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In the following pages an effort has been made to 
present a comprehensive picture of the effect of Induction 

heating. The analysis has been made considering cylindrical 

and rectangular section for the work-piece. The approach is 

made through a familiarity with what happens electrically and 

magnetically inside a work-piece being heated. Both the 

electrical and thermal aspects ofthe problem have been analysed 

thoroughly. The mathematical expressions have been derived 

for the penetration of magnetic field, distribution of eddy 

currents, generated heat and the distribution of temperature,-

in the two types of work--pieces starting from the fundamental 

electromagnetic and heat flow theory. The solution of heat 

flow differential equation in the case of rectangular work-

piece has been effected by showing a •di eqt analogy between 

the heat-flow problem and a particular transmission-line 
problem. Further an attempt has been made to give a brief 

review of the development of the subject in the past. 
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HISTORICAL DEV'ELOPLIMTS 

1.1. INTRODUCTION: 

When an electric current passes through a conductor, heat 

is generated according to the equation. 

H = k I2  R t. 	 ... 	.. (1.1) 

where, 
H = calories of heat 

It = 0.239 

I = Current through conductor in amperes 

R = Resistance of conductor in ohms. 

t = time in seconds. 

This equation is the basic lo.w governing such heating by 

an electric current known as resistance heating. Electrical 

heating methods fall in to two separate classes. In one, the 

heat is transferred from a source at a high temperature to the 

article to be heated. In the second, the heat is generated in 

the article itself and the source of energy is not at a high 

temperature. 

The heat is transferred from a high temperature source by 

conduction, convection and radiation or by a combination of these 

methods, as it frequently happens in practice. 

Heat may be generated directly in the article to be treated 

either by conducting a current through it or by inducing a current 

in it. In the first method, which is used to a limited extent, 

an alternating current, at a frequency of 50 c/s is passed through 

the article, or through some part of it. In the second method, 

alternating currents, are used, and the contact with the article 

being heated is unnecessary. This method is known as Induction 
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1.2.  GENERAL CLASSIFICATION: 

High frequency heating comprises two distinct methods; 

induction heating for electrical conductors, and dielectric 

heating for materials which are normally regarded as electrical 

insulators. Thus in induction heating the temperature of any 

material is raised by electro-magnetic generation of heat within 

the material itself, and not by any other method such as conduct-

ion, convection or radiation. The material being heated should 

not be part of any electrical circuit directly supplied by 

electrical conductors from a source of electrical energy. Hence 

the principles upon which high-frequency induction and dielectric 

heating are based, are- 

(i) The heat produced in a current carrying conductor. 

(ii) The heat produced in magnetic materials when they 

are placed in an alternating magnetic field and 

• (iii) Heat produced in electrical insulators when ' subjected 

to the forces of an electric field. 

It is not surprising that early scientists soon recognised 

these phenomena and considered them in their laws and theorems. 

The earliest designs of electrical equipment included allowances 

for copper losses, which were due to the heat produced by the 

currents flowing in the electrical conductors of the apparatus. 

Compensation was made for the core losses in electromagnetic 

machines such as motors, generators and transforxr rs. These 

core losses are the sum of the heat losses produced by the 

circulating electric currents in the magnetic circuit and the 

hysteresis losses due to the subjection ofthe magnetic circuit 

to an alternating magnetic field. Lastly, in the design of high 

voltage condensers and cables, the insulating material. was always 
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known to undergo a temperc.ture rise as a result of the losses 

produced by the voltage stresse6 to which it was alternately 

exposed. But considerable time had passed before any one consi-

dered the useful application of the principles which caused 

these heat losses and developed ways and means of utilizing them. 

1.3.   CIHARACT. RI S1Q OF iitDUCTIO HEATING; 

When an electric conducting material, is placed within the 

turns of a coil carrying a current, a current is induced in the 

material and heat is generated in it. The current is greatest 

at the surface of the body and decreases as the depth below the 

surface increases. Consequently the heat is generated in a thin 

surface layer of the conducting material and reaches the inside 

by thermal conduction. The depth of this layer decreases as 

the frequency increases. 

The heating effect increases with the magnitude and 

frequency of the current in the coil, and also with the resisti-

vity and permeability of the material being heated. Hence 

electric resistivity and relative permeability are the- two most 

important properties of the material. Resistivity depends upon 

temperature, which is turn depends upon the internal power 

distribution (always greatest at the surface), specific heat, 

density thermal conductivity, rate of heating, and surface 

thermal losses. Permeability depends upon degree of magnetic 

saturation and also upon whether the temperature is below or 

above the curie--value. 

Hysteresis loss is also present when heating magnetic 

materials but it is insignificant relative to eddy current loss 
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since the eddy current loss increases at a much greater rate 

with frequency. 

1 .4. DEVELOPLTET IN THE PAST: 

Induction heating is a very spectacular process*  it dates 

back many years, It was in the earlier part of the nineteenth 

century that first mention 7 made in the literature of the use 

of induced currents for heating metal. By this time, Michael 

Faraday had completed his experiments with coils carrying rapidly 

reversing currents and he recorded that when one such current 

carrying coil is inductively coupled with another, a voltage is 

induced in the second coil. This was the birth of thetrans-

former, and the addition of a magnetic circuit to its workability 

The literature discloses, that shortly after the middle of the 

nineteenth century, a concerted effort was being made to use 

high-frequency induced currents for heating metals, and 

numerous patents were filed in both the United States and 

foreign countries describing such equipment. The objective of 

most of these applications was the melting of metal, utilising 

a graphite- or metallic crucible heated by induction to a 

temperature above that of the charge, iich in turn was melted 

bthermal conduction from the crucible. 

Perranti and Coi y(14)  both presented data on an induct-

ion melting furnace, which induced currents directly in to the 

charge. Kjeliin(!4.)  did further work along these lines and 

also presented an adaptation of the Oolby design, which eliminat-

ed certain difficulties in getting the maximum amount of energy 

in to the melt. These melting furnaces were all operated on 
relatively low frequencies, ranging from 5 to 60 cyclol, largely 

because no means was available at that time for producing 
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electrical  energy at higher frequencies. 

In the early 1900's, Dr. F.P. Northrup 9) invented 

the high-frequency melting furnace in which the material to 

be melted was not in the shape of ring, but was placed in a 

retaining crucible of non-conducting material. During all 

this development work, horrever, very little interest was given 

to any p3,ase of induction heating except melting, and it was 

not until about 1925 that any mention is made of induction 

heating for metallurJical or metal-joining applications. 

Accurate methods for designing induction heating eoi1~12) 

and of calculating their electrical performance in advance 

have been available since the 1930's and are still being 

improved. The papers which have made substantial contribution 

in this field are those by Dwight and Bagai (1935)(411 

Baker (1944)(2), Vaughan and Williamson (1945)(5), Vaughan and 

Williamson (1946)(7), Baker (1957) 	Baker has been working 

on this problem for years and his contribution is very note-

worthy. He has conducted long term studies of this problem 

and its applications and has obtained very valuable information. 

After 1935, Induction heating has put to some very 

unusual and worthwhile industrial uses. It is felt that this 
unique form of electric heating has played a very important 

role in the program of industralization in iexico(8), parti-

cularly in view of the additional electric power that is 

anticipated in that country. Induction & Dielectric heating 

have had a spectacular growth in the United-States from 1938 

onwards, upto 1948, there had been 500,000 K1 of installed 

power for this type of heating in the United States, the 



6 

3 50,000,000. 

1.5.  TECH1TICA.L ADVANTAGES OF INDUCTION HEATING: 

The advantages of this method of heating may be summed up 

under the following headings: 

?. A better product 

2. More convenient operation 

3. Increased speed of production. 

1.  A better _products 

Induction heating has the outstanding advantage over the 

other methods due to the fact that in this method the zone to be 

heated can be localized and accurately controlled. In other 

methods of heating such as flame or furnace heating the whole of 

the article has to be raised to temperature or even if attempts 

are made to localize the heating, appreciatxle heating of adjacent 

parts inevitably takes place, partly due to the heat they receive 

directly from the source and partly because of conduction of heat 

to them. Induction heating overcomes this trouble in two ways. 

In the first place• the coil can be designed to focus the heat 

only on the required area, secondly the heating time is very 

short, so there is very little opportunity for heat to be conduct--

ed away from the heated area to the adjacent parts. Since Induction 

heating is characterised by high concentration of heat per unit 

volume and close control of transmitted heat, it is particularly 

suitable for surface hardening because the heat producing eddy 

currents have a tendency to flow next to the surface of the charge. 

If a shaft is heated to hardening temperature at its surface zone 

only and is subsequent ]y quenched, then only the surface zone 
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hardens while its core remains soft. This distribution of 

hardness is often desirable, because it gives the shaft a hard 

wear-resistant surface, whereas the core remains soft and thus 

avoids brittleness attendant to hardness. The application of 

highly concentrated heat for surface hardening and forging 

shortens the heating time. This is - important not only because 

of the saving of time in itself, but also because a short heat 

interval prevents or minimise-s scale formation. 

2. More__e onyen ent_ o,ve ra.tj ori a 

The only high temperature produced in heating by induct-

ion is at the area within the coil itself, and there is conse-

quently very little heating of other parts of the work, so that 

it can be handled easily with bare hands without risk of burn-

ing. The absence of radiant heat and fumes from the apparatus 

itself enables it to be installed in ordinary workshops without 

the necessity for a separate heat treatment department. 

3. Greater aueed of gpoduct, .on: 
As the heating itself is very rapid, most jobs take 

only a few seconds. Since un-necessarily large masses of metal 

are not heated up, the subsequent time required for cooling in 

cases where quenching is not used is reduced to a minimum. By 

suitably arranging the heating equipment it is frequently 

possible to carry out two or three operations at once. Induet-

ion heating is more easily adopted to continuous operation 

than many heat treatment methods. 

4. ingQtline 

Most of the advantages which have been enumerated above 
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involve a saving of money. Economy is also affected in the 

following ways. The concentration of heat on a highly localiz-

ed area means that the heating is far more efficient. In many 

cases as much as 95% of the heat generated is actually used 

for the purpose for which it is intended low-grade labour can 

be employed since the process is entirely automatic. 
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THEORY &ANALYSIS OF INDUCTION HEATING 

2.1.  INTRODUCTION: 

In this Chapter an analysis is made of the effect of 

Induction heating. The analysis is carried out and mathemati-

cal equations are derived for two cases. 

1. Cylindrical workpieoe 

2. Rectangular work-piece 

In order to heat a charge, itis placed coaxially inside 

a coil, which is sown as inductor. The coil is energised from 

a a.c. generator. The generator energises the coil and thus 

an alternating magnetic flux is produced. This flux induces 

electromotive forces within the charge and naturally as a 

result current flows circumferentially through the cylindrical 

charge. Hence the heating effect is the result of I2R losses 

due to the eddy currents in combination with the electrical 

resistance of the charge. So the theory of Induction heating 

is based on the fundamental transformer principles. The heat-

ing coil theoretically becomes the primary and the work-piece 

acts as a secondary which is short circuited, and similar to 

the case of transformer, the closer is the coil to the4ork`s 

surface the more intense is the transfer of magnetic flux. 

2.2.  HEATING OF MAGNETIC MATERIALS: 

Heat producing losses are those t'hternal energy losses 

which cause a temperature rise in the material linked by the 

magnetic lines of force. In magnetic material these losses 

are derived in to two classes - hysteresis losses and eddy 

current losses. Hysteresis loss is the characteristic property 
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of ferromagnetic materials. The probable cause of of hysteresis 

loss is that the molecules of magnetic materials are in them-

selves small magnets, which vibrate at the same frequency as 

the alternating magnetic field linking the material. The hyster-

esis lose is the heat generated by the friction between the 

rapidly oscillating molecules of the material as they attempt 

to align themselves with the rapidly alternating magnetic field. 

Hysteresis loss is present only in the magnetic materials, and 

it ceases when the magnetic change point or curie point has 

passed. 

The heat expressed by hysteresis can be expressed as 

follows: 

Wh = 0.83 h f B16 x 10 7 watts per Cu. in. 	... (2.1) 

where, 
Wh ti Heat generated due to hysteresis in watts. 

h = Hysteresis constant for the material. 

B = Flux density in lines per sq. inch. 

It is noted from the above equation that the hyste3esis loss 

is directly proportional to the frequency and to the flux 
density to the power 1.6. The equation applies strictly to 

flux ranges between about 4,000 and 12,000 gausses. The value 

1.6 is called the steinmetz exponent and is the average value 

for silicon steel. For other materials, this exponent will 

have some different value. 

Eddy current losses are resistance losses due to current 

circulation in the material, resulting from electromotive 

force~4nduced by varying induction. If the magnetic material 



.•. (2.2.) 

... (2,3 ) 

... (2.4 ) 

.. • (2.4 ) 

v $ H =f 
~''^~  an 
~/ A 

 

V B = 0 

Also, by ohms l aw- 

is replaced by some non-magnetic metal the hysteresis loss 

will be eliminated but the eddy currents will still be induced 

and hence heat generated. Therefore magnetic as well as non-

magnetic materials respond to Induction heating, eddy current 

loss is proportional to the square of the frequency. 

then the frequency of the alternating magnetic flux is 

increased, hysteresis & eddy current losses increase. The 

eddy current loss, however increases at a much greater rate 

than the hysteresis lose. At frequencies of the order of 

10,000 cycles and more the eddy current loss is predominant 

and the hysteresis logs is negligible. Hence in moot of/ he 

Induction heating applications the hysteresis lose Is insigni-

ficant relative to eddy current lose and therefore for all 

practical purposes, the hysteresis loss drops. completely from 

the picture. 

2.3. ELtCROUAGFithIC EQUATION 

Following U€±vell, equations can be• written, when an 

alternating current is passed through the winding of the coil, 

which sets up an alternating flux through the section of the 

specimen; 

where, 

H = Lagnetlzing force vector. 
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i = Current density vector. 

B = Flux density vector. 

E = Electric field intensity vector. 

fJ  Resistivity of the material 

+~ a + 	a a ) Differential operator. 

Now from equation (2.2) and (2.5), 

or, 	.,. 
Vu v2 H = `7x 	

— 
 ... 	... (2.6) 

Combining equation (2.3) and (2.6) , 

c vx H =, T. S VX E 

.p 
-1 	... 	... 

But from equation :. } we have, 

V' 	a p 

'U = 0 

where /i = Permeability of the material. 

Therefore, from equation (2.7), 2— 	_ I a3 
V H 	p t 

or 	2 _. 	3,.. a" 

VH = 

or 	2 	 a H 	... 	... (2.8) H " ~ 



Equation (2.8) gives the space time variation of flux 

density in the orkpiece and can be used to find the flux 

density distribution at any instant for any particular mode 

of time variation of B. 

