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SYNOPSIS

During the past decade, Digital Computers have
introduced the entirely new approach to the problems,
which were otherwise considered almoet impossible or
had some inuirect methou of attack.

There has been a great endeavour towards computer~
ieing any process that involved considerable labour and
time, for the solution of system problems which different
method of approach.

The aim of this theseis, is to popularise the use of
Digital Computers to the solution of different systems
problems chountered; however, this is merely an attempt
in this direction. _

Several methods exist for the solution of network
problems and are epggeated almosf every year. A compar-
ative study thus is unavoidable and therecfore discussed
herein,

Recently, llonte Carlo methods have been applied to
a variety of problems, hence they have been given a due
pPluce in thie thesis for the solution of the linear net-
work equatione end for the solution of Laplace Equations
which in irregular and multidimensicnal regions, present
a difficult situation with the conventional methd B

The Computer programmes are drawn for both the
above cases anu the result 8 of the problems chusen have

been discussed at par.
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Although several problems, such as setting up of self
end mutual impedences and Load flow stu ies, usually
a8 a practice by System Enginewrs at large, are tried on
A.C, Network Analygzer, the digital methods for the same
are some tiie 8 superior or to soy more convenient as regards
tire, economy, accuracy and with larger data handling
capebilities, and therefore should draw the attention.

The cuthor her e discusses different methods of digitul
approache to the above problems and by taking specific
problems exemplifies some of the salient features of the
seme.,

A study of optimising acceleration in the iterstive

procege has been illustrated.

The computer progremmes for each type of study are

chalked out and tested to run successfullye



1.1 Introdiction
It is a well recognised fact that A.C. Network Analyser

is an invaluable tool for power system engineers for solving
a variety of problems such as Load Flow Studies, short circuit
and stability problems. For quite a long time the system
engineers were carrying out all above etudies on a.c. network
analyser only, but with the advent of digital computer, the
attention has been more or less diverted towards the use of
the computer for solving all those problems which are solved
on a.c network anelyser.

It has been shown (43) that a digital computer of medium
speed and size such as IBM 650, can km compete economically
with the network analyser for system of moderate size for Load
Flow studies vhick ie more complex problem in natur. for its
goluticn. Less cost per compution and increased capacity for
handling the system problems sewums to be main factors in favour
of digital computer. There are two types of problems that
have enccuraged the use of digital computer.

1s Those probleme which were eolved by otler metheods.

In this case they only replace the calculation procedure

to bring in speed end accuracy.

2. Those problems which were never before attempted

because of practical limitations, '

The type 1 includes problems such as the calculation of
tranamiesion line constants, impedances (2) sag calculations,

Load forecasting (6) etc.
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The problems, that were solved on analogue computer or a.c

pnetwork anelygzer am® now being replaced by digital computer
include load flow studies, short circuit calculations (7,8)

and transient stability studies (10)

The type €2) probleme may be the exact probabilistic
determination of generation reserves and the inclusion of
transmiseion losses in the economical dJispatch of power.
Monte Carlo methods may be put under this catagory.

Many erecas of application of digital computer to power system
problems arc not much investiga ed.

The solution of the lightenping problems by exact field
thecry equations, system design optimisation and other
operations research type of stuuies would yield practical
ana useful data by digital analysis,

In short,some of the problems for which digital computer
mgy be used to system engineering include:

1. Network impedance celculations

2. Short circuit calculations

3. Load flow stuuies |

4. Stabdlity studies

5 Lose studies

6. licrowave relaying

T. Preparation of impedance data from equipment

punched card file,
8, Parametric study in bundle concuctor design. In no
. case the ubove 1list may be calkd as complete,
The digital computer may find several applicaticne with the

complete and proper analysis availeble for the problems,
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1.2 Difficulties encountered with Digital Computer Applications

In the begining, the main difficulty in the use of
computer was its availability only but this is no problem
now when more and more new computers are coming up, differing
in sige =nd speed,

As the computer beceme available the problem rested on the
nonavailability of persons computer oriented in thinking.

The problems have to de tried by the persons who know
the digital enalysis and problem itself. The work envolves,
rather a combined effort of a digltal analyst, perheps a
mathematiclan or enginecr expert in numericnl analysis,
computer construction and logic, and the many ramifications
end tricks of programming, and that of a power system engimser
who knows the problem well.

For the most economical, efficient and succescful
applicution cf digital computer, the abcve me ntioned
abilities must be present in the person who attempts the
problems, The difficulty arises when the trained digital

analyst is not evaileble ond also when the power system enginecr
is not computer-oriented.

The right appreach would be to ask power system engineer
to think in terms of flow charts or logic diagrams. He must
be made to learn to orgenise his problem for computer soluticn
und develop optimum logic for the orderly and economical
solution. Finally the system engineer must be well-conver=-
sami with the languoge of the machine also so as to know the
complete set up of the whole process of solution.

However, reference (1) sug. ests the use of ccmputer

programme which actually bridges the gap between the Power
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System Engineers language and the computer language.
In short, for a satisfactory use of computer the system
engineer must first acquire the sbilit§es of a trained
digitsl anelyst which is the only difficult{y present in the
application of digital computer to system problems,

1+3. Comparison of Digital Computer and A.C., Network
Anslyser
Although the digitel computer is finding more and more

wide acceptance as regards solution of system problem
nevertheless the A.C. Netwcrk analyzer still holds the

same recognition. Thie is dwe to the fact that a.c. nét-
work analyser simulates the physical network, the loads

and the sources and so aids the system engineer in perceiving
the actual situation of the problem. The printed ocutput

of digital computer requires interpretation.

There being less chances of human error in recording
the data, the digital computer has an advantage in that respect
becawse the complete recording of input condition and the
information gained in the solution is ensured.

The digital computer is very much economical when few
changes from the base case are to be studied on the <ther hand
much tine may be wasted on a.c. network enalyser. Considerable
time may be spent between the runs in interpreting results
in crder to make decisions as regards what condition must be
studied next and s on.

It is easy to hendle a system dn digital computer with

minimum time waste and eince the charges are to be made on
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actual tims used on computer, the studies conducted may be

quite economical .

In some cases such as loss formula calculations, the
accuracy the a.c. network analyser provides is inadequate
and hence the use of digital computer is justified, in that
it gives desirea accuracye.

Another advantage in favour of digital computer is the
size of the gystems that a large-sized computer ctn hendle,
Usually, the a.cs network snalyzer do not huve cncugh sources
lincs and other components to solve an extensive problem.
Thus the size of the system is restricted by the use of nete

work analyser where a®s computer caen hondle very large systems

also (53)-
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CHAPTER -

NETWORK SOLUTION

2.1 Formulation of Network Equations

Apart from the analogue method of solution of network
problems the digital methods of solution of network are
becoming more predominent with the new techniques of develop-
ing the network equations and thelr solution in generale.

Improvements are often suggested in developing and
formulating the network eéuations.

The present chapter is more concerned with the solution
of network equations rather than formulation of the same,

However in the advent of fest developing techniques a discussion
will not be out of place.

Any network can be defined by means of generalised
loop current eaxations or Mesh Equations and Node Eguaticns
in the form [En] = [Z'-‘][Im] and [In—j = [Y] [Et;j respectively
Here Z° and Y cre the locp or mesh-impedance matrix and the
cut-set admittance matrix respectively., The locpeimpedance
metrix is established by the matrix equation

Cy Z,C = 2Z° (1)
where Zb is the branch impedance matrix and C is one of
several possible loop connection matrices. The loop
connection matrix and its tremnspose C, (or the transpose
conjugate if the elements are complex) define the relationships
between the priuary variables of the networks, branches current
and branch voltages and an arbitrary ae_t of secondary variables,

loop currents and locp voltages,
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In a connected network of n nodes and b branches the

following relationships exist
n= n;-1 (2)
m= be-n (3)

where n is thp nunber of independent nodes and m is the
number of independent loops,.
The relationship between brancﬁicurrents and an arbitrary
set of independent loop current is given by the matrix
equation

CIL, =T, (4)
I, is a column vector of b branch ourrent, ;m is a column
vector of m independent loop currents and C is a bXm loop
connection matrix, The columns of C must be linearly iniependent
and its elements are generally # 1 , O snd =1 Similarly
the node and cut-set aduwittunce metrices could be found
by ¥ =K Y K,

WVhere X is node«branch incidence matrix or cutset
branch incidence matrix and Y, is the admittance matrix.
The usual method for obtaining the independent loop equations
requires defining the network geometry in terms of a tree
and links, Then by the process of cloging one Xxx linK
at a tiie, tracing around the locps thus formed and recording
the polarities of branches, encountered, a lcop connection
metrix ia formed.

Similarly by chcosing proper cut-sets, the cut-set

branch-inci dence matrix can also be built up easily.
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Ordinarily, it is about equally as difficult to determine
e modal conneotion matrix ae it is xw a loop connection
natrix, There is one exception, the modal connection
matrix for the commonly use node-to-datum choice of
no de-pair voltages is trivially simple to establish. The
"daturm is ueually ground and node-pair voltages are the
potentiale of the separate nodes with respect to ground,

In the fommulation of mesh-iipedance matrix or cutset
admittence mat:ix the important feature is the setting up
of connection matrix and logic steps arc required toc be
performed by the computer,

W.P Tinney (14) in his paper suggested a method of
obtainigg loop connection matrix using matrix aeperations
instead of geometric logice It wus shown that the concepts of
three, links, loops and other topological interpretations are
unnecessary for the guidance of computer lo; ice The main
draw back of loop analysis is the difficulty in establlising
a loop connection matrix.

When the spstem is lurge and network is non~planar the
usual topological methods a2re difficult to handle. Nevertheless
the trend in digital computer analysis of power system networks
has been towards the use of driving point and transfer impedance
matrix instead of the inverse lcoop impedance matrixe-this
is meinly due to the better methods available for setiing them
(35, 37).

H.Edelmann(17) suggeste. a numerical algebrzic gereration
of I pedances and Aumittance matrices by Set-Theoritical Inter=-
sectione, The set-theoretical generation affords two
important advantages i.e.,the storage requirements for the

intermediate result which compured with those for the end
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result, are consierable, are omitted. The total computing
time for the formaticn of these matrices is at the same time

reduced to approximately one-eighh

2.2 Solution of Netwoxrk Eguations

The formueltion of Network equation is achieved in the
more general form of AX = Y, in which case A is a nonsingular
nxn matri® of ccefficient either copedances or comittances,

x and y ure the column vectors of loop currents and loop
potential svurces in case of lNesh-Impe.ance equations or of
node~potential snd Node current sources in case Node Equations.
The numbet of indepcndent loop currents in case of meshe~
dquations and the nurber cof nodes equal to n.

Once the network equations are represented in AX = Y form,

the solution can be obtained by either solving this set of
linear equation by any conventional method or b, a matrix
inversiocn subroutine for inve.ting the pertinent matrix of A
to find the unknown column vector X,

If there are many sucan sets with the snme motrix A
and inverse matrix A"1 is calculated such that A"A = I
the identity matrix , emd for each ¥ , X = A~'Y is the
solution to AX = ¥, With the incrcased reliance on computers
to solve lerge systems of equations, the size of systems
ccnsldered practical to solve has increesed encrmously. As
the size of these systems has grown to reach the licitet ions
iuposec b, equipment configureticns, mor. economicul methods
have been sought. In aadition to the economy die to symmetry
gignificant eccnomies in beth computer memory and computing
time can be achieved by taking advuntage of sparsity of A,
where it 1s significant.



- 10 =

In meny problems, such as those involving eleoctrical
circuits,the matrix A is sparse (more than 90% zero

elcments) since lines do not connect each bus to every

bus (18,20) but A~

Sato and Tinney (18) describe a method for achieving the same
1

is full,

numericul results ae multiplication by A”  without actually

computing end storing A

Each pdvot division, row elimination, and back substitution

in a Gaussian elémination corresponds to premultiplying

by an elzumentary metrix, Hence A~ can ve reprzscnted as a

product of elementary matrices Aij’ each differring from

I only in the ijth entry. The Aij coefficients turn out

to be the cquation iJ coefficients encountered in Gaussian

elimination. If the numbex nf the coefficients created in

the eliminstion procecss is emall to n2, 80 the array is still

sparse, the elementary mat#ices can be stored as a list

including location indieators in much less space than by

n by n inverse motrix. In symmetric case this emounts to

storing alist c¢f the location and +the values of the coefficients

in upper triangle. There is a considerable economy in both

forming und usig this list as opposed to calculeting and

using a1,
N Sato (15) describes the existence of a definite correspon-

dance between the matrices obtained from the mesdh endwmodal

methods, and f£.om that obtains the mesh and mwdel inverse

matrices b, meange of elimination &scheme the effectiveness

of which totally depcnds upon the nstwork configuratione
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The mesh~transformation matrix C of a network can also be
calcuzleted by an efficient method.

A row=by-row matrix inversion meihod employing anh
iterative process is described in reference (20), and is
also given in Appendix GC. -The edvantages of this iterative
method of finding inve:. se are that the labour of finding the
whole inverted matrix need not be tcken ond in some cases
a part-solution may be Jjust sufficient. The matrix-inversion
process using known methods becomes tite consuming becouse
oiiginel matrix can not be stored wholly in memory. The
row=by-row matrix inversion mcthod allows eccnomic inversion
of aduittance matrixs of ccnsiuerable large size than possible
with convent.on methods,

Nore recently (iday 1966) W.F.Tinney (19) has evolved
even more simpler m thod of solving m twork problems.
The method not only applies to the network problems, as he
cluims but to all systems of linear equations, symmetric or
not real or camplex, sperse or full.

It has an advantage in thet it is mich faster and requires
very less memory than ony other method using impedance
matrix cr hybrid metrix, It provides direct solution of
linear net work problems of ordar of 1000-20C0 in 32 K
word memory.

The conventioral rwethcds and the Monte Carlo methods of
suolving a set of linear equations have been discusced as
regards their adventages and linitations in refercrce (33).

The theory of mutrix invereicn by Monte Carlo methed has
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been also dealt in there and for the sake of ready reference

a copy of reprint of the same is being attached to the thesis.

2,3 Illustretive Problems
Case of tric matrix

A d.c. network shown in figure 2-1 has been teken as& a
problem for illusirating the use of different me thods for
the solution of me twork equation,

The re twork, under consideration gives rise to s set
of linear e.usticns aithough with real elements only, nevers -
theless same spprocch can also be wplied if the elements were
complex as is the case with an a.ce mtwoxk. The iterutive
method considered here would be moaified to allow for complex
quantities, or the metliod of appendix G can be directly
applied to solve.

Formulation of Equations

The method as described in reference (12) is used
to form the linear equations, |
The node egquutions would be or the form I = YE or more
epeci,?fly,

I1 = 'I E1 + Y1282 + Y13E3 at node 1

12 = !21 3 * Y22E2 + Y23E3 at node 2

%1 1 + Y.. 32 + YSSES at node 3
the tarminal admitt.ence asg determined as

[~ =
Y99 = ¥o1 * V12 * V13

Self admittances
Yoo =¥02 * V92 * ¥23

Y
| 3% =VYo3 * T3 * Vo3



T12 =Ty = =¥y
autual admittances?13 = Y31 = ~Y43

Applying the above equations to the d.c. network under

consideraticn, of real elcments only the equsztions become

I1 Oe4 «0.2 =0.1 E1
I,|=]=0.2 0.5 -0.1 B,
13 .001 "001 006 Es

The [17 column vector for which E's are computed has

bzen tzken as [ 1
<

The voltuges E1, E2 and EB are found by Itrative £ndé Monte
Carlo Method.

