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ABSTRACT 

  

The stability of Couette flow of power-law fluid of thickness R past Neo-Hookean 

deformable solid of thickness HR subjected to shear flow is considered in this work. Power-

law fluid is chosen as it is the simplest model of fluid which can show the effects of shear 

thickening and shear thinning behavior. Whereas Neo Hookean solid, which is a nonlinear 

constitutive model accurately captures the behavior of flow as it leads to values of critical 

shear rate which are smaller than those obtained by using the linear viscoelastic solid model. 

Four key dimensionless parameters, i.e. γ (Imposed shear rate), n (power-law index), T 

(interfacial tension) & H (thickness ratio) characterizes the problem. Linear stability analysis 

is performed to find the stability of the system. Shear flow of the fluid due to Couette flow 

tends to destabilize the surface fluctuations. Various diagrams have been plotted between 

growth rates as a function of wavenumber showing the study of parameters how they affect 

the flow. For large values of H, i.e. solid to fluid thickness ratio, critical shear rate goes on 

decreasing and shear thickening fluids has more stabilizing effect in comparison with shear 

thinning fluids keeping all other governing parameters constant. The results obtained are 

potentially of great interest for enhancing mixing in microfluidic devices. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

Many recent experimental works (XII) and studies show that fluid flow past deformable solid is 

qualitatively different from fluid flow past rigid surfaces. Flow of fluids past soft or deformable 

solids induces oscillations in the surface and these oscillations in turn changes the dynamic 

characteristics of flow. They deform under the action of tangential and normal stresses at the 

interface. If these disturbances grow with time they can change the pattern of fluid flow, creating 

complicated time dependent flows. Flow past flexible surfaces is encountered in a wide variety 

of applications such as in biological systems in which flows of fluids such as blood occurs in 

arteries and veins and are generally made of soft tissues. If the fluid is power-law i.e. non- 

Newtonian, then it exhibits properties such as shear thickening and shear thinning. The stresses 

at the fluid solid interface depend on this additional factor which changes the growth or decay of 

interfacial disturbances. 

There are several applications for which fluid–solid interfacial instabilities are relevant. Fluids in 

microfluidic devices may be shear-thinning , such as blood, or viscoelastic, such as DNA 

solutions, and are often difficult to mix due to the associated length scales and flow rates. 

However, one may be able to design a microfluidic device with flow channels made of, or coated 

with, a deformable solid and induce the instability between the flowing fluid and the deformable 

solid to create complicated flow patterns, thereby enhancing mixing.      

Instabilities can be either desirable or undesirable.  For example, mass transfer and   heat transfer 

operations are effective when the interface between the phases is wavy as it leads to and 

consequently better mixing.  On other hand, in case of photographic film formation, surfacing of 

the one layer on other should be done steadily since the optical properties of the resulting film 

would be degraded if instability of interface prevails. This shows that flow instabilities can be 

desirable or undesirable depending upon the objective of a particular process and a strategy is 

frequently required for inducing or suppressing the flow instabilities. 
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Previous studies in this field provide many details about the stability of fluid flows past soft 

polymer gels or deformable solids.  Newtonian fluids have been largely considered to this point. 

Many potential applications of these flows, however, may use shear-thinning or shear thickening 

fluids. In the creeping flow limits stability of power-law fluid past deformable solid was studied 

by Roberts and Kumar (2006). To address the issue of how shear-thickening and shear thinning 

affects the elastohydrodynamic instability of the interface between a flowing fluid and a 

deformable solid, we focus our study on the case of plane Couette flow of a power-law fluid past 

an incompressible and impermeable neo-Hookean solid. Fig 1.1 shows the flow configuration 

considered in this study. 

 

Fig 1.1: Problem Geometry showing the deformation of solid due to Couette flow 

 

1.2 Couette Flow 

It is a type of flow in which the displacement in the fluid is caused due to the movement of the 

plate or wall with which fluid is in contact. Due to no slip condition, the fluid which is in contact 

with the moving plate also moves with the same velocity. As seen in fig 1.1 the bottom plate 

with which the neo-Hookean solid is attached remains fixed and the top plate with which the 

power-law fluid is in contact is moving with velocity V in x direction with respect to the fixed 

plate. Hence shear stress sets up the flow field. This type of flow is known as Couette flow. 
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1.3 Power-law fluid 

It is clear from the previous discussions that the objective of this thesis is to determine the affects 

of shear thickening and shear thinning for the stability of flow past deformable solid. Since 

power-law fluid model is the simplest constitutive model equation that captures a shear rate 

dependent viscosity so we use power-law model to study the effects of shear dependent 

viscosity. 

A power-law fluid is a type of generalized Newtonian fluid for which the shear stress is given by 

     
  

  
 

 

 

Where   is the shear stress of the fluid, k is the flow consistency constant,   
  

  
  is the velocity 

gradient or the shear rate which is perpendicular to the plane of shear and n is the power-law 

index. 

The quantity 

        
  
  

 

   

  

is the effective viscosity which is a function of the shear rate or the velocity gradient. The above 

model is also known as the Ostwald de Waele power law model. This relationship is used 

because of its simplicity, but it approximately describes the behaviour of a real non-Newtonian 

fluid. This point can be justified by taking an example, if n is kept less than one, then the power 

law model predicts that the effective viscosity would decrease with increasing shear rate 

indefinitely, requiring a fluid with zero viscosity as the shear rate approaches infinity, and  

infinite viscosity when the fluid is at rest. This is in contradiction because a real fluid always 

possesses a minimum and a maximum effective viscosity whose value can’t be zero or infinity. 

