000
«0373
«5176
264403
Te2233
17,2033
22.2032
3242032
422032
4742032
97.2032

2472032
347.2032
40742032

FUNCTION F(THETAsX)} AT A/S= 20,0

X/A= 258

. #5907
1,161
17123
247618
‘541224
940375
15,2133
179357
2312085
281743
3066845
558 ¢ 6964
13046964
18046964
255 4 6964

X/A= 450

« 2500
«5000

+ 7500
12500
25000
540000
10.0000
12.5000
1745000
2245000
25,0000
5040000
125.0000
17540000
250,0000

X/A=z 75

«0Q00

« 0000

« 0000
«0000
+0000

« 9624
447866
T+0642
11.8794
16.8256
1943154
4443035
1193035
16943035

244.3035

78

X/A= 1.00

+ 0004
«007T9

+ 0565
3622
20524
647455
1647172
21,7171
31,7170
41,7170
4647170
9647170

28647170
34647170
496.,7170

X/A= 1,00

«0000
«0000
« 0000
«0000
« 0408
«6896
440409
62265
109652
15,8891
1843747
43,3579

11843578
16843578
24343578
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The function £(8,x) is plotted for different values
of 6, corresponding to different values of the ratios x/a
and a/s. These graphs are plotted in Fig. no.(4.3) to
Pig.no.(4.12). Uith the help of these graphs the value of
the function £(©, x) can be evaluated throughout the section
of the metal sheet and hence the temperature distribution can

be evaluated from eqn. (4.51),

At the exsct center of the sheet i.e. x = a/2 or
x/a = 0.5, the functign £(@, x) given in eqn. (4.50) is
greatly simplified. Vhen x = a/2, the term cos (nTx/a)
is zero for all values of n s0 at the exact center of the

sheet,

20, x) = P B (4.52)

and the temperature is-
P,. G. O

U(x)x:--a/{? = T4.187F%

_ Pl.t
- ' 4.187 L.a
Pt.t *s® (4053)
4.,187a- M- Ks

It is very interesting to note from the egqn. (4.53),
that the temperature U(x) is a function of time and contains
as parameters only the thermal constants of the metal and
the power generated per square centimeter. The frequency

of the induced currents is not contained in the equation.
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APPENDIX = I

Locus of magnetic Intensities

The ratio of two consecutive magnetic intensities from

eqn. (2.14) is-

H = H e-m- A‘Ocotg'
]

-(m-1) Ax cot
Hm_..‘z HO e
Therefore,
Hn ~-AL .cot B
ﬁ_- e = q see (A01)
1

which is constant for positive, integral m.

Kow from fig. (2.5) we have-

goo . s B
H, Sin( P +4<)

Sin (P + 4% )-Sinf
1= ""Sin (B +ax).

2cos (F+ 84/2) Sin (4x/2)
= 1= Sin (f +ax) (4.2)

for sleeves of infinitesimal wall thickness.

. A AX .o (3.3)
Sin 5 = >
Ax
and F + 2 = F + AK == F s e (At4—)

Hence from eqn. (A.2)
q= 1= AX . cot F tev (AOS)
The same result is obtained by using equations (2.14) and

(a.1).
- axcot P
.00 Q = 8 = 1 - Ak.cotp , for Ao.cot B <1
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APPENDIX II
Total flux in the slab

From eqn. (2.107), we can write,

g, = 2/w H o.X e (B.1)

where, (gspp—di—— cop %3- J cosh %3 sin'%§~

28
= i " (3.2)
i R A i
(1+3) (cosh 55 €08 35 —J 9inh 5= sin 28)

i
28
(sinh © cos @ - } cosh © sin @)

= Bo
X (1+j)(cosh @ cos @ -j sinh @ sin Q) (B.3)

Putting == = @ in (B.2) we get,

Rationalising (B.3) we get,
(sinh @ cos & ~j cosh @ gin @ )

(1+3)(cosh © cos & ~j sinh @ sin &)

(1-3)(cosh @ cos 8+3 sinh © sin © )

(B.4)
(1-3)(cosh @ cosh &+j sinh © sin 9)

Numerator of (B.4)= (1=3j) (sinh @ cos & -j cosh & sin 8),
LV .
(cosh @ cos € + j sinh 6 gin T)

(1-3) sinh (1+3)@ . cosh (1-3)@

1

(334-) (cinn 26 + sinh 2 30 )

(351) (oinh 26 + 3 sin 20 )

H]

= % (sinh 20 + jsin 20 -~ j sinh 20+ sin 20)