A computer programme for the Iterative method of
solving linear equaticns hae been written and included in
Appenilix 8 . The eguation ¢f the natwork of fig. 2-1 were
solved and the results have Bg';;sted in Table 2=3=1,

The eriror after each iteratioh is also given so as to know
the accuracy of the result at each iteration.

The values ¢f the unknowns i.e. of voltages have been
reported in the same table after they have converged to an

accuano'z after 18 iterations.

Monte Carlo ilethod

A computer progrmme for the solution of linesr eguutions
by lonte Carlo method has been written as discussed in
refercnce (33) The values of the unknowns were computed after
the playsfl0 games and the values are reported in table
2=3=2,



wld =
To study the variation of the unknowns with number of games
the curves are shown in figure 2«2 end the remarks as regards
coloseness of the result 8 have been also made in Table 2-3-2,
A discussion of the variance reduction techniques is

included in Ap,endix H,

Case of Unsymmetricsl Matrix

A problem not very common to the power system network
is that which gives the matrix A , in the set of linear
equutions of AX = Y form, as unsymmetrical. A set of
equotions of reference (27) are solved by Iterative method
and Monte Carlo method and resulis are reported in Table |
2=3~% gnd 2=-3=4 respectively. The equaticn in matrix form

can be written as ¢

0 05 =0,1 (o2 X1
1 = —0.2 007 -0,1 X2
0 0,41 -0e2 0.6 13

Sich e situation coulc however arise in sequunce
network equation where the mutual sequence impedances meay

nct be thne sume,

Une thing of scme remark is that while the values of
X, wnd K3 hunt around the actual velue swiftly but the value
of X1 does not at all upproach in the close vieinit; of its

ectual value as shown in figure 2-3
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2«4 Adysntgges end Limitetiocps of the Methods discussed

The Monte Carlo method may not give very highly
accurate values a8 ray be available by other methods such
as direct ,Iterative methods. However, for approximate
solution the method 18 quite good,

Also for a large value n i.e.,the number of unknowns
the other methods may not be so helpful because of their
igherent $ilue consuming neture . nd of their own reguirements
such as requiring lzrge memory thereby reducing considerably
the asize of problem tiat can be handled.

In the Iterative method the vnlues may or mgy not
ecnverge in case of lorge v-lue of n, in that cuse it may
not be of eny use., Some iterations are always necessary
if the values are desired to be more accuratoc if solution is
obtained b,y ¥ nte Czrlo method. Reference (24,26) have
sugrest cd Newbtons Approximation formula to be used to iuprove
upon the result s ocbtained by Monte Carlo method. But it would
sgain ccuse much difficulty with large value of n. Fosiibly
several itorations may necesscary to bring the wvelues to desired
prec-ulon. However, if the Iterative methcd is used in
conjunction with Monte Carlo lethod, the following advantages
are quite apparent.
1 lMonte Carlo Hethod! would atleast givedepproximately

accurate values much faster thuen any other method
2o The @ yroximately sccurate values if used as the first

guess vzlues in Iterative method then there would not

be much chance of the Iterative process getting diverged

xnd not providing tny scluticn at all.
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Very few ditera%inns could be pecessary to improve the
result 8 to desired accuracy as is obvious from Table
2«3=5, Although for a mmall problem of the size consie
dered herein the effect may not be so proncunced but the

large sized problems would definitely have an advantage.

C oy w .



FIGURE 2-1




TABLE 2elal

RESUITS OF ITERATIVE METHOD (SYMMETRIC MATRIX)

Accuracy taken is 10~

ITERATION NO ERROR AFTER ITERATION
1 0,575 x 10
2 0.22604167 x 10"
3 0.9217880
4 0430652810
5 0410476740
6 0.356659 x 10°
7 0.121485 x 107"
8 0.413 75 x 1072
9 0414091 x 107
10 0.4803 x 1077
11 0.1632 x 10~°
12 0.559 x 10‘4.}
13 0.194 x 10°% -
14 0,59 x 1072
15 0.22 x 1072
16 0.11 x 15°
17 0.4 x 10°
18 107

VALUESAFTER 18 ITERATIONS

1 = 433734900 volts
E;y = 2428915640 volts
E, 2.77108420 volts




TABLE Yeiad
RESULTS OF MCNTE CARLO METHOD (SYMMETRIC NATRIX2

COWPUTED

GAME VOLTAGES Remarks

NO E1 E2 E3

10 4.4991300 2.499550 2.T749685 E3 close to

20 4.0825883  2.49955 2.3747825  °ctual value

30 4.0825883 203329433 249975 E.eclose to
agtual value

40 2.62437 244370912 2.62473

50 3.4994 2.299622 2.749715 E2 and E3

60 3.8326533 2.3329433 2.74971 ctgse to actual
value

70 4,0349792 2.2139171 2.6783035

80 34936795 2.4370912 2.71847453

g0 4.0548288 2,2496376 283303

100 4,249235 2.299622 3.0246535 E,eclose to
‘agtual value

110 4.1583504 241587431 2.9314922

120 4.249245 2.2288079 2.9580058

130 4.499130 2.2688638 2.9804403

140 4.2492373 2.2674853 2.9818139

150 4.1421157 242329693 2.9830043

160 4.2825563 242964934 209371831

170 4.3273403 2.3966591 249408588 E,close to
actual value

180 4.2492420 243190636 209163583

190 4.2492476 2.2627931 2.9207431
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TARLE ASR%3

RESULTS OF ITERATIVE METHOD ( UNSYMMETRIC MATRIX)
T

Accuracy teken is 10°
All unknowns started with 0.0 valueg

ITERATION NO ERROR_AFTER ITERATION
’ 0.19047618 x 10
2 0.82766446
3 0.18248547
4 0.42176340 x 10™"
5 0.97058600 x 10™2
6 0.223461 x 10™2
7 0.51431 x 107
8 0.11836 x 15°
9 0.2733 x 1074
10 0.631 x 10~
11 0.134 x 10°
12 0.42 x 1070
13 0.1 x 10°°
14 157
VALUES APTER 14 ITERATIONS
X = 0460606056
X, = 1.69696960

X3 = 0.66666662



TABLE 2ejwg

RESULTS OF MONTE CARLO METHOD (UKSYMMETRIC MATRIX)

GANMES URKNCWN  COMPUT ED REMARKS
I, x2 XS
10 «49997 1.249925 « 4999700
20 «3T49775 1.1249325 «6249625
30 «58329833 1.249925 «666 62666 X3 very close
to“actual value
and X, close to
40 (6249625 1.3124212 56246625 actual value
- %0 «549967 1.2499?5 «599964
60 «58329833 1.4165816 66662666 Xyvery closb to
attual value
and X, clcse to
_ aetuag value
70 «64281857 1.4284857 «67853071
80 65621062 1.43T74137 « 68745875
90 «T49955 1.4721338 « 72217888
100 «7249565 1.449913 7249565
110 «T0450318 1.477184 «T704503 18
120 « 70829083 1.4790779 «72912291
130 73072538 1.4806803 «67303653
140 « 73209892 1.4820539 64281857
150 « 73328933 1.49991 +649961
160 «T0308281 1.46 86618 «67183468
170 «691135 1.426385 +67643
180 69440297 1.4582458 66662666 X, very close to
agtual value.
190 «69732657 1.4867528 «67101236
200 68745875 1.5124092 +649 961
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PABLE 2=3=5

ITERATIVLE KETHOD IN CONJUNCTION WITH MONTE CARLO

Accuracy 3 10~7

GUESS VSLUES TArEN AS THE VALUIS OF UNKNOWNS AFTER 200 GAMES

ITEKATION NO ERLOR AFTER ITERATICN
029920348

.5616855 x 10”1
«11110169 x 10~

,259534 x 10~
59694 x 10~

1

« 1574400 x 10~

2146 x 10°%
714 x 1072
.172 x 1072
.52 x 1070

1 | .1 x 106
12 10"

W O 3 &0 UM 2 UV N

-
O

The values after 12 iterations are same as given

in table 4=2-1
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CHAPTER - 3

FIELD PIOTTING BY MONTE CARLO METHOD

Introduction

In general, a second order Partial differential equation

of two independent variables x,y is of the form

22 +r(x’w’&l 2u )
A 22 2Y 4+ C (xy) R~
(x,y) 5§? + B(x,y) X3y Av2 x( 3)?
= 0 eeell

Coefficient A,B and C are generally functicnz of independent
valuables., This equation is of course linear in the second
order terms but the term f(x,y,u, Eﬂi_,?tg_) may be linesr

or non-linear and the equation mayxbe linear or Quasi-Linear
accordingly. Aslo if B° - 4AC £ 0, the equution is called
Elliptical Equation. For B2 « 4AC = 0, the equation is known
a8 Parabolic Equation and finally if 32 - 4AC> 0, the eguaticn
becomes Hyperbolic Equation. The present discussion concerns
with the equgtion of type first, i.e. the Elliptical Partial
differential equation.

The well known laplace und Poisson's equations viz,

2 2 Yu_ #2%

3“ 3“ =o and —— ﬂf(xy) es s (2)
* 2 2 s/

%2 2y° 2x oy

belongs to this catagory.

The boundary conditions of this type of equation specify
either the function u or its normal derivative or the linear
combination of the two s& every point of the closed boundary
of the region defined with in which the solution u(x,y)

is desired.
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To an Hleotricnl Engincer, both the equations visz, Laplace
and Polsson's Equations are of great ilmportance. One may
come across such t pe of equations with specified boﬁndary
coniiticns either for plotting of a field pattern, be it a
case of m: chineor a high v ltage equipment or electron tube
or clectrostatic potentisl in a uniform dielectric c¢r in two
dimengional con.cnser. The Laplace Equation is used £o
compute® the field values within a defined boundary and hence the
solution of this type has boeen discussed he.ein by taking
& irregular boundery in two-dimensicnal region.

The techniques for the solution of the said equation |
ere similer for multidimenSional problem and the s.me method

can be extended to solve them.

3.2 Differcsnt methods far solving Elliptical Equations
The Ellipticel partial differcntial equation, in general,

are 8clveu numerically by reducing the problem to the solution
of a set of simultanecus linear algebraic egquations by finite
difference techniques., It can be easily shown that finite
differcnce form for laplace Equation is given by

Uy * Uy ® (uytustug +u, - duy)/ n? =0 ...(3)

4
Gr uoaé(u1+u2+u3+u4)=%12.1 ui

where Ugelps Uq u, are four neighbouring lattice points
of mesh. Similarly the finite differcnce form of Poisson's

Equation reduces to
non}(u1+u2+u3+u4)+§h2fo oee (4)
where fO = £ ( xo’ }'0)
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There are two effeotive me t:.ods of solving numerically
the Laplace and Polseons eguations, vig, Iterative method
and Relaxation method.

In the former me thod the estimates of unknowns are
improved in sequence with some initial guess at the start
til1l the unknowns are determined to a desired degree of
acouracye |
| In the latter the attention is concentr:ted on the
unknowns which scem to have greatest errors. The method
assumes the mesh lineas analogous to elastic strings which are
relaxed in turn during successive steps of the iteration.
The starting point in any method is the same i.e. to divide the
region in the form of meshes and then the values are computed
at each juncticn point of the mesh. A Honte Carlo method
is herein discucsed for the solution of Laplace Equation
tnd a comparison has beon made with the values obtained
by Iterative method at s interval of 50 gemes. The lionte
Carlo method is therefore discussed in detail,

3=-2 lipnte Carlo Met. od for Laplace Equation

The following wure the steps necessary to solv e the eguation
by lionte Carlo method.
fe The regicn enclosed within the boundary is replaced
by a rectangular mesh of lattice points. The bounde
ing curves is replaced by a set of lattice points which
are nesrest neighbours to mesh points within the boundary,
The meshes are generally rectangular but thm to suite
the boundsry they msy be tcken as triungular or hexagonal.
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Here only rectungular meshes would be considered,

2 To find the solution at any point P with in boundary
curve C, a set of random walks of fximxkt fiktious
particle is made, starting at P and terminating at the
boundary points which are already specified and this
finishes a game. The score of the game is the value
given at the point on boundery at which the walks in
that geme terminate. Such several games are played
and an average value per game basis gives the solution
at the point P.

The part of the (x,y) plane bounded by a contour C on
which is imposed a rectangular mesh with interval lengths

h, md h2 in the x and y directicn® respectively is considered

end a particle perfurms a random walk on the mesh points

subject to the following rules,

1. The probabilities of passing from (x,, yj) to

(11_1YJ) ’ (xi +1, Yd) o(x1v33_1) and (xi'ya+1)
are p1,p2,p3 and p4 respectively.

2. 2

i Pg = 1, 80 that no other steps are possible

3« The preavess storts at an erbitrary mesh point P
(xp, yq) and is terminated when a particle reaches
boundary C, whereupon a score S, the value of which will
de,end upon the point at which C was reached, is
associated with (xp, yq.). This provides the boundary
condition; the score $ is the vulue taken by the solution
of the differential equation at that point on the boundary.
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It is clear that the average score

8q = 8 (xpr 3g

satisfies the equation

) associated with (xp, yq)

g = P1 Sperr 9= P2 S g q = P35 S, qeq Py Bp g1 =0

eee(5)
If the con itions such as
2
p1 apz = h2
2 2
2(11;_1 & h, )
4a = = h
and Pz = Py 1 are imposed, then equation
2 2
2(ng + h3)
(3) becocmes
1
S - S - S + S =S S
la- (2 Pa P*hq p-1.q) — (2 PQ Pogt? p.q-1)"°
%1 2 ves(6)

The equation (3) is the finite difference form of the
Laplace equation in two variables.
Further this equation would reduce to

1 ) ) ) -5 )0
w2 4% “Fg = Spun,q Ser,q 7 Sye PV T ()

For h1 = hz, i.e.,when intervals along X and Y ax¢ges are same

3.3 Pield Plotting By hiounte Carlo lLiethod
A problem (27) to illustrate the lLionte Carlo method for

field plotting oxr for the solution of Laplace Equation with
the bouncury as given in fig. 3.1 has buen solved completely.
The computer prcygram has b.wn written for the s: me and the

subroutine used (Appendix D) for the generation of random
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numbers was taken to be the same as that used in chapter 2

for the solution of Lincar ikquations by Iﬁopte Carlo wethod.
The movemcntof walks was guided by the random sequence in
whigh case the sequence has been made to contain anly
1,2,3 and 4 numbers only, rest being discarded and 1 etends for
the movement by one unit to the right, 2 for the upward
moviement, 3 for the left and 4,finally, for the movement
downwards.

The solution hus bcen obtaine. f2om 50, 100, 150
and 200 gecmes ond then average belng oombared with the values
obtained by Iterative method in Table 3=5, The boundary
values and the whole mesh network was fed in as input to the
computer in the form of a matrix as shown in Appendix-D
The computer progremme is included in the Appendix-C
and the results h.ve been listed in Table 3«1, 3=2, 3«3 and
3«4 for 50, 100, 150 and 200 games respectively.
For comparison the values from table 3~1, 3«2, 3=3 and 3=-4 have
been rounded off for the inclusicn in Table 3=5.