Therefore, the power law model is only used to describe the fluid behaviour depending on the 

range of shear rates at which the power-law coefficient n is properly fitted. Other than power-law 

model there are certain other models which also describe the flow characteristics and behaviour 

of shear thickening and shear thinning, but the problem with other models is they do so at the 

expense of simplicity, so we are using power law model to describe fluid behaviour. 

http://en.wikipedia.org/wiki/Generalized_Newtonian_fluid
http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Viscosity
http://en.wikipedia.org/wiki/Non-Newtonian_fluid
http://en.wikipedia.org/wiki/Non-Newtonian_fluid
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Power-law fluids are generally subdivided into three different types of fluids based on the value 

n i.e. power-law index. 

 

 

 

 

 

Fig 1.2 Types of fluid 

1.3.1 Pseudoplastic 

Pseudoplastic or shear-thinning fluids are the one which have a lower apparent viscosity 

at higher shear rates, and these are generally the solutions of polymeric substance. It is usually 

assumed that the large molecular chains tumble at random and affects huge volume of fluid 

under low shear, but they gradually align themselves in the direction of increasing shear and 

produce less resistance to the flow. 

  Shear thinning property is found in many complex solutions such as blood, ketchup, 

paint, lava, nail polish, and whipped cream. This property is a common property of many 

polymeric solutions and molten polymers. 

 

n                 Type of fluid 

< 1 Pseudo plastic, shear thinning fluids 

= 1 Newtonian fluids 

> 1 Dilatants, shear thickening fluids 
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1.3.2 Dilatant Fluid 

Dilatant or shear-thickening fluids are the one for which apparent viscosity increases with 

increasing shear rates. These are rarely seen, uncooked paste of cornstarch and water is the 

example of shear thickening or dilatant fluid. With high shear stress in the paste water is 

squeezed out from the starch molecules, these are able to interact more strongly. Another 

example of dilatant fluid is sand completely soaked with water. It is easily seen that when we 

walk on wet sand a dry area appears below our foot. 

 

1.4 Neo-Hookean Solid 

The neo-Hookean solid model is the generalisation of Hooke's law and it is also valid for small 

and finite deformation-gradients. The stress-strain relationship for a neo-Hookean deformable 

solid is nonlinear. 

As we are dealing in this thesis with the issue of changes in stability characteristics of fluid flow 

past deformable solid, so it’s very important to appropriately choose a model which can 

accurately captures the characteristics and behaviour of deformable solids. Many of the research 

papers in the field of flow past deformable solid have employed a linear constitutive relationship 

to describe the characteristics of deformable solid layer. But the problem of using the linearised 

elasticity is that it is only applicable when the deformation gradients in the solid layer are small 

as compared to unity. If the deformation gradients are large, then this linear elastic model can’t 

be used to predict the dynamic behaviour of deformable solid and it is quite necessary to use a 

frame invariant model which takes into account of the nonlinearities between stress and strain in 

the soft solid. Since the stress strain relationship for neo-Hookean deformable solid is nonlinear, 

as a consequence of this neo-Hookean model exhibits a first normal stress difference. On the 

other hand, the first normal stress difference is zero for linear viscoelastic model. 

 

Neo-Hookean solid model is one of the simplest model which gives nonlinear constitute relation 

for elastic solids and accurately captures the behaviour of deformable solids in the real system 

like rubber reasonably well. In the present thesis, we use neo-Hookean solid model to represent 

the dynamics of deformable solid layer. 
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CHAPTER - 2 

LITERATURE REVIEW 

 

Yih (1967) and Hickox (1971) first studied the stability of Couette flow of two Newtonian fluids 

with fluids having different viscosities. They performed a longwave asymptotic analysis and 

concluded that viscosity stratification is sufficient to cause the interfacial instability, at any non 

zero Reynolds number. 

Silberberberg and co-workers (1987) have studied the flow of Newtonian fluid through tubes 

with gel coated walls and concluded that the pressure drop required for maintaining the fluid 

flow is higher than what required for rigid walled tubes. This result is valid if Reynolds number 

is much below the transition Reynolds number. This increased pressure drop is a result of 

increase in dissipation of energy due to the oscillations at the interface. 

Fredrickson and Kumaran (1994) have studied the Couette flow of Newtonian fluid past linear 

viscoelastic solid and shown that as the work is done at the interface by the mean flow, 

instabilities is caused due to this work done or the energy transfer from mean flow to 

fluctuations. They concluded that the interfacial waves become unstable beyond a critical 

dimensionless strain. 

Gkanis and kumar (2003) investigated for Couette flow of a Newtonian fluid past neo-Hookean 

deformable solid. They carved out the linear stability analysis to show how Newtonian fluid flow 

over a Neo-Hookean solid can become unstable due to the fact that waves may propagate along 

the solid–fluid interface. They have assumed inertial effects to be negligible as they were 

working creeping flow limit. In the base state solution of the solid they found that Neo-Hookean 

solid exihibits a first normal stress difference, and this leads to instability behaviour that is 

significantly different from what is observed in using a linear constitutive equation. This 

highlighted the importance of using a nonlinear constitutive equation for solid layer. While 

neglecting the interfacial tension, the first normal stress difference which the Neo-Hookean solid 

is exhibiting gives rise to a new short-wave instability. They concluded that for thin solids, high-

wavenumber modes is getting unstable first for a wider range of wavenumber with the increasing 

strain imposed on the system, while for thick solids, it was shown that a small range  of first 

order wavenumbers becomes unstable first.  
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They had compared the results by using the linear elastic model and neo-Hookean model and 

found that Neo-Hookean model leads to larger values of the critical wavenumber and smaller 

values of the critical imposed strain, but this difference rapidly minimizes as the solid thickness 

goes on increasing. The result of this study highlights the importance of using nonlinear 

constitutive model when modelling for elastohydrodynamic instabilities accounting for large 

displacement gradients. 

