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SYNOPSIS,

[ )

This thesis deals with the STEADY.STATE gnd TRABSIENT-
STABILITY probleme of a Synchronous machine. The first part
deals with the 'steady-state' stability limit of a synchronous
machine connected to infinite bus bar, (i) direotly, (1i)
through a tie line, and (1ii) through a transmission line based
on dynamic relations. Special reference has been made to the
foect of voltage regulator on the steady-state stability
limit which is improved by a considerable amount through the

use of automatic voltage regulators.

The second part deals with the transient performence of a
synchronous machine connected to infinite bus bar. 4 new
method of approach to transient stability problems hagbeen

introduced.

In all the above work the basic equations meke use of
Park's two reaction theory and equations and attempts have
been made to 4o away with various agsumptions which although
ellow a simple analysis of the problem, 4o not give very
accurate results, even giving paradoxical results in some

cases.



L and eq
1d and iq
Xa and xq

x4(p)

LIST OF SYMBOLS

Angle between rotor axis and axis of stator
voltage in electrical radians.

frequency, o/sec.

electric speed, rad/sec. or unity.

electric speed, p.u.

Angular momentum, p.uUe.

Electrical torque, p.u.

Mechanical or shaft torque, p.u.

Additional torque suddenlly appliéd, Psls
Infinite bue voltage, p.ue

Excitation voltage, p.u.

Open circuit terminal voltage at normal speed and
no=loed, p.u.

Kechine terminal voltage, p.u.

load current, p.u.

total armature cirouit resistance, p.ue.

tie~line resistance, p.u.

field winding resistance, p.u.

tie~line reactance, p.u.

flux-linkages

Subseript 4 and q indicate direct and quadrature axis
components respectively. Subscript f refer to field
winding. A further sudscript 0 indicates initial
gteady-state value of & quantity.

d and q axis voltages.

d and q axis currents,

d and q axis synchronous reactances, p.u.
Impedance operator relating the d-axis armature

flux-linkages with the d-axis armature current.



= Impedance operator relating the g-axis arm ture

flux~linkages with the g-axis armature current.

= Machine direct-axis transient reactance, p.u.

- Opqrator relating the d-axis armature linkages with
the d~axis field-excitation voltage.

= Operator for the voltage regulator.

= d-axis transient short-circuit time constant

= d-axis transient open~circuit time oonstant.

= time-derivative operator.
= Heavigide unit function.

= small change in a quantity.
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INTRODUGCTION



INTRODUCT ION

The problem of power system stability is not new to the engineers.
However, the subject became of more importance as the trensmission
systems grew more end more complex with several generating stations
interconnected together through long transmission lines. This has
led to continuous investigations in the subject and several authors.
have contributed towards the study of power system stability and
methods to solve stability problems. One of the aspects of stability
problems isgho calculate the steady state stability limit of & syn-
chronous machine and improving this limit by suitable means when the
synchronous machine is connected to an infinite bus either directly

or through a tie line or a transmission line.

One of the means employed to improve the steady-state stability
limit of a synchronous machine is the use of quick acting automatic
voltage regulators. The fact that properly designed voltage regulat-
ors may on occasion increase thé gtability 1imit is more or less
well known. Crary(a) and Kimbark(4) in their discussions of the
factors affecting system stability have emphapized on the importance
of automatic voltage regulators in improving the stability limit
considerably. They, however, did not enter into detalled analytical
methods to calculate the steady state stability limit as affected
by voltage regulators.

(7) who possibly first time discussed the

It was Concordia
subject at length and starting from the basic machine equations
derived the expressions for, firstly ascertaining the stability of
the system (a synchronous machine connected to an infinite bus-bar
through a tie line) under the effect of voltage regulator and,

secondly, to obtain the steady-state stability limit. Although



‘simplified expressions for the final results have been used,

the author has dealt with the subject quite thoroughly and comes
to several important conclusions which constitute the 'vack~bone'
of the design aspects of & voltage regulator for & particular
gystem. The results obtained by Concordia show that with a
properly designed voltage regulator, the steady-state stability
limit of a system can be incgeaaed to as much as 1.6 times its
value without regulators and that the syetem remains stable

for a value of 5 as high as about 115 degrees.

Aldred and Shackshaft(e) in their paper have tried to show
the effect of voltage regulators on the steady-state and trans-
ient stability of a synchronous generator. Doing away with
cdmplicated analyticel expressions they have used an electronic
analogue computer to solve the system equations. The effect of
the main regulator 1oop perameters, such as gain, exciter and
main field time constants, etc., on the stability of the system
are e#amined and curves obtained to that effect. They, too,
conolude that while the steady~state stability limit is increased
considerably by the use of voltage regulators, the transient
stability limit remains practicaily unaffected.

The sudbject has, similarly, been discussed by Nickle and

(12) under the head of "Automatic Voltage Regulators".

Carothers
In this paper, the authors have considered automatic voltage
regulators of the rheostatic and vibration contact types and
have tried to show thelr effects on steady-state stability limit

of a generator.

Further, electro-mechanical etability is studied meinly
with the help of power~angle characteristic drawing of which is

based, in general, on several assumptions. Thus, & rigrous



solution of problem is never achieved or the stability without

the usual assumptions can not be ascertained. By the applicat-
ion of small displacement theory it has been possible to linearige
the non-linear equations of a synchronous machine with or without
a voltage regulator., These linearized equations help in arriving
at a characteristic equation of the system to which is applied
Routh's well known criterion to test stability. If the lineari-
zed system is stable, then the original system is also stable,

otherwise, unstable.

MukhOpadhyay(g) in his paper has discussed the applicability
of Routh's eriterion in synchronous machine problems and has come

to various useful conclusions.

The application of frequency~response method to machine
theory is only a recent development, In this connectdon much
work has already been done by various authorss1°)’(11y The
papers deal with the poasibility of applying Fyquist criterion
to synchronous machine etability problems and obtaining Nyquist

plots in various cases.

In this thesis, attempte have been made to deal with the
synchronous machine stability problem in general and with the
effects of voltage regulator in particular. The enalysis is
based on two reaction theory. Equations are detived relating
the direct and quadrature exis quantities considering the effect
of voltage regulators when the machine is connected to an
infinite bus, directly or through & tie line. Making use of
small dispiacement theory, Routh's criterion is applied to
check stability. The general machine torque equation is then
represensed by a closed-loop system and the stadbility is ascer-

tained by Nyquict criterion. Lxpressions have been derived for



Chapter 2.

SMALL DISPLACEMENT THEORY AND
MACHINE TORQUE EQUATION




SMALL DISPLACEMENT THEORY AND
MACHINE TORGUE EQUATION,

2+1. Introduction
So far, the most common method to study stability problems

has been the use of power-angle characteristics. The use of
these curves while simplifies the enalysis, seldom provides with
accurate and most desirable results. This is because when derive
ing the system torque=-angle equation several assumptions are made
and the factors like armature and interconnector resistance,
effect of saturstion, damper windings, effect of voltage regulat-
ors eta. are usually ncglected. These factors though not so
importent for a practical and approximate enalysls, nevertheless,
affect the system stability limlt considerably and must be taken

into consideration when an exact solution of the problem is required.

The introduction of "small displacement theory” initislly
due to Lyapounov has opened a way %o consider the effect of such
elements as voltage régulatora, damper windings ete¢. Making use
of this theory, the original differential equation of the system
vhich is non~linear and of second order is linearized by taking
small changes in the dependent variable, thus assuming that each
variable changes by a very small emount during eny change in shaft
power or under other circumstances. In this case, the initial
steady-state conditions, i.e., prior to changes, are denoted ty
a suffix '0' while the emall chenge in any varieble quantity by
the symbol A . Thus the main feature of small displacement theory
is to allow linearization of original non-linear differential
equations and to organise them into correct form for rcpresantat-

ion by a closed loop system.

Initial wvalues of quantities are found out first and then



small displacements are applied to the equations of voltages,

currents and flux~linkages to obtain final torque equations.

The characteristic equation of the system,.ei, the
denominator of the expression of the quiotient of power angle
and torque is tested by Routh's or any other standard criterion
and it may be concluded thatt
1. if the resulting linearized system igbtable, the original

system is stable and

2. if the linearized cystem is unstable, original systenm is
unstable.
2.2 WM@”’ (9)

The electro-mechanical equation of a synchronous machine
neglecting mechanical demping, i.e. friction and windage, is
given by, |

Epag +1’ea'£m ses ses (1)

where, M = H/n £, H being the inertia constant.

Ap discussed, considering small displecements on the above equation,
upPAS+AT, =AT | vee  eee (2)

If now AT, is obtained as a function of p mltiplied byas, the
characteristic equation of the system is available and Routh's

eriterion can be applied to test stability.

Hext few steps show how incremental torque (aT,) can be

related to the incremental torque angle,Ab.

¢

Using Park's two reaction theory and convention, the
voltage equations for a salient pole synchronous machine connect-
ed to an infinite bus bar, in the absence of zero sequence terms

for balanced operation, are given by!



ey = o sinéS= p %d - wa- rmid

] =ecosE>-pV/q +vsﬁ-r1 see ves (3)

q mq
In per unit, the developed electrical torque is given by,

Tezwdiq- y"qid see deo (4)
and the per unit speed at any instant is given by,

’.p((«)t -E)) e e con (5)

Again, the flux linkages in the direct and quadrature
axes are related to the axes currents, by-

¥y = G(p)E « x4(p) 14
L N 200 (6)
Yo = = xq(p) 1

It ia now assumed that all the quentities inequetions (3)
to (6) may be expressed by a sum of a steady-state value with
subscript '0' end an incremental value byA . In other words
considering small displacemente on the above quantitles, we
derive at following equaetione in which the action of voltage
regulator ié neglected initially and constant excitation is
‘aspsumed-

Aey = ¢ con§, Obm pAY, =V A¥y -—%%Av—vm Aly

Aoy =e al.nsa.A6=PAYgl/+voA‘/&+\/»doAv—YmAi1 see eea (T)
AV z-pAcS vee . (8)
AVYq = = xa(p) A1,

see see (9)

AY¥q = = Xy(p)a iy
Substitution of Av,Aysand A ¥q from equations (8) and (9) in

equations (7) fox A ey mtdde, results in the equations.

q
D eg=e comd ASw=Z4(p) Adgrx (PAL =¥, PAS } (10)
L L N 10

A egm-=c8in§.A m=xg(p)A 1538, (p) A 1 +Y5 P AS



Assuming the usual per unit value of Y, as unity, the solution
of equatins (10) forni, andAi, yields

" [-zq(p) {e cos§ + V’qo"]{ +xq(p) {e siné +Y3°P”
‘ z4(p) 2,(p) +x4(p) x (p)
AL o [xd(p){e cosd + %qop})"" Zd(p){e gind +Vé° P}]

24(p) Zq(p) + x,(p) xq(p)

AS

NS

ves  ess (11)
where,
Zd(p) = rn + xd(p) oPe
Zq(n) = + xq(p) oD

Small displacement in T, in equatim (4) gives,

ATG = ‘/’doAiq + iqu Y’d - \/’qu 1d - 1doA V/q X sse (12)

Under intial steady-state operating conditions the system

voltage and flux squations are as followss

con (XX (13)

e aecoaﬁoa-rmi

q + ~'btlo

qo
Yao = Eo = Xa a0
cor ees (14)
¥a0 = = %q g0
Substituting Yﬁo e;nd‘/ao from equation (14) in equations
(13) we gett

e sin, = - rp 1, + X 1qo

ces s (15)

e cogd, = = Ty 1qo + Eo - X4 130

Equations (15) are then solved to give required initial currents

ido and iqo as follows:



- 60‘. N
L . r_ e sin X, (e coss EQ.Z.

do 2
rn + xd xq see 'R (16)
iqo o ¥Xa © 81121 S0 = r]L(e 0B So= Enj
l.‘m + Id Xq
2.4, The Cheracteristic Fouationi

The values of initial or steady-state quantities ido’
10 808Y¥30s Yo from equetims (16) and (14) respectively

q
together with the incremental valuesAdg Al and AYy, A%q, from .

q
equations (11) and (9) are substiiuted in equation (12) for

incremental electrical torque to give, finally,
g‘/gn[xd (p){e cos +p‘/501+zﬁ(p){ e sin+ p ¥

Z4(p) Zq(p) + x4(p) xq(p)

l&Te

AS

100 xn(p)[il(p){e 0056+‘/’mp} - _xi(p){e sinb + py&gﬁA&
Z4(p) 3 (p) + x4(p) x,(p)

Yao [ 24(p) % e cos§ + ‘Pup} - xn(p){e sind +p %4935_1 Al
Z4(p) ‘Zq(p) +x,(p) xq(p)

i:;xu(p) [xﬂ){e c08 & +p ‘/‘gﬂii-zﬁ(p){e sinéi-p%ng__}]ﬂs
Z4(p) Z,(p) + x4(p) x (p)

or AT, "%&[1110 x,(p) + ‘/’do} {xd(p) (6 cosd +Y¥ p)+Z,(p) (esingt ﬁmp)}
+{1q°xd(p)+%q°} { Zq(p) (e cos b+ qup)-zq(p) (esins+ Ydop)}]

= £(p) .48 ves  see (17)
where,

D = Zy(p) 2.(p) + x4(p) x,(p)

The electro-mechanical equation of the system, then,
reduces to the form:

An, = M2 + t(p)]. AS cee oo (18)

This can te written:
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Ad 1

= X [ N (19)
ATy~ wp2 +2(p)

in which the characteristic egquation is

MpZ + £ (p) = 0 vee  eee (20)
This~equation'ia linear and is obtained in powers of polynominsal
‘p' with constant coefficientas. To test the stability of the

2*1’(1’)80&1‘0

system, roots of the characteristic equation Mp
investigated by applying Routh's criterion or, as shown later,

Nyquist criterion mey be applied using frequency response method.