The maximum error obtained was 032 and the minimum as zero.

3-4 Merits and Jemerits cf Monte Carlo siethod

The donte Carlo meti:od provides an easy’method for the
soluticn of Laplace equation even with irresular boundary
and speci.lly with multidl .ensional region it supercedes
the conventicnal mctho d8 whidh become cumberscme and some=
tires almost impossible. Field values at any point can be
independently found out without finding the solution
simultanecusly at all the la tvice points, w: ich is essential
with conventionul method. The solution with Iterative method
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may or may not convcrge in certdn cases but ionte Carlo
atleart provides some sclution to that effect. Moweover
the memory & ace reguirements ere wuch Je ss beccuse the
values at the four neighbouring point may not be stored at
all, only the boundary pointe arc needed to be stored.

The only draw back with Monte Carlo method seems to
be with the large number of games required for more
accurate resultse

Variance mcy be cuolculted at the end of each set
if gome or gemes end the varience reducing techniques
uiscussed in chapter 2 may be upplied so as to reuuce
the number of trials. An ecgreement, generally is,necessary
between the number of games and machine tiwe. When assecsing
variance reducing techniques, any increase in computer time
pe: trial which may resull from their introducticn must

be considerede
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TABLE NOe 3~1

RESULTS OF THFE SOLUTION

’
k4
’
’
*
*
L
b
s
2
?
k4
b
2
H
b
b
k4
b
2
*
’

P9

6)=
7)=
4) =
)=
&)=
7)=
4)=
5)=
6)=
7):
4)=
5)=
6)=
2)=
)=
4y =
5)=
6)=
2)=
3=
4=
5)=
6)=

8,5CNNNRNF=N]
8e2700NDNF_N]
9, 15N0NRNE-NT
Re184N14NF=0]
6.20N0160F=-N1
44 95N02NNE=-N1]
848N0N10NF=N1
64250N320F=Nn1
4 42500480F=NT
3425N0420F~N]
Te5BNN220F-N1
5410N0N460E-01
2610N0746N0F=N1
74?7080120F-01
boebbBN28NF =01
2,95N0546NF-N1
2,00N0560F N1
161660840F~N1
441260260E-01
24B62N420F =01
2.81607C0F-01
8.7009000FE-02
1 2070880F=-01

OF LAPLACFE FQUATION



TARLF NN, 3-2

RESULTS OF FIFLD PLOTTING RY MONTF CARLO

ANU( 29 6)= 8.6U00060E~01
ANUL 29 7)3 RGNI8NNARNF=(01
ANUL 39 &)= 94,1170nN7NF=01
ANU{ 34 B)= B,NRNNT1ANF=N]
ANU{ 39 6)= £,7500220F=N1
ANU( 39 T)= 5,7250170F=01
ANUL 49 4)= B,2CO0170F=N1
ANUL 4y 5)= 64858900280F=01
ANUL 44 6)= 5,1750350F-01
ANU( 49 7)== 2,9170420F=01
ANUL 5y 4)= 7,4830230E-01
ANU(L &9 5)= 5,0590450E-01
ANU( 59 H)= 2,90N0K70F=01
ANUC( As 2)= 6£,3740210F=-N01
ANUL B9 3)= 44,8740430F=0N]
ANUI( Ay 4)= 44452085105 ~01
ANUL 69 Bl= 3,85472NK4NF-N]
ANU(L As 6)= 144920840F=-01
ANUL 79 ?2)= 3,024046N0F=N]
ANU{ 79 3)= 248330K90F-N1
ANUI( 79 &)= 240N385N074NE=-01
ANU(C 74 85)= 143830840NF=n1
ANU{ 7e 61= 6.0079400F=02
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TABLE No, 3=5

POINT Values Values Values Values Average Actual Difference
for 50 for 100 for 150 for 200 Value Actualw

Games Games  fames Games Value Average
{2,6) .85 86 .88 .92 875 87 005
(2,7) .82 80 .78 75 79 80 «010
(394) 91 91 85 «95 +905 e 4005
(3,5) 81 +80 .82 .78 802 .80 «002
(3,6) .69 67 67 .68 677 67  +CO7
(3,7) 50 »57 5% ST° +545 5T 4025
(4,4) .88 .82 .81 .80 827 .80 027
(4,5) 62 68 .67 .65 .655 .63  ,025
(4,6) .42 51 50 o 47 o475 .47  .005
(4,7) <32 29 32 o33 31 .32 .010
(5,4) <75 <74 +65 70 706 .68  ,026
(555) 51 «50 52 .48 502 4T 032
(546) o21 .29 .26 .28 .26 28 4020
(6,2) .72 .64 .63 .64 657 .65  ,007
(6,3) .64 49 61 «64 +595 +60 +005
(6,4) .40 45 o49 53 « 467 «46 007
(6,5) <39 35 .27 33 335 .32 015
(6,6) .12 .15 .12 .21 015 .17  .020
(7,2) <41 +30 .28 30 W322 .32  ,002
(7,3) <29 .25 31 31 .29 .29  .000
(754) .28 20 .23 «24 237 .23  ,007
(7,5) .08 o 14 .18 o13 <132 16 028

(7,6) o12 .06 .10 «09 092 .08 .012
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CHAPTER » 4

SETTING UP OF  SuLP AKD MUTUAL IMPEDANCES ON DIGITAL
COMPUTER

4-1 Definition

According to American standard Associntion the driving
point impedance at any pair of terminals of & network is
defined as the ratio of an applied potential difference to
the resulting current at these terminals, cll other terminals
being terminated in a specified manner.

Siuilariy the transfer impedance is the ratio of a poten=
tial difference appiied at cne pair of terminals to the
resultent current at the other pair of terminals, all terminals
being terminalted in a specified manner. When the other
terminal pairs are opem circuited the Priwirg and Trensfer
impe dances thus evaluated are termed as Self and sutual
impedances.

Importance apnd Uses

There are laerge number of Power System problems in which the
driving point and Transfer impudences of the m twork are required .
They 4 as a circuit analysis technique, have been extensively
used in loed flow, short circuit, regulation, stability and
tranemiccion loss studies,

The driving point and transfer impedences as a practice,
are found by measurements on A.C., Network ahalyser, which

requires setting up the whole network onm Analyser and by



- 4] -

adjustments and measurcment® the impecances are obtained.

Agein if the impedances thus found are to beJ?Z;'further
computations on Digital Computer they have to be trunsferred
to punch cards which may involve personal error and inaccurate
values may be transferred.

Digital method of finding these presesses kes an advantage
over the analpgue method in that it gives highly accurate
values which are necessary in the deteiminaticn of open circuit
impedances or self and mutual impedances lor the use in loss
formula. MNoveiover, they may economically be obtained on
Digital computer with minirum set up time. This also saves
tive when they ere to be used for further computations and

are required to be transferred on to sueh cerds,

4~-2 Diffcrent lletheds

A few methods are sugrested in reference (35) and then by
Ward and Hale (37).

The method susrgested by Ward and Hale (37) iu bascd on
that given by R.Bruce Shipley (36) as to the method of approcch
only without giving detalls of programing.

The methc ds prevalent aret

1o Matrix lethod

2. Calculation by Improused currents

3. Ite:-ative method.

Here the Iterative method has been discussed at par and the
computer programme on IH.L 1620 has been drawn incorporating

some 8pecial features to be discussed later.
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Three systems are studied and the result s of Iterative
process have been analysed in details.
Matrix Method
The first step is to set up the branch impedence mat rix
Z brerch inaccordence with the equation,

E branch = Zyronon Lpranch ceee (1)
zbranoh matrix consists of the line end transformer inpedances
of the network as its elements. The configuration of the not-
werk is defined by means of transformation matrix Ct, which
relsoteas the volt age at oczch bus to the volt age across each of
branch elcuents cnd also the volt age acting around each loop
in the nstworik to the branch voltage, i.e.,

The locp current and brench current should, for positive
direction, flow in the same direction. The matrix Ct
should aleo take into account the effect of off nominal
turns ratic of the trensformer.

Now using Kruns enalysis further develcpment can be carried
cut as folliows:

If volteges and currenis are relcted in a circuit by

Bo1a = Zo1a Yora R (3)
The new set of volt eges owuld be related to old set by
Brew = %" Boia (4)

then for the impedances to be transformed such that input
powor is invariant, the.e are,
I = C In (5)

1 (6)

cld ew

Zhew ™ Ct* %,
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where C i8 obtd ned by interchanging the rows and columns

of ct, Ct* being obtained by conjugating the elements of

Ct.
Aleo B o0 = Zpon Tnew (7
Thus from sbove relatione, one gets
Loranch = © Ibua,loop (8)
%bus,lo0p = Ct*Z ), ranch® (9)
Also
(10)

Eius,loop = “bus,loop Tbus,loop
The impedance matrix zbus,loop could be gompounded as

€% follows

E

bus bus

(11)

E Z4 I

loop loop

but a8 Eloop =0 = lalys* 4y Iloop

2411009 3"231bus
By pre-multiplying through by the inverse of 24 the following

can be obtained.

Loop = '221 23 Tpus (12)
Substituting (12) in (11),
Epna = %9 - %p (29)7'85 I (13)
* Zous  Tous
Thes By, = Zq - Zp (Z,)77 24 (14)

Z‘ is the network locp ilmpedance metrix which is reguired
to be inverted for the calculz tion of Zbus metrix which
defines the self and mutual impedances. The matrix method
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has the disadvantage in that it requires the inversion of
a comple x matrix as a subroutine programme and thus linitse
the size of the network.

The shorage requirements are specifically more elthough
the progremning is straight forward. IBM 1620 has a sube
routine for the inversion of complex matrix up to a max.
pige of 17 x 17 and therefore a system with more then 17

loop can not be easily handled on this computer.,

gsed Method
The method is same as the procedure used on A.C. Network
analyser, i.e., impressing current at each bus and finding
the voltage distribution, successively. The steps can be
given as follows.

¢ A current 1 + jJo is impressed at generator or load bus
in the notwork with refer.nce bus grounded,

2. Current flow is assumed from energized bus to the

reference buse.

3« The volt eges in each branch is computed and that acting
in euch loop,; by summing the branch voltages in that
loop.

4. The balencing current required to make summation of
the voltages around eack locp equal to zero, is computed.

Se tperimposing the dbalancing flow, determined in step

4 on assumed flow of step 1, the branch volteges due
to excct flow are determined.

The voltages thus duetermined are numericelly equal to the

self and mutual i.pedances since impresced current is

1 + jJo. The current is then iumprevsed thrn by tuin to each

bus and completed set of impedances can be known.



This method is superior to the matrix method because of
its le 28 memory reguirmcnts and le s¢ computing time and

also it can handle larger syetem than that by matrix method,

Iterative Hethod

Iterative method consiste of successively improving an
assunec set of bus volt nges until Kirchoffs Law has been
patinfied with in the precision decired,at each node,.

The sum of all currents entering a bus p must be zero.

or
ZY (E~-E )=
2 X, (B By ) =0 (15)
where qu is admittance between bus p and q and Ep and

Eq ure the voltages at bus p and q respectively.

It is obvious that

(2 .= .
q qu) EP Q YDQ Fq

B, = § ‘pg g (16)
T
q YPQ

The equation (15) and (16) can be modified to take in

to account the cff-nominal turns r-tilo.

The method requires the setting up of driving bus volt age
to 1 + Jo and er initial wlt epge distribution is assumed
(usually e8 0 + JO) ae the reference bus is set to O + 30,
Thus the bus voltages are computed using equation (16)
sequencislly with the best known values of voltages of
other buses, Vhen all volfages have been calcul-ted, the
calculotkon is repented with the improved set of voltages,
This goes on till the volt ages h.ve converged to a desired

precision. The acceleruiion factcrs are used to speed

N
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The new value® after applying acceleration factor qa¢
stored and calculated from

1
Ea= ﬁccegation Factor (Enew - Eold) + Eold

Once the voltages have conve. ged the input current at the
enurgised bus is computed from

I, u% Yo ( 125 ) (17)
Thia should also be modified if off nominal turns ratio ie
to be taken into account.
With all the wltages found and input current at the
driving bus the self wnd mutual impedances are computed by
déviding the voltases at all buses by input current. This
process is repesated till all buses have been energized in
turn and complete matrix of self and mutual impedances
ie known.
The method is agein superior to the mutrix method as regards
time and system size.
Although this method requires elaborate programming but is
superior than uther me thods,
The ccmputer progromme as listed in appendix E for thie
methed Las been written and self and mutud impedences of
different systems ere found.

A study has becn z1so made on the Iterative Process
uged in thls mothod and observations have been incluied

herein.
43, 1 ative Problems
The self and mutual impsdences for the systems siown

in figures 4.8, 4.2, 4-9 i.e for 4,5 und 6 Luses systems

ure computed using the programme written b; the author,
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A four bus system i8 s ring system and the five and six
bus systems contain two and three loops.
The self and mutual impedances thus found have been

reparteu in Table 4-3=1,

Frogramme Features
The programme for IEBX 1620 has been written in such

a way as to al low maximum {lexibility in the study of
convergence and to disclose more infoim.tion regurdling

the iterative process. The precision to which the result

are desired can be varied at will and the scceleration factor
also may be subjected to variation.

The voltages may be punched after they have converged
to the desired precision after certain number of iterations
which can also be known. Similarly the impedances can be
directly punched even without knowing the inform.tion
regarding voltages etc. s»ailable~in I8¥ RS, Because
of the limltations of memory spaces uvailable in IBM 1620
the progranme cen hondle a system upto 30 buses only
directly ond outomatically. However, by breaking the
progremme in porte the syetem size can be incresased still

further.

4-4 Stud Iterative Process

Using the flexibility providec by the progromme chalked
out a study on Iterative process hes been made 80 as to
know the nature of convergence, the opti.um acceleration
factor and variation of nuaber of iterations necessary with
desired precision and for a particular system under study.

The observ:iions maie are bein; roported heiewith.
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1. Convergence of Voltages

The voltages converge alternatively &nd not unie
directionally. They converge rapidly in the berinning
and then slowly for further iterations.

The system for which the volt ages have becen studied

is 2 4 bdus system of Fig. 4-8.

As is clear from the Table 4~4~-1 and figure 4-1 the
voltagee have almcest converged for 6 iterutions

but to achieve an accuracy of 10'8, tew more iverations
are necessary. 4ihe voltauge converge with ¢ precision

of 10~C @#fr 14 iterations.

2. Optirum Acceler.tion factor

the

The optirum accelerution fector ie that value of
acceleruiion factor for which the total number of
iterations arc minimum. The cptirum scceleration
fuctor depends more or less on the systcm under study,

€ it has

For a 5-bus system with a precision of 10°
veen found to be 1,1. The optirum acceleration factor
gonerally lies between 1.0 to 2.0 but scems to have

a maxinum as 1.6 or 1.7 as reported by V.@cmexti (20)
and W,P,Tinney., Reference %5) suggests an accele ration
factor of 1.3 as qgite promie ing, but in the view of
euthor this value is alright for the moderate sized
gystem, since the optimum ucceleration fa tor seems to
vary with the size of the system.