 

Gkanis & Kumar (2005) have studied the “effect of pressure gradients on the stability of 

creeping flows of Newtonian fluids in channels lined with an incompressible and impermeable 

neo-Hookean material”. They concluded similarly as Gkanis and kumar (2003) that it is 

necessary to account for non linear rheological behaviour in the solid layer. Further, they pointed 

out that the stability characteristics of pressure driven flow past a neo-Hookean solid is 

significantly different from that of Couette flow past a neo-Hookean solid. 

  

Gaurav and Shankar  (2007) have studied for stability of Newtonian liquid flow down an 

inclined plane lined with a deformable solid layer. They carried the analysis for both linear 

viscoelastic and neo-Hookean solid at zero and finite Reynolds number. At finite Reynolds 

number, they concluded that for both the solid models, free-surface instability in flow down a 

rigid plane can be suppressed at all wavelengths by the deformability of the solid layer. They had 

shown that the neutral curves which were associated with instability suppression were found to 

be identical for both linear viscoelastic and neo-Hookean solid models. It was concluded that a 

soft elastomeric coatings offers a passive route to control and suppress the interfacial 

instabilities.  

All the work mentioned above used Newtonian fluid. There is limited work done for the case of 

non Newtonian fluid. If the fluid is non Newtonian, it will show the properties of shear 

thickening and shear thinning. These additional factors may also amplify or suppress the surface 

instabilities. So in thesis we are interested in knowing the effects of these additional parameters 

on the stability of the system. Below are the some works which have been done using the non 

Newtonian fluid. 

Khomami (1990) studied the “interfacial stability and deformation of two stratified power-law 

fluids in plane Poisseuille flow”. It was observed that dependence of viscosity on shear rate has a 
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huge affect on the interfacial stability regime in comparison with the effective viscosity change. 

They also concluded that effect of shear thinning viscosity mainly shows the effects in the less 

viscous fluid if the viscosity ratio is less than one, while if viscosity ratio is greater than one then 

shear thinning in both the fluid layers affects the stability regime, this effect is generally shown 

at small depth ratios.   

Waters (1983) and Waters and Keeley (1987) studied the effects of shear thinning only and 

combined effect of shear thinning and elasticity. They had done the analysis using longwave 

asymptotics method. They concluded that the presence of shear thinning in the fluids has 

significant effect in the stability of the system and while considering elasticity they found that it 

can stabilize or destabilize the system in the presence of viscosity stratification. 

Our objective in this thesis is to find the effects of shear thickening and shear thinning on the 

stability of plane Couette flow past neo-Hookean deformable solid and to find all the other 

parameters which can affect the stability of the system. We start our work with the problem 

formulation in which we write the governing equations for both fluid and solid, and then we 

carried out further to find out the base state solution. In chapter 4 we will be linearising our 

equations using the linear stability analysis. In chapter 5 we will be using spectral collocation 

method so as to solve our linearised equation in Matlab.  
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CHAPTER - 3 

PROBLEM FORMULATION 

 

3.1. System configuration: 

 The system we consider consists of a neo- Hookean solid of thickness HR fixed onto a 

surface at z = -HR and a layer of power-law fluid of thickness R in the region 0 < z < R as shown 

in the figure 3.1. The fluid is bounded by a solid plate at z = R which moves at a constant 

velocity V in the x direction. Small perturbations to the interface and other dynamical variables 

are imposed on the base state variables and we study in this thesis the growth or decay of these 

perturbations. If the perturbations grow with time, we call it as an unstable configuration while if 

they decay with time it is referred as stable configuration. 

Assumptions : 

 Incompressible power-law fluid 

 Impermeable and incompressible Neo-Hookean solid 

 Two dimensional system 

 Top plate is rigid and is moving steadily with velocity V in the x direction 

 Densities of power-law fluid and Neo-Hookean solid are assumed to be identical. 

 

Fig 3.1: System configuration 
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3.2. Governing equations for power-law fluid 

1) Conservation of mass 

           

Superscript       shows the dimensional variables 

                                                                       
   

 

   
 

   
 

   
                                                        (1)     

2) Conservation of momentum (Navier Stokes equation) 

x- momentum 

      
   

 

   
   

  
   

 

   
   

    
 

     
   

  

   
  

   
  

   
                         (2) 

z- momentum 

      
   

 

   
   

  
   

 

   
   

    
 

     
   

  

   
  

   
  

   
                          (3) 

Where dimensional stress    is   

        
         

 

 
    

       

    

Rate of strain tensor    

                

Second invariant of the rate of strain tensor     

     
 

 
                   

Where ,  

  
  = fluid pressure 

    = fluid velocity 

  = identity tensor 
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    = is apparent viscosity and it is replaced by   as in Newtonian 

fluid. 

   = is the consistency constant its value is dependent on power-law index n , for 

keeping the scope of this work reasonable we set the value of 'm' is set as unity. 