Two cases have been analysed by the author and they, 

are dealt in the following pages. 

2.4. ELECTRIC & MAGNETIC CONDITIONS INSIDE I2 
70-RE—PIEECE 	1 	 ., j 

In the following pages an effort ih made to improve 

the general understanding of induction heating through an 

approach with what happens electrically & magnetically inside 

a work—piece being heated. A.I . E• E• std. no .64 defines 

Induction heating as the heating of a nominally conducting 

material in a varying magnetic field due to its internal 

losses. This definition is sufficiently general to include 

not only intentipnul induction heating as peaetical industrial-

ly for different applications but it also iJ2tidea the eddy 

current and hysteresis heating which appear as core losses in 
i 

motors and transformers. 

s!! 	4t, ' iii 	•.,t~:♦ ~r 	res ~4 	e_ 

A lohg, round, solid bar of homogeneous conducting 

material is located coaxially inside a solenoidal coil, as 

shown in fig. (2.4). The coil carries a sinusoidal alternat-

ing current. The configuration is used frequently in industria] 

induction heating installations. The same principles apply to 

more complicated cases also. 

2.4.2. a.itatiye Eplanatç — 

The bar is considered to be composed of many thin coaxial 
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sleeves. The bar and coil are assumed very long co the end 

effects are neglected. The magnetic field is parallel to the 

center line of bar. The primary current in the coil ancl/4he 

induced current in the bar follow coaxial paths around the4ame 

center line. Resistivity and permeability are assumed to be 

uniform and hysteresis lose is neglected. 

The magnetic_ intensity at the surface of the bar (i.e. 

r = a) is identical with the airgap intensity and the magnetic 

field intensity outside of the solenoid is zero since the return 

flux ouside of the solenoid spreads over an infinitely large 

area, thus reducing the flux density to zero. The field distri-

bution is the same for any cross-section perpendicular to the 

axis of the cylinder and it varies only with the distance from 

the center line and is independent of the coordinate 8, leading 

to the unidirectional floe of flux. 

2.4.3. 	Ti  A ge... &e h  poi 

The magnetic field intensity in the outer most sleeve 

is equal to the airgap intensity. The total flux surrounded 

by this sleeve induce3 a voltage in the sleeve. Therefore, a 

current flows circumferentially in the sleeve. The magnitude 

of this current is determined by the induced voltage and the 

resistance of the eleeve,for the time being if the solid charge 

is considered to be made up of only one sleeve, it acts as if 

a thin 7alled tubular metallic charge is inserted coaxially 

inside the solenoidal coil. The variable magnetic flux surroun-

ded by the charge induces voltages and currents in the charge 

in a similar manner as in the secondary of a transformer, 



1~ 

consisting of one turn which is short circuited. Since the coil 

is energised by a constant alternating current, an alternating 

field intensity Ho results in the interspace between the coil 

and the tubular charge as shovin in fig. (2.2). Similar to the 

current Ic in the coil, a current IA circulates circumferentially 

in the charge and produces a magnetic intensity Q which is 

constant through-out the space surrounded by charge and which 

is zero for any point outside. The resulting field intensity 

at any instant can be regarded as a result of superposing the 

magnetic intensities caused by the currents in the coil & charge. 

The magnetic intensity in the space surrounded by the charge is 

h~ = Ho + d Ho  ...  .. (2.9) 

where, 

Ho = Intensity produced by the coil current alone. 

ho = In tensity produced by the charge current alone. 

The induction or flux density in the space surrounded by the 

charge is- 

B1 =p Hi 	 i . . 

Uagnetie flux surrounded by the charge is- 

91 

where, 

a = Radius of the charge 

.. (2.11) 

The vector diagram for this case is shorn in fig.(2.3) 

and can be explained as follows- 

The e.m.f. EA generated in the charge A by flux 01 is 

lagging 90° behind it. Ovorcoming the resistance of the path 

EA causes a current IA to flow through the charge which obviously 

is in phase with EA. 0. and II, are parallel vectors AH_ is 
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parallel to 1A. Hence H being the vector difference of H1 & 

o Flo from equation (2.9) follows as OP. The flux jOo in the 

interspace between the coil and charge is parallel to Ho. 

An inspection of the vector diagram shown in fig.(2.3) 

reveals the following interesting points: 

(1) The magnetic intensity Ho outside the charge is reduced 

to intensity HI as it penetrates the charge. This effect is 

due to the circulation of eddy currentoz in the charge and is 

knorm as screening effect. 

(2) The flow of current causes a time lag between the two 

intensities i.e. they are not in phase, 11.E lagging behind 110 

and therefore the flux 91 surrounded by the charge lags 

behind the flux $10 outside of the charge. 

1 	1 	1 	!• 	1 r 4 	1 	1 	~. 

After the analysis of a thin tubular charge, the case 

of a solid cylindrical charge can be analysed by considering 

the charge to he' ado up by a large number of thin walled 

tubular sleeves which are telescoped in to each other. The 

eddy current heating of a solid charge is approached by consider-

ing the current distribution in the individual thin walled slee-

ves and then reducing the thickness of the sleeve towards zero. 

The charge is shown diagrammatically in fig.(2.4), in 

which S49 S2, S3......«5N ... etc. refer to the different 

sleeves which constitute the charge and the thickness of each 

sleeve is A r. 

H0 is the intensity outside of the charge and H10 R2, 

H3......,..Hffi....,etc. , are the intensities which emerge from 
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the sleeves S1, S20 S3•=.«,««.« Sm«...• etc. respectively. 

From the case of a single thin walled sleeve, it is 

expected that the magnetic intensity H0 will be reduced by a 

certain percentage after penetrating the sleeve SI (fig.2.4) 

and that it trill emerge from sleeve S,~ as the intensity H1, 

it is also expected that the emerging field intensity HZ Will 

lag behind the entering intensity Ho. The vectors of the 

magnetic intensities are shown on a large scale in fig.(2.5).. 

The angle OIP between A H0 and H1 was 90° in the case 

of a single sleeve (fig.2.3) , but now in this case it can not 

remain 90° as ohowm in fig. (2.5). The reason for this die—

similarity is that in the case of a single sleeve the current 

I. flowing in sleeve SI is determined by the electromagnetic 

action of the sleeve 8 only9 but in this case it is no longer 

determined by the electromagnetic action of sleeve S, only,, 

but also by the electromagnetic action of all the other sleeves 

i.e. Sts S3......SN .....etc. v hich are inside of sleeve S. . 

The current Il in sleeve :i is a function of the total 

flux surrounded by alcove S. . Tow this flux is a function of 

the different currents in all the sleeves. Therefore the 

magnetic intensity Ho, by penetrating sleeve S, of thickness 

A r, emerges as intensity H1O lagging by an angle ASC behind 

Ho and is reduced in magnitude by a definite percentage of its 

entering value. The magnetic intensity Ii now enters the 

sleeve S2 . Since the rmll thickness of the sleeve S,g and S2 

is the same, it is obvious thatthe emerging intensity HI2 from 

sleeve S2 will lag behind H4 by the same angle a, , as H1 was 
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lagging behind Ho  in sleeve ST. The ratio of reduction of 

H1  to H2  is therefore equal to HQ  to H1. 

These assumptions are justified by leading to inter-

dependent systems of magnetic intensities & fluxes, electro-

magnetic forces and currents, which fulfill kll physical 

requirements. 

2.4.5. 
The vector diagram is shown in fig. (2.5). het. 

	

2 	m  = s.. = (, = Constant •(2.12) 

	

1 	 m-1 

	

OPI = IP 2 	= 2P3 - A of 	Constant 	(2.13) !. 

The triangles P01 9  P12, P23 .••. etc. are similar 
(two homologous sides and one included angle DSS) Those 

geometric relationships are mathematically expressed, by- 

H  _ H 	e- (m • A•() COt p 	.. . m o 

as shown in Appendix I. 

where, 

Angle between Ho  and d Ho. fig. (2.6) 

Phase angle of H. w.r.t. HQ. 
or, 

(2.14) 

vC= in. 4K 	... 	... 	(2.15) 

-V\COt•f 	 (2.16) 

Equation (2.16) shows that the locus of magnetic intensity 

is a logarithmic spiral. 
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2.4.6. them tisal. A,lal yR — 
The external energy source in induction heating is the 

magnetizing force of field intensity,for this reason it is 

of great importance to determine flow this field intensity is 

distributed throughout the work-piece. The field intensity 

created by the alternating current, in turn induces the heat-

ing current in the work--piece, which bears a direct relation 

to it. Therefore, the distribution of magnetic field intensity 

gives a direct indication of the distribution of heat and 

temperature gradient in the work-piece. 

From equation (2.8) X72 U = 	• f at 
Reducing the above equation to cylindrical coordinates 

and assuming unidirectional flow of flux (i.e. in the axial 

direction ) , the equation left to be solved is-- 

~i...r~ ~...~'... 	i.~+*~ 	
_

t 

where, the field is independetzt of coordinate Q and it 

varies with the distance r from the center line of the bar. 

And for a radius a of the section, the boundary condit-

ions are established as below: 

at r = a, H = Ho i.e..  at, the surface. 

=U0 Coe Cdt. 

* Re ( U0 0j t)0 

and at r = d, i.e. at the center 'H' will have some finite 

value however smaller it may be. 

Now assuming a solution for (2.17) of the form- 
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H 	U (r) Coe cJ t. 

Re [U(r) 0tL  ci 

where:  U(r) is a function of r only. 

Therefore from equation (2.17), 

ie L U(r) ei 4tt1 r dr L dr 

L 	Re U (r) ei wt 1  
jt 

Suppressing the 'Re' symbol, and dividing throughout 
by the commons factor e t• 

.._ 	(r dU  •) = 	U 	 t cJ r dr dr 	p 
or 	

cU U dr2 r dr 

or, 	 'I  
d- 22 - + r 	-- cJ . .---- U 	0 
dr 	 ,P 

or, 
d2U + .L Au— ..L t = 0 dr` r dr o2 

where, Q2 
jt.W 

now, _9  
ftr po = 4i`x 10 	r. 

an.d  tJ = 2 Tr f- 

where = Relative permeability. r 

and f = frequency in c/s. 

• A.. 	(2.18) 

S .. 	(2.19) 



Then equation (2.22) reduces to the simple form, 

U = A J0(mr) ... 	 ... 	(2.23) 

now at r = a, U = Uo  (at the surface) 

.'„ 	UQ  = A J0  (ma)• 

A 	Uo  
o  (Ma,) 

Substituting the value of A in equation (2.23), 
d (mr) 

U = r 

now, 
H = Re (U. e j c.Jt) . 

r 	J - (mr) 	jejt-I Re LUO  0 J— - (ma) 

Since H0 = Be ( Ue  aj `Jt) 
J(Mr) •̀. 	H = Ho. inaJ 	 s.• 	(2.24) 

O 

The Bessel function Jo  (mr) has the form of an infinite 

series and is given byl 1  l ) 

22.4` . 6 22.•.42.62 .82  

.. . (2.2) 
now m = a 

4 .. Ja  (mr) = Jo  (vj .—) = 1 + 	/)2 	) e 
2 	2.4 

X2.42.62 	22 .42.62.82  
••. 	(2.26) 

Putting r/c = x we have, 
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Substituting these values in equation (2.19), 

2 	F 	R 	. 

 

c =  =  2 
4 Tx 10 9̀ . 	x 2 TT f 	8 n- 'r . f 

_~.,...._ ( fi x1 9 1/2  

	

.• c Q 	_ 	} 	cm. 21r  

let a = a  _  - (  ~') cm.  ...  (2.20) 
2 	~r 

The quantity `a' is known as reference depth and is of 

great importance. 'st has the dimension of length from 

equation (2.18) we get, 

2 
2 + r dr + mn u = 0 	... (2.21) 
dr 

where, 

Equation (2.21) is Bessel's differential equation and its 

general solution is given by(h1 

U = A Jo Xmr) + B IC© (mr) 	 ... 	(2.22) 

In the above equation, 
A & B are arbitrary constants, 

J0(mr) is a Bessel function of the first kind and 
zeroth order. 	 ' 

Ko(mr) is the Eessel!s function of second kind and 

zeroth order. 

Since K0(mr) becomes infinite as r approaches zero 

and since the magnetic intensity must have a finite value at 

r = 0, we may drop this function from the solution. 

Therefore B = 0 



Then equation (2.22) reduces to the simple form, 

U=AJo(mr) ... 	 s . . 
	

(2.23) 

now at r;a, U=t70 (at the surface) 

.' . 	Uo = A Jo (ma.) 

• A = 	U 

JQ (ma) 

substituting the value of A in equation (2.23), 
J (mr) 

o J0(i) 

now, 
t = Re (U. ej Cit) . 

:ReIUOI
. J~—. eit]  

Since Ho = Re ( Uo ~_j f̀it) 
J(mr) 

. 	H = Ho. J 	... 	(2.24) 
0 

The Bessel function JO (mr) has the form of an infinite 

series and is given by(1 l ) 

J0(mr) = 1 — 22 + 22.42  22.42.6  22.42.62.82 

...  (2.25) 
now m= 	c 

/A 
. i . J0 (mr) = JO (C .r ) = I + (

w 

22 

" &)
4 

e 
2`  2 .4 

a W+~uLS .f.~ 	 ■ -- -- (r,LQ) 8 	+0••  
02.42.62 	22.42.62.82 

...  (2.26) 

Putting r/c = x we have, 
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JQ (. r/c) = Jo (  • X) 

= 1+3 - 22 	22. 42.62 

+ w+s. 	••♦ 	(2.27) 

22̀ 42.62..82 

.,hen the real and imaginary terms are separated,: two separate 

series are obtained. The real terms form a series which 

ICelvin named ber (x) , the real part of the Bessel function, 

while the other series is called bei (x)# the imaginary 

part of the Bessel funotion, where, 

ber W= I— " 2 2 

 

+ 	~ 	 + ~2 2_ 2 22 2 2 2 .4 	22.42.62.82    2 .4 A .8 .90 .32 

• • . 	(2.28) 
and s 

2 	 6 	 0 	
—5...  