2.5. Machine Connected to Infinite Sus Through Iie Iinet

In last few sections, small displacement fheory has been
applied to derive the characteristic equation when synchronous
mechine is directly connected to an infinite dbus~bar. In the
present section the case of machine connected to infinite bus
through a tie line of resistance r and reactance x will be consid-

ered., Por this, it is best to assume the tie-line with infinite
(7

bus as & second machine and write the voltage equations.

Thus, neglecting the effect of voltage regulators, we have

for the synchronous machine,
eg = = xd(p) 1g =Ty 14 + xq(p) iq.v

6, = - xq(p) 14V - 12 (p) 1q -y iy

or
eg = = Z3(p) 14 + x,(p) gV

vee  eee (21)
N eq = = xa(p) 1pV= Zq(p) iq
For the tie line,

ed - I Sin 8 + Z(P) id - xiq‘v
ese  ses (22)

e, =€ 0om § + XiyV+ Z(p) 1q



Machine torque equation is,
2
Mp 6 + Te = Tm

where,

q

veo (23)

vee (24)

Small displacements in equetime (21), (22), (23), (24)

give,

Aedanzd(p)ﬂid+xq(p)A1q-%qopA8 .o

Aey=- xd(p)A 1, - Zq(p)ﬂﬂ.q + Yo PAS

A ey = 2(plAi, - xAiq +(e co8d - xt

qo P

YAS ..

L

A 0q = XAly + Z(p)A lq - (e sing = x 149 p)AS. ..

eoo (28)

ves  oes (26)

vee {27)
ses (28B)

A Tm = -[\f’qo + 1q° xd (p)] A id+ [‘féo +id°xq(piiﬂiq*p2¥A6.(29)

The above equations can be arranged in motrix form as

given belows -

Aey Aey ALy Al a AS
0 0 - [V’qoﬂqoxd (p)} y/do/""i'doxq(p) pzM =BATm
-1 ~0 ~24(p) xq(p) ‘~§;°p = 0
0 -1 -x4(p) ~Z4(p) YaoP =0
-1 0 %(p) -X ecos§-xi qoP = ©
0 -1 x z(p) -(eain&-xidop)ia 0

N

e

*

ees (30)

To obtain the characteristic equation, the determinant

of the coefficients of above equations is expanded in powers of p.

Stability may then be tested by spplying Routh's eriterion.
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2,5.2. Calculation of initial steady-state valuess
Pollowing the method of section 2.3, the values of 130

and iqo are given byt
. -(rmfr) e 8ind,~ (x+;g)(a cond,-E.)
do (rmfr)2 + (xy+x4) (x +x,) cee  ees (31)
(x + xdz'e sinde (r +r) (e cos§ =E )
o (rhfr)z + (x + zd)(x + xq)
Yao = Eo = %a tao
*h e [ (32)
\//qo = - Xq iqe

g0 = Yao = Tm 1q0

ves  oee (33)

a0 = -v;d" Tm 130

2.6+ Maghine Connected fio Infinite Bus Through Iransmission Dina:

The transmission line may be represented by a H circuit
with half of its total capacitance assumed lumped at the two ends,
or by a T circuit. But, if use is made of the A, B, C, D constants
- of the transmission line, expressed in per unit values, s more

- general analysis of the system can be obtained.

If eq is the sending end voltége at the machine terminals,
its direct-axis and guadrature-axis components ey, &nd s
respectively are related to it ag-followss

ey = 855+ J &g eos  see (34)
Also,
e ™ AEr + BIr
= A ey, + jaqr) + B(4y, + Jiqr)
= (4 eap + B ig 0 J (4 Oy + B iqr)

Therefore, for the transmigsion line,
eese——
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T o, = A e sind + Bi

, a a } vee  oes (35)
cqnlocoss +Biq

gince
od-ouinf) and cq-ecosf:

Por the synchronous machine, neglecting any voltage regulator

action,

= -2 1, + x. (p)i_ .V
ed d(p) d q P q see ves (36)

e, = 'xd(P)idv' Zq(p)iq

Small displacements in equations (35) emd (36) result in the
following equations!

Aey = A e cos S .05 + BA1,

Aeqa-ﬁesinS.A8+BA1q $

ses ess (37)
Aey --Zd(p)Aid + xq(p)A 1q - \/»qop AS

Aey =-xy(p)Aty = 2, (p) A1y + Y p A

Small increments on machine torque equation give,
2
A u—[‘// +1 q0%a (p)] Aid-t-[‘/ao-l-idoxq(p)]Aiq-rp MNAS ... (38)
From equations (37) and (38), ‘

Aey Al ALy Aiq AS

0 0 '[wqoﬂqexd(p)] dotlao q(p) pzu -A‘Tm
-1 0 ~Z4(p) xq(p) =¥ o -0

0 -1 -xd(p) ~Zq(p) ¥4 P -0
-1 © 3 0 Ae cos & = 0

o |- © B -Ae sin 6 =0

soe xx) (39)
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Again, the stability of the system can be ascertained
by applying Routh's criterion to the characteristic equation
obtained by expanding the determinant formed by the coefficient

of equations (39).

2,6.2y Caleulation of initial steady-state values:
As a first step, EO is caloulated as follows:

Referring to phasor diagram of Fig.1, there is,

o, = Ae + BIr’ for any receiving end load ocurrent Ir.

Then neglecting resistance, E' is given by

E'aee-l-jIrx

q
and
EO = E' & id (xd - xq) sew soe (40)
The values of machine currents and flux-linksges are
given by,
- So - o™
1y, - “Tp e :1n fgk(e co8d Eﬁl
0
r + X,
m. Sxd Q*( % F o .Obt LX) (41)
iqo i} fg e gln o™ rg: e cos o =Bl
T *t X xq
¥ . -
do = Ep = %3 14,
" . ses  see (42)
g0 ® < *q *q0

Tre sample calculations for each of the above cases have
beer illustrated in Chapter 4 where the stability is also tested

by frequency response method.
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EFFECT OF VOLTAGE REGULATOR

3.1, Introduction and Preliminery Remarks:

A has been stated earlier, the steady-state stebility limit

of a synchronous machine ie increased oonsiderably when the effect
of voltage regulators is taken into acoount. Much useful work has
already been done in this connection by authors like Concordia,
Aldred and Shackshaft, Nickle and Carothers and others.

This Chapter will consider in details the effect of &
voltage regulator on the steady-state stability limit of a
synchronous machine connected to an infinite bus bar, (1) directly.
(i1) through an impedance tie. - The regulator ie responsive to
changes in terminel voltege of the machine so as to maintain it
at some constant value (unity in this case) and acts on the
field voltage of the synchronous machine. The notaetion and assump~

tions of Park are followed:

3.1.2, Preliminery remarkss
Before entering into detalled mathematical analysis, it
is deslrable to have a general review of the fundamental concepts

involved.

Consider a single round-rotor synchronous machine connect-
ed to an infinite bus through a tle-line. Neglecting machine and

tie-line resistance, the steady-state power transfer is given by

Ry E eos  see (1)
It may be pointed out here that in the steady-state
(or generally, if the effects of rotor circults are neglected)
there is analytically no distinctipn between a tie line with its
infinite bus and a second machine. The distinction lies rather

in the values to be assigned to the various parameters and in the



FIGURE 2.
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interpretation of the quantitative results. This assumption,
however, simplifies the matter when writing voltage equations
for the tie line, based on two reaction theory, on the lines of

machine equations.

Now, if in equation (1),

xd =X = 1,0 Pl

with exoitation of machine set at some fixed value, for example,
to give rated current at unity power factor and unit terminal
voltage, referring to phasor diagram of Fig.2,

E uea""“l“""‘" = 1,414

0 cos 45°

and the power transfer is

{1.414) x (1,474)

or,
P = sin§

The power 1limit occure at S = 90° and is Pmax = 1.0 p.u,

(Note that the calculations above give infinite bus vdltage
e a8 1.414 instead of conventional value of 1.0 p.u. This is
because of the assumption that the infinite bue together with the
tie line can be looked upon as a second round rotor machine. Also,
the terminal voltage at the terminale of actual machihe is assumed
to be unity, with current at uhity power factor. Though difficuls
to follow, it makes little difference as far as the calculation
of stebility limit by analytical methods is concerned).

If on the other hand, the excitations are not constant
but are controlled (through the use of voltage regulators) so as

to maintain unit terminal voltage and power factor, then
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. 1

By = ¢= 55 /2

and the power transfer 1is

Ee 8in 5
Pux —2—— ginb = 5= = tan 5/2
Xg* x 2 cos“ /2

Now the power transfer increases without limit as the
angle 5 1s increased from 0 to 180 degrees. The new torque-
angle curve crosses the o0ld torque-angle curve at 4 =90 degrees
(Fig.3). The question of the mesning of this result, partioularly
of thepossibility of stable operation in the region®)> 90 degrees,
now naturally arises; the answer is found in the kind of control
used. If the excitations are controlled slowly, for example, by
hand, 80 a8 to return the terminal voltage to unity only after
deviation is noticed, the power limit again will be found at
§ = 90 degrees. One may imagine the load increaéed'ih small ateps.
At each step the terminal voltage is returned to unity by an adjust-
ment of the excitations, and then the gystem is tested for,stoady-
atate stability in the conventional way by noting whether or not
a small increase in angle with fixed excitations resulte in an
increase or decrease in power transfer. However, if theéxcitat-
ions are controlled automatically to maintain constant terminal
voltage continuously and inatantaneously,‘?egardless of load or
angle, and even during the stability test, the relation Pmtend/2
will hold instantaneously, and there no longer is a stability
limit. In order to maintain constant terminal voltage required
for such stable operation it is necessary to have a flat regulator
(that is one with infinite amplification factor, a = - o ) and no
time lags in the regulator, exciter, or even in the main machine
fields, so that the excitations are corrected instantaneously.
Such action ie, of course, practically unrealizable because of

the time lags inherent in any system. Moreover, both excitations
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also increase without limit as the angle approachese 180 degreesz.
Thue, in practice & stability limit is reached for some value of 3
greater than 90 degrees but less than 180 degrees, beyond which the

system becomes unstable.

3.2, Mathemotlonl Analyzips
In the following mections, a methamatical analysis of the

gyatem including effect of voltage regulator will be presented
for the two casesviz, (1) machine directly oconnected to infinite
bus, (1i) mechine connected thoough tie line to infinite bus.
The second case will be coneidered first as the expressions for

first case can be derived from it,.