 

 for shear thinning fluids, n  <  1 

 for shear thickening fluids, n  > 1 

                 

    

   
 

   

   
 

   

   
 

   

   
 

   

   

   
 

   

   
 

   

   
 

   

   
 

   

  

                                                         
 

   
 

   

   
 

   
 

   
 

   

   
 

   
 

   
 

   
 

   
 

   

                                   (4) 

           

Therefore we get 

tr   =   
   

 

   
 

   
 

   
   

Where tr is the trace of the matrix, which is sum of the diagonal elements. From conservation of 

mass, equation no. (1) 

We get,  tr    =  0 

                                                                       (5) 

 Now, 
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we will show in the next chapter, chapter no. (4) when we linearised all equations that we neglect 

the higher order perturbation terms, which would simply mean we are interested in state of vey 

small disturbances. 

Hence we get                      
   

 

   
 

   
 

    
 

                                     (6) 

     
 

 
                    

from equation no (5) and (6) we get  

     
 

 
      

   
 

   
 

   
 

   
 

 

  

     
 

 
     

   
 

   
 

   
 

   
 

 

  

          
   

 

   
 

   
 

    
 

                                                        (7) 

        
      

 

 
   

       

    

from equation no. (4) and (7)  
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Substituting   
   and   

   in equation no. (2), we get 

X- momentum 
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As we will be dealing with the linear stability analysis , so the higher order perturbation terms 

are neglected. So the terms which we neglect are 
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So the above equation reduces to  

   
   

 

   
   

  
   

 

   
   

    
 

      
   

 

   
    

 

       
 

   
 

   
 

   
 

    
     

 
    

 

       

   

 

       
   

   
 

   
 

   
 

    
   

 
    

 

       
    

 

                                                   (11) 

Now, for Z-momentum, substituting   
   and   

   from equation (9) and (10) in 

equation (3) 

  
   

 

   
   

  
   

 

   
   

    
 

   
  

 
 

       

 

       
 

   
 

    
   

 

    
 

   
 

       
     

 

       
 

   
 

   

   
 

    
     

 
   

 

        

Upon simplification 

  
   

 

   
   

  
   

 

   
   

    
 

       
   

 

   
    

 

       
  

   
 

   
 

   
 

    
   

 
    

 

       
    

 

            

                 (12) 

3.3. Non-dimensionalisation of fluid equations : 

Dimensional variables and quantities are non -dimensionalized using following scales 

'R ' for lengths and displacements; 

' 
  

 
 ' for time 

'   ' for pressure and stresses, E is the shear modulus of the neo-Hookean solid. 

  
  

 
                 

  

 
          

  
  

 
          

  

 
  

  
  

 
           
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Now substituting the above dimensional variables in terms of non dimensionalised so as to 

convert all the governing equations into non dimensionalised equation. 
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X momentum 

  
   

 

      
  

   
 

      
    

 

      
   

 

       

 

       
 

   
 

    
   

 

    
     

 
    

 

          

 

       
   

   
 

    

   
 

   
 

   

 
    

 

       
    

 

      
   

 

     
 

    

  

 
  

 
 

 
    

  
   

 
    

  
  

   
 

    

  

 
    

  
 

   
    

    

   
     

 

   

  
 

    

  
  

   
 

 
    

  

   
 

     

 
      

  

        

        

 

       
   

 
    

  
 

   
 

 
    

  

   
 

   

 
      

  
  

       
      

  

      
     

 
     

  
 

 
   

  
    

     

  
   

     

  
   

   

  
    

 

       
 

 

  
 

 

 
     

  
 

   

  
 

     

 
      

   
 

   

 

       
  

 

  
 

 

  
     

  
 

   

  
 

   

 
      

    
    

    
   

 

   
 

  
 

 

                      Parameter, in this thesis its value is set to unity in order to 

keep the scope of this work reasonable. 

   
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Multiply the above equation on both L.H.S and R.H.S by 
   

  
 

We get 

   

  
 

   

  
    

     

  
   

     

  
  

   

  
  

   

  
   

     

  
 

   

  
 

     

 
      

        
     

  
 

   

  
 

   

 
      

   
 

    

    
    

Where,   Reynolds number     
   

  
       and      

   

  
 

Hence 

  

 
 

   

  
    

     

  
   

     

  
   

   

  
    

     

  
 

   

  
 

           

   
    

     

  
 

   

  
 

   

 
      

   
 

    

    
                          (14) 

 

Z momentum (Non Dimensionalisation) 

  
   

 

   
   

  
   

 

   
   

 
   

 

   
    

   
 

   
   

 

 

       

  
   

 

   
 

   
 

   
 

   

 
    

 

       
    

 

      
  

Similarly we get 

  

 
 

   

  
    

     

  
   

     

  
   

   

  
    

     

  
 

   

  
 

           

   
    

     

  
 

   

  
 

   

 
      

   
 

    

    
                (15) 

 

This completes the governing equations of the power-law fluid. Now, we move forward to write 

the governing equations for the gel i.e. neo-Hookean solid. 

 

3.4 Governing equations for Neo Hookean solid 

 

Spatial position of a material particle given by vector X = (X, Z) at time t = 0. This initial 

unstressed state is chosen as the reference configuration in the Lagrangian method for describing 

the motion of particle. Let the solid body be deformed to a new state at a later time t so that each 
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of the material particle moves to a new position with respect to its position in initial unstressed 

(reference) configuration. In this new deformed state, the current positions of material particles 

are denoted by (   ). Note that the independent variables are the spatial position in reference 

(unstressed) configuration (X = (X, Y, Z)) and time t.  