22 	22.42.62.  . 22.4 ` ,. 62.82.14` 

... 	(2.29) 
Hence, 10(mr) =. J0 (/ .r/c) = bar (r/c)+3 bei (r./o) 

••.  (2.30) 

Therefore from equation (2.24) vie have, 

ber (r/c) + j bei (r/c) 	
••• 	

(2.31) 
 

ber (a/c) + j bei (a/c) 

ber (r/'c) + 3 bei(r/c) 
.'. 	-. 	... 	(2.32) 

o 	ber (a/c) + 3 bei (a/c) 

.. i 	A L ber (r/o) + 3 bei (r/c) 	(2.33) 

whore, 
a= .~.._, 	,~ 	

-. -- 
	 *so 	(2+34) 

ber (a/c) +j bei(a/c) 
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Current density 

i = - ~ ~ - A- Fber'(r/c) +j bei'(r/c)4 r ar e 	 j (2.35) 

At the surface r = A, 

i = - '.Fber' (a/c) + j bei' (a/c) 	(2.36) 
c 

or, 	
it 	ber' (r/c)+j bel' (r/c) 

(2.37) 
1'a 	ber* (a/ c) +j bei' (a/c) 

i 	= ['bert2  (r/c) + bei'2(r/e) 	'1* 
 ... 

is 	L ber'2 (a/c) + bei'2(a/c) 	
(2.38) 

 

This ratio irfia is plotted for different values of (a/c) 

in fig.(2.+), which gives the current distribution in the 

cylinder. 

From the above curves given in fig.(2.6), it is investi-

gated that the skin effect Is not so pronounced at the lower 

values of a/c, but is very much pronounced at the higher values 

of a/c, for etample studying the curve for a/c = 4, we find 

that iiia = 0.5, at r/c = 2.8, or we can say that the current 

density has dropped to 509 of its surface value at a radius 

of 2.8/4 or 70% of the work radius i.e. the current density 

has dropped to half the value at the surface at 30% of the 

work radius in from the surface, therefore,the skin effect, 

is not so pronounced. 

Now studying the curve for a/c = 12, it is noticed that 

the current density drops to 50% of its surface value at 

r/c = 11, i.e. at a radius of 11/12 or 929 of its work radius 

or in other words the current density becomes half at a radius 

only 8% in from the surface, so obviously it results in a 
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pronounced skin effect. 

For a fixed value of radius the severity of akin-effect 

is determined by the guantity c which is equal to s/ i/1, 

where s is the reference depth. The reference depth which 

first appeared in equation (2.20) is inversely proportional 

to the square root of frequency. Hence higher the frequency, 

smaller is the value of re 'erence depth and moire ,pronounced 

is the skin-effect, which has been justified from the curves 

also. 

Many examples can be simply derived by approximating 

equation (2.37) for the large values of r/c i.e. when either 

the frequency of the induced current or the work radius at 

the point considered is large, The Bessel functions can be 

written under these conditions ash 1) 

r/ i. 
ber ( r/o) _ - - 	. 	Coo t 	-' 	`" • c frr 8 

bei (r/c )= ..=.. 	~-~-~--' 	- 	Sin 
2 trr/c 

( 	-- - 
cp 

fi - ) 
$ 

rjc 
ber'(r/c) = Coe 

r/c 
( r-- + g) 

bei' (r/c) = e rfo4 — 	._.._ . Sin 
21r r/c 

( -- -r --- + 
e/ 

g ) 

From equation (2.37).we have, 

ber' r/c + j bei' i% 

ber' a/c + J bei' a/c 

2tt.a/c 	1/c ) (r-a) 	as(q2+8)+jSin( + g) 
2ir.r/c  

to xn1 



Since c = e = Reference depth. 

and let a --r = x = Distance from the surface 

The equation (2.39) reduces to- 

it 	--/91  
i 	(a/r) .e 

a~ 
	e 	... 	(2.40) 

a 

The above equation Indicates that at a depth x 

where x = 	, the phase of the current W  has been 

retarded by 	or 	2 , The phase will rsed 

completely, when x = s m- = 	. c . 

Then in that case as a and r both become very large, 

the equation (2.40) further reduces to: 

"r e- x/s 	 ... 	(2.41) .~.a, 

This equation is plotted in fig. 2.7. 

It is seen that when x = 8 

it 	I 
is 	e 

or, 
it = (1/i) 1a 	... 	(2.42) 

i.e. i 	reduced to 36.7' of its surface val 	x = s. 
This i 	"Equivalent current depth". 

By a similar ana],ysia we have-
-x/s 

Ir = 	e 	 ... 	(2.43) 

The curve plotted in fig.(2.7) gives only approximate 

results but the fig.(2.6) gives the accurate results. The 

difference lies in the fact that fig.(2.6) is based on the 

accurate formula in equation (2.38), which tdceo in to 

account the effects of the current flow from the oppoL to 



aide of the cylinder, whereas fig. (2.7) is based on the 

approximation in equation (2.41) , which assumes no effect 

from the current on the opposite side. 

However, fig. (2.7) can be used with reasonable 

accuracy when a G 1/5 a, i.e. the current depth is less 

than one fifth of the radius. 

2.4.7.  Totest ux  and Pnwfir 	a Solid, yUpdrs 

Considering the elementary ring of radio p r and width 

r as shown in fig. (2.8), if fi is the total flux in the 

ring then, 

r =) H. 2 fi r. 	9r. 	 ... 	(2.44) 

The total flux f tr  inside the area enclosed by the 

ring at r is given by integrating equation (2.44)-
r 

9tr  = 	µHr  2 1T r. dr 
0 

Putting the value of H from equation (2.33), 

r Xtr  = 2 1 k j A (ber 	- + j bei r/c) •r•dr._.-. 	(2.45) 
0 

From the properties of Bessel function, we can write the 

following useful d.erivatives(11  

bei' (r/c) = o fr be* (r/o) dr. 	... 	(2.46) 

and ber' (r/o) _ sr — Jr  bei (r/o) dr 	... 	(2.47) 
.. from (2.46) 

fr ber (r/o) dr = re bei' (r/c) 	... 	(2.48) 
Sld, 

Jr bei (r/o) dr = - re ber' (r/e) 	... 	(2.49) 

27 



Substituting equation (2.48) and (2.49) in equation (2.45) 

Ir 	-1r r 	-r-I 
2 n)LA Lire bei' (r/c) + j -rc ber' (r/c) j 

a 	o 

r 
= 211 .A. rc 	bei' (r/c) - j ber' (r/c) 

Substituting the value of constant A from equation (2.34), 

bei' (rfc)-i ber' (r/ o) 
~Jtr = ~2?C~t.rc).Ho 

	

	 ..(2.50) 
ber (4/c)+ j bei (46) 

Xt r = a, tr = ala 

where 9& = Total flux inside the work-piece. 

.1 	` 	bei'ta/c)-j ber'(a/c) 	... (2.51) 
r . A 	2 7r A.a.c. ! 

ber (a/e)+j bei., (a/c) 

After rationalising Equatiaa (2.51) we get, 
(bei'a/c-- j ber'a/c) (ber a/c+ j bei a/c) 

~a = (2 fi d(- a.c. Ha) 	2 	 2 ber (a/e) + bei (a/c) 

	

... 	(2.52) 
Now area of the work-piece is given by A = it a2 

Hence from (2+52) 	bei'a/c ber a/c-ber'a/c bei a/c,). 
2 A Ha • c •Aw 	3„kbei' a/e bei {, e+ber' a/c ber of Le )j  

Oa 	a 	2 	2 ber a/, c + .bei a/c 

	

00* 	(2-53) 

or, 
a = YHo AA (P - jQ) = 3 p - J Sfq 	... 	(2+54) 

where,, 	bei.' a/o ber a/c- ber' a/c bei a/c I 	(2.55)  P = 
a 	berg a/c +be12 a/c 
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and' 	2 U bei' a/c. bei a/c+ber' q/ c ber a/o 	 . (2.56) Q ~ c 
a L ber2 a/c + bei a/c  

These are called the P and Q functions of the cylinder. 

~..prwer...in the cy1iinder;- 

The heat generated in the solid cylinder is derived 

by considering the total current flowing in the shell, of 
width jr in 1 cm. of work length. 

The current flowing through the shell is given by— 

Itr = it . 	 r 	 ... 	(2.57) 

The resistance of the shell is given by- 
8 _ ) 2 Rr 	 ... 	(2.58) 

Therefore, the power or heat dissipation loss is-

j'tr = I r . Rr = it . 2 If ? r. S r. 

Integrating over the complete radius, the power loss per em. 
r 
length is-~ 

a 
Pt _ f i . 2 rr . p. r . dr 	... 	(2.59) 

0 

Putting the value of i from (2.35), 

t 	f 	2 . 2 if f. _t (ber, r/c+bei'2 r/c)dr. 
a c 

2 
= A .2 n.f.  . a.e. (ber a/c ber'a/c+beia/e.beifa/c) 

c 	 ... 	(2.60) 
2 

•..  . = [A 	. 2 Tf . J . a (ber a/c ber I a/o+bei. a/e+bei' a/c) 
 (2.61) 
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far a/c.ber'i/*+boi a/c boi'a/a 
Pt  a 2 W 	.$/c 

bor2  a/c boil  a/c 

*!A 	(2.62) 
aer( 	} .bor• 	) 

Pt  a2 it 	/ 	 t  

[bor(92a/ )12+[bei 	a/e) I 

... 	(2.63) 

or, 

Pt  (viatta for unit length) a 2ir R2  . 3 . ta/a. P. 

.«. 	(2.64) 

where, 
bor(3/ /r) ber` C2a/a)+bei(afs)bei' (f2a/e) 

Ebor c//o)26  [bei (4r2a/o)12  
... 	(2.65) 

If the length of the rrck-»picce is lw  ems. 

Then#  

Total power Pt  2 1r BIo P a 	F. 1w rmtts 	(2.66) 

In the equation (2.66), f0  is in Amporo turns/cm. 

The functions P and a/a. ] can be plotted as a function 

of a/ae  the rai' iue moaaured in, terms of the ®kin-tbicltne ea, 

they urs ohavn in fig.(2.9) and fig. (2.10) respectively. 

The values of the functions P and a/c. P correspond-

ing to different values of a/c are tabulated in the table 

flo.2.1 . 



zI 

We - j a/e 	 P 

	

2aa a
/~  

F 

	

2 	2 he _~. 	.~ 	r.._ 	,~ 
/  ber•2a/a + bei2 We. 

0.5 .354 

1.0 •707 

1.5 1.06 
2.0 1.414 
2.5 1.77 

3.0 2.12 
3.5 2.48 
4.0 2.83 

4.5 3.18 

5.0 3.54 

10.0 7.07 

20.0 14.14 

30.0 21.2 
50.0 35.4 

70.0 49.5 

106.00 70.70 
140.00 99.00 

0.011 0.0039 

0.087 0.0615 

0.260 0.276 
0.488 0.690 

0.660 1.17 
0.764 1.62 
0.805 2.00 

0.826 2.34 

0.840 2.67 
0.855 3.03 

0930 6.57 

0.965 13.65 

0.972 20.60 

0.980 	 4. 34.70 
0.9e5 48.70 

0.990 70.00 
0.999 99.00 

It is seen that When a/o is less than unity the 

quantity a/s.F is approximated quite viell by the expression 

(e/e) ". Under this condition tbs power per unit length is 

Pt = i T R f (a/s)4  .. (2.67) 

then a/a is greater than 5 the quantity a/s.F. becomes 

approximately a/s, so that the power per unit length is- 
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ata  ! a/cy  2  1 2  heml ) ba' ( 1±be  L / ei'IajL  
ber'2a/c + bei2  We. 

0.5 .354 

1.0 .707 

1.5 1.06 

2.0 1.414 

2.5 1.77 

3.0 2.12 

3.5 2.48 

4.0 2.83 

4.5 3.18 

5.0 3.54 

10.0 7.07 

20.0 14.14 

30.0 21.2 

50.0 35.4 

70.0 49.5 
100.00 70.70 

140.00 99.00 

0.011 0.0039 

0.087 0.0615 

0.260 0.276 

0.488 0.690 

0.660 1.17 

0.764 1.62 

0.805 2.00 

0.826 2.34 

0.840 2.67 

0.855 3.03 
04930 6.57 
0.965 13.65 

0.972 20.60 

0.980 	T 4.  34.70. 

0.905 48.70 

0.990 70.00 

0.999 99.00 

It is seen that When a/s is less than unity the 
quantity a/s.F is approximated quite well by the expression 

(a/s) . Under this condition the power per unit length is 

Pt  = Z jr  H2  f (a/s)4 	 .. (2.67) 

then a/e is greater than 5 the quantity a/e.F. becomes 

approximately a/s, so that the power per unit length is- 
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Pt  = 2 1T H2  . J 	a/s 	 .. . 	(2.68) 

The curve drav,n in fig. (2.,10) can be used to estimate the 

power absorbed per unit length of the cylinder when the 

impressed field Ho  is known. 

A plot of function F as seen in fig. (2.9) helps to 

establish the upper limit on the frequency necessary for 

efficient coupling. 

In equation (2.63) H0  has been regarded as a. constant 

from this we draw the implication that the current in the 

exciting solenoid has been held constant. Therefore the 

power lost in the solenoid is proportional to the radio frc-

quency resistance of the solenoid. For the copper conductor 

used in the solenoids  the ratio of radius to skin thickness 

is usually large i.e. the skin thickness is very email. Now 

since the skin thickness varies inversely as the square root 

of frequency so that the resistance varies directly as the 

square root of frequency. Thuo when the function P is plotted, 

we have effectively divided out the by (1/b) i.o. by the 

square root of frequency in (2.64) . Hence the curve of fig.(2•s 

may be regarded as being proportional to the ratio of the 

power absorbed in the cylinder to the power lost in the 

exciting solenoid. It is seen from fig. (2.9) that, when 

a/s is greater than 2.25, the knee of the curve has been 

passed, and the value of P remains near about 1.0p, irrespective 

of the value of a/a, that is to nay that no great benefit 

is derived by increasing the ratio a/s beyond 2.25. Increas-

ing the ratio a/o leans reducing the skin thickness which 
is achieved by increasing the frequency. Hence it is not 



very useful to increase the frequency further beyond the point 
corresponding to a/s = 2.25. The frequency corresponding to 

a/o = 2.25 is defined as the critical frequency for effective 

coupling to a cylinder. 

'."e have from equation (2.20)- 

- 
2  

Putting a/s = 225 or s = a/2.25 and denoting the 

frequency as this point as fc- 

2 	2  Ir 	fe  

or  = — -- 2 (2.25)2., .. 
4 

or, 
i28  , 5 10  1 	... 	(2.67 c r  a 

rhere, 
fo  = Critical frequency in cycles. 

Resistivity of cylinder in ohm-cm. 

r, = Relative permeability of the cylinder. 

a = Radius of the cylinder in cm. 
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2.5. 	 N FLAT a. 
By using an analysis similar to the preceding section, 

the field distribution in a rectangular slab can be derived. 
The author has derived the distribution for two cases.: 

(i) Current flow in metal sheets of great thickness. 

(ii) Current flow in metal sheets of limited finite 
thickness. 