3.2.1. Machine connected to infinite bus through tie«line£7)
The equations of axes voltages for synchronous machine

are,

eq= P Y- - Yy }

- - Vv
eq b %ﬁ rmiq + %’

Similarly, the equations for flux linkages ares

| vee (2)

s L N (3)
‘Pq = -xq(P) iq

Substitution of ¥, and ¥y from equations (3) in equations (2) gives

.d‘ b G(D)E" de(l))id - rmj‘d + xq(p)iqv

or ey =P 6(p)E “Za(P)ia + X (p) 1 Y vee  ese (4)
®, = ~p xq(p):l.q - Tplg + G(p)E.Y = x4(p) 45
or eq - G(p)E‘v_ xd(p) idv- zq(p) iq se X (5)

where Z,(p) =Ty +pxa(p) ma Zq(p) = rm*pxq(P)



6:1 gimilar lines, for the tie line, (Impressed currents)

.d = @ Siné>+ Z(p) 1d - xiqu ces

e, = © cos 5+ x14.V +2(p) 1, . ese

where Z(p) = r + px for the tie line.

Machine torque equation is,
Mpzés* T m T se0
® n
where T, is the electrical torque given by

Te‘\)ud 1q“\/lq 1d LR ]
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XX ‘6)
ver (T)

LA (a)

ees (9)

From equations (4), (5), (6), (7), and (8), the equations

for small changes from & steady-state operating position are:

A ey = PO(p)AE~ Z4(p) Adg+ xq(p)A 1q-54éop.A8

Aey = C(P)AE -x4(p) A1, - Zq(p)A 1g +%o POS.s

A;ed = z(pxﬁid - xAi + (b 00@6‘%ﬂiqop)lx6 sne

q

A eq = XAy + z(p) A 1, - (e siné- xidop).AS ves

«ee (10)

vee (11)
ees (12)

ees (13)

AT wi G(p)AE-[V/qouqoxd(p)]A 14+ [‘/ao-ridoxq(p)]biq*pelm&(14)

m g0

The regulator introduces a change in field voltage E as a

function of change in pagnitude of the terminal voltage ege This

is given vy,

AE = g(p)lxeé ses
where 2 2 2

vee (15)
eve (16)

oes (17)

Oa = Qd + Oq . Y
and g(p) is the operation expression for the action of the voltage
regulator,
Prom (16),
Aoy = °:1‘A°d + a('l.Aeq voo



[ ]
where

3 = 30 %0

Then,

and e' =

q °qo/°ao

E = g(p)[__;eé.Aed v+ eéAeq]

L N}
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..o (18)

when equation (18) is substituted in equations, (10),(11) and

(14), these become-

Aeg =p&(p)g(plef A ed+pG(p)g(p)e' Ae -

d(p)Aid+x (p)Aiq#é

LI 4

OpAS

.o (19)

Aey =G(p)g(plejley +G(p)s(p)e'Ae -xd(p)Aid Zq(p)Ai +¥% PAS

ATm

["lﬁo + 14, xq(p)]Aiq + pzﬁAS

*

eeo (20)

- 1q°G(p)g(p)e&Aed+i G(p)g(p)e’Aa -[\//qoﬂqoxd(p)}z}id +

eee (21)

The equations (21), (19), (20), (12), and (13) when arranged

in a matrix form, after necessary transposition, become,

Asy Aeg AL, AL, A6
140%(P) (D)0 | 14,8 (PRI o] | =YLy %a(D)| YagHiagke(®) P[0T
p6(p)g(p)ej-1|pé(p)glple’ ~24(p) x4 (p) -Yo?  |7°
G(plg(pley |G(p)g(p)e -1 ~x4(p) -Z4(p) BoP  [FO
-1 0 Z(p) -x eOOBS-xiqp =0
0 -1 x ‘ Z2(p) ¢ 8inb+xi p|=0

in whioh,Aed,Aeq, A id' Al

q’

eee (22)

and A Tm are the variable quantities

and the terms within the matrix are obtained as the simple or fract-

ional expressions in polynominal p.

In order to test the stability of the system, the determin-
ant of the efficients of equations (22) is expressed as a polynominal
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in py, and the signs of the real parts of the p roots are investi-
gated by Routh's criterion.

It 18 to be seen that expreseion of the determinant of the
coefficients of equations (22) resulte in an expression of the

fornm,
AT = F(p).AS

in which P(p), the determinant expressed as a polynominal in p,
is obviously the characteristic equstion of the system whose

roots are tested by applying Routh's criterion.
Derivation of Characteristic Equationt

Let the equations (22) be represented ast

AesL Agg Ai@ Ai:Q AS
a4 by 4 d, 4 nA@m
8, by s 4y e, = 0O
&z b3 e d3 ex = (
a, b4 C4 d4 ey = 0
ag b5 ¢y ds eg = 0

.- (23)
The velues of 8q9 Bpecss b’, b2 sess otc, are given by 7

corresponding terms in the original matrix of equations (22).

Fxpansion of determinant results in
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8, b2 02 dz ., --b1 a2 02 d2 o, +c1 a2 b2 d2 02
P, Cy 4y @
3 C3 G5 & cx 4y @ b, 4. e
D= 85 03 & o %3 P35 9 ¢
'b4 Cy 64 7 a4 04 d4 L7 a, b4 d4 e4
by o5 dg e a5 05 dg e 8; Bg d5 e
~dy| 8y by ¢y ey | +ey | By, by oy dy
@3 b3 o3 3 85 b3 o3 4
a4 b4 c4 e4 a4 b4 04 d4
35 bs c5 35 35 b5 05 d5

The first term of D1, which is a4 multiplied by a fourth order
determinant, is similarly expanded further until we have,

(b293"' 02b3) (046»5 - d4¢5)+(02d3 - d203) (b495 “84b5)"
(cge5 +8503) (bds = a,ng)e(de; = oz5) (ye5 - o,bs)]

Proceeding likewise,

II term "'b1 [(‘233‘"’ 02‘3) (d4'5“34d5)"(32d3"6.285) (0495-8405)"'
(a2a3~02a3) (0465 - d4cs)+(c2d3 - d2c3)(a4e5 - e4a5)-
(cpe5 - e2c3)(a4d5- d4a5)+(d2c3~92d3) (3405 - 0435)]

111 term= 01[(a2b3~ b2°3) (d405~ o4d5)—(azd3 -d2a3) (b4 0~ o, b5)+
(ay05 ~ey85)(b,d; ~d,bg) +(bydy ~4,by) (a,e; ~e,85)-
(32‘3 - .zas) <b4°5 "’c4b5)+(b2°3"‘ cabs)(‘4as“ 3435) -

(bges -a5bs) (8y05-0,m5)+(aze; ~305) (azbs =byss) |
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Y torm = e,[(a?_b3 = byez)(c,dg ~d,05)- (By05 =0585) (bde= 4,bg)+

(8yd5 -d585) (byog= 0,b5)+(by05 ~0,b5) (a,ds ~4,8c) =

(bpty ~85b3) (8,05 —c,a5)+(0x8y ~0505) (aybg - byns) |

The final expression for the characteristic determinant is
gimplified further through elimination of some common terms and

there results,

the characteristic determinant

Dy = A+B+C+D+E+P+G+H+I+Jd cee  ees (24)
where,

Ax (d4e5-e4d5)-{31(b203~02b3)-b1(3203—02a3)+01(a2b3~b283)}
B =~(c 0q,C5) {8(bydsmdybs)-b, (8,85-dy0s)+d; (a,bs-byns) ]
C = (c,85-8,05) fa (hyesme,by)=b, (ase5me,a;)+e, (8,05-by8,) |
D= (b435794b5) {a,(cgd3~d203)—c1(32d3~d2a3)+d1(a2c3-0233)}
E au(b4d5~d4b5}-{a,(cze5—3203)~e,(a263~0233)+e1(a203~02&3)}
F = (bog-cybs) {a1(a505-050,)-0, (a505m0,85)+0, (ay85-258,) |
¢ =-(aje5-485) {by(Cpls-dy05)=0y(bydx=d,bs)+d, (by05-0,b5) )
He (a4d5-d435)4{b1(o203-a203)-c1(b2e3-02b3)+e1(b203-62b3)}
L =-(a405-0,85) {by(dpes-e585)-d; (byes=e;bs)vey (byds=d,bs)]
J = (a,bs-b,a) {01(d2e3~egd3)-d1(c233-9203)+e1(02d3~d203)}

The expression, though appearing quite complicated at
first glance, 18 not so when one proceeds with actual calculations.
In fact, if some assumptions are made while trying to obtain the
characteristic determinant, the work can be much simplified and a
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éimple form of characteristic (eterminant obtained. For example,
if the components of voltages caused by the rates of change of
flux linkeges and of angle are neglected together with armature
and tie line resistance, then the characteristic determinant
obtained will have only fourth and lower powers of p in its final
(7

expression.

Calculation of Steady State Quantitiest

The starting point for caloulation of initial steady~state
values of various quantities will be the torque angled , Agsuming
a value for 5, the values of current I, machine internal voltage
Eo and infinite bus voltage e will be calculated with the help of
steady state vector diagram based on two reaection theory and taking
into account saturation. In all the cases, a constant terminel
voltage {achieved by voltage regulator) of 1.0 p.u. and unity
power factor at the terminals will be apssumed unless otherwise
astated. Knowing the values of Eo' e and I at a particular angle,
the other quantities such as ido’ 1qo’ Vaa, yao. etc., can bs

calculated.

Calculation of Eo' e and I3

Referring to phasor dlagram of Fig.4(a), there are,

z 1
I.
ten (5~ 8) = 1-9-~+rm1 md tan & = FE

or tan 6 —tan © x,I
1+tan§ tan @ T+r,l

or

Ix
tany - i Ix
Lo * J¥1z
1+tan$ 905, n
or S $I 1 I
tan 3y - r.tan -
X i} xg

1 = Ir + x tanSl 1+rh;
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or
tan 5+rm tan §. J= r.tan$ I --:c_rmtﬁun&'-t2 --x-ii-::.:r:m.li2

2
-I.xq + xq(x,tané - 1)1

or

2
{xq(x tan $ -r)-rx.rm-.o-r rm,tanS}I +(xq+x+r.tané.-rmtané)l-tanS-O

ese YY) (25)
Por known values of X,y Xy Tpy T and § equation (24) gives the

value of current I.

Again from the vector diagram, [Fig.4(a)l
Ix

E' = m) (¢ 18 now known since I is known)
and
Also, Ix

e = o se0 (27) 4

sin ©
Calculation of i,,, 1000 Yaor ‘an’

It 1s assumed that values of ido and iqo are affected by
line resistance and reactance in addition to machine resistance

and reactance. But the values of e4., o, and %do and %o are

Qo0
assumed to remain unaffected by line parameters. Thus proceeding

as in Chapter 2, the values of 1“ ard 1__ are now modified by r

qo
and x and given by,

-(r +r)e ginf - (x+xi) (e cos§ =E.)

130* — p) —
(z#r)© + (xtxy) (x +xq)
(x+xq)e sing~ (rp+r) (e cos§-E)) | *** ** (28)
i o= 3
1 (rptr) + (x4xy) (x +xq)
yjdo"Eo'xd 130 (20
see oo 2
Vo o=-x i 9

qo q Qo
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)
w0 ™ Yo = m 130 = &g
s e LA N (30)

®a0 Qo mdo

since e, is assumed to be unity.
Expressions for x4(p), xq(p), G(p) and g(p)s
When damper windings are neglected, the operational

impedances are given by '
1(1 + Tap) , xq(p) - x,

x,(p) =
a '
1+ Tdop
0(p) = —H—
1+Td°p

If it is assumed that the regulator and exciter performance
can be expressed as a statie change (a) in field voltage Eo per
unit change in terminal voltage e, together with a time lag

expressible as an equivalent sipgle time constent Tr' then

) = Ty

where the value of a (taken negative) has to be coordinated
properly with a particular system.