 

(i) Conservation of mass, continuity equation 

       

                                                               

    

  

  

  

  
  

  

  

  

  

Therefore  

          
  

  
 
  

  
   

  

  
 
  

  
                                      (16) 

 

(ii) Conservation of momentum, Navier Stokes equation 

 

X momentum 

      
   

   
 

Z momentum 

      
   

   
 

 

where T is the piola kirchoff stress tensor,          

             

 

                

  

  

  

  
  

  

  

  

                                    

  

  

  

  
  

  

  

  

                             

  

  
 

  

  

 
  

  
    

  

  

  

 

X- momentum 
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                            (17) 

Z- momentum 

      
   

   
 

             
   

   
 

                       
   

   
 

         
         

   

   
 

 

  
       

    
 

  
       

    
 

  
    

   
 

  
    

     
   

   
 

 

  
    

  

  
  

 

  
   

  

  
  

 

  
 
  

  
  

 

  
 
  

  
   

   

   
 

                                       
   

  
 

  

  
  

   

  
 

  

  
  

   

   
 

   

   
  

   

   
                          (18) 
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3.5 Non dimensionalisation of Neo-Hookean solid equations 

Using the same scales we used earlier, we non dimensionalized the governing equations in the 

same manner.  

X-momentum 

                                    
   

  
 

  

  
  

   

  
 

  

  
  

   

   
 

   

   
 

  

 
 

   

   
                    (19) 

z- momentum 

                                    
   

  
 

  

  
  

   

  
 

  

  
  

   

   
 

   

   
 

  

 
 

   

   
                         (20) 

 

3.6  Base state solution  

It is the steady state solution. The total fluctuation at the interface is the sum of base state 

solution and the perturbations. Superscript overbar is used to represent the steady state quantity 

For base state  
    

  
 =  

    

  
    

    

  
  =     

    

   
 

   

  
   0              (steady & unidirectional flow) 

 

3.6.1. Base state solution of Power-law fluid :  

X momentum 

  

 
 

    

  
     

      

  
    

      

  
   

   

  
    

      

  
 

    

  
 

            

   
    

      

  
 

    

  
 

   

 
       

   
 

     

    
   

     
      

  
 

   

 
       

     = 0 

For a Couette flow, velocity gradient cannot be equal to zero, so the term 
     

   
 should be equals 

to zero. 
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 
     

       

 
    

  
 =    

              

Boundary conditions 

At z = 1 ,   
     ,  where    is the velocity of the top plate (x direction) 

Non dimensionalizing    

   
  

 
 

  
   

  
    

  is the nondimensional shear rate. 

Therefore at z = 1;        

at z = 0 ;       

Substituting the above boundary conditions we get 

                    

                                                                   (21) 

      
      

      
        

    

  
   

    

  
 

     

  
  

    

  

    

  
 

    

  
    

  
 

    

  
 

    

  

   

       
      

      
                 

  
  

   

       
         

        
                              (22) 
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3.6.2. Base state solution of Neo- Hookean Solid :  

 
      

  
 

   

  
  

      

  
 

   

  
  

    

    
    

        

 
    

   
     

 
   

  
 =    

             

Boundary conditions 

                

Tangential stress at z = 0 

                          

      
    

  
   

    

  
 

 

 =    
   

  
  

   

  
   

       
    

  
 

 

     
   

  
               

       
    

  
 

 

     
   

  
              at z = 0    

Applying the boundary conditions we get 

 
   

  
           

                

                      

                                  (23) 
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            
  
  

     

   

  

   

  
   

  

   

  

     

   

  

   

  
   

  

   

  

  

            
  
  

      
   

  

  
     

  
   

  
 
  

            
  
  

     
   

   

  
 

    

  
   

  
 

     

      
          

   

  
 

    

  
   

  
      

     

              

      
     

   

  
 

    

  
   

  
   

       
                   

           
     

      
                   

           
               (24) 

 

Equation (24) shows the base state solution of the Neo-Hookean solids displacement field. It is 

clearly seen that as the shear rate is increased the magnitude of displacement gradient of solid 

also increases. This shows that neo Hookean model gives rise to a first normal stress difference, 

                      , which is not observed when linear viscoelastic solid model is used. 

Since solid deformation fields and the base state velocity are same for both linear viscoelastic 

solids as well as neo-Hookean solid, the main difference between both models is in the base state 

solution of the stress fields; this difference surely influences the stability of the system. 
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    CHAPTER - 4 

      LINEAR STABILITY ANALYSIS 

 

To study the stability of the base state configuration to small amplitude perturbations, we 

express each field variable as the sum of the base term and a perturbation term. A normal mode 

expansion is then applied to the perturbation terms so that each field variable can be written in 

the form 

Small perturbations (denoted by primed quantities) are imposed to the fluid velocity field 

        
   and other dynamical variables in the fluid and the solid displacement field are 

similarly          
  perturbed in order to examine the stability of this fluid-gel system. The 

evolution of these small perturbations to the base state is determined by this analysis.  

