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(i) 
SYNOP SI S 

During the past decade, Digital Computers have 

introciced the entirely new approach to the problems, 

which were otherwise considered almost impossible or 

had some inuirect methou of attack. 

There has been a great endeavour towards computer-

ising any process that involved considerable labour and 

time, for the solution of system problems which different 

method of approach. 

The aim of this thesis, is to popularise the use of 

Digital Computers to the solution of different systems 

problems encountered; however, this is merely an attempt 

in this direction. 

Several me the de exist for the solution of network 

problems and are suggested almost every year. A oomper-

ative study thus is unavoidable and therefore discussed 

herein. 

Recently, Monte Carlo methods have been applied to 

a variety of problems, hence they have been given a due 

place in this thesis for the solution of the linear net-

work equations un d for the solution of Laplace Equations 

which in irregular and multidimensional regions, prevent 

a difficult situation with the conventional methods. 

The Computer programmes are drawn for both the 

above cases an A the result a of the problems chosen have 

been discussed at par. 



Although several problems, such as setting up of self 

rnd mutual impedances and Load flow atu ice, usually 

as a practice by System & ginecra at large, are tried on 

A,C, Network Analyzer, the digital methods for the same 

are some tiLe s superior or to say more convenient as regards 

tile, economy, accuracy and with larger data handling 

capabilities, and therefore should draw the attention. 

The author litre diecuaees different methods of digital 

approache to the above problems and by taking specific 

problems ex'mplifies some of the salient features of the 

same. 

A atu4 of optimising acceleration in the iterative 

proceoc has been illustr ted. 

The computer programmes for each type of study ase 

chalked out and tested to run succosofully. 
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CHAPTER — 1 

1.1 Inc O &fl 

It is a well recognised fact that A.C. Network Analyser 

is an invaluable tool for power system engineers for solving 

a variety of problems such as Load Flow Studies, short circuit 

and stability problems. For quite a long time the system _ 

engineers were carrying out all above studies on a.o. network 

analyser only, but with the advent of digital computer, the 

attention has been more or less diverted towards the use of 

the computer for solving all those problems which are solved 

on a.c network analyser. 

It has been shown (43) that a digital computer of medium 

speed and size such as IBM 650, can .bs compete economically 
with the network analyser for system of moderate size for Load 
Flour studies rhieh. is more complex problem in naturL for its 
solution. Less cost per compution and increased capacity for 
handling the system problems neLms to be main factors in favour 
of digital computer. There are two types of problems that 

have encouraged the use of digital computer. 
1. Those problems which were solved by otLer methods. 
In this case they only replace the calculation procedure 
to bring in speed and accuracy. 
2. Those problems which were never before attempted 
because of practical limitations. 
The type I includes problems such as the calculation of 

tran~amiesion line constants, impedances (2) sag calculations, 
Load forecasting (6) etc. 



The problems, that were solved on analogue computer or a.c 

network analyzer an" now being replaced by digital computer 
include load flow studies, short circuit calculations (7,8) 
and transient stability studies (10) 

The type '(2) problems may be the exact probabilistic 
determination of generation reserves and the inclusion of 

tran+s~niseion losses in the economical dispatch of power. 
Monte Carlo methods may be put under this catagory. 
Many areas of application of digital computer to power system 
problems are not much investigt ed. 

The solution of the lightensing problems by exact field 

thecry equations, system design optimisation and other 
operations research type of studies would yield practical 
and useful data by digital analysis. 

In thort, some of the problems for which digital computer 
may be used to system engineering includes 

1. Network impedance calculations 
2. sort circuit calculations 
3. Load flow stu4iee 

4. Stability studies 

5. Lose studies 
6. k"icrowave relaying 

7. Preparation of impedance data from equipment 
punched cars file. 

8. Parametric study in bundle conductor design. In no 
case the above list may be oalbd as complete. 

The digital computer may find several applicatiLne with the 
complete and proper analysis available for the problems,. 
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1.2 Difficuittea encountered with Dgja Computer Applications  

In the begining, the main difficulty in the use of 

computer was its availability only but this is no problem 

now when more and more new computers are coming up, differing 

in size and speed. 

As the computer became available the problem rested on the 

nonavailability of persons computer oriented in thinking. 

The problems have to be tried by the persons who know 

the digital analysis and problem itself. The work envolves, 

rather a combined effort of a digital analyst, pezhaps a 

mathematician or engineer expert in numerical analysis, 

computer construction end logic, and the many ramifications 

and tricks of programming, and that of a power system engineer 

who knows the problem well. 

For the most economical, efficient and successful 

application of digital computer, the abLve mentioned 

abilities must be present in the person who attempts the 

problems. The difficulty arises when the trained digital 

analyst is not available end also when the power system engineer 

is not computer-oriented. 

The right approach would be to ask power system engineer 

to think in terms of flow charts or logic diagrams. He must 

be made to learn to organise his problem for computer eoluticn 

Lad develop optimum logic for the orderly and economical 

solution. Finally the system engineer must be well-oonver-

eel* with the language of the machine also so as to know the 

complete set up of the whole process of solution. 

However, reference (1) eug,eats the use of ccmputer 

programme which actually bridges the gap between the Power 



System Engineer language and the computer language. 

In short, for a satisfactory use of computer the system 

engineer must first acquire the hbilit*es of a trained 
digital analyst which is the only difficult present in the 

application of digital computer to system problems. 

1.3. C*psrison of Digital Cpmuer and A.C. Nøtwoi,k 

Although the digital computer is finding more and more 

wide acceptance as regards solution of system problem 

nevertheless the A.C. Netwc:rk analyzer still holds the 

same recognition. This is due to the fact that a. o. net-

work analyser simulates the physical network, the loads 

and the sources and so aide the system engineer in perceiving 
the actual situation of the problem. The printed output 

of digital computer requires interpretation. 

There being less chances of human error in recording 

the date►, the digital computer has an advantage in that respect 

because the complete recording of input condition and the 

information gained in the solution is ensured. 
The digital computer is very much economical when few 

changes from the base case are to be studied on the ether hand 

much time may be wasted on s.c. network analyser. Considerable 

time may be event between the runs in interpreting results 

in order to make decisions as regards what condition must be 

studied next and so on. 

It is easy to handle a systemm on digital c amput er with 

minimum time waste and since the charges are to be made on 
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actual tins used on computer, the studies con ducted may be 

quite economical. 

In some cases such as lose formula calculations, the 

accuracy the a.c. network analyser provides is inadequate 

and hence the use of digital computer is justified, in that 

it gives deeireu accuracy. 

Another advantage in favour of digital computer is the 

size of the &y stems that a large—sized computer cz;n handle. 

Usually, the a.c. network analyzer do not have oncugh sources 

linos end other components to solve an extensive problem. 

Thus the size of the system is restricted by the use of net-

work analyser where as computer can handle very large systems 

also (53). 
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CHAPTER - 2 

NETWORK SOLUTION 

2.1 Pqrmulatin of Network Eguations 

Apart from the analogue method of solution of network 

problems the digital methods of solution of network are 

becoming more predominent with the new techniques of develop-

ing the network equations and their solution in general. 

Improvements are often suggested in developing and 

formulating the network equations. 

The present chapter is more concerned with the solution 

of network equations rather than formulation of the same. 

However in the advent of fast developing techniques a discussion 

will not be out of place. 

Any network can be defined by means of generalised 

loop current egA ations or Mesh Equations and Node Equations 

in the form NI = [ZG]EIm] and [I.] = [Y] [11.1 respectively 

Here ZO and Y are the tocp or mesh-impedance matrix and the 

cut-set admittance matrix respectively. The to,-p•4mpedance 

astrix is established by the matrix equation 

Ct  ZbC a Zo 	...... 	 (1) 

where Zb  is the branch impedance nce matrix and C is one of 

several possible loop connection matrices. The loop 

connection matrix and its transpose C. (or the transpose 

conjugate if the elements are complex) define the relationships 

between the primary variables of the networks, branches current 

and branch voltages and an arbitrary set of secondary variables, 

loop currents and loc:p voltages. 
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In a connected network of n nodes and b branches the 

following relationships exist 

(2) 

a b-n 	 (3) 

where n is the number of independent nodes and a is the 

number of independent loops. 

The relation ship between branch:-, currents and an arbitrary 

set of independent loop current is given by the matrix 

equation 

CTa =Ib 	 (4 ) 
Ib  is a column vector of b branch current, Im  is a column 

vector of a independent loop currents and C is a bXm loop 

connection matrix. The columns of C must be linearly in iep en dent 

and its elements are generally * 1 , 0 d -1 Similarly 

the node and cut--set admittunce matrices could be found 

byT -KY`  
Where K is node-branch incidence matrix or outset 

branch incidence matrix and Y16  is the admittance matrix. 

The usual method for obtaining the independent loop equations 

requires defining the network geometry in terms of a tree 

and links. Then by the process of closing one txm link 

at a ti,A.e, tracing around the loops thus former and recording 

the polarities of branches, encountered, a loop connection 

matrix in formed. 

Similarly by choosing proper cut-sets, the cut-set 

branch-incidence matrix can also be built up easily. 
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Ordinarily,  it Is about equally as difficult to determine 

a nodal connection matrix as it is Jm a loop connection 

matrix. There is one exception, the modal connection 

matrix for the commonly use node—to—datum choice of 

nods—pair voltages is trivially simple to establish. The 

datur* is usually ground and node—pair voltages are the 

potentials of the separate nodes with respect to ground. 

In the formulation of mesh—ii pedance matrix or outset 

admittance matt ix the important feature is the setting up 

of connection matrix and logic steps art required to be 

performed by the computer. 

W.F Tinney (14) in his paper suggested a method of 

obtaini loop connection matrix using matrix operations 

instead of geometric logic. It was shown that the concepts of 

three, links, loops and other topological interpretations are 

unnecessary for the guidance of computer lot  io. The Hain 

draw bark of loop ana4'sis is the difficulty in estabilising 

a loop connection matrix. 

When the eeetem is large and network is non—planar the 

usual topological methods are difficult to handle. Nevertheless 

the trend in digital computer analysis of power system networks 

has been to-wards the use of driving point and transfer impedance 

matrix instead of the inverse loop impedance matrix—this 

is mainly due to the better methods available for setting them 

(35, 37) • 

H. Edelmann (17) suggested a numerical algebraic generation 

of I pedances and Admittance matrices by Set—Theoritical. Inte'- 

sections. The set—theoretical genex at ion affords two 

important advantages i.e.,the storage requirements for the 

intermediate result which compared with those for the end 



result, are considerable, are omitted. The total computing 

time for the formation of these matrices is at the some time 

reduced to approximately one—eigbh 

2.2 S,olut,io„  n of Network Epuatione 

The formueltion of Network equation is achieved in the 

more general form of AX = Y, in which case A is a nonsingular 

nxn matrix of coefficient either copedances or comittances, 

x and y are the column vectora of loop current a en 1 loop 

potential sources in case of 1Geoh—Impe-:ance equations or of 

node—potential and Node current sources in case Node Equations. 

The numbet of indepcn dent loop -currents in case of mesh—

equations and the number of nodes equal to n. 

Once the network equations are represented in AX = Y form, 

the solution can be obtained by either solving this set of 

linear equation by any conventional method or b,, a matrix 

inversion subroutine for inve-ting the pertinent matrix of A 

to find the unknown column vector X. 

If there are many suca sets with the enme matrix A 

and inverse matrix 	is calculated ouch that A"1A = I 

the identity matrix , and for each Y , X = A-1Y is the 

solution to AX = Y. Wits, the increased reliance on computers 

to solve large s9 :me of equations, the size of systems 

ccnei.dered practical to solve has increased enormously. As 

the size of these systems has grown to reach the limitations 

iwpoaec b„ equipment configurat acne, morL. eoonomioul methods 

have been sought. In audition to the economy due to symmetry 

signifie nt economies in both computer memory and computing 

time can be achieved by taking auvz%ntage of sparsity of A, 

where it is significant. 
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In  many problems, such as those involving electrical 

circuits,the matrix A is sparse (more than 90% zero 

elEments) since lines do not connect each bus to every 

bus (18,20) but A'1  is full. 

to and Tinney (18) describe a method for achieving the same 

numerical results as multiplication by A"1  without actually 

computing and storing A-1. 

Each pivot division, row elimination, and back substitttion 

in a Gaussian elimination corresponds to premultiplying 

by an elsm3ntary matrix. Hence A-1  can be represented as a 

product of elementary matrices A1j, each differring from 

I only in the i3th entry. The Ai, coefficients turn out 

to be the equation ij coefficients encountered in Gaussian 

elimination. If the numbei of the coefficients created in 

the elimination process is small to n2, so the array is still 

sparse, the elementary mattiaes can be stored as a list 

including location indicators in much less space than by 

n by n inverse matrix. In symmetric case this amounts to 

storing alist of the location and the v€ulueo of the coefficients 

in upper triangle. There is a considerable e000 ny in both 

forming road usig this list as opposed to calculating and 

using A-1. 

N Sato (15) describes the existence of a definite correapon- 

dance between the matrices obtained frola the me and modal 

methods, and f: cm that obtains the mes* and 7t dal inverse 

matrices b, means of elimination scheme the effectiveness 

of which totally depends upon the network configurations. 
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The  me eh•-transformat ion matrix C of a network can also be 
calculated by an efficient method. 

A row-by-row matrix inversion method employing an 
iterative process is described in reference (20), and is 

also given in Appendix G. The advantages of this iterative 
method of finding inve. as are that the labour of finding the 
whole inverted matrix need not be token 'n d in some cases 
a part-solution may be just sufficient. The matrix-inversion 

process using known methods becomes tii:le consuming because 

oiiginal matrix can not be stored wholly in memory. The 

row-by-row matrix inversion m-tho d allows economic inversion 

of admittance matrixe of ccnsicerable large size than possible 

with convent.:, on methods. 

More recently (;day 1966) WJ. F. Tinn.ey (19) has evolved 

even mere simpler it  hod of solving re twork problems. 

The method not only applies to the network problems, as he 

claims but to all systems of linear equations, symmetric ar 

not real or a ®plex, sparse or full. 

It has an advantage in that it is much faster and requires 
very less memory than any other method using impedance 
matrix or hybrid matrix. It provides direct solution of 
linear net work problems of order of 1000-2000 in 32 K 

word memory. 

The conventional methods and the Monte Carlo methods of 

srol.vir a set of linear equations have been discussed as 
regards their advantages and imitations in reference (3). 
The theory of mrtrix invereicn by Monte Carlo method has 
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been also dealt in there and for the sake of ready reference 
a copy of reprint of the same is being attached to the thesis. 

2.3 Illu etrat iy®PTobl_enis 

Case of Symmetric matrix 

A d. c. network shown in figure 2-1 has been taken as a 
problem for illustrating the use of different ne tho do for 
thy; solution of retwork equation. 

The ra twork, unuer consideration gives rise to a set 
of linear a uaticns although with real elements only, never- 
theleas same approach can also be exp plie d if the elements were 
complex as is the case with an a.c. network. The iterative 
method considered here would be moalfied to allow for comp]ex 

quantities, or the method of i~ppend ix G can be directly 
applied to solve. 

Formu.laticn of & uatione 

The met1.o d as described in reference (12) is used 
to form the linear equations. 

The node equations would be of the form I = YE or more 
-b 

epeeikslly, 

ii = Y11E1 + Y 12P2 + Y13E3 at node 1 

12 = 121E1 + Y22E2 + Y23E3 at node 2 

I3 = Y311 + Y32E2 + Y33E3 at node 3 

the terminal ami- tt nce as determined as 

Y11 = 	4. y12 + Y13 

Self admittances 
y22 aY02 x''912 + "Y23 

133 `Y03 + Y13 + Y23 



	

12 
	

12 

	

autual admittance Y13 	Y31  

	

23 
	

Y32 '~ _y23 
Applying the above equations to the d.e. network under 

eonsi dei aticn, of real elements only the equations become 

I1 0.4 	.0.2 --0.1 E 1 

12 = —0.2 	0.5 -0.1 E2 
13 —0.1 	0.1 0.6 E3 

The [I1 column vector for. which E's are computed has 

been taken as 1 
0 
1 

The voltages E1, E2 and E3 are found by Itrative end Monte 

Carlo Mr-tho d. 

A computer programme for the Iterative method of 

solving linear equations has been written and included in 

Appejq x$ . The equation c:f the network of fig. 2-1 were 

solved an ci the result c hrtvc be listed in Table 2-3-1. 

The error after each iteration is also given so as to know 

the accuracy of the result at each iteration. 

The values of the unknowns i.e. of volt ages have been 

reported in the same table after they have converged to an 

accuft to.7 after 18 iterations. 

