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SYNOPSIS 

The dissertation mainly deals with the Describing 

Function analysis of the effects of saturation and hysteresis 

in amplidyne voltage regulation system. The input output 

characteristic incorporating the non-linearity has been 

representc by various mathematical expressions for the 

derivation of the describing function. The Nyquist diagrams 

have been plotted to study the stability of the system. 

It also describes the steady state and transient 

characteristics of the machine. 

To the best of the knowledge of the author the 

following analysis approaches are original 

1) Use of modified bessel function in the derivation of 

describing function for saturation by an exponential 

rise and derivation of Describing Function therefrom. 

2) Representing of Hysteresis loop of the machine con-

sidering the non-linear brush contact resistance and 

derivation of Describing Function. 
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N 0 T A T I 0 N S 

A Amplidyne. 

C Capacitance. 

E Voltage. 

G Generator 

G(s) Transfer Function. 

Gd(s) Describing Function. 

If Moment of Inertia, 

I Current 

K Slope of the Hysteresis Loop. 

L Inductance 

M Mutual Inductance 

N Speed in Revolution per Minute. 

R Resistance 

T(s) Transfer function of Feedback Path. 

W Power 

Z Impedance Matrix 

a Constant 

b Constant 

i Current 

d 
p  

Frequency f 

0 Angles 
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CHAPTER 1 

INTRODUCTION . 



INTRODU C T ION 

Industrial revolution brought a great i._.provement in the 

availability of power for the use of mankind. To utilize this 

power effectively and economically, it became necessary to learn 

how to control and regulate this vast power. This le o. the way 

to a consolidated effort at devicing servomechanisms to suit the 

requirements and resulted in very substantial contributions in 

this field. Of comparable importance are the development of 

improved power sources, error indicators and other components 

for supplying the practical needs of the servomechanism designer. 

Typical of these are such devices as the Amplidyne for obtaining 

a high gain rapid-response d-c generator. 

1.1. HISTORICAL DEVELOPMENT: 

The word Amplidyne is a trade name used for a special 

type of direct current generator known as Cross-field generator 

or Armature reaction generator. The first of this kind was the 

Resenberg-generator (1) originally developed in 1905 for train 

lighting service. The Metadyne, the direct antecedent of the 

Amplidyne was developed in France around 1930 by J.M.Pestarini. 

Pestarini(2) defined Metadyne as a generalized d.c, 

machine consisting of a d.c. armature and com~utator, any number 

of field poles each of which may be excited in any manner, and 

any number of brushes arranged to bear on the commutator in posi-

tion for which satisfactory communication can be obtained. Accord-

ing to this definition all rotating d.c. machines including the 

ordinary d.c. generator are metadynes. But generally the term 



"Metadyne" refers only to those forms of d.c machines which 

convert constant potential energy in-to constant current energy. 

Then it was around 1938 that Edwards and Alexanderson of the 

General Electric Co. of America introduced Amplidyne as a machine 

having full compensation and thus providing a constant voltage 

characteristic together with the greatest possible amplification. 

1.2. WORKING PISIISTOIPLL,: 

Amplidyne is basically a d.c. generator and may be 

regarded as a two stage generator but both stages using same 

armature winding. The working principle of which can be explained 

as follows : 

Cont, 
field 
CUYT. 
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The generator rotor which is wond similar to a d. c. 

motor is driven at constant speed by means of a suitable motor. 

Four brushes are placed on the commutator at AAt and BB' 

(Fig.1)(3). The control field is excited by the control voltage. 

(corresponding to which a current ie  . and a flux fid  is carried 

by d-axis ) . •Since the armature winding is rotating at full 

speed, an e.m.f. eq. is generated between the brushes AM. By 

short circuiting these brushes and using an armature winding 

resistance of low value, very large values of armature current 

can be made to flow. Generally a series winding is provided 

in this circuit, the purpose of which being to establish quadrature 

axis flux with smaller quadrature-axis armature current. As a 

result of the relatively high current which flows in the short 

circuited path, the armature reaction of this generator is very 

high and a very strong field Oq  is producecn quadrature to the 

original field ,fid. By placing a second set of brushes at BBt 

normal to the 0q  field, a high level voltage source is obtained 
between the terminals of the brushes BB'. It is important to 

note that a cumulative winding is provided on the direct-axis 

in series with the direct-axis load current. This winding is 

called a compensating winding and is very carefully designed to 

produce a flux as nearly as possible equal and opposite to the 

flux produced by the direct-axis armature current. The negative 

feed back effect of the load current is thereby canceled, and 

the field winding has complete control over the direct-axis flux. 