Here it has becn observed thut for a four-bus system the
value of optimum acceleration factor lies between 1.0

and 1.1 or to sy 1.04 as i8& obvicus from the figure
4=8 and Table 4=~4«6, Siuilirly for a five bus sytem
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i4 has been observed to h.ove a velue of 1,1 figure 4«3, Teblo &
4~b=2 and for a oix buc sysctem the valuc ic 1.2 as ip
obvious from the firure 4-10,
Reforonce (35) stuuied o cyotcn with 9 buses co tho
accelercticn factor of 1.3 is justificd but for lerger
osysten the optisum accelerstion foctcr would be higher
but ucuclly less thun 1.6 or 1.7 which is a quitce good

choice for sufficiently large syovem.

3. Humber of Iterationn

Tho n-ture of vari.tion of no,of iterutions for
any particular bus voltase ant system can be scen from
the fijures 4-3 and 4~5. Thio has been obsorved to
depend upon the order in which the iteraticns have been
performed curing the procecs and al o labelling of the refor .nc
bus. IJifferent buses have been vbserved to have their
minimum nc, of itercticn at diflecrent accelsration
tactores It is nct nccescary to have the same uvcelore
atlon fuctor as optizum for inuividulac and the cuaulative
iterations. curve fig 4=4.
The number of iterctions huve been found to vary lincarly
with the precisicn desired on logarithmic scale as ic
ghoun in figure 4«7 cnd ig obvious from the table s
befm2y 4-4~3 and 4-4-4,

The number cf totzl itermticne for precision of 10~4
ere found to be approximateoly half of that for tho

precieion of 10‘8.
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Hence the total number of iteratiome are predictabdblk
in advance for any value of precieion if they are
known for eny one precisiop.
The opticum acceleration factor is thue ti.c same for eny
precision desired fo. a system, it is almost indspendent
of precision aB8 is obvious from fige 4=6. The total no,
of iterations are almost the scme for eny order of
iterative proceass and regard less of the reference bus
us is claar from Table 4=-4-5. There has becn only one
exce.tion for the case when bus no. 4 wae taken as
refercnce bus otherwisethey are practically the same.
The total number of iterations for the systems under
study have becn observed to vary at the rate of 23
ite:utions gpproximately per increase in the no, of buses,
ag is shown in table 4-4=-8 and figure 4~11. They were
cbserved for the acceleration factor of 1.3 and sccuracy
oflﬁe.
In short for an acocuracy of 10"? the average no,
of iterations comes to 13 iteraticms per bus for an
accelsration fator of 1.%

Gene.elly, the accuracy of 10'8

is unnecessary except
in ce.tddln cases such as loss formula calculations etce
With a.c.network one muy be even sstisfied with accursoy
of 1077,

The digitel computer thus hes an advantage a® regards

aceuracy.
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The time per iteration has becpn observed in all the

above studies as an avcrage of 1.5 secs/per iteraticn.

4-4 Colclusions

The digital method thus is quite promising as regerds
tiie accuracy mmd cost in comparisbn to the analogue
method,

Iterative method of finding self and mutusl impedances,
although may be somewhat difficult to programme, has its
- own adventages over txhe matrix mnd impressed cu. rent
nethods as far as time is concerned.

Memory requirementis ere mich more in Matrix method
than the other two., Matrix and Impresced currents m thods
require inversiocn of matrix of tho sige equal to the number
of loops and are limited in this respect. For smuller
gystems any method may dbe used,



TABIE 4=3-1
SELP _AND MUTUAL IMEDANCES CALCULATED BY ITERATIVE KETHOD

1« FOR BUS RING SYSTEM

Reference Bus is No. 3

2,y = 09388496 + § .37494901
,p = 03765745 + 3 15001102
G, = 0+40

Z, = 03128257 + J .12511018
Zp, = 07514993 4 .29989340
243 = 0 +30

Z4q = 04383011 +3 17576474

2, FOR 5 BUS TWO LOUPS SYSTiM

Reference Bus is No. 5
244 = +03870969 + J. 15483871
240 = «02258065 + § .09032256
Ziy = 01129032 + § .04516127
Z14 = 02923226 + J 11612902
215 = 0 +j0
Zog = «054838T1 + § 21935482
Zy,3 = J02741935 + §.10957740
Zog = «04193549 + J 16774191
225 @ 0 +J0



CQDt de 5-5* I

235 - 0+ JO
Zys = .09677421 + § +38709677

3, FOR 5 BUS SYSTEM
Reference Bus being 1

Bop = ,04838740 + § .19354841

Bos = ,03225806 + j 412903226

B4 = 402903227 + § .11612905

%5 = .01612903 + J 06451673

- = .05483872 + J .21935484

By, = .019 35484 + .07741935

Zyg = .02747936 + § « 10967741
Ba4 = JOTT41937 + § 430967745

Z45 =  <00967741 + 03870965

Zss = o 003870969 + 015483871



TABLE 4-3-1

3, SELF AND MUTUAL IMPEDANCES FOR 6-BUS, THREE LOQP
SYST EM

Reference Bus is 5th

Z.” = 00350937 + j 014015747
244 = #02795275 + j .C11181100
z15 = O + 30

By = 02165355 + §.08661415
Z,, = 05472442 + § .21889764
Z24 = +0421260C + j 16850394
5 = 0+ 30

Zog = «02559055 + § 10236219
233 = o0 003503937 + J «14015748
235 = C+ jO

Z36 = «02834645 + § 411338582
Z,, = 00645671 + J.38582678
245 = 0 + 30



EABLE 4=4=1

NATUR.. (F COVERGENCE OF VUil AGES

ITERATION VOLTAGE OF BUS Fu,2  VOIT AGE OF BUS NO, 4
Nos REAL IMAG REAL IMAG
1 .520187 =.000312 433738 000144
2 364150 =.000218  .3036166  ,000101
3 «410947  =,000246  +342653 .000114
4 0396902 =,000238  .330942 .000110
5 401116 =,000240 334455 000111
6 0399852 =,000239 333407 .000110
7 400231  =,000240 333717 000111
8 400117  =.000200  .333622  ,000111
COLVERGED VO TAGES
14 400143  -,000240  +333644 000111

The above values are for a 4-bus Jystem

of Pigure 4-8
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TABLE 4-4~2

5~ BUS SYSTEM

PRECISION 10™8

BUS NO. OF ITERATIONS
NO

Accerlation

factor - 0.6 0.8 1.0 1.1 1.2 103 104» 1.5 106 1.7
1 50 34 22 16 /12/ 18 21 26 37T 50
2 25 16 [T/ 09 13 15 20 26 36 50
3 48 30 19 [3/ 13 1T 23 29 36 50
4 44 28 19 11/ 14 17 22 30 36 50
Total No. of
ITERATICNS 167 108 67 /497 52 67 86 111 145 200

The values in parallelogram are tie minimum ones for that set,



¥=% T9nD1d
WQN XOLDV S NOISIDTSS

WIZISUS PG50 YOS SSTD0SL Ty L7>=1L ]

SOLDFES NOL7FT T

27 G7 7 &7 Z7

. = e e w e e e = e e e e o m e s ————-——

('4

THLOL

SNC/ILpFYTLI -0 ©N



G-V Tansid
JOLI7d NO/ILF/ST™7200

S7 7.1 $7 .7

.7

SO.IOFd NO'L/ZITTDD/
" Zr *1 078 2 o

- - T (o]

dor

e

0

2%

S

09

[2/4

o o

1
!
!
|
!
|
l
|
'
!
|
1
|
I
1
|
I
t
1

A A CrY 7N

SNOILFSITL! SO ON 7FLOL

ior

{0

0%

SNO L& FLl 2O ON



9=v TYNOIA
-~ QO 2¥S NOUSNTTIIDV

27

1 £1 eI 4

t
lT"
i

t

ol NO/SIDIdg
»-

oI \NC/S D/dd
o.

)
1
i
|
t
!
!
]

P . - > e s e W e A W W W e B e e W

Yol
1ol;
gown

Jos+

oyl

THLOL

SNCILVETL] 5O O\



5 BUS SYSTEM
Pregision ]Q-4
S RO. OF ITERATICNS
NO
Acceleration
Footon 0o 08 120 1e1 162 13 18 15 1.6 1.7
1 24 16 11 038 /71/ 09 11 5 19 o
2 12 o8 /04 o5 07 09 11 %5 19 -
3 21 14 09 LT/ 07 o8 11 14 18 =
4 21 14 09 ..__7/0..; 08 09 12 1% 20 =
Total Nc. of
Iternations - 78 52 33 /27/ 29 35 45 59 76 =

The above values are for a 5-bus system of Fig. 4-2



AELE 4-

5 B0 S-S STEM

PRECISION 10'6

BIS NUMBER OF ITERATIONS
NO Acceleration

lactor Q.6 0.8 1.0 Te1 1.2 103 104 105 1.6 1.7
1 2@ 25 16 11 09/ 135 16 21 28 =
2 19 12 /5/ o7 10 13 16 21 28 =
3 35 22 14 /10/ 11 13 17 22 29 -
4 33 22 15 /o8 11 13 17 21 29 -
Total Fo. of
Iterations = 126 81 48 [36/ 41 52 66 85 114 =

The ebove velues are for S-bus system of Figure 4.2
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TABLE 404-5

PRECISION 10™3

5 BUS SYSTEM

3 ACCELERATION FACTOR 1.3

BUS NO NO. OF ITERATIONS
Reference Reference Reference Reference Reference
Bus -1 Bus 2 Bug 3 Bus 4 Bus 5
1 X 16 16 17 18
2 16 X 15 18 15
3 16 16 X 15 17
4 16 17 16 X 17
> 17 18 17 50* X
Total
No. of 65 67 64 100* 67

Iteration




TABLE 4-4-0

A FCUR BUS RING Y STENM:

ACCURACY 10

-8

BUS 3 IS REFELENCS BUS

BUS NUMBER OF ITERATIONS
NC

Acceleraticn

factor 0.6 0.8 1.0 1.1 1.2 1.3 104
1 20 12 09 12 15 20
2 38 21 13 09/ 13 16 21
4 32 20 11 /107 13 16 22
Total No. of
Iterations: 86 53 /[26/ 28 38 47 63
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TABLE 4-4-3

6 BUS SYSTEM CONTAINING 3 LOOPS; PRECISION 109

6
5o NO. OF ITERATIONS

Acceleration '

factor = .8 100 11 1.2 1.3 1.4 105
1 38 25 18 [14/ 18 21 29
2 26 15 i1/ 4 15 21 2
3 28 17 [12/ 14 20 21 30
4 45 29 23 19 23 33
6 34 21 18 137 18 22 60
Total No.of
Iterations 171 107 81 [T/ 90 108 178
TABLE 4-4-8

ACCELERAT ION FACTOR OF 1.3

No. of Buses To$al No. of Iterations

2 0

4 4q
5 67
6 90
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CHAPTER - 6§

LOAD FIOW _StUDIES

5.1. JIntroduction

The load or power flow stuules consit of impoocing
specified power input and voll age magnitude or real and
reactive power input cunditions, at the terminals of a
passive network under exisiing or contemplated conditions
of norm~l operation. The solution provides complete injut
and voltage information at terminals and Power flow in eazach
branch of the nutwork.

Load studies are es.ential in planning the future devele
opment of the system becuuse satisfactory operation of the
system depends on knowing the effects of interconnections
with other power csystem of mcw locds, new genercting
stations, und néw transmission lines belore they are

actuelly instolled.

5.2. Naturc of the Problem
Por :ny nuwmel power system network the nodc equations

ecn be written as

N
Iy =2 Yy E eer (1)

=1 km m
where E represents the voltages at the ncdes end
Ik the cutrent flowing in to the nodzs. Ykm are the
adnitt:nces.

The neutral or ground noue is taken &8 a reference
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end all voltuges are referred to 1it.

In a tranemission network, the node current may either
be coming from a generator or flowing to a load., If there
were no generation or load such as, at a tie point
represented by a node, the ocurrent would be zero,

Since I » %, Em are complex quantities, they can bde

written as

Jotk
Ik cIke =6k¢'1bk

By = Bt =ey oty

Y = Y ejekm
kn = Tkm = Gy *+ 3By (2)
The power equution then could be stated as (conjugating IX)
N ., :

or By + JQ = % Y, o FoBy od 8k~ 6vn- Q)
m=1 ——n(4)
whore k is the number of the node
At each node there are four varicble st
Py Qs B, ond §, ,other qugntities being known.
It is the vairiad deta information eveilable for
diiferent nodes, thut complicates the othe:wise straight
forward solution. In any system there can be the following 3
types of nodes vis,
1. Slack bus; which lms the mognitude B, end the
an;le of its voltage b, specifie., but the real
end reactive powers, Pk vnd Qk are not known., This

bus makes up the uwifference betwecen the scheculed
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loads and rmnoration that is cousod by loocos in trant-
niveion oyotons
2, CGecnoratoar buscs, Tho valucs of Ek cnd PI:

ore opecificu leoving §) and Q. oo unknouno

J¢ Load bucea: The real cnd reociivo powors, Pk’ le

are gpocificd and Ekp 81: aro unknotnoe

5¢30 FPoosible eolutions

A form.l, cluoed form of solution for even very eiwplo
S type of mytwork mgy be almoost difficult to obiain.
Thore ere analoguo and digitel mothods and thorefore the
load flow studies could either bo contuctod on an uv.c.
ncswork analysor or an digitel computois. In en e.ce
netrork analysor solution the first step ist set up
components to represent the sychern; the 1lino unito adjucted
to proper values of resiotoneo, reactence cnd susocptcnes.
The chunt cecpacitince of lines ero token in tho account
if dooired. Tho suto=-tranaoformo.s zrc sot for prcoliuinary
tap pooitiozi end may bo readjustiod to give desired conditiono,
Volt cgo ot 8l-ck buo io maintainou ot opeecificd veluo,
othor genére.toro boinz audjucted to opocifiecd volteso w.nd
rcal power conditione. Ilow tho final solution roquiroes
cucccoiive adjuctnentio of lood and generators to convorgo
on o olnultancour bolonee of o1l gpecified torminel
com.it ionz, Fas vol zrco und power flow ere then read on
tiz¢ mnotor incirunenic wnd rocorded eo: ~copondingly on
wiaceline diogeons Digdded colut.un convicto ¢f uoing cn

s.resivo procere b, conaaing Inltially come veluco of



unknown volt ages (mernitudes and their ongles), the speci-
fie¥d conditions arc applied at each bus, and the correcticn
is applied successively to each bus voltige ¥ill the voitages
converge to an assigned precision. The line flow is then
computed. This method is known as Nodal Iterative method
(40,42),

A different approach to the power flow solution al so
exists. In thct, the firet step is the same 1.e.,to
acsume sowe voltages for cach bus, where the voltages
_are not specified,

Next with tl.e assumed set of voltages the power- input
to ead. bus is computeu and then the differvnce cf <he
scheduled power and power calculeted is found and necessary
co.rection corresponuingly is computed from the set of
lincarised difference equations. This process of finding
the differcnce of power and then to find the voltage
correction proceeus till the differences of power vanisghes
o1 tne volteges converge. This method (47,49,50,51)
supercedes the e tuod describea by Vard and hale (40),

orizinally,

8.4 Steps necessary for e digitnl load flow stu-iies

The following steps are necessary before a system

can be tuken for locd flow studies, with sin_le line
Gifl;/rﬂm avail&ble.
1. Coding of the network, which consists of labelling

the buses :md dbronches,
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The slack muchine which supplies the difference
between the specified real power in to the system at
other buses und the total system output plus loeses,
is numbered as bus 1.