Edon' e Carlo ithp 

A computer prog3raa me for the solution of linear equustions 

by Monte Carlo method has been written as discuuced in 

reference (33) The values of the unknone were computed after 

the play6fl0 games and the values are reported in table 

2-3-2. 



-14- 

To study the variation of the unknowns with number of games 

the curves are shown in figure 2.2 and the remarks as regards 

eoloseness of the results have been also made in Table 2-3-2. 

A diseusLion of the variance reduction techniques is 

included in Appendix M. 

C„ se aj Uneymmet i,cel b~atrix 
A problem not very common to the power system network 

is that which gives the matrix A 0 in the set of linear 

oquNtions of AX = Y form,, as unsymmetrical. A set of 

equations of reference (27) are solved by Iterative method 

and Monte Carlo method and result's are reported in Table 

2--3-3 and 2-3-4 respectively. The equation in matrix form 

cnn be written as : 

0 	0.5 

1 - -0.2 

o 	40.1 

-0.1 	-0.2 X 1 

0.7 	-0.1 X2 

-0.2  0.6 X3 

Stich a situation caul c hcwever arise in eequince 

network equation where the mutual sequence impedances met' 

not be the same. 

Ono thing of some remark is that while the values of 

X2 rnd ]C3 hunt around the actual value swiftly but the value 

of X Z does not at all :tpproaeh in the close vieinit;; o f its 

actual value as &;own in figure 2-3 



2-4 Ldy1taee end Limitations of the Met1iodscttscussed 

The Monte Carlo method may not give very highly 

accurate values as may be available by other methods such 

as direct )Iterative ms tho d . However, for approximate 

solution the method is quite good. 

Also for a lare;e value n i.e. , the number of unknowns 

the other notbocbe may not be so helpful because of their 

inherent time consuming nature nd of their own requirements 

such +u requiring lc.rge memory tpereby reducing considerably 

the cite of problera that can be handled. 

In the Iterative ruethod the v:dues may or mey not 

converge in case of 1 rge v .lue of n, in that case it may 

not be of E-ny use. Some iterations are always necessary 

if the values are desired to be more accurate if solution is 

obt ai.ne d b,; M me Carlo method. Reference (24,26) have 

sagest cd Newtonb Approximation formula to be used to improve 

upon the result a obtained by Monte Carlo method. But it would 

again cause much difficulty with large value of n. Possibly 

several iterations may neceat ary to bring the veluee to desired 

prec ..cion. However, if the Iterative method in used in 

conjunction with Monte Carlo Method, the following advantages 

are quite apparent. 

1. Monte Carlo Method' would atleast giveaapproximately 

accurate values much faster then any other me thud 

2. The ep, roximately accurate values if used as the first 

guess values in Iterative nethod then there would not 

be much chance of the Iterative process getting diverged 

r=.nd not providing E<ny soluticn at all. 



3. Very few lteraj rrs could be r,ececeary to improve the 

results to desired accuracy as ie obvious from Table 

2-3-5. Although for a smell problem of the size consi-

dered herein the effect may not be so pronounced but the 

large sized problems would definitely have an advantage. 
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FIGURE 2-1 



TAME 2'*s3q ; 

RESU12S OF ITERATIVE BETIiOD (SYMMETRIC MATRIX) 

Accuracy taken is 10-7  

ITERATION NO 	 ERROR AFTER ITERATION 

	

1 	 0.575 x 101  

	

2 	 0.22604167 x 101  

	

3 
	

0.9217880 

	

4 
	

0.3065 2810 

	

5 
	

0.10476740 

	

6 
	

0.356659 x 1(51  

	

7 
	

0.121485 x 10-1  

	

8 
	

0.413 75 x'10"2  

	

9 
	

0.14091 x 10 2  

	

10 
	

0.4803 x 10 

	

11 
	

0.1632 x 10+3  

12 

13 
14 
15 

16 

17 
18 

VALUES AFTER 18 ITERATIONS 

0.559 
0.194 
0,59 
0.22 

0.11 

0.4 
10-7  

x 10-4  
x 10-4  
x 10 5  
x 10"5  

x165  

x16 

E1  = 	4.33734900 volts 

E2  = 	2.28915640 volts 

E3  = 	2.77108420 volts 



'BIL! 

RESULTS OF IIONTE CARLO METHOD (SYMMETRIC MATRIX ) 

GAME VOLTAGES 	COMPUTED Remarks 
No E1 E2 E3 

10 4.4991300 2.499550 2.749685 E3  close to 
20 4.0825883 2.49955 2.3747825 actual value 

30 4.0825883 2.3329433 2.49975 E close to 
a9tual value 

40 3.62437 2.4370912 2.62473 
50 3.4994 2.299622 2.749715 E2  and E3  

60 3.8326533 2.3329433 2.74971 close to actual 
value 

70 4.0349792 2.2139171 2.6783035 
80 3.936795 2.4370912 2.7184743 
90 4.0548288 2.2496376 2.83303 

100 4.249235 2.299622 3.0246535 E2close to 
actual value 

110 4.1583504 2.1587431 2.9314922 
120 4.249245 2.2288079 2.9580058 

130 4.499130 2.2688638 2.9804403 

140 4.2492373 2.2674853 2.9818139 

150 4.1421157 2.2329693 2.9830043 

160 4.2825563 2.2964934 2.9371831 

170 4.3273403 2.3966591 2.9408588 E Close to 
actual value 

180 4.2492420 2.3190636 2.9163583 

190 4.2492476 2.2627931 2.9207431 
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TABLE 

RESULTS OF ITERATIVE METHOD ( UNSYIYIMETRIC MATRIX) 

Accuracy taken is 10^7  
All unknowns started with 0.0 values 
ITEnATION NO 	 ERROR AFTER ITERATION 

1 	 0.19047618 x 101  

2 

3 
4 
5 
6 

7 
8 

9 
10 

11 

12 

13 

14 
VALUES AFTER 14 ITERATIONS  

x1 	= 	0.60606056 

X2 = 	1.69696960 
X3 	= 	0.66666662  

0.82766446 
0.18248547 
0.42176340 x 10—  

0.97058600 x 10`2  
0.223461 x 10-2  

0.51431 x 10-3  

0.11836 x 153  

0.2733 x 10""x̀  
0.631 x 10-5  
0.134 x 1a5  
0.42 x 10`6  
0.1xio 6  
1257  



TABLE * 3~► 

RESULTS OF MONTE CARLO !ETHOD tUNSYMMETRIC MATRIX 

GAMS 	UNKNOWN CO UT ED 	 .REI mm 
x 1 	X2 	 X3 

10  .49997  1.249925  .4999700 

20  •3749775 1.1249325 .6249625 

30 	.58329833 1.249925 	.666 62666 	X3 very close 
to actual value 
and X cloo a to 

40  .6249625 1.3124212  .56246625  actual value 

50  .549967 1.249925 .599964 

60 	.58329833 1.4165816 	.66662666 	X very olo to 
at3tual value 
and I cic se to 
actual value 

70  .64281857 1.4284857  .67853071 

80 .65621062 1.4374137 .68745875 

90 .749955 1.4721338 .72217888 

100 .7249565 1.449913 .7249565 

110 .70450318 1.477184 .70450318, 

120 .70829083 1.4790779 .72912291 

130 .73072538 1.4806803 .67303653 

140 .73209892 1.4820539 .64281857 

150 .73328933 1.49991 .649961 

160 .70308281 1.46 86618 .67183468 

170 •691135 1.426385 .67643 

180 .69440297 1.4582458 .66662666  X  very close to 
actual value. 

190 .69732657 1.4867528 .67101236 

200  .68745875 1.5124092 .649 961 
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'LIABLE -- 
IT22ATIvi IdKHOD IN CONJUNCTION WITH MONTE CAFLO 

Accuracy s 10-7 

GUESS VALUES TAr.EN AS THE VALUES OF UNKNOWNS AFTER 200 GAZES 

ITERATION NO 	 ERL:OR AFTER ITERATIUN 

1 .29920348 

2 .5616855 x 10-1 

3 .11110169 x 10 1̀ 

4 .259534 x 10~2 

5 .59694 x 10"5 

6 .1374400 x 10-3 

7 .3146 x 10.'~' 

8 .714 x 10-5 

9 .172 x 10 5 

10 .52 x 1015 

11 .1 x 10 6̀ 
12 10 W7 

The values after 12 iterations are came as given 

in table 4-2-1 
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xPTE - 3 

FIELD PLOTTING BY MONTE CARLO METHOD 

Intraduct ion 

In general, a second order Partial differential equation 
of two independent variables x,y is of the form 

	

A ~~ )a2 	'a u 	+ (x,y )a2M2 + f (x,3;~ ' !!J 
,y a..x,, + 8 (x,y) a y 	ay 	 Y 

=0 ...(i) 

Coefficient A,B and C are generally functions of independent 
valuables. This equation is of course linear in the second. 

order terms but the term f(x,y,u, au ~) may be linear 
x y 

or non—linear and the equation may be linear or Quasi—Linear 
accordingly. Aslo if B2 — 4AC <.0, the equation is called 
Elliptical Equation. For B2 .. 4AC = 0, the equation is known 
as Parabolic Equation and finally if B2 — 4AC '0, the equation 
becomes Hyperbolic Equation. The present discussion concerns 

with the equation of type first, i.e. the Elliptical Partial 
differential equation. 

The well known Laplace and Poisson's equations viz, 

	

 _ 
	

0 and 'b2 2 +'' fJ `u22 = :t(  x, y) .... (2) 
y" 

	

a 	ax aY 

belong* to this catagory. 
The boundary conditions of this type of equation specify 
either the function u or its normal derivative or the linear 
combination of the two at every point of the closed boundary 
of the region defined with in which the solution u(x,y) 
is desired. 
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To an .eotricri l kbginc~er, both the equations visa, Laplace 
and Poisson's Equations are of great importance. One may 
come across such t; pe of equations with specified boundary 
con:titicne either for plotting of a field pattern, be it a 
case of rn! i chineor a high voltage equipment or electron tube 
or cleetrostatic potential in a uniform dielectric or in two 
dimensional con:ieneer. The Laplace Equation is used to 
compute the field values within a defined boundary and hence the 
solution of this type has been discussed hey. ein by taking 
a irregular boundary in two- dirmen ei Lnal region. 

The techniques for the volution of the said equation 
are similar for multidimen$ional problem and the sr_me me tho d 
can be extended to solve them. 

3.2 Different methodstsar s olv in Ellptiotuatisn  

The Elliptical partial differential equation, in general, 

are aolvea numerically by reducing the problem to the solution 

of a set of simultaneous linear alyebraio equations by finite 

difference techniques. It can be easily shown that finite-

difference form for Laplace Equation is given by 

uxy + uyy z (u 1 +u2+u3 +u4 - 4u0)/b2 =0 ...(3) 
4 

Or UO==* (u1+u2+u3+u4) =* 	ui 
i=1 

where u11 i2, u3, U4 are four neighbouring lattice points 
of mesh. Similarly the finite difference form of Poisson' e 
Equation reduces to 

	

U0 m } (u1 + u2 + u3 + u4) + I h i0 	... (4) 

where fO =f ( x0, y0) 
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There are two effective ne t►.ode of solving numerically 

the Laplace and Poiscons equations, viz, Iterative method 

and Relaxation method. 

In the former method the estimates of unknowns are 

improved in sequence with some initial guess at the start 

till the unknowns are determined to a desired degree of 

accuracy. 

In the latter the attention is concentr..ted on the 

unknowns which seem to have greatest errors. The method 

assumes the mesh lineas analogous to elastic strings which are 

relaxed in turn during successive steps of the iteration. 

The starting point in any method is the same i.e. to divide the 

region in the form of meshes and then the values are computed 

at each junction point of the mesh. A Monte Carlo method 

is herein discu&ced for the solution of Laplace Equation 

rind a comparison has been made with the values obtained 

by Iterative method at m interval of 50 games. The Monte 

Carlo method is therefore discussed in detail. 

3-2  Monte Carlo tet; q d for Laplace Equation 
The following ire the steps necessary to eo]v e the equation 

by Monte Carlo method. 

1. The region enclosed within the boundary is replaced 

by a rectangular mesh of lattice points. The bound- 

ing curves is replacers by a set of ]a ttice points which 

are nearest neighbours to mesh points within the boundary. 

The meshes are generally rectangular but 	to suite 

the boundary they meW be tr-:ken as triangular or hexagonal. 
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Here only rectangular meshes would be considered. 

2. To find the solution at any point P with in boundary 

curve C, a set of random walks of £riaz± fittious 

particle is made, starting at P and terminating at the 

boundary points which are already specified and this 

finishes a game. The score of the game is the value 

given at the point on boundary at which the walks in 

that game terminate. rich several games are played 

and an average value per game basis gives the solution 

at the point P. 

The part of the (x,y) plane bounded by a contour C on 

which in imposed a reotanguler mesh with interval lengths 

h1  and h2  in the x and y directions respectively is considered 

rind a particle performs a random walk on the mesh points 

subject to the following rules, 

1. The probabilities of passing from (xi. Y j ) to 

(xi-1yj) r (xi +1 9 y)  r (xi►7  j,.1) and  (xip7341) 

are p1 ,P2,p3  and p4  respectively. 

2. 	Pi  a 1, so that no other steps are possible 

3. The prear esa starts at an arbitrary mesh point P 

(ap, y;) and is terminated when a particle reaches 

boundary C, whereupon a score S, the value of which will 

del-end upon the point at which C was reached, is 

associated with (zp, yy). This provides the boundary 

condition; the score L is the value taken by the solution 

of the differential equation at that point on the boundary. 
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It  is clear that the average score 

apq = 8 (xp, yq ) associated with (xp, Yq ) 
satisfies the equation 

4 - P1 P+1t q P2 3p-1,q P3 SP, q}1 P4 SP,q-1 a 
•.•(5) 

If the con itione such as 

P1 OP2 

 
2 

h 
2(hI th h2 ) 
h 

ed P3 ''n p4 	1 	are imposed, then equation 
2(4+ h2) 

(3) becomes 

2" (2 pq - p+1lq ~p-1,q ) + 2 (2 P4 SP,q+1 SP,q-1 )-0 

The equation (3) is the finite difference form of the 
Laplace equation in two variables. 
Further this equation would reduce to 

h (48Pq 4I 	- ~p+1,q P-1•q w $p,q+1 P9q-1 	.. (7) 

For h1 = h2, i. e., when intervals along X and Y ax#ea are same 

3.3 field PlottingPy genie Carlo Lo tho  d 

A problem (27) to illustrate the T onte Carlo method for 
field plotting cr for the solution of Laplace Equation with 
the bouni ury as given in fig. 3.1 has been solved complbtely. 
The computer program has bL rz written for the s, me and the 
subroutine used (Appendix D) for the generation of random 
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numbers  was taken to be the s m e as that used in chapter 2 

for the solution of Lincar Equations by "Lonta Carlo Liethod. 

The movem~-ntof walks was guided ter the random sequence in 

which case the sequence has been made to contain only 

1,2,3 and 4 numbers only, rest being discarded and 1 stands for 
the movement by one unit to the right, 2 for the upward 

movi.ment, 3 for the left and 4, finally, for the movement 

downwards. 

The solution has been obtainol ftoE 50, 100, 150 
and 200 games vn d then arerage being oompared with the values 

obtained by Iterative method in Table 3-5, The boundary 

values and the whole mesh network was fed in as input to the 

computer in the form of a matrix as shown in Appendix-]) 

The computer programme is included in the App en d3x-C 

and the results hve been listed in Table 3-1, 3-2, 3-3 and 

3-4 for 50, 100, 150 and 200 games respectively. 

For comparison the values from table 3-1, 3-2, 3-3 and 3-4 have 

been rounded off for the inclusion in Table 3-5. 

The maximum error obtained was .032 and the minimum as zero. 

3-4 Mr its andDemerits c Monto. Carlo: h d 

The iIonte Carlo met .od provides an easy method for the 

soluticn of Laplace equation even with irreLular boundary 

and speci:.11y with maltidil.eneional region it supercedee 

the conventional metho ds whidi become cumbereLme and some-

tiLes almost impossible. Field values at any point can be 

independently found out without finding the solution 

simultaneously at all the ]a ti ice points, wi.ich is essential 

with conventional method. The solution with Iterative method 
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may or may not converge in cert. n oases but Monte Carlo 

atleact provides some solution to that effect. Moreover 

the memory ip ace requirements are Bruch ]e se because the 
values at the four neighbouring point may not be stored at 

aU, only the boundary points are needed to be stored. 

The only draw beck with Monte Carlo method seems to 

be with the ]arge number of games required for more 
accurate results. 