3.2:2s Machine directly comnected to infinite bus bart

The equations of small displacements in this case, too,
remain unchanged for the machine i.e. the equations (19), (20) and
(21) of preceding section are applicable again., The only difference
is that equations (12) and (13) are modified to give:

Ney = & cos§.05

md L3 N 00 (31)

Aey = -¢ #in§.05
which are obtsined easily by putting r = x = Z(p) = 0 in equations
(12) and (13).



27

The matrix form of the equations ist

4¢ Acq Aly S PN
1q°G(p)6(p)e; iqu(p)g(p)e; ~Yao~2qo%a(P) ¥3°+1d°xq(pﬂ pM |-AT,
pG(p)a(p)e -1 po(p)a(p)ey 24(p) x,(®) [ =% ep[-0
¢(p)g(p) ey G(p)a(p)e&d ~x4(p) ;zq(p) % .p[-°
-1 0 0 20 ecoss |=0
0 -1 0 0 ~esié|=0

I XN sos (32)
Again, the stability can be tested by applying

Routh's criterion to the characteristic determinant of the above

equations.

Cheracteristic equations

Referring to equations (23) of the preceding section,
there 1s, in this case,

by=0y=0,=0=a5=c5=dg
and

34 = bs = ’1

If these values are substituted in the expression for
characteristic equation obtained in the preceding section, there

results,
F(p) = A1 + B1 + 01 - | o (XN} s (33)

which ie the characteristic equation in this case. The terms A',
B1, 01 are glven by,



D=-Axi>

—— -

FIR L EADIN a RPROWER FACTOR

IR LA IvL POWE K A TOR

FIGURE 4 (b),




28

Ay = 0‘{ja,(cad3~d203)' 01(a2d3-d233) +d1(¢203-02a3)}
By = o5 { by(0p85-a505)= oy (byd3=,b5) +d,(byog-e,bs)y
01 = ‘4bé1(d2°3"‘2d3)' d1(0203“'0203)+ 31 (°2d3"d203)}

Calculation of initial ateady-state valuest

The value of E  and I can be calculated as shown in the
preceding section for a given value of § . The vector diagram,
however, is now modified as shown in Fig.4(b), since the value
of e is now fixed at unity. It is to be noted that the power
factor may not be held at unity in all the cases, but may have
to be changed from lagging to unity and then to leading in order
to keep Eo at a suitable value - particularly at higher values
of 6 « The examples considered in latter sections will illustrate

this requirement.

The steady-state valuesbf currents, voltages and flux

linkages in the machine are given by-

1.0 oin § - x (e cosb-E))
r2 + x4 X

iqo-ﬁ' 81;6- fn_( e cos§ = E,)
rm+xd xq J

Yao’ By = x4 134 } vereee (35)

Yo" ~%q 1q0

v cer  see (38)

]
w0 Yo = T 10 ™ %

€

s oee (36)
®20 Yo = *mn a0 =

ainde ¢, = 1.0 pou.
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3.3, Sample Calculationa:

In this section a few calculations are shown for a particular
machine under the effect of voltage regulator. For various velues
of torque angle § , characteristic equations will be obtained to
which Routh's criterion will be applied to test asystem stability.

The following values for machine constants and tie line
resistance and reactance are assumed.
xd = 102
Xq = 0.8
xl = 0.2
X’d = 013
\\‘ r = 0002
o 5o = 5 sec

Td = 1.25 Bec.

T. = 2 sec.

Ir.
a = 42
X = 063
r = 0.06

3.3+1, Machine connected to infinite bus through tie lines
(a) 60 = 450’ Pefe = 1,0

Following the method discussed in section 3.2.1,, the values

of Eo’ I-and @ are obtained as-

I 3 0.78 ) EO = 1«37 » ¢ = 0098
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Oy
1d0 = 00423 1q° = 00665
] ’
edo = e, = 0,53 eqo = eq = (.85

Proceeding with the calculations as shown in section

+1+, the exact characteristic equation is

6

09+14,92p8+422p7 +734p0+957p7+872p4+494p7+151 . Tp2+26 .6p+1 .846=0

th's array is set up as,

6.6 422 958 494 26.6
14.92 734 872 151.7 1.846
74 572 427 25.85 0

618 786 146.5 1.846 0
' 478 409.4 25.63 0 0
259 113.5 1.846 0 0
200 : 22.23% 0 0 0
84.7 1.846 0 0 0
17 .88 "0 0 0 0
1.846 e 0 0 0

0 0 0 0 0

‘¢ the system is stable
(b) The operating conditions ares
60 » 90°, p.f. = 1,0

values of I, Eo and e are obtained as

I = 1.906, EG = 2044' ® = 1005
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idos 1.57 10'1007

Q
\//do = 0,56 Y’qo u-(),86
30 * ea = 0,83 *0 " e& = 0.54

The system characteristic equation 1s3
6.6p7+14,3p0+416p1 +507p0+607 . 8p7+4T4p*+228p> +47P2+13.3p+0.84820

Routh's arrey is:

646 416 607 228 13.3
14,3 507 474 47 0.848
192 390 202 13,0 0
478 460 46 0.848 O
206 192 13 0 0
19 16 0.848 0 0
28 4 o 0 0
13.3 0.848 0 0 0
242 0 0 0 0
0,848 0 0 0 0
0 0 0 0 0

The system is, therefore, stable.

(¢) 6, = 100°, pefe = 1.0

Values of other steady-state quantities are:

I = 2434 E, = 2.957 o= 1.1
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idb = 2,04 i o™ 1.14

q
\//do = 0,50 ‘/’qo () 01
°ad = e} = 0.98 L e& = 04477

and the characteristic equation is-
6.6p7+14.55pP+332p +330p+326p7+200p*+63p>+29 822, 6p=0.70T=0

The Routh's array is:

6.6 332 326 63 ~246
14.55 330 200 29.8 «0.707
181 236 49.5 =217 0
1 196 29.97 ~0.707 0
122 3241 =176 0 | 0
11145 34.47 ~-0707 0 0
-5+4 -1.0 0 0 0
-13.87 -0.707 0 0 0
=14275 0 0 0 0
-0+707 0 0 0 0

Hence the system is unstable and there is one root of the

characteristic equation with positive real part.

3.3.2, NMachine directly connected to infinite buss

The same machine is now assumed to be connected to infinite
bus bar directly. The stability of the system under the effect of
voltage regulator at different operating torque angles is inveasti-
gated in this sections

(a) SO = 4500 pvfo = 1.0
The initial values aret
Inm 1.28 ’ Eo = 1,73 e=n 1.0 p.u,
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140 ™ 0.845 : : i o™ 0.855

q
Wy = 0472 Yo =0+682

The system characteristic equation iss
0.24p7+0.368p%+27.11p°+31.28p%439.3p7 +31.4p% +10p+1.051m0

Routh's array iet

0.24 27411 39.3 10
04368 31.28 31.4 1,051
6.7 18,8 9,32 0
30425 30.9 ' 1.051 0
12.0 9.08 0 0
8.1 1.051 0 0
7452 0 0 0

The operating point is, therefore, etable.
(b) 5,= 90°, p.fs = 0.9 leading.

The steady~state quantities aret

Ia 2,87 E, = 3.1 ¢ = 1.0
g = 2.55 140 ® 1431
Yao = 0404 Yoo ==1+05

The characteristic equation in this ocase ist

0.24p7+0.378p%+20.37p7+16,7p4+27.5p> +15p%+0.15p~ 0.353 = 0
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Routh's array is set up ast

0.24 29,37 275 . 0415

0.378 16,7 15 ~0.353
18.7 18 0.3715 0
16.4 15 <0353 0
0.9 0,775 0 0
0.9 0,353 0 0
1,128 0 0 0
0,353 0 0 0
0 0 0 0

Hence the system is unstable, there being one root of the character-

istic equation with positive real part.
(e) 5, = 100° pefe = 0.8 leading

The initial values ares

I = 2073 v EO = 2079 e = 1.0
1do u 2.44 iqo = 1.29
Vao ==0,14 Vho n=1,03

The characteristic equation is-

0.24p+0.368p%+23,00°+8.94p4+19.2p>+5.8p%= 333p = 0,493 = 0

The system is seen to be unstable, there being one

root with real positive part.



Chapter 4‘ .

PREQUENCY RESPONSE ANALYSIS OF
LINEARIZED SYSTEMS
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FREQUENCY RESPONSE_ANALYSIS OF
LINZARIZED SYSTEMS

4.1, Introduction

A more complete piloture of a synchronous machine stabi-
lity problem is obtained by frequency response method which can
be considered as a step ahead of the analytical methods discussed
earlier. The method is based upon a rigrous analysis of synch-
ronou s machine dynemice; both electrical as well as mechanical.
The characteristic feature of this method is the realization of
& synchronous machine as a closed loop configuration as shown
later and then the application of Nyquist criterion to test
stability of the system, Since some kind of feed-back is always
necessary to make & system stable, the necessity of representing
a synchronous machine as a closed loop system is obvious. The
simplest closed loop system may consist of one main loop or
forward loop and one feed-back loop as shown in Fig.5. In the
cage of a synchronous machine these are obtained after studying
the equations of motion available agé result of applying small

displacement theory to actual machine equations.

It may be pointed out here that while the Routh's criter-
ion or other criteria determine only whether a particular syetenm
is stable or not, the frequency response method not only does
80, but enables one to know to what degree the system is atable.
Hence the importance of the method. Thus, the main advantage
of the methcd lies, not in being able to tackle the problem
easily but in the fact that it provides for rapid appreciation
of the effects of modification of the machine equation.



I(p) < G O(F)
5(2? _
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.4.2. Ehn_Exnniﬂx_inxnzinn_ni_ﬁxahiliixis)

Coneider a closed~loop feed=back control system as shown
in Pig,5. If G(p) is the forward loop transfer function and
H(p) is the feed-back transfer function, the closed-loop
transfer function of the gystem is given by1

%{g%' * ?géf%TTﬁT;) ver  aee (1)

Let the denominator of equation (1) be represented by
F(p)s thet is,

F(p) = 1 + G(p) H(p)

The zeros of F(p) are the roots of the characteristic equation
of the system. If this equation has any roots with positive
real parts, the system will have an infinitely increasing
response to a finite input or in other wordes, the system will

be unstable.

Now consider the locus defined by the semi-circle of
radius R = o0 en right hand side of & p-plane having real
and imaginary axes. This locus is described in a counter-
clockwise direction so that it LNCLOSES the entire finite
right half of the p-plane; this path is called the NYQUIST
PATH, If any of the rootas of the characteristic equation is
enclosed by this Nyquist path, then system is unstable. It
will be shown how this can belrealized exactly:

Let 2 = number of zeroe of the characteristic equation
enclosed by Nyquist path.
P = number of poles of the characteristic equation
enclosed by Nyquist path (this is also the
number of poles of the open loop transfer

function G(p) H(p).)



37

Now, the determination of 2 is our main concern while P
is usually known and for stable system is equal to.zero. Referr-
ing to the Nyquist path, a corresponding plot of the function
1 + G(p) H(p) can be obtained for various values of p. For
this, travel along the Nyquist path in p~plane in the counter-
clockwise direction and plot the corresponding velues of ®(p)
along real and imaginary axes in the P~plane. Then; thé number
by which P(p) plot ENCLOSES the origin of F-plane determines
Z by the relation: |

N=2 P

where N 15 the number of enclosures.

Now, since for a stable systan P is always zero and Z
has to be gero, N must be zero too. This means that 'F(p) plot
must not enclose the origin at all for a stable closed loop
system'. This spparently is, what isknown as, Nyquist Criterion
of Stability,

Usually, the plot of G(p) H(p), i.e. open loop transfer
function, is obtained inetead of 1 + G(p) H(p) or F(p) and
the critical point then becomes (-1, jO) instead of the origin.

In Chapter 2, the dynamical equation of motion of a

synchronous machine is derived to be
2
ATm- M p“A5 + £(p)AS

This can be arranged in two ways to give two different

closed~1oop syatems.