Ctl.er buses can be numbered arbitrarily and the
reference or neutral bus may be left unnumbered.
Bronches ore numbered sequenciallye.

2. Intermeiiate nodes mey be eliminated at first.

3¢ Cff nominal turns ratios are cohelidered on the basis of

enolysis given in reference (40)

4. Self and mutuel sdmittences are computed corresponding
to ea:h bus from the data mvailcble for branch impedan-
ces. This process can be computerised also znd included
with main loed flow pro rem as dcne in the programme

written by the author in Appendix-~F

5 With all the input data available in proper form
any mo thod such as Nodal Itefative method can be used

for voltage solution or as described in reference (49).

505 Wg;;d QQQ !@lg g&oz Method

The methcd as su; gested originally by Vard and Hale
had the following stages.
1¢ Ti.e prccess is started with some assumed volt ages mfor
all buses except the sdack generator in which case the
value &8s given in input date 1is used throughout. The

assumcd velues ma, be taken &s 1 + jJO,
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2 These values assumed are used $0 caloulcte the
impressed current at bus 2 using equation (1) with

this volue of current and assumed va ue of volt age

at bus 2, the power finput at bus 2 is caloulated.
3¢ A correcticn is obtained in the value of voltase at

bus 2 using the scheduled power end scheduls d voltage

ncgnitude or reactive power if the bue is a generator

or load bus, other bus wlteges are considered as
constcnt while calculating the correction.

4. 7ith corrected value of voltage &t bus 2 and other bus
voltoges (assumed), the curremnt input at bus 3 is found
by the equation (1). Again with this current and voltage
et bus 3 power is cempured.

5¢ with this power input et 3 celculated, the step 3 is
a;ain repeated to find the crrection in the value of
voltage at bus 3,

Tris process is continued till all corrected bus voltages
are kncwn, which replaces the previcus assumed set of
voltages. Cnce this is uocne all the sieps right from the
step 1, are repeated ugain and again till the voltages
correction becomes less than a preassigned precision.

There ure differ.nt corrections to be applied at
gensratol .nd load buses, so the identification is necessary
to recognise a bas as a generator or load bus. This may
aulon..tictlly be done by computer as in the author's
prograume using an indek to Le attuched with input data.
After ihe voltages have converged, t.e pcwe. flow in each
br:nch can be culeuluted and relevent infurmation may be

obtained as regards losses and miasm:tche
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5.6 Generulised ilethod as described in Heferences

(43, 46)

The Ward and Hale method has & druwbuck that the
Correcticns necded to be applied at generator end load
buses ore to be computed seperctedly and for reel and
imaginary parts both. The process is slowe.

Howeve., & generalised metiod as desgoribeu in
.efervnce (43) can be applied to find the converged voltuges.
The method can be aescribed as follows

If I, be the input current and P1-3Q1 be the input
Pover et bus 1,

Then 11 can be written as

n 1 :
11 = g Y q (E.‘ - E) esese (5)
=2

q
Rt Ef I, =P, -3q, ceves (6)
Thercvfore
Fd% = (Y. yBeet, LY E,
£ - ¥¥%g, . x5, - YM5,. ... Y0 )(T)

Solving for E,

E, = P‘g; ¥, Y'%E, + 18, + ... YR
Y12 4 y13 .y,
or in general
By - 3% g:,, YH Eq
Ep = E; . forgs+ p.“ (8)

<" qu

g

q=1
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Now this equaticn can be used for any bus with the

following procecure.

1« At a load bus the resl and reactive powers are
specified so Ep can be found from equaticn (8)
through an iterative process from come assumed values
£8 of voltages and then improving it in successive

iterations,

2e Ai the generator bus where real power and constant
voltagre magnitude is specified the procedure for

voltage iterations is as follows,
(1) Since reactive power is not spcified so firat Qp

is calculated from assumed voltages by
Q==1 [(%:1 P B o+ §1 YPd Eq)]E;
ees(9)
where q £ P
(i1) after calculating Qp and with specified Pp the
volt age is celculated from (8) and reduced propor-
tionately to correspond to the magnitude requireslent,
Here, since in (8) E, 1s a function of Ej or rather itself
80 before going o the next bus for iteraticns, resubstitution
of new value of Ep in (8) as Es is required to give further
refined value of new Eﬁ which will be used for next
iteration.
In all the above iterative processes, the number of
iterations may be reduced consideirably by procjecting the
vaiue of Ep towurds actual vulue by using scme accelera=-

tion factor.
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+E

B! 11

h1 (10)

3 - I ol
= (Bpy Dpi-1 )

Tharo e 10 vh accolerantion facter. Tho above cquation
nry bo usod for both rcel end imuginary parts cf voltageo.
Tho choice of oA doponde arsain on the cyctem undor study.
Tor . modoratoly oisod system o choicc of 1.6 and 1.7
for rcel rnd imcginary poxrte reepectively io good.
Cnec eruin, when the volteges huve converged to a dosiroed
prceeision the powor flow in each brench cen be cclculeted
frec.a
. % &

Poq * 395q = By (B Ta) (- YPH)" ... (11)
vhoi e qu and qu are the re¢al tnd rcuctive poweor flow
fiom bug P towardeqjhe pProcremine writoen by the wuthor
cnd a8 included in sppendix F, is baccd on tuis method.

Roforence (46) given modificd sndeslarged ve. sion

of thiec method only,

Ctlica A owche8 to Load Flo

Reforcnee (47) describos a 1littleo differcnt opproech
to the load flow probdkem. In load flow problem it io
noccecury to oolve the cet of simultanecus ncn-linear
ocuction o6 reprocented by equ.tion (4)

By toking totul differentials, the followip linesr
rclotionship 18 woveloped for emall varictions in the

voriobloo of oquition (4)
A i ng a
By = 2. 1 Oy :1- Tl E,
" kn iy |
=21

33894

ﬁﬁ@aamwvmwmmy
77€flun||
ROORKER,
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N N
Aqk = S kaAém+Z LmAEm e (12)

mn=1 n=1
H‘n’ Nemr dim and I'km are the coefficicnts given by
for k £m
P
Hkm = X = a'mfk - bmak
36'm
Nkm - %Plé = ahmelg + bmfk
0 ™ Em
ka = aq{ = -(amek + bmfk )
26
Lkm = 'a% = 8mf£ - bmek soe (13)
2:9 By
For k =n
P
= k -
P Y N
N = 9P, P
kk k = k + G
T
2 2
Ige = Q . P, - Gy B
atSk
Q eens (14)
I‘kk = .a—qk = "E"""‘ - Bkk Ek
’UEk B

Where am and b, are the components given by

ap * by = (G + 3B) (e + 32, )
and 84% are in radiens.

For a S5~bus sustem of figure B-1 the equatiovns would be



\
AR, By Hy By, By Ny By Eyl| 25,

AP, Hyp Hyz Hyy B Ny Ny Hyg|| ad;

AR, Hip By By Hig Fpp Ty N5 (| 04y

iAl’s T | B2 Hsy H5y Hgg Fsp W5y Bog || adp

' Aqg, Top Tps Soa g5 Lpp 124 Ly | |5E, -
| -(15
’A%; Ja2 T4z 44 I45  Tg2 Tyq Lys| |PEy

86 | U5z 53 54 Js5 Doz oy Tog| | AT |

The coefficients listed abcve are not constant but are
functions of tke cpersting point, and thus of Ek and
Sk’ In equation (15) bus 1 is not teken in to account
because it 18 a slack bus, i.e., E; and d are fixed, hence
A’Ea and 88, are zero.

Similarly at bus 3, since it is a generator bus

AE3 is gero,

Now by comparing the actual real and reactive powe: at
a bus with desired values the lkfk.e and A'Qk,s can
be evaluated and equation (15) is solved fcr My g cna
Z&Eh's'

Bquation (12) represents a set cf linear equaticns
that can be colved for desired currections of the varinbles
in equation (4). But becnuse of the non-linearity, these
correcction would only be effective if they are sanll. There«
foryan approximate solution for equaticn (12) is found and
using this to find a operating point for equaticn (4) end

then from this new operating point, reevaluating the
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coefficents of equ tion (12) is done. This process is
repeated till the desired solution is obtalned.
Gene: ally, equation (12) is not solved more accurately
because it might as well take long tice to ar.ive at the
solution, s0 more iteraticns are done on equation (4)
rather then solving equ-tion (12) correctly , so that
desired solution is obtained in lecs tice,

In the reference (47), exact solution of equation
(15) has not buen obtained and are solved by an iterative
method but in reference (51),Van Ness suggests that
equ. tion (15) may be solved by the elimination method so th.'t
within riund off error, the exact correction factors are
Tound for all buses, befire they are applieu to the volt ege
megnitude and angle, Although the coxrecticns may be exact-~
ly coirect as far as equation (15) is concerned, they mg
not correct voltages anua tngles completely. However, they
mey bring results much closer.

In this we thod (51) with the escumed values of E
andj;ﬂP,s and Q's are calculated. Aloo the ccefficient
mairix of equation (15) is computed end storeds 2 P's and

4 Q's ure then found and equction (15) is solved by
eli..nution methode The results are used to correect

the voltuges at buses and this process is repeated till
the desired accuracy is obtained, The coefficient matrix
of equation (15) is computed at each step as its elemenis

are funoctiins of tle voltages.

Rxn
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5.8 edonce Matrix Iterative Meih

The driving snd transfer impedances may also be used to
define the metwork and thus en iterative process may
conslst of an initial acsumption of currents, computation
of voltages, determination of errors, in tke terminal
conditicne and correction of currents to give new values
to start the next iteration. All previcus attempts in
this direction were futile{48This was perhaps due to lack
of fast method of developing transfesmer impedance matrix,
General Electric and Commonwealth Edison companies under-
tock this project and were succeesful in writing a
programue based on above method as given in reference (52)
of April 1963. In every system they skzwka studied tine
required tor sclution was much less thon that required
by the upucl rodal branch admittance iterative progremme.

Their programme essentiully consists of thrce
subroutines.

1. Hatrix formation subroutine

2. lata sorting end modifying subrcutine

3. Iterative subroutine.

The first two subroutines prepcrc the Z-matrix so that it
is guite adaptable to an iterative process. The details

of this method are available in reference (52)
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5.9 Jllusteative Problems

The problems as shown in figure 5-1 was selected
for the load flow problem. The input and output data
is given below in the form of tables in compact
form viz 10ble 5.9.1, 5.9.2, 5,9=3 and 5.9-4,

Tabla 5.9-1 INPUT DATA
BUS P Q E Remsrks
Peu b.u Peld
1 es0 e 1.02 L_B" Single bus
2e 0.6 003 1.00&0 Load bus
’ agesumed
3 1.0 see 1.04[0_0. Generator bus,
voltage magnitude
constant
4 0.4 0.1 1.00/0°
assumed Load bus
5 0.6 o2 1000[9_0_‘ Load bus

assuned
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QUTPUT DATA (Self and Mutual

TABLE 5-9-2
Adnittences )

T4 = 2.15686 = 38,6 2745

Y12 = -058823 + 3 2035294

Y15 =  =1.17647 + J 4.70588

Yo, = 2.35294 = §9.41176

Yoy = ~=1.17647 + § 4.70588

Y24 = "5.88235 + J 2035294

I35 = =1.17647 + j 4.70588

Yy, = 0.98039 - 33.92156

Here also Yij = in

TABLE 5«9=34 OUT+UT DATA
Bus Volt age Power
Mag Angle P Q Remarks
1 1,02 0.00 0.6515 043293  Slack bue
2 0.,9547 «3.94 0,6000 ° 04,3000 Load Bus
3 1.04 2000 1.0000 0.4769 Generator Bus
4 0.,9234 -8,01 0.,4000 00,1000 ILoad bus
5 0.9931 2,07 0.6000 0.2000 Load bus




~88 -

TABLE 5-9-4 ¢  POWER FLOWS
BUSES F P, - Q Pena,
Ixom. _ To
1 2 0.1980 041227
1 4 0.2481 Ve 1175
1 5 042054 0.0891
2 1 ~0.1928 -0,1018
2 3 -0.5732 «0¢2370
2 4 041661 0,0388
3 2 0.5943 0.3214
3 5 044057 0. 1555
4 1 -0,2373 -0.0740
4 2 ~04 1629 =0,0260
5 1 =0,2030 ~0.0795
5 3 -043970 =0 ¢ 1206
5«10 Murther Proposed Work

Appendix F and to improve upon the same. The progremme based
on the method given in reference (47) would also be tited

and studied as regards speed of convergence and other factors.

equation (15) is not desired very much for applying correce
tions to voltages and angles, the Monte Carlo method of
solution of linear equations may be of help in handling the
problem and perhaps time of computation may be le ss with thiws

The author wishes to modify the programme given in

The author feels that, since the exact solution of

spproach,
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APPENDIX « A

MANTE CARLO METHON FOR SCLUTION OF FOUATIONS=-K P MTISRA 7

COMMON N
NIMENSTON BIAC Y sNP(25)s A(30a31)s MAT(30+30)
PEAD T1TaNGAME GNSTZE ¢ NNO $ NI=NNO +1

¢ = NGAMF § G=14/G

RFAD 19 (NP(T)eI=14sNNO) & NP(N1)=NGAMF+1]
FORMAT(2RT3YVE NMOARF=NCTZF+1E DFEAD 24 ((A(T4J)9d=14NMOPF) 4 T1=14NSTZF)
FORMAT (4F16e8)

SKFL.=90096,% MSKEL=SKFLS DO 3 I=1oNSIZE
DO 4 J=14NSIZFS MFIXD=A(T14J)%xSKEL
IF(J=1) 2121422

MAT(Te1)= MFIXD & GO TO 4

MAT(TsJ) = MAT(T,J-1}) + MFIXD

CONTINUF

MSTEP = NSKEL~ MAT(IsNSIZE)
TF(MSTEP)Re89e14

PRINT 9,1
FORMAT(13+19H ROW NOT NORMALIZED)
STOP
STFP=MSTFP

B(T) =A{T4NMORE)*SKFL/STEP
IROW = 1

SKO=0 $ NO=1

DO 15 NCONT=14NGAME
IF(NCONT=NP(NOQ))100+101100
NO=NO+1

G1=NCONT $ SKOR=SKO/G1
PUNCH 16 sNCONT+IROWsSKOR
FORMAT(T39134F1648)

I=1ROW ¢
CALL RANDOM

DO 7 J=1sNSIZF
JEND=NSIZF+1-J
TF(N=MAT(TIsJFND))T7+636
CONTINUFE

I=1 & GO TO 1?2
IF(JEND-NSTIZF)11+15515
[=JEND+1 $ GO TO 12
SKO=SKO+B(I) $ SKO = SKO¥G $ PUNCH 19sIROWsSKO
FORMAT( 1XT3s 10XF16e8)
IROW=IROW+]
TF(IPOW-NMORFE)18s17+17