The perturbation quantities are expanded in the form of Fourier modes in the x-direction, and 

with an exponential dependence in time 

  
                                  

  
                                   

where, 

  is the wave number. (inversely proportional to the wavelength) of perturbations, 

  = growth rate 

                  are eigen functions determined from the conservation equations 

        
                            

        
                         

                                

The linearised equation for the fluid displacement field is calculated as follows: 

Now governing equations are converted in terms of perturbations: 
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4.1. Linear Stability analysis of fluid equations 

Conservation of mass, from equation no. (13) 

   

  
 

   

  
            

 
 

  
                

 

  
                               

               

     
     

 
               (25) 

 

X-momentum, from equation no. (14) 

  

 
 
   

  
    

   

  
   

   

  
 

  
   

  
   

    

   
 
   

  
  

   

  
 

   

     
   

  
  

   

  
 

   

 
    

   
 

    

    
  

 
  

 
                        

                                                          (26) 

 

 

Z –momentum, from equation no. (15) 

  

 
 

   

  
    

   

  
   

   

  
   

   

  
   

    

    
   

  
  

   

  
 

   
     

   

  
  

   

  
 

   
 

    

    
    

    
    

 
  

 
                    

    

  
                         

                          (27) 

 

From equation no. (26)  

     
 

  
                                        

  

 
                         

  
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  
    

  
 

 

  
                                         

  

 
                  

                  

From equation no. (25) 

     
     

 
 

  
    

  
 

 

  
                

 

 
                          

  

 
               

                 

Substituting the value of  
    

  
 in z momentum equation (27) , 

  

 
                   

 

 
                                             

   

 
                                                                          

 

Rearranging the above equation, we get 

 

      
  

 
            

 
                                              

   
  

 
                                                               

                  

 

 

     
  

 
                     

  

 
            

 
                   

                                                                  

 

     
  

 
                     

  

 
            

 
    

                                                                     (28) 

 

This is the fourth order Orr Sommerfield type equation for the power-law fluid. 
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4.2 linear Stability analysis of neo-Hookean solid governing equations 

 

                      

Rewriting the various variables: 

                                          

                         

         
                           

Continuity equation, from equation no. (16) 

 

 
 

  
                                

 

  
                   

 

  
   

                             
 

  
                    

                                                      

                                                    

                      

 

    
            

  
        

    

 
                                                                          (29) 

X- momentum, from equation no. (17) 

 
   

  
 

  

  
  

   

  
 

  

  
  

   

    
   

    
  

 
 

   

        

  
 

  
                            

 

  
                     

 

  
         

                 
 

  
                  

  

   
                                 

  

   
                                 

  

 
 

  

                     

                   

On simplification 



27 
 

                    
  

   
      

  

 
                   (30) 

       
 

  
   

  

 
                           

Using equation no. (29) 

     
 

  
   

  

 
             

    

 
              

    

 
               

    

 
       

     
 

  
   

  

 
            

  

 
                                    

 

 
           

    
 

   
   

  

 
            

  

 
                                         

                                                                                                                            (31) 

 

Z momentum, from equation no. (18) 

 
   

  
 

  

  
  

   

  
 

  

  
  

   

    
   

    
  

 
 

   

   
      

  
 

  
                                  

 

  
                              

      
 

  
                                

 

  
                              

       
  

                       
  

                       
  

 

  

   
                         

On simplification 

                                  
  

 
                  (32) 

Using equation (31), we get 

 
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 
  

 
               

  

 
                   

  

 
              

  

 
           

           
  

 
                                                         

                                              

 

 
  

 
               

  

 
                   

  

 
              

  

 
           

  

 
        

                                                                  

                 

 

  
  

 
            

  

 
                  

  

 
        

  

 
                    

                                                                         

 

 

  
  

 
            

  

 
                  

  

 
                        

                                                                

                                  (33) 

 

the above equation is fourth order differential equation for the Neo-Hookean solid. 

 

4.3  Linearized boundary conditions: 
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Taylor's expansion- 

                     

  
 
   

                          ;   is a dynamical quantity. 

At interface, i.e. at z       : 

The stress continuity conditions at the interface        are linearized about the unperturbed 

interface at    . 

        

                                                         (say)  

Normal to the perturbation is defined as, 

  
  

    
  

                         

                 

                                                        (g is a small perturbation) 

                

Normal in the lower part of perturbation will be 

                

As            ;                      t is the corresponding tangent to the perturbation 

                 

where,    and    are the unit vectors in x and z directions, respectively. 

So, we have 
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Tangential stress- 

                                       

                                                    

                                                                                                       (linearization) 

                                           

    

Normal stress- 

                                         

                                                    

                                                                                (linearization) 

                                            

 

Continuity of velocity at       : 

(i)  z-velocity 

  
        

   
          at         

         

                                               (Taylor's expansion) 

    
       

                       

   
                                                                                (linearization)               

                                 (34) 
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(ii)  x-velocity 

  
        

   
                                                             at         

         

                                                (Taylor's expansion) 

    
 

   
            

                                   

    
 

   
                                   (linearization) 

   
     

            
            

                                                             (                 ) 

         
                 

         
                      

                                   (35) 

From equation no. (25) and (29)  

 
     

 
                 

    

 
    

                               

                             0                                                                 (36) 

 

Continuity of stresses at       : 

(iii)  Linearized tangential stress balance  

                                                                             at        

                                    similarly                                       
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From equation number (8), (9) and (10) 

                  
             

   
 

  
   

   
 

  
 

     

 
   

 

  
  

                       
   

 

  
   

   
 

  
 

 

  

                   
            

   
 

  
   

   
 

  
 

     

 
   

 

  
  

 

                               

                         
   

 

  
   

   
 

  
 

 

                   
            

   
 

  
  

 
   

 

  
 

     

 
   

 

  
             

             
   

 

  
   

   
 

  
 

     

 
   

 

  
            

                            
 

 
 
   

 

  
  

 

 
 
   

 

  
    

    

                                     

                 
      

  

  

 
                

  

 
  

              
  

  

 
  

  

  

 
       

  

 
       

                 
      

  

  

 
  

                   
  

  