Variance my be calcuhte d at the end of each set 

if game or games and the varic,nce reducing techniques 

u .scusaed in chapter 2 may be applied so as to re~:ruce 

the numbex of trials. An c.greement, generally is,neceseary 

between the number of games and machine tii.,e. When assessing 

variance reducing techniques, any increase in computer time 

peg- trial which may result from their intro duction must 

be considered,, 
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TA9LF Nn. 3-1 

RPSULTS nF THr7 cOLUTION nF LAPLACF RfUATIfN 

AN!( 9 9 6)=  R, SC;O()na!)F-r) I 
ANKH ( 2, - ) = 8. 2nn2( F-n l 
AN1!'( 3, L) = Q. 15fln')8-n , 
ANU( 3, 51= R.IR4nIl r)f:-r)I 
ANU( 3, 6)=  6. 000160E-('1 
ANU( 3, 7)= 4.Q5")0?nfF-n1 
4NU( 4, 4)= 8.8nOnl00F-nl 
AN!!( 4, 51= 6.250!)32nF-n1 
'\NIJ( 4, 6)= 4.25~?1)43nF-n1 
ANU( 4, ')= 3.20042OF-n1 
ANU( 5, 4)= 7.~?n0220F-nl 
ANU( 59 5)= 5.1nor)46')F-n1 
ANU( 5 , 6)=  7. 1 `)00760F-n 1 
ANU( 6, 2)= 7.?O8nl2)F-ni 
ANU( 69 '3)=  6.46Rn'8') -(1 
ANIJ ( 6 1) 4) = 3.95fln560F_n i, 
AN~.J( 6 	5) = 3.9nn0560R-n1 
ANI(I( 6, 6)= 1o166094")F-')l 
ANU( 79 2)= 4.1260360E-01 
ANU( 79 3)= 2.862'3620F-n1 
ANL!( 7 9 4) = 2.8160 7 00F-01 
ANU( 7> 51= 8.^r;O000OF-02_ 
AN J ( 7' 6) = 1.. 2C'1.188OF-01. 



TARLF '\!n. —2 

RcsuLTS OF FIFL) PLOTTING RY MONTF CARLO 

ANU( 2, 6)= R.f~uO0060E—01 
ANtJ( 2,  7)= A.^2~^.rR( 	—nl 
ANU( 3,  4)= 4.11.7())7fF-n1_ 
ANU( 3, 5)= R.n5nnI6nF-n1. 
ANU( i, 6)= 6.75:fln2q.OF—nl 
ANU( 39 7)= 5.725n17OF—n1 
ANU( 49 4)= R.7C):'1,7OF—!)l 
ANU( 49 5}_ 6.nq[?crF—nl 
ANU( 4, 6)= w.175015OF-01 
ANU( 49 7)= 2.9170410E—01 
ANU( ,, 4}= 7.4A~3710E—01 
ANU( 5. 5)= 5.05904rOE-01 
ANU( 5, 6)= 2.9^nn67nP-01 
ANU( 6 2)= 6.'74n21 OF—n1 
AlltI( 6, 3)= 4.°7424A(C—n1 
ANU( 6, 4)= 4.4''n-1 
ANU( 6, 5 )= '.47'—('1 
ANU( 6> 6)= 1..4g7nR4nR-r,l 
ANU( 7, 2 )= 3.fl24046r1F--n1 
AN!l!( 7, 1 )= 2.5g3n6<nF-n1 
ANU( 7, 4)= 2.()35fl76OF-01 
ANU( 7, 5 )= 1. 3R3nF40F-nl 
NU( 7, 6) = 6 . nC 1P4' WF-n2 
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TARLP N). 'A-1 

R 7cULTS nc* THP' ScI_IJT?nN ^F LAnLACr 7 UATT"N 

Al!'( , 
~ N11J( 7, ).- 70 R1.<,67'1JF_n1 
4'x;1( ', 4)= R•c7Rn, 12F^7 
A'"U( , 5)z .7f! +hP^h_ni 

A N! l j ( 'A, 7)-  Cj.4 ' 	r 1,RC F_n1 

AN)J( 4, 4) R 1 1? ?f11G1_f1 
(,T.j( CLQ  

AVii( 4,  'Y 5.ni67n7 -Ar--r}1 

n.n!IJ( 4 7) 741_('1 

AJ( 5,  4)= h.^7 r)C')F —n1 

AN!J ( h , 7)  

( , !i! i n^./-71r_n1 

Nil( h,  

N'.J( 7, 7) ~~?n ZCzi zr_ni 
11~ri( , ')- 

NUC 7, 4) = 2, 373406 	E-01 

•
1N 	( 7, ~) _ 1 • 1 	\-7 	)r_n, 



TA . IL'7 Nr'). h-4 

',c'cUILTc r i 	TL-- ani -'TJ \ 	' 	LL' 	cC`11ATT^N' 

t 1U( 29 6)= .212)r_')1 
AM( A M".'( 7 + 7 )_ 7 .FR -7 r, ^o^`_r1 
tin 'J( ~, 4)= .7Gn^lF~fl_r)1 

A\I!J( ' 7)_ .'7n—r•? 

A1( 4, 5)= 6• S'2'nfl_n1 
A')( 4, f)= 4.4671 1 5c'—nl 
A'I')( 4, 7)=  
A\!11( , 4)= 7,0417..c-0' 
A\"1( ,, `~ )= 4.R~2` 4 40'--ff1 
A.AHJ ( , 6) = ?.00665E—01 
AJ( 6 2 )  
ANU( 6' 3)= 6.4ACr—C1.  

6 41= c,.-12 	44:nF-01 
A~1II( 6, Z)= 7.'6?,62r)F—( 
AN'J( 6,  (.)= '.1'6c;7A_n1 

AN1.J ( 7,  ) _ ~. 1 'f0 Op'-01 
A\'( 7, Ll)= ?.4,~7K 7 4Zr-01 
ANU( -7 , CA):: 1 .g1 6c:PV~F-0l 
A\I'I( 7 , h)= 9.-,P,^Rn 'r-fl' 
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TBLE No, 3-5 

POINT Values Values Values Values Average Actual Difference 
for 50 for 100 for 150 for 200 value Value Actual ,.p 
Games Games tames Games Average 

(2,6) .85 .86 .88 .92 .875 .87 .005 

(2,7) .82 .30 .78 .75 •79 .80 .010 

(3,4) .91 .91 .85 .95 .905 .90 .005 

(3,5) •81 •80 .82 .78 .802 .80 .002 

(3,6) .69 .67 .67 .68 .677 .67 .007 

(3,7) .50 ,57 .54 .57T .545 .57 .025 
(4,4) .88 .82 .81 .80 .827 .80 .027 
(4,5) .62 .68 .67 .65 .655 .63 .025 

(4,6) .42 .51 .50 .47 .475 .47 .005 

(4,7) .32 •29 .32 .33 .~i .32 .010 

(5,4) .75 .74 .65 .70 .706 .68 .026 

(s,5) .51 .50 .52 .48 .502 .47 .032 
(5,6) .21 .29 .26 .28 .26 .28 .020 

(6,2) .72 .64 .63 .64 .657 .65 .007 

(6,3) .64 .49 .61 .64 .595 .60 .005 

(6,4) .40 .45 .49 .53 .467 .46 .007 

(6,5) .39 .35 .27 .33 .335 .32 .015 

(6,6) .12 .15 .12 .21 .15 .17 .020 

(7,2) .41 .30 .28 .30 .322 .32 .002 

(7,3) .29 .25 .31 .31 .29 .29 .000 

(7,4) .28 .20 .23 .24 .237 .23 .007 
(7,5) .08 .14 .18 .13 .132 .16 .028 
(7,6) .12 .06 .10 .09 .092 .08 .012 



CHAPTER •• 4 

4-1 D~tinti.oin 
According to American standard Association the driving 

point impedance at any pair of terminals of a network is 

defined as the ratio of an applied potential difference to 

the resulting current at these terminals, all other terminals 

being terminated in a specified manner. 

Sii-ilarly the transfer impedan cc is the ratio of a pot en.. 

tial difference applied at one pair of terminals to the 

resultant current at the other pair of terminals, all terminals 

being terminated in a specified manner. When the other 

terminal pairs are open circuited the Driving and Transfer 

impe dances thus evaluated are termed as Self and : tual 

impedances. 

. 	'tru7 Se an U s 

There are large number of Power System problems in which the 

driving point and Transfer imp' dances of the is twork are required 

They , as a circuit analysis technique, have been extensively 

used in load flow, short circuit, regulation, stability and 

trap smi s Lion loss studies. 

The driving point and transfer impedances as a practice, 

are found by measurements on A.C. Network analyser, which 

requires setting up the whole network on Analyser and by 
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adjustments and measurements the impeuances are obtained. 

Again if the impedances thus found are to bei, for further 

computations on Digital Computer they have to be transferred 

to punch cards which may involve personal error and inaccurate 

values may be transferred. 

Digital method of finding these pvesesses h" an advantage 

over the an alygu a method in that it gives highly ac curat e 

values which are necessary in the dotexminatir,n of open circuit 

impedances or self and mutual impedances for the use in loss 

formula. Movex over, they may economically be obtained on 

Digital computer with minirum set up time. This also saves 

tile when they are to be used for furthw computations an d 

are required to be transferred on to su. cerde. 

4-2 D .f creat jIethods 

A few methods are augUeeted in reference (35) and then by 

Ward and Hale (37). 

The mothod su -„toted by Ward and Hale (37) i based on 

that given b; R. Bruce %iploy (36) as to the mcg+,dab d of appror- ch 

only without giving details of prograrmiing. 

The meths do prevalent ore: 

1. Matrix Method 

2. Calculation by improoi carr. tats 

3. Ite.: ative method. 

Here the Iterative method has been discuooed at per and the 

computer programme on IBL 1620 has been drawn incorporating 

some special features to be discussed later. 



Three systems are studied and the results of Iterative 

rrocess have been analysed in details. 

ix Method 

The first step is to set up the branch impedance matrix 

Z branch inaccor dance with the equation, 

B branch = Zbranch 'branch 	.... 	(1) 

Zbranch matrix consists of the line and transformer in;pedancee 

of tIe network as its elements. The configuration of the not—

work is defined by means of transformation matrix Ct, which 

relates the volt age at ouch bus to the volt age across each of 

branch elwuente and also the volt age act in around each loop 

in the nu twork to the branch voltage, i.e., 

rbus, loop = Ct 	•••• E Branch (2) 

The loLp current and branch current should, for positive 

direction, flow in the same direction. The matrix Ct 

should also take into account tb effect of off nominal 

turns ratio of the transformer. 

Now using Krn en lysis further development can be carried 

out as folio st 

If voltages and currents are related in a circuit by 

"old = Zold Iold 	 (3) 
The now set of vo]t aces o~uld be r. elated to old set by 

Enew = C.t* Eold 	 (4) 
then for the iaxipedancee to be transformed such that input 
power is invariant, thea a are, 

cold 'm C Inew 	 (5) 

znew  Ct* Zold0 	 (6) 
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where C is obtel nevi by interchanging the rows and columns 

o= at. Ct* being obtained by conjugating the elements of 

Ct. 

Also "new = Znew Iney 	(7) 

Thus from above relations, one gets 

=branch = C Ibue,loop 	(8) 

Zbue,loop Ct*Zbranch0 	(9) 
Also 

$bus, loop '~ Zbue, loop 1bue, loop 	 (10) 

The impedance matrix Zbue,loop could be compounded as 

•$ follows 

bus 
	Z1 	Z2 	lbus 

(01) 

Floor 
	Z3 	Z4 	=loop 

but as gloop = C = Z31bus + Z4 Sloop 

Z41loop = Z31bus 

By pre-multiplying through by the inverse of Z4 the following 

can be obtained. 
-1 

=loop 	-Z4 Z3 'bus 	(12) 

8zbetitutinp (12) in (11) , 

Ebus = Z1 - Z2 (z4Y'1Z3 	Ibus 	(13) 

M Zbus 'bus 

Thus Zbue = Z1 - Z2 (Z4) 1̀ Z3 (14) 
Z4 is the network loop ii<pedance matrix which is required 

to be inverted for the eaalcu]ca Lion of Zbus matrix which 

defines the self and mutual impedan cee. The matrix method 
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has  the disadvantage in that it requires the inversion of 

a complex matrix as a subroutine programme and thus linits 

the size of the network. 

The eborage requirements are specifically more although 

the programming is straight forward. IBM 1620 has a sub-

routine for the inversion of complex matrix up to a max. 

also of 17 x 17 and therefore a system with more tb n 17 

loop can not be easily handled on this computer. 

~mDrpBsed~gpt Method 

The method is same as the procedure used on A.C. Network 

analyser, i.e., impressing current at each bus and finding 

the volt ale distribution, suc:ces ively. The steps can be 

given as follows. 

1. A current 1 + jo is impressed at generator or load bus 

in the notwork with referLnce bus grounded. 

2. Current flow is assumed from energized bus to the 

reference bus. 

3. The volt ages in each branch is computed and that acting 

in o"eh loop, by summing the branch 'voltages in that 

loop. 

4.. The balancing current required to make summation of 

the voltages around each loop equal to zero, is computed. 

5. 	tperimposing the balancing flow, determined in step 

4 on assumed flow of step 1, the branch voltages 2ue 

to exact flow are determined. 

The voltages thus determined are numerically equal to the 

self and mutual i:ipedan ces since impressed current is 

1 + Jo. The current is then imprebsed tarn by turn to each 

bus and completed set of impedances can be known. 
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This method is superior to the matrix method because of 

its ]s ss memory re: ulr ~mcn to and le ec computing time and 

also it can handle lare;er system than that by matrix method. 

1jera.Uye I&ethod.  

Iterative method consists of successively improving an 

aesumea set of bus volt Figes until 1Lirchoffs Law has been 

satisfied with in the precision deE.ired,at each node. 

The sum of all currents entering a bus p must be zero. 

g Ypq(Eq Ep)=O 	 (15) 

where Ypq is admittance between bus p and q and Ep and 

Eq are the voltages at bus p and q respectively. 

It is obvious that 

q Yp4) )E =-Y 
 q YPq Eq 

and 	
Yp~l E 	 (16) 

q Yp4 

The equation (15) and (16) can be modified to take in 

to account the off-nominal turns r tio. 

The method requires the setting up of driving bus volt age 

to I + Jo and an initial w It a ;e distribution is assumed 

(usually as 0 + Jo) as the reference bus is set to 0 + JO. 

Thus the bus voltrges are computed using equation (16) 

sequencially with the beat known values of voltages of 

other buses. When all voltages have been ealcul• ted, the 

oaleulatkon is repented with the improved set of voltages. 

This goes on till the volt ages h.;Ve converged to a desired 

precision. The accelerr: ion i'actcre are used to speed 
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The new values after applying acceleration factor d st 
stored and calculated from 

to 
E = Acception Factor (Enew — old)  + old 

Once the voltages have oonve god the input current at the 

enorgieod bus is computed from 

In 	=: 	Y y  ( 1 +K Eq ) 	 (17) 
q q 

This should also be modified if off nominal turns ratio is 

to be taken into account. 

With all the voltages found and input current at the 

driving bus the self cn a mutual impedances are computed by 

dividing the voltaree at all buses bs input current. This 

process is repeated till all buses have been energized in 

turn and complete matrix of self and mutual impedances 

is known. 

The method i again superior to the matrix m*tthod as regards 

time and system size. 

Although this method requires elaborate programming but is 

superior than other ae tho ds. 

The ccmputer programme as listed in Appendix E for this 

method has been written and self and mutual impedances of 

different systems are found. 

A study has been also made on the Iterative Process 

used in this method and observations have been incluAed 

herein. 

4-3 • I1lu etrat i v e P,xru ble„ . 

The self and uiatual impedances for the systema az own 

in figures 4.8, 4.2, 4-9 i.e,for 4,5 and 6 buses systems 

are computed using the programme written b,, the author, 



A four bus system is a ring system and the five and six 

bus systems contain two and three loops. 

The self and mutual impedances thus found have been 

reper t e u in Table 4-3-1. 

Prgx3znrne Peat ures 

The programme for IBM 1620 has been written in such 

a way as to al low maximum flexibility in the Rudy of 
convergence and to disclose more infoxm~ tion reGar d.ng 
the itexative process. The precision to which the result 
are desired can be varied at will and the acceleration factor 

also may be subjected to variation. 

The voltages may be punched after they have converged 
to the desired precision after certain number of iterations 

which can also be known. Similarly the impedances can be 

directly punched even without knowing the inform.._4ion 
regarding voltages etc. aub a .± 	t028. Because 

of the linitat ions of memory spaces available in IBM 1620 

the programme can handle a system upto 30 buses only 
directly and automatically. However, by breaking the 

programme in ports the system size can be increased still 
further. 

