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SYNOPSIS. 

This thesis deals with the STFADY—STATE and TRAJSIENT.. 

STABILITY problems of a Synchronous machine. The first part 

deals with the 'steady..state' stability limit of a synchronous 

machine connected to infinite bus bar, (i) directly #  (ii) 
through a tie line, and (iii) through a transmission line based 

on dynamic relations. Special reference has been made to the 
effect of voltage regulator on the steady—state stability 

limit which is improved by a considerable amount through the 

use of automatic voltage regulators. 

The second part deals with the transient performance of a 

synchronous machine connected to infinite bus bar. A new 

method of approach to transient stability problems hagieen 

introduced. 

In all the above work the basic equations make use of 

Park's two reaction theory and equations and attempts have 

been made to do away with various assumptions which although 

allow a simple analysis of the problem, do not give very 

accurate results, even giving paradoxical results in some 

oases. 

11r 
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LISTOFSYMO 

b 	= Angle between rotor axis and axle of stator 
voltage in electrical radians. 

f 	= frequency, 0/sec. 

w 	= electric speed, rad/seca or unity. 

- electric speed, p.u. 
1t 	= Angular momentum, p.u. 

Te 	= Electrical torque, p.u. 
Tm 	= Mechanical or shaft torque, p.u. 
TO 	= Additional torque suddenlly applied, p.u. 
o 	Infinite bus voltage, p.u. 

of 	= Excitation voltage, p.u. 
Eo 	= Open circuit terminal voltage at normal speed and 

no-load, p«u. 
et 	= Machine terminal voltage, p.u. 
I 	= load current, p.u. 

rffi 	= total armature circuit resistance, p.u. 

r 	= tie-line resistance, p.u. 

rf 	= field winding resistance, p.u. 
x 	= tie-line reactance, p.u. 

= flux-linkages 

Subscript d and q indicate direct and quadrature axis 

components respectively. Subscript f refer to field 

winding. A further subscript 0 indicates initial 

steady-state value of a quantity. 

ed  and eq  a d and q axle voltage@. 

id  and iq  = d and q axis currents. 

xd and xq  - d and q axis synchronous reactances, p.u. 
xd(p) 	= Impedance operator relating the d-axis armature 

flux-linkages with the d-axis armature current. 



' Xq(p) 	a Impedance operator relating the q-axis area ture 

flux-linkages with the q-axis armature current. 

xd 	• Machine direct-axis transient reactance, p.u. 

G(p) 	a Operator relating the d-axis armature linkages with 

the d-axis field-excitation voltage. 

g(p) 	a Operator for the voltage regulator. 

Td 	a d-axis transient short-circuit time constant 

Tdo 	d-axis transient open-circuit time constant. 

= dt 	a time-derivative operator. 

1 	= Heaviside unit function. 

A 	= small change in a quantity. 
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INTRODUCTION 

The problem of power system stability is not new to the engineers. 

However#  the subject became of more importance as the transmission 

systems grew more and more complex with several generating stations 

interconnected together through long transmission lines. This has 

led to continuous investigations in the subject and several authors 

have contributed towards the study of power system stability and 

methods to solve stability problems. One of the aspects of stability 

problems i+ o calculate the steady state stability limit of a syn. 

chronous machine and improving this limit by suitable means when the 

synchronous machine is connected to an infinite bus either directly 

or through a tie line or a transmission line. 

One of the means employed to improve the steady-state stability 

limit of a synchronous machine is the use of quick acting automatic 

voltage regulators. The fact that properly designed voltage regulat-

ors may on occasion increase the stability limit is more or less 

well known. Crary(3)  and Kimbark(4)  in their discussions of the 

factors affecting system stability have emphasized on the importance 

of automatic voltage regulators in improving the stability limit 

considerably. They, however, did not enter into detailed analytical 

methods to calculate the steady state stability limit as affected 

by voltage regulators. 

It was Concordia(7)  who possibly first time discussed the 

subject at length and starting from the basic machine equations 

derived the expressions for, firstly ascertaining the stability of 

the system (a synchronous machine connected "to an infinite bus-bar 

through a tie line) under the effect of voltage regulator and, 

secondly, to obtain the steady-state stability limit. Although 
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simplified expressions for the final results have been used,. 

the author has dealt with the subject quite thoroughly and comes 

to several important conclusions which constitute the 'back-bone' 

of the design aspects of a voltage regulator for a particular 

system. The results obtained by Concordia show that with a 

properly designed voltage regulator, the steady-state stability 

limit of a system can be increased to as much as 1.6 times its 

value without regulators and that the system remains stable 

for a value of S as high as about 115 degrees. 

Aldred and Shackshaft(8)  in their paper have tried to show 

the effect of voltage regulators on the steady-state and trans-

ient stability of a synchronous generator. Doing away with 

complicated analytical expressions they have used an electronic 

analogue computer to solve the system equations. The effect of 

the main regulator loop parameters, such as gain, exciter and 

main field time constants, etc., on the stability of the system 

are examined and curves obtained to that effect. They, too, 

conclude that while the steady-state stability limit is increased 

considerably by the use of voltage regulators, the transient 

stability limit remains practically unaffected. 

The subject has, similarly, been discussed by Nickle and 

Carothers(12)  under the head of "Automatic Voltage Regulators". 

In this paper, the authors have considered automatic voltage 

regulators of the rheostatic and vibration contact types and 

have tried to show their effects on steady-state stability limit 

of a generator. 

Further, electro-mechanical stability is studied mainly 

with the help of power-angle characteristic drawing of which is 

based, in general, on several assumptions. Thus, a rigrous 
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solution of problem is never achieved or the stability without 

the usual assumptions can not be ascertained.* By the applicat-

ion of small displacement theory it has been possible to linearize 

the non-linear equations of a synchronous machine with or without 

a voltage regulator. These linearized equations help in arriving 

at a characteristic equation of the system to which is applied 

Routh' e well known criterion to test stability. If the lineari-

zed system is stable, then the original system is also stable, 

otherwise, unstable. 

Mukhopadhyay(g)  in his paper has discussed the applicability 

of Routh's criterion in synchronous machine problems and has come 

to various useful conclusions. 

The application of frequency-response method to machine 

theory is only a recent development. In this connection =oh 

work has already been done by various authored 0) (11)  The 

papers deal with the possibility of applying Nyquiet criterion 

to synchronous machine stability problems and obtaining Nyquist 

plots in various oases. 

In this thesis, attempts have been made to deal with the 

synchronous machine stability problem in general and with the 

effects of voltage regulator in particular. The analysis is 

based on two reaction theory. Equations are derived relating 

the direct and quadrature axis quantities considering the effect 

of voltage regulators when the machine is connected to an 

infinite bus, directly or through a tie line. Making use of 

small displacement theory, Routh's criterion is applied to 

check stability. The general machine torque equation is then 

represe'r ect by a closed-loop system and the stability is ascer-

tained by Nyquict criterion. Expressions have been derived for 
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MALL DI 'LAC IL:NT T1jLPI ' .. AIW 
br . r .r ~ra~rir. • 

MACHINE TORQUE EQUATION ..rr.r. ...~...~,.ra..r..r.. rr.~rrrw..w . 

2.1. Iantroduct io 

So far, the most common method to study stability problems 

has been the use of power..rigle characteristics. The use of 

these curves while simplifies the enelyeis, seldom provides with 

accurate and most desirable results. This is because when deriv-

ing the system torque-angle equation several assumptions are made 

and the factors like armature and interconnector resistance, 

effect of saturation, damper windings, effect of voltage regulat-

ors etc. are usually neglected. These factors though not so 

important for a practical and approximate analysis, nevertheless, 

affect the system stability limit considerably and must be taken 

into consideration when an exact solution of the problem is required. 

The introduction of "small displacement theory" initially 

due to I+yapounov has opened a way to consider the effect of such 

elements as voltage regulators, damper windings eta. Making use 

of this theory, the original differential equation of the system 

„=hieh is non-linear and of second order is linearized by taking 

small changes in the dependent variable, thus aaouming that each 

variable changes by a very email amount during any change in shaft 

power or under other circumstances. In this case, the initial 

steady-state conditions, i.e., prior to changes, are denoted ty 

a suffix '0' wile the email change in any variable quantity by 

the symbol Z . Thus the main feature of small displacement theory 

is to allow linearization of original non-linear differential 

equations and to organise them into correct form for rcpreaantat-

ion by a closed loop system. 

Initial values of quantities are found out first and then 
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;mall displacements are applied to the equations of voltages, 

currents and flux-linkages to obtain final torque equations. 

The characteristic equation of the syetem,i.et, the 

denominator of the expression of the quiotient of power angle 

and torque is tested by Routh' s or any other standard criterion 

and it may be concluded that$ 

1. if the resulting linearized system iq6table, the original 

system is stable and 

2. if the linearized system is unstable, original system is 

unstable. 

2.2.  S1 nalL P4 qp7 ac g=nt j uAti nneJ7)  r (9)  

The electro-meohanioal equation of a synchronous machine 

neglecting mechanical damping, i.e. friction and windage, is 

given by,, 

Mpg  S + Te  = Tm 	 ... 	.•r (1) 

where, t = H/rcf, H being the inertia constant. 

As discussed, considering small displacements on the above equation, 

up2AS+QTc  aATM 	 4.. 	... (2) 

If now 1A Te  is obtained as a function of p multiplied byz S, the 

characteristic equation of the system is available and Routh's 

criterion can be applied to test stability. 

Next few steps show how incremental torque (aT5) can be 

related to the incremental torque angle,OS. 

using Park's two reaction theory and convention, the 

voltage equations for a salient pole synchronous machine connect-

ed to an infinite bus bar, in the absence of zero sequence terms 

for balanced operation, are given by$ 



end = a ein = P Sid - + ►~q xmid 

eq • coa S = F q + ti Yr rm1q 

In per unit, the developed electrical tarque is given by, 

Te = wd'q - ~q id.  ... 
!.d the per unit speed at any instant .ie given by, 

*apCWt-b} 	 ... 	•.. (5) 
Again, the flux linkages in the direct and quadrature 

axes are related to the axes currents, by- 

Yd : G(p)E - xd(p) 1d 
•.. 	•.. (6) 

wq a-Xq(v) iq 

It is now assumed that all the quantities inequetione (3) 

to (6) may be a ja reesed by a sum of a steady-state value with 

subscript '0' and an incremental value by z • In other words 

considering small displacements on the above quantities, we 

derive at following equations in which the action of voltage 

regulator is neglected initially and constant excitation is 

aseumed- 

L~ e 	i 000 So .A 	! AY .. Vo i Y 1 —~1L1v—YM ,\la 

o 	lido V — *f A 	•••  	.. • l7  } 
Aa =-a g.nS,.AS=p~ ~ v a d ~ 4 	m 

A -0 * 	 ... 	... (8) 
A Y-d - xd(P)A id 

,& YvQ - - xq(p)L iQ 
Substitution of Av , 0 Ydand A y-Q from equations (8) end (9) in 

equations (7) .fW i e8 4&44•q results in the equations. 

15 edme oosb.A~1s-Zd(p) A i4+xq(p)Ai Ygopn S 
i.r  ••• (i©/ 

L1 eqs-e sin&.4S•-xd(p)n id44gCp)4' iO4'Ydop LS 

7 



Assuming the usual per unit value of -o as unity$ the solution 

of equations (10) for4id and A iq yields 

~-zq(p) { e ooe6 +'qop} +aq(p) 10 sin& +V pi Aid* 

	

	 L1~ 
Z(p) 2q(p) +zd(p) aq(p) 

[adlp)  
' 	

a coeb + Y-gop}+ Zdip){e sin8 + do pj] 
~~q 	 O6 

Zd(p) Zq(P) + xd(P) x() 

».. 

where, 

zd(P) = rm + Xd(P)•p. 