2.6.  CURRENT PLO ̀t TN TAL ` EETS OF GREAT TlllCd NESS: 

The sheet is shown in fig. (2.11) , in which, the 

dimension x, measures the distance from the boundary to the 

point of examination. Considering the one dimensional 

system, the magnetic intensity varies with the distance x, 

assuming the unidirectional flow of flux, mathematically 

equation (2.8) reduces to- 

2 
	p 	at 
	 ... 	(2.70) 

To solve.the equation (2.70) let us assume a solut-
ion of the f orm- 

j  H (x, t) = Re I U(x).ewt 
I 	

... 	(2.71) 

vhere U(x) is a function of x only and 'Ret indicates 
'Real part of it'. 

Discarding 'Re' symbol and substituting the above 

assumed solution in equation (2.70)- 
jwt d 	 jwt 

e 	. W 	p jc). a 	,t, 
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or, 

dx2 	JP 

(2.73) 

or 

d— — ,( U = 0 	 ... 	(2.74) 
dx 

inhere, 

CK 2- = 

(Cos 11/4 + J Sin Irf 4) 

Since a 	= 15 (from equation 2.20) 

•'• r[ 	 (2.75) 

Solution of the differential equation (2.74) is given by 

U = A e 	+ B e 	 ... 	(2.76) 
there A and B are the arbitrary constants. 

It is seen from the equation (2.76), that the . 

second term becomes infinite ao the distance x becomes 

very large. Since U pi  od , at x = oo 

The constant B = 0 

Therefore, the equation (2.76) reduces to— 

U = A . o 	 ... 	(2.77) 

now at the surface i.e. x Sz 0. 
j oit 

H = H0  U0  CoI3 c) t = Re (U0  • e 	) 

i.e. at x = 0, U = U„ 

5x 



from (2.77) A U© 

-c(X 
• ' • V =. U0 ♦ e 

Putting the value of 	from equation (2.75)— 

U0 e 	.... 	(2,78) 
j cjt •• , H = iT Cos cJ t = Re (U.e 	) 

—(i+j)•x/e 	j 
4)
t x ,•, H = Re 	Uo a 	.e 	•.. 	(2.79) 

jWt 
Since Re (U0 e 	) = Ho 

We have from (2.79)- 
-(1+ j)x/s 

• H = 	. e 	•.• 	(2.80) 
—Wa —j x/. 

	

H0r a 	
• e 

r. a 

H©. 

	

e 	[Cos 	— j Sin 	j 	(2.81) 

From equation (2.35) Ave have- 

a~ 
x 	3x 

where, ix = Current density, 

now$ ix 

where, B = Electric Intensity. 

and 	,P = Resistivity 

or * D j 
_  

	

 ,p " 	 (2.82 a x 	 .... 

From equation (2.80) we have, 

. H = — a (1+j). x0•e 	... 	(2.83) 
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From (2.82) and (2.83)- 

or, 
E= (1)f'. B. 

-(1+3) .x/s 
e 	 ... 	(2.84) 

a -j x/s 	... 	(2.85) 
or i  

E (_-)J . H. e-'e  lCos x/s - 3 Sin Val 
• r . (2.96) 

Consider the fig.(2.12), in which a long column 
of metal with a cross-section of 'f square am. is shown. 

The current density flooring across the area, b, 
is from (2.84) . 

I (Amperes per -  sq. cm.) - - = (-')R .e  
p 	a o 

.. • (2.87) 

The total current flowing through the side of the 
column under the patch a, which is 1 cm. on a side, is 

.XX 00 
it  = 	. i.dx 	 ... 	(2.88) 

Substituting (2.87) in equation (2.88)- 
 _v I+*J) XIS. 

 e 
	dx . 

x = 0 

= - Ho  [ 
_(l+i)z/af =00 

x=O 

= Ho 	 ... 	(2.89) 

Prom equation (2.89) we see that the total integrated 
current It  is in phase with the magnetic intensity at the 
surface and is equal to the surface magnetic intensity. 
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The power dissipated as heat in the little cube of 
2 

'7hich the area b comprises one face is p , where the 

absolute value of E is used. Then the power density is 

from equation (2.85)- 
2 -2a/s 2 
H • e 	.J'2  

P(watts for cubic em.) =2  
Y 

P(watts for cubic cm.) = ?2.j . H2 . e 	(2.90) 
s 

when expression (2.90) is integrated throughout the length 

of the column, the total power in the column beneath the 

patch, a,, which has unit area is found to be- 

Pt(watts for square em. of surface)- 

	

x =00 	x =C9 	 _2x,►s 
Pt = 	Pd = 	s- . p. H . e 

x-0 	x=-0 
2 

	

0.P 	... 	(2.91) 
On substituting (2.89) in (2.91)- 

I2.,, 
u $ 

Substituting (2.91) in (2.90)- 
-2x/s 

P (watts per cubic centimeter)= - P e e 	(2.93) s t 
From equation (2.$7), the current density is given by- 

~O/s — V x s 

ix 	(1 	) Iio. e 	.e 

At the surface i.e.  trhon x = 0 

io 	(1±.) Ho. 

Hence, 	.-/a  o- j z/s 

 

~..  (2.94) ix/io 
= 0  
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or, 

	

e_ e 	(x/s.180/.1 - ) ° 	... 	(2.95) 
0 

Similarly from equation (2.93)- 

Fg 	-2x/s 
P1 	= e 	... 	... 	(2.96) 
Po 

where, PO = Power density at the surface 

The values of i /io and PJP0 are tabulated in table 

n.o.(2.2) and are plotted in fig.(2.15) against the values 

of x/s. 

TABLE No.2.2 

r,/s ip0= 	
e 

e Phase Angle of irfio 
-2 

p 	~e 	
X/s 

 

0.25 •778 -14.3° .606 

0.5 .606 -28.6° .368 
1 .0 .368 -57.2° 0.136 

1.5 .223 -85.80 0.05 

2.0 0.136 -114.40 .018 

2.5 0.082 -143.00 0.0067 
3.0 0.05 171.60 0.0025 

Pig..(2.14), shows the vector current density relations in 

the metal, and fig.(2.15) shows the Relative current-

density and power density in the metal for different values 

of x/e. 
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The current density for a number of distances below 

the surface is shown in fig. (2.14) • It is noted from this 

figure that he current density lags in phase as we go 

deeper in to the material, and the current density decreases 

rapidly. 

Pig. (2.15),which shows the relative currant density 

as a function of the distance from the surface, reveals 

that at a depth equal to the skin thickness, the current 

density is 36.8 5' of the density at the surface. On the 

same diagram the relative power density is 13.6% of the 

density at the surface. Therefore, it is interesting to 

note that over 96% of the total power is lost in a layer 

equal to the skin thickness. 

64' O S 
l r:[ thIk,4 .'Y U1~l E Y7Y (fir f 

2 
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2.7. POI AND FIUX INDUCED IN A RECTANGULAR SLAB OF LIMITED 

THICK.[iESS: 

The slab is shosmn . in fig. (2.13) , referring to it 

let- 
t 3 thickness of the slab. 

c~ = width of the slab. 

and 1. = Axial length of the slab. 

The distance x is measured from the centre line as shown 

in the figure: and it measures the distance from the centre to 

the point of examination. 

Mathematically the equation to be solved is given by 

(2.70)- 

x2 	a t 
jet 

Assuming a solution H (x, t) = Re [U(x) .e 	I as 

in the section, (2.6)n the solution of the differential equation 

is iven by from equation (2.76), 

—dx 	Q<X 
U=A. o  

where A & B are arbitrary constants. 

...• from ' (2.76) 

... 	from (2.75) 

The constants A and B determinate from the boundary conditions 

given below. 

In a plate of thickness 't',, the distribution must be 

symmetrical about the center line of thq~late. Thus any 

quantity at x = + t/2 and x = - t/2 must be identical.. This 

implies that A = B in the equation (2.76). 

Therefore the equation (2.76) reduces to- 
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2A noshdx 	 ... 	(2.97) 

In order to determinate the constant A in (2.97) 

ze take the surface boundary condition in to account. 
it 

i.e. At x= +t/2, 	H = Ho = Re JU0e 	I 

or x + t/2; 	U = Uo. 
Hence from equation (2.97), 

U0 =2Aeosh-. 

. ' . 	A = UO/2. Co sh. Q< t/2 	.. . 

Substituting this value of A in (2.97)- 

QBh_~ x 	 .. . U = Uo • Cosh c t/2 

(2.98) 

(2.99) 

.". H = Re (U.ei W t) 	= Re (U0.Cosho<x.ej rjt/Cosh ~t/2 ) 

. `. H = H . Cooho( X/ Cosh ~(t/2 	... 	(2.100) 

Putting the value of 	from (2.75.)- 

Cosh ()•x 	... 	(2.101) H _ Ha 
Cosh ('~) •t 

It can be shown mathematically that-. 

Cosh (1+j) 8 = Cosh Q Cos 0 - j Sinh 0 Sin 8 

... 	(2.102) 

Rationalising (2.102) we get, 
Cosh (i+j)6 	(Cosh 20 +Cos 28)1 Z0 

... 	(2.103) 
where, tan 9 = to h 9 tan 9 
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Utilising the relation given in (2.103), in (2.101) we get, 

Cosh j + Cos 

	

Ho 
Cosh f + Cs 

t 	1 'i 102 	(2.104) 
9 

where, 
tan . 	tanh $ an a 

and tan ~2 = tanh 2t tan 

Hence equation (2.104) gives the field distribution 
through the slab. 

2.7.1. ptRl fl axr t n t A a .ahs 

The total flux within the slab is given by—
t/2 

Ot, = 2 	r X HH. v,. dx 	 a.. 	(2.105) 

Putting the value of X from (2.101) we get— 

t/2 

Or•r = 2 	J` w. Ho 

0 

Cosh(1+j) x/a 

Cosh(1+j) t/2s 
M 

2 - . v,. H 	t/2 
Cosh(1+j)t/2$ 	J 	

Cosh (1+J) x/s.dx. 

0 

2A. !. %  
 }nh. (1+J)x/I

t/2 
 

Coah(1+,)t/2s 	1+J 	A 0 
Sinh(1+3)t/2s 	... (2.106) 
Cosh (1+j)t/2s 

2 U.. H .s 	Si~ . Cos f.. jCoah 3irr2, 
or, 	= 	1+ 	

Cosh 28 Corr j6inh 2s Sin 2s 
►.. (2.107) 



After rationalising equation (2.107) and making 
some mathematical manipulations, shovm in Appendix 2, we get, 

BSinh t~ +Sirrt) - j (Sink t - Sin) 

t 	(Cosh  + Cos ~ } 

(2.108) 

(2.109) 

(2.110) 

(2.111) 

.. 4 

where, 
A7. = %7.t = Area of the slab 	... 

Equation (2.108) can be written as-- 

:JLH . W. (P - jQ) 

r:here g 
s ic Sinh 	+Sin 

P - t 	 t gosh s +Cos e 

and, 
8 r- Sinh I -Sin t 
t 	Cush a +Cos 

(2.112) 

P and Q functions are extremely valuable and are tabulated 

in table (2.3). 

The P & Q functions are plotted for different 
values of © in fig. (2.16) . It Is seen from the graph 
that for t 7.`5, the values of P and Q are equal. Also 

c hen 	7 8¢ P= Q SJt. 
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TABLE 2 

P & FUNCTIONS FUR DIF: SRENT VALUES OF 

8 P Q 

0 1 0 

1 0.967 0.161 

2 0.68 0.406 

3 0.373 0.364 

4 0.248 0.263 

5 0.200 0.202 

6 0.165 0.166 

7 0.143 0.143 

8 0.125 0.125 

4r  
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JPTER - 
THHRL AL CONDITIONS 

3.1. INTRODUCTION 

This chapter deals with the temperature distribution in 

the work-piece. The measure cause of the conduction of heat 

encountered in Induction heating is the skin effect. Due to 

skin-effect th3 heat is generated inside the surface of the 

metal, and this amount of heat falls off' exponentially toward 

the center of thepiece, just as the current drops towards 

the center. The power generated (or the heating effect) falls 

off from the surface about three to four times a apidly as 

the current effect. Therefore while considering the Induction 

heating applications, the relatiorretween the heat depth and 

current depth is of considerable importance. 

3.2. ZNFVJENCE OF T1PERATURJ ON THE PHYSICAL PROPERTIES 
OF iTAL : 

The major factors in heat and temperature distribution 

are current depth, time and heat conductivity. Current depth 

is a function of frequency, resistivity and permeability. 

The characteristic physical properties of the Metal (ernnd.ssiv-

ity, resistivity, thermal conductivity and permeability) play 

an important part in induction heating. During the heating 

process most of these properties change in value, so it is 

very important to know their relationship to'temperature. In 

general, the resistivity increases with temperature in nearly 

all metals and hence the current depth increases with tempera-

ture. Usually this increase in resistivity is linear with 

temperature rise, so the average or integrated resistivity 
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between room temperature and the final required temperature 

can be used to drive a reasonably approximate value for the 

average current depth. 

Fig. (3.1) and (3.2) show the integrated resistivity of 

pure aluminium and common steel alloys respectively. 

The values of thermal conductivity usually rise with 

temperature, the exception being steel whose thermal conducti-

vity fails with temperature. 

Permeability varies considerably with temperature and 

thereby effect the current depth and power input to the 

work-piece since they are the functions of permeability. In 

general, the permeability becomes unity at temperatures 

between 1275 and 1600°F, depending upon the intensity of the 

magnetising field and the alloy content of the steel, 

Hopkinson(16)  showed that for very weak fields, the 

permeability actually rises, whereas in strong fields it 

falls off rapidly at 1400 to 1475°  F to about one-hundredth 

of its value. The following table gives the magnetic change 

points of some common metals(17)  • 

TABS 3-t 

Metal 	... 	... Temperature, °F. 

Iron 	... 	... 	'.1420.  

Cobalt. 	... 	... 	2105 

Nickel 	... 	.... 	680 

Carbon steel (medium) ... 	1330 

This critical temperature is called the curie point. 
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3.3, 5PLCIFIC HEAT EFPECTS: 

In order to use the average specific heat over a 

certain range of temperature, it is converted to Pounds 

per kilowwatthour. Fig.(3.3) shows the Pounds per kilowatt-

hour of Aluminium, steel and copper. 

The definition of Pounds per kilowatt-hour (lb.per 

Kwhr) is as follows: 

lb/Kuhr 34 ----- 	 ... 	(3.1) 
f~.DB 

where, 

= Temperature rise, °F. 

*A = Average specific heat over A 8. 

The thermal or useful power required to raise the 
temperature by dQ is obtained from- 

... 	(3,2) 
Pt "' lb/Kwhr 

3.4. "SST LOST BY RATIATICN AND CONVECTiO14: 

The radiation lose is given by- 

PR = 37 e (T4 -.. TA ). 10"12 matte/sq.in. 	(3.3) 

where, 
e = emissivity coefficient of the surface. 