4-4 ;t .cl , onIt ezative Proc sea 

Using the flexibility pruvi ded by the programme chalked 
out a study on Iterative process has been made so as to 
know the nature of convergence, the optiL.um acceleration 
factor and variation of number of iterations necessary with 
desired precision and for a particular system under study. 

The ob eerv%,l ion s made are be in,, reported herewith. 
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1. onycrgen ce of Volt apes 

The voltages converge alternatively i.:n d not uni-

directionally. They converge rapidly in the bec inning 

and then slowl$ for further iterations. 

The system for which the vo It ages have been studied 

1n * 4 bus system of Fig. 4.8. 

As is clear from the Table 4-4-1 and figure 4-1 the 

voltages have almost converged for 6 iterations 

but to achieve an accuracy of 10", few more itieratione 

are necessary. The voltage converge with a precision 

of 10-8  Mr 14 iterations. 

2. C+ptir,.um Acceler.tion factor 

The optirr- um acceleration factor is that value of 

acceleration factor for which the total number of 

iterat:.one are minimum. The optirum acceleration 

factor depends more or leso on the system under study. 

!?or a 5-bus system with a precision of 10-8  it has 

been found to be 1.1. The optiiium acceleration factor 

generally lies between 1.0 to 2.0 but seems to have 

a maxinum as 1.6 or 1.7 as reported by V.Somezti (20) 

and W.F.Tinney. Reference 15) suggests an acceleration 

factor of 1.3 as quite promic ing 4  but in the view of 

the author this value is alright for the moderate sized 

system, since the optimum  optiiuxr. Gccelot ation fa: for seems to 

vary with the size of the eyetem. 

Here it has be .n observed th .t for a four-bus system the 

value of optimum acceleration factor lies between 1.0 

and 1.1 or to soy 1.04 as is obvirua from the figure 

4-8 and Table 4--4-6. SLUI..rly for a five bus syt em 



c 50— 

il, hae bc:en obeorved to h:_vo a value of 1.1 figure 4-3, Pablo 

4-4-2 and for a six bus eyotom the value is 1.2 as is 

obvious from the fi[vre 4-10. 

Reference (35) atuuiecL a ciotcm with 9 buses co tho 

acoelorLt .cn factor of 1.3 is Justified but for lorgor 

system the optirum aceelerotion factor .could be higher 

but uc l ly le oe than 1.6 or 1.7 which I c a quite good 

choice for Quffioi eptly large oyoem. 

3. llu r of It or at c~ 
The n.•_ture of vuri:tion of no, of iterations for 

any particular bus vo:ltat u a;n i cynte t cnn be Coen from 

the figure® 4-3 and 4--5o Thio has boon observed to 

depend upon the order in which the itoratione have been 

performed cursng the pros ecra and al eo labelling of the refor .nc 

'dao. Different buses have been observed to havo their 

minimum no. of iterc.tien at dif."erent ucceleration 

facLore. It is nct ncceooary' to have the came aucclor- 

ation fLctor as optimum for inuivi: ul and the ouiulativo 

iterations. curve fid, 4-4.  
The number of iter.t ion n hwve been found to vary linearly 

with the precioicn desired on logarithmic scale as is 

thovn in fi, urc 4--7 e=nd is obvious from the ta.bl: s 

4-4-2, 4-4-3 and 4-4-4. 
Tho number cf total iterations for precioion of 10-4 

are found to be ap.:,roximatcly half of that for the 

precision of 10-g. 



Hence the total number of iteratirne are predictable 

in a dur a ce for any value of precteton if they are 

known fbr any one preoisior.. 

The opticum acceleration factor is thus ti.e same for any 

precision desire ci fo. a system, it is almost independent 

of precision as is obvious from fig. 4-6. The total no. 

of iterations are al host the some for any order of 

iterative process and regard less of the reference bus 

us is clear from Table 4.4-5. There has been oulyy one 

exoe,_tion for the orae when bus no. 4 was taken as 

reference bus otherwisethey are practically the same. 

The total number of iterations for the syotems under 
study have been observed to vary at the rate of 23 

itettione approximately per increase in the no, of buses, 
as is shown in table 4,-4-6 and figure 4-11. They were 
observed for the acceleration factor of 1.3 and aceurucy 

of 1O'. 

In short for an accuracy of 10 the average no, 

of iterations comes to 13 iteratic.:ne per bus for an 

acceleration fa- for of 1.3 

Gene_ ally, the accuracy of 10-8  is unnecessary except 

in cez tc .n cases such as loos formula calculations etc. 
With a.c.network one my be even satisfied with accuracy 

of 

The digital computer thus her an advantage an regards 

accuracy. 
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The time per iteration has beo observed in all the 

above studies as an avcrage of 1.5 secs/per iteration. 

4 -4 Co elu doge 

The digital method thus is quite promising as regard$ 

tiLe accuracy ,-md co©t in oompariabri to the analogue 

mnetho d. 

Iterative methodd of fin ding self and mutual impedQnceaq 

although may be somewhat difficult to programme, has its 

own advantages over the matrix and impres& e.d cu. rent 

methods as far as time is concerned. 
Memory requirements are much more in Matrix method 

than the other two. Matrix and Iipresced currents no thode 
require inversion of matrix of the size equal to the number 

, ~,if loops and are limited in this respect. For smaller 
systema any method may be used. 



TABLE 4-3— 1 

SELF AND MUTUAL IMEDANCES CALCULATED BY ITERATIVE METHOD 

1. POR BUS _ RING  SYSTEM 

Reference %s is No. 3 

Z11  .09388496 + 3 .37494901 

912  - 	.03765745 + 3 .15001102 

013  0+J0 

Z 14 - 	.03128257 + 3 .12511018 

Z22  a 	.07514993 + .29989340 
z23  0+30. 

Z24 a•01254754 +3 •05005455 

Z43 0+30 

Z44 s 	.04383011 +3 .17576474 

2. FOR 5 BUS TWO LOOP'S _ SYST" M 

Reference Bus is No. 5 

211 	.03870969 + 3.15483871 
Z12 	.02259065 + 3 .09032256 
Z 13 	.01129032 + 3 .04516127 
Z IA 	a 	.029=3226 + 3 .11612902 
215  - 0+30 

Z22 	.05483871 + 3 .21935482 
223 	.02741935 + 3.10957740 
Z24 	a 	.04193549 + 3 .16774191 
Z25 	a 	0 +J0 



Cgnt d. 4-3-1 

.03870969 Z33 	.03870969 + J • 15483871 

Z34 	.02096775 + j .08387096 

Z 35 	0 + JQ 

Z44 	a 	.09677421 + 3 .38709677 

Z45  0 + jO 

3. FOR 5 ACTS SYSTEM  

Reference Bus being 1 

Z22 a  .04838740 + 3 .19354841 

Z~3 a  .03225806 + j .12903226 

Z24 - 	.02903227 + 3 .11612905 

Z~5 - 	.01612903 + 3 .06451673 

533 •05483872 + 3 .21935484 

Z34 a  .019 35484 + .07741935 

z35 a 	.42747936 + 3 . 10967741 

Z44 a  .07741937 + 3 .30967745 

Zug a 	.00967741 + .03870965 

Z55 - . 	.03870969 + .15483871 



TABLE 4-3—.1 

3 	JEL7 AND MUTUAL I12EDAMC,BS FOR 6—BUS , THREE LOOP 
SYSTEM 

Reference Bus IE 5th 

Z 11 	= .0350937 + J .14015747 

Z12  = ,02322835 + j.09291336 

Z13  = .01496063 + j .05984250 

Z 14= x02795275 + j 	.011181100 

Z15 	= 0+io 

Z16 	= ,02165355 + j.08661415 

Z22 .05472442 + j ,21889764 

Z~3 	= .02677166 + j.10708660 

Z24  = .04212600 + j .16850394 

Z25  = 0 + jo 

726 	= *02559055 + j ..10236219 

Z33 	= .0 .03503937 + j .14015748 

Z34 = .02204724 + ,.08818896 

Z35  = 0 + J0 

Z36  = .02834645 + J .11338582 

Z44  = .09645671 + J.38582678 

Z45  = 0 + JO 

Z46  = .02401574 + 3 .09606295 

Z66= .05944882 + j .23779526 



TA13LE _ 4-4-1 

NATUR . GF COVERGi CE O VGIMAGLS $ eRECI:SIGN 10` 

ITERATION VOLTAGE OFBJ8 110.2 V01LT AGE GF BUS N0.  
NO:  REAL IMA G RL IMAG 

1 .520187 -.000312 .433738 .000144 
2 o364130 -'.000218  .3036166 .000101 
3 .410947 -'.000246 .342653 .000114 
4 .396902 -.000238 .330942 .000110 
5 .401116 -.000240 .334455 .000111 
6 .399852 -.000239 .333407 .000110 
7 .400231 -.000240 .333717 .000111 
8 .400117 *-.000200 .333622 .000111 

CO::VERGED VG.TAGES 

14 	.400143 --.000240 .333644 .000111 

The above valued are for a 4-bus at em 

of Pigure 4-8 
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TABLE 4-4-2 	5- BUS SY ST1 E21 

PRECISION 10-8  

BUS 	 NO. OP ITERATIONS 
NO 

Accerlation 
factor - 	0.6 	0.8 1.0 	1.1 1.2 1.3 1.4 1.5 1.6 1.7 

1 	 50 	34 	22 	16 LiiJ 18 21 26 37 	50 

2 	 25 16 A3±17 09 13 15 20 26 36 50 

3 	 48 	30 19 	Q 13 17 23 29 36 	50 

4 	 44 28 19 Q 14 17 22 30 36 50 

Total No. of 

ITERATIONS 	167 108 67 	LR 52 67 86 111 145 200 

The values in parallelogram are the winimum ones for that set. 
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4-4-4 

5 BUS SY STEM 

Precision _12_ 

1~RTS 110. 0? ITERATIONS 
t0 

Acceleration 0.6 0.8 1,0 1.1 1.2 1.3 14 1.5 1.6 1.7 Factor 

1 	 24 16 11 Oa ,p 09 11 	15 19 -~ 

2 	 12 08 AiV 05 	07 09 11 	15 19 

3 	 21 14 09 iW 07 08 11 	14 18 — 

4 	 21 14 09f 08 09 12 15 20 — 

Total No. of 
Itornati ono — 78 52 33 ! 7I 29 35 45 59 76 — 

The above values arc for a 5—bus system of Fig. 4-2 



TAPLE 44-3 

5HiSSw-EM 

PRECISION 1Q-6  

BUS NUI1BER OF 	ITEPAx IONS 
NO  Acceleration 

factor 	0.6 0.8 1.0 1.1 	1.2 1.3 1.4 1.5 1.6 	1.7 

1 39 25 16 11 13 16 - 21 28 	- 
2 19 12 07 	10 13 16 21 28 	- 
3 35 22 14 11 13 17 22 29 	- 

4 	 33 22 	13 L 11 13 17 21 29 - 

Total No. of 
Iterations - 126 81 	48 	41 52 66 85 114 - 

The above values are for 5-bus system of Figure 4.2 
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T4BLE 4.4-5 

PRECISION 10-8  ; ACCELERATION FACTOR 1.3 

5 BUS SYSTEM 

BJS NO 	 NO. OF ITERATIONS 

Reference 	Reference 	Reference Reference Reference 
BUS -1 	]us 2 	Russ 3 	Rue 4 	.Bus 5 

1 	X 16 16 17 18 

2 	16 X 15 18 15 

3 	16 16 X 15 17 

4 	16 17 16 X 17 

5 	17 18 17 50* X 

Total 
No. of 65 	67 	64 	100' 	67 
Iteration 



Y 	A 

A KUR BUS RING STEM: ACCURACY 10-8 

b[J S 3 I S 	E ~~ENCJ BU S 

BUS 	 NUMBER OP ITERATIONS 
NC 

Aooeleraticn 
factor  0.6 0.8 1.0 1.1 1.2 1.3 1.4 

1 	 20 12 J7 09 12 15 20 

2 	 34 	21 	13 	L 	13 	16 	21 

4  32 20 11 zior13 16 22 

Total No. of 

Iterations: 86 53 J27 28 38 47 63 
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JABLE_ 4-4-2 
6 BUS SYSTEM CONTAINING 3 LOOPS; PRECISION 10-$  

BUS 	 NO . OF ITERAT IONS NO 
Acceleration 
factor - 	.8 1.0 1.1 1.2 1.3 1.4 1.5 

	

1 	 38 25 18 ® 18 21 29 

	

2 	 26 	15 	/1ö114 	15 	21 	26 

	

3 	 28 17 Q 14 20 21 30 

	

4 	 45 29 23 /T719 23 33 

	

6 	 34 21 	18 	117 18 22 60 

Total No.of 
Iterations 	171 107 81 	© 90 108 	178 

TABLE 4-4-63 

ACCELERATION FACTOR OF 1.3  

No. of Bases Total No. of Iterations 

	

2 	 0  

	

4 	 4' 

	

5 	 67 

	

6 	 90 
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CHAPTER — 5 

LOAD FI,CW WUDILS 

5.1. Introduction 

The load or power flow otucies const of impuoing 

specified power input and volt age magnitude or real and 

reactive power input cc,nditione, at the terminals of a 

passive network unuer existing or contemplated conditions 

of normal operation. The solution provides complete ini,ut 

and voltage information at terminals and Power flow in each 

branch of the n twork. 

Load studies are ea.ential in planning the future devel-

opment of the system because satisfactory operation of the 

system depends on knowing the effects of interconnections 

with other power system of n::w loads, new generL.ting 

stations, and new transmieoion lines be ore they are 

actually installed. 

5.2. Noturo of the Problez 

For :_ny nL ynr:l pk wcr cyetem network the nod,-. equations 

c :n be written cis: 
N 

m=1 
where Em  represents the volt ages at the nodes and 

Ik  the eu.c rent flowing in to the no das. Ykm  are the 

admitt!tnoes. 

The neutral or ground noe is taken as a reference 
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end all voltuGes are referred to it. 

In a trerlwniscion network, the node current may either 

be coming from a generator or flowing to a load. If there 

were no generation or load such as, at a tie point 

represented by a no ce, the current would be zero. 

gins Ik t Y6, Em are complex quantities, they can be 

written as 
dk j zk = Ike 	= ak 	bk 

Em ' 	ueJam 	e + Jfm 

Ykm = ykm eJOkm = Gkm + j 	
(2) 

The power equation then could be stated as (conjugating Ix) 
N 

Pk ¢ J Qk = ' Ykm Em Ek 	 (3) 
m=1 

or Pyr + i k = 	Y1rmE
m c ei (Sk— star- ç) 

whore k is the number of the no do 
At each node there are four varicb3a as 

Pk, q   F and 6 k, other quantities being known. 
It is the va:-iad data information available for 

di ferelit nodes, thut complicates the othe.L wise straight 
forward solution. In any oyastem there can be the following 3 
types of nodes via, 

1. Slack bus; which Pa. a the magnitude Bk and the 
ant, le of its voltage bk speoifie a., but the real 
and reactive powe4'e, Pk ~.:nd 	are not known. This 
bus makdo up the mifferenoe between the echo uule d 



loado and gtnoration that i.e ooucod by loccoo in tranc3- 

aiujai on oy of on. 

2. Generator bueoo9 The valuoo of E), and Ph 

are opo cifio u lcc vinj 6 L, and % Co unlsno~lno 

. Load bucoo: The roa1. and roueZivo porroro9 I' k' 

are ropocifiod and %V Sh are ur nocina. 

5.3. poible o1ution  

A fern,'.l g elcoed fozfl of solution for oven very ciplo 

{;a.: : typo of nett:ork my be almoot difuioalt to obtain. 

There cro analogue and digital mothodzi and therefore the 

load flour studios could either bo con£ .tetod on on u.e. 

nc worrk analysor or on digital computoi -c. In on e.e. 

not :curls analyoor solution the first step iota ©ot up 
compon€nto to represent the cyeten9 the lino unite adj4ctod 

to proper values of rooioton cog reactance cud sucooptcn co 

The ehunt ccpaoitz:.noo of linos are taken in the account 
if docired. The auto-trnnoforno.. c are cot fo proliuinary 

tap position ind may be rcadjuottod to give desired eonaitiono. 
Volt u o at ol- cis bus ire aintainoL at opocifiod voluo9 
other onorc-toro boin aujuotcd to opocifiod volta o •.nd 
real pbv or conditions. loci the final solution roquiroc 
cuoccc-ivc adjuctncnto of load and generators to convorgo 
on a oi:4ult~tncouc balance of Lill cpecifiod torainal 

confit ions® D.ao vo] 	oc on d poser flora ere thou read on 
tiic r.inctor inrtruT.?cn"Vc ::sod racer clod co: '~ccpondinC y on 

wic ~t.ino ci._0 ^u. I)i its'] colvt-un COUL.iZO cf uoinc cn 
: u~ r~:Ulvv roc c& b~ 	ti 	inh z:i lly coca: vc lu© of 
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unknown volt ages (me.,Cnitudes and their angles), the speci-

field conditions are applied at each bus, and the correeticu 

is applied succeaoively to each bus voltLge till the voltages 

converge to an aecigned precision. The line flow is then 

computed. This method is known as Nodal Iterative method 

(40,42),. 
A cif ferent approach to the power flow solution al so 

exists. In thc.t, the f•iret step is the caine i.e. to 

aeuie sozue voltages for each bus, where the voltages 

arc not apecitied. 