Zq(p) rm + 

Small displacement in Te in equation (4) gives, 

1~  TO = 'do Aiq +1 goA d - Y-go A id " ido' 'q .. » 

Under intial steady»state operating conditions the system 

voltage and flux equations are as follows: 

e sin b 	rm 'do - ".'qo 

eq e COB 	- rmigo+'do 

Y'do a Eo  Xd ido 
..w 	•s• (14) 

~go""'$qiqo 

Substituting ado and' ~go from equation (14) in equations 
(13) we gets 

e sin &o ma - rm 'do + xq iqo 

e coo bo w rm iqo + Eo " Xd ~'do 
Equations (15) are then solved to give required initial currents 

ido and iqo ae follows: 
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-r a sin 50 -_ (e coos.- E ) 
ido 	r2 + Xd g 

q  ... 

iqo +~A e sin S - rm(e COO S0- E~ 
~ • rr.~rrrr r.r 	 r r. 

rm + X4 Xq 

2.4. The Cha cteristic puptiont 
The values of initial or steady-state quantities idol 

iqo and do, '"qo from equations (16) and (14) respectively 

together with the incremental values Q id, / iq and Q `-d, L y-q, from 
equations (11) and (9) are substituted in equation (12) for 

incremental electrical torque to give, finally, 

D T V LX (p) Ie cos +p 	+Z (p) e sins + p 
d~ 

e  Zd(p) Zq(P) + xd(p) Xq(P) 

(p)[Z0(P) {e coot+Y 0p} — a(p)e sin S + 
zd(p) Zq(p) + xd(p) =q(p) 

+ y[ Z (p). e coe6 + 	- x (p)~e sinS +p V' J bb 
Zd(p) .Zq(p) +XdCp) Xq(P) 

) C 3(P) ie coo 6 +p 	+Z (p) e 
 

Zd(p) Zq(p) + a4(p) Xq(P) 

or r• 	{ido xq(P) + V-do {Xd(p) (e coo 6 + )qop)+Z$(p) (eein6+ Y Op)} 

+{igoxd(P)+tgo} { Zq(p) (e coo 6+ qoP)-aq(p) (eeinS+Ydop) 

St f(p) ,LX & 	 i. • 	. •. (17) 

where, 
D Zd(p) Zq(P) + Xd(P) xq(p) 

The electro-mechanical equation of the system, then, 

reduces to the forms 

A Tm _ [ Mp2 + f(p)], z\b 	 ... 	.. (18) 
This can 1a written: 



Mp +f (p) 

in which the characteristic equatim is 

Mpg  + f (p) a 0 	 .•. 	... (20) 
This equation is linear and is obtained in powers of polynominal 

'p' with constant coefficients. To teat the stability of the 

system, roots of the characteristic equation Mpg  + f(p) a 0 are 

investigated by applying Routh's criterion or, as shown later, 

Nyquist criterion may be applied using frequency response method. 

In last few sections, small displacement theory has been 

applied to derive the characteristic equation when synchronous 
machine is directly connected to an infinite bus—bar. In the 

present section the case of machine connected to infinite bus 

through a tie line of resistance r and reactance x will be coneid-

Bred. For this*  it is best to assume the tie—line with infinite 

bus as a second machine(7)  and write the voltage equations. 

Thus, neglecting the effect of voltage regulators, we have 

for the synchronous machine, 

ed 3 — p xd(p) id  -s ra  id  + xq(p) iq• v 

eq  = xd  (p) 1d'  v -► pxq (P)  iq  rm  iq  

or 
ed  = .. Z(p)  id  + xq(p) iq, v 1 

.4. 	•.r (21) 
eq  $ .. xd(p) id.v.. Zq(p) it 

For the tie line, 

ed  = e sin b + Z(p) id  
... 	... (22) 

eq  U e cos 5  + xid•v + Z(p) iq 

10 



Machine torque equation is, 

Mpg 8 + T sat Tm 	 ... 	r • • (23) 

where, 

TQ ~$ iq - ~q id 	...  ... (24) 

Small displacements in equations (21), (22), (23), (24) 
give, 

A ed = - zd(p) L~ id + xq(p) A iq - V-gop Q' 	... 	... (25) 

A eq = - xd(p)A id -0 Zq(p) A iq + Y-$o p A S 	... 	... (26) 

A e = Z(p)Atd - $ A iq +(e eqa & . Xigo p) L\ 	.., 	... (27) 
A eq XAid + Z(p)L\ 1q 	Ce sins - x ido P)'br.. 	... (28) 
A Tm ra ..{y'qo + iqo Xd (p)l A d+ I o +idoXq(pj)Aiq+P MA\ . (29) 

The above equations can be arranged in matrix form as 

given below: 

A ed 	Aea 	Aid 	a .el 

11 

0 0 -[VIgo+igoxd(P)] ado+idoxq(p) 82M 

-0 "Zg(P) xQ(P) 

0 "'1 
0 

-xd(p) -Zq(P) Y'dop 
-*9 Z(p) -x eooe~-xigop 

0 x Z(p) ~(esin&-X'doP)  

... 	... (30) 
To obtain the characteristic equation, the determinant 

aI the coefficients of above equations is expanded in powers of p. 
Stability may then be tested by applying Routh' s criterion. 
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a 

2,5.2. Calculation of initial steady-state values$ 

Following the method of section 2.3, the values of ido 

and iqo are given by: 
a einS,-(x+=a ) (e aosS0-B0) 

do 	(r+ r)2 + (x1+xd)(x +xq) 	L.. 	... (31) 
(x + x) e ein6o (r +r) (e 

iqo 	(rm r)2 + (x + xd)(x + x ) 

wdo Eo -xd ido 1 

	

... 	... (32) 
Yqo -xg iqe 

eqo = ado - rm iqo 

	

«.. 	,.. (33) 
edo~ -tgo` rm ido 

• 4 	1 	• 1 I 	~ 	• 	1 	1 	' 	r 	s 	a 	!. 	~~ 	• 1 	• 

The transmission line may be represented by a 1t ©ircuit 

with half of its total capacitance assumed lumped at the two ends, 

or by a T circuit. But, if use is made of the A, B, C, D constants 

of the transmission line, expressed in per unit values, a more 

general analysis of the system can be obtained. 

If es is the sending end voltage at the machine terminals, 

its direct-axis and quadrature--axis components Ods and •qe 

respectively are related to it as•followsa 

es = edo + 3 eqs 

Also, 

ee . ABX. + B1r 

a A (edr + jegr) + B(idr + ji4r) 

~A Cdr + 3 id i (A ®qr + B iqr) 

Therefore, for the transmission line, 

.. ♦ 	•øø (34) 
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ed - A s gin b + Bid 	... 	... (35) 
0q a A e eoe S + Biq •j 

since 
ed = e gin S 	and eQ e aoe & 

For the synchronous machine, neglecting any voltage, regulator 

action, 

ed a -zd(p)'d + xq(P)iq,9 ...  ...  (36) 

eq • -ad(p) iaV- Zq(p) iq 

Small displacements in equations (35) and (36) result in the 

following equations$ 

**d =Ae cos 5.iS+BAid 
L\ eq =1A e sinS -A& + BAiq 

J a =-z (p) LX i + 	(p) A i - Y . 	A S 	... 	... (37) 
d d d q q g~' 

A eq :1M.xd(p) L1 id ` Zq(p) L\ iq + 
Small increments on machine torque equation give, 

A Tom [~qo+igoad (p)] Q id+ [Y-"o+idoxq(p)]Liq+p2M L\ 6 ... (38) 
From equations (37) and (38), 

Aed Aeq 	Aid 	A iq 	46 

0 0 -~~qo +iqoxd(P) Yda+idozq(p) p
2 
M 

-1 0 -Zd(p) Xq(p') `YgoP 
0 -1 -cd(P) 4q(p) ~dop 

-1 0 B 0 Ae cos S 
0 .1 0 B -Ae sin b 

=ATM 

0 

:0 

0 

-0 
... 	... (39) 



C)- nxrs 

f/~..1/h r 	1. 



Again, the stability of the system can be ascertained 

by applying Routh's criterion to the characteristic equation 

obtained by expanding the determinant formed by the coefficient 

of equations (39) • 

2,6.2k aj.eulation of initial steady-state values: 
As a first step, Eo is calculated as follows: 

Referring to phasor diagram of Pig.1, there is, 

ee : Ae + BIr, for cny receiving end load current Ir. 

Then neglecting resistance, E' is given by 

E' = e0 + j Tr x9 
and 

Eo W E' + id (Xd •- Xq) 	... 	... (40) 

The values of machine currents and flux-linkages are 
given by, 

+ te a n si S. - xa (a cosb,,- ) 
ido 	r2 + x x 

$'  ...  ... ~41a 
Mrd a sin S.— rm (e coo S --Foci 

Qo 	rm +Zd gq 

~do a Eo xd'do 
... 	... (42) 

qo _ -- tq iqo 

The sample calculations for each of the above cases have 
been illustrated in Chapter 4 where the stability is also tested 

by frequency response method. 

14 
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EFFECT OF VOLTAGE REGULATOR 

3.1 • Z~lt $1j ion 	rel 	Elgi"Y..r m 
As has been stated earlier, the steady-state stability limit 

of a synchronous machine is increased considerably when the effect 

of voltage regulators is taken into account. Much useful work has 

already been done in this connection by authors like Concordia, 

Aldred and Shackehaft, Nickle and Carothers and others. 

This Chapter will consider in details the effect of a 

voltage regulator on the steady-state stability limit of a 

synchronous machine connected to an infinite bus bar, (i) directly. 

(ii) through an impedance tie; , The regulator is responsive to 
changes in terminal voltage of the machine so as to maintain it 

at some constant value (unity in this case) and acts on the 

field voltage of the synchronous machine, The notation and assump- 
tions of Park are followed: 

3.1.2. Preliminary remarksz 

Before entering into detailed mathematical analysis, it 

is desirable to have a general review of the fundamental concepts 

involved. 

Consider a single round-rotor synchronous machine connect-

ed to an infinite bus through a tie-line. Neglecting machine and 

tie-line resistance, the steady-state power transfer is given by 

Te 
P = Xd+x 	tin S 	 ..• 	... (1) 

d 
It may be pointed out here that in the steady-state 

(or generally, if the effects of rotor circuits are neglected) 

there is analytically no distinction between a tie line with its 

infinite bus and a second machine. The distinction lies rather 

in the values to be assigned to the various parameters and in the 



FiC,°KE  2. 
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interpretation of the quantitative results. This assumption, 

however, simplifiew the matter when writing voltage equations 

for the tie line, based on two reaction theory, on the lines of 

machine equations. 

Now, if in equation (t), 

~cd =a:1.0 p.u. 

with excitation of machine set at some fixed value, for example, 

to give rated current at unity power factor and unit terminal 

voltage, referring to phasor diagram of Pig.2, 

E 0 e a 	= 1.414 
o 	coo 45i° 

and the power transfer is 

x 414) sin b 

or, 
Pa sing 

The power limit occurs at S = 900 and is P 	a 1.0 p.u. 

(Note that the calculations above give infinite bus voltage 

e as 1.414 instead of conventional value of 1.0 p.u. This is 
because of the assumption that the infinite bus together with the 

tie line can be looked upon as a second round rotor machine. Also, 

the terminal voltage at the terminals of actual machine is assumed 
to be unity, with current at unity power factor. Though difficult 

to follow, it makes little difference as far as the calculation 

of stability limit by analytical methods is concerned). 

If on the other hand, the excitations are not constant 

but are controlled (through the use of voltage regulators) so as 

to maintain unit terminal voltage and power factor, then 
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0 	oos S 2 

and the power transfer is 
Es 	 sin S 

P a 	sin S 	 = tan 5/2 
xd + a 	2 cost  5 /2 

Now the power transfer increases without limit as the 

angle 8 is increased from 0 to 180 degrees. The new torque- 

angle curve crosses the old torque-angle curve at b *90 degrees 

(Pig.3). The question of the meaning of this result, particularly 

of thepossibility of stable operation in the regi &> 90 degrees, 

now naturally arises; the answer is found in the kind of control 

used. If the excitations are controlled slowly#  for example, by 

hand,. so as to return the terminal voltage to unity only after 

deviation is noticed, the power limit again will be found at 

b a 90 degrees. One may imagine the load increased in small steps. 

At each step the terminal voltage is returned to unity by an adjust-

ment of the excitations, and then the system is tested for steady-

state stability in the conventional way by noting.whether or not 

a small increase in angle with fixed excitations results in an 

increase or decrease in power transfer. However, if thg6xcitat-

ions are controlled automatically to maintain constant terminal 

voltage continuously and instantaneously, regardless of load or 

angle, and even during the stability test, the relation P:te S/2 

will hold instantaneously, and there no longer is a stability 

limit. In order to maintain constant terminal voltage required 

for such stable operation it is necessary to have a flat regulator 

(that is one with infinite amplification factor, a a - oc) and no 

time lags in the regulator, exciter, or even in the main machine 

fields, so that the excitations are corrected instantaneously. 

Such action is, of course#  practically unrealizable because of 

the time lags inherent in any system. Moreover, both excitations 



. 

also increase without limit as the angle approaches 180 degrees. 

Thus, in practice a stability limit is reached for some value of s 

greater than 90 degrees but less than 180 degrees, beyond which the 

system becomes unstable. 

3.2. thematiol An l3r e s 

In the following sections, a methamatical analysis of the 

system including effect of voltage regulator will be presented 

for the two casesviz. (1) machine directly connected to infinite 

bus, (ii) machine connected thaough tie line to infinite bus. 