Ta = surface temperature, °K. 

l'A = Ambient temperature, °I . 

Pig • (3.4) shows a set of curves for typical metals. 

These figures are based on a normal surface of work-piece. 

Convection loss encountered in Induction heating is 

very small so it can very well be neglected. 
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3.5 • TI DIFFERINTIAE ECUATION HEAT-FLO~7 IN ONE DII NSI41N: 

The differential equation of heat flow is established, 

by restricting the problem to flow in one direction or dimen-

sion. Therefore, the limiting condition is that heat flows 

only in the x direction and under this condition a small 

rectangular box ,within the body of the material is examined. 
This box shown in Pig. (3.5), has a width of 1 cm, a height of 

1 cm., and a 	th dx. Heat may be generated in each cubic 

centimeter by e ectrical means. 

Let H = Nate - of heat generation in gram-calories 
per second per cubic centimeter. 

H is a function of both time and distance. 
Heat generated within the smai),kQx, in a short time interval 

dt is given by.. 

Qo = H. dx. dt. 	 ... 	... 	(3.4). 

The temperature at the point 0 is U°c.- Then the increase 
in heat stored in the box during the time, dt, is -- 

Q1 = )f•iSs a dt.dx 	.,, 	,f, 	(3.5) 

Where, 
r - I ity of the material 	° 
s = Specific heat of the material. 

The temperature gradient at point. 0 is ( ~g ) o • 
The gradient at point B on the right hand face of the basis 

aU 	aU 	F 	au 1 dx 
 c 	) X) B = -~-g- o+ L 

a a 1 o 2 
and the gradient at point A on the left hand face of the 
box is - 
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(wrrY+YU~ 	_ ( ) 	 ~.r..r.. l.r.......~) I r .1llfirr. 

ax A 	)x  o 	ax ` 'fix j 	2 

The heat flowing out through the face at A in time dt is- 

	

2 = kc ( àa-Ug---)A dt. 	... 	... 	(3.6) 

where, 
kc = Thermal conductivity of the material 

The heat flowing out through the face at B is. 

Q~ = - kc 
From the conservation of en ergy, 

Q0 ==Q1 +Q2 +Q3. 
Thus, 

H. 'dx. dt = V. 	` 	• & x• dt-k 1 a ( à"U)id$. t. s at 	 CLX a 	l 
 

0 

	

r • s 	 a w • 	(3.7) 

or 	 '~ U _ 

	

H = '`r • tv- at ` ke ` a x2 ... 	... 	(3.8) 
This is the differential equation of heat flow in one 

dimension. 

1 
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3.6 . SOLUTION OF HEAT CONDUCTION EQUATION IN THE CASE OF 
CYLINDRICAL VIORK-PIECE. 

The following assumptions are made:. 

(i) There is no axial 'variation of the temperature. 

(ii) There is no angular variation of the temperature. 

(iii) There is no convection in the air-gap i.e. the air" 

gap is fairly small, 

(iv) Thermal conductivity of both air and solid are not 

temperature dependent. 

(v) At time t = o initially), every thing is at room 

temperature. 

(vi) Initial temperature is uniform through out. 

Let, 

Qa  = Ambient temperature. 

r = Radial distance from the center, cm. 

a = Radius of the cylinder, cm. 

Hence in cylindrical co-ordinates, the heat conduction equat-

ion to be solved is-- 

a r2 	r 	a r  — 1 . ____ = 0 ... 	(3.9) 

where, 	 k 
k = Thermal diffusivity (k = 	) 

now let us call a function- 

U = 9 - 8 a 

Then since 8a  is constant, we can write- 

- a_ __ _ a U a _ 
a r  - 	a r 	! 3r2  a r2' and  d t t 
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Hence with zero initial temperature, the equation (3.9) 

can be written as: 
1 	 ' 

ar2 r ar 	k a t 
,.« 	(3.10) 

This equation is to be solved with the boundary condition 

that at the surface- 

i.e. At r = a, kc r _ 'o 	... 	... 	(3.11) . 

where, 
Po = Sufface power density, col/sec./sq.cm. 

The subsidiary equation is-- 

-U_... #.. ,. 	..«_ - " 	,U 	= 0 
dr 

or,  
_ + j 	dn. _q2 J = 0 

	a • . 	 • . . ~d3rr2:. r cedar..... (3.12) 

	

where, q
2 = - , ( p being the Laplace operator) 	, (3.12a) 

The equation (3.12) is to be solved with the boundary 

condition that at the surface- 
p 

i.e. At r = a, kc 	- 	... 	... 	(3.13) 

Hence the solution is given by-. 

V .w' A 1 0 (qr) + :a 0 (qr) 	 • . • 	 ... 	 (3-14) 

where, 
A and B are the arbitrary conetants- 

80(gr) and 10(gr) are modified Heeeel' a functions of 

zeroth order and first and second kind respectively. Since 

K0(gr) tends to infinity at r = p, it is excluded from the 

solution and then we have- 



U=AI0  (9.r) 	 ... 	... 	(3.15) 
.'.- = A a 	

I (q.r) = A.q.I (q.r.) 	... 	(3.16) dr 	dr 	o 	j 	1 

Hence from (3.13) and (3.16) , 
P 

kc, A. q.I1 (q.a) = p  

or, 	 P  
A = 

I (q• a) 
putting the value of q from (3.12a)-  

p k

h 

A 	 (3.17) 
p3 2 	(q•a) 

Putting the value of constant A in (3.15) , the solution is- 

P0   k*  . I (qr ) 

p3  2.ke.I1(ga) 

Solving the equatio3 (3.1$) with the help of inversion 

thoerem(22), the temperature U at a distance r from the 

center after a time t igiven by-  
goa 	 -2 	e a 	J (r. Vs/a) I U 	k L a2 + 2a2 	n=1 	 J0( F) 

... 	... 	(3.19) 

where, 
Ur  - Temperature in °c, at any distance r from the 

center. 

P©  = Surface Power density, cal ./see ./sq. em.. 

a = Radius of cylinder, cm. 

ke  = Thermal conductivity, cal./sec./cm./°c. 
IC 

It = Thermal diffusivity = 

t = time in seconds. 
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s = Specific heat, cal/gm/°C 

'u = Density gms/cu.cn. 

r = Radius (variable), on. 

9n = Ponitivo roots of J1( ) = 4 

J0(a)= Deasel'o function of first kind & zero order. 

The expression given in (3.19) can be simplified by 

using the dimonsionleso function T, where- 
k.t 
2 	 ... 	(3.20) 
a 

Substituting the value of T from (3,20)  in (3.,19)- 

P .a r 	2 °l -T.) 2 J (r. P/a) U = —fl----- 12T+  ' -- * - 2 2: c 	n  r 	ke 	2a2 	n`1 	~n2 Jo( fin) 
.., 	(3.21) 

The summation series in eqn. (3.21) becomes zero by making T 
greater than 0.25 and eqn. (3.21) reduces to- 

Po.a 	2 U 	( 2T + 	- * ) 	... 	(3.22) r ke 	2a2 

The values of the function Ur/ (P0.a/k0) are calculi ted 

for different values of T, corresponding to various values of 

r/a, and are tabulated in the table no.(3.2). the calculations 

for this are made on digital computer and the sample programme 

is shove in Appendix 3 (prograe no.2). 
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In fig.(3.6) the eqn. (8.21) is plotted for Ur/(Po.a/ko) 

ai a function of r/a for different values of T. The interest-

ing fact investij;ated from fig.(3.6).  is that up to T = 0.25, 

the heat flow is in transient state, with the surface rising 

faster than the center. Above this value a °steady-state" 

condition is achieved and all points on the radius rise at 

the same value, at suming that all other values in eqn. (3.19) 

rer.ain constant. 

After the steady-state condition has been reached, eqn. 

(3.22) can be used to determine the temperature difference 

between surface Ua  and center Uc, by using the values r/a =1 

and r/a = 0. Therefore, 

P .a 
U8= 0  (2T. + *) 

C 
P .a 

rind Uc  = 0 (2T-*)  
c. 

P .a 
o  .'. Ue aU  

c 

••• 	(3.23) 

... 	(3.24) 

•.. 	13.25) 

— P .a 	2 

	

U U - ° r 	• e1 	 (3.26) r c 2ke a2 

All these equations are based on the assumption that 

radiation losses are negligible and that the heat is generated 

at the surface, so corrections are to be made for both factors. 

3.7.  CORRECTION FOR PINI' E CURRENT DEPTH: 

The correction for the finite current depth, and therefore 

for power generation inside the surface, is contained in the 

following equation, the proof of which is given in Appendix 4. 



JB 
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1.44 

T 'T 

T- 

Tb 

4 - T o•I 

-Ob  

T ° 

T- o 

/•0 
	 -25 

	 75 



~ ~ ~ 
= 
` ~'o=a [ r2 	1 { X(k r/_$) `1 ) ~ (3.27) Ur e 2k 	a2 - r2 	Z) 

where, 

X(k2 r/a) = ber2 (k2.r/a) + bei2 (k2 r/a) 

Z (k2) = ber k2 ber' k2 + bel k2 bei.` k2. 

k2 =k1.a 

Here kI is a function of current depth such that 

k1 = 	 . . . 

	 (3.28) 

Equation (3.27) is based on the assumption. that 

sufficient time t1 has elapsed so that all points on the 

radius are rising at a uniform rate, i.e. T 0.25 in eqn. 

(3.20). 

The time t for this value of T is given by- 

T W k---1ke--- _ --_ = 0.25 	... 	(3.29)  a 	u.i a 

or t = 	4ko u ~f a2 	 ... 	(3 • 30 ) f  

The surface-to-center temperature differential is given 
by putting r/a = 1, in eqn. (3.27) - 

P . a r 	x (k) -1

- jU -U0 = 2e 1 - k2 ' zk 	 (3.31) 

3.8. CORRECTION FOR RADIATION L06S. S: 

Radiation looses are the difference between total and 

net povier inputs. 

let-- 
'a = Total power input, 	cal sec.-1 eq.cm-1 

Pn = Net or effective power input (after radiation) . 



se 

Then eqn. (3.31) is corrected for radiation losses by the 

following equation- 

U -U = p- `----- r- 	( 	) (" 	) ( 	'_) 	( 3.32) s c 	2k 	r P 	k 	Z (k 

or 
Us- Uc= Pn•a (Pn/P$, k2) 

2ke 

where, 

F. (Pn'a' k2) is the correction factor given by 

-:hn a 2 	 kZ k2
)( 

n a 2  

• •~ 	(3.34) 

when the radiation losses are negligibly small, Pn/Pa 1, 

and Pn - PO . Eqn. (3.32) then gives the same results as 

eqn. (3.31). 

Converting egnc. (3,29) and (3.33) in to practical units 

or fps, 

0.084 Pn . a 
U$ -- Uc a --• k 	. P (PnfPa9 k2) 	... (3.35) 

c 
where, 

Us - UC Surface-to-center differential , °. 

Pn = Net power inrut, vratts per sq.inch. 

a = Radius, inch. 

kc Thermal conductivity, cal sec.-1, cm, °c-1 

7J = Density, lb. per c.  inch. 

The correction factor P (PnjPB, k2) is plotted on Pig.(3.7) 

for different values of the ratio of radius to current depth a/s, 
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The temperature distribution throughout the radius is 

determined by taking the generalized version of ecan.(3.32)— 

Pn - __  	1 ) 	
) xtk r/a) 1 

IIr 
IT 

	2kcL a2 	Pn Pa 	k2 	Z(k2) 	j 

• 1S 	 (3•36) 

3.8. ILLUSTRATIVE EW:PLE: 

The following data has been choosen for the calculation 

of heating time and surface—to-center temperature differential. 

Metal 	• . • 

Temperature rise, MJ 

Production rate ... 

Radius, a 	... 

Length, 1w 	... 

Thermal conductivity over4 U, kc  

Density N 	... 

Specific heat over  

Permeability, 

Frequency, f 	... 

Resistivity at 8, j (from fig.) 
3.1 

Assumed Room temperature 

... Aluminium 

... 875°P(70 to 945°F) 

... 4500 Ib per hour 

..• Br•5 inch 

. • • 40 inch 

... 0.40 cal cm 1 sec—t°cr  

•.. 0.096 lb per cu.in. 

♦a• 0.250 

... 1 

... 60 cps 

... 5.45 micro-ohm-cm. 
r] 0  • • • (U LI 

First, the time of heating t is determined from the mans 

of the billet '1 and the given production rate— 

ti = n a2  1 u' 

(3.5)2.(40) (0.096) = 148 lb. 

Therefore Heating time, t 	L` x ;6OO 	148 x3600  
1b/hr. 	4500 

118 sec. 
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The factor P is given from eqn. (3.20) 

k.t 

V•tsa2  

10a-40) (1 ) _ - 
(0.096 x 453,5/2•54a)(0.250)(3.5x2.54)2  

	

10, 	(118 	.4) ..- 
(0.096)(453.5) (0.250) (3.5)2.  

0.90 

This value of t is greater than 0.25; therefore the steady— 

state heating time has been reached and equation (3.35) can 

be used. 

The time at which the conditions change from transient 

to steady—state can be evaluated by putting P = 0.25 

t 
kc 
p5) (o. b) ko. 25o))2(453.$) 

(0.40) (2.54) 

= 32.8 sec. 

Thereforo up to 32.8 sec, the heating is in a transient state 
with the surface rising faster than the center. Metal pounds 

per kilowatt hour from fig. (3.3) = 16.2 lb/ILv hr. Hence 

from eqn. (3.2), the u^eful thermal power density in to the 

work is calculated as— 

P 

	

16.2  
16. 	= 	Ker. t 	6.2 	278  

where Pt  is the required thermal power. 

The not power density is— 
Pt  x 103 	P 

pn ` Surface area = 2 ir .a .1r, 



6( 

3 
(25 -rr) 3.5) 40 = 316 watts/sq.in. 

Now the current depth a is- 

9 
s =.~ (~ 	)* cm. 	(from eqn.2.20) 

	

1 	5 	0-6X109
) . 	s = 2"r ( 1x60 

= 1.52 cm. 

.'. Ratio a = 	= 5.85 

	

S 	1.52 

Radiation at the given temperature is found from fig.(3.4). 

This is- 

= 6 watts /sq.in. 

Therefore the total power-density input is Par-

Pa = Pn + Pr = 316 + 6 = 322 watts/sq.in. 

The ratio _n = ... 6 = 0.980 

	

. 2a 	322 
Using the curve of Pn/Pa = 1.0 from fig. (3.7) , the value of 
F(Pa/Pnt k2) is 0.82, at 	= 5.85. 