:text with the assumed set of voltages the povier- input 

to ea a. bus is computou and then the difference of Lhe 

scheduled power and power calculated is found and necessary 

co_ rection correspon c ingl r is ceraputed from the set of 

lino; rieed difference equations. This process of finding 

the difference of power and then to find the voltage 

correction proeeeus till the differences of power vanishes 

of the voltages converge. This method (47,49,50,51) 

supercedee the no t"o d described by "ard and hale (40), 

ori- inally. 

5.4 tepaneceseary for diital Load flow stu ,'lies 

The following steps are necessary before a system 

can be taken for load flow tuuics, with sinL  le line 

c:ia. rnm available. 

1. Coding of the network, which con slats of labelling 

the buses n nd branches, 



The slack mcchine which supplies the difference 

between the specified real power in to the system at 

other buses and the total system output plus loss, 

is numbered as bus 1. 

Other buses can be numbered arbitrarily and the 

reference or neutral bus my be left unnumbered. 

Bencbms are numbered sequencially. 

2. Intermediate nodes may be eliminated at first. 

3. Cff nominal turns ratios are cohaidered on the basis of 

analysis given in reference (40) 

4. Self and mutual admittances tare computed corresponding 

to ea: h bus from the data svailcble for branch impedan-

Qee. This process can be computerised also and included 

with main load flow pro, ram as dc ne in the programme 

written by the author in Appendix—P 

5. With all the input data available in proper form 

any m3 thod such as Nodal Iterative method can be used 

for voltage solution or as described in reference (49). 

5.5  Ward end Hale 40) 

The method as cu, nested originally by •Ward and Hale 

had the following stages. 

1. Te process is started with some assumed volt ages or 

all buses except the slack generator in which case the 

value as given in input data is used throughout. The 

aaauwed values ma, be taken as 1 + J0. 



-77- 

2. These values aeEUwed are used to calculate the 

impressed current at bus 2 using equation (1) with 

this value of current and assumed val us of volt age 

at bus 2, the power input at bus 2 is calculated. 

3• A correction in obtained in the value of voltalLe at 

bus 2 using the scheduled power and scheduled voltage 

me:gnitude or reactive power if the bus is a generator 

or load bus, other bus so ltagee are considered as 

conatcnt while calcula4ing the correction. 

4. With corrected value of voltage at bus 2 and other bus 

voltages (assumed), the current input at bus 3 is found 

by the equation (1). Again with this current and voltage 

at bus 3 power is ccmput ed. 

5. iith this power input at 3 calculated, the step 3 is 

aL ain repeated to find the correction in the value of 

voltage at bus 3. 

This process is continued till all corrected bus voltages 
are known, which replaces the previus assumed set of 

voltages. Once this is Lone all tLe seeps right from the 

step 1, are repeated again and again till the voltages 

correction becomes less than a preassigned precision. 

There are differ_nt corrections to be applied at 

generator . n d load buses, so the identification is necessary 

to recobnise a b*e as a generator or load bus. This may 

autci . tic.11y ba done by cos9uter as in the author' e 

progr4-uime using an index to be attached with input data. 

After the voltages have converged, tx-e powe.. flow in each 

brunch can be c.:.-lculuted and relevent infLrnlation may be 

obtained as regard& losses and miem,,,tch. 



5,6 Generalised Method as described in Leferences 

(43, 46) 

The Ward and Hale method has drawback that the 
Corrections needed to be applied at generator and load 
buses a.r to be computed seperatedly and for real and 
imaginary parts both. The process is slow. 

However, a generalised method as denorribec: in 
eferr:nce (43) can be applied to find the converged voltages. 

The method can be aesoribe d. as follows 
If I1 be the input current find P,~_3 C~1 be the input 

Pourer at bus 1. 
Then I. can be written as 

n 

	

I1 g F- y14 	(E1 - Eq) 	..... 	(5) 
q=2 

Bu4 ET I,~ 	P1 -jQ1 	 ..... 	(6) 

Theruf ore 

P--1-JQ1 = (Y12 + Y13 + Y14 + .veto . Yin ) 1 
Ej 	- Y12E2 - Y13E3 - Y14E4 ...... 

Yin 	).. (7) 

Solving for E1 

- 
E1 	p1 	3R1 	+ Y12E2 + y13B3 + ... Y1nEn 

Y12 + y13 + y1a 

or in general 
n 	E Pb i% % 	q 

Ep 	E* 	q=j  
n 	

for q # p 
CPQ 	 ... (8) 

: 

q=1 
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Now this equation can be used for any bus with the 

following proceaure. 

1. At a load bus the real and reactive powers are 

specified so Ep can be found from equation (8) 

through an iterative process from some assumed values 

fi of voltages and then improving it in successive 

iterations. 

2. At the generator bus where real power and constant 

voltaCe magnitude is specified the procedure for 

voltage iterations is an follows. 

(i) Since reactive power is not spcifie d so first Qp 

is calculated from assumed voltages by 

4p = - 	[(~ yP~ Ep +'' Eq )]EP 
q-1 	q=1 

•••(9) 

where q 	P 

(ii) after calculating; S and with specified Pp the 

voltage is calculated from (8) and reuced propor- 

tionately to correspond to the magnitude requiremdent. 

Here, since in (8) Ep is a function of Ep or rather itself 

so before going to the next bus for iteratic.ns, resubstitution 

of new value of Ep in (8) as Ep 	is required to give further 

refined value of new Ep which will be used for next 

iteration, 

In all the above iterative processes, the number of 

iterations may be reduced considerably by projecting the 

value of Ep tower de actual value by using some accelera-

tion factor.. 



_eos 

(Epi. ° Bpi-1 ) o +Bpi  1 	... (10 ) 

7h ,o at in vm accoloration factor. ¶i2ho above equation 

mry be ucod for both real and imuinmry parto of voltago©. 

Tho Choi co of 	dopondc again on the cyetem under study. 

rormoderately oi5od cyotem a choice of 1.6 and 1.7 
for real and imcginary ptarto ronpottively is good. 

C.no : L,e din 4  when the voltagon have converged to a docirod 

prccioion tlh pocior flora in each branch cn be calculated 

frcri 

PPq { iQ =E (Ep_ Eqf'  ( 	_ ypI)#  .... (11) 

nhoi c Epq  and Qp, are the real Lnd rce►ctivo per+or floe 

fiom bun P towardohe proCr ;iie viritoen by the author 

and ae included in ppendlx F, is bacod on ti i method. 

Roforcnoc (46) given modified andealarged ve, cion 

of thin m cthod only. 

5.7 Ct1o.- A 	o!kc S to Load fl.ot 3utiorte 

Refor.once (47) deccr.ibon a little different approach 

to the load flow problem. In load flora problem it is 

nococct. ry to colvo the cot of oizultaneouo non-linear 

oouc.tion co rcpr000ntod by cqu._tion (4) 

By taking total differentialo, the follor i linentir 

rclationchip is uovclopod for emall varictiono in the 

vnricbloo of oqufation (4) 
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N  Jkm [6b m + N  
x=1 	m=1 

, Nom, Jkm and I are the coefficients given by 

for k j m 

Hkm = a P _ 	a fk - bmek 
~d m 
.____..... = a,!, + hmfk 
a m  Em 

Jkm  	----- a 	` bmfk ) 
Adm 

I'km - _ 	= amfk '" bmek 

For k =m 

kk a6k = Qk Bkk 
Nkk = aP 	ik 	+ G~Ck c aSk  Ek 

Jkk 	= Pk - GIck % 
aak 

a-Qk 	Qk — B F 
Lklt 

a's'k 

.... (14) 

Where an 	and bm are the components given by 
a. 4' jbm = (G& JBam ) (em + Jf'm 

andAS$ are in radians. 

For a 5—bus custom of gigure 5-1 the equations woul~d be 
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822 823 824 825 N22 N24 X25 

R32 H33 Z34 H,5 N32 N34 N35 166-3 

H42 H43 844 H45 N42 N44 N45 AN~4 

852 1153 1154 H55 N52 N54 N55 4S5 

J22 J23 24 J25 L22 L24 L25 AE2 

J42 J43 J44 J45 L12 144 L45 AE4 

152 153 J54 J55 Z52 	L54 L55 E5 

6P2 

A P3 

a P4 

AQ 8 
AQ4 

A Q5 

-(i5) 

The coefficients listed above are not constant but are 

functions of the operating point, and tbus of 	and 

S k, 	In equation (15) bus 1 is not taken in to account 

because it is a slack bus, i.e. E1 and a, sre fixed, hence 

aEs and 	are zero. 

Si:uilarly at bus 3, since it is a generator bus 

AE3 is zero. 

Now by comparing the actual real and reactive powez at 

a bus with desired values the '4k'  a €end A k, a can 

be evaluated and equation (15) is solved fc,r An's end 

AEm$ s. 

Equation (12) represents a set of linear equat ic-ne 

that can be solved for desired corrections of the variables 

in equation (4). But because of the non-linearity, these 

corroction would only be effective if they are grill. There 

for,an approximate solution for equation (12) is fuu.ad and 

using this to find a operating point for equation (4) and 

then from this new operating point, reevaluating the 
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eoefficente Qf equ tion (12) is done. This process is 

repeated till the desired solution is obtained. 

Genes ally, equation (12) is not solved more accurately 

because it might as well take long time to arL ive at the 

solution, so more iteraticne are done on equation (4) 

rather than solving equ 'tion (12) correctly , so that 

desired solution is obtained in less time. 

In the reference (47), exact solution of equation 

(15) has not been obtained and are solved by an iterative 

method but in reference (51) ,Van Ness suggests that 

equ. tion (15) may be solved by the elimination method so tht 

within r. and off error, the exact correction factors are 

found for all buses, befLre they are applies to the volt age 

magnitude and angle. Although the correcticna may be exact 

ly coj. rect as far as equation (15) is concerned, they mil 

not correct voltages anu Lngles completely. However, they 

may bring results much closer. 

In this is thud (51) with the a©eumed values of E 

and Q' a are calculated. Also the coefficient 

matrix of equation (15) is computed and stored. P' a and 	Qka 

Q' s are then found and equation (15) is solved by 

eli .Lnation method, The results are used to correct 

the voltages at buses and this process is repeated till 

the desired accuragr is obtained. The coefficient matrix 

of equation (15) is computed at each step as its elements 

are f;anot+.ins of the voltages. 
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5.89 Iape dance Mt rix IterativeMet ho d 

The driving and transfer impedances may also be used to 

define the network and thus an iterative process may 

consist of an initial acaumption of currents,, computation 

of voltages, determination of errors, in the terminal 

conditic ne and correction of cui rents to give new values 

to start the next iteration. All prev4- us attempts in 

this direction were futile(48 E'hi a was perhaps due to lac' 
of Sest method of developing transferrer impedance matrix. 

General Electric and Commonwealth Edison companies under-

tock this project and were oucceesful in writing a 

progra2nne based on above r ethod as given in reference (52) 

of April 1963. In every eyotem they xx:1 etuQA.ed time 

required :tor solution was much less than that required 

by the usual nodal branch :admittance iterative progremme. 

Their programme essentially consists of throe 

subroutines. 

It Matrix formation subroutine 

2. Data sorting and modifying cubrcutine 

3. Iteiative subroutine. 

The first two subroutines preperL the Z--matrix co that it 

is quite adaptable to an iterative process. The details 

of this method are available in reference (52) 

i 
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5,9  11 11iajLvp_ Problefe 

The problems as shown in fi ;ure 5-1 was selected 

foi the load flow problem. The Input and output data 

is liven below in the form of tables in compact 

form via table 5.9.1, 5.9.2, 5.9-3 and 5.9-4. 

INPUT DATA 

BU S 	P 	Q 	E 	Remarks 
p. u 	p. u 	p. u 

1 	... 	• .. 	1.02 L e° Single buy 

2. 	0.6 	0.3 	1.00LQ° 	Load bus 
arcumed 

3 	1.0 	... 	1.t74 7 ° 	Generator bus, 
vo It a,Fe magnitude 
corset ant 

4 	 0.4 	0.1 	1.OoLo° 
assumed 	a bus 

5. 	0.6 	0.2 	1.00,0°_ 	Load bus 
assumed 
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TABLE 5-9-2 	OUTPUT DATA (8elf  a 
d Mutual 

Y11  2.15686 - 38.6 2745 

Y12  = 	-.58823 + 3 2.35294 
Y14  -.39215 + 3 1.56862 

115 a 	-1.17647 + 1 4.70588 
Y22  = 	2.35294 - 39.41176 
Y23  a 	-1.17647 + 3 4.70588 
Y24  = 	-5.88235 + 3 2.35294 
133  - 	2.35294 - 3 9.41176 
135 = 	-1.17647 + 3 4.70588 
144  0.98039 - 33.92156 
Y55 2.35294 - 3 9.41176 

Here also Yi j  = 13j  

TABLE 5-9-3=  OUT±UT DATA 

Due Voltae Power  
MRS Angle P Q Remarks 

1 1.02 0.00 0.6515 G.3293 Slack bus 

2 0.9547 -3.94 0.6000 0.3000 Load 11ue 
3 1.04 2.00 1.0000 0.4769 Generator 	as 
4 0.9234 -8.01 0.4000 0.1000 Load bus 

5 0.9931 -2.07 0.6000 0.2000 Load bus 



TABLE 5-9-4 t 
 

POWER FLOW S 

BUSES 	 F p.,n.. 	Q p.~ 
From To 

1 2 0.1980 0.1227 
1 4 0.2481 0.1175 
1 5 0.2054 0.0891 
2 1 -0.1928 --0.1018 
2 3 -0.5732 -0.2370 

2 4 0.1661 0.0388 

3 2 0.5943 0.3214 

3 5 0.4057 0.1555 
4 1 -0.2373 -0.0740 

4 2 -0.1629 -0.0260 

5 1 -0.2030 -0.0795 
5 3 -0.3970 -0.1206 

5-10 Jurther Proposed Work 

The author wishes to modify the programme given in 

Appen dix F and to improve upon the same. The programme based 

on the method given in reference (47) would also be t*ted 

and studied as regards speed of convergence and other factors. 