The second case will be considered first as the expressions for 

first case can be derived from it. 

3.2.1. Machine connected to infinite bus through tie-line') 

The equations of axes voltages for synchronous machine 

are, 
ed 	pYd -rinid ~•1~q ,v 

eq = pWq _rmiq +`~-d , v ... 	... (2) 

Similarly, the equations for flux linkages ares 
~d ~r 

 
G(p) N - xd(p) id 

-xq(p) iq 

Substitution of'Pd and y~q from. equations (3) in equations (2) gives 

eda p G(p)E- pxd(p)id riid + xq(p)i q 

Or 	ed ap G(p)E -Zd(p)id + z4(p) iq.v 	S.. 	•.. (4) 

0q = -p xq(P)iq - rmiq + G(p)L')- xd(p) id.y 

or 	eq a G(p)L.v— Xd(p) id. — Zq(p) iq 	... 	... (5) 
where Zd(P) a rm +pxd(p) and Zq(p) =  
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On similar linea, for the tie line, (Impressed currents) 

ed = e sin b + Z(p) id .. xi9 v 
eq = e cos b + xid.V +Z(p) iq 

where Z(p) * r + px for the tie line. 

Machine torque equation is, 

Mp2 6+Te =TM 
where Te is the electrical torque given by 

••. 	... (6) 

... 	... (7) 

Taw$ ,~-Yg id ... 	... (9) 

Prom equations (4), (5), (6), (?), and (0), the equations 

for small changes from a steady-state operating position are: 

A ed = pG(p)AF. Zd(p) d id+ xq(p) A 1q Qop.A S 	... 	... (10) 

D eq = G(p)t E -xd(p)Aid - Zq(p)L1iq t 	o pM... 	... (i1) 

A ed = 

 

Z(p)td d - xgiq + (i coo S --Xigop), t S 	... 	... (12) 

	

L1 eq = xEid + Z(p)L1 iq .. (e sins- xidop).AS ... 	... (13) 

A Tm*igoG(P) o E-[L'q0+1goxd(p)]a is+ry$o+idox~(p)1oi~+p2MAS(14) 

The regulator introduces a change in field voltage E as a 

function of change in magnitude of the terminal voltage ea. This 

is given by, 

Q E = g(p)Lea 	 ... 	... (15) 
where 

ea 	ed +  eq 	 ... 	... (1 6 ) 

and g(p) is the operation expression for the action of the voltage 

regulator. 
From (16), 

\ ea = ed . A ed + e0. D eq 	 ... 	... (1 Z ) 



where 
ed edo/eao and eq = ego/eao 
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Then, 
d E = g(p)C__, eB. ed + OqA eqq 

	 .., ... (18) 

when equation (18) is substituted in equations, (10),(11) and 

(14), these become- 

Lied pa(p)$(p}ea 0 ed+p( (p)g(p)eq L1 eq Zd(p)Aid+xq(p)Aiq-qop'8S 

.. 	... (19) 

A eq =G(p)g(p)edoed +G(p)g(p)eq eq xd(p)e3a-Zq(p)e1Q +Ydop Ab . 

... ... (20) 
ATm = ig0G(p)g(p)e~4ed+ig0G(p)g(p)e Aeq -(wqo+igoxd(p)JAid + 

['Pd0 + ido xq (p )~ ~ iq + p2M L S 	 ... ... (21) 

The equations (21), (19), (20), (12), and (13) when arranged 

in a matrix form, after necessary transposition, become, 

ABA A eM 

iqo (p)`g(p)ed Ig0G(p)g(p)eq - Y o-igoxd(P) ado+idoxq(p) p2Y 

pG(p)g(p)ea-1 pG(p)g(p)e'q -Zd(p) x(p) ~qoP 

G(p)g(p)ej G(p)g(p)e-1 -Xã(p) -Zq(p) op 

-1 0 Z(p) -x eoos~-xigp 

0 ^1 x Z(p) -e slnS+xidP 

... ... (22) 

in whioh, A ed,oeq, A id, A iQ, andA Tm are the variable quantities 

and the terms within the matrix are obtained as the simple or fract-

ional expressions in polynominal p. 

:ATS 

In order to test the stability of the system, the determin-
ant of the efficients of equations (22) is expressed as a polynominal 
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in pp and the signs of the real parts of the p roots are inveeti-

gated by Routhr e criterion. 

It is to be seen that expression of the determinant of the 

coefficients of equations (22) results in an expression of the 

form, 
AT  

in which F(p), the determinant expressed as a polynominal in p, 

is obviously the characteristic equation of the system whose 

roots are tested by applying Routh's criterion. 

Derivation of Characteristic Equations 

Let the equations (22) be represented ass 

Asn, 	Ai,q 	AiA 	o6 

a1 b1 01 U1 el 

a2 b2 02 d2, 

 

02 

a3 b3 c3 43 03 

a4 b4 04 d4 e4 

a5 b5 C5 45 05 

=ATM 

0 

-• (23) 

The values of a1, a2 '2'•' 	b,~ , b2 .... etc. are given by 
corresponding terms in the original matrix of equations (22). 

Expansion of determinant results in 
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aI  b2 02 d2 e2 -b1 a2 02 d2 e2 +01 a2 b2 d2 e21 

b3 03 d3 •3 	a3  03  d3  e3 	a'3 b3 d3 e3 
b4  04  d4  e4 	a4  04  d4  e4 	$4  b4  d4  e4  

b5  c5  d5  e5 	a5  05  d5  e5 	a5 b5 d5 e5 

"d1 
 

a2 b2 02 e2 I ♦e1 1 a2 b2 02 d2 
$3 b3  03 °3 $3 b3 03 d3 
a4  b4  04  e4  $4  b4  04  d4  

$5  b5  C e5  a5  b5  o5  d5  

The first term of D1 , which is a1  multiplied by a fourth order 
determinant, is similarly expanded further until we have, 

term, = al l 
(b2c3 	2b3) (d4e5. ø4d5)- (b2d3- d2b3) (c4e5  0405)+ 

(b2e3 "' e9b3) (c4d5  - d405)+(c2d3  -0 d2o3) (b4e5  -e4b5)- 

(c2e3 203) (b4d5 - d4b5)+(d2e3  - e2d3)(b4c5 "'o4b5)J 

Proceeding likewise, 
II terms -b1  [(a203u► a2a3) (d4e5-e4d5) (a2d3-.d2a3) (04e5-e405)+ 

(a2e3  e2a3) (o4d5 - d4c5)+(o2a3 - d2c3)(a4e5  _ e4a5)_ 

(c2e3  - e2c3)(a4d5- d4s5)+(d2e3--e2d3) (x405  - 04$5)] 

SII term= ci  (a2b3- b2a3) (d4e5- e4d5)-(a2d3  -d2a3) (b4  e5  e4  b5)+ 

(a2e3 -e2a3)(b4d5 -d4b5) +(b2d3 -d2b3)(a4e5  _*4a5)_ 

(b2e3  '-e2b3) (&4d5-i. d4a5)+(d2e3- e2d3) (a4b5  - b4a5)]  
IV terms-d1  [(a2b3  - b2a3) (o4e5-e4o5)-(a2o3  02a3) (b4e3  - e4b5) + 

(a2e3  - e2a3)(b4o5  -c4b5)+(b2o3- o2b3)(a4e5- •4a5) 

(b2e3  -e2b3)(&4c5-a4a5)+(0203  -6203) (a1b5  -b4a5) 
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V term = e1 [ (a2b3 - b2a3)(c4d5 r-d4o5)- (a2o3 -0o2a3)(b4d5- d4b5)+ 

( 2d3 -d2a ) (b4o5- o4b3)+(b203 -02b3)(a4d5 -d4a5) - 

(b2d3 -d2b3)(a405 -o4a5)+(o2d3 -d2o3) (a4b5 -o b4a5)] 

The final expression for the characteristic determinant is 

simplified further through elimination of some oommon terms and 

there results, 

the characteristic determinant 

D1 :A+B+C+D+B+F+G+H+I+J 	,,. 	.., (24) 
where, 

A = (d4e5-e445) t a1(b2o3-o2b3)-b1(a2c3-o2a3)+o1(a2b3-b2a3)1 
B =-(o4e5-e4c5) {a1 (b2dçd2b3)-b1 (a2drd2e.,)+di (a2b,'u.b2a,)}  

C = (a4d5-d4c5) {a1 (h2e3-e2b3)-b1(a2e3..e2' )+e1(a2b3"b2a3)} 

D = (b4e5-e4b5) {a1(o2d3-d2c 3)--o1(a2d3-d2a3) +d1(a2o3-c2ay ) 

h =..(b4d5-d4b5) ja1(o2 è3-92c3)-o1(a2ere2a3) +e 1(a2OrO2&3)1  

P = (b4o5-o4b5) [a1(d2+e3-d3e2)-d1(a2e3-e2a3) +e1(s2d3-d2a3)} 

G =.(a4e5-e4a5) {b1 (o2d3.-d2o3).c1 (b2drd2b,)+di (b2Cç o2b3)} 

H as (a4d5-d4a5) { b1(a2e3-6203)-a1(b2e3-e2b3 ) +e,~ (b2a -o2,b3)} 

I =u (a4o5-x4a5) {b1(d2e3-e2d,)-d1 (b2e3 e2b3)+e1(b2d3..12b3)} 

J = (a4b5-b4a5) {Oi (d2eçe2d3)_.d1 (c2eç.e203)+e1 (c2dçd2o3)} 

The expression, though appearing quite complicated at 

first glance, is not so when one proceeds with actual calculations. 

In fact, if some assumptions are made while trying to obtain the 

characteristic determinant, the work can be much simplified and a 
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simple form of characteristic Ceterminant obtained. For example, 

if the components of voltages caused by the rates of change of 

flux linkages and of angle are neglected together with armature 

and tie line resistance, then the characteristic determinant 

obtained will have only fourth and lower powers of p in its final 

expression~7) 

Calculation of Steady State Quantitieet 

The starting point for calculation of initial steady-state 

values of various quantities will be the torque angle S . Assuming 

a value for S, the values of current I, machine internal voltage 

Eo and infinite bus voltage e will be calculated with the help of 

steady state vector diagram based on two reaction theory and taking 

into account saturation. In all the cases, a constant terminal 

voltage (achieved by voltage regulator) of 1.0 p.u, and unity 

power factor at the terminals will be a aumed unless otherwise 

stated. snowing the values of Eo, a and I at a particular angle, 

the other quantities such as ido, igar ~daj, 'qo, etc. can be 

calculated. 

Calculation of Eo, a and It 
Referring to phasor diagram of Fig.4(a), there are, 

XI 
tan (6- Q) = , " and tan 0 = I, 

m 
or 	tab ,.tae 	x I 

1+tans tan 0 	1+rmI 

or 

tangy- # — ~ Ix 
1+tangy ~~Ir 	1+Ira 

or 
tan b - r . tan S I .- xI 	Ix~ 
1 - it + x tansI 	1+rml 



i 
F 



25 

or 	
tan b +rm tan 8 • T- r . tan S • I -r . rmtan&.12 ..s . I-r . rm . I2 

=I.aq + xq(x.tan6 •. r),I2 
or lx,(x tanS -r)+x rm+r rmtansf I2+(aq+x+r tan b.rmtanS) I..t =O 

... 	... (25) 
For known values of xq f x, rm, r andS equaticon (24) gives the 
value of current I. 

Again from the vector diagram, (Fig.4(a)l 
Ix 	

(Q is now known since I is known) 

and 
Eo = E' + 1d (Xd Xq) , 

Also, 	Ir 

sin 0 

Calculation of idol iqa, ado, 'PgoI 

id = I sin (S - 0) 

« « . 

•.. (26) 

«.. (27) 	r 

It is assumed that values of ido and iqo are affected by 

line resistance and reactance in addition to machine resistance 
and reactance. But the values of edo' egQ and V-do 	S~qo are 
assumed to remain unaffected by line parameters. Thus proceeding 

as in Chapter 2, the values of ids and iqo are now modified by r 

and r and given by, 

--(r +r)e sinS -- (x+,x) (e coeb 	) 
idoW 	(rm+r)2 + (x+xd) (x +X q) 

	

(X+xd)e in6 (rm+r) (e con 5E0) 	... 

1q°= 	(rm+r)2 + (x+xd) (x + ) 

%0 Eo - ad 'do 

... (28) 

... (29) 
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eqo =Ydo -rm igo =eg 

*do '1'qo+ rmido 

since ea is assumed to be unity. 