 
  

  

  

 
       

  

 
                        

      
  

  

 
   

          
      

  

  

 
                

  

 
     

                                 

  

 
 

  

  

 
       

  

  

 
       

  

 
    

 

 



33 
 

                                                                            

           
 

 
 
   

 

  
  

 

 
 
   

 

  
             

  

 
 

  

  

 
       

  

  

 
       

  

 
   

           
 

 
 
   

 

  
  

 

 
 
   

 

  
            

  

 
 

  

  

 
       

  

  

 
       

  

 
    

on simplification 

                                                                               

Using equation no. (25) and (29) 

         
     

 
                           

    

 
                   

                     

                                                      

                                       (37) 

 

(iv) Linearized normal stress balance at       : 

                                                                at        

                                                 
  

             

                 
            

   
 

  
   

   
 

  
 

     

 
   

 

  
                  

   
 

  
  

 
   

 

  
 

 
           

   
 

  
   

   
 

  
 

 

             
      

  

  

 
          

  

  

 
  

  

  

 
 

      

  

 
         

  

  

 
  

  

  

 
       

  

 
           

   

   
       

on simplification 

                                                                                     (38) 
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Using equation no. (26) and (31) we get 

                                        
    

 
                     

  
  

 
             

  

 
                                                          

                    

Arranging the above terms  

                                         
    

 
      

                          
  

 
                          

           
  

 
                                                                                (39)   

 

(v)    No slip condition at z = 1 

        

       using equation no. (25),         =  D             (40) 

 

(vi)   No slip condition at z = -h 

       

      using equation no. (29)       = D                                   (41) 

 

Hence we are left with two fourth order Orr Sommerfield eqn (equation no. 28 and 34) and eight 

boundary conditions. 

     
  

 
                     

  

 
                                       

                       

 

  
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No slip condition at z = 1 

        

 D      

No slip condition at z = -h 

       

 D     

At interface i.e. at z = 0 

                                                      
    

 
      

                          
  

 
                              

  

 
                         

 

                             0 

 

                                                                     

 

              

 

We will be solving the above equations using pseudospectral also known as collocation method for 

solving in Matlab and similarly we will also be using Mathematica to solve the fourth order 

differential equation. 
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CHAPTER - 5 

SPECTRAL COLLOCATION METHOD 

 

For solving the differential equations in Matlab, We need to opt this method so as to find out the 

eigen values. We need to convert the variables in the y-domain between (-1,1).   

 

5.1 Power-law fluid  

Orr-Sommerfeld Equation (from equation no.28) 

     
  

 
                     

  

 
                                               

               

 

     
  

 
  

         
  

 
            

                             
               

              

 

Converting the above Orr Sommerfield equation into Y - domain 

  
   

 
                       (42) 

At            

And at             

Also,   
  

  
                   

  

 
     ;           

     

 
      ;            

     

 
      ;       

      
     

  
                 (43) 

 

Converting to Y domain, using equation (42,43) 

      
  

 
  

         
  

 
              

                          
   

 
    

   
 
 

            
   

 
            

 

      
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Let  

         

  
             

  
             

Hence we get, 

      
  

 
       

  

 
                                 

                          
   

 
                           (44) 

 

                                                       

                                                             

                                                                                                           (45) 

 

5.2 Neo-Hookean Solid 

Now, converting the solid equations into Y domain 

Orr-Sommerfeld Equation (from equation no. (34)) 

 

 
  

 
            

  

 
                  

  

 
                                       

                                                 

 

 
  

 
        

     
  

 
                   

  

 
                     

              
     

               
                                    

 

Converting to Y domain 

At  z = -H      y = -1 

And at z = 0   y = 1 

Therefore, 

          
   

 
        

    
 

 
        ;           

       

 
      ;           

       

 
      ;          

       

  
                        (46) 
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Using the above equation, converting the Solid Orr Sommerfield equation 

 

 
 

  

  

 
        

    
 

 

  

 
                   

  

 
                   

  

  
  

     
  

  
        

     

 

                 
    

 

 
                               

 

Let                                                                            
 
 

  
        

  
 
 

  
        

  
 
 

Eq. transforms to, 

      

 
       

 
  

  

 
               

 
  

  

 
                        

 
  

           
 
                   

 
             

 
         

                                  (47) 

 

                                                              
 

                                                     

                                                          
     

 
                                                      

                                                          
     

 
                           (48) 

 

Now converting the boundary conditions into y-domain 

                   

                     

             

                   

                               0 

          
 

 
                       0 

                                     0 

            
 

                   0 
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                                                                     

                 
                    

                                            

                 
                  

 

    
           

 

 
                                

                             
 

                   
 

 

                    

 

 

         
                                 

    

 
                  

    

        
    

  

 
                                        

  

 
                         

          
                                   

    

 
               

 

   
 

 
   

 

          
    

 

 

  

 
            

 

 
                   

  

 
                          

                                   
    

 
            

 

     
 

           

 

 

  

 
          

 

 
                

  

 
                         

                                         
    

 
      

            
 

          
 

      

 
       

 
        

 
 

             
  

 
                             

 

                     

                   

 

                   

            
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CHAPTER - 6 

RESULT AND DISCUSSION 

 

As stated earlier that four dimensionless parameter govern the problem. These parameters are the 

imposed shear rate  , solid to fluid thickness ratio, interfacial tension and power-law index. In 

this section, we will now be showing the parametric study i.e., how the system stability is 

affected if any of these parameters values are altered and the effects of shear thickening and 

shear thinning in the stability of the system. With two fourth order differential equations and 

eight boundary conditions, we solve the equations using symbolic package Mathematica 9.0 and 

Matlab. 