The author feels that, since the exact solution of 

equation (15) is not desired very much for applying correc-

tions to voltages and angles, the Monte Carlo a tho d of 

solution of linear equations may be of help in handling the 

problem and perhaps time of computation may be is as with this 

approach. 
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APPENDIX «• A 

C' h^nNTF CARL 0 r'THrr FOR SOLUTION OF F(J!'ATIC 5--K.P.~"TSRA 7 
COMMON N 
^IMFNSION F(3(` ),NP(2~), A(30,31), MAT(30,30) 

PAD i.NGAMF,NST7F,NN0 	$ N1=NNO +1 
C, = NOAMF $ 0=1./C 
RFADD 1,(NP(I),I=1,NNO) $ NN'(N1)=N!GAMF+1 

1 FORMAT(25T 	N 	=N!cT7P+ , S ,Fpr) 2 ((A(T,J),J=1,NM0PF),I=?,NST7F) 

	

2 	FORMAT(4F15.P) 
SKFL_="QQ99.S NSKEL=SKEL$ DO 3 I=1,NSIZE 
no 4 J-1,NST7F$ MFIXD=A(I,J)*SKEL 
IF(J-1) 71921,2? 

21 	,IAT(T,1)= MFTXD S GO TO 4 
22 MAT(I,J) = MAT(I,J-1) + MFTXD 

	

4 	CONT I NUF 
MSTEP = NSKEL- MAT(I,NSIZE) 
TF(MSTFP)8,8,14 

8 PRINT 9,I 
9 FORMAT(I.T9H ROW NOT NORMALIZED) 

STOP 
14 STFP=MSTFP 

8(1) =A(T,NMORE)*SKFL/STEP 
IROW = 1 

18 SKO=0 S NO=]. 
no 15 NCONT=1,NGAME 
IF( NCONT-NP(NO))100,101,100 

101 NO=NO+I. 
01=NCONT S SKOR=SKO/G1 
PUNCH 16,NCONT,IROW,SKOR 

16 FORMAT(T3,I3,F1.6.$) 
100 T=IROW  

 

2  CALL RANDOM 
DO 7 J=1,N5I7F 
JFND=NSI7F+1-J 
TF(N-MAT(I,JFND))7,6,6 

7 CONTINUE 
I=1 $ GO TO 12 

6 IF(JFND-NSTZF)11,15g15 

	

_1 	I=JEND+l S GO TO 12 
15 SKO=SKO+B(I) T. SKO = SKO*G $ PUNCH 19,IROW,SKO 

 

.°  FORMAT( 1XI', 1OXF16.8) 
I ROW= I ROW+1 
TF(IPOW-NMORF)18,17,17 

17 STOP 
FNn 
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C C ITFRATIVF MFTH00 K.R.MISRA 	Z 
D1MFNSTONA(2r),2n),B(20),X(20) 
n050I=1.,?0 
R( I)=0.0' X(I)=0.P 
1) 50J=1,20 

5n A(I+J)='.0 
RFAf209NN,TFST 

2r FORMAT (I2,C1 P.6 ) 
11 RFAP21,T,J,A(T,J),T1,J1,A(11,J1.),NFXT 
21 FORMAT(2(?T7.F10.6)•Il) 

GfT0(31,2?? ,tJFX T 
3? RFAD??,I,R(I),NFXT - 
?2 	FORMAT (I?,F10.6,I1) 

GOTr(32,33),NFXT 
33 	RFAn?2,I,X(I ),NNFXT 

GOT0(33,34),NNFXT 
14 ERROR=0.0 

nn5I1,N 
SUM=n•0 
fln4f J=1 ,'\i 

40 	cl)M=S!)M+A (I ,J) *X (J ) 
39 	TFMPX=(R(T)-SUM+A(I,I)#X(I))/A(I,I1 

FRRr)4=PQPrP+APgF(X(I)-TMDX) 
35 	X(I)=TFMPX 

PUNCH?3+FRRnP 
?3 FORMAT(6HFPP0R=,F20.8) 

IF(FRROR-TFST)41,34,34 
41 	NFXT1 =1 

NFXT2=2s NM1=N-1. 
PJNNCH25 

25 FORMAT(lRHTHF UNKNOWNS ARF- 
r)042I, =1 , NM1 

42 Pt)NCH24,T,X(I),NFXTI 
PIJNrH 24, N, X (N) , N PXT 2 

?4 FORMAT (1HF, 17,Fl2.8,I3) 
STOP 
FND 



APPF.NPIJ 	C 	 A691 y 

C C MONTF CARLO METHOD FOR LAPLACE EQUATION K.8.M. Z 
DIMENSION A(45,45),ANIJ(45,45) 
COMMON K 
RFAD 100, NG 

100 	FC)R"1AT (15) 
RFA~2^^,lfA(I,Jl,J=1,8),I=1,R1 

200 FOR"AT (8F9.2) 
DO 400 I=2,7 $ J=1 

11  IF(A(I,J))13,12,13 
12  J=J+1 

GO TO 11 
13 	J=J+l 

IF(J-8)14,400,400 
14  IF(A(I,J)) 13,15,13 

15  R=0. $ IG=1 
16  IK=I $ JK=J 
17 	CALL RANDOM 

M K/10000 
IF(M) 17,17,18 

18  IF(l-5)19,17,17 
19  GO TO (20,21,22,23),M 
20  JK=JK+1 

GO TO 24 
21 	IK=IK-1 

G0 TO 24 
22  JK=JK-1 

GO TO 24 
23  IK=IK+1 
24  IF (A(IK,JK)) 25,17,25 
2.5  R=R+A(IK,JK) 

IG=1G+1 
IF(IG—NG) 16,16,26 

26 	ANG='\!G 
A\iU(I,J) =R/ANG 
PUJNCH300, I ,J eANU (I ,J ) 

SCC  FORMAT(4HANU(,I2,1H „I2,2H)=,E14.7) 
GOTn13 

4f ^ CnNTINUF 
STOP 
FNn 
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C C IMPEDANCES — K.R.MISRA 	Z 

DIMENSIONYR(20,20),YI(20,20) ,ER (20),EI(20),FRl(20),FI1(20) 
COMMON N,YR,YT,ER~EIgER1,F_'Il 
READ1^,N,ITMAX,NRR,INDFX,CF,CONLM 
CALL INTTAL 
CALL INPUTS 
Do IT=1,N 
FR(1)=0. 

1 PI(I)=0. 
r)09K=1 ,N 
IF(K—NRR) 18,11,13 

11 PUNCH 12,NR9 
12 FORMAT(6HBUS N!0,I3,17H IS REFERENCE BUS) 

GO TO 9 
13 FR(K)=1. 

FI(K)=0. 
I TFR=0 

2 CALL STORES 
ITF'R=TTFR+l 
CALL VLTAGF(K,NRB,CF) 
CALL TFSTPR(CONLM,NS) 
GOTO(4,~),NS 

I IF(ITrR-ITMAX)2,4,4 
4 G0TO(8,7,6,5),INDEX 
5 CALL O!JTPTA(K,ITFR) 
GOTn9 

6 CALL CURFNT(CINPR,CINPI,K) 
CALL nl.)T0TA(K,ITFR) 
CALL OUTPTR(CTNPR,CINPI,K) 
Gr)T09 

7 CALL CUPFNT(rTNPR,CINPI,K) 
CALL OUTPTA(K,ITFR) 
CALL OUTPTR(CINPR,CINPI,K) 
CALL IMPDNC(CTNPR,CINDI,K) 
GOT 09 

8 CALL CURFNT(CINPR,CINPI,K) 
CALL IMPDNC(CINPR,CINpI,K) 

9 CONTINUE 
10  FORMAT(4I2,2F20.8) 

FND 
SURROUTINF INITAL 
r)IMFNcIONYR(20,20),YI(20,20),ER(20),EI(20),ER1(20),FI1(20) 
COMMON N,YR,YI,FR,EI,FR1,F11 
001I=19N 
0OlJ-1,N 
YR(I,J)=0. 

1 YT(I,J)=0. 
RFTt1RN! 
FNn 
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SURROUTINF INPUTS 
nIMFNSIONYR(2n,20) ,yr (20,2.0) ,ER (20),EI(20),FR1(20) ,FT 1(2n) 
COMMON N,YR,YT,FR,FI,FRl,FIl 
I)IMFNSION TK(2), JK(2.), YRK(2), YTK(2) 
PFAn 7, NtCARD 
NI("=(0 

1 RFAn P,(TK(K),JK(K),YPK(K),YTK(K),K=1,2) 
NIC=NC+1 

2 no 5K=1 ,2 
1=TK(K)$ J=JK(K) 
TF(  

3 IF(J)4,5,4 
4 YR(I,J)=YRK(K) 

YI(I,J)=YTK(K) 
YR (J,I)=YR(I,J) 
VT(J,I)=Y1(I,J) 
CONT INUF 
IF(NC—NCARD) 1,6,6 

6 RFTURN 
7 FORMAT(13) 
R FORMAT(2(212,2F18.8)) 

FNn 
S')RROUTINF cT0RES 
DIMENSIONYR( 20,20),YI(20,20) ,FR (20),EI(20),FR1(20),FI1(20) 
COMMON N,YR,YI,ER,EI,FRl,Fll 
0011=1,N 
FR1(I)=FR(I) 

1 FI1(T)=FI(I) 
RFTl1RN 
FNr) 
SJ)RROUTTNF VLTAGF(NEB,NRB, CF) 
DIMFNSIONYR(2n,20),YI(20,20),FR(20),FI(20),FR1(2n),FT1(20) 
COMMON N,YR,YT,ER,FI,FR1,FT1 
106I=1,N 
IF(I—NF9)l,6+1 

1 IF(I—NRR) 2,6,2 
2 St1MNR=fl. 
SUMNI=0. 
SUMDR=0. 
st.IMr) I =0. 
nn5J=1+N 
YRIJ=YR(I,J) 
YIIJ=Y1(I,J) 
FRJ=FR(J) 
FIJ=FI(J) 
IF(YRIJ) 4,1,4 

3 TF(YTIJ)4,5,4 
4 CALL AMIILTR(YRIJ,YIIJ,ERJ•EIJ,XR,XI) 

CALL APLIISB(r-UMNR,SUMNI,XR,XI,SUMNR,SUMNI) 
CALL A!'t Uc,o (SiJMMDR,S'Y' DI,YRTJ,YIIJ,SUMR,SUM!DI) 

CONT I1\1I IF 
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CALL AUPONR(SUMN+R,SUMNI,Sl)MDR,SUMDT,ER2,FI2) 
FR(j)=(FP7FR(T))# CF+FR(T) 
FI(I)=('I2—F1(T))* CF+FI(T) 

6 CONTINUF 
RFTIIPNN 
FND 
ci1R 0nIITI"1F TrcTFR (CONL"1,N5) 
DjMFN.STONYR(70,70) YT(20,20),ER(2.0)g  FTC 20),FR1(70) ,FTU 20) 
COMMON N ,YR ,YI,ER,FjoFR1,Eli 
DO21=1 ,N 
CR=ER(I)—FR1(T) 
Cj=EI(I)—EI1(I) 
IF(ARSF(CR)—CONLM) 191,3 

1 TF(ARSF(CI)—CONLM) 29293 
2 CONTINUE 

NS=1 
RETURN 

3 NS=2 
PFTURN 
FND 
SURROUTINF OUTPTA(K,jTER) 
DIMENSTONYR(20,20),YI(20,20),ER(20),ET(20),FR1(2.0),FT1(20) 
COMMON N,YR,YT,ER,Fj,ER1,EI1 
DUNCH 19 K 

1 FORMAT(//34HCONVFRGED VOLTAGES CORP. TO BUS Nn,T3,10H ENERGIZE 
NX=ITFR-1 
PUNCH 2.9 TTFR,NX 

2 FORMAT(/15X,HAFTER,I3,11H ITERATION5,17X,5HAFTFR,I3,11H ITFRA 
IS) 
PUNCH 3 

3 FORMAT(/6HRUS NG,8X,4HREAL,14X,4HIMAG,14X,4HREAL,14X,4HIMA('/) 
DO 5 I=1,N 

5 PUNCH 4,I ,EP (I) ,EI (I),FR1(I) ,EI l(1) 
4 FORMAT(I4,F17.8,3F18.8) 

RETURN 
END 
SUBROUTINE CHRFNT(CjNPR,CTNPI,K) 
DIMFNSIONYR(20,20),YI(20,20),ER(20), ETC 20),FR1(20),FIl(2n) 
COMMON N,YR,YI,ERgFT,ER1*EI1 
CI NPP =0. 
CINPI=0. 
DO,I=1,N 
YRIJ=YR(K,T) 
YIIJ=YI(K,1) 
IF(YRIJ)2,1,2 

1 TF(YIIJ)2,8,2 
2 FRM=—FR (I ) 
FIM—FI (I) 
CALL APLUSR(l.,0.,FRM,EjM,XR,Xj) 
CALL AMIILTR(YRIJ,YIIJ,XRsXI,AR,AI) 
CALL APLUSR(CINPR,CjNPj,AR,Aj,CINPR,CINPj) 

3 CONTINUE 
RETURN 
FND 
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SI!RR()IITINF 01 ITPTH(CINPR,CINPT,K ) 
?If;~nST0,\YR(^n~2f) yI(2C,,2(1) , FR(?C),~I(20),FR1 20),r7 I1(20) 
COfr 1%C; N,YP,YI,`R,FI,R1,~ I, 
pi0NCH I , K 

1 rr'p 	T(//2''I.tTtniIT r~ ~nnC-"T r- nn) •  TO Reis +n 
UCF  F' 

2 rnr,nagT(/114y9b~ar~rt ,I.4X,4(4TNAAf,/) 
n+inlCu , (TDtD, TMDI 
rn ^+AT(r71 g 9-r1R • F•
QrTURY 
FNrl 
P(1!JTTNr I n ~rn\ I C' (C1 . PP,r Iir>I 	) 

Cfl1MON N ,YP,vT,c-R,FI,Ff'1,rI1 
MUNCH 1,K 

I F0,RMAT (/ /47HSPLF AN! MUTUAL I MD. AND 	C0RRFS, TO "J'S C 9 T 9 
PUNCH 5 

5 FORNN)AT(//3X,1(H'I,~X,1HJ,14X,6HZ(I,J),?1X,6HY(I,J)) 
MUNCH 2 

? FPDMAT(/2(14X,4HRFAL,14X,4H1NAr)/) 
00 	T=1.,N 
CALL AU°CNR( Pr'(I),FT(I),(TNNPP,CI^.'PT,ZR,7I) 
IF(ZR)1C,11.10 

11 TF17I)i0,12,10 
12 Pl1NCHI3,K,T,7P,7T 
13 FOR(N'AT (2I6, F? 1.8, F19. 	1.~X,RHTNFTNT TR 

GOT03 
In CALL AUPONP(1.,0.,7R,7I,TR,TI) 

PUNCH4,K,I,ZP,7I,TP,TI 
3 CORTINUF 

4 Pr"?MAT (? T4, F1 ~.A,~FI R.8) 
RrTUPN 
FN n 

S1J RCUTINF AMULTR(AR,AI,"R,FI,AfP,1`^T) 
APR=AP*,R-61 'Rl 

API=AR*°I+AIX°? 

Unn01ITTN7 A~rnrin~~(A~a~AI,~RsaT,A var~,A 0 YPI ) 
C=DP nq~PIp I 
A PY( AR*nn+AT•,PT) /C 
APY'. I=(AI*RR—AR"t- J) /C 
PF- TtIRf 
r7NP 
SURFf(fTTr APL( 1SP, (AP,AI,nR,RT,APLP,APl,PI ) 
APLPR=AQ+Pn 
APL i=AT+PI 
PF-TUPN 
FNF) 
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C ELECTRICAL LOAD FLOW SOLUTION K.B.MISRA Z 
DIMENSION YR(20,20),YI(20,20),ER(20),EI(20),ER1(20).EI1(20) 
DIMENSION IN(20),IK(3)sJK(3),RK(3),XK(3),P(20),Q(20),VMAG(20) 
DIMENSION BMTR(20),BMTI(20) 
COMMON ER,EI,ERS,EIS,IN,VMAG,SUMR,SUMI,J►N,I,YR,YI.QI.PI 
COMMON ERI,EII,IK,JK,RK,XK,ERI,EII,P,Q 
READ 20,N,ERS,EIS 
READ 21.CFR.CFI 
READ 22, CONLM 
PUNCH 101, CFR,CFI,CONLM 

,01 FORMAT(3F20.8//) 
CALL INPTRX 
DO 1 I=2,N 
IN(I)=0 
CALL INPTGL 
DO 3 I=2,N 
IF( IN( I))3.2,3 
PRINT 23, 1 
GO TO 30 
CONTINUE 
CALL INITAL 
I TER=0 

 

0  D04 I=2,N 
ER1(I)aER(I) 
EI1UI)=EI(I) 
D09 1=2,N 
PI=P(I) 
ERI=ER(I) $ EII=EI(I) 
INI*IN(I) 
CALL SUMMAT 
GO TO (5,6),INI 
QI*Q(I) 
CALL VOLTAG 
ER2$ERI $ EI2SEII 
CALL VOLTAG 
ER( I)a(ERI—ER2)*CFR+ER2 
EI(I)=(EII—EI2)*CFI+EI2 
GO T09 
CALL GENERQ(QRI) 
CALL VOLTAG 
IF(SENSE SWITCH 2)7,8 
ERINCERI—ER(I))*CFR+ER(I) $ EII=(EII—EI(I))*CFI+EI(I) 
VMAGT'SQRTF(ERI*ERI+EII*EII) S VM+~VMAG(I)/VMAGT 
ER(I)=ERI*VM $ EI(I)=EII*VM 
GO TO 9 
VMAGT=SQRTF(ERI*ERI+EII*EII) $ VMnVMAG(I1/VMAGT 

ERI=ERI*VM $ EII=EII*VM 
ER(I)=(ERI—ER(I))*CFR+ER(I) $ EI( I)=(EII—EI(I))*CFI+EI(I) 
CONTINUE 
DO 12 Im2,N 
DER=ER(I)—ER1(I) $ DEI*EI(I)—EI1(I) 
IF(ABSF(DER)—CONLM)11.11,50 
IF(ABSF(DEI)'-CONLM)12,12,50 

 

.2  CONTINUE 



GO TO 31 

 

50  IF(SENSE SWITCH 3)51,52 

 

51  PRINT 100,ITERsDER.DEI 
100 FORMAT(I3f2F20.8) 

 