... (30) 

Expressions for xd(p), xq(p), G(p) and g(p) z 
When damper windings are neglected, the operational 

impedances are given by: 

3d (1+Tcp) 	X(p) ~x xd(p) : 	' 	4 	q 
1+ Tdop 

G (p) - --1----  
1+Tdop 

If it is assumed that the regulator and exciter performance 

can be expressed as a static change (a) in field voltage Bo per 

unit change in terminal voltage ea, together with a time lag 

expressible as an equivalent single time constant Tr; then 

gtp) 	I rp 
where the value of a (taken negative) has to be coordinated 

properly v th a particular system. 

3.2.2. Machine directly connected to infinite bus bars 

The equations of small displacements in this case, too, 

remain unchanged for the machine i.e. the equations (19), (20) and 

(21) of preceding section are applicable again. The only difference 

is that equations (12) and (13) are modified to give: 

fed aeooe~.AS 1 
nd 	 ... 	... (31) 

Aeq - -e einS.AS 
which are obtained easily by putting r a x a Z(p) n 0 in equations 

(12) and (13). 



The matrix form of the equations iss 

ed 	 Aid 	Aiq 	45 

iqo C(P)g(p)er 8 iqo G(P)g(p)e~ q ~►Vqo ~iqo xd (p) do +idoi z (p)  q p2M 

pG(p)g(p)ed-1 pG(p)g(p)e' -2d(p) xq(p) - 'qoP 

G(p)g(p) ed G(p)g(p)e' 1 -Xd(p) ..Zq(p) oP 

-1 0 0 ,: -Q.- ae000 b 

0 ..1 0 p -esinb 

...  • .. (32) 
Again, the stability can be tested by applying 

Routh'e criterion to the characteristic determinant of the above 

equations. 

Characteristic equations 

Referring to equations (23) of the preceding section, 

there is, in this case, 

b4 a04 = d4 a Oa a5 a c5 a d'5 

a4 b5 a-1 

If these values are substituted in the expression for 

characteristic equation obtained in the preceding section, there 

results, 

P(p) = Al + BI + 01 a 0 	 ... 	... (33) 
which is the characteristic equation in this case. The terms A1,, 

B1 , C. are given by, 
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im 
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A1 :e4{ a1 (c2d3-d2o3) iw ai(a2d3- d2n3)+d1 (a2a3-a2a3) 

B1 a s5 b1(o2d3-d2c3)- o1(b2d3-d2b3) +d1 (b2o,--©2b,)} 

C1 = a4b c1(d2ere2d3)- d1(o2eçe2a3)+ e1(o2d,-d2a,)} 

Calculation of initial ateady-state values$ 

The value of Eo and I can be calculated as shown in the 

preceding section for a given value of 6 . The vector diagram, 

however, is now modified as shown in P.ig.4(b), since the value 

of e is now fixed at unity. It in to be noted that the power 

factor may not be held at unity in all the cases, but may have 
to be changed from lagging to unity and then to leading in order 

to keep Bo at a suitable value particularly at higher values 

of b . The examples considered in latter sections will illustrate 

this requirement. 

The steady-state value$6f currents, voltages and flux 

linkages in the machine are given by.. 

i 	 r a sin b — x (e coo .- B) 

r? + x6 x4 
x asinb--r ( ecoos- E) 

q° 	rm +xd x Q 

ado" Eo " Xd ido 
~qo1 -aq tqo 

e 	Y - r qo = do 	m iqo 	eq 

*do s-~ao ~►rm ido *id 

since ea a 1.0 p.u. 

...  .«. (34) 

.•M 	•r• (3 ) 

.., 	... (36) 
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;*3*  x'  .e. 2a cula119 a: 

In this section a few calculations are shown for a particular 

machine under the effect of voltage regulator. For various values 

of torque angle b , characteristic equations will be obtained to 

which Routh's criterion will be applied to test system stability. 

The following values for machine constants and tie line 

resistance and reactance are assumed. 

zd  = 1.2 

xq  *08 

Xad 1.0 

xi 

 

=0.2 

sa at 0.3 

= 0.02 

= 5 sec. 

TI = 1.25 sec. 

Tr  = 2 sec. 

a =.p.2 

x =0.3 

r =0.06 

3.3.1. Machine connected to infinite bus through tie lines 

(a) 6 = 450 w 	p.!. a 1.0 

Following the method discussed in section 3.2.1., the values 

of Eo, I •and 8 are obtained as.- 

I = 0.78 , 	BO  a 1.37 	, 	e a 0.98 
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O t  

ido  0.423 	 iqo  = 0.665 

ado  w 0.36 	 5-qo  =0.53 

edo  W e a 0.53 	eqo  = e • 0.85 

Proceeding with the calculations as shown in section 
.1., the exact characteristic equation is 

p9+1 4. 92p8+422p7  +734p6+957p5+872p4+494p3+151 .7p2+26.6p+1.846=0 

thea array in set up as, 

6.6 	422 	958 	494 	26.6 

	

14.92 	734 	872 	151.7 	1.846 

	

74 	572 	427 	25.85 	0 

	

618 	786 	146.5 	1.846 

	

478 	409.4 	25.63 	0 	0 

	

259 	113.5 	1.846 	0 	0 

	

200 	22.23 	0 	0 	0 

	

84.7 	1.846 	0 	0 	0 

	

17.88 	0 	0 	0 	0

• 1.846 	 0 	0 	0 

o 	0 	0 	0 	0 

se the system is stable 

(b) The operating conditions ares 

• So a 900, 	p.t. a 1.0 
Values of I, Eo  and e are obtained as 

I a 1.906, 	Ec  a 2.44, 	e 	1.05 
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ido = 1.57 
 iqo = 1.07 

ado = 0.56 	Yqo =-0.86 

ado = ej = 0.83  qo e'~ = 0.54 

The system characteristic equation is: 

6.6p9+14.3p8+416p7+507p6+607.8p5+474p4+228p3+4712+13.3p+0.848=0 

Routh's array is: 

6.6 416 607 228 13.3 

14.3 507 474 47 0.848 

192 390 202 13.0 0 

478 460 46 0.848 0 

206 192 13 0 0 

19 16 0.848 0 0 

28 4 0 0 0 

13.3 0.848 0 0 0 

2.2 0 0 0 0 

0.848 0 0 0 0 

0 0 0 0 0 

The system is, therefore# stable. 

(c) bo = 1000, p.f. = 1.0 

Values of other steady—stater quantities are: 

T= 2.34 Eo = 2.957 a = 1.11 
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ido = 2.04 	iqo a• 1.14 

wdo 0 0.30 	qo i.Q.91 

ego 0 ed = 0.98 	eqo eQ ~• 0.477 

and the characteristic equation is- 

6.6p9+14.55p8+332p7+330p6+326p3+200p4+63p3+29.8p2M2.6p-0.707=0 

The Routh' s array is: 

	

6.6 	332 	326 	63 	-2.6 

	

14.$5 	330 	200 	29.8 	►0.707 

181 	236 	49.5 	-2.17 	0 

311 	196 	29.97 -0.707 0 

122 	32.1 	-1.76 	0 	0 

	

111.5 	34.47 	-0.707 	0 	0 

	

-5.4 	-1.0 	0 	0 	0 

	

-13.87 	-0.707 	0 	0 	0 

	

-1.275 	0 	0 	0 	0 

	

-0.707 	0 	0 	0 	0 

Hence the system is unstable and there is one root of the 

characteristic equation with positive real part. 

3.3.2. Machine directly connected to infinite bust 

The same machine is now assumed to be connected to infinite 

bus bar directly. The stability of the system under the effect of 

voltage regulator at different operating torque angles is investi-

gated in this sections 

(a) So = 450. 	p.f. = 1.0 
The initial values area 

I a 1.28 	, 	Eo = 1.73 	e a 1.0 p.u. 



1d©  - 0.845 iqo  a 0.855 

'Pdo • 0.72 qo  .-01.682 

Sdo  a ed - 0.665 eqo  a eq = 0.703 

The system characteristic equation ie: 

0.24p7+0.368p6+27.1 1p5+31.28p4 +39.5p3  +31.4p2  +10p+1.051-0 

Routh'a array in: 
0.24 27.11 39.3 10 

0.368 51.28 31.4 1.051 

6.7 18.8 9.32 0 

30.25 3009 1.051 0 

12.0 9.08 0 0 

8.1 1.051 0 0 

7.52 0 0 0 

The operatingg point is, therefore, stable. 

(b) bo= 90of  p.f. a 0.9 leading. 

The steady—state quantities are$ 

I ► 2.8? 	Ea  - 3.1 	• * 1.0 

ids '° 2.55 	iqo  • 1.31 

IPda 0.04  

The characteristic equation in this case ie$ 

0.24p7+0.378p6+29.57p5+16.7p4+27.5p5  +15p2+0.15pr- 0.353 a 0 

35 
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Routh's array is set up as* 

0.24 29.37 27.5 0.15 

0.378 16.7 15 -0.353 

18.7 18 0.375 0 

16.4 15 -0.353 0 

0.9 0.775 0 0 

0.9 0.353 0 0 

1.128 0 0 0 

-0.353 0 0 0 

0 0 0 0 

Hence the system is unstable, there being one root of the character- 

istic equation with positive real part. 

(o) so = 1000  p.f. w 0.8 leading 

The initial values are: 

2.73 EO  * 2.79 e = 1.0 

ldo 	2.44 iq¢  = 1.29 

x-0.14 IP 	m-1.03 

The characteristic equation is- 

0.24p?+0.368p6+23.0p5 +8.94p4+19.2p3 +5.8p2- 323p - 0.493 = 0 

The system is seen to be unstable, there being one 
root with real positive part. 



Chapter 4. 

RE9NSEANALY8IS OF 

N$4RIZED SYSTEMS. 
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WOUDWY U§JONSE ANALYSIS OF 

LINEARIZED SYSTEMS 

4.1.  I ,troduottion 

A more complete pioture of a synchronous machine stabi-

lity problem is obtained by frequency response method which can 

be considered as a step ahead of the analytical methods discussed 

earlier. The method is based upon a rigrous analysis of synch-

ronaua machine dynamics; both electrical as well as mechanical. 

The characteristic feature of this method is the realization of 

a synchronous machine as a closed loop configuration as shown 

later and then the application of Nyquist criterion to test 

stability of the system. Since some kind of feed-back is always 
necessary to make a system stable, the necessity of representing 

a synchronous machine as a closed loop system is obvious. The 

simplest closed loop system may consist of one main loop or 

forward loop and one feed-back loop as shown in Pig.5. In the 

case of a synchronous machine these are obtained after studying 

the equations of motion available aqA result of applying small 
displacement theory to actual machine equations. 

It may be pointed out here that while the Routh'e criter-

ion or other criteria determine only whether a particular system 

is stable or not, the frequency response method not only does 
so, but enables one to know to what degree the system is stable. 

Hence the importance of the method. Thus, the main advantage 

of the method lies, not in being able to tackle the problem 

eaeily'but in the fact that it provides for rapid appreciation 

of the effects of modification of the machine equation. 
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4.2. ie Nyguist Criterion,  

Consider a closed-loop feed-back control system as shown 

in Pig.5• If G(p) is the forward loop transfer function and 

11(p) is the feed-back transfer function, the closed-loop 

transfer function of the system is given bys 

t+G p • p) 	
r.• 	••r ( ) 

Let the denominator of equation (1) be represented by 

F(p); that is, 

P(p) = I + G(p) R(p) 

The zeros of F(p) are the roots of the characteristic equation 

of the system. If this equation has any roots with positive 

real parts, the system will have an infinitely increasing 

response to a finite input or in other words, the system will 

be unstable. 

Now consider the locus defined by the semi-circle of 

radius R = co an right hand side of a p-plane having real 

and imaginary axes. This locus is described in a counter-

clockwise direction so that it I'NCLOSES the entire finite 

right half of the p-plane; this path is called the NYQUIST 

PATH. If any of the roots of the characteristic equation is 

enclosed by this Nyquist path, then system is unstable. It 

will be shown how this can be realized exactly: 

Let Z ffi number of zeros of the oharaeteric,tie equation 

enclosed by Nyquist path. 

P = number of poles of the characteristic equation 

enclosed by Nyquist path (this is also the 

number of poles of the open loop transfer 

function G(p) H(p).) 
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Now, the determination of Z is our main concern while P 

is usually known and for stable system is equal to zero. Referr-. 

ing to the Nyquist path, a corresponding plot of the function 

1 + G(p) H(p) can be obtained for various values of p. For 

this, travel along the Nyquist path in p..plane in the counter-

clockwise direction and plot the corresponding values of P(p) 

along real and imaginary axes in the P-plane. Then, the number 

by which P(p) plot ENCLOSES  the origin of F-plane determines 

Z by the relation; 

N: Z -P 

where N is the number of enclosures. 

Now, since for a stable system P is always zero and Z 

has to be zero, N must be zero too. This means that 'P(p) plot 

must no enclose the origin at all for a stable closed loop 

system'. This apparently is, what isknown as, Nyquist Criterion 

of Stability. 