=% [ (sinh 20+gin 20)-j(sinh 20 -gin 28)}
Ceee (B.5)



IR

Denominator of (B.4)= (1+j)(1~3).(cosh & cos ©~jsinh © sin ).
(cosh & cos © + J sinh © sin &)

= 2 cosh(1+3)8, cosh (1-3)@
=(cosh 20 + cosh 230)
= (cosh 20 + cos 20) eoe (B.6)

Hence from (B,5) and (B,6) we have,

(sinh 26+ gin 20)- j (sinh 20 -pin28 )

=
2(cosh 2 @ + cos 26)
X i X _ X
) (sinh <~ +sin ai - ;](sinix £ - gin &) (3.7)
2 (cosh = + cos 'E") :
Hence f_ from (B.1) is given by-
[(oinn & +oin 3—)-—3 (einh £ - gin &)}
ﬂw = (2 ,LOW. Hotﬂo)g. A ﬂt tB =
2 (cosh 2 + cos %)
eeo (B.8)
E iain O I_..t
] (}1 b 18 {(oinh % +oin =)-J (sinh < -sin FL)]
o't g_ (coeh-z- + cos -E-;) | 3
ees  (B.9)
Putting w.t. = A_ = Area of the slab, in ean. (B.9), we get,
[(sinn £ +oin E)og (otrn E -gin £ ) P+
g = PH A _g X A 8 5] ;3 ‘g
v ot w ¢ i. (cosh-:-‘-&cos%)

eee (B.10)

vhich is eqn. (2.108) ces
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Szmple Computer Pregrammes

PROGRAMME NO. 1 _

C C TEMPERATURE DISTRIBUTION IN A METAL SHEET OF FINITE THICKNESS Z
DIMENSIONTH(25)’BA(10)’C(lO)!AK(lO)sBASQ(IOJsXBYA(lU)’F(25’10’10}
READ10O»IA»IBy IKsACC
READIOI;(TH(I);I”I&IA)
READIOI!(BA(I):I’I’IB)
READlOl:(XBYA(I)9I=1QIK)
PY=3,14159265
PYSQ=PpY*pY
DOlu=1,1I8
BAJ=BA (J)
ClJ)=1e/EXPF(BAJ)
BASQ(J)=BAJ*BAY

1 AK(J)=BAJU/2.
DO21=1,1A
D02J=1,18B
A=TH(I)/BA(J)
B=2-*BA{J)/(PYSQ*(lo—C(J)))
DO2K=1,1K
5UM=0.

501 SIGN=~]1,
N=1

13 AN=N
SQN=N#*N
G=SQN*PYSQ/BASQ(J)
HxTH({1)*G
Z:COSF(AN*PY*XBYA(K))
IF(H“ZOO)Il&llle

11 D=f1--l-/EXPF(H))*(lo“SIGN*C(J)J/fSGN*(lo+G))*Z
GOTO14

12 D=(l.“SIGN*C(J))/(SQN*(1-+G})*Z

14 SUM=SUM+D

. E=B#sSuM
FlIsJsK)=A+E
IF(ABSF(B*D)“ACC)2;2;15

15 SIGN==51GN

- N=N+]
GOTO13

2 CONTINUE
IF{SENSE SWITCH 1)16+17

16 DO3K=1,1IK
PUNCH200, XBYA(K)
PUNCHZOly(AK(J)’le’IB)
DO3I=1,1A

3 PUNCHZOZ:TH(I’:(F(I’J9K)’J:leB)
IF(SENSE SWITCH 2)17+18

17 DO4J=]1,18B
PUNCH203,AK (J)




18

100
101
200
201

202
203
204

13 5
10,
900«
2e
Qe

4

PUNCH204 s ( XBYA(K) sK=15IK)

DO4I=1yIA

PUNCH202» TH(T) s (F {T9JsK) sK=1s 1K)

STOP

FORMAT(3125E1042)

FORMAT(7F1040)

FORMAT(21X27HFUNCTION F(THETAsX) AT X/A=F5.2/)
OFORMAT(TH THETA»AXAHA/S=F5o 1 4X4HA/ S=F5 0 154X GHA/S2F5 0 1) 4X4HA/S=FS
1e194X4HA/S55F541/)

FORMAT (F700»(5F1344))

FORMAT (21X2THFUNCTION F{THETAsX} AT A/S=F5e1/)
OFORMAT(TH THETAs4X4HX/ASF50254X4HX/A=F5¢23s4X4HX/ASF5 2y 4X4HX/A=FS
1ol s4X4HX/A=F542)