52  ITER=ITER+1 $ GO To 10 

 

31  Jul 

CALL SUMMAT 
ERI=ER(I) $ EII=EI(I) 
CALL GENERQ(QRI) 
P(1)=QRI $ Qt1)=QI 
DO 14 Is2vN 
INI=IN(I) $ ERI=ER(I) $ EII=EI(I) 
GO T0(14.13),INI 

 

13  CALL SUMMAT $ CALL GENERQ(QRI) $ Q(I)=QI 

 

14  CONTINUE 
PUNCH 24PITER 
DO 15 I =19N 
ERI=ER(I) $ EII=EI(I) 
VMAGT=SQRTF(ERI*ERI+EII*EII) 
ANGLE=(ATANF(EII/ERI))*180./3.14159 
PIZP(I) $ QI=Q(I) 
I F(I-1) 62,66,62 

 

62  INI=IN(I) 
GO To (64.65) INI 

 

64  PIn-P(I) $ Q1-Q(1) 
PUNCH PUNCH 201sI+VMAG*ANGLEtPI,QI 
GO To 15 

 

65  VMAGT=VMAG(I) 

 

66  PUNCH 202vItVMAGT* ANGLE,PI+QI 

 

15  CONTINUE 
PUNCH 26 
CALL BRADMT 
DO 53 11,N 
BMR=0• S BMI=0. 
DO 19 Ja1,N 
IF( I—J)16+19,16 

 

16  YRIJ=YR(I,J) $ YIIJ=YI(I,J) 
IF(YRIJ)18,17.18 

 

17  IF(YIIJ)18,19,18 

 

18  DR=ER(I)—ER(J) $ DI=EI(I)—EI(J) 
CALL AMULTB(DR+DI►YRIJ,YIIJ,DR,DI) 
DI=—DI 
CALL AMULTB(ER(I),EI(I)•DR,DI,PI•QI) 
PUNCH 27,I+J,PI•QI 
BMR=BMR+PI $ BMI=BMI+QI 

 

19  CONTINUE 
BMTR(I)=BMR $ BMTI(I)=SMI 

 

53  CONTINUE 
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SUMR=0. S SUMI=U. 
DO 80 I=1,N 
SUMR■SUMR+P(I) 

80  SUMIaSUMI+Q(I) 
PUNCH 83 

83  FORMAT(/25HTOTAL TRANSMISSION LOSSES//18X,4HREAL, 15X,4HIMAG/) 
PUNCH 84,SUMR,SUMI 

84  FORMAT(1OX,F15.8,6X,F15.8) 
PUNCH 85 
DO 86 I=l,N 

86  PUNCHB7,I,BMTR(I ),BMTI (I) 
SUMR=0• $ SUMI=0. 
DO 90 Ia1,N 
SU$R=SUMR+BMTR(I) 

90  SUMI=SUMI+BMTI(I) 
PUNCH 203 
PUNCH 84,SUMR,SUMI 

AS  FORMAT(/$HMISMATCH//2X,LHI,18X,4HREAL►15X,4HIMAG/) 
87  FORMAT(I3,1OX,F15.8,6X,F1.5.8) 
20  FORMAT( 12,2F20.8) 
21  FORMAT(2PZO.8) 
22  FORMAT(F20.8) 
23  FORMAT(19HN0 DATA FOR BUS NO.,13) 
24  FORMAT(/19HNO. OF ITERATIONS •,I3//6HBUS M0.5H TYPE,6X,9HMAGNITUDE 

1,9X,5HANGLE,13X,1HP,15X,1HQ/) 
25  FORMAT(I3,4(4X,F15.8)) 
?!6  FORMAT(/2X,1HI,6X,1HJ,17X,6HP(I,J),24X,6HQtI,J)/) 
27  FORMAT(I3,4X,13,2(l0X,F20.8)) 
200  FORMAT( I3,3X,5HSLACK,4(F16.8) ) 
201  FORMAT(I3,3Xs5HLOAD ,4(F36.8)) 
202  FORMAT(I3,3X•5HGEN. ,4(F16.8)) 
203  FORMAT(/14HTOTAL MISMATCH//18X,4HREAL,15X,4HIMAG/) 
30  STOP 

END 
SUBROUTINE SRADMT 
DIMENSION YR(20,20)•YI(20,20),ER(20) 'El (20),ER1(20),EIl(20) 
DIMENSION IN(20),I K(3),JKT3),RK(3),XK(3),P(2O),Q(20).VMAG(20) 
COMMON ER,EI,ERS,EIS,IN,VMAG,SUMR,SUMI,J,N,I,YR,YDI,P1 
COMMON ERI .EII,IK,JK,RK,XKsER L EI1rP,Q 
DO 4 I=1,N 
DO 4 J=2,N 
IF(I—J)1,4,1 

1  YRIJ•YR(I,J) 
YIIJ=YI(I,J) 
IF(YRIJ)3,2,3 

2  IF(YIIJ)3,4,3 
3  YR(I+J)=—YRIJ $ YI(I,J)=—YIIJ 
4  CONTINUE 

RETURN 
END 



SUBROUTINE INPTRX 
DIMENSION YR(20,20),YI(20,20),ER(20),EI(20),ER1(20),EIl(20) 
DIMENSION IN(20),IK(3),JK(3),RK(3),XK(3),P(20)Q(20),VMAG(20) 
COMMON ER,EI,ERS,EI5,IN,VMAG,SUMR,SUMI,J,N,I,YR,YI,QI,PI 
COMMON ERI,EII,IK,JK,RK,XK,ERI.,EIl,P,Q 
DO1 I=1,N 
DO1 J=1,N 
YR( I,J)=O. 

1  YI(I,J)=0. 
READ17, NCDRX 
NC=O 
IF(SENSE SWITCH 1)261,2 

26  PUNCH 19 
2  READ18, (IK(K),JK(K),RK(K),XK(K), K=1,2) 

NC=NC+1 
D07K=1,2 
I=IK(K) 
J=JK(K) 
IF( 1)3,7,3 

3  IF(J)4,7,4 
4  R=RK(K) 

X=XK(K) 
CALL AUPONB (1.,O.,R,X,G,B) 
IF(SENSE SWITCH ?)5,6 

5  PUNCH 20, I,J,R,X,G,B 
6  YR(I,J)=G 

YI(I,J)=B 
YR(J,I)=G 
YI(J,I)=B 

7  CONTINUE 
IF(NC-NCDRX)2,8,8 

8  IF(SENSE SWITCH 1 )25,27 
25  PUNCH 21 
27  DO 16 I=1,N 

SUMR=O. 
SUM 1=0 
DO 11 J=1,N 
YRIJ=YR(I,J) 
YIIJ=Y1(I,J) 
IF(YRIJ)1U,9,10 

9  IF (Yl IJ) 10,11,10 
10  SUMR=SUMR+YRIJ 

SUMI=SUMI+YIIJ 
11  CONTINUE 

DO 16 J=1,N 
IF( I-J)12,13,12 

12  YR(I,J)=  -YR (I,J) 
YI(I,J)=-YI(I,J) 
GO TO 14 

13  YR(I,J)=SUMR 
YI(I,J)=SUMI 

14  IF(SENSE SWITCH 1)15,16 
15  PUNCH22,I,J ,YR (I,J),YI(I,J) 
16  CONTINUE 

RETURN 
17  FORMAT(I3) 
18  FORMAT(2(2I2,2F18.8)) 
19  FORMAT(2X,1HI,6X,1HJ,7X,6HR(I,J),10X,6HX(I,J),10X,6HG(I,J),lOX, 

1(1 ,J)/) 
20  FORMAT(I3,4X,I3,4(3X,F13.8)) 

21  FORMAT(11HADMITTANCES/2X,1HI,6X,1HJ,19X,4HREAL,26X,4HIMAG/) 

22  EgBMAT(I3,4X,I3,2(1OX,F20.8)) 
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- 
DIMENSION VR(20,20),YI(20,20),ER(20),EI(20),ER1(20),EI 1(20) 
DIMENSION IN(20),IK(3),JK(3),RK(3),XK(3),P(20),Q(20),VMAG(20) 
COMMON FR,FI,FRS,EIS,IN,VMAG,SUMR,SUMI,J,N,I,YR,YI,OI,PI 
COMMON ERI,EII,IK,JK,RK,XK,ER1,EII,P,Q 

	

1 	READ 8,INK,(JK(K),RK(K),XK(K),K=1,3) 
IF(INK)2,7,2 

	

2 	DO 6 K=1,3 
J=JK(K) 
IF(J)3,6,3 

	

3 	P(J)=RK(K) 
IN(J)=INK 
GO TO(4,5),INK 

	

4 	Q(J)=XK(K) 
GO 106 

	

5 	VMAG(J)=XK(K) 

	

6 	CONTINUE 
GO TO 1 

	

7 	RETURN 

	

8 	FORMAT( Il,1X,3(I2,2F12.7)) 
END 
SUBROUTINE INITAL 
DIMENSION YR(20,20),YI(20,20),ER(20),EIf201,ER1(20),ET1(20) 
DIMENSION IN(20),IK(3),JK(3),RK(3),XK(3),P(20),Q(20),VMAG(20) 
COMMON ER,EI,ERS,EIS,IN,VMAGsSUMR,5UMI,J'N,I,YR,YItQI,PI 
COMMON FRI,ETh1K,JK,RK,XKtFR1,FI1tPtf 
ER(1)=ERS 
EI(1)=EIS 
D04 I=2,N 
INI=IN(I) 
GO T0(1,2), INI 

	

1 	ER(I)=1. 
GO TO 3 

	

2 	ER(I)=VMAG(I) 

	

3 	EI(I)=0. 

	

4 	CONTINUE 
RETURN 
END 
SUBROUTINE SUMMAT 
DIMENSION YR(20,20),YI(20,20),ER(20),EI(20),ER1(20),EIl(20) 
DIMENSION IN(20),IK(3),JK(3),RK(3), XK(3)P(2O),o(20),VMAG(20) 
COMMON ER,EI,ERS,EIS,IN,VMAG,SUMR,SUMI,J,N,I,YR,YI,QI,PI 
COMMON ER1tEIItIKtJKtRK,XK,ER1,EI h PtQ 
SUMR=0. 
SUM 1=0. 
DO 4 J=1,N 
IF(I—J)1,4,1 

	

1 	YRIJ=YR(I,J) 
IF(YRIJ)3,2,3 

	

2 	IF(YIIJ)3,4,3 

	

3 	CALL AMULTB (ER(J),EI(J),YRIJ,YIIJ,XR,XI) 
SUMR=SUMR+XR 
SUMI=SUMI+XI 

	

4 	CONTINUE 
RETURN 
END 
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SUBROUTINE VOLTAG 
DIMENSION YR(20,20),YI(20,20),ER(20),EI(20),ERI(20},EI1(20) 
DIMENSION IN(20),IK(3)+JK(3),RK(3)sXK(3),P(20),Q(20),VMAG(20) 
COMMON ER,EI,ERS,EIS,IN,VMAG,SUMR,SUMI,J,N,I,YR,YI,QI,PI 
COMMON ERI,EII,IK,JK,RK,XK,ERI,EII,P,Q 
010-01 
ECI*—EII 
CALL AUPONB (PIsOIsERIsECIsAR,AI) 
AR=AR—SUMR 
AI=AI—SUMI 
CALL AUPONB (AR,AI,YR(I,I),YIIYIJ ,ERI ,EI II 
RETURN 
E ND 
SUBROUTINE GENERQ(QRI) 
DIMENSION YR(20,20),YI(20,2O)oER(20),EI(20),ER1(20),EII(20) 
DIMENSION IN(20),IK(3),JK(3),RK(3) XK(3),P(20)oQ(20),VMAG(20) 
ECI=—EII 
CALL AMULTS (YR(I•I),VI(I,!)•ERI,EII,CR,CI) 
CRwSUMR+CR 
CI*SUMI+CI 
CALL. AMULTB (CR,CI,ERI sECI,QRI,QI ) 
QIe—OI 
RETURN 
END 
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AP."?NDIX •. G 

Generally, one is called upon to invert an admittance 

matrix using Node equation for the solution of Network 

problems. 

Node equatic.ne using self : nd mutual admittances of a power 

system network can be solved by inverting the Admittance 

matrix, the aneaysio of which is as follows: 

Using Kirohoff fix of law, it can be written that 
b 

- 	.7kj 	...... 	(1) 
3=1 

where 	- total input current at node k 
Ik3 - branch our rent between node k n d j 
b 	a total number of bran diee at k 

Also, 

1k j ~+ ( Bk - E) 7k3 	 (2) 
where Ek = voltage at node k 

R~ = volta`-e at node j 
yk j a branch admittance between node k and j 

8.abstituting equation 2 in equation 1 and combining, 
b 

tkIc = Tkk Ek + Z Yk j B, 	(3) 
b 	

i_I 
Where Ykk = 2 yk j 	self -'admittance 

3=1 
Yk j 	- yk = mutual admittance 

solving equation 3 for voltage rk 



b 	 -1C4 - 

I 
7- Y 'B 8~  —  1  ..... (4) 
Ykk 

It k represents the d±tving point node and afcurrent of 

1 +30 be impressed bat k then, 

a 1.0 — 	Yk E D   
glc 	

~ 	
(5 ) 

Ykk 

where Ekd = volt age at diagonal elements 

B3 a voltage at adjacent nodes 

For al lother node there is no current impressed i.e. 

Ikk = 0, therefore 

Ek OD 	 (6) 
Ykk 

Where EgOD a voltage at off—diagonal elemunte Equ,<tion 5 

is for diagonal element or node and equation 6 is for off-

diagonal nodes. Solution of 5 and 6 is obtained by an 

iterative process with original assumptions of B3 = 0 

At the end of iterative process when the voltage have 

converged to a desired precision, as desired by accuracy 

og results, the row of inverse of the original matrix has been 

computed. 

Similarly, by energising all buses in turn the whole 

inverted matrix can be estiizated easily. 
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Yarhence Reduction Techniauee 

In a Monte Carlo Calcul .tion the problem of round-off 

has little effect on the accuracy. The statistical deviation 

of result is more important. 

A Monte carlo calculation consists of a series of 

independent trials at any one of which the stundard 

deviation of a required pai.:ameter may be 6. The deviation 

of the ootimate of ouch a parameter from N trials, that 

ie of the arithmatic mean# of N observations, is then 
9 

6 N r . Therefore an increase of one decimal figure 

in accuracy with which the parameter is estirVated neces- 

siates a hundred tics s increase in the number of trials. 

It is obvious thus that if adequate precision can 

not be obtained with reasonable computer usage, some way 

must be found to reduce the errors other than an increase 

in machine tire. And this requires the neceooity of 

variance reuucing techniques,. 

The actual diecuooion on variance corresponding to 

a particular distribution,the references (21, 30) provide good 

materials as regards matrix inversion by Monte Carlo method. 
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MONTE CARLO METHODS AND POSSIBLE APPLICATIONS 
TO SYSTEM PROBLEMS 

by 
K.B. Misra* 

eduction 
Two types of problems are met in practice. They are, Probabilistic and 

rministic according to whether or not they are directly concerned with the 
viour and out come of random processes. 

Monte Carlo methods comprise that branch of experimental mathematics 
,h is concerned with the experiments on random numbers. 

In case of a probabilistic problem the simplest Monte Carlo approach is to 
rve random numbers, chosen in such a way that they directly simulate the 
ical random processes of the original problem, and to infer the desired 
ion from the behaviour of these random numbers. 

However, in case of deterministic problems also, once the theory has 
ised its underlying structure, one may perhaps recognise its structure associated 
some unrelated random process and thereby attack the problem. 

f History 
The name and the systematic development of Monte Carlo methods dates 

ut 1944. One of the earliest applications of the principle at the root of Monte 
Fo methods seems to have been made, as a mathematical recreation (in 1855), 
►1r. A. Smith of Scotland who found out the value of jr in some 3204 trials as 
53. Captain Fox got 3.1419 in 1120 trials. They threw a-  stick just enough 
-ach from one line to the other on a plane ruled by lines equally spaced and 
the probability that the stick will touch a line is 2/ir. 

About 1950, matrix inversion and solution of partial differential equations 
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by Monte Carlo methods were developed. And in the present paper it will be 
;een how these could be done by the method given by Forsythe and Leibleri'z 

Two symposiums3 were t. eld at Los Angeles on June 27, 30 & July 1, 1949 
and again on March 16, 17, 1954 at University of Florida. respectively. A series 
)f papers were read and discussed and several applications of Monte Carlo 
nethods were suggested. Since then several scattered papers were published. In 
ast few years Monte Carlo methods have come back in to favour. This is due to 
)etter recognition of those problems in which it is the best and sometimes the 
)nly available technique. 