Usually, the plot of G(p) H(p), i.e. open loop transfer 

function, is obtained instead of I + G(p) H(p) or F(p) and 

the critical point then becomes (-1, 30) instead of the origin. 

4.3.  Losedloop System for a Synchronous chin . a 

In Chapter 2, the dynamical equation of motion of a 

synchronous machine is derived to be 

6 TM  arc Y p2  4 b+ f(p)A6 

This can be arranged in two ways to give two different 

closed-.loop systems. 

(i)  Yp2 

i.e. the difference of the two inputs - A Tm  and f(p)A 

operated upon by a direct transfer function of -1--- gives 



V 

F /iVRE 6 (a) 

:! 

FlJURE  6 (6). 
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the output of small change in rotor angle .Lb. 

The system will be as shown in Pig.6 (a) 

(ii) 	L1 T - MP2& 	~ 5 
f(p) 

Here the inputs are \ Tm and Up2A b and the direct 

transfer function is i }. The system is shown in Fig.6(b). 

The analysis to follow makes use of first representation. 

4.4. The Oen Lo Tra fer Functjona 

The small displacement equation of eleotro-mechanical 

torque, referring to equation (21) of Chapter 3, section 2.9, 

is: 

A Tm M tqo G(p) g(p) ea.o ed + ig0G(p) g(p) e o eq 

1 S'qo + iqo Xd(p)1 A is + 1 Vdo + ido Xq(p) tAiq +p2M1 

If p2M A S term is exolused, we have the electric torque A Ta 

given by: 

A 	i G(p) g(p) ed . o ed + iqo G(p) g(p) e' A eQ .. 

~qo 1qo x (p) 4o id+ I Y'do+ ido XQ(P) iaiq 

... 	... (2) 
which can be obtained in a form, 

f (p).6 	 ... 	... (3) 

making use of voltage and current small displacement equations. 

Thus, if in equations (22) or (32) of Chapter 3, (depen-

ding whether the machine is connected to infinite bus through 

tie line or directly), eI is put equal to zero instead of 

p2X , th n the determinant of the coefficients of these equations 

gives t expressions for f(p). Dividing f(p) by Mp2, the 
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open loop transfer function is obtained. 

1y uiet Plotat 

The open loop transfer functions for the cases studied 

in Chapter 3 by applying Routh's criterion will now be obtained 

together with their Nyquiet Plots. 

4.5.1. Machine connected to infinite bus through tie"line= 

(considering effect of voltage regulator)— 

(a) b * 450, 

Following the procedure outlined in section 4.4, the 

open loop transfer function is obtained ae, 

402p7 + 717p6+942p5 + 867p4 + 473p3+ 151.7p2+26.55p+1.846 

P2 	 .02p2 (1 + 5p) 3 (1+2p)2 
402p7+717p6 +942p5 +867p4 + 473p3+151.7p2 +26.55p+1.846 

10p7+ 16p6 + 9.7p5+ 2.8p4+0.38p3 + 0.02p2 

By applying Routh's criterion, it can be shown that the 

open loop is stable i.e. Z a 0, and eince P w 0 too, for a 

closed loop stable system 9 must be zero. This means that the 
plot 

Nyquist̂  must not enclose (-1, 3o) point. 

Writing p = 3w 0 
I 	G(jw)B(3w) 
~w 

(717c.6-867 c 4+151 ,7w —1.846)+j(402w ►942 W+473 -26.55w) 
(16w =2.8w + 0.02c.2)+j (10wT.9.7w + 0.38)) 

A.t w a 0, 

I..1i. .02 '"  °° 

Mw *00, 
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The values of G(Jw) H(OW) for other values of are listed in 

table I obtained with the help of a digital computer. The 

Nyquist plot is given in Fig. 7(a) and (b). Pig. (a) shows 

enlarged portion of the plot near the critical point (-1, jo) 

whereas Fig. (b) shows general shape of the plot. It can be 

seen that the plot does not enclose the critical point and 

hence the system is stable. 

(b) 6 = 900 

Here f (D) 	G(P)H(P)* lip2 

11....?. IAI.. .iCA~9~i.JAA..~J1AA..ij7 2 

.02p2 (i + 5p)3 (1 +2p)2 

(494 6-472 + 475 -0.848) +1(401 w~-.592 5+229J.-13.34 
and G(j~)H(1W)= (16 6-2.ew4+0.025 )+ (tow7-9 «7w +o.3s ) 

(fir(,jw)R(jw) ss — CO 
w —4.O 

and G(jw)8(jw) = 40.1 

The Nyquist plot is shown in Fig.8 from which it is seen 

that the critical point is not enclosed and the system is 

stable. 

(a) =100° 

f(p) 2 
~p2 

316p7+321p6 +317p5 +187p4+56p3+37.5p2.2.91p -0.29 

.02p2 (1+5p)3 (1+2p)2 

(~( 3w)N~ w) (3215 -187w +37.5c.w+0.29)+J(316w —317,A%A2.915) 
(16 6-2.8 4+0.02L )+1(lO W7-9.7w5+Q.38 L) 

G(jW)H(j) 	+ oo 
 W —~-o 
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• G( 	H() = 31.6 
w-a-oo 

In this case, applying Routh's criterion, it is seen 

that the system has one root with real positive part, i.e., 

Z - 1. Therefore P being zero, N must be one or the Nyquist 

plot must enclose the critical point once in order that the 

system be stable. However, the actual plot shows that N*2 

and hence the system ig(instable. The plot is shown in Pig.9 

4.6.2. Machine directly connected to infinite buss 

Equations (32) of Chapter 3 are used with e, 	0 to 

obtain open loop transfer functions in each case. 

(a) b a 450• 
The open loop transfer function is given by, 

f(p) 	26.7p5 + 30.9p4 +39.1p3 + 31.4pp2 +10 p + 1.051 

Mp 	 0.02 p2 (1 + 5p) 2 (1 + 2p) 

W 	 (3o.9w .•31.4 2+1.051)+ (26.710 -39.1 W+10,0) and ~~ 	10) 
0.O2?)+a(w —0.36?) 

G (j') H(JJ) 	i~ 	 "' o0 

ti3 -- O 	-»0.02 W 

G (j w) (j w) = 26.7 
w_*- c0 

The Nyquist plot is shown in Pi,g.10. It does not enclose 

the critical point and hence the system is stable* 

(b)S= 900 

System open loop transfer function is, 

f(p) 	28.95p5 +17p4 +26.7p3 +15 p2+0.2p - 0.353 

lip • 	.02p2 (1+5p)2 (1+2p) 
28.95p5 + 17p4 + 26.7p3 +15p2 +0.2p -- 0.353 

p3 + 0.9p4 + 0.36p3 + 0.02p2 
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f(_w) (17w4-15c —0.353)+J(2$.95c 5-26.7w+0.O2w) and--2—:4 (~w) Ii( ~jw} = 	4 	2 	5 (0.9w -o.o2W )+ j(w - 0.36 ) 
Gi (jw)H(jw)sa 	30 a + on 
(4 -O 

G(jw)H(j')= 28.95 
w -}m 

Other values of G(jw) H(jw) for various values of w are 

given in Table 5. 

The Routh's criterion in this case reveals one root with 

positive real part. However, the Nyquiet plot shown in Fig.11 

does not enclose (-1, jo) point and hence the system is 

unstable, as ascertained already in Chapter 3 by applying 

Routh's criterion to closed loop characteristic equation. 

(o) 	1000 
The open loop transfer function is, 

f(p) 	22.6p4+ 8.51p4+19.4p3 +5.8p2 — 3.14p -- 0.493 
MP2 	p5 + 	+ 0.36p3 + 0.02p2 

and 	moo( WE E W},~ (8.51W'~-5.8w -0.493)+j(22.6w -19 -3.14w) 
--w2 (0.9w _0.02co )+ j(w5--0.36? ) 

G(jw)H(jw) _ - 	_ + 0 	o0 
W --O 
G(4)H(j) = 22.6 
W -- 

Here again the Nyquist plot does not enclose the critical 
point which it must enclose once in order that the system be 

stable for in this case application of Routh's criterion reveals 

one root of the characteristic equation with positive real part. 

Since it does not, the system is unstable. 

In all the above cases it may be noted that instead of 

deriving the actual characteristic equation, as in Chapter 3, only 

the open loop tra?isfer function be obtained which is rather 

simpler to do (the order of powers in p is reduced by 2) and 
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Nyquiet criterion applied to it to test stability. This conolu-

cion naturally favours the use of frequency response method. 

4.6. TJI V'i t1?Qut Yah : qs Regulator: 
In this section, open loop transfer functions will be 

obtained for the system neglecting effect of voltage regulator. 

The following cases would be consideredI 

(i) Machine directly connected to infinite bus, 

(ii) Machine connected to infinite bus through an impedance 

tie, 

(iii) Machine connected to infinite bus through a trans-

mission line with generalized At B, C, D constants. 

In each case, Routh' s criterion will first be applied 

to open loop transfer function and then frequency response 

method to test system stability. 

4.6.1. Machine directly connected to infinite bus: 

Let bo = 800. p.f. = 0.9 leading, e a 1.0 

It can be shown that the system remains in stable equilibrium 

under these conditions of operation when effect of voltage 

regulator is considered. Operation without regulator will be 

studied. 

Proceeding as in case (b) section 3.3.2., the values of 

Eo and I are obtained to be$ 

I a 2.14 p.u. and Eo a 2.156 

.'. 1 . -0? _ 1.0 = 0.484 -08(0  ,3.~1...:.2& 5« 	1.63 do 	(.02) 2 + 1.2 x 0.8 

1.2 Z .1.....0..x► 0 898 ..002 (0..173 2.1 ). = 1.28 
qo 	(0.02)2+ 1.2 x 0.8 

`~do * 2.156— 1.2x 1.63`. -0.206 



0.8 x 1.28 a- 1.02 

The above values together with other quantities are then 

substituted in f(p) part of equation (17), Chapter 2 i.e. in 

f(p) a 	I idoxq(P)+ kdol I Xd(P) (e coo +YQQp)+Zd(P) x 

(e sins +kd0p)} +{igoxa&p) +'qol ZgIP)"("eo5S+ YQQp).. 

Xq(P) (e sins + Y$0 )}}  
the open loop 'characteristic' equation is obtained as 

3.067p3  + 0.08p2  + 2.988p - 0.06 a 0 

For this, Routh' a array is set up ass 

3.067 2.988 

0.08 -0.06 

0.688 0 

-0.06 0 

0 0 

There ie, obviously, one root with real positive part and hence 

the system is unstable. 

The open loop transfer function is given by, 
3.067p3  +0,08p2  + 2.988p -- 0.06 

2 Vp a (1 x 5p) 

or 3.067p3  + 0.08p2  + 2.988p - 0.06 

Mp 	0.02p2  (1 + 5p) 

153p3  + 4p2  + 149p — 3.0 
5p3  + P2  

Putting p 
W 	—j153 3-4 2  + j149— 3.0 

-mt. 	 (-j5u - t 2) 
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(+4 2  + 3) +j (4 153w - 149') 
or F(jw)H(jW) 

(w2  + j52) 

a + -=+ CO 
woo  

	

P( jw)x(jw) - 	- 30.6 

The Nyquist plot is shown in Fig.13 from which it will 

be noted that it does not enclose the critical point (which it 

must enclose once as Z = 1) and hence unetability iq'Again 

ascertained. 

4.6.2. Machine connected to infinite bus through tie lilies 

The operating conditions are assumed to be, 

so = 90o , pt. 	1.0, *. = 1.0 

As given in case (b), section 3.3.1, the values of I t  Eo  and e 

are obtained to be, 

I 	1.906 	Bo  a 2.44, 	e 	1..05 

Also, 

	

ido  =1.J7 	iqo  = 1.07 

	

ado =0.56 	 0.86 
use use 

Now making/of equations (30), Chapter 2 and following the 
technique given in section 3.2.1, of Chapter 3 and 4.4, the 

open loop transfer function is obtained as, 

f(p) 	4.1p3  - 0.21p2  + 3.08p -0.333 

up2 	o.0 2  ( 1 + 5p) 

205 p3  . 10.5 p2  + 154p- 16.7 

5 p3  + p2  

and 	(-10.5w +16.7) +j (2o5 w 3- 154) 

Applying Routh's criterion it can be seen that the open 
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loop system is unstable having one root with real positive part. 

The Nyquist plot shown in ?ig.14, also confirms the result. 

It may be noted that the system under the effect of 

voltage regulator was found to be stable under similar operat-

ing conditions. 