(1) Alp - 2eM8
Mp? |
1.e. the difference of the two inputs =AT, end £(p)AS -

operated upon by a direct transfer function of :“2 gives




AT, 1
6? M p*

f (P)

FIGURE 6 (4),

AT, 1
- f(P)
/

M p

FISURE 6_(_5)_.
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the output of small change in rotor angle Ad.

The system will be as shown in Pig.6 (a)
5T - NpAS

(11) ___?G)T_____ = AS

Here the inputs areAT  and szAS and the direct
1
. Fig. .
transfer function is —grr) The system is shown in Fig.6(b)

The analysis to follow makes use of first representation.

4,4, The O Loop Transfer Fu :
The smell displacement equation of electro-mechanical
torque, referring to equation (21) of Chapter 3, section 2.1,

iss

' . t
Ay =1, 6(p) glp) eq ey + 1 G(p) glp) egae, -

2
{ ¥q0 * x,(p)had, + l 40 * 140 X (p)lAi +p°MAS

qo %3
It p2HZ&6term is exclused, we have the electric torque 4T,

given by!

t
AT, = 1, o &(p) glp) °d Aey + 1y G(p) g(p) e Aeq -

| V*q°+ 190 xs(p) §0 4.+ & ¥go+ 4y, xq(p) IiMq
LI se (2)
which can be obtained in a form,
ATO = f (p)AS (XN (X ] (3)

making use of voltage and current small displacement equations.
Thus, if in equations (22) or (32) of Chapter 3, (depen-

ding whether the machine is connected to infinite bus through

tie line:

or directly), e, is put equal to gero instead of
pzl » then iﬁe determinant of the coefficients of these equations

gives thfs expressions for f£(p). Dividing £(p) by Mp®, the
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open loop transfer function is obtained.

The open loop transfer functions for the cases studied
in Chapter 3 by applying Routh's criterion will now be obtained
together with their Nyquist Plbts.

4.5.1. Machine connected to infinite bus through tieelines
(considering effect of voltage regulator)-

(‘) 6 = 4509
Pollowing the procedure outlined in section 4.4, the
open loop transfer function is obtained as,

£(z) 402p7 + 717p%+942p° + 867p% + 473p°+ 151.7p%+26.55p+1.846

Mp2 02p2 (1 + 5p)° (1 + 2p)?
402P7+717p6 +942p5 +867p4 + 473p3+151.7p2 +26.55p+1.846

10pT+ 16p° + 9.7p°+ 2.8p%+0.38p° + 0.02p°

By applying Routh's criterion, it can be shown that the
open loop is stable i.e. 2 = 0, and sgince P = 0 too, for a

closed loop stable system N must be zero. This means that the
plot

Nyquist,mst not enclose (=1, jo) point,

Writing p = Jw,

‘..Uﬁé’.)_. G (Jw) H (Jw)

- W

(717.5-867 H+151077 =1.846)+3(402. 342 2+473 J=26 .550)

(16.2-2.8. %+ 0.0202)+) (107-9.748 + 0.38.5)

A:t w =0 '
2(3) .:145453_ -

-

At w = 0,
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Iligi . 5?% = 40.2

The values of G(j») H(j©) for other values of ware listedin
table 1 obtained with the help of & digital computer., The
Nyquist plot is given in Pig, T(a) and (b). Pig. (a) shows
enlarged portion of the plot near the critical point (-1, jo)
whereas Fig. (b) shows general shape of the plot. It can be
geen that the plot does not enclose the critical point and

hence the system is stable.

(b) § = 90°
Here Sin%_ = G(p)H(p)=
Mp
Aﬂlluiﬁiﬂﬁlu_592D_~A12n-2222~tilgutllaﬁﬂiaﬁiﬂ
02p2 ( 1 + 5p)2 (1 +2p)
(4948-472 47.5-0.848) + 1(401 4 =592 +229 *-13,34)
(16u§~2.8u9+o.02w )+J(10u)~9.7u)+0 SBQ?)

and G( j«)H(jw)=

G(JH(§») = = @

w -0

and G(Jo)H(Jw) = 40.1

W -0
The Nyquist plot is shown in Fig.8 from which it is seen
that %he critical point is not enclosed and the system is
stable.

(e) § = 100°

£(p)
— (p)H(p)

316p7+321p6 *317p5 *157P4*5693*37.5y2~2-91p ~0.29
.02p2 (1+5p)3 (1+2p)2
6( 3;)3(3“,), (3218-187.4437.5.240,29)+ 3(316.,7-317.,356 42.910)

(160=2.8. 440 .02u>)+3(10u>-9.7u5+o 38.5)

=

G(j)H(§») = + oo

00 ; 640679

i el SRR JRIVERSITY OF KB,
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6(3) H(Jw) = 31.6

W —» 0

In this cese, applying Routh's criterion, it 1s seen
that the system has one root with real positive part, i.e.,
Z = 1, Therefore P being zero, N must be one or the Nyquist
plot must enclose the critical point once in order that the
system be stable. However, the actual plot shows that Nm2
and hence the system iplinetable. The plot is shown in Fig.9

4.5.2. Machine directly connected to infinite bus:
Equations (32) of Chepter 3 are used with e, = 0 to

obtain open loop transfer functions in each case.

(2) & = 45°,
The open loop transfer function is given by,

£(p)  26.7p° + 30.9p% +39 1p> + 31.4p% +10 p + 1,051
2 0.02 p2 (1 + 5p)2 (1 + 2p)

¥p

(30.9w4—31.4w2+1.051)+3(26.7w5-39.1w3+10w)
and )
11151"9( w)H( jw)e =
- 3 s (0. Qw =0 02w )“"‘3( “0'36“?)

G(jv) H(jw) = i;951~§ B - 0

W —>0 02w

G(J«) B(Jw) = 2647

w —> o

The Nyquist plot is shown in Fig.10. It does not enclose
the critical point and hence the system is stable.

(b)§ = 90°

System open loop transfer function is,

£(p)  28.95p° +17p* +26.7p7 +15 p2+0.2p - 04353

2 " 2 2
Mp »02p° (1+5p)° (1+2p)
28.95p° + 17p4 + 26.7p> +15p2 +0.2p - 0.353

p5 + o-9p4 + 0.36p3 + o.oap2
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. £( j) 34 30 (17:4=15.220,353) + §(28.957-26 47+ 0.02)
and ~————ui( 4w w)e
-8 (0.9u=0.02:2) +3(P= 0.36.9)

G( Jo)H( jw)a =23p , 4+ o

=
0 >0 =0:02w

G(jw)B(j<)= 28.95

w @

Other values of G(jo) H(jw) for verious values of w are
given in Table 5.

The Routh's criterion in this case reveals one root with
positive real part. However, the Nyquist plot shown in Fig.11
does not enclose (=1, jo) point and hence the system is
unstable, as ascertained already in Chapter 3 by applying
Routh's criterion to closed loop characteristic equation.

(¢) § = 100°
The open loop transfer function is,

£(p)  22.6p%+ 8.51p%+19,0p° +5.8p° - 3.14p - 0.493

]
wp® p° + 0.9p% + 0.36p° + 0.02p°
£( §0) (8.5104=5.802=0.493)+1(22.6:P=19 1 P=3.14w)
and > SG( :)w.) H( jw)s 3 5 % 3
- (0-9(0 -0¢020 )'I'J(Lu -0¢36 )

G('jco)H(j‘O) = -:'gf-ggi? = + 0

Ww -0

G(J)H(jw) = 22.6

W ——00

Here =gain the Nyquist plot does not enclose the critical
point which it must enclose once in order that the system be
stable for in this case application of Routh's criterion reveals
one root of the characteristic equation with positive real part.

Since 1t does not, the system is unstable.

"In g1l the above cases it may be noted that instead of
deriving the actual characteristic equation, as in Chapter 3, only
the open loop tremsfer funotion be obtained which is rather
simpler to do (the order of powers in p is reduced ty 2) and
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'Nyquist criterion applied to it to test stability. This conolu-
gion naturally favours the use of frequency response method.
4.6, Syatems ¥Without Voltage Regulator:

In this section, open loop transfer functions will be
obtained for the system neglecting effect of voltage regulator.
The following cases would be considered!

(1) Machine directly connected to infinite bus,
(11) Machine connected to infinite bus through an impedance
tie,
(441) Machine connected to infinite bus through a trens-
mission line with generalized A, B, C, D constants.

In each case, Routh's eriterion will first be applied
to open loop transfer function and then frequency response

method to test system stability.

4,6.,1, Machine directly connected to infinite dus:

Let & = 80% pef. = 0.9 leading, e = 1.0
It can be shown that the system remains in stable equilibrium
under these conditions of operation when effect of voltage
regulator is considered. Operation without regulator will be
studied. |

Proceeding as in case (b) section 3.3.2., the values of

Eo and I are obtained to0 be!

I = 2.14 p.u. and Eo = 20156

=0402 x 1,0 x 0,9848 -0,8(0,17% ~2,196)
‘1-63
(002)2 + 1.2 x 0.8

{  w-le2X 1.0 x0,9808 0,02 (0,173-2,156) = 1.28
a0 (0002)2+ 1.2 x 0.8

) Oidon

’&b m 2,156 « 1.2 X 1,65 = 0,206
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\/’qo 2o 08X 1,28 2 = 1002

The above values together with other quantities are then

substituted in £(p) part of equation (17), Chapter 2 i.e. in
2(p) = f—[{idnxq(p)“fdo}{xd(l’) (e cos$§ "“/’qu)*za(P) x
(o sins +Yy o) | +iq,za(®) +¥,} Zdp)leceonss % p)-

x,(p) (e sind + % p)”
the open loop 'chargcteriatic’ equation is obtained as

2

3.067p° + 0.08p° + 2.988p = 0.06 = 0

Por this,Routh's afray ig set up ast

3,067 2.988
0.08 -0.06
0.688 0
-0,06 0

0 0

There is, obviously, one root with real positive part and hence
the system is unstable.

The open loop transfer function is given by,
:gﬁl 3.067p° + 0.08p° + 2.988p ~ 0.06
-]

¥p | ¥p? x (1 x 5p)
o 2(p) 3.067p° + 0.08p% + 2.988p - 0.06
Mp 0,02p2 (1 + 5p)

153p° + 4p° + 149p = 3.0

5p” + P
‘Putting p = Jw, 5 2
~3153.0-4F + §1490= 3.0
£ | p(ga)H(gu)m ——

M (-.‘)5«03 - 402)
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(+4u2 + 3) +3 (+ 15347 = 149%)
(w? + 35.9)
?(jw)E(jco) = %2—4 o0 |

W—=>90

P(JIB(§«) = 122 = 30.6

w —» 00

The Ryquist plot is shown in Fig.13 from which it will

or P(Jw)H(j») =

be noted that it does not enclose the critical point (which it
must enclose once as Z = 1) and hence unstability is again

ascertained.

4.6,2. Machine connected to infinite bus through tie lines

The operating conditions are assumed to be,

8°= 900’ pofo = 1.0, ‘t = 1.0
As given in case (b), section 3.3.1, the values of I, E, and e

are obtained to be,

I= 1,906 B, = 2.4, e = 1.05
Also,
1ao =1.87 1q° = 1,07
\Pdo 30.56 \qu = - 0.85
use

Now making/of equations (30), Chepter 2 and following the
technique given in section 3.2.1, of Chapter 3 and 4.4, the

open loop transfer function is obteined as,

£(p)  4.10° = 0.21p° + 3.08p -0.333
=
sz 0~02p2 ( 1+ 5p)
205 93 - 1045 pg + 154p= 1647

5 p° + p°

and :‘ J“’) ‘("100&02"‘16-7) +J (2051-03” 154‘0)
-Hwa w2 + 35003
Applying Routh's criterion it can be seen that the open
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loop system is :unstable having one root with real positive part.
The Nyquist plot shown in Fig.14, also confirms the result.

It may be noted that the system under the effect of

voltage regulator was found to be stable under similar operat-

ing oconditions.