STOP

FND



APPENDIX « B

C ¢ ITFRATIVEF MFTHOD K.B
NDIMENSTONA(2N420) 48
NO50T=1,20
B(I)=0e0% X(1)=0e0
NOB0J=1,20

50 A{IsJ)=040
REFANP?0O 4N ¢ TFST
20 FORMATI(I12,510,6)
3] RFAD2T 4T 0 sA{TaJ)YeTleJ1leA(T19J1)eNFXT
21 FORMAT(2(2T24F1Neb)sll)
GATO(31¢22) ¢NFXT
32 RFEADD? 4T 4R(T) 4NFXT -
22 FORMAT(T24F1N0e6911)
GOTN(324+33) «NEXT
33 RFAND22sT4X(T)aNFXT
GNTO(33934) ¢ NFXT
24 FRROR=040
NN35T=1 N
SUM=n N
NO4GND J=1 oN
40 SUM=SUM+A (T s J)#X ()
39 TEMPX=(R{T)=SUM+A{ T+ II¥X(IV}/A(TI.T)
FRROAR=FDRARLARCF (X (T )-TFMDYX)
35 X{1)=TFMPX
PUNCH?234FRROR
2?3 FORMAT(AHFRROR=sE2048)
IF(FRROR~TFST Y4 1434434
41 NFXT1=1
NFXT2=2% NM1=N-]
PUNCH25
25 FORMAT(18HTHF UNKNOWNS ARF - )
NO4L2T=1,4,NM]
47 PUNCH244ToX (1) 4NFXTI
PUNCH?4 o N o X {N) 4NEXT?2
24 FORMAT(IHF o T2 4F12484173)
STOP
FAD

—~e
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APPENDIX « C

MONTE CARLO MFTHOD FOR LAPLACF EQUATION

DIMENSION A(45445) sANU(45445)
COMMON K

RFAD 100+ NG

FORMAT (15)

READ2PN G ((A(TaJ) sJ=148)s1=148)
FORYAT (8F9a2)

DN 400 1=247 & J=1
TF(A(I9J))13912,13
J=Jd+1

GO TO 11

J=J+1
IF(J-8)14+4400+400
IF(A(TIsJ)) 134159173
F=0e & 1G=1

IK=1 $ JK=J

CALL RANDOM

M=K/1C000

IF(M) 17.17,18
IF(M=5)19417s17

GO TC (2092122+23) M
JK=JK+1

GO TO 24

IK=1IK=1

GO TO 24

JK=JK=1

GO TO 24

IK=1K+1

IF (A(IKsJK)) 25817525
R=R+A(IKsJK)

1G=1G+1

IF(IG-NG) 16916526
ANG=NG

ANUI(TIsJ) =B/ANG
PUNCH3CCs T s JesANU(T s J)
FORMAT (4HANU (9 1291Hs s 1292H)=9F14e7)
GOTO13

CONTINUF

STOP

FND

=) -

KeBeMe

Z
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APFENDIX - E

w33

IMPEDANCFS - K.B.MISRA Z
DIMENSIONYR(20420)sYI(20+20)sER(20)sEI(20)4sFRI(20)sFI1(20)
COMMON NsYRsYTsERSETSERLSFIL

READIN 4N ITMAX sNRB s INDEX s CF 9 CONLM

CALL IMTITAL

CALL INPUTS

NDO1T=1,N

FR{T)=0,

FI(I)=0,

NDOGK=14N

IF(K=NRRB) 13,11,+13

PUNCH 12 4NRB

FORMAT (6HBUS NOsI3417H IS REFERENCF BUS)

GO TO 9
FR(K)=1,
FI(K)=0.
ITFR=0

CALL STORFSs °

ITFR=TITFR+1
CALL VLTAGF(KsNRRBsCF)

CALL TESTFR({CONLM4NS)
GOTO(493) aNS
IF(ITFR~TITMAX )2 94 94
GOTO(8474645) s INDEX

CALL OUTPTA(KSITFR)

GOTO9

CALL CURFNT(CINPRsCINPI oK)
CALL OUTPTA(KSITFR)

CALL OUTPTR(ICINPRSCINPI oK)
GNTO9

CALL CURENT(CTNPRyCINPI¢K)
CALL QUTPTA(KSITFR)

CALL NDUTPTR(CINPRCINPI4K)
CALL IMPDNC(CINPRsCINDI oK)
GOTN9
CALL CURFNT({CINPRsCINPI oK)
CALL IMPDONC(CINPRsCINPI oK)
CONTINUF
FORMAT(41242F2048)

FND

SURROUTINF INITAL

DIMENSTIONYR({20420) sYI(20420)sER(20)sEI(20)sFER1I(20)sFI1(20)
COMMON NosYRsYTIsFRsETSFR1WET1

NO1T=1N

NN1J=1¢N

YR(14J)=0,

YI(1s4J)=0o

RFTURN

END
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APPENDIX -E (Conitd) 94 =

SURROUTINF INPUTS
NIMFNSTONYR(2020)aYI(20520) sFR(20)4F1(20)sFRL(2N)4FI1(20)

COMMON NoYRoYTsFRsFIsFR1,FT1

DIMENSION TK(2)s JK(2)s YRKI(2)s YIK(2)

RPFAD 74 NCARD

NC=0

READ R (TK(K) 4 JK(K) s YRK(K)sYTK(KY)sK=142)
NC=NC+1

NDOBK=T 4?2

T=1K(K)% J=JK(X)

TE(T)1248,472

IF(J)Y4e5 94

YR(TsJ)=YRKI(K)

YI(I+J)=YIK(K)

YR (JeI)=YR(I4J)

YI(JeI)=YT(TsJ)

CONT INUFE

TE(NC-NCARD) 14646

RFTURN

FORMAT(13)

FORMAT(2(212+2F1848))

FND

SHRROUTINE STORES

NDIMENSTONYR(20920)eYI1(20420)+FR(20)sETI(20)sFR1(20)4FI11(20)

COMMON NoYRsYIsERSETsFERLISFI1

PDO1I=1eN

FRI(IV=ER(I)

FIL(T)Yy=FTIL(I)

RFTUIRN

FND

SUBROUTINF VLTAGF(NEBsNRRB, CF)
DIMFNSIONYR(?2Ne20)aYI(2020)sFR(20)sFEI(20)sFR1I(20)4FI1(20)

COMMON NeYRsYTsERsFETsFRIsFI1

NO6TI=14N

IF{I=NFR)1464]

IF(TI-NRR) 24692

SUMNR=0,

SUMNI =0,

SUMDR:O.

SUMDI=00

NNGJ=14N

YRIJ=YR(14J)

YITJ=YI(1sJ)

FRJI=FR(J)

FIJ=FI(J)

IF(YRIJ) 44344

IFIYT1J)44544

CALL AMULTR(YRTIJosYITUJsERJIeETJeXRoXTI)
CALL APLUSB(SUMNR s SUMNT 3 XR ¢ X T 9 SUMNR s SUMNT )
CALL ADLUSE (SUMDR,SIHIMDT 4, YRTJsYTTJs SUMDR,y SUMDI)

CONT INUF
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CALL AUPONB( SUMNR 4§ SUMNT ¢ SUMDR s SUMDT s ER24F12)
FRUT)=(FR2=FR(T)}* CF+FR(T)
FI(I)=(FI2-FT(T))* CF+FI(T)

CONT INUF

RETHRN

FND

CHRPANTIME TECSTEFR (CONLMGNS)

DIMENSTONYR(206420) sYT{20620)9sFER(20)sET(20)sFR1LI(20)4FI1(2N)

COMMON NoYR3YToEROFETsFRIWFEI1

NO21=14N

CR=ER(IY=-FRI1(I)

CI=EI(I)=-EI1(I)

IF(ARSF(CR)Y=CONLM) 19143

TFLARSF(CIV)=-CONLM) 24243

CONTINUF

NS=1

RETURN

NG=2

RFTURN

END

SURRQUTINF OQUTPTA(KSsITER)

DIMENSIONYR(2N420)sYI(20420)sER(20)sFI{20)sFR1I(20)sFI1{20)

COMMON NsYRosYIsFERsFIsER1sETI]

PUNCH 1s K

FORMAT(//34HCONVFRGED VOLTAGFS CNRR. TO BUS NOsT3s10H ENERGIZF

NX=TTFR=-1

PUNCH 29 ITFR4NX
? FORMAT(/15X¢5HAFTERsI3911H ITERATIONSs17Xe5HAFTFRsI3911H TTFRA
18)

PUNCH 3

FORMAT(/6HRUS NO9sBX s 4HREAL o 14X s4HIMAGs 14X s 4HREAL 9 14X s4HIMAG/)

PO 5 I=1sN

PUNCH 44T sFR(IVSEI(T)sERI(INSFIL(T)

5

o)

FORMAT(144F174893F1848)

RETURN

END

SURROUTINE CURFNT(CINPRSCINPIsK)
DIMENSIONYR({?20920)9YI(20420)+ER(20)9EI(20)sFR1I(20)4FI1(2N)
COMMON NosYRsYIsERSsFToFER1sETL
CINPR=N,

CINPI=0,

DO31=14N

YRIJ=YR(KsT)

YITJ=YTI(KeI)

IF(YRIJU)Z29142'

TELYTITIUY263,2

FRM==FR (1)

FIM==-FT (1)

CALL APLUSR(1es0esFRMyEIMsXRsXI)
CALL AMULTRIYRTJsYITJsXReXT9sARGAT)
CALL APLUSB(CINPRGCINPI 4sARGATZCINPRGCINPI)
CONTINUE

RFTURN

FND
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SURRONITINF QUTPTH{CINPRSCINPT oK)
UIMFNSIONYR(7Os20)9YI(?C920)oFR(ZO)afI(2O),FQ1(20)9FII(2O)
COMVON NoVYRGYT gFReFT9TR1ISFI?
PUNCE 1,4 K
FARMAT(//20HTINDUT CURDENT £0PD . TN RIS NN, 13)
DUNCH 2
FARPMAT (/14X g LtREAL g 14X g LHTMALR /)
NHINCH 3, CTNDB, CTND]
CORMAT(E D] 424 1R, F)
RETURN
FNM
SUBRROUTINE [MPNONC (CTNPBR,CTNDT 4K )
h[MFMQJCMVQ(?“,Qﬂ),YI(2“,9“).EO(9°),rl(?ﬁ),FQI(Q“),FIlf2“)
COMMON MoaYP sV TaTR4FToEP 141
PUNCH 14X
FORMAT (//47HSFILE AND MUTUAL IMD, AND ADRM, CORRES. TO RUS MOWI3
PUNCH §
FOPMAT(//3X91HIs?X91HJs}4Xg6HZ(I,J),31Xa6HY(I;J))
DUNCH 2
FOPMAT (/2 (14X gLHRFAL o 14X s 4LHIMAG) /)
NO 3 T=1,N
CALL AUPCNRIFP (T )Y 4FI(T) sCTNPDLCINPT 4ZR 47 1)
IF(ZR)Y1Cs11a10
TF(ZI)10 412410
PUNCHI3 aK aT 47D 971
FORMAT (214 eF 17,8 sF1R.R84318XsRHINFTINTTE)
GOTO3
CALL AUPONP(1e90es7RsZIsTRsTI)
PUNCHG 4K s T97ZRs7T1sTRSTI
CONTINUF
FORMAT (2T49F124843F18,8)
RCTURN
FND
SURRQUTINF AMULTR{ARGAT PR 4R 4ARRLADT)
ARR=AP%*23R—-A[#RT
APT=AR%XQTI+ATH*OR
QFTUQM
FND
SUPPAITINF ALIPDAND (AR G AT gBRR 4RT gARVRR ,ARYR] )
C=RR¥PDALRTED]
ADYDD:(AQ%DP+AI%Q])/C
ARYRI=(ATI*RR—ARXTT) /C
RETURN
FND
SURFOUTTINE APLUSR(ARSATI sPR BT 4JAPLRP AP BT )
APLRR=AD+PR
APLRT=AT+R]
RFETURN
FND
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C ELECTRICAL LOAD FLOW SOLUTION KeBeMISRA Z
DIMENSION YR(20+20)9Y1(20520)+ER(20)EI(20)9ER1(20)EI1(20)
DIMENSION IN{(20)sIK(3)9sJK(3)sRK(3)sXK(3)sP(20)+Q(20)sVMAG(20)
DIMENSION BMTR(20)»BMTI(20)

COMMON ERSEIsERSSEIS»INsVMAGISUMRYSUMIsJsN»IsYRsYI»QI 9Pl
COMMON ERISEIIsIKsJKsRKsXK9ERLSEI1sPsQ
READ 20sNsERSHEIS
READ 21»CFRsCF1
READ 22s CONLM
PUNCH 101s CFRsCFI9CONLM
FORMAT (3F2048//)
CALL INPTRX
DO 1 I=29N
IN(I}=O
CALL INPTGL
DO 3 1=2yN
IF(IN(I))39e2,3
PRINT 23s I
GO TO 30
CONTINUE
CALL INITAL
ITER=O
DO4 I=2sN
ER1(I)=ER(I)
EIL(I)Y=EI(])
D09 I=24N
P1=P(1])
ERI=ER(I) & EII=EI(I)
INI=IN(I)
CALL SUMMAT
GO TO (5+6)sINI
QI=Q(I)
CALL VOLTAG
ER2=ERI % EIZ2=Ell
CALL VOLTAG
ER(I)=(ERI-ER2)*#CFR+ERZ2
EI(I)=(EII~El2)*CFI+EL12
GO TO09
CALL GENERQ(QRI}
CALL VOLTAG
IF(SENSE SWITCH 2)7+8
ERI®(ERI~ER(I))#CFR+ER(I) $ EII=(EII-EI(I))*CFI+EI(I)
VMAGT=SQRTF(ERI#ERI+EII*EII) $ VM=sVMAG(I)/VMAGT
ER(I)=ERI*VM $ EI(I)=EII*VM
GO TO 9
VMAGT=2SQRTF(ERI*ERI+EII*EII) $ VM=VMAG(1)/VMAGT
ERISERI#VM $ EII=EII%#VM
ER(I)=(ERI-ER(I))*#CFR+ER(I) $ EI(I)=(EII-EI(I))*CFI4+EI(1])
CONTINUVE
DO 12 1=2,N
DER=ER(I1)~ER1(I) & DEI=EI(1)-EI1(1)
IF(ABSF(DER)~CONLM)11ly11+50
IF(ABSF(DEI )})~=CONLM)12+12y50
CONTINUVE :



50
51
100
52
31

13
14

62
64
65

66
15

16

17
18

19
53

Go TO 31

IF(SENSE SWITCH 3)51,52

PRINT 100+ITERsDERsDEL
FORMAT(1I342F2048)

ITER=ITER+1 % GO T0O 10

I=l

CALL SUMMAT

ERI=ER(I) & EII=EI(I)

CALL GENERQ(QRI)

P(1)=QRI % Q(1)=Ql

DO 14 I=24N

INI=IN(I) $ ERI=ERI(I) % EIl=EIll1)
GO TO(1l4913)INI

CALL SUMMAT $ CALL GENERQ(QRI) $ Q(I)=Ql
CONTINUE '

PUNCH 245ITER

DO 15 I=1sN

. ERI=ER(I) $ EII=EI(I)

VMAGT=SQRTF(ERI®ERI+ETI#EII)
ANGLE=(ATANF(EII/ERI))*180e/3414159
PI=P(I) $ QI=Q(1I)

IF(1=1)62966962

INI=IN(I)

GO TO (64965)91INI

PI==P(1) § Ql=-Q{1) ,

PUNCH 20141 sVMAGSANGLESPI»QI

Go To 15

VMAGT=VMAG(1)

PUNCH 20251sVMAGT s ANGLE»PI QI
CONTINUE

PUNCH 26

CALL BRADMT

DO 53 I=1sN

BMR=0e $ BMI=0,

DO 19 J=1N

IF{I=-J)16919916

YRIJ=YR(IsJ) $ YIIJ=YI(IsJ)
IFIYRIJ)18917»18

IF(YIIJ)18s19918

DR=ER(I)}=ER(J) 8 DI=EI(I)-EI(J)
CALL AMULTB(DRsDI»YRIJYIIJSsDReDI)
DI=~DI

CALL AMULTB(ER(I)9EI(I)+DRsDIWPIHQI)
PUNCH 27+¢1sJ9PI,QI

BMR=BMR+P! $ BMI=BMI+Ql

CONTINUE

BMTR(I)=BMR $ BMTI(I)=BMI

CONTINUE
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83

84

86

SuN
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SUMR=0e $ SUMI=nQ.
DO 80 I=1lsN
SUMR=SUMR+P (1}
SUMIaSUMI+Q(T)
PUNCH 83
FORMAT(/25HTOTAL TRANSMISSION LOSSES//18Xs4MREALs 15X saMIMAG/)
PUNCH 84, SUMR,sSUM]1

FORMAT(10X9F15¢8926X9F15.8)

PUNCH 85

DO 86 I=1N

PUNCHBT»1+BMTR(T) +BMTI(I])

SUMR=0, 3 SUMI=0.