4.6.3. System connected to infinite bus through transmission lines 

The constants for the transmission line in per unit value 

are assumed to be: 

1.0 L2°  t 	B 0.735 /74.40 , C a 0, D  

Let the receiving end load current be Ir  = 2.5 p.u• and p.f.=1.0 

Then, 	ee  = 1.0 + 2.5 x 0.735 /74.4°  a 2.3 /500  

and referring to phasor diagram of iig.1, Chapter 2, 

R' = ee  + iIXq  * 4.05 /68.4°  

.'.5= 68.4°  

Also, Zo  a 4.06 + 2.5 sin 68.40  (1.2 - 0.8) a 4.98 

The steady state currents and flux linkages, using equations 

(41) and (42) of. Chapter 2, are given by, 

ido = 3.87, 	iqo  a 1.07 

a 0.34, 	`/--Q a -0.855 

Now proo:eding as in section 2.6.1, using equations (39) 

in which xp2  is replaced by 0, the open loop transfer function 

is obtained as$ 

a0(p ) 
R(p) = 

 10.8p + 3.44 
I[p2  0.02 p2  (I + 5p) 

The Routh's criterion reveels stable operation. 



t1 L-1179W -219 w2+ j540 + 172 
Again, lt~o M G(j W) H(j W) 3 2 •- 	 -j5w - to 

(219 2 - 172)+ j(179 3-540w) 

Lug̀ +35 W 
d(jw) H( jca) _ ".. 00 w —a- o 	w 2 
G(aw) H(jw) _ 	a 36. 
to—co 
The Nyquist plot shown in Ptg.15 does not enclose 

(-1, J0) point and thus confirms stability. 
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Chapter 5. 



LARGE DI PLACLT THEORY 

5.1.,Tntrodution 

While much work is avai3.able(3)'(4}v(14)'(15) concerning 

the transient performance of a synchronous machine and the criteria 

to test machine stability under transient operating conditions, 

almost every author has made use of the assumption of either 

constant field flux linkages or constant voltage behind transient 

reactance when deriving equation of power transfer. With the use 

of most common method for ascertaining machine stability, i.e. 

equal-area criterion, this assumption does not lead to accurate 

results in most cases. The method is good for first few swings 

and can be justified when the fault is cleared within first few 

cycles by the use of very high speed breakers. But in cases where 

prolonged oscillations have to be considered and high speed break-

ing is not available or desirable (as in a one-line-to-ground 

fault sometimes), change in field flux linkages has to be taken 

into account and a different approach to test machine or system 

stability adopted. 

The present chapter has been devoted to derive a torque-

angle characteristic equation assuming variable field-flux linkages. 

Park's equations are used(4, sand a machine directly connected to 
infinite bus is considered. In the basic equations and wherever 

required the armature and field resistances are neglected. so also 

the voltages induced through transformer action. 

As will be seen, the torque angle equation now obtained 

is a second order non-linear equation, exact or approximate solut- 

ion of which is not possible and some kind of graphical solution 

has to be adopted. For this purpose, the well known method of 
'phase-plane con~struetion'(15),(16},(17),(19),(20) has been used. 
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Aylett(15)  has dealt with the method quite thoroughly and has 

not only demonstrated how stability of the system udder faulty 

conditions can be tested, but also shows how the critical switch-

ing time can be calculated by performing only one integral. Ku(16)  

in his paper has solved stability problem under sudden loading 

condition for a round-rotor and a salient-pole synchronous machine 

and has tried to develop a new graphical construction in the phase-

plane which makes the proposition simple. 

McLachlan(2°)in his book entitled "Ordinary Non-Linear 

Differential Equations" has used the method of "isoclines" or 

lines of equal slope to draw the phase-plane trajectories and 

solve the stability problems. His approach is quite simple and 

easy to understand and is being followed here. 

Before proceeding to derive the torque-angle characteristic 

equation a brief description of phase-plane and nature of phase-

plane trajectories in relation to stability-problem solutions will 

be given. 

5.2. Thase=Plane and,..Phase-Plane 	jeotgriesL 
A non-linear differential equation of second order may 

be represented as, 

2 + F1 (a)  ddt + f2(e) - C 	 ... 	... (1) 
dt 

where f1 (8) and f2(o) are non-linear functions of a or may be 

constant quantities and C is a constant. 

Let 

Then, 	
dt (dt - -dd, - 	( I) - v • d@ 

dt 
Substituting the transformations in equation (1), there results, 
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y+ f1 (6) `3/+ t2(0) * a 	 • .. ... ( ) 

This equation differs from equation (1) in following two ways, 

(i) the equatim is non-linear but of first degree only. 

(ii) the time variable does not appear in the equation 

but instead the two variables ocouring are 0 and v 

which may be identified as displacement and velocity 

respectively. 

In the nomenclature adopted by writers in the field of 

non-linear mechanios{17),(1a) t (19),(20)  the plane of the variables 

v, 8, is the 'phase-plane', and a curve corresponding to equation 

(2) (which may be obtained following any method possible) is a 

'phaco-plane trajectory'. 

It will be noticed that the phase-plane trajectories, as 

the name implies, are not solutions of the original differential 

equation (1), since time does not appear as a variable. On the 

contrary, a trajectory is the path of a representative point s  

There is an infinity of solutions corresponding to different 

time-origins for a given trajectory. The motion of a representa-

tive point along a trajectory corresponds to one of the solutions. 

Two types of trajeotbries can be obtained, normal traject-

ones and degenerate trajectories, or singular points. When the 

value of d.v/d8 is determinate, we get first kind of trajectories, 

but when this value is indeterminate, second kind of trajectories 

are obtained. The latter are of special interest to all stability 

problems. 

To find ningular points of equation (2), there is, 
C " 

 f  (a) 	f1  (0), 0 
d 	v 

or 	 C— f2(0) 	= 0 	 •.. 	••• (3) 
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There could be three cases related to three types of 

singular points when referred to stability problems. 

(i) When a singular point is such that a phase-plane 

trajectory converges to it finally, the singular 

point is known as a VORTEX point and the trajectory 

corresponds to a stable operation. 

(ii) When a singular point is such that a phase.-plane 

trajectory just passes through it, the singular point 

is known as a SADDLE point and trajectory corresponds 

to a critical operation or critically stable equilibrium. 

(iii) Shen a trajectory in the phase- -plane is of such a nature 

that it only dips near the saddle point but never conver-- 

gee round it or passes through it, the system is said 

to be unstable. 

The trajectory described in (ii) is known as a SEPARATRIX 

. as well since it divides the region of stable operation and 

unstable operation in a phase-plane. 

5.30 	jioI of IQoal ;ryes: 

When the equation (2) is of the type shown in which a 

term like t2(0)•v occurs, direct integration is not possible and 

an indirect method of drawing phase-plane trajectories is desirable 

such that the trajectory obtained not only satisfies equation (2) 

for various values of 0 and v but also has the same slope as 

required in equation (2) at a particular point. Method of 

isoclines. is such an approach which satiefiee these requirements. 

The method of isocline e originally due to Robson consists 

of the following steps 
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(4) 	Equation (2) is reduced to the forms 

~r• 0 " t2(0) 	 ... 	... (3) - 	 - 

ftte) 

(b) 	Por various values of 0 and one particular value of 

cv,0 corresponding values of v are calculated from (3). These 
d6 
values of v are plotted against corresponding value 0 in the 

phage.-plane. The value of assumed elope dQ is marked at the 

and of curve. 

This s3ep is repeated for different proper values of 

-: The usual value of 	- range from ± 0.1 to ± 10. The 
curves so obtained are known as ISOCLINES. 

(o) 	Small lines at equal intervals which correspond to the 

elope value for a curve are drawn. Every isocline is thus 

marked with these small lines. 

(d) Knowing initial conditions of operation, the value of 

go is known which becomes the starting point for the trajectory. 

(e) A smooth curve guided at crossing of every isocline by 

the small elope lines will result in the required trajectory, 

the nature of which will c cx~ment upon the stability of the system. 

Although appearing laborious and time consuming, the method 

does not take much time in practice and a trajectory can be 

easily constructed. It might be that an ex act solution of 

equation (1), though providing accurate results, would have been 

quite complicated and repulsive to adopt. It may be commented 

here that transient stability problems involve considerations 

not of the exact solution of the differential equations for a 

system, but of the general nature of these solutions. 
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The equations of flux linkages in armature and field circuit 

are t4) 

'pd =Lad if -Ld id 

q ="Lgiq 

Pf =Li,if-Ladid 

efrf if +p-'~f 

From second of equations (5), 
~, 	e ~►rt if 

P 
e - r 

. • . 	- LadsB = ...r...~a ...~.t... 

or e. " rf f = L 
f pig► " L

ad p id 

or et + Lad pid = i f (r f + PLC) 
et + Lad pfd 

orifi = r..+p :f t 	f 

From first of equations (4), 
L~_(aj +Lapin 

rf +PLi, 

... 	... (4) 

... 	•.. (5) 

..• 	... (6) 

or (r f +pL f ), Y = -rfLdid - (LL) pid+ Lad ei,+ Lad Pid 

Neglecting Ldpid std Limpid terms which denote voltage 

induced due to transformer action, 

(rf + pL=).Y = - r f Ldid + Laded, 	 ... 	... (7) 

Now, neglecting armature resistance and terms denoting voltages 

induced through transformer action, the machine, voltage equations 
in direct-arid quadrature axes ares 

ed = a sink *t- W 114 	
•.• 	•r. (8) 

eq = e cos 6 = w- Vd 



Equations (8) give, 

s ei ~ ~ 5... q to 

and  

'I.  ... ~9) 

. 
Td 	w 

Substituting value of `fid from equations (9) into equation (7), 

(rf + PLf). e a 	- rf Ld id + Lad of 
or 	+ b= rf Ld id 

L~ti, 
or 	w Lm of + L a sin b- 

id 	u' Ld rf 
• rf a ooab 

where the term 	~,  is neglected since rf is very small. 

or 	rid °f + Lf a sins b 	 /N \ 

w.d 	xd rf ) 

From second of equations (4), 

q 

or 
i= 	' d--- 	 .... 	... X 11) q Q 	q 

Now, the electrical torque T. is given by 

Te = }~diq ' '"$ 3d 

Substituting values of 'dr 	' 	i iq from equations (9)p (10) , (11) 

T 	, l: 	- 	S .~. _ 	rod a f tL  e sin b. b 
1e xq 	co w 	xdrt 

!!2 	 e.e C 	sin S 
Wa (2 sin 5• CosS )+ ...... ... 	~..,.....,.— + 
2q 	df 

2 L a L(2 ein25 ).S 2
• 	 Z 	r But 2 sinb, cos b a sin 26, 2 sin26 a 1- coos 26 and 	i"do r 	 ~ 

.'. T ,.2_,gin- 	+ e. +~ xad sins + e._.. Tth (1 — co; 26). b e 2,-x4 	w Xd rf 	2 w a d 

5¢ 



55 

2  2, 
or  e.ef  z  e  s T 

Te  : W  rd  Xs  sins +  sin 2S + 2- ' -(1--cos 28).8  

.•. 	.a. (12) 

Equation (12) represents the required torcue-angle equation in 

which all quantities are in per unit values except that when 

Tho  is substituted in seconds, - has to be in radians, per second 

otherwise per unit. 

The first two terms in equation (12) represent the electric 

torque generated by the machine. The value of of  in first term 

has to be calculated for every initial state of operation. This 

corresponds to the voltage Bo  is steady-state. The last term of 

the equation denote the damping produced within the machine by 

induction motor action and is of considerable importance in 
damping out small oscillations in the machine. 

The electro-mechanical equation of the system can now be 

written; 

Up22  b + Te  a Ta  
or  d2 5  e et  cad  e2  e2T 

ld--- + wd ZT  sin b + 2 	sin 26+" 2 	(1-coe 25)b=Tm  
q 

or 

 

ds 	e2T ' 	 s  6.et  Z 	e2  M d-- + 2  .do 	coo 2S)- 
w x - ai.nS 2+ 	sin 2S=Tm  

d 
•••  ... (13) 

which can be compared to the general equation (1) to show that 

actual electro-mechanical torque equation of a salient pole 

synchronous machine is a second order non-linear equation. 

Equation (13) can be written, 

+ a(1- cos 26) uf + b sin b + o sin 2S aiT • , • (14) dt2  
where, 



Wo 

e2 TM 	e ex 	e2 	T 
a 	, b~' wx~rf, ar* 	p To = 

In this section the practical case of a synchronous machine 

will be considered. Assuming average values for the machine const-

ants, the electro-mechanical torque equation will be obtained and 

a few problems of transient operation of the machine will be 

solved by phase-plane method. 