END
SAMPLE INPUT
5 «10E~0Q2
20, 30 50, 100, 5004 7006
1000. 2000, 5000, 7000, 10000«
S5e 10. 20e 400
25 o5 o75 le

PROGRAMME NO«¢ 2
C C TEMPERATURE DISTRIBUTION IN A CYLINDRICAL NORKPIECE YA

12

DIMENSION T{20)sRA(20)})sB(20}9E(20)
PY=3,14159265
READ102sACC

PUNCH200
READ1IOOS»ITsIRAIN
READIOLs(T{I)sl=1yIT)
READ101s(RA(I}sI=1sIRA)
READ1O1s{B{N})sN=1»IN)
DOlI=1,IT

DOlJ=1s1IRA

RAJ=RA(J}
Az2o#T{ 1} +RAJ¥RAJ/ 20~e25
SSRO‘

DO3N=1yIN

BN=B(N)

BNSQ=BN#BN
C=la/EXPF(T(I)%#BNSQ)
X=BN#RAJ

L=l

IF{X=~104)21922922



21 PaXi#e5
Q=P
SUM=]l.
FACTzlo
SIGN=-1e
M=1
10 AM=M
FACT=AM*FACT
W=Q/FACT
TERM=S]GN*#W¥*W
SUM=SUM+TERM
M=M+1
Q=Q¥*pP
SIGN=-SIGN
IF(ABSF{TERM}«ACC) 11911510
22 AA=SQRTF(2+/7(PY%X))

LN

AB=COSF(X-PY#425) % (1e=445/(644%XRK)+2254%#4940/ (24 0% (Be®X)¥¥4]))
AC=SINFIX-PY#425)%#(1e/{8e%*X}=225¢/(6e*(Bo¥X)*%3))

SUM=AA* (AB+AC)
11 GOTO(13914) 5L
C R=JO{BN*R/A)
13 R=SUM
GOTO15
C $=JO(BN)
14 S=SUM
GOT01l6
15 X=BN
L=L+1
' GOT012
16 D=C#R/ (S#BNSQ)
3 55=554D
20 E(J)=A~55=-58
1 PUNCH201sT{1)sRA(J)sE(J)
STOP

100 FORMAT(312)

101 FORMAT(7F10.0)

102 FORMAT(Elle4)

200 FORMAT(17X1HTs18X3HR/A s 14XB8HFUNCTION/ )
201 FORMAT(F20449F2Ce25F2045)

END
SAMPLE INPUT
¢« 1000E~04
& 7T 7
«0125 «025 05 ol
Oe 25 5 «75 o8
3.832 7016 10,173 134,323 16.471

9 l.
19616 22767
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APPENDIX IV

A right circular cylinder of radius a is heated with
constant power input by induction. To find the temperature
distribution in the cylinder after sufficient time has elapsed
for all parts of the cylinder to be increasing in temperature

at the sams constant rate.

The power flow across any internal cylindrical surface
of radius r is equal to the power generated inside this radius
minus the power required to raise the temperature of the ﬁass
of metal inside this radius at the constant rate speed. This

is expressed mathematically by-

-27r kc br

j2¥rrPdr - wrl . ks =+ (C.1)
vhere P is the instantaneoua volume power density generated
at a point in the cylinder. To evaluate the constant rate
of temperature rise in terms of average volume power density

4

a’
2 .. 2 20
ma Pa = wa" V. Koo 3t
P
LU _Ta

and  THE = Woks
Substituting this value in eqn. (C.1),

Y
2T r X, gga 1rr.1= szr Par.
| P sl ‘v
or g S = 2 - r1k \J r Pdr (C.2)

¢ o

The power density P in terms of electrical quantities is

12

= I (ver'? kyr + boi'? k,r)



e

&

Substituting this in eqn. (C.2),

P .r . 4
oU a 11 2 2
s ok, - T, J~ r(ber k,r +bei k1r) dr.