DO 90 I=1eN

SUMR=SUMR+BMTR({ 1)

SUMI=SUMI+BMTI(1)

PUNCH 203

PUNCH 84, SUMRs SUM1
FORMAT({/8BHMISMATCH//2X 9 1HI 9 18X s 4HREAL ¢ 15X 9 4HIMAG/ )
FORMAT({I3910X9sF15896X9F15,8)

FORMAT(12+2F20,8)

FORMAT{2F20.8)

FORMAT(F20.8)

FORMAT(19HNO DATA FOR BUS NOes13)

FORMAT (/19HNO. OF ITERATIONS =,13//6HBUS NO+SH TYPE»6Xs9HMAGNITUDE
199XsSHANGLE » 13Xy 1HP»15Xs1HQ/)

FORMAT(I394(4X9sF1548))

FORMAT(/2X o 1HI 96X o HI o1 TXs6HP( 1 9J) 026 Xs6HQ(19J) /)
FORMAT(1394X31392(10XeF204.8))
FORMAT({I393XsS5HSLACK»4(Fl6e8))

FORMAT(13s3Xs5HLOAD s4(Fl6.8))

FORMAT(I3+3X+5HGENe »4(Fl6.8))

FORMAT(/14HTOTAL MISMATCH//18X»4HREAL » 15X 94HIMAG/ )

STOP

END

SUBROUT INE BRADMT

DIMENSION YR{(20920)sYI(20+20)9ER(20)9FI(20)9ER1(20)9E11(20)
DIMENSION IN(20)sIK(3)sJKI{3)sRK(3)sXK{3)sP{20),Q120)»VMAG(20)
COMMON ERSEISERSIEISIINIVMAGsSUMRISUMI s JaN212YRsYI QI sPI
COMMON ERICEII 9IKoJKsRKIXKIER1IPEILSP»@Q

DO & I=19N

DO & J=m1l.N

IF(I=~J)1sasrl

YRIJuYR(I»J)

YIlJmYI(1ed)

IF(YRIJ}39293

IF(YIIJ)39493

YR{IsJ)®=YRIV $ YI(]yJ)m=Y]IIJ

CONTINUE

RETURN
END
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SUBROUTINE INPTRX

DIMENSION YR(ZO,ZO)’YI(20920),ER(20),EI(ZU):ERI(ZO),EIl(ZO)
DIMENSION IN(20)sIK(3)sJK(3)sRK(3)sXK(3)sP(20)sQ(20)sVMAG(20)
COMMON ERSEI sERSsEISsINsVMAGsSUMRySUMI s JsNsI sYRsYI»QIHPI
COMMON ERISEIIsIKsJKsRKsXKsERISEIL1sPsQ
DO1 I=1,N
D01 J=1sN
YR(IsJ)=0a
1 YI(IsJ)=0e
READ17s NCDRX
NC=0
IF(SENSE SWITCH 1)26+2
26 PUNCH 19
2 READ1Bs {IK(K) sJK(K)sRK(K) sXK(K)s K=1s2)
NC=NC+1
DO7K=1+2
I=IK(K)
J=JK{K)
IF(I1)3+793
3 IF{J)4+7 94
4 R=RK(K)
X=XK({K)
CALL AUPONB (les0e3sRsX9GsB)
IF(SENSE SWITCH 1})546

5 PUNCH 20s TIsJsRsXsGsB
6 YR(IsJ)=G
YI(IsJ)=B
YR{JsI)=G
YI(JsI)=B
7 CONTINUE
IF(NC—-NCDRX)2s8+8 .
8 IF(SENSE SWITCH 1 125,27
25 PUNCH 21
27 DO 16 I=1sN
SUMR=0.
SUMI=0.
DO 11 J=1sN
YRIJ=YR(IsJ)
YITJd=YI(1sJ)
IF(YRIJ)1Us9,10
9 IF(YIIJ)Y10,11,10
10 SUMR=SUMR+YRIJ
SUMI=SUMI+YIIJ
11 CONTINUE
DO 16 J=1,N
IF(I=-J)12+s13412
12 YR{TsJ)==YR(I4sJ)
YI(IsJ)==YI(1sJ)
GO TO 14
13 YR(IsJ)}=SUMR
YI(IsJ)=SUMI
14 IF(SENSE SWITCH 1)15s16
15 PUNCH22sTsJsYR(IsJ)oYI(IsdJ)
16 CONTINUE
RETURN
17 FORMAT(I3)
18 FORMAT(2(212+2F18e8))
19 FORMAT(2X s 1HI 96X s 1HJI 97X 96HR(I9sJ) s 10X s6HX(I5J) 910X s6HG(IsJ) 310X
1(IeJ)7/)
20 FORMAT(I3s4Xs13+4(3XsF1348))
21 FORMAT (1 IHADMITTANCES/2X s IHI 96X s 1HJ s 19X s 4HREAL 926X s 4HIMAG/)

22 EQRMAT(1354X51352(10X5F2048))
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SUBROUTINE INPTGL =10 =

DIMENSION YR(20520)sY1(20s20)sER{(20)+EI(20)sFR1(20)sF11(20)
DIMENSION IN(20) sIK{3)sJK(3)aRKI(3)sXK(3)sP(20)sQ(20)sVMAG(20)
COMMON FROFISFERSIEISeINIVMAGISUMRISUMI o JsNeIsYReYIsQI4PI
COMMON ERISEII»IK9sJKsRKsXKsERLISEI1sPsQ

READ 8sINKs (JK(K) sRK(K) s XK(K)sK=1s3)

IF(INK)29742

DO 6 K=143

J=JK(K)

IF(J)3s693

P(J)=RK(K)

IN(J)=INK

GO TO(4+5) s INK

Q(J)=XK(K)

GO TO6

VMAG(J)=XK(K)

CONTINUE

GO TO 1

RETURN

FORMAT(I1s1Xe3(1292F1267))

END

SUBROUTINE INITAL

DIMENSION YR(20920)sYI(20s20)sER(20)sEI(20)9sER1(20)sEI11(20)
DIMENSION IN(20)sIK(3)sJK(3)sRK(3)sXK(3)sP(20)sQ(20)sVMAGI(20)
COMMON ERSsEISERSSEISesINsVMAGeSUMRISUMI s JsNsI sYRsYIsQIsPI
COMMON FRIsFTTsIKsJKsRKeXKaFRIsFTI1sPsQ

ER(1)=ERS

EI(1)=EIS

DO4 1=24N

INI=IN(TI)

GO TO(1s2)s INI

ER({I)=1e

GO TO 3

ER(I)=VMAGI(1)

EI(I)=0.

CONTINUE

RETURN

END

SUBROQUTINE SUMMAT

DIMENSION YR(20920)eYI(20920)sER(20)+EI(20)9FER1(20)sE11(20)
DIMENSION IN{20)+sIK(3)sJK(3)sRK(3)sXK{(3)sP(20)+sQ(20)sVMAG(20)
COMMON ERSEISERSSEISsINSVMAGsSUMRsSUMIsJsNsIsYRoYIsQIsPI
COMMON ERISETIsIKsJKsRKsXKsERLISEIL1sPsQ

SUMR=0.,

SUMI=0.,.

DO 4 J=1sN

[IF(I-J)1leb,sl

YRIJ=YRI(I4J)

IF(YRIJ)34243

IF(YITJ) 39443

CALL AMULTB (ER(J)YSET{J)sYRIJsYITJsXRsXI)

SUMR=SUMR+XR

SUMI=SUMI+X1

CONTINUE

RETURN

END
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SUBRQUTINE VOLTAG

DIMENSION YR{20920)9Y1(20920)sER(20)sEI(20)»ERI{20)+E11(20)
DIMENSION IN(20)sIK({3)sJK{3)sRK(3)sXK(3)sP(20)»Q(20)sVMAG(20)
COMMON ERSEIZERSIEIS» INsVMAGISUMRISUMI»sJeN9sIsYRsYI QI sP1
COMMON ERISEIT2IK»JKIRKIXKsERLIEIL9P»@

QI=~Q1

ECIs-Ell]

CALL AUPONB (PIsQIsERISECIsARMAL)

AR=AR-~SUMR

Al=AI-SUMI

CALL AUPONB (ARSAIsYR(Is1)sYI(I91)sERIHEI])

RETURN

END

SUBROUTINE GENERQI(QRI)

DIMENSION YR(20920)9YI(20920)9ER(20)sEI(20)+ER1(20)sE11(20)
DIMENSION IN(20)sIK(3)sJK{3)9sRK(3)sXK(3)sP(20)sQ(20)sVMAG(20)
ECI=~ElI

CALL AMULTB (YR(IsI)sYI(IsI)sERISEIISCRsCI)

CR&SUMR+CR

CIsS5UMI+CI

CALL AMULTB (CRsCISERIZECISQRISQI)

Qr==Q1}

RETURN

END

-
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Generally, one is called upon to invert an admittance
matrix using Node equuticn for the solution of Network
problens,

Node equaticns using self : nd mutual admittonces of a power
system network can be solved by inverting the Admittence
metrix, the anclysis of which ie as followa:

Using Kirchoff fiist law, it can be written thet

b
Iy = = L (1)
J=1

where xkk = total input currcnt at node k

Ik j = branch current between node k wnd jJ

b = total number of branches at k
Also,

Ly = (B - EJ) Vi (2)
where B, = voltage et node k

E

3 = volta: e at node J

Yy = branch adnittance betweecn node k and J

Sadbetituting equation 2bin eygation 1 and combining

e v, B ¢+ Z Yy By (3)
b =1
Where Ykk = > yk;) = gelf -admittance
J=1

ij B - ykj = mutual admittonce
solving equation 3 for volt age B



b -1C4 ~
L, - 5"y
B = =
Tix |
Ir k represents the ditving point node and agcurrent of

*eeeces (4)

1 4+ J0 be impreasédbat k then,

O0=2= Y.E
Bp= "0 7 3=1 k33 (5)
Tk

where Ekd = volt age at diagonel elcments
EJ = voltage at ad)acent nodes -

Por d lother node there is no current impressed :l.e.,
Ikk = 0, therefore

k
Bogp = 3=1 <373 6)

Tux

Where EKOD = voltage at off-diagonal elements Equ.tion 5

is for diagonal el«ment or node and equation 6 is for off-
diagenal nodes. Solution of 5 and 6 is obtained by an
iterative process with original assumptions of EJ =0
At the end of iterative process when the volt age have
converged to a desired precision, as desired by accuracy
of results, the row of inverse of the original matrix has been
computed,

Similarly, by energising all buses in turn the whole

inverted matrix can be estimated easily.
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V. Re g on Technigues

In a Monte Carlo Calcul.tion the problem of rounde-off
has little effect on the accuracy. The statistical deviation
of result is more important,
A bMonte carlo calculation consists of a series of
independent trials at any one of which the stundard
deviaticn of a reguired pm.-ameter mey be 6. The deviation
~of the estimote of such a parameter from II trials, that
ie of1the arithmatic meant'of I observoiions, is then

¢ N"€ . Therefore an increase of onc docimal fTigure
in accuracy with which the paremeter is estiirated necesw-
piates a hundred time s incorease in the number of trials.

It is obvious thus that if adequate precision can
not be obteined with reasocnable computer usage, some way
must be found to reduce the errors other then an increase
in machine time. And this requirce the necessity of
variance redaucing techniques.

The actual discussion on varicnece corresponding to
a particular distribution,the refersnces (21, 30) provide good

materials as regards matrix inversion by Monte Carlo method.
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MONTE CARLO METHODS AND POSSIBLE APPLICATIONS
TO SYSTEM PROBLEMS

by
K.B. Misra*

duction .
Two types of problems are met in practice. They are, Probabilistic and

rministic according to whether or not they are directly concerned with the
viour and out come of random processes.

Monte Carlo methods comprise that branch of experimental mathematics
'h is concerned with the experiments on random numbers.

In case of a probabilistic problem the simplest Monte Carlo approach is to
rve random numbers, chosen in such a way that they directly simulate the
ical random processes of the original problem, and to infer the desired
jon from the behaviour of these random numbers.

However, in case of deterministic problems also, once the theory has
ised its underlying structure, one may perhaps recognise its structure associated
some unrelated random process and thereby attack the problem.

f History

The name and the systematic development of Monte Carlo methods dates
ut 1944. One of the earliest applications of the principle at the root of Monte
‘o methods seems to have been made, as a mathematical recreation (in 1855),
Ar. A. Smith of Scotland who found out the value of 7 in some 3204 trials as
153. Captain Fox got 3.1419 in 1120 trials. They threw a stick just enough
sach from one line to the other on a plane ruled by lines equally spaced and
the probability that the stick will touch a line is 2/x;

About 1950, matrix inversion and solution of partial differential equations

' TElectrical Engineering Department, University of Roorkee, Roorkee,

1
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by Monte Carlo methods were developed. And in the present paper it will be
seen how these could be done by the method given by Forsythe and Leibler’2

Two symposiums?® were Leld at Los Angeles on June 27, 30 & July 1, 1949
and again on March 16, 17, 1954 at University of Florida, respectively. A series
f papers were read and discussed and several applications of Monte Carlo
nethods were suggested. Since then several scattered papers were published. In
ast few years Monte Carlo methods have come back in to favour. This is due to

»etter recognition of those problems in which it is the best and sometimes the
snly available technique.