Finally eqn. (3.55) is used to determine the actual surface 

to-center temperature differential. 
0.084. Pn.a 

	

U IIo = 	kQ 	. F (Fn/Pa, k2) 

(!D,,Q84) (316.)  
(0.40) 

= igooF. . 
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3OLUJIOii OF BEAT .',LO,i DIP .,LRiiiIAL 	UAItiN IN THE 

CASE Ul Ri CT.iLGULiR -ORILPI)CE 

4.1 . IlUT11 DUC . IUdd: 

The differential equation in single dimension was establish. 

ed in sectinn (3.5) and is given by— 

s•at -- kc-- 2 	 ... from eqn. (3.8) 
a~ 

In this chapter, the solution of the above differential equat-

ion is effected by showing the direct analogy between the 

heat—flog problem and a particular transmission—line problem. 

4.2. SOLUTION OF THJ iRANSIiIS ION_LINE PHOBL.W.,.: 

The trenomiscion line of length a is shown in fie.(4.1). 

The uniformly distributed constants of the line are— 

R = Series resistance per unit length. 

L = Series inductance per unit length, 

G = shunt conductance per unit length. 

0 = Shunt capacitance per unit length. 

At both the ends, the line is terminated in impedances. 

At one end, x = 0, the line is terminated in an impedance, 

Zo, while at x = a, the line is terminated in an impedance Za. 

A voltage intensity l(x) measured in volts/cm., is 

induced all along the line by an external force. This voltage 

may be brought about by an impinging electromagnetic field or 

by inserting a battery or generator in series with the line. 

E(x) may be a function of both time and distance. 



Eta) 	 E(v) 

4.1 - i1e transmission lino used as an 
analogue to the hec t-flow problem. 

E L E L E L 

IcITTETT}I 
kfir,. 4.2 - The transmission line analogous 

to the heat-flora problem. 



Let- 
e •= the voltage across the line at a distance x from Zo; 

and-- 
I the current in the line at a distance x from Zo. 

Then, 

a $ - RI - L at + E(x) 	... 	(4.1) 
and, 

-Go'-C 	t 	... 	(4.2) 

or raking use of the Heaviside differential operator p, 

ae 	"" (fit+pL) I + E(x) 	... 	(4.3) 
and, 

- _ - (G +pc)e  
Prom (4.4), 

" L a I 	 (4.5) 

Differentiating eqn. (4.5) with respect to x, we get- 

___ 	I 	(4.6) "x 	_ (G+ pC) • a 
Substituting (4.6) in (4.3), we get- 

E(x) 	(R +pL) I - "" 	, a---~--.-  
G + pC 	X2 

or 2 
~---12 _2 	- (G +pCi) . E(x) 	.. • 	(4.8) a x 

whore, 

2 	( . +pL) (G+pC) 	 ... 	(4..g) 

The complete solution of the differential equation (?.8) is 

given in Appen' :x (5) and from there the solution for the 
current I at point x is- 



I (x) = [z2 +Z Z ) 

+(Zc -Zazo) 

v=a 

E(v) Cosh 'Y (a +x -r v) civ 

v=x 

v=n 
E(v) Cosh Y (a-x -v) dv 

v=0 

6¢ 

v=x 
+(2C + ZaZO) J E(v) Cosh V (a-x +v) dv 

v=a 

	

+ Z zo ) 	E(v) :Cinh'Y (a +x -v) dv 

v=x 
v=a 

+(ZQ ZA -- Z0Z0) J E(v) Sinh y (a--x-v) dv 
v4 
v=x 

	

+(ZcZa - Z0Z0) 	E(v) Sinh l(a-x+v) dv j 
v=0 

-~- 2 Z Sinh (Na) Z2 - Z Z + (Z +Z ) Z Cath (-1a 
C 	 rc 	o a 	o a c 

•a. 	(4.14) 
there, 	R + ,pL 

	

Zc - ( G + pC 	... 	(4.11) 

4.3 AI KLOGY BET-VIBI21 HEAT FLOVI AND TRAM SLII SSI ON LINE PR©BLE : 

By making R = C = p, the trr-remission line has only the 

constants of series inductance L and shunt leakage G. as 

shown in fig.(4.2). Under thin condition the equation (4.7) 
reduces to- 

	

E (z) = pLI - t. 	a L a-T- - r- 

	

G 	a,g2 	it 	G 
... 	(4.12) 

and equation (4.5) reduces to- 



.,. (4.13) 

Comparing equation (4.12) with (3.8) , we see that if 1(x) 

is analog fu s to the temperature U, the following equalities 

must exists 

L = u• 4ç3 	 ... 	(4.14) 

1  = kc 	 ... 	(4.15) 

and , 
E(x) = H gran — calories per second or cubic centimeter 

... 	(4.16) 

From equation (4.13) 
1 e = — 	. a—a----— kc. aR 	... 	(4.17) 

Prom equation (4.17) we see that the voltage on the line is 

analogous to the heat flow across a surface and is proport-

ional to the temperature' gradient. 

Also, 
Zc  =Nt- 	p .4. s kC 	... 	(4.18) 

roè  	pLG = p. k 	... 	(4.19) 
c 

4.4.  HEAT PLOW PROBLE 1 IN A PLATE OF 1'IN1TE THICKNESS: 

Now the specific problem of heat flow in a plate of 
thickness, a, will be treated, where the power is generated 

by induced currents. 

The expression for the power delivered per cubic cm. 

in the case of infinite plate thickness was developed in 

Chapter 2 (section 2.6) , where the power density at a depoith x 
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was found as- 
2x 

P.~: 8 1~ . e 	s ....from eqn. (2.93) 

where, 

P = Power density in watts per cubic cm. 

Pt= Total power in watts per sq.cr. 

However, for a finite thickness of metal 'sheet, the quantity 
Pt in (2.93) is no longer exactly the total power delivered 

per square centimeter of surface. The total power, with the 

necessary correction term is obtained in the following manner. 

The power density at a dep cth x is- 
2x 

(4.20) 

where, 

P! = Apparent total power. 

The thud total power, Pt, is found by integrating eqn. 

(4.20) from x = 0 to x = a. 

Therefore the true total power- 

x=a 	 2a 
(4.21) 

x--A 
P t 	... 	(4.22) or 	= 	-2a. s 

1-s 
Substituting eqn. (4.22) in (4.20), the power density is 

given by- 

P a 2 
a 

P .. e 
-2a /s 

1-e 
(4.23) 

Putting 2 = j3 , for convenience in (4.23) we get- 



6y 

!.x 

P  (4.24) 

1-e 

In our analogy to a transmission line, the quantity 

E(x) is analogous to the heat generated per cubic cm., 

expressed in gram-calories per second. Since a watt is 

equal to 1/4.187 gram-calories per second, we have from 

(4.24)- 

P 
E(x) _  }~  ...  (4.25) 

4.187 (1-e4 ) 

Aspuming that no energy is lost by radiation at either 

surface of the metal, that is, at x = 0 and x = a, the 

temperature gradient at these two points must be zero. 

Consequently in our transmission line analogy, eqn. (4.17) 

reveals that the voltage at each end of the line must be 

zero at all times, This implies that the line is short-

circuited at each end i.e. Zo = Za = 0. Substituting this 

in eqn. (4.10), we get, 

v-a 

I(x)  E(v) cosh Y (a+ x — v) dv + 

vx 

v=a 

f E(v) cosh -/ (ax - v) dv. + 
v=0 

v=x 
J E(v) cosh '/ (a - x +v) dv 

v=0 

--2 Z. sinh Ya 	 (4.26) 

Substituting (4.25) in (4.26), and after carrying out the 

necessary integration, we obtain- 



6s 

'(it) =
r—'.e 

 
4.187(1 - e- Ra) 	z(2 r ,y 2) + za ( F2_ 

cosh 'Y (a-x)--ecoeh 2Y 

sinh I.a 

.. f. 	 (4.27) 

Eqn• (4.27) is an operational equation which must still be 
integrated. Y o establish, the temperature relationship, 
substituting Zc = pL G and y2 = pLG, . from (4.18) and 
(4.19) in eqn. (4.27) we get- 

.P 	F -G o o-  

4.187(1_e' 	) L p .. pal G) 	(pL/G) (J-pLG) 

osht(a-x) piaj-e-~acoskx pLG 
sink pIG . a 	J 

t . .. 	 (4.28) 

-Gp e" x 

w 4.187(1-e-1g) 	I.L (~2 

p/L [cosh (a-x) pLG .- 

®`lacosh x ( 
rpLG) (sinh a 	) 

. 4 0 

 

(4.29) 

4,187(1.e) p 

-Gp o sinh a p~G+ G 	-~e Fa'coah4 
pIG) sinh(  jiG ) 

•.. 	(4.30) 
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.' 	1 	1 	(4.31) 
4.187(1-e-pa) p Z(p) 

where the operational function Z(p) is g .ven by- 

Z(p)= 
(? - pLG) sink a pLG 

-Gp©- 7'. Binh a pLG+ P Gp/L rcoah(a-x)/FPLG  -ems • 
L- 	cosh x 

.. . 

 

(4.32) 

Pron eqn. (4.31), we get- 

P .G 	1 	p2  
1(x) -  fi  p 

4.187 	G(l_e' fla) 	Z(p) 

1'.G 
-  --- f(Q, x)  ...  (4.33) 

4.187, 

where, 

f(8, a) =  
	(4.34 ) 

p 	G(1-o f
$ 
) 	Z(p) 

The operational relatici f(ID, x) has been solved by means 

of Heaviside Expansion Theorem and is evaluated in the 

following manner- 

Prom oqn. (4.32), we have- 

~ 	eosh(a-a)4 -e %osh pLG ~-Gpe" F inh aApLG 
Z p) 
 

(~ - pTG) sink a pLG 

a pLG 

sinnhh pLG g 

fcorh(a-=)d-jW 

L 	
C 

Gpe sink a4jtG 
-o ~aoosh 4 pLG - 

8 p G 

-pL ) G 
el 



where, 

eoeh(a-x) p:GG 
Y(p)= 

p. a sink  a  L —e —fe.coshG fEI 
 

(4.36) 

(si.. 1;Ia!—,) 

Then from eqn. (4.34)-. 

- 
(1—o — 11a ) •P 

(i--e 	a) •P 

ro 

Y(p) . a 
Binh (a , 	) 

(4.35) 

and, 
Binh 'a pLG Z1 (p) = 	 .. . 

apLG 

let- 
Y(p) y  = ZZj(pJ  

By Heaviside Expansion Theorem(21)  we have— 

(4.37) 

Y( p) 1 r y(p)ePtl 	1 Y( P )ept 
Y = [z1() j + 	dZ1 J + 	dZ1 J + P0 P dp  

... 	(4.38) 
where p1 , p2 , etc. are roots of Z I (p), that is, the 
values of p at which Z1(p) vanishes. 

Por finding the roots of Z1  (p), we define an arbitrary 
number m as follows= 

— in2  = pLG 	 ... 	(4.39) 

or 	= jm 	 ... 	(4.39a) 
Then eqn. (4.37) becomes- 

Z1(P) = sin ma 	 •.• 	(4.40) 
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Roots of eon. (4.40) are- 

m -n-~-, a 
whore n = 1, 2, 3... etc. and from eqn. (4.39), the roots 

are given by- 

22 p 	----- (a) 2 - - n----I a 	 - 	... 	(.4.41) 

	

n 	LG 	 a2 LG 

rihere n =1, 2, 3.... etc. 
Therefore from eqn. (4.38) we have, 

~(p) I 	 Y(p) .ept 1 
y ~ 

	

 I 	+ 	 dZ  
2 24.42} 

Z p p=0 	.n 	p 1,- 	g _ 	 _-  p 
d 	

P o.2• I,0 

, a2 7r2 
since $ LG , where n = 1, 2, 3..., etc, are the roots of 

Differentiating Z1(p) and multiplying by p gives- 

dZ 	($ Pte) cosh (a pLG) - sinh (a, ) 

	

p dp 	2 (apLG) 

Then, 
dZ  F l 	 - 2_.~" 

	 ( 4.43 ) -~2 2 
P- a2 LG 

Also from equations (4.37) and (4.36)- 

Z1(0) = 1  •••  (4.44) 

Y(0) = 	G (1 - o- f1$) 	0..' 	(4.45) 



and finally- 

cos (nir—.jfl, ) —e— P coo " 5 --) 
aLG ( 1+ n 	 ) 

` -. a—f a' 	coe (na x)
22 

aLG (T+ ) F 2 a2 

.. . (4.46) 
Substituting the values from equations (4.43), (4.44), 

(4.45) and (4.46) in ec~u.(4.42)y we get- 

fl:f  
2 -(-,)ne-Ian 	? 

Y 	aZt 	
(1-e-Fa)+ 	P 	~. 	coe(M)o LGA 

aLG (1+ 2' 2 ) 

. .. 
	 (4.47) 

Therefore from eqn. (4.35) we get- 

= p 	+ aLG(1 o P a) 	 n2 7r 2 
jT. a 

Jt 
now sinco p is the operation dt, we get- 

(O,x)a 	•: aLG (1_o P L) • 
=.L 2t 

f [i__i)n0_ F,111- LGa2 cos 

( 	1 + ~g2 ) 

•. . 

cos (n7) 

(n 	 ) 

(4.48) 
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2 
putting 0 =  •••  (4.49) 

2Pa 
f(x) a 	~' + 

' a  

2 3 [i- (-1)n e- F altos ('v) 
n2 E 'i + (- ,r ) 2 

•..  (4.50) 

So the solution for current is given in eqn. (4.35), 

there the function f(8, c) is equal to the value given in 
eqn. (4.50). 

Since the current I(x) is analogous to the temperature 

we can write for the temperature —  

 

P~. G  I 
(x) 	. f (8, x) 

4.187 P 
Since 	, in terms of the thermal constants of the  

material, the temperature is given by... 

op 

 

U(x) = 8.3741  . f 9,x)  ...  (4.51)

. 

The function f(8, x) given by oqn. (4.50) has been 

calculated for different valuesof 0, the ratio x/a and the 

ratio a/ø. The vices of 8 are varied from 10 to 10,000, the 

x/a is varied from 0 to 1, and the ratio a/8 is varied from 

1 to 20. The values of f(0 x) are plotted in table no.1 

to table no.10. All these calculations have been made on 

the digital computer and the sample programme is shorm in 

Appendix 3, (programme no.i). 



TABLE NO. 4.1 

FUNCTION F(THETA,X) AT X/A= 0.00 

THETA A/$= 	1.0 A/$= 	2.5 A/S= 	5.0 A/S= 10.0 A/S= 20. 