4.,6.3. System connected to infinite bus through transmission linei
The constants for the transmission line in per unit value

are agsumed to bes |
=10 /0%,  B=0.735 /74.4° C = 0, D= 1.0/0%

Let the receiving end load current be Ir = 2.5 pove 8R4 Defe=1.0

Then, e, = 1.0 + 2.5 x 0,735 /74.4° = 2.3 /50°
and referring to phasor diagram of Fig.1, Chapter 2,

[+]
E' = e, + jIx, = 4,05 /6844

.*.8= 68.4°
Also, E, = 4.05 + 2.5 sin 68.4° (1.2 = 0.8) = 4.98

The stealy astate currents and flux linkages, using equations
(41) and (42) of Chapter 2, are givem by, -

ido = 3.87, 1q° = 1,07
Vﬁo = 0.34, ‘/ao = =0.855

Now proceding as in section 2.6.1, using equations (39)
in which_lp2 1s replaced by O, the open loop transfer function

is obtained aps

3 2
£(p) 3459p7 + 3.3Tp° + 10.8p + 3.44
-G(p) H(p)a

Upa 0.02 p2 (1 + 5p)

The Routh's criterion revesls stable operation.



Again ’

- 179.5-219 wP+ §540w + 172

L = 630 A3 = -
(219.8 - 172)+ 3(179.7~540)
- ¢o2 "'354.03
g{gfz H(jw) = '%g%— = = 00
6(4) H(jw) = -1%9- - 36.
w —>

The Nyquist plot shown in Fig.15 does not enclose

(«1, 3O) point and thus confirms stability.
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LARGE DISPLACEMENT THEORY

5.1s Introduction
While much work is available(3)'(4)'(14)'(15) concerning

the transient performance of a synchronous machine and the criteria
to test machine stability under transient operating conditions,
almost every author has made use of the assumption of elither
constant field flux linkages or constant voltage behind transient
resctance when deriving equation of power transfer. With the use
of most oommon‘hethod for ascertaining machine stability, 1.e.
equal-area criterion, this assumption does not lead to accurate
results in most cases. The method is good for first few swings

and can be justified when the fault is cleared within firet few

cycles by the use of very high speed breakers. But in cases where

prolonged oscillations have to be considered and high speed breek-

ing is not available or deeirable,(us inse oneéline-to-grcund
fault sometimes), change in field flux linkages has to be taken
into acoount and & different approach to test machine or system ;ﬁ’

stability adopted.

The present chapter has been devoted to derive a torgue-
angle characteristic equation assuming variaeble field-flux 1iakagen.

Park's equations are used(4)

and a machine directly connected to
infinite bus is consldered. In the basic equations and wherever
required the armature and field resistances are neglected so also

the voltages induced through transformer action.

.Al will be seen, the torque angle eguation now obtained
is a second order non~linear equation, exsct or approximate solute
ion of which is not possible and some kind of graphical solution
hae to be adopted. For this purposs, the well known method of
‘phase-plane cénétruction'(15)’(16)'(17)’(19)’(20) hes been used.
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Aylett’15) has deslt with the method quite thoroughly and has
not only demonstrated how stability of the system under faulty
conditions can be tested, but also shows how the critical switch-
ing time can be calculated by performing only one integral. Ku(16)
in his paper has solved stability problem under sudden loading
condition for & round=rotor ahd a salient-pole synchronous machine
and has tried to develop a new graphical construction in the phase-

plane which makes the proposition simple.

Mclachlan(29?in his book entitled "Ordinery Non-Iinear
Differential Equations" has used the method of "isoclines" or
lines of equal slope to draw the phase-plane trajectories and
solve the stability problems. His approach is quite simple and

easy to understand and is being followed here.

Before proceeding to derlive the torque~angle\characteriatic
equation a brief description of phase~plane and nature of phasew-

plane trajectories in relation to stability-problem solutions will

be given.

A non-linear differential equation of second order may

be represented as,

2
i:%-+ 7,(0) %%-4. £,(6) = C cer eee (1)

where £,(6) and £,(0) are non-linear functions of © or may be

constant quantities and C is a constant.

Let :
.gtv

Then, 26 4 ,40 a0 3o
'i?’ﬁ(ﬁ)' L& v g

Substituting the transformations in equation (1), there results,
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V’%% + fH (e) v+ fa(e) = C ses soe (2)

This equation differs from ecuation (1) in following two ways,
(1) the equatim is non-linear but of first degree only.
(41) the time variable does not appear in the equation
but instead the two variadbles ocouring are © and v
which may be identified as displacement and velocity

respectively.

In the nomencleoture adopted by writers in the field of
non-linear mechanica(17)’(18)”(19)’(20) the plane of the varisbles
v, 9, is the 'phase~plane', and a curve corresponding to equation
(2) (which mey be obtained following any method possible) is a

‘phascv-plave trajectory'.

It will be noticed that the phase~plane trajectories, as
the name implies, are not solutions of the original differentisl
equation (1), since time does not appear as & variable. On the
contrary, & trajectory is the path of a representative point,
There is an infinity of solutions corresponding to different
time~origins for a given trajectory. The motion of a représenta-

tive po int along a trajectory correspondis to one of the solutions.

Two types of trajectbries can be obtained, normal trajecte
ories and degenerate trajectories, or singular points. WVhen the
value of dv/d0 is determinate, we get first kind of trajectories,
but when this value is indeterminate, second kind of trajectories
are obtained. The latter are of specinl interest to all stability

problenms,

To £ind singular pointe of equation (2), there is,

ar . C - £,(0) - £,(0)v _
d v

or Ce fz(e) | = 0 s (XX (3)
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There could be three cases related to three typee of
gingular points when referred to étability problems.

(1) ¥hen a esingular point is such that a phase-plene
trajectory converges to it finally, the singular
point is known as a VORTEX point and the trajectory

corresponds to a stable operation.

(11) ¥hen a singular point is such that & phase-plane
trajectory just passes through it, the singular point
is known as a SADDLE point and trajectory corresponds

to a eriticsl operation or critically stable equilidbrium.

(i1i) Vhen e trajectory in the phass-plane is of such a nature
that 1t only dips near the saddle point but never conver-
ges round it or pasees through it, the system is said

to be unstable.

The trajectory deseribed in (ii) is known as a SEPARATRIX
as well sincs it divides the region of stable operation and

unstable operation in a phase-plane.

5.3, Method of Isoclines!

Yhen the equation (2) is of the type ohown in which a
term like fz(e).v occurs, direct integration is unot possible and
an indireect method of drawing phase-plane trajectories is desirablé
such that the trajectory obtained not only satisfies equation (2)
for various values of 6 and v but slso has the same slope as
required in mquation (2) at e particular point. Method of

isoclines, is such an approach which satisfies these requirementis.

The method of isoclines originally due to Hobson consists
of the following stepss
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(a)  Equation (2) is reduced to the forms

£,(0)+4%-

(v) Por various values of © and one particular value of

c-o‘ oo (3)

yv=

Qg_, corresponding velues of v are calculated from (3). These
d

values of v are plotted againat corresponding value © in the
phase-plane. The value of assumed slope %%? is marked at the

end of curve.

This slep is repeated for different proper values of
Y : the usual value of 3%- range from + 0.1 to % 10. The

curves 0 obtained are nown as ISOCLINES,

(e) Smpall lines at eqdal intervals which correspond to the
slope value for a curve are drawn., Every isocline is thus

marked with these smgll lines.

(a) Knowing initial conditions of operation, the value of
00 ie known which becomes the starting point for the trajectory.

(e) A smooth curve gulded at crossing of every isocline by
the small slope lines will result in the required trajectory,
the nature of which will comment upon the stability of the system.

Although appearing laborioue and time consuming, the method
does not take much time in practice and a trajectory can be
easily construoted. It might be that an exiract solution of
equation (1), though providing accurate results, would have been
quite complicated and repulsive to adopt. It may be commented
here that transient stability problems involve considerations
not of the exact solution of the differential equations for a

~

system, but of the general nature of these solutions.
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5.4, Derivation of Flectrical Torque Fouation
The equations of flux linkages in armature and field circuit
arel ¥

ces  eee (4)

Yo = = Tolq

Yo = Lg g = Lag 1a}
0:3 rf it‘ﬁp%r see v (5)

From second of equations (5),

e, - r, 1
. e, - r, i
oTe Lplp = Lggly = =3

or e - Toly = Ly plp = Lyy Py
+ L b

e P
or 1 3"‘.—_‘4?_1 cee see (6)
: 4 Ty + Ply

From first of equations (4),
' L” e: + L 3 pi!

Ya=-Tgtat T ¥ L,
or (rp +ple)¥y = ~Telgly = (Bely) Plg* Toy eg* Tgq Pl
Neglecting I‘dpid md Lﬁdpi& terms which denote voltage

induced due to transformer action,

(rp + pLp)¥y = = rp Lyly + L g0y cer  eee (T)

Now, neglecting srmeture resistence and terms denoting voltages
induced through transformer action, the machine voltage equations

in direct-and quadrature axes ares

od-ooinéa- w-wq

oq- @ COBO = w-»ﬁd

s ese (8)
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Equations (8) give,
-@ gig )
‘/’q = -

y,d,u.qn_fz__.

w

and L L XN (9)

Substituting value of ¥, from equations (9) into equation (7),

(rg + Plp) e 0000 =~ rp Ty 1q + Ly op

or r, & cosd L ea.‘is,
ad' t w

or X 'wx.“ e:+L:eoin6.8_
d - wlyr,

o8 :
where the term —L—-———'— is neglected since ry iB very small.

or ' x e sin§ . 6
idﬂ_&‘i : se e (10)
Xg Ty
Prom second of equations (4),
- A
q q
or : inb
. &sin
1q39’§%:“""" xq so s ees (11)

Now, the electrical torque Te is given by
're = %diq - "bq id

Substituting values of ‘Ygy ¥gs 140 1y trom equatims {9),(10),(11)

v . 8 5 . !w:”is wm:s{x“ e:+Lteain6.5 }

e xq xdrf

2 e.e, x . 8inf
; (2 8in$. cosd )+ “"ldrf +

- -
2 wx

1 1—(2 sin 6)8

2 cuxd r
But 2 sinb cosb = gin 26, 2 sin26 = 1- cos 25 and —L-i‘

2 6 . er X
R R il e 16-»._...@(1..0“26)
q 4 f 2¢Oxd
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' 2 2o
or e.0p X, ° T :
¢ = TEg T, sind + Tong ein 25 + 53%3-(1-005 26)-8

*se sae (12)

Equation (12) represents the required torque-angle equation in
which all quantities are in per unit values except that when

T&o is substituted in meconds, « has to be in radians, per second

otherwise per unit.

The first two terms in equation (12) represent the electrie
torque genersted by the machine. The value of e, in first tern
has to be caleulated for every initial state of operation. This
corresponds to the voltage Eo is steady-state. The last term of
the equation denote the damping produced within the machine by
induction motor action and is of considerable importance in

damping out emall osgcillations in the machine.

5.5. Ihe Eleciro-mechanical Fouetiont

The electro-mechanical equation of the system can now be
writtens

¥pZ 5 + T, = T,

2 2.t
or 25 e 6, X [ o“T .
Zt + wx: r:d sind + 'é:i"q" gin 26 *3:;:“(1-008 26)6=Tm
or d.26 OZT' S QOQ: X 02
M=~ +—40 (1 - cos 2S)g;" t:;r;r'ﬁg eins+z——=pin 26=Tm
at 20, as a

sae e (13)
which can be compared to the general equation (1) to show that
actual electro-mechanical torque equation of a salient pole

synchronous machine is & second order non-linear equation.
Equation (13) can be written,

2
5—-%—-— + a(1- cos 2%) %72— +bein+ 0 8in 28 =T ... (14)
at ¢
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2 | ]
e~ 7 ee T
a‘nﬁ’ ﬁzgﬂ— M2wx’ To’ﬁp“

5.6. Sample Caleulationet

In this section the practical case of a synchronous machine
will be congidered. Assuming average values for the machine const-
ants, the electro-mechanical torque equation will he obtained and
a few problems of transient operation of the machine will be
solved by phase-plane method.