Aonte Carlo Methods applied to system problems

In circuit problems one generally comes across a set of linear equations
vhich could be solved to find the desired quanrntities in general. For example for
ny D.C. network by properly selecting the linkset and hence corresponding tree
T vice versa, tLe connection matrix C can be developed for anv assumed reference
-ame. The loop resistances and loop voltages and currents could be written as

rhmn_ch = C Ilo(m
—1
rloc’m == Rloop €loop

also  Rigop = C! Riranch C

-

Now here, the problem reduces to find the inverse of the matrix of Rioop.
nee it is found, the solution to the network problem could easily be obtained.
" the network consists of a large number of branches and sources the problem of
1ding the inverse of a matrix poses a serious consideration and here we take help
"Monte Carlo methods and as shown by Das Guptat that the solution to such
rmplicated networks could easilv he had with fairly good values,

Similarly, the solution to the network problem could also be obtained if in-
2ad of mesh equations®, one is called upon to use the node equations. There
e solution would be obtained by finding the inverse of G matrix instead of Ricop.
iso Enode and Evranches would be calculated instead of Tioop and Ipranches. SoO
r solving a d.c. network has been discussed but little consideration would show
it the A.C. network could also be solved on similar lines.®

The voltages and currents are related by the system of linear equations

Z11 I, + le L + .. -+ Zln In = El



4 Research Journal : University of Roorkee

One great advantage in favour of Monte Carlo method is that it inverts the
matrix, row by row and thus sufficiently saves the labour in computations.

The main advantages of row by row inversion are
1. Since the calculations proceeds on a unit basis where unit is the busor

the node of the network. The matrix can be built up from this unit to
the complete system. .

2. There is complete freedom to operate on any row in any order.

The possibilities of applying the Monte Carlo method to the problem of
Interference of power lines on communication lines or to find the line constants in
case of an untransposed Hne having large number of conductors can also be explored.
Mon'te Carlo method provides a simpler method of solution of Laplace equation?
—82% —83—121- = 0 ‘'with given boundary conditions.

0 X a2y

The physical situation for which it could arise may be an electron tube, high
voltage electrical equipment or a magnetic field in a machine, In all these cases,
one has to find the value of the electric or magnetic potential up at any point with-
in the given boundary. The approximate equivalent of the above equation could
be taken as
u;+u,+ug+-uy

4
Where u,, u,, ug, U, are the values at the four corners around u..

U=

Solution now depends on severa! random walks in the field starting with uo
point guided by random sequence, till the boundary is reached and the boundary
value is the score of the game, Score on the basis of per game gives the potential
at that point uo. Thus Monte Carlo methods may find several applications in the
field of Power System Engineering by proper simulation.

Comparative study of different methods for solving Linear Equations.

There are two types of methods® of solving a set of n Linear Equations in n
unknowns (being large) viz,

Direct methods and Iterative methods. Gaussian Elimination is a direct
method.

In the application of ordinary direct methods the number of multiplications
is very largs approximately & n® and ths number of roundings correspondingly is
great'? thereby involving considerable error.
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There ar€ iterative methods such as Seidel Gauss and simple or Jacobi
iterations, best suited for sparse matrices (containing large proportions of zero
elements) which are very common in network analysis.

According to G.E. Forsythe®, conventional Cramer’s rule procedure for sol-
ving n simultaneous equations in ‘n’ unknown requires evaluation of n4-1 determi-
nants of order n. As ordinarily defined, a determinant of order n isa sum of
1.2.3.4.. (n—1) n=n! different terms, each of which requires n—1 multiplications
to obtain its value. If one were to proceed in this fashion, n+1 such determinants
would require (n—1)! (n+1) ! multiplications to evaluate, For n=10, this is 359,
251, 200 multiplications to evaluate, requiring 114 years to get an answer at the
rate of one multiplication each 10 sec. Even SWAC?® (National Bureau of Stan-
dards Western Automatic Computer, a very fast digital computer) which could
multiply 2690 times per second would need 38 hrs, for multiplications.

If the amount of work is measured by the number of multiplications required
under the most favourable conditions, the Gauss Elimination method involves the
amoun' of work a n* where n is the order of the matrix. The amount of work
required by Monte Carlo method is given by an expression of the form n*+4-n+b
where b is fairly large. If no preliminary preparation aimed at reducing b is
made then amount of work may be given by n-+b.

The result of this varying dependence on the dimensionality of the problem
is that the Monte Carlo method is theoritically the most efficient® than any

other method for sufficiently large value of n, The value of n at which the method
becomes more efficient than any other method for sufficiently large value of n,

depends on the accuracy with which the solution is to be computed.

The Monte Carlo method may not give very high value of accuracy in the
result by itself. Some iterations are necessary to give the desired accuracy.

The Monte Carlo method gives more accurate the off-diagonal terms than
the leading diagonal terms such as aij and aji where i7j gives nearly accurate
values because generally with the circuit problems, one comes across a symmetric
matrix only. This also cuts down the labour of finding the elements of the inverse
matrix.

The accuracy which Das Gupta got for his problem® was fairly tolerable for
most of the cases.

The computer programming for the Matrix inversion by Monte Carlo



6 Research Journal : University of Roorkes

method! could be done and with the latest techniques available for variance redu-
ction, the Monte Carlo method becomes a challange for the existing popular and
effective method for solving a set of Linear equations with desired accuracy.

Generation of Random Numbers: —

When doing a Monte Carlo problem one focusses attention on three main
~ points, viz;

1. Choosing the probability process

2. Generating sample values of the random variables on a given comput-
ing machine

3. Designing and using variance reducing technique.

The random numbers generated, thus play an important part in compu-

tations. There are several methods of generating random numbers (or pseudo-
random). :

The first suggestion of generating the random sequence came from Von
Neumann who suggested that a random sequence could be generated by squaring a
number, possibly, of more number of digits say for example 8 digit number and
then taking the middle eights as the next number in sequence of random numbers.
The retained eight digit number is once again squared and the middle eight digits
be taken as the next in sequence of random numbers. This, however, shows
unsatisfactory resuits if the number has less than eight digits and that the sequence

develops unsatisfactory properties if extended beyond 700 or so eight-digit numbers
in sequerice,

Lehmer introduced an easy and more dependable method of generating
random sequence. Das Gupta used the same sequence as described below for
his computations in his first paper. However he used different sequence in his
second paper’. He used random sequence for that paper from the referencel’.

Lehmer's method calls for successive multiplications of an eight digit number
by a suitable constant such as 23. For example, taking an eight digit number such
as 12345678 and then multiplving this by 23, one gets a number as 283950594
which is a nine digit number. Making it 10 digit number by placing 0 on the exterme
left and thus making the number as 0283950594, Now seperating out this number
into'two parts by removing 02 away from 83950594 and then substracting 02 from
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83950594 to give 83950592, This is a second number in the sequence of random
numbers. Again this new number is multiplied by 23l to give either 9 d.git or 10~
digit number in general. If it is a nine digit number there is necessity of placing a
0 on the extreme left to make it 10 digit number otherwise not.

Lehmer method provides a sequence which repeats itself but after 5882352
numbers have been computed, which is long enough for most of the applications.

It contains almost 47 million random digits. Lehmer sequence could very well be
computed on the computer by the relation.

Xn+41 = k Xn (mod Mj
with K =23, M==10* + t for ENTAC?*

In 1950, when several experiments® were performed for the solution of
partial differential equations and inversion of matrices, the method followed for
geueration of random numbers was, -

Xo = I, Xa + 1 =p Xn (mod 2%%)

Where p is any odd power of 5. In practice p = 517 (the largest power of 5 accep-
ted by the machine~SEAC) and Xo could be any integer satisfying X, = 1 (mod 5).
This sequence has a period 24 ~o 1012, :

There are other methods?l® also for generating random numbers but
ahove mentioned are only used generally.

Matrix Inversion by Monte Carlo method: —

The Monte Carlo method provides a simple computational approach to the
statistical estimation of the elements of the inverse of a given matrix. The method
~will give any one element, a single row, or all of the clements of a matrix when
certain conditions are met. '

If B is a nxn matrix, its inverse is found by the method given below

Let A = I-B, ‘ Mm

where, T is a unit matrix (3y).
The game which is described here is defined if

max | Ar (AY) | < | (2)
where A*y = | Ay | '

If this is satisfied then
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B-l = (I-—-A)"‘l
=14+ A4 A% .. . Ab4 .

o0
= 3 Abh
h=0

Therefore,

o0
(B Yy = 3 (A
k=0

A simple sufficient condition exists for testing whether condition (2) is satisfied.

A o |
Let S; = 21 ay _ | (3)
==

If Sy < 1 for all j then max | &1 (A) | < |
i

.

If matrix B is such that this test fails, it is possible in some cases to divide B by a
constant factor ‘a’ so that B = aB’ and using [ —B'=A’,

max | & (A} ]| < 1 (4)
Then (B’)~! is obtained by the Monte Carlo method

and  [By = %[B'u]“l (5)

Now a probability model is to be developed for this game. It is assumed that sum
of all the elements in any row of A* [= ay* = |a; | = |8 — by |]
is less than unity ie,
n
b au* < 1 C(6)
j=1

But if this is not possible then dividing by a factor ‘a’, may fulfil this condition.

The Monte Carlo method for obtaining the inverse of matrix Bisto play a
game Gyj, for a large number of times and the expected payment of the game is
C, ie (B)y~t. 1f N is the number of times the game is being played then according
to the result of Kolmogorff on the strong law of large numbers, we get

lJim E (G) =C ‘ : (7
N->oo -



Monte Carlo Methods and Possible Applications 9

L]
Now to find inverse of B, first matrix A is found by the relation |—B=A,

The parameter A* is the same as A but has the elements with magnitudes
only. The value factor matrix, V, is then developed the entries of which are either
41 or —1 according to ay; being positive or negative

therefore, ayy = ay* vy (8)
where vy is the element in the value factor matrix. Equation (8) could be com-
pared with that the given by Forsythe and Liebler?, ie.

ay = Py vy ' : (9)
where Py is the element of the probability model P. Then from (8) & (9) we get,
py = ay* (10)
It can be shown that stop probability model py for any i th row is given by?
n

pr=1— 3 py ()
i=1
The possible probability model is given below
Pll P12 P1n P1
PJI sz ! Pun Pg
Poy | Pn | Pnn [ Py

This may be noted here that probability model is a (nxn-+1) matrix.

The P matrix is then multiplied by M a large arbitary number, and each
element of the matrix after muitiplication, is rounded off to the nearest integral
value. The error in the rounding off decreases as the value of M chosen increases

but final ‘yesult is independent of M. Now the new entries in the probabitity
model would be

LUTY 0y, Din | Iy

Dg; | Dgy Ngn | Oy

Ny Dpgy I Npp | Np
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¢
where ny; = ppM

n, = pM
. _ _ and so on,
here Ny + Nyo + Diyg .- + n, = M .

Next the field numbers are allotted to each element of the probability model row-
wise as shown below

row | - row 2
| O=(nu—D Nz 0—>ny,
DNy Ny —>{(n—1) LLPY) ny;—>(Nge—1)
“_ T
! ng (n11+n12+...n1n)—)M-] Ny (n21+ﬂ22+...n2n)—)M——1

Rules of the game to obtain the ith row of the inverse -

(1) From the set of random numbers, first number is drawn and this
number is checked in the field deck corresponding to ith row and the random
number is found to lie in a particular field and the entry nyjin the field is located
the number j is further tested for j =n + 1

(2) Ifj=n+4 lieny=ni(n+ 1)the game should be stopped and a
payment of + ny~! is made in favour of ith entry of the ith, row .

(3) Ifj==n + 1, the game does not stop and since the last entry in which
the random number fell was ni;, Now looking up for the next random number in
the jth row to locate a the random number in %jk field. Again this k is test for
k=n+41 - ‘

(4y Againifk = n 4+ 1, the game should be stopped and a score of ;i:"'.' o

(n)-! is made in favour of the jth entry of i th row.

This must be noted here that although help of other rows of the matrix to be
inverted is taken entries of the score' would be made in favour -of a particular row
which is being inverted.

(5) Once more if k# n + 1, the g‘é'r:r—le is __nbt stopped and for the next
random number in sequence, the field in kth row in which the number lies is
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looked up and so on. The same procedure for locating the field for the random
numbers in sequence proceeds on till the stop probobility field is hit and the score
be recorded against the particular element of the ith row for which the game was
played. It may be here once again made clear that the score for a particular ele-
ment would be 4 or — depending upon the route followed in the game. Suppose
that the game proceeds on from the deck I to deck 3 and once again to deck 2 and
then stop probability field is hit. Then the exact route followed is (1)—>(3)—(2),
hence the score would be + or — depending upon the elements of the value
factor matrix

The exact value of the score made against the particular element of row

to be inverted would be given by
= Vi3 Vg . |

where vy3 and v,, are the elements of the value factor matrix set up already. This
is the big advantage as mentioned earlier of Monte Carlo method, that there is row
inversion of the matrix and thus facilitate work and unnecessary or un-wanted rows
or elements may be ommitted for inversion. The game is played as per conditions
for a large number of times and score be noted as above. The average score on a
per.game basis gives the solution.

Conclusions :

Monte Carlo Games provide a very good method for s lving Linear equa-
tions. The method is good for an approximate solution of the equations but with
the latest variance reducing technique suitable for high speed computer the method
becomes quite promisirg. The solution converges rapidly in the begining butis
refined only for further large number of games. Also, if this method is used in
conjuction with Some iteration, the method may cut shor( the computation time and
error.
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Appendix

a. PROGRAMME:—The programme is based on the method given in reference 7.
C C MONTE CARLO METHOD FOR SOLUTION OF EQU‘ATIONS—- Z

COMMON N
DIMENSION B (30), NP (25), A (30, 31), MAT (30, 30)
READ I, N GAME, N SIZE, NNO § NI = NNO + 1
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G = NGAME §$ G = 1./G

READ 1, (NP (D), 1 =1, NNO) §$ NP (N1) = N GAME + 1
1 FORMAT (2513) $ N MORE = N SIZE + I$ READ 2, ((A (I, ]), T = I,
N MORE), | = I, N SIZE)

2 FORMAT (4E16.8)
SKEL = 99999.8 N SKEL = SKEL$ DO 31 = 1, N SIZE
DO 4 J=1, N SIZE$ M FIXD=:A (I, n* SKEL
TE(J—1) 21, 21, 22

21 MAT(,1) = MFIXD $ GO TO 4
22 MAT(, J) = MAT (I, J—1) + M FIXD

4 CONTINUE
M STEP = N SKEL—MAT (I, N SIZE)
IF (M STEP) 8, 8, 14

8 PRINT 9,1

9 FORMAT (13, 19H ROW NOT NORMALIZED)
STOP

14 STEP = M STEP

3 B (I) = A (1, N MORE)* SKEL/STEP
IROW =1

18 SKO = 0§ NO =1
DO 15 N CONT = |, N GAME
1F (N CONT-NP (NO))'100, 101, 100

101 NO = NO + 1
Gl = N CONT § SKOR = SKO/GI
PUNCH 16, NCONT, IROW, SKOR

16 FORMAT (I3, I3, E16.8)
100 T = IROW

12 CALL RANDOM
Do 73 =1, NSIZR
JEND = N SIZB + 1-J
IF (N-MAT (I, JEND)) 7,6,6
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CONTINUE

I=1%GOTO I2

If JEND-N SIZE) 11, 15, 15

I =JEND +4 1§ GOTO 12

SKO = SKO + B (I) $ SKO = SKO* G § PUNCH 19, IROW, SKO
FORMAT (1XI3, 10XE16.8)

IROW = IROW + 1 '
If TROW — N MORE) 18, 17, 17

STOP

END

SUBROUTINE RANDOM:—Could be written on the basis of the methods
already mentioned or from references 7,10 mentioned herein.

Subroutine should necessarily be in machine language.

The problem given in reference 7 was tried, the results were found to be quite
satisfactory,
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