10, 5,1659 2.8612 2.7356 2.7328 2.728 
20. 10.1659 4.8752 4.1737 4.1634 4.158 
30. 15,1659 6.8754 5.3346 5.2757 5.271 
50. 25.1659 10.8754 7.4168 7.0521 7.047 
100. 50.1659 20.8754 12.4300 10.3751 10.329 
200. 100.1659 40.8754 22.4301 15.6822 14.987 
400. 200.1659 80.8754 42.4301 25.7104 21.664 
500. 250.1659 100.8754 52.4301 30.7106 24.478 
700. 350.1659 140.8754 72.4301 40.7106 29.740 
900. 450,1659 180.8754 92.4301 50,7106 34.816 
1000. 500.1659 200.8754 102.4301 55.7106 37.330 
2000, 1000.1659 400.8754 202.4301 105.7106 62.347 
5000. 2500.1659 1000.8754 502.4301 255.7106 1.37.347 
7000. 3500.1659 1400.8754 702.4301 355.7106 187.347 
10000. 5000.1659 2000.8754 1002.4301 505.7106 262.347 

TABLE NO. 4.2 

FUNCTION FCTHETA,X) AT X/A= ,25 

THETA A/S= 	1.0 A/S= 	2.5 A/S= 	5+0 A/S* 10.0 A/S= 20. 

10. 5.1085 2.5105 1.8181 1.1115 .590 
20. 10.1085 4.5204 3.1231 2.0893 1.161 
30. 15.1085 6.5206 4.2367 2.9626 1.712 
50. 25.1085 10.5206 6.2949 4.4823 2,761 
100. 50.1085 20.5206 11.3042 7.5596 5.122" 
200. 100.1085 40.5206 21,3042 12.7766 9.031 
400. 200,1085 80.5206 41.3042 22.7966 15.212 
500. 250.1085 100.5206 51.3042 27.7967 17.93. 
700, 350.1085 140.5206 71.3042 37.7967 23.120 
900, 450.1085 180.5206 91.3042 47.7967 28.174 
1000. 500.1085 200.5206 101.3042 52.7967 30.68L 
2000. 1000,1085 400.5206 201.3042 102.7967 55.69E 
5000. 2500.1085 1000.5206 501.3042 252.7967 130.69E 
7000. 3500.1085 1400.5206 701.3042 352.7967 180.69! 
10000. 5000.1085 2000.5206 1001.3042 502.7967 255.69! 
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TABLE N©. 4.3 

FUNCTION F ( THETA PX) AT X/A= .50 

THETA A /S= 	1.0 A/Se 	2.5 A/So 	5.0 A/$= 10.0 A/So 2t 

10.. 5.0000 2.0000 1.0000 #5000 .2! 
20. 10.0000 4.0000 2..0000 1.0000 .5C 
30. 15.0000 6.0000 3.0000 1.5000 .7! 
50. 25.0000 10.0000 5.0000 2.5000 1.2! 

100. 50.0000 20.0000 10.0000 5.0000 2.5C 
200. 10.0.0000 40.0000 20.0000 10.0000 5.0( 
400. 200.0000 80.0000 40.0000 20.0000 10,0( 
500,. 2550.0000 100.0000 50.0000 25.0000 12.5( 
700., 350.0000 140.0000 70.0000 35.0000 17.5( 
900. 450.0000 180.0000 9000000 45.0000 22.5( 

1€ 00.. 500.0000 200.0000 10060000 50.0000 25.0( 
2000. 101 	.0000 400.0000 200.0000 100.0000 50.0( 
50004. 2,500.0000 1000..0000 500.0000 250,0000 12.5.0( 
7000. 3500.0044 1400.0000 700.0000 35 0.0000 175.0( 

10000. 5000.0000 2000.0.0-00 1000..00,00 500.0000 2-50.0( 

TABLE NO. 4.4 

FUNCTION F (THETA rX) AT X/A= .75 

THETA A/S= 	1.0 A/$= 	2.5 A/Se 	5.0 A/Sz 10.0 A/Sr. 2( 

10. 4.8914 1.4894 .1818 .0000 .04 
20. 9.8914 3.4795 .8768 .0000 .04 
30. 14.8914 5.4793 1.7632 •0373 .01 
50. 24.8914 9.4793 3.7050 .5176 .01 

100. 49.8914 19.4793 8.6957 2.4403 .01 
2000 99.8914 39.4793 18.6957 7.2233 .91 
400. 199.8914 79.4793 38.69657 17.2033 4.71 
500. 249.8914 99.4793 48.6957 22.2032 7.01 
700. 349.8914 139.4793 68.8957 32.2032 11.8' 
900.. 449.8914 179.4793 88.6957 42.2032 16.8. 

1000. 499.8914 199.4793 998.6957 47.2032 19.3. 
2000. 99948915 399.4793 198.6957 97.2032 44.31  
5000, 2499.8915 999.4794 498.6957 247.2032 119.31 
7000. 3499.8915 1399.4794 698.6937 347.2032 169.31 

10000. 4999.8915 1999.4 794 99 3.6958 497.2032 244.31 
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TABLE NO. 4.5 

FUNCTION F(IHETA sX) AT X/AM 1.00 

THETA A/5= 	1.0 A/Sa 	2.5 A/S* 	5.0 A/Se 10.0 A/3= 20.4 

10. 4.8539 1.3573 .1139 .0004 .0000 
20. 9.8539 3.3434 .6895 .0079 .0000 
30. 14.8539 5.3431 1.5289 •0565 .0000 
50, 24.8539 9.3431 3*4467 .3622 .0000 

100. 49.8539 19.3431 8.4335 2.0.524 .0408 
200. 99.8539 39.3431 18.4334 6.7455 .6896 
400. 199.8539 79.3431, 38.4334 16.7272 4.0409 
500. 249.8539 99.3431 48.4334 21.7171 6.2265 
700. 349.8539 139.343.1 68.4334 31.7170 10.9652 
900. 449.8539 179.3431 88.4334 41.7170 15.8891 

.000. 499.8539 199.3431 98.4334 46.7170 18.3747 
!000. 999.8540 399.3431 198.4334 96.7170 43.3579 
000. 2499.8540 999.3432 498.4334 246.7170 118.3578 
000. 3499.8540 1399.3432 698.4334 346.7170 168.3578 
000. 4999.8540 1999.3432 998.4335 496.7170 243.3578 

TABLE NO.. 4.6 

FUNCTION F(TUETA sX) AT A/.$x 1.0 

iETA XIA= 0,00 x/A= 	.25 X/A= 	.50 X/A= 	.75 iA= 1.00 

10. 5.1659 5.1085 5.0040 4.8914 4.8539 
20, 10.1659 10.1085 10.0000 9.8914 9.8539 
30. 15.1659 15.1085 15..0000 14.8914 14.8339 
50. 25.1659 25.1085 25.0000 24.8914 24.8539 
00. 50.1659 50.1085 50.0000 49.8914 49..8539 
00. 100.1659 100.1085 100.0000 99x891.4 99.8539 
00. 200.1659 200.1085 200.0000 199.8914 199.8539 
00. 2.50.1659. 250.1085 250.0000 249.8914 249.8539 
00.. 350.1659 350.1085 350.0000 349.8914 349.8539 
000' 450.1659 450.1085 450.0000 449.8914 449.8539 
00. 500.1659 500.1085 500.0000 499.8914 499.8539 
00. 1000.1459 1000.1085 1000.0000 999.8915 999.8540 
00. 2500.1659 2500.1085 2500.0000 2499.8915 2499.8540 
00. 33 500.1659 3500.1085 3500.0000 3499.8915 3499 .8540 
00. 5000.16,59 5000.1085 5000.0000 4999.891.5 4999.8540 
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TABLE NO. 4.7 

FUNCTION F(THETA,X } AT A/S= 2.5 

THETA X./A= 0.00 X/A& 	.2.5 X/A= 	.50 X/A= 	.75 X/AM 1.00 

10. 2,8612 2.5105 2.0000 1.4894 1.3573 
20. 4.8752 4.5204 4.0000 3.4795 3.3434 
30. 6.8754 6.5206 6.0000 5.4793 5.3431 
50. 10,8754 10.5206 10.0000 9.4793 9.3431 

100. 20.8754 20.5206 20,000 19.4793 19.3431 
200. 40.8754 40.5206 40.0000 39.4793 39..3431 
400. 80.8754 80.5206 80.0000 79.4793 79.3431 
500. 100.8754 100.5206 100.0000 99.4793 99.3431 
700. 140. 8754 140.5 206 140.0000 139.4793 1.39.33431 
900. 180.8754 1.80.5206 180.0000 179.4793 179.3431 

1000. 200.87544 200.5206 2.00.0000 199.4793 199.3431 
2000. 400.8754 400.5206 400.0000 399.4793 399.3431 
5000. 1000.8754 1000.52.06 1000.0000 999.4794 999.34.32 
7000. 1400.8754 1400.5206 1400.0000 1399.4794 1399.3432 

10000. 2000.8754 2000.52.06 2000.0000 1999.4794 1999,3432 

TABLE NO. 4.8 

FUNCTION F (THETA,X) AT A/5= 5.0 

1l 	TA X./A= 0.00 X/AM 	.23 X./Aa 	•50 X/Aa 	x75 X✓Aa 1,00 

10. 2.7356 1.8181 1.0000 .1818 .1139 
20. 4.1737 3.1231 2.0000 •8768 .6895 
30. 5.3346 4.2367 3.0000 1.7632 1.5289 
50. 7.4168 6.2949 5.0000 3.1050 3.4467 

100. 12.4300 11.3042 10.0000 8.6957 8.4335 
200. 22.4301 21.3042 20.0000 18.6957 18#433-4 
400. 42.4301 41.3042 40.0000 38.6957 38.4334 
500. 52.4301 51.3042 50.000.0 48.6957 48.4334 
700. 72.4301 71.3042 70.0000 68.6957 68.4334 
900. 92.4301 91.3042 90.0000 88.6957 88.4334 

1000. 102.4301 101.3042 100.0000 98.6957 98.43`34 
2000. 202.4301 201.3042 200#0000 1.98.6957 198.4334 
5000, 502.4301 501.3042 500.0000 498.6957 498.4334 
7000. 702.4301 701.3042 700.0000 698.6957 698.4334 

10000. 1002,4301 1001.3042 1000.0000 998.6958 998.4335 
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TABLE NO. 4.9 

FUNCTION F(THETAsX) AT A/$ 10.0 

THETA X/A= 0.00 ,XJAM 	.25 X/A= 	.50 XJA= 	.75 XJA= 1.00 

10. 2.7328 1.1115 •5000 .0000 *0004 
20. 4.1.634 2.0893 1.0000 .0000 .0079 
30. 5.2757 2.9626 1.5000 .0373 .0565 
50. 7.0521 4.4823 2.5000 .5174 1.3622 

100.. 10.3751 7.5596 5.0000 2.4403 2.0524 
200. 15.6822 12.776" 10.0000 7.2233 6.7455 
400. 25.7104 22.7966 20.0000 17.2033 16.7172 
500. 30.7106 27.7967 25#0000 22.2032 21.7171 
700. 40.7106 37.7967 35.0000 32.2032 31.7170 
900. 50.7106 47.7967 413.0000 42.2032 41.7170 

1000. 55.7106 52.7967 50.0000 47,2032 46.7170 
2000. 105.7106 10207967 100.0000 97,2032 96.7170 
5000. 255.7106 252.7967 25000000 247.2032 246.7170 
7000. 355.7106 352.7947 350.0000 347.2032 346.7170 

10000. 505.7106 502,7967 500.0000 497.2032 496.7170 

TABLE NO. 4.10 

FUNCTION F(THETA.X) AT A/5= 20.0 

THETA XJAm 0.00 X/AM 	.25 XIA= 	.50 XJA* 	.75 X/AM 1.00 

10. 2.7280 .5907 .2500 .0000 .0000 
20. 4.1587 1.1611 .5000 .0000 .0000 
30. 5.2710 1.7123 .7500 .0000 .0000 
50. 7.0471 2.7618 1.2500 .0000 .0000 

100. 10.3292 5.1224 2.5000 •0000 .0408 
200. 14.9873 9.0375 5.0000 .9624 .6896 
400. 21.6643 15.2133 10.0000 4.7866 4.0409 
500. 24.4789 17.9337 1205000 7,0642 6.2265 
700. 29.7402 23.1205 17.5000 11.8794 10.9652 
900• 34.8163 28.1743 22.5000 16.8256 15.8891 

1000. 37.3307 30.6845 .2.5.0000 19.3154 18.3747 
2000. 62.3475 55.6964 50.0000 444.30335 43.3579 
5000. 137.3475 130.6964 125.0000 119.3035 118+3578 
7000. 187.3475 180.6964 175.0000 169.3035 16,8.3578 

10000. 262.3475 255.6964 250.0000 244.3035 243.3578 
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The function f(a,x) is plotted for different values 

of 8, corresponding to different values of the ratios x/a 

and a/o. These graphs are plotted in Fig. no.(4.3) to 

Pig.no. (4.12) . ►*ith the help of these graphs the value of 

the function f(®, x) can be evaluated throughout the section 

of the metal sheet and hence the temperature distribution can 

be evaluated from eqn. (4.51). 

At the exact center of the sheet i.e. x = a/2 or 

x/a = 0.5, the  functign. f(G, x) given in eqn. (4.50) is 

greatly simplified. When x = a/2, the term cos (nirx/a) 

is zero for all values of n so at the exact center of the 

sheet, 

f(8, x) = 	 ... 	(4.52) 

and the temperature is— 
.a  

4.1872i 

F..t 
= 	4.187 L.a 

F .t 	... 	(4.53) 
4.187a•u- 

It is very interesting to note from the eqn. (4.53), 

that the temperature U'(x) is a function of time and contains 

as parameters only the thermal constants of the metal and 

the power generated per square centimeter. The frequency 

of the induced currents is not contained in the equation. 
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APPENDIX - I 

Locus of magnetic Inteneitiee 

The ratio of two consecutive magnetic intensities from 

eqn. (2.14) Is- 

H = H e`m• A,(.cot 
m 0 

H =n e-(~1) QKcotP 
m-1 	0 

Therefore, 

m = e_4 .cotj3 	= q 	... 
n-1 

which Is constant for positive, integral m. 

Now from fig. (2.5) we have- 

q = HH 	/_ .~. 
o 	Sin( /3 + Q'() 

Sin (f + As< )-Sing 
1 	Sin (+A 

(Al) 

2cos (V + A'(/2) Sin (M/2) 
= 1" 	Sin 	+,4K 	(A.2) 

for sleeves of infinitesimal wall thickness. 