Mechine Constantst

The foll&wing values are assumeds

Xg = 1.2 peuts

X, = 0.8 psus

Xgq = 140 poue

rp = 0.001 p.u,

T30 = 5 sec.

w = 2nf radlans ver second or 1.0 pene
£ = 50 cycles per second.

x'd = 03 peu,

Using equation (14) we have,

2
e“ T m\2
- x5
& =g 20Xy = 0.02x 2 x 514 x 1.2 = 0+34

e €, X
1.0x 1.0 x 1.0 :

0.02x 314x 1.2x0.001%

(it ie being assumed that machine 1s operating at n¢ load 1,e.
to
%= 0 end hence ey = 1.0 poue cerrespondingAperminal or

infinite bus voltage e = 1.0 pets).
) 2 2
e (1.0) = 31.2

¢C =¥ 2uxg #0402 x 2 x1.0x0.8

(The value of «w 1s to be taken unity here to have proper balance

of dimentions)-

T
= on.
ﬁ = 5.02= 90 Ty
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The torque equation is,therefore, given by:

2
4 +0.34(1-cos 28)%_‘3‘ +133 &ins +31.2 8in 26 aSOTm+50(1)T"

2

at
cee oo (15)
where T' is any additional torque suddenly applied to the machine

and maintained at that value thereafter.
The following cases are analyzed:
Case I = Free Oscillationsi
In this cese, o= 0 and T = 0.
The problem is to determine whether the machine is stable or not
and to what maximum value of § it oscillates.

The torque equation in this casc is,

2
Q_g +0.34 (1~ cos 25)%$L +133 eh+31.2 aln 25 = 0., +.s (16)

dat
writing ~%§~ = v, equation (16) becomes,
vi¥ + 0,34 (- cos 25).v + 133 einS+ 31.2 sin 25 = O.
On traneposition, the equation for drawing isoclines is obtained
ast ~ (133 sin$+ 31.2 ein 25)

vV = " (XX | s e (17)
0.34 (1=cos 26)+ %%

Table 10 gives the values of v corresponding to different
values of § and the slope g%r. The isoclines are drawn on the
phase-plane andfollowing thé method described earlier, the
required frajectory is constructed which is shown in PFig.16, It
is seen that the curve spirals out from the origin and merges
into & limis cycle showing that the system is . stable and also
the maximum degree of oscillations for the machine is about :44?

dase I1 - Load suddenly applieds

The machine is assumed to be operating in no-load condit-

ion initially, i.e. 55 = 0 and Tn = G, Then a suddon load equal
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in magnitude to the value obtained as traneient limit by using
equal area criterion as shown in Fig.17, is applied. The torque
angle characteristic used for the purpose of calculating the tran-
sient 1limit makes use of the equation,

T = .E.:-l-ﬂ—- gind
*a
where E is the internal voltage of the machine under initial

steady~state operating conditions.

The transient limit by equal area criterion referring to

PMg.17 18 obtained as followst

We have- T= w = .1.:.0.0.%3_1.:.0_. sinS = 3.334 8in6
x .
a

Equating the two shaded areas,

5( 7[‘6' o
: WS,-J 3+334 sin$d4S = f 3.334 8in §.dS - T'( n~ 2§,)
° 6! n—é,
. T'6,+ 3.334 [coss]g' = - 3,334 [coaé] -nT* 4 2715,
\ o 5,
or ,
3,334 [cos8~1] = = 3.334[ -2 Cos$|| =nT' + 15,
or
"‘3'334 = 3.334 cos 6| - T+ T.6| tee *ese (18)
Also, |

T' = 3.334 sin®, 4
o e ~3.334 = 3.334 c085) = /Lx 3.334 ein b, + 3.3345,8in ¢,
whence, by trial, o, is obtained

5 = 46°
Substitution of &, in equation (18) gives,

TV = 2.42 Pelle

The electro-mechanical equation, then, takes the forms

2 .
f:";g‘ + 0.34(1~ cos 28)~%%" +133 8ind +31.2 sin 28 =0+50T' (1)

or
2
LJ: + 0.34(1~ cos 28)-§-—-§ + 133 sin§ + 31.2 sin 28M21 ... (19)
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With %%~ = v, the equation for phase~plane is given by
v %{— + 0.34 (1-cos 26)v + 133 sin&+ 31.2 sin 28k 121

and the equation for isoclines is

121 « (133 ain8 + 31.2 sin 2§)
dv

0.34 (1~ cos 20)+ T

Vs

Caloulations for drawing isoclines are shown in Table 11. The
phase~plene trajectory is drawn which is seen to be converging
to & vortex point = 43°, The machine remains in stable -
equilibrium and the maximum overshoot ie about 63%43% 20°,

The trajectory is shown in Fig.18.

Case III. Machine operating under normal full load
condition~-sudden load sapplied:
In this case the initial operating conditions ares
I=1,0p.oue pef. =0.818g, o = 1.0 psus

Calculation of ey or Eg3

Referring to phasor diagram of Fig.19 (a),

Etze+ j1 e
2 1.0 + 3(0.8 =J0.6)x 0.8 = 1.61 /23,2°
+"eEo Or eg= E' + 1, (x, = xq)
= 1.61 + 1.0 x sin (8, +cos™! Px (1.2 - 0.8)

= 1,955
T ~h c
Referring to Fig.19 (b) and proceeding as in case II, the

angle §, 18 found to be approximately equal to 60 degrees and the
additional torque T' to reach the transient limit is

T = 3.09 Peu.
In the electro-mechanical equation (15), the coefficient of
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sin 6 term changes, since e, is changed. The new coefficient

is given by~
b = e.e‘ x“I ] 1.0 x1.955 x 1.0 - 262
M wxdrf 0.02x314 x1.2x0.001

The torque equation then becomes,

2 ‘
-gﬁ +0.34(1~c08 26)%% +262 8in§+31.2 gin 26 BSa.Tm"'SOT'(‘l)

where Ty = 645 2in 23.2% = 2.56 p.u.(corresponding to transient
characteristic).,
% 45
g-?- 0.34(1- cos 25)77~ +262 8ins+31.2 ein 25m5=x2.56+50x3.0%1)

In the phase-plane, the equation reduces to,
vi¥~+0.54 (1= cos 25)v 3 262 einb+ 31,2 eln 25 = 281,

and the equation for drawing isoclines is

v,m—-wm.)-" 6+ S

0.34 (1= cos 25)«%

The isoclines and the phase-plane trajectory starting
from the initial operating point &, = 23.2, degrees are drawn in
Fig.20. From the nature of the trajectory, which travels away
from the saddle point (about 95 degrees) after a slight dip there,
it can be concluded that the system loses stability in this case.

Table 12 gives the values for drawing isoclines,
0#30 IV, Maghine operating at normal full load-additional
load equal to full load value suddenly applied:
Here the operating conditions remains the same initially
as in case III 1.,e. I = 1,0 p.,u, p.fs = 0.8 lag, Eo = 1.955
The full load torque, obtained by transient characteristic

is-
To = 2056 Pelle

T* = 2.56 p.u.
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so that,
T = TO + T = 5,12 Pl

The machine torque equation is given by,

!36- + 0.34(1~ cos 26)%%— 4+ 262 8iné+ 31.2 pin 26=5.12 x 50 =256

at?
at 4 = 0, 0, = 23,2° and T = 2.56 p.u.
The vortex point ies given by,
262 sin 6v.+ 31.2 8in 2 6v = 256
whence
'8,~ 60°

The equation in phase-plane l1s
viT- +0.34 (1-008 26).v+262 sing +31.2 sln 2 5=256

and the equation for isoclines is

v = 296 = (262 9in®+31,2 gin 25)
0.34 (1-cos 25) + 4%

Pig.21 shows the isoclines and the frajectory for this
case. It is seen that the trajectory convorges xound the vortex
point (61 degrees approximately) and the system is stable. The
maximum overshoot is very large, however, being 94.5-61 = 34
degrees approximately.

Values used to draw isoclines are given in Tabdble 13,
Case V. The Operating conditions aret

8= 30% pefe = 1.0, e = 1.0 poue
Then on additionel load to reach thé transient limit
(calculated using transient characteristic) is suddenly applied
and maintained thereafter. To test the stability.

Using the phasor diagram of Fig.19(a) given in case III
the value of E, ¥ e, 1s determined which is-
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EO = 1.3 Pols

The transient torque-angle characteristic (assuming a

round rotor machine) is given by

T = 10 2306 = 4.34 sin$

0¢3

T, = #.34 oin 30° = 2.17 p.u.

The additional torque T' to reach the translent 1limit can
be caiculated with the help of trénsient torque -~angle character-
istic as in case III. Thus,

5 = 60°

and '
T = 1.58 PUe

Again, the coefficient of sin +term in equation (15) is modified
to,

b 0. X 1.0
0.02 x 314 x 142 Xx0.009

= 175

The torque-equation for the system is given by

2
%—;—2— + 0.34 (1= cos 26)82—4175 sin6 +31.2 sin 26

2,17 x 50 + 1.58 x 50 (1)°
Putting g~ = Vv, the phase-plane equation is

= + 0434 (1~ cos 26)v + 175 sin&+ 31.2 sin 26 =187.5

while the equation for isoclines is
187.5~ (175 ednS+ 31.2 gin 28)

0.34(1= cos 28) + %%f

Y=

Applying the expression (3), it can be seen that no vortex point is
avellable and so the system appears to be unstable. However, the
isoclines and the trajeoctory are drawn which are shown in Fig.22.
The nature of trajectory confirms that the system is unstable,

the saddle point being &t about 101 degrees.
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CONCILUSIONS

Consideration of voltage regulator action while calculat-
ing steady-state stability of a system specially when the system
conslats of one machine connected to infinite bus, is becoming
more and more important. Formerly when only hand-operated
voltage regulators were in use, the question of improving
stability limit was not so useful and promising and calculations
for stability limit neglected the voltage regulator because the
analysis became simple and time saving. But with the invent of
automatic voltage regulator equipped with m2lmost every modern
alternator, it has become desirable to take into account the
regulator action when calculating steady~-state stability limit

of a synchronous machine.

The following general conclusions can be derived based on

the calculated cases in the preceding chapters:

1. A salient pole synchronous machine which is otherwise
un<table at angles of operation much less than 90 degrees
becomes stable upto about 90 degree (torque angle) when provided

with a suitably designed voltage regulator.

2. The etability limlt of a synchronous machine when conne
ected to the iufinite bus-bar through a tie line of proper
reslstance end reactance values is slightly higher than when the
machine is directly connected to the bus. This chows that a
synchronous machine may be connected to infinite bus through
a tie line or a recactor of similar characteristics in order to

improve stable operation of system in dynamic stability region.

3+ Neglecting armature and tie-line resistance and voltages

induced through transformer eaction from the final equations
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would have resulted in much simpler analysis, but giving rather

optimistic results.

4, Vhile ascertaining stablility under various cases, 1t
was noticed that the amplification factor 'a' has great influence
on stability. The higher value may result in unstable operation
even at much small values of torque angle. Similarly, a low
value of regulator time constant Tr is desirable, which means a

fast acting voltage regulator.

In the cases studied, the saturation was taken into account
by using modified phasor diagrams as shown at suitable places.

This again makes the analysis more rigrous.

The effect of damper windings was neglected. It was assumed
that while making the analysis very complicated, the damper
windings have little effect on the steady-state stability limit
of a synchronous machine when operating in dynamic stability

region i.e. under the influence of voltage regulator.

Both, the Routh's as well as Nyquist's criteria, have
been applied, the latter in the course of frequencgy response
enalysis, while ascertaining stablility in each case, It was
noted that frequency response method using Nyquist criterion is
better suited and less laborious to apply when computing aids
are available, This isgbecause only opeh loop transfer function
is required. 1In any case it can be concluded that it 1s the
small displacement theory which has made it possible to linear-
ize the_ otherwise non-linear electro- mechanical equation and
use of either of the above criteria applicadble. Without the use
of this theory it would have been impossible to consider the
effect of voltage regulator specially in mathematical analysis.
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Again, in the case of large displacement theory (Chapter 5)
it was found that an electro-mechanical torque equation can be
obtained starting from basic voltage and flux equations in which
change of field flux linkages could be considered. The equation,
which 18 non-linear in nature, when solved in the phase-plane
trajectory forha gives quite convincing reeuita. The following

conclusions can be derived referring to the cases studled:

1. The machine in free oscillation state (5= 0, T = 0)

n
alweys comes to stable equilibrium, the oscillations being
finelly damped out. The extent to which the machine may oscil-

late dependsupon the degree of damping available.