The following values are assumed: 
Xd 	1.2 p.u. 
Xq 	0.6 p.u. 
Xad 110 p.u. 

r , = 0.001 p.u. 
Tia = 5 sec. 

to = 2 n t radians Der second or 1.0 p.u. 

f '= 50 cycles per second. 

x' 	0.3 p.u. d 
Using equation (14) we have, 
a e T ILL0 2  

2 zd 	0.02x 2 ac 31 x 1.2 	
0 

34 

b 
	eex 	1.0 	1.0x 1 	as 13 

0.02a 314x 1.2 4 	z0.001  

(it is being assumed that machine is operating at ni load .fe. 
to 

S= 0 and hence e f = 1.0 p.u. oorreeponding terminal or 
infinite bus voltage e = 1.0 p.u.). 

e2 	(1.0)2 	31.2 
o= M 2 ~ 	0.02 x 2 x1.OxO 8 

(The value of w is to be token unity here to have proper balance 

of dimentions) • 
To 	..- ,~.. , 	50 T 0.02 	m 
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The torque equation is,therefore, given by: 

g +0.34(1-cos 2S) 	+133 sins +31.2 sin 2S =50Tm+50(1)T' 
dt 	 ... 	... (15) 

where T is any additional torque suddenly applied to the machine 

and maintained at that value thereafter. 

The following cases are analyzed: 

Case I — Free Oscillations; 

In this case, bo a 0 and Tm W 0. 

The problem is to determine whether the machine is stable or not 

and to what maximum value of S it oscillates. 

The torque equation in this case ie, 

d 	+0.34 (i. COS 2S) 	+133 nhS+31.2 in 26 a 0.. 	... (16) 
dt 	t 

rfriting 	= vw equation (16) becomes, 

v + 0.34 (1- cos 28) v + 133 sin S + 31.2 sin 28*  0. 

On transposition# the equation for drawing isoclines is obtained 

as: 	(133 sin + 31.2 sin 2S)  
V 1~ - 	 ... 	♦•. (17) 

0.34 (1•-008 2&)+ 

Table 10 gives the values of v corresponding to different 

values of S and the slope 	. The'ieoolinea are drawn on the 

phase—plane anc' `ollowing the method described earlier, the 

required trajectory is constructed which is shown in Fig.16. It 

is seen that the curve spirals out from the origin and merges 

into a limit cycle showing that the system io:. stable and also 

the maximum degree of oscillations for the machine is about ±44? 

Case II - Load suddenly applied: 
The machine is assumed to be operating in no-load condit-

ion initially, i.e. o a 0 and Tm = 9. Then a euddon load equal 
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in magnitude to the value obtained as transient limit by using 

equal area criterion as shown in Fig.17, is applied. The torque 

angle characteristic used for the purpose of calculating the tran-

sient limit makes use of the equations 

T = 	- sin 
X
4 

where E is the internal voltage of the machine under initial 

steady-state operating conditions. 

The transient limit by equal area criterion referring to 

Fig.17 is obtained as follows$ 

We have- 	T - 9*e sins _ 1 •n~X31 a sin S , 3.334 sin S 
xd 

Equating the two shaded areas, 

6, 	 n-5~ 
T'S,- J 3.334 sinS.dS 	53.334  sin&.dS ~» T'( 1t 26,) 

or 	
'S,+   3#334cos S s~ * - 3.334 ~cos8] .. nT' + 2T" i 

,0 	g 
or 

3.334 [Coss'-11 _ - 3.334[.2 CoeS,] .. n T' + T'5, 
or -3.334 	3.334 ooe s ~ .. n T' + T' b ~ 	,•, 	... (18) 

Also, 
a 3.334 sin S 1 

• ' • 	-3.334 * 3.334 coos 6 - n a 3.334 sin 6 + 3.334 S , sin 6 1 
whence, by trial, S% is obtained 

6i = 46° 
Substitution of 61 in equation (18) gives, 

T' = 2.42 p.u. 

The electro-mechanioal equation, then, taken the forms 
d26  

+ 0.34(1- oos 2b?. A- +133 sin S +31.2 sin 28 s4+50T' (1 
dt2  

or,  

+ 0.34(1- con 2s)- 	- + 133 sin8 + 31.2 sin 2i121 ... 	9) 
dt 
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With 	- = v, the equation for phase-plane is given by 

v 	+ 0.34 (1-ooe 26)v + 133 ein b + 31.2 sin 28 121 

and the equation for isoclines is 

V 	121 - (133 sin & + 31.2 sin 26) 

0.34 (1- cos 2&)+ dS 

Calculations for drawing isoclines are shown in Table 11. The 
phase-plane trajectory is drawn which is seen to be converging 

to a vortex point = 430, The machine remains in stable , 

equilibrium and the maximum overshoot is about 63043 20°. 

The trajectory is shown in Pig.18. 

Case III. Machine operating under normal full load 

condition-sudden load applied: 
In this cage the initial operating conditions ares 

I 	1.0 p.u. 	p.f. = 0.8 lag, 	a m 1.0 p.u. 

Calculation of of or Eo; 

Referring to phaeor diagram of Pig.19 (a), 

' `e+iIXq 
1.0 + j(o.8 - j0.6)x 0.8 = 1.61 /Z3 

..E0 or es B' + id (Xd - Xq) 
~► 1.61 + 1.0 x gin (bo +co 1 1-x (1.2 - 0.8 ) 

Se 1.955 

Referring to Pig.19 (b) and proceeding an in case III the 

angle £, is found to be approximately equal to 60 degrees and the 

additional torque T' to reach the transient limit in 

T' * 3.09 p.u. 

In the electro-mechanical equation (15), the coefficient of 
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sin 5 term' changes, since e. is changed. The new coefficient 

is given by- 
e.e f, x 	1.0 x1 .955 x 1.0 	,~ 262 

b " l[ w xdri, 	'~ 0.02x314 x1 .2x0.001 

The torque equation then becomes, 

2 4 +0.34(1-oos 26) 	+262 sins+31.2 sin 26 =Su.T +54T'(1) 
dt 	dt 

where TM z 6.5 sin 23.20 = 2.56 p.u.(oorresponding to transient 

characteristic). 
26 

.'. 

	

	0.34(1-- cos 2S)49"- +262 sins+31.2 sin 2Sa5ez2.56+50x3.09(1) 
dt 

In the phase-plane, the equation reduces to, 

v ^ 0.34 (1- cos 26)v9- 262 sinS+ 31.2 sin 26 = 201. 

and the equation for drawing isoclines is 

v a 281 - (26i ~'siU ■ w + 31.2 sin 2L  
0.34 (1.. cos 26)+ 

The isoolines and the phase-plane trajectory starting 

from the initial operating point bo a 23.2, degrees are drawn in 

Pig.20. From the nature of the trajectory, which travels away 

from the saddle point (about 95 degrees) after a slight dip there, 

it can be concluded that the system loses stability in this case. 

Table 12 gives the values for drawing isoclines. 

Case IV. Maphine operating at normal full load-additional 

load equal to full load value suddenly applied: 

Here the operating conditions remains the sane initially 

as in case III i.e. I - 1.0 p.u. p.f. a 0.8 lag, Rp a 1.955 

The full load torque, obtained by transient characteristic 

is- 
To a 2.56, p.u. 

T'' a 2.56 p.u. 



so that, 
TwT0 +T' =5.12p.u. 

The machine torque equation is given by, 

14 + 0.34(1- cos 2b)- + 262 sin6+ 31.2 sin 26=5.12 x 5 -256 
dt 

at t = 0, S. 23.2° and To 2.56 p.u. 

The vortex point is given by, 

262 sin 6,~ + 31.2 sin 2 6v = 256 

Thence, 
V

600 
The equation in phase-plane is 

vd 5 +0.34 (1-cos 26) .v+262 sin b +31.2 sin 2 b=256 

and the equation for isoclines is 

V 256 - (262 sin$ +31.2 sin 2b) 
~ 	 rr 	 err rr.rr.ww~rr.r+r~~ ri r 

0.34 (1-cos 2S) + 	- 

Fig.21 shows the isoclines and the trajectory for this 

case. It is seen that the trajectory converges round the vortex 

point (61 degrees approximately) and the system is stable. The 

maximum overshoot is very large, however, being 94.5-61 = 34 

degrees approximately. 

Values used to draw isoclines are given in Table 13• 

Case V. The Operating conditions ares 

5o = 3009 p.f. = 1.0, 	e = 1.0 p.u. 
Then on additional load to reach the transient limit 

(calculated using transient characteristic) is suddenly applied 

and maintained thereafter. To test the stability. 

Using the phasor diagram of Fig.19(a) given in case III 

the value of Eo 	e f is determined which is- 

61 
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Ba  . 1.3 p.u. 

The transient torque-angle characteristic (assuming a 

round rotor machine) is given by 

T  a 

 

1.30x37.0  sin6 a 4.34  einS 

To  a 4.34 sin 300  = 2.17 p.u. 

The additional torque T' to reach the transient limit can 

be calculated with the help of transient torque -angle character-

istic as in case III. Thus, 

6, = 60°  

and 
T+ a 1.58 p.u. 

Again, the coefficient of sin term in equation (15) is modified 

to, 
ba 30,5x 1o0x_._. Q....... 	..:  a 175 0.02x314z 1.2 iO.0O1 

The torque-equation for the system is given by 

26 	 6 d 	+ 0.34 (1- cos 28)#175 sins +31.2 sin 26* 
dt 

2.17 x 50 + 1.58 x 50 (1). 

Putting dt = VP  the phase-plane equatiaa is 

v S + 0.34 (1- cos 26)v + 175 sin 6 + 31.2 sin 26=187.5 

while the equation for ieoelines is 
187.5- (175 sin 6+ 31.2 sin 25) 

cos 26) + 

Applying the expression (3), it can be seen that no vortex point is 

available and so the system appears to be unstable. However, the 

isoclines and the trajectory are drawn which are shown in Fig.22. 

The nature of trajectory oonfirns that the system is unstable, 

the saddle point being at about 101 degrees. 
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Consideration of voltage regulator action While calculatr-

ing steady-state stability of a system specially when the system 

consists of one machine connected to infinite bus, is becoming 

more and more important. Formerly when only hand-operated 

voltage regulators were in use, the question of improving 

stability limit was not so useful and promising and calculations 

for stability limit neglected the voltage regulator because the 

analysis became simple and time saving. But with the invent of 

automatic voltage regulator equipped with almost every modern 

alternator, it has become desirable to take into account the 

regulator action when calculating steady-state stability limit 

of a synchronous machine. 

The following general conclusions can be derived based on 

the calculated oases in the preceding chapters: 

1. A salient pole synchronous machine which is otherwise 
un=-,.table at angles of operation much less than 90 degrees 

becomes stable upto about 90 degree (torque angle) when provided 

with a suitably designed voltage regulator. 

2. The stability limit of a synchronous machine when conn-

ected to the infinite bus-bar through a tie line of proper 

resistance and reactance values is slightly higher than when the 

machine is directly connected to the bus. This shows that a 

synchronous machine may be connected to infinite bus through 

a tie line or a reactor of similar characteristics in order to 

improve stable operation of system in dynamic stability region. 

3. Neglecting armature and tie-line resistance and voltages 

induced through transformer action from the final equations 



would have resulted in much simpler analysis, but giving rather 

optimistic results. 

4. While ascertaining stability under various oases, it 

was noticed that the amplification factor 'a' has great influence 
on stability. The higher value may result in unstable operation 

even at much small values of torque angle. Similarly, a low 

value of regulator time constant Tr  is desirable, which means a 

fast acting voltage regulator. 

In the cases studied, the saturation was taken into account 

by using modified phasor diagrams as shown at suitable places. 

This again makes the analysis more rigrous. 

The effect of damper windings was neglected. It was assumed 

that while making the analysis very complicated, the damper 

windings have little effect on the steady-state stability limit 

of a synchronous machine when operating in dynamic stability 

region i.e. under the influence of voltage regulator. 

Both, the Routh's as well as Nyquist's criteria, have 

been applied, the latter in the course of frequen qy response 

analysis, while ascertaining stability in each case, It was 

noted that frequency response method using Nyquist criterion is 
better suited and less laborious to apply when computing aide 

are available, This i g6ecause only open loop transfer function 

is required. In any case it can be concluded that it is the 

small displacement theory which has made it possible to linear-

ize the, otherwise non-linear electro- mechanical equation and 

use of either of the above criteria applicable. Without the use 

of this theory it would have been impossible to consider the 

effect of voltage regulator specially in mathematical analysis. 
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Again, in the case of large displacement theory (Chapter 5) 

it was found that an electro--mechanical torque equation can be 

obtained starting from basic voltage and flux equations in which 

change of field flux linkages could be considered. The equation, 

which is non-linear in nature, when solved in the phase-plane 

trajectory forms gives quite convincing results. The following 

conclusion► can be derived referring to the cases studied: 

1. The machine in free oscillation state (S a 0, Tm  = 0) 

always comes to stable equilibrium, the oscillations being 

finally damped out. The extent to which the machine may oscil-

late depends upon the degree of damping available. 