.AK 	QK 	 ... 	(A.3) Sin -2 2 	2 

and i + 2 = p + QAC =p 	... 	(A.4) 

Hence from eqn. (A.2) 
q = 1- Aa, - cot I 	 ... 	(A•5) 

The same result is obtained by using equations (2.14) and 

(A.1) 
d°(•Cot F 

i.e.  q = e 	= I - .cot( , for Ao(.cot 
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APPENDIX II 

T tal fJuz. the slab 

From eqn. (2.107) , we can wrl.te, 

f~W = 2/.w. Ho s.X 	 ... 	(B.1) 

where,( Sinlf ----.coe t-- j cosh t sin _-) 2a 	2s 	2s 	2e 
g 	t 	t 	t 	t 	(B.2) 

(1+j)(cosh is coo 2s —j ginh 2a An t$) 

Putting 2g = 0 in (B.2) we get, 

(sinh 0 cos 8 — j cosh 0 sin 0) 
g = (B.3)  

(1+j)(cosh 0 coo 8 —j Binh 0 sin 0) 

Rationalising ($.3) we get„ 

(sinh o cos 0 —j cosh 0 sin 9 ) 
R= 

(1+j)(cosh 0 cos 8 —j sink 0 sin 0) 

(1—j)(cosh 0 coo 9+j sinh 8 sin 0 ) 
(B.4)  

(1-- j) (coeh 8 cosh 0+j sinh 8 sin Q ) 

Numerator of (B.4)= (1 —j) (sinh 0 cos 9 —j cosh 0 sin 0). 

(cosh 0 cos + j sinh 0 sin I) n 

= (1—j) sinh (1+j)o . cosh (1—j)8 

(1_i  --) (ninh 20 + sinh 2 jO ) 

(-1j1) (sinh 20 + i sin 2 8 ) 

= * (sinh 20 + join 20 — j oinh 210+ sin 20) 

= + X (sinh 20+sin 20)—j(sinh 20 —sin 20)1 

.' • . 	 (B.5) 



Denominator of (B.4)= (1+j)(1— j).(cosh 0 cos 0—jeinh 0 sin 0). 

(cosh 0 cos 0 + j sinh 0 sin 0) 

2 cosh(1+3)8, cosh (1—j)4 

=(cosh 20 + cosh 2j0) 

(cosh 28 + cos 20) 	•.. 

Hence from (B.5) and (D.6) we havoc  

(sinh 20+ sin 20)— j (sinh 20 —oin28 ) 
X 

2(coeh 2 0 + coo 20) 

(sink t +sin 1)  — j(sinh -1 — 
2 (cosh g + cos t ) 

Hence 	from (B.1) is given by- 

[(sinh t +sin t) -j  (sinh —sin 
= (2 .rr. H .o.) 	 I 0 2 (cosh + coo;) 

... (B.8) 
F(sinh  +sin )-i (sink -sin ) 1 

t 	(cosh ! + eoo t) 

...  (B.9 

Putting w.t. = Aw  Area of the slab, in san. (B.9), vie get, 
Q  I(sinh 1 +sin t)—j (sink t —sin } 1+ 

. --  
err •

(coshI+cosh) 	I s 	o 

... (B.10) 

rahich is eqn. (2.108) 	 ... 
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Sample Coiter Programmes 

PROGRAMME NO. 1 

C C TEMPERATURE DISTRIBUTION Iii A METAL SHEET OF FINITE THICKNESS Z 
DIMENSIONTH(25)SBA(10),C(10)'AK(10),BASQ(10 )sXBYA(10) gF(25,10,10;  READ100,IA,I6,IK9ACC 
READ101,(TH(I),I=1,IA) 
READ101.(BA(I),IW1,IE3) 
READ101 s(XBYA(I)'I=1,IK) 
PY=3.14159265 
PYSQ=PY*PY 
DO1J=I,IB 
BAJ=BA(J) 
C(J)=1./EXPF(BAJ) 
BASQ(J)-BAJ*BAJ 

 

1  AK(J)=GAJ/2. 
D02I=1,IA 
D02J=1,IB 
A=TH(I)/BA(J) 
B=2.*BA(J)/(PYSQ#(1.—C(J))) 
D02K=1,IK 
SUM 0. 

501 SIGN=—I. 
N=1 

 

13  AN=N 
SQN=N*N 
G=SQN*PYSQ/BASQ(J) 
H=TH(I)*G 
Z=COSF(AN*PY*XBYA(K)) 
IF(H..20,)11,11,12 

 

11  
D=.(1.-1./EXPF(H))*41.'$IGN*C(J))/(SQN*(l„+0))*Z 
GOT014 

1
2 

 

14  SUM=SUM+D 
E=B*SUM 
F(I,J,K): A+E 
J F (ABSF (B*D) ..-ACC) 2, 2,15 

 

15  SIGN=—SIGN 
N=N+1 
GOT013 

2  CONTINUE 

IF(SENSE SWITCH 1)16,17 
16  D03K=I,IK 

PUNCH200,XBYA(K) 
PUNCH2O1,(AK(J),J=1,IB) 
D03I=1,IA 

3  PUNCH2O2,TH(I)s(F(I•J,K)*J=:(,IB) 
IF(SENSE SWITCH 2)17,18 

17  D04J=1,I8 
PUNCH2O3,AK(J) 



PUNCH2O4,(XBYA(K),K=1:IK) 
D04I=I,IA 

4 	PUNCH2O2,TH(I),(F(I,J,K),K=1sIK) 
18 	STOP 
100 FORMAT(3I2,E10.2) 
101 FORMAT(7F10.0) 
200 	FORMAT(21X27HFUNCTION F(THETA,X) AT X/A=F5.2/) 
201 OFORMAT(7H THETA,4X4HA/S=F5.1,4X4HA/S=F5.1:4X4H.A/S=F5.1,4X4HA/S=F5 

1.1p4X4HA/S=F5.1/) 
202 FORMAT(F7.0,(5F13.4)) 
203 	FORMAT(21X27HFUNCTION F(THETA,X) AT A/S=F5.1/) 
204 OFORMAT(7H THETAt4X4HX/A=F5.2,4X4HX/A=F5.2,4X4HX/A=F5.2r4X4HX/A FS 

1.1,4X4HX/A=F5.2) 
END 

SAMPLE INPUT 
13 5 5 .10E-02 
10. 20. 30. 50. 100. 	500. 	700. 
900. 1000. 2000. 5000. 7000. 	10000. 
2. 5. 10. 200 40. 
0. .25 .5 .75 1. 

PROGRAMME N©. 2 
C C TEMPERATURE DISTRIBUTION IN A CYLINDRICAL 

DIMENSION 1(20),RA(20),B(20),E(20) 
PY=3.14159255 
READ102,ACC 
PUNCH200 
READ100,ITi IRA, IN 
READ101,(T(I),I=1,IT) 
READ101,(RA(I),I=1,IRA) 
READ1O1,(B(N),N=1,jN) 
0011=1>TT 
DQ1J=1, IRA 
RAJ=RA(J) 
A=2.*T (I)+RAJ*RAJ/2.-.25 
SS==0. 
D03N=1,IN 
BN=B(N) 
BNSQ=BN*BN 
C=I./EXPF(T(I)*BNSQ) 
X=BN*RAJ 
L=1 

12 	IF(X-10.)21,22,22 

WORKP I ECE 2 



21  P=X*.5 
QzP 
SUM=1. 
FAC T=1. 
SIGN=-1. 
M=1 

10  AM=M 
FACT=AM*FACT 
W=Q/FACT 
TERM=SIGN*W*W 
SUM=SUM+TERM 
M=M+1 
Q=Q*P 
SIGN=—SIGN 
IF(ABSF(TERM)-ACC)11,11,10 

22  AA=SQRTF(2./(PY*X)) 
AB=COSF(X—PY*.25)*(1.-4.5/(64.*X*X)+225.*49.0/(24.*(8.*X)**4I) 
AC=SINF(X—PY#.25)*(1./(8•*X)-225./(6.*(8.*X)**3)) 
SUM=AA* (A€1+AC ) 

11 	GOT0(13,14) sL 
C 	R=J0(BN*R/A) 
14 	R=SUM 

GOT015 
C  S=JO(BN) 
14  S=SUM 

GOT016 
15  X=BN 

L=L+1 
GOT012 

16  0-C*R/(S*BNSQ) 
3  SS=SS+D 
20  E(J)=A-S$—SS  
1  PUNCH201,T(I),RA(J),E(J) 

STOP 
100 FORMAT(312) 
101 FORMAT(7FIQ.0) 
102 FORMAT(E1104) 
200  FORMAT (17XIHT,18X3HR/A,14X8HFUNCTION/) 
201 FORMAT(F20.4,F20.2,F20.5) 

END 

SAMPLE INPUT 
.1000E--04 
4 7 7 

.0125  .025  .05  .1 
0.  .25  .5  •75  .8  .9  1. 
3.832 	7.016 	10.173. 	13.323 	16.471 	19.616 	22.767 
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APPEi1DIX IV 

A right circular cylinder of radius a is heated with 

constant power input by induction. To find the temperature 

distribution in the cylinder after sufficient time has elapsed 

for all parts of the cylinder to be increasing in temperature 

at the same constant rate. 

The power flow across any internal cylindrical surface 

of radius r is equal to the power generated inside this radius 

minus the power required to raise the temperature of the mass 

of metal inside this radius at the constant rate speed. This 

is expressed mathematically by- 

a~ 
—2Trr kc 	r 	J2 R r P dr — tr r2 s• •1Cs - 	(0.1) 

where P is the instantaneous volume power density generated 

at a point in the cylinder. To evaluate the constant rate 

of temperature rice in terms of average volume power density 

rag 

-rr as P 

P 
and  

Substituting this value in eqn. (C.1), 

U 
Y 

2 W r kc 	r r2. Pa - r 2 Tr r Pdr.r P .r 	J̀' Y 
or 	2k - r k 	r Pdr 	(C.2) 

e 
Q 	a 

The poorer density P in terms of electrical quantities is 

P = 11 (ber' 2 k1 r + bei' 2 kIr) 



$r 

where, ki = s 

Substituting this in oqn. (C.2), 

)U  -2k0  r  r(ber'2 k1r +bei'2 k1r) dr. 

 

c  c 

But, 

r(ber' 2 k1r + bei' 2 k1r) dr. 

a 

= r—(ber  k1 r ber' k.~ r + bei k.~ r bei'k 1 r) 

ar  2kc 
- g (ber k1r ber'k,~ r+bei k1r bci'k1r) 

~c 

... 	 (C.3) 

Integrating cqn.(C.3) to find Ur, we get, 

P r2 
Qr , ~k - --~ -.(ber2 k r + bei2k.r4' + C 	(C.4) 

c 	2k10 
when r = Oo Ur =  no oo the value of 01 1s found to be- 

C1 	2--_ 	- + Uc 
2k1 kc 

Hence from egne.(0.4) and (C.5), 

U,-Uc ~k  - 2 . (ber2k1r + bei2 k1r - 1) 
c 	21c1 k0 

•r. 

(0.5) 

(C.6) 

now ere have, 
0. 

	

P = 1 	2 fir. Pdr. 	... a  a2 

f
c"r(ber" •• Pa =  kjr + bei'2 k1r) dr. 

.' • 'a = i a (bor k1a bor' k1a + bei k1a bel' k1a) 
1 

(0.7) 



2(ber k1a ber' k1 a + bei k1a bei' k1a ) 

S.. 	(C.8) 

Putting the value of M from eqn. (0.8) in (0.6)- 

P r2 	P.ka  :.._. _  r c 	4k0 	2Z(k1a) 	2k2 k 	1 	1 
1 c 

Pa.a2 ...~2 r2 a 
a2 ' k2r2 

1 

X(kr).»1 
3 

Z(k1a)  

where X(k1r) = berg kIr + bei2 k1r 	... 

and Z (k1 a) = ber k1a ber'k1 a + bei k1 Lbei' k1a 

Putting k2 = k1a in eqn. (C.9), 

P - a2 r2 	X(k~.r )-i 
Z(k2) 

.. . (C.12) 

Now the volume power density Pa can be replaced by equivalent 

surface power density- 

Pa = 2̀ a ', 	 ... 	(0.13) 
Then from eqn. (C.12) we get, 

U ..0 _P
ia 	2 	X(k rja)~1 	(C.14) 

r c 	a2 - k 	Z1k2) J  
which is the same as eqn. (3.27) 

9g 



APPENDIX V 

A mean of f .nding the comp -lete solution 

to the differential equation (4.8 

Rewriting eqn. (4.8) we have-

?21  .#72I 	- (G+pC) E(x), 	... 	($.1) 
ax 

The general solution of the eqn. (D.1) is- 

1 = Ix- F1 (x) - e 	F2(x) + A e + B e yg 

where A and B are arbitrary constants and F1(x) and 

F2(x) are indefinite integrals defined below- 

 = -- 5- 21'~' e rx B(x) dx 	... (D.3)  

F2(x) ; - (G+ c) 
2~ 

e ~~ E(x) dx 	... (D.4)  

The constants A and B may be evaluated in terms of the 

terminal conditions. 

At x = 0, the voltage on the line is- 

e Q =•- Za I$ =0 	... 	(D.5) 

Combining (D.5) with (4.4), we have, 

(UI) 
 	(G+pC) Zo Zx=o 	... 	(D.6) 
=o 

Similarly, 

( 	- (G+pC) Za tx=a 	... 	(D.y) 

now from eqn. (D.2) we have the following relations- 

x 	(x) V eY= -- a YX.FI (x)+ y e' YxF2 (x)+• 
/at of x - 0 e ~g 	... 	(D.8) 

$9 



• andI
X=0 0 p1(0) - p2(0) + A + B 	... 	(D.9) 

Substituting eqn. (D.8) and (D.9) in dgn.(D.6) we have- 

(r+pc) z0 1 p1(o) - 	+ A + B 3 

'p1(0) + Yp2(0) +1A - I B 
or 

A (-Y - (G+pC) Zoe B [Y +(G+pC Zo3 

= - F1(0) ['Y -(G+pc)z -P2(0) Ii +(G+pC) z 
.s• 	(D.10) 

Similarly from eqn. (D.7) we have,, 

.Y+Za(G+p0)lA3 ' a ['Y ..za(G+pC) 3 B e Ya 

~r +za(U+p0) ]P1(a) 0 a .. [y -z&(o+pc) P2(a) e- Ya 

... 	(D. i i ) 
Also it is noted that- 

'2(a) -p2(0) _ - y 

and 

v=a 
B(v) 0v dv 	(D,12) 

v=0 

(D.13) p2(x) -p'2(0) = - 2 rY -- f B(v) env dv 

v=0 
Similar relations in ] (~t) hold, further more- 

P2(a) - r2(o) + r1(a) 

- 	cosh ()'v) dv 	(D.14) J v=o 
After solving the two simulta neous equations (D.10) 

and (D.11) , vie get the value of constants A and B. Putting 
these values in the eqn. (D.2) we get the complete solution 

of the current equation, and after utilising the relations 

given in ecivationo (D.12)D (D.13) and (D.14) and making some 



manipulations we see that the equation (D.2) becomes 

the solution ehoc=m by equation (4.10). 

91 
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