2. The application of a sudden large load from initial no
load conditlon may be thought upon to result in an unstable
operation, in general. However, the machine may remain in stable

equilibrium as can be seen from case II and IV, Chapter 5.

3 Application of equal-area criterion with the assumption
of a round rotor and constant voltage behind transient reactance
does not always give correct results and when stability is pre-
dicted by this method in eome of the cases. The system may
actually run to unstable operation., This can be noticed by

studying case I1I and V, Chapter 5.

Thus, in the present work, attempts have been made to derive
analytical methods to solve some of the stability problems in 2
one machine system with particular emphasis on the use of voltage
regulat?r in the steady~sgtate operation and to derive and use a
more general torque equation to study the system under large

oscillation operations.

It 48 hoped that the investigations should prove to be of
value in the field of stability.
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TABLES POR NYQUIST PIOTS:

Table 1.

Omega 0.1 0,5 0.9 1.0 2.0 5.0 10,0

Real - . * ’
Part «7029.,83 =106413 =0.25 «0.37 29.55 38.46 39,76

%ﬁ?ﬁiﬂar% 045,39 8493 ~7.36 ~T.05 =3.78 =1,48 -0.74

O w

0.01 -424880.34 14336.28 146391.91 -13352.31
0.10  -3388.38 2259.02 663,97  =2426.46
0.20 -125.23 378.12 -560.24 ~364,63
0.30 41,31 -41.51 -195.05 52,73
0.50 ~53.90 ~36.99 1.55 16,16
0.80 -10.14 ~4 .01 10.17 0.79
0.85 -5.48 -2,07 10.79 1,49
0.90 1,42 ~0.56 11.53 2.25
0.95 2,11 0.63 12,33 3.00
1,00 5,23 1.59 13.18 3,70
5.00 38.36 2.79 30,39 3.52
10.00 39.66 1.45 31.29 1.82

100.00 40.09 0.14 31.59 0.18

-
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Isble 4,
Onegal 0.01 0,10  0.20 0.50 0.90 0.95 1.6  1.05 10.0
w

Real {-513433.98 ~3104.14 =637473 =93.22 =8.19 =4.23 =0.83 1.95 26.46

inary

Img&j 43507052 1138095 | 98066 "6153 "1 082 "'1 095 "'2.08 -2020 "'0067
Part

dable 5,
Omegag 0.19 0.20 0.50 0.85 0.90 0.95 3.00 1.05 10.0 100.0
w

gzﬁ 473.15 «11.43 =43.51 =7.16 =3.53 =0.34 2.45 4.90 28.70 28.94

Image-
inaryi=1283.57 =358.,78 =58.94 =4.25 «2.07 «0.43 079 1.72 0.90 0.09

Zableb,

Omega 0.10 0.20 0.50 0.85 0,90 0.95 1.0 1.05 10.0 100.0
w

ol 1 1314.91 218,72 -9.86 -4.16 ~1.98 0.04 1.893.57 22.38 22,59

Image
inary -1158059 "'332056 "65084 -Ted2 "4066 —2052 -0 .85 044 1.17 0.11
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Zable 7.
0nega§ 0.01 0.0  0.50 0.90 0.95 1.0 10.0 100.00
W

Real : ' :
Roel | 29186.11 -346.68 ~T4u17 =5.53 ~2.00 1.03 30,29 30.59

Imag- -
inaryl=-16357.77 =1301.36 =36.06 «2.94 =~1.96 «»1.,19 0.52 0.05

Zable 8
Omegal 0,01 0,10 0.50 0.80 0.85 0,90 1.0 44 o 100.0

Inage
1na§y ~236884:20 «1879.40 =47:75 «5¢34 «3.17 «1.51 0.76 1.02 0.10

Iable 9

Omega 0.01 Ot - 0.5 1.0 1.5 10.0 100,0
w

ggﬁi -1718185.40 ~45737.64 ~406.24 ~67.61 =9.49 34.79  35.78

%nagy 31911.06  2486,72 25,10 =22,92 =20.27 =3.64 -0.36
ar




Iable 10 .

) e:gows ' 410 ' 415 '+20 '+30 ' +40 ' 450 ' + 60
_(degrees) - - - - z : : s

-(133 sint+ 717.0533.7 35040 '365.6"393.8'3116.2132.7 1142

fo'
21,2 gin 20)
+34(1~cos 23){ 0 '.0052' .021 '.046 ' .08 ' .17 '.281 ' 4 ' .51

v/ =0 '$3270' 31610 '$1090 '¥820 '¥550 'F413 '¥330 '¥278
dv/d5m,2 0 '¥82.8'F152 '¥203 '¥234 '¥253 '¥241 '¥220 '¥200 -
.=

A———

d'/“”v:'4 { 0 'T42 'TS0  'F112 'T136 'T164 'F170 '3165 'Fis56

- ;! 0 '¥28 'F 54 '¥T17.5 '¥96.5'F122 'F131.5F132.7F128

T =

dv/ds= 1.0 go'iﬂ 33 'F 48 'F60.7'¥80 '¥90.5'¥94 ¥ 94
Y. =B

dv/d5=2.8 g 0'T8 'F16.6 'T24  'T31.5'743.2'750.6'F55 'F56.5
Yy =

dv/36=5,0 { 0 '33.4 'T6.7 'T 9.9 'T12,9'T18.2'T22 '324.5'725.7
= -

dv/tt=-2 0167 's168 'a325 'fs4s ' '
y s

dv/d5==o4 }o '+43 '+89  '+142 '+205 "+407 ' ' '

Y=

dv/?f:' -6 10 '428.6'458  '+90  '+126 '+218 '+364 ' '

dv/dsm=1,0 }0 13171023404 1352.5 12T1.5,4113 3162 4220 4290
. ' -

dv/3om=2,0 } 0 1+ 8 !:1701 1325.T7 1434420451421267.51482.51495

e 2
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(degfées) 6 '10 ' 2 ' 3 '4 'S0 '60 'T7T0
;%é.;§§f;+28 0 ' 33.7 ' 65.6 ' 93.8 '116.2 '132,7 ' 142 '145
1335 sinss | 121 '8T.3 ' 55.4 ' 27.2° 4.8 '-10.T ' =21 ' -4

31.2 sin 29)

341008 290 5 v o1 108 0 AT 281 ' 4 T B1 ' 6
dv/as=" O 0 ' 4150 ' 692 ' 160 ' 17.1 ' =29,2' =41 ' -40
;22 483 ' 321 '168 ' 65' 9. ' -18 ! ~27.5' =28,2
5] 242t 168 ' BTt 4046 615 ' 93t -2 v ot.8
1;p= 121 ' 85.5 ' 51,2 ' 23,8 ' 3.75 ' -8,35' =14 ' .15
20§ 60.5 ' 43.2 ' 26.6 ' 12.6 ' 2.1 ' -4.86' -B.4 ' -9.25
0B ] _sm3 1360 '-326 ' <340 ' +155 ' T8 ' B4 '-68.5
~0.5 { ~242 ' «182.5' <132 ' =83 ' 21,8 '+170 ]
~1.0 % “121 ' =8945 ! «6042' =32.80 «6.6 '+19.5 '+42.8 '+60
~2:9 2 ~60.5' ~49.2 ' <28 ' =14.9" 2.8 '+ 7.3 '14.1 '+17.2
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Iable 12
6

80 ' 100 120 '140

(dsgrees) 1 0 ' 20 ' 40 60

26%1?;n:;; ” 0 '109.5 '198.7 ' 253 ' 269.7 '247.3'199 '137.3

231§§?gz;;§gg) 281 '1T1.5 ' 82,3 ' 28 ' 11.3 ' 35.7' 82 '143.7

.34(1§cos 26) § 0 ' .08 ' .28 ' 51 ' .66 ' ,66' 51 ' .28

dv/d%= * vg [ o0 ' 2150 ' 294 55 ' 17«1 Y 51 ' 161 ' 510
' :25 { 1120 ' 518 ' 162 37 ' 11.8 '35 ' 108 ' 280
bl 560 ' 294 ' 106 ' 28 ' 7.75 ' 29 ' 82 ' 183
.0 281 ' 158 ' 64 ' 18.8 ' 6.68 ' 20.2' 54 * 112
20 1 10 0 82 ' 36 ' 1142 ' 4,25 ' 12.6'32.7 '62.5
50 56 ' 33,70 15,6 ' 5.0 ' 2.0 ' 6,0 '14.7 '27.2
";55 -1120 '-1000 '+2460 ' + 108 ' 427.5 '+ 82 '+315 '+4750
'-';2 560 ' 408 ' =375 ' +2800 ' +70.5 '+210 (+8200'+510
1.0 281 1 o188 ' <114 ' =57 ' ~31.4 &-93.5'-168 '=198




Zable 13

A

(deggecs) l o * 15 '3 ' 45 60 ' 75 ' 90 ' 120
§$?2°§§§+28 ! 0 ' 83.4 '158 '209.2 ' 253 ' 268.6' 262 ' 199
+34(1-cos2%) { 0 ' 046 "' 1T ' W34 51 ' .635 ' .68 ' .51
av/a5= ! 0 % ® ' 3750 ' 576 ' 134 ' 5.9 ' -20.2' «8.8 ' 112

.25 11020 ' 580 ' 240 * 78.5 3,94 1 ~T4.4' =6.5 ' 75
3 510 ' 316 146 55 ' 3.0 . 11,10 =51 ' 57
";g 256 ' 165 ' B4 ' 34.5 ' 2.0 ' =T.7 ' =3.6 ' 3T.7
'2;g 128 ' 84 ' 45 ' 19.8 ' 1.2 ' «4.T7 ' =2.25 ' 22,7
504 51 v 34 190 87 ' ' '
'=+25121020 * ~820 (~1220"+ 513 ' 411.6'=32.8 ' =13.4 ' 4220
"52 -510 ' =375 '-297 ' -287 ' +300 '-89 { -33.4 ' +5700
=10} —256 * <180 '~118 ' =70 ' <6.1 '434.5 ' +18.8 ' =116
"=2:00 128 ' = 88 '-53.5' =28 ' -2,0 '40,25 ' +4.55 '-38.2




Iable 14
5 ' ) ' ' ' ' ¢ U
(degrees) E 0 20 40 60 80 100 120 140

175 eind +
31,2 sin 2§ g 0 ' 78,1 '143.,7 ' 178 ' 182,7 '161.3' 124 ' 82.3

187.5-(1758in}
+31.2 singgf 187+5" 109.4 ' 43.8 ' 9.5 ' 4.8 ' 26.2' 63.5 '105.2

¢34(1=coe 26)! O ' 08 ' ,28"' 51 ' .66 ' .66 ' .51 ' .28

av/as = 'vg ! © ' 1360 ' 156 ' 18.6 ' 7.3 ' 40 ' 124 ' 375

325 [ 750 ' 330 ' 86 ' 12,5 ' 5.3 '27.8 ' 83,5 ' 198
reXT R

i } 375 ' 189 ' 56 ' 9.5 ' 4.15 '22.6 ' 63.5 ' 134

':;o } 187.5' 101. '34.,2 ' 6.3 ' 2,9 '15.8 ' 42.0 ' 82

L)
201 93,70 52,5 19,3 * 3.8 ' 1.8 '10.0 ' 25.2 ' 46

"'25§)~7ﬁﬂ ' -643 '1460 ' 36.6' 11.7 ' 64 ' 244 3500

' % -375 ' «260 '-200 ' 950 ' 30  '164 6350 '=480

'
-?.0{ «187.5 «119 ' w61 '=19,4 ' ~14.1 =77 ' ~130 '-146

'=2008 _g3,70 057 1a25.3 1 w64 ' =3.6 1-19.6' —42.5' =61
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