0

But, -

.{ r(ber'? k,x + bei'? k,r) dr.
0
I
I (ver ky r ber® k,r + bei k,r bei'k1 r)

. aU _ljﬂ.r
¢ o =

L LI ] 1‘ T
3T 2k A (ber k,r ber'k, r+bei k,r bei k,r)

. see (cas)
Integrating eqn.(C.3) to find U, we get,
P r2 "
U = B o =D~ (ber? k,r + betZk,rd + C.  (C.4)
r 4kc Ekzk 1 1 1
1™e

vhen r = O, Ur = U,s 80 the value of 01 i1s found to be-

C = .——-LZ_——— + U s w (CQS)
1 2 o]
2k1 kc
Hence from eqns.(C.4) and (C.5),
P r2
U U = B o *E-'. (berzk T+ b912 k.r - 1)
r ¢ 4kc 2k2k 1 1
L - (c.6)
now ve have,
1 P
Pa = 1"{:“"’2' 2 ﬂ‘l‘- Pdrs sen (0.7)
-
&Q
o' Pa = i%— 4 r(‘ber'1 k1r + bei'2 k1r) dr. N

o
o' Pa = %ga (ver k,a ber!' k1a + bei k,a bei! k1a)

1



2%

?afkTa

..‘. M:
| ]
2(ver k4a ber ksa + bei k,a bei! ke )

cee (c.8)
Putting the value of ¥ from eqn. (C.8) in (C.6)-
2

2, 2
U=l = 7n CACIONG > .(ber~k3rwbei k,r=1)
¢ 1 2k1 kc
2
=Pa.a(_ﬁ_ ,rﬁ k]a . X(k1r) -1
4k, a a k?r2 Z (k1a)
ves | (C.9)

2

where X(k,r) = ber® k,r + bei? k,r (C.10)

and Z(k{a) = ber k1a ber'kia + beivk1a,bei' k,a (C.11)

Putting k, = k.2 in eqn. (C.9),

o g2

2
- o B X ]
U -0, 4k E 27 %

r
x(kzoi )"'1 j
2 Z(k2)
cee (C.12)

Now the volume power density Pa can be replaced by egquivalent

surface power density-

2P

Pa = _?‘-Q'“ PN (0013)

Then from eqn. (C.12) we get,

Ur--Uc =

P a 2 X(x, r/a)=1
o fx _ 1, 2 (C.14)
2k_ [aa k, Z(kz) J

which is the same as egn. (3.27)



APPENDIX V

A mean of finding the complete solution
ot differential uation 8

Rewriting eon. (4.8) we have-
1 |
'bxz ‘ ,

The general solution of the eqn. (D.1) is-

I=d*r(x) - " r,(x) +ATX+8e 7%
0‘..‘ (DOZ)
where A and B are arbitrary constants and Fi(x) and

Fz(x) are indefinite integrals defined be!ow-

-

P (x) = - (620 | o~ TX py) ax ... (D.3)
27 .

FZ(X) = - M) eﬁr‘x E(X) dx soa (Dv4)
27

The constants A and B may be evaluated in terms of the

terminal conditions.
At x = 0, the voltage on the line is-

e = -4, I ' cos (D.5)
Combining (D.5) with (4.4), we have,

25y
(5% _ = (6+00) 3, 1.5 (D.6)
Similarly,
71
(-ﬁ pql’: - (G*pc) za Ix____a see (Do?)

now from eqn. (D.2) we have the following relations-
21

VIS BV L (D.8)

29

ST E er.F;(x)+F1 (x)v e‘(x -8 Yx.Féfx)-P( e Yxl’z(x)'f



30

and

Subptituting eqn. (D.8) end (D.9) in dqn.(D.6) we have-

(G+pC) 2, L7, (0) - Py(0) + 4+ B]
= 7 P,(0) +YF,(0) +7A -~ YB
A Y - (6+p0) 21 -3 L7 +(cep0} 2]

= = P,(0) [v-(6+p0)2 ] -F,(0) L7 +(G+pC) 2]
(D.10)
Similarly from cqn. (D.7) we have, o
f‘f +Za(G+pC’)}.AaY a_ [’Y .-Za(G+pC) ] B e va

= ~[r +z,(e+p0) 17, (a) o - [¥ -2,(6+p0) JFy(a) & 7@

- (D.11)
Also it is noted that- }
- v=a y | |
P,(a) -F2(0) = - S‘é",f/m’ fE(v) e ' dv (D.12)
=0
and
=
7y(x) ~Py(0) = - {3todl fE(v) dav  (D.13)
v=0

Similar relations in F1(x) hold, further more-

F,(a) - P,(0) + P, (a) - F,(0)
v=a
= - ﬁgin) \f‘E(v) cosh (Vv) av (D.14)
v=0
After solving the two simulla neous equations (D.10)

and (D,11), we get the value of constants A and B. Putting
these values in the eqn. (D.2) we get the complete solution
of tho current cquation, and after utilising the relations
given in equations (D.12), (D.13) and (D.14) and making some



pmanipulations we see that the equation (D.2) becomes

the solution shown by equation (4.10).

21
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