4onte Carlo Methods applied to system problems 

In circuit problems one generally comes across a set of linear equations 
vhich could be solved to find the desired quantities in general. For example for 
ny D.C. network by properly selecting the linkset and hence corresponding tree 
~r vice versa, tt.e connection matrix C can be developed for any assumed reference 
•ame. The loop resistances and loop voltages and currents could he written as 

Ttaranch = C hoop  
—1 

f]oop 	= R]oon etoop 

.also 	Rtoop = Ct Rbra,ncti C 

Now here, the problem reduces to find the inverse of the matrix of Rloot,• 
+nce it is found, the solution to the network nrohlem could easily be obtained. 
c the network consists of a large number of branches and sources the problem of 
iding the inverse of a matrix poses a serious consideration and here we take help 
' Monte Carlo methods and as shown by Das Gupta4 that the solution to such 
►mplicated networks could easily he had with fairly good values. 

Similarly, the solution to the network problem could also he obtained if in-
~ad of mesh equationss, one is called upon to use the node equations. There 
e solution would be obtained by finding the inverse of G matrix instead of R1oop. 
Iso Enode and Fbranches would be calculated instead of Ttoor, and 'branches. So 
r solving a d.c. network has been discussed but little consideration would show 
it the A.C. network could also be solved on similar lines.6 

The voltages and currents are related by the system of linear equations 

Z11 1, + Z12 12 + ... + Zy 1 In .--= Ei 
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One great advantage in favour of Monte Carlo method is that it inverts the 
matrix, row by row and thus sufficiently saves the labour in computations. 

The main advantages of row by row inversion are 
1. Since the calculations proceeds on a unit basis where unit is the bus or 

the node of the network. The matrix can be built up from this unit to 
the complete system. 

2. There is complete freedom to operate on any row in any order. 
The possibilities of applying the Monte Carlo method to the problem of 

Interference of power lines on communication lines or to find the line constants in 
case of an untransposed line having large number of conductors can also be explored. 
Monte Carlo method provides a simpler method of solution of Laplace equation? 

2 	2 2 -i- yz = 0 with given boundary conditions. 

The physical situation for which it could arise may be an electron tube, high 
voltage electrical equipment or a magnetic field in a machine. In all these cases, 
one has to find the value of the electric or magnetic potential uo  at any point with-
in the given boundary. The approximate equivalent of the above equation could 
be taken as 

u1  -u2±ug+u4 

Where ul, u2, u3, u4  are the values at the four corners around uo. 

Solution now depends on several random walks in the field starting with uo  
point guided by random sequence, till the boundary is reached and the boundary 
value is the score of the game. Score on the basis of per game gives the potential 
at that point u0. Thus Monte Carlo methods may find several applications in the 
field of Power System Engineering by proper simulation. 

Comparative study of different methods fl)r solving Linear Equations. 

There are two types of metho; s8  of solving a set of n Linear Equations in n 
unknowns (being large) viz, 

Direct methods and Iterative methods. Gaussian Elimination is a direct 
method. 

In the application of ordinary direct methods the number of multiplications 

is very large approximately Y n3  and the number of roundings correspondingly is 

great12  thereby involving considerable error. 



Monte Carlo Methods and Possible Applications 	 5 

There ark iterative methods such as Seidel Gauss and simple or Jacobi 
iterations, best suited for sparse matrices (containing large proportions of zero 
elements) which are very common in network analysis. 

According to G.E. Forsythe°, conventional Cramer's rule procedure for sol-
ving n simultaneous equations in `n' unknown requires evaluation of n+1 determi-
nants of order n. As ordinarily defined, a determinant of order n is a sum of 
1.2.3.4.. (n-1) nn! different terms, each of which requires n--1 multiplications 
to obtain its value. If one were to proceed in this fashion, n+1 such determinants 
would require (n-1)! (n+1) ! multiplications to evaluate. For n=10, this is 359, 
251, 200 multiplications to evaluate, requiring 114 years to get an answer at the 
rate of one multiplication each 10 sec. Even SWAC' (National Bureau of Stan-
dards Western Automatic Computer, a very fast digital computer) which could 
multiply 2600 times per second would need 38 brs, for multiplications. 

if the amount of work is measured by the number of multiplications required 
under the most favourable conditions, the Gauss Elimination method involves the 
amount of work a n' where n is the order of the matrix. The amount of work 
required by Monte Carlo method is given by an expression of the form n'-+n+b 
where b is fairly large. If no preliminary preparation aimed at reducing b is 
made then amount of work may be given by n +b. 

The result of this varying dependence on the dimensionality of the problem 
is that the Monte Carlo method is theoritically the most efficient' than any 
other method for sufficiently large value of n. The value of n at which the method 
becomes more efficient than any other method for sufficiently large value of n, 
depends on the accuracy with which the solution is to be computed. 

The Monte Carlo method may not give very high value of accuracy in the 
result by itself. Some iterations are necessary to give the desired accuracy. 

The Monte Carlo method gives more accurate the ofd diagonal terms than 
the leading diagonal terms such as aij and aji where i j gives nearly accurate 
values because generally with the circuit problems, one comes across a symmetric 
matrix only. This also cuts down the labour of finding the elements of the inverse 
matrix. 

The accuracy which Das Gupta got for his problem° was fairly tolerable for 
most of the cases. 

The computer programming for the Matrix inversion by Monte Carlo 
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method'° could be done and with the latest techniques available for variance redu-
ction, the Monte Carlo method becomes a challange for the existing popular and 
effective method for solving a set of Linear equations with desired accuracy. 

Generation of Random Numbers:— 

When doing a Monte Carlo problem one focusses attention on three main 
points, viz; 

1. Choosing the probability process 

2. Generating sample values of the random variables on a given comput-
ing machine 

3. Designing and using variance reducing technique. 

The random numbers generated, thus play at important part in compu-
tations. There are several methods of generating random numbers (or pseudo-
random). 

The first suggestion of generating the random sequence came from Von 
Neumann who suggested that a random sequence could be generated by squaring a 
number, possibly, of more number of digits say for example 8 digit number and 
then taking the middle eights as the next number in sequence of random numbers. 
The retained eight digit number is once again squared and the middle eight digits 
he taken as the next in sequence of random numbers. This, however, shows 
unsatisfactory results if the number has less than eight digits and that the sequence, 
develops unsatisfactory properties if extended beyond 700 or so eight-digit numbers 
in sequence. 

Lehmer introduced an easy and more dependable method of generating 
random sequence. Das Gupta used the same sequence as described below for 
his computations in his first paper4. However he used different sequence in his 
second paper". He used random sequence for that paper from the reference's. 

Lehmer's method calls for successive multiplications of an eight digit number 
by a suitable constant such as 23. For example, taking an eight digit number such 
as 12345678 and then multiplying this by 23, one gets a number as 283950594 
which is a nine digit number. Making it 10 digit number by placing 0 on the exterme 

left and thus making the number as 0283950594. Now seperating out this number 
into two parts by removing 02 away from 83950594 and then substracting 02 from 
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83950594 to give 83950592. This is a second number in the sequence of random 
numbers. Again this new number is multiplied by 23 to give either 9 d.git or 10 
digit number in general. If it is a nine digit number there is necessity of placing a 
0 on the extreme left to make it 10 digit number otherwise not. 

Lehmer method provides a sequence which repeats itself but after 5882352 
numbers have been computed, which is long enough for most of the applications. 
It contains almost 47 million random digits. Lehmer sequence could very well he 
computed on the computer by the relation. 

Xn+1 =kXn (mod Ml 

with K =23, M==10" + I for ENIAC a  

In 1950, when several experiment 	were performed for the solution of 
partial differential equations and inversion of matrices, the method followed for 
generation of random numbers was, 	 • 

Xo  = 1, Xn  -}- I = P Xn (mod 292  ) 

Where p is any odd power of 5. In practice p -= 51? (the largest power of 5 accep-
ted by the machine-SERC) and Xo could be any integer satisfying X,, = 1 (mod 5). 

This sequence has a period 240 	10x2. 

There are other methods"'10  also for generating random numbers but 

above mentioned are only used generally. 

Matrix Inversion by Monte Carlo method: — 

The Monte Carlo method provides a simple computational approach to the 
statistical estimation of the element's of the inverse of a given matrix. The method 
will give any one element, a single row, or all of the elements of.a matrix when 
certain conditions are met. 

If B is a nxn matrix, its inverse is found by the method given below 

Let 	A = I-B, 	 (1) 
where, I is a unit matrix (8tt). 

The game which is described here is defined if 

maxIAr(A*)I< 	 (2) 
where 	A*tf = I Att 1 	 ' 

If this is satisfied then 
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B-1 = (I— A)-' 	 - 

= I +A+A2.... ...Ah4- ... 

Y. Ah 
h=0 

Therefore, 
00 

(B-')jj = I (Ak)tt 
k=0 

A simple sufficient condition exists for testing whether condition (2) is satisfied. 

00 
Let Sj = 2, atj 
	

(3) 
i=1 

If Si < I for all j then max JAi (A) I < I 

If matrix B is such that this test fails, it is possible in some cases to divide B by a 
constant factor `a' so that B = aB' and using I—B'--=A', 

max ( Al (A') I < 1 
	

(4) 

Then (B')-i is obtained by the Monte Carlo method 

and 	[ Biil-' = 	[B'ijl-' 	 (5) 

Now a probability model is to be developed for this game. It is assumed that sum 
of all the elements in any row ofA*[=aij*=  !at ;(__ISit—b11J] 
is less ,than unity ie, 

n 
1 aii* < 1 	 (6) 

j=1. 

But if this is not possible then dividing by a factor `a', may fulfil this condition. 

The Monte Carlo method for obtaining the inverse of matrix B is to play a 
game G,j, for a large number of times and the expected payment of the game is 
C, ie (B)i;-1. If N is the number of times the game is being played then according 
to the result of Kolmogorff on the strong law of large numbers, we get 

lim E(G)=C 	 (7) 
N-~ oo 
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Now to find inverse of A, first matrix A is found by the relation I—B A. 

The parameter A* is the same as A but has the elements with magnitudes 
only. The value factor matrix, V. is then developed the entries of which are either 

-{-1 or —1 according to ate  being positive or negative 

therefore, 	atj = atj* vtj 

where vt3 is the element in the value factor matrix. Equation (8) could be com- 
pared with that the given by Forsythe and Liebler', ie. 

alt = Pit vtt 	 (9) 

where Ptt is the element of the probability model P. Then from (8) & (9) we get, 

Pit = alt* 	 (10) 
It can be shown that stop probability model pt for any i th row is given by1  

Y1 
Pt = l — S Ptt 

j=1 
The possible probability model is given below 

Pil P12 	Pin 1'1 

f Pni 	Pn2 + 
±iiin Pn 

This may be noted here that probability model is a (nx.n+ 1) matrix. 

The P matrix is then multiplied by M a large arbitary number, and each 
element of the matrix after multiplication, is rounded off to the nearest integral 
value. The error in the rounding off decreases as the value of M chosen increases 
but final `result is independent of M. Now the new entries in the probability 
model would be 

nil  `n12 	nin 

n22 	 n2n  

ni 

n2  °Qi 

nn1 nna 	nnn nn 

uJ 

0 
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0 
where nil = rr1M 

n, _ p1M 
and so on. 

heren11 +n12 +n13 ... +n1 r M . 

Next the field numbers are allotted to each element of the probability model row-
wise as shown below 

row 1 	- 	 row 2 

n11 	0--(n11-1) 

n,z 

 

n11—(n12— 1) 

nx 	I  

	

Insi 	0-an21 

	

n22 	n21-(n22-1) 

n2 (n2i+n22+...n2n)->M-1 

Rules of the game to obtain the ith row of the inverse 

(1) From the set of random numbers, first number is drawn and this 
number is checked in the field deck corresponding to ith row and the random 
number is found to lie in a particular field and the entry nij in the field is located 
the number j is further tested for j 	n + 1 

(2) If j = n + I ie nij = ni (n + 1) the game should be stopped and a 
payment of + ni 1 is made in favour of ith entry of the ith, row . 

(3) If j 	n + 1, the game does not stop and since the last entry in which 
the random number fell was nij, Now looking up for the next random number in 
the jth row to locate a the random number in jk field. Again this k is test for 
k= n+ 1. 

(4) Again if k = n + 1, the game should be stopped and a score of ± 

(nil-' is made in favour of the jth entry of i th row. 

This must be noted here that although help of other rows of the matrix to be 
inverted is taken entries of the score would be made in favour of a particular row 
which is being inverted. 

(5) Once more if k ~ n + 1, the game is not stopped and for the next 
random number in sequence, the field in kth row in which the number lies is 
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looked up and so on. The same procedure for locating the field for the random 
numbers in sequence proceeds on till the stop probobility field is hit and the score 
be -recorded against the particular element of the ith row for which the game was 
played. It may be here once again made clear that the score for a particular ele-
ment would be 4- or -- depending upon the route followed in the game. Suppose 
that the game proceeds on from the deck I to deck 3 and once again to deck 2 and 
then stop probability field is hit. Then the exact route followed is (1)- .(3)a(2), 
hence the score would be + or -- depending upon the elements of the value 
factor matrix 

The exact value of the score made against the particular element of row 
to be inverted would be given by 

= V13 V82 • I 
where v1s  and v32  are the elements of the value factor matrix set up already. This 
is the big advantage as mentioned earlier of Monte Carlo method, that there is row 
inversion of the matrix and thus facilitate work and unnecessary or un-wanted rows 
or elements may be ommitted for inversion. The game is played as per conditions 
for a large number of times and score be noted as above. The average score on a 
per game basis gives the solution. 

Conclusions 
Monte Carlo Games provide a very good method for s lying Linear equa-

tions. The method is good for an approximate solution of the equations but with 
the latest variance reducing technique suitable for high speed computer the method 
becomes quite promisii;g. The solution converges rapidly in the begining but is 
refined only for further large number of games. Also, if this method is used in 
conjuction with Some iteration, the method may cut short the computation time and 
error. 
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Appendix 
a. PROGRAMME:—The programme is based on the method given in reference 7. 

C C MONTE CARLO METHOD FOR . SOLUTION OF EQUAT[ONS-- Z 
COMMON N 
DIMENSION B (30), NP (25), A (30, 31), MAT (30, 30) 
READ 1, N GAME, N SIZE, NNO $ Ni = NNO + I 
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G = N GA ME $ G = 1./G 
READ 1, (NP (I), I = 1, NNO) $ NP (N1) = N GAME + 1 

1 FORMAT (2513) $ N MORE = N SIZE + 1$ REA D 2, ((A (I, J), J = 1, 
N MORE), I = 1, N SIZE) 

2 FORMAT (41316.8) 
SKEL = 99999.$ N SKEL = SKEL$ DO 31 = 1, N SIZE 
DO 4 J=1, N SIZES M FIXD =A (1, J)*  SKEL 
IF (J— 1) 21, 21, 22 

21 MAT (1, 1) = M FIXD $ GO TO 4 

22 MAT (1, J) = MAT (I, J-1) + M FIXD 

4 CONTINUE 
M STEP = N SKEL— MAT (1, N SIZE) 
IF (M STEP) 8, 8, 14 

8 PRINT 9, 1 

9 FORMAT (13, 19H ROW NOT NORMALIZED) 
STOP 

14 STEP = M STEP 

3 	B (1) = A (1, N MORE)* SKEL/STEP 
IROW = 1 

18 SKO=0$NO=1 
DO 15 N CONT = 1, N GAME 
IF (N CONT-NP (NO))' 100, 101, 100 

101 NO=NO+1 
Of =- N CONT $ SKOR = SKO/G1 
PUNCH 16, NCONT, IROW, SKOR 

16 FORMAT (I3, 13, E16.8) 

100 1 — IROW 

12 CALL RANDOM 
Do 7 3 = 1, N SIZE 
JEND N SIZB + I —J 
IF (N-MAT (1, JEND)) 7,6,6 
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7 CONTINUE 
I=1 $GO TO 12 

6 If (JEND-N SIZE) 11, 15, 15 
11 1=JEND+ I SGOTO12 
15 SKO = SKO + B (I) $ SKO = SKO* Cr $ PUNCH 19, I ROW, SKO 
19 FORMAT (1XI3, IOXEl6.8) 

IROW=IROW+l 	 $ 
If (IROW — N MORE) 18, 17, 17 

17 STOP 
END 

h. SUBROUTINE RAN DOM:—Could be written on the basis of the methods 
already mentioned or from references 7,10 mentioned herein. 
Subroutine should necessarily be in machine language. 

c. The problem given in reference 7 was tried, the results were found to be quite 
satisfactory. 	 _ 
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