2. The application of a sudden large load from initial no 

load condition may be thought upon to result in an unstable 

operation, in general. However, the machine may remain in stable 

equilibrium as can be seen from case II and IV, Chapter 5. 

3. Application of equal-area criterion with the assumption 

of a round rotor and constant voltage behind transient reactance 

does not always give correct results and when stability is pre-

dicted by this method in some of the cases. The system may 

actually run to unstable operation* This can be noticed by 

studying case III and V, Chapter 5. 

Thus, in the present work, attempts have been made to derive 

analytical methods to solve some of the stability problems in a 

one machine system with particular emphasis on the use of voltage 

regulator in the steady-state operation and to derive and use a 

more general torque equation to study the system under large 

oscillation operations. 

It is hoped that the investigations should prove to be of 
value in the field of stability. 
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ABLB3 POR NY 	ST 
Table1. 

PLOTS: 

Omega,w 	0.1 0.5 	0.9 	1.0 	2.0 	5.0 	10.0 

Real 	1..7029.83 Fart -106.13 	-9.25 	o.3725; 	.38.46 	39.76 

iina4 3045.39 Fart 8.93 	-7.36 	-7.05 -3.78 	-1,48 	--0.74 

0.01 -424880.34 14336.28 146391.91 -13352.31 
0.10 -3388.38 2259.02 663.97 -'2426.46 
0.20 -125.23 378.12 -560.24 --364.63 
0.30 -41.31 -41.51 -195.05 52.73 
0.50 -53.90 -36.99 1.55 16.16 
0.80 -10.14 -4.01 10.17 0.79 
0.85 -5.48 --2.07 10.79 1.49 
0.90 -1.42 -0.56 11.53 2.25 
0.95 2.11 0.63 12.33 3.00 
1.00 5.23 1.59 13.18 3.70 
5.00 38.36 2.79 30.39 3.52 

10.00 39.66 1.45 31.29 1.82 
100.00 40.09 0.14 31.59 0.18 
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Omega 	0.01 	0.10 	0.20 0.50 0.90 0.95 1.0 1.05 10.0 
Co 

Real 1-5 Part 	18433.98 -3104.14 -637.73 -93.22 -8.19 -4.23 -0.88 1.95 26.46 

Inag,-- -1 43507.52 1138.95 98.66 -6.53 -1.82 -1.95 -2.08 -2.20 -0.67 

0megal  0.19  0.20 0.50 0.85 0.90 0.95 6.00 1.05 10.0 100.0 
Co 

Real  
Part 	473.15 -11.43 -43.51 -7.16 -3.53 -0.34 2.45 4.90 28.70 28.94 

Imag- 
in€ary -1283.57 -358.78 -58.94 -4.25 -2.07 -0.43 0.79 1.72 0.90 0.09 

Omega  0.10  0.20 0.50 0.85 0.90 0.95 1.0 1.05 10.0  100.0 

R®rt  1314.91 218.72 -9,86 -4.16 -1.98 0.04 1.89 3»57 22.38  22.59 Per~ 
Imag 

 

inary -1158.59 -332.56 -65.84 -7.42 -4.66 -2.52 -0.850.44 1.17  0.11 



rf~ 

Omega 	0.01 	0.10 0.50 0.90 0.95 1.0 10.0 100.00 
co 

Real 

 

J29186.i1  -X346.68 74.17 -5.53 -2.00 1.03 30.29 30.59 Part 

Imams 
inary -16357.77 -1301.36 -36.06 -2.94 ..1.96 -1.19 0.52 0.05 

Om ga 	0.01 	0.10 0.50 0.80 0.85 0.90 1.0 10.0 100.0 

Real 1165805.10 719.80 -63.09 -5.78 -0.88 3.31 10.04 40.67 40.99 

inag-11.23688.20 -1879.40 -47.75 -5.34 -3.17 -1.51 0.76 1.02 0.10 

Omegal 	0.01 	0.1 	0.5 1.0 1.5 10.0 100.0 
w 

Part 1_1718185.40 -45737.64 -406.24 -67.61 -9«49 34.79 35.78 Pert 

inary 	31911.06 2486.72 	25.10 --22.92 ►20.27 -3.64 
part 



Ta l e 10  

ode 6 eee) i' 	0 ' +5 ' +10 ' +15 '+20 '+30 ' +40 ' +50 " + 60 

-(133 ejn5+ 	0 ' ;17.0;33.7 ';50.0';65.6';93.8';i16.2;132.1 ;142  
in 291 

.34(1-coe 2S)1 p '.0052' .021 '.046 ' .08 ' .17 '.281 ' .4 ' .51 

dv/dS =0 	'+3270'+1610 '1090'820 '+550 '+413 '+330 '+278 v 

der/d5..2 	1 0 ' +82.8' +152 '203 '234 ';23 '241 '220 '+200 

av/db =.4 I p '742 'T-80 '+112 '+136 '+164 '+170 '+165 '+156 

dv/dSu •6 0 '+28 '+ 54 '+77.5 ';96,5' ;122 '+139.5'+132. +128 

d'v/d& 	1.0 0 '+17 ''+33 '+' 48 '+60.7' +`80 '+90.5' +94 '+ 94 

dv/dS=2.8 1 0 '+ 8 '+16.6 '+24 ''+31.5' +`43.2' +50.6'` +55 '56.5 

der/d6=3.0 0 '+3.4 '++6.7 '+ 9.9 '+12.9' +18.2' +22 '`+24.5' +25.7 

dv/d&=~•,,2 0' +87 '±168 '±325 't548 t V r r 

der/d 	.4 	0 '±43 '±89 	'+142 '±205 '+407 	r 

dv/ddE.. .6 	0 '+28.6'+58 	'+90 	'+126 '+218'+364 ' 	' 

dvr/db*-1.0 	0 ,±17.1t±34.4 •±52.5 ,+71.5,+113 #„1162 r+220 #1290 

dv/db 2.0 	p ,+ 8 r±17.1 ,±25.7 ,+34.2,+51.2,+67.5,+82.5,+95 



(degrees)  I  0  ' 10  ' 20 ' 30 ' 40  ' 50  ' 60  ' 70 

133 sing + _ 1  0  ' 33.7 ' 65.6 ' 93.8 '116.2 '132.7 ' 142 '145 

121-- 	121 ' 87.3 ' 55.4 ' 27.2 $ 4.8 '-.11.7 ' -p21 ' -24 (133 . ein 6 + b') 

•34(1-ooe 2S)1  0  ' .021 ' .08 ' .17 ' .281 ' .4  ' .51 ' .6 

dv/db==' 0 	Co ' 4150 " 692 ' 160 ' 17.1 ' -29.2' «-41 ' -40 
vm 

	

.25 	483 ' 321 ' 168 ' 	65 ' 9.1 	' ••18 ' -27.5' .•28.2 
p 

	

.5 1 	242 ' 168 ' 1 95.7' 40.6 ' 6.15 ' -13 ' ,-21 ' -21.8 
va 

1.0 j  121 ' 85.5 ' 51.2 ' 23.$ ' 3.75 ' -8.35' -14 ' --15 
v 

 

2.0  60.5 1I3.!J61  12.6 ' 2.1  ' -4.86' -8.4 ' -9.25 

..4•p5 	-483 ' -380 '--326 ' -340 '+155 ' -78 ' -84 '-68.5 v~ 

-0.5 J -242 ' --182.5' --132 ' --83 ' -21.8 '+170 ' vm. 
--1.0 1 -121 ' -.89.5 ' -60.2' -32.8( w6.6 '+19.5 '+42.8 '+60 

	

-2.0 	-60.5' - 49.2 ' -28 ' -14.9' -►2.8 '+7.3  ' 14.1 ' +17.2 v= X 
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(dsg ees) 	1 0 	'20 	' 40 	' 60 	' 80 	'100 1120  '140 

	

26312ngin 28 J0'b09.5'198.7'  253 	' 269.7'247.3'199 '137.3 

281-(262 sins)l 281 	'171.5 '82.3 ' 28 	'11.3 ' 33.7' 82 '143.7 +31.2 sin2b 

.34(1-cos 2E) 	0 	' 	.08 ' 	.28 ' .51 	' .66 ' .66' .51 '. .28 

dv/d So ' 0 	00 	' 2150 ' 294 ' 55 	' 17.1 • 51 ' 161 ' 510 

t 	5 	1120 ' 518 ' 162 ' 37 	' 11.8 ' 35 ' 108 ' 280 

	

560 " 294 ' 106 ' 28 	' 7.75 ' 29 ' 82 ' 183 

11.0 	281 ' 158 ' 	64 ' 18.8 ' 6.68 ' 20.2' 54 ' 112 

X2.0 140 ' 	82 ' 	36 ' 	11.2 ' 	4.25' 12.6'32.7 '62.5 

15.0  56 ' 	33.7 ' 	15.6 ' 	5.1 ' 	2.0 ' 6.0 '14.7 '27.2 

..1120 '-1000 '+2460 ' + 108 ' +27.5 '+ 82 '+315 '+4750 v 

1-  1-560 ' -408 ' -375 ' +2800 ' +70.5 '+210(+800'+510 

-V0  1-281 ' -188 ' -114' -57 ' 	»31.4 X3.5'- -168 '-198 



8 
(degrees)  0 ' 15 '30 ' 45 ' 60 ' 75 ' 90 '120 

262 sins+  
31.2 sin 2 	0  ' 83.4 '158 '209.2 ' 253 ' 268.6' 262  ' 199 8 1 

256-(262 eros 256 '172.6 ' 98 ' 46.8 ' 3.0 '-12.6 ' •.6 	' 	57 s X 

•34(1-c©e2b) 1 0  ' .046 ' .17 ' •34 ' •51 ' .635 ' .68  ' .51 

dv/6M ' 0 	m ' 3750 ' 576 ' 134 ' 5.9 ' .►20.2' X3.8 ' 112 

'.25 11020 ' 580 ' 240 ' 78.5 ' 3.94 ' -14.4' -6.5 ' 75 

510 ' 316 ' 	146' 55 ' 3.0 ' -11.1' -5.1 ' 57 
v~ 

viva J 256 '165 '  84 ' 34.5 ' 2.0 ' -7.7 ' -3.6 ' 37.7 

2.0 128 ' 84 ' 	45' 19.8 ' 1.2' •-4.7 ' -2.25 ' 22.7 

51 ' 34 '  19 '8.7 ' ' 
v 

"5I_1020 25 -1020 ' -820 (-1220'+ 513 ' +11.6' -32.8 ' -13.4 ' +220 

'-.5 -510 ' -375 '-297 ' -287 ' +300 '-89 ( -33.4 ' +5700 

' i 01 -256 ' -180 '-118 * -70 '6.1 '+34.5 '+18.8 ' -116 

-128 ' - 88 '-53.5' -28 ' -2.0 '+9,25 ' +4.55 t-38.2 

7Z 
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r 	, 	r 	r 	r 
(degrees) 0 20 40 60 80 100 120 140 

1?5 2 m 
e3n 

 in 
f 
 +2s 	0 	'78.1 '143.7 ' 178 '182.7 '161,3' 124 ' 82.3 31.  

187.5-(175oinn 187  5' 109.4 ' 43.8' 9.5 ' 4.8 ' 26.2' 63.5'105.2 +31.2 and n2b)l 

.34(1-QGs 20 0 .08 ' 	.28' .51'  .66 '.66 ' 	.51 '.28 

dv/db a ' 0 co '1360 '156 ' 	18.6 	' 7.3 ' 	40 ' 124 '375 v* 

330 ' 86 ' 	12.5 '5.3 '27.8 ' 83.5 ' 198 

1y; 375 ' 	189 ' 56 ' 	9.5 	' 4.15 '22.6 ' 63.5 ' 	134 

rQ  18?.5' 101. '34.2 ' 	6.3 	' 2.9 '15.8 ' 42.a ' 	82 

'2,440  93.7' 52.5 '19.3 ' 	3.8 	' 1.8 '10.0 ' 25.2 ' 	46 

'.25 ) ?59  ' -643 '1460 ' 	36.6' 11.7 ' 64 ' 244 '3500 

0. 	t .375 ' -260 '-200 ' 	950 ' 30 '164 '6350 '-480 

-187.5 -119 ' +.61 '-19.4 ' -14.1 'r'?? ' -130 '-146 
' .0 x931?' -51 	'-25.3 ' -6.4 ' -3.6 '-196'  --42.5'  -61 
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