As we had performed linear stability analysis, we study the stability and instability depending 

upon the value of   . This   is a complex number consists of real and imaginary parts.  

 

       
                           

                                                                         

substituting   in the above equation , we get 

 

  
                                  

 

  
                                      

  
                                           

 

from  De Moivre's theorem 

    

                    

Hence we get, 

  
                                                    

 

                               has a range [-1,1] So the growth and decay of 

perturbation depends on the imaginary part of c. Hence flow is stable if    is  negative and its 

unstable if the value of    is positive. 



41 
 

6.1 Growth rate curves : 

 

We start our discussion showing the effect of power-law index, n on the growth rate curves. It is 

important because power-law index is the only parameter which is going to decide whether fluid 

is shear thickening or Newtonian or shear thinning. Depending upon our application, i.e., 

whether we need stable or unstable mode for the system, we can choose the type of fluid. 

Fig 4.1 shows the plot between the growth rate and the wavenumber for thick solid (taking H = 

10) at various values of power-law index n. in this plot, shear rate is the critical shear rate for n 

=1, here the critical condition is meant for the value of c imaginary is either less than or equal to 

zero for all values of wavenumber.        

 

Fig 6.1 Growth rate vs. the wavenumber, when T=10,   =0.34245, H =10, m=1, for different 

values of power-law index. 

From this plot we can conclude that for thick solids as the value of n is increasing, i.e., fluid is 

getting shear thickened and the system is tending towards more and more stable. 

 

6.2 Variation of shear rate     and thickness ratio     

We are now interested to know the variation of shear rate in the stability of the system for 

thin and thick solids. First of all we plot for Newtonian fluid for different values of shear 

rate, as it would be helpful further for selecting the value of shear rate in the plots where 

we show the variation of power-law index for thin and thick solids. 
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First plot is imaginary part of C vs. wavenumber k, n=1, H=2 and neglecting the interfacial 

tension. 

 

 

Fig 6.2 Imaginary part of C vs. wavenumber k for n =1, T=0, H=2 and different values of 

shear rate. 

 

As we are interested in showing the both stable and unstable modes for a particular 

configuration, So for H=2 we plot taking   = 3 , as shown in figure the orange curve shows for 

this value and it is more unstable for a large range of wave number. 

 

From this plot the points which we can note are for constant thickness ratio, we can find unstable 

modes even with the variation of  . As the value of        c                        c      

more and more unstable although it can also be noted that the range for which the system 

is becoming unstable goes on decreasing as the shear rate increases. For this particular 

configuration i.e., H=2, T=0, n=1, the critical shear rate is somewhere around 1.5. 

 

Fig 6.3 shows the plot for more thick solid (H=5), n=1, T=0 and we find that same 

c  c u                                              c                u              c     c   

find the unstable modes with the variation of power-law index can be selected as 2 from 

this plot for H=5. 

    c    c              c                      qu        55  
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Fig 6.3 Imaginary part of C vs. wavenumber k for n =1, T=0, H=5 and different values of 

shear rate. 

 

 

Fig 6.4 Imaginary part of C vs. wavenumber k for n =1, T=0, H=10 and different values of 

shear rate. 

 

From this plot the shear rate required to show the unstable modes for the variation of power-law 

index is sufficiently 0.5. The critical   in this case is calculated and found to be 0.34245.  

 

So from the above three plots we can conclude that with increasing shear rate system becomes 

more and more unstable and further we can see that for first plot when H = 2 critical shear rate 
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was around 1.5, in second plot when H = 5 critical shear rate was around 0.55, and in third case 

when H = 10 critical shear rate is found to be 0.34245. This shows that as the thickness of the 

solid increases, the critical shear rate goes on decreasing.  

 

6.3 Variation of power-law index, n 

 

 Now we will be showing the effects of shear thickening and shear thinning in the stability 

of Couette flow. For different thickness ratio we have decided what values of shear rate have to 

keep for making the system unstable at most values of power-law index. 

Fig 6.5 I                 C          u                     H                    u      

power-law index, n 
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Fig 6.6 I                 C          u                     H                    u      

power-law index, n 

From the above two figures the conclusions that can be drawn are, as the value of power-law 

index goes on increasing i.e. as fluid is getting shear thickened and system is becoming more and 

more unstable. Moreover, changing n from shear thickening to shear thinning fluid it is seen that 

the instability mode is moving from a low wavenumber mode to a high wavenumber mode. This 

is due to the jump in the first normal stress difference across the interface. Hence the use of 

power-law model alters the instability mode which is selected, but it does not introduce any new 

modes of instability. 
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CHAPTER 7 

CONCLUSION 

 

We have studied the stability of Couette flow of powerlaw fluid past Neo-Hookean deformable 

solid and investigated the role of shear thickening and shear thinning of fluid in inducing the 

surface instabilities. Following are the conclusions which have been drawn from this thesis. 

 For thick solids, it was seen that shear thickening fluids has a stabilizing effect.  

 

 Keeping all the parameters constant and varying the shear rate, it was found that with 

increasing shear rate system is becoming more and more unstable, and it was also found 

that as the thickness of the solid increases, the critical shear rate goes on decreasing. 

  

 From fig 6.5 and 6.6 it was concluded that as the fluid is getting shear thickened, the 

system is getting more and more unstable, and the instability mode is changing from a 

low wavenumber mode to a high wavenumber mode.  
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