It should be noted that the armature reaction due to the current 

flowing in the circuit ADA' should under no circumstances be comp-

ensated by any device (compensating windings, offset brushes etc.) 
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whereas in order to procure maximum efficiency at the second 

stage, (i.e in the circuit BFB') the secondary armature reac-

tion should be compensated. It is the percentage of compensation 

which differentiates the metadyne from the amplidyne. The 

metadyne is ft lly under-compensated so that it is a constant 

current generator while the amplidyne is hkandred percent compensa-

ted. Amplidyne is generally provided with more~than one control 

field winding. These allow more independent signals to control 

the output. These independent signals produce independent fields 

which combine in the field core to produce one resultant field 

and it is on this resultant field that the amplidyne acts. Some-

times amplidyne is also provided with an antihunt coil vt. ich 

reduces the hunting of the math ine to a large extent. Hunting 

means, oscillation of output voltage about some mean value. This 

is not at all desirable and is eliminated by feeding back the out-

put voltage through the capacitor which offers low impedance for 

alternating (oscillating) voltage (referring to diagram2.8,) . The 

current flowing in the antihunt coil is proportional to the output 

voltage nd produces a field along d-axis in a direction oppos-

ing the output voltage. Thus the output voltage oscillations 

are reduced. Often antihunting transformers are provided in the 

system. 

The amplidyne. which is used in the present work incorpor-

ates antihunt coiland six control fields. The specifications of 

various coils and machine are as mentioned below. 
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Watts 1500 , Volts — 125, R.P.M. 1800 

Field 	Resistance at 25 °C 	Max. Amps. 

F 1F2 	 980 Ohms 	 0.120 

F3F4 	 980 Ohms 	 0.120 

F5F6 	43 Ohms 	0.598 

F.7F'8 	 43 Ohms 	 0.598 

F 9F 10 	 2.6 Ohms 	2.2 

F11P12 	 2.6 Ohms 	2.2 

F13F 14 	 55.5 Ohms 	0.477 

The amplidyne is directly coupled to and on the same 

base with the induction motor whose specifications are as 

mentioned below : 

	

Type K 	, Frame 77 , 	Volts 220 

	

3 phase 	, 60 cycles , 	1800 r.p.m. 

The attached photographs show the pictorial view of the 

amplidyne arid the experimental set up. 

1.3. APPLICATIONS: 

The amplidyne generator has been widely applied and is 

recognized as an important device in the electrical industry. 

From the application point of view the amplidyne may be looked 

upon as a D.C. generator which, by virtue of special features 

of design and construction will produce its rated output with 

an extremely low net excitation. Amplidyne applications (4 ~ 

mainly may be devided in to two groups, one in which the 

amplidyne is used as a regulator for automatically controlling 

certain quantities and those in which it is used simply as an 

amplifier. 	 • 
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When used with a regulating- circuit, the amplidyne 

will supply a constant excitation for generators whose output vol- 

taL1e must be kept constant. ,'Then used for current control, the 

amplidyne supplies a constant current to a motor or generator 

even when the speed of the motor or the load on the generator 

changes. It is also used for speed control of electrical machi-

nery . Thus important industrial uses of amplidyne as regulator 

are for Power factor control, position control, voltage control 

and current control. 

One of the important use cf amplidyne is as an amplifier. 

The xmerican Standard Association definition of an amplf ier is 

"Amplifier is a device for increasing the power associated with a 

phenomenon with-out appreciably altering its quality, through 

control by the amplifier input of a larger amount of power 

supplied by a local source to the amplifier output." There are 

several rotating machines that can be called as amplifiers 

according to the above definition. They are : separately excited 

d-c generator, the amplidyne, the Rototrol aril the Regulex. In 

each of these machines a large amount of power can be controlled 

by a small control field current . Power amplification of the 

order of 20,000 : 1 can easily be obtained with the help of 

amplidyne in comparison to that obtained by a d.c. generator 

which is of the order of about 100 : 1. So where the power 

required to drive a load is large but only a sma] l amount of 

power is available as a control signal, rotating or dynamo-electric 

amplifiers can be used. Rotating amplifiers are nothing but prime-

mover driven d-c generators whose out put can be controlled by 

small field power inputs. Generally electronic amplifiers are 

• 
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used to bring the power 12vel upto 50 to 400 watts and above 

this rotary amplifiers are often used. 

The difficulties peculiar to the rotating amplifier 

are the hysteresis effect, saturation and commutation effects. 

But these difficulties can be over come to large extent by 

using high grade low loss magnetic material and periodically 

checking brushes and commutator. 

Thus we see that the above mentioned and many other 

applications make the amplidyne generator a versatile and important 

machine in the industry. 

S 
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STEADY STATE CHARACTERISTICS 

The steady state characteristics are the characteristics 

of the particular machine obtained under conditions of gradual 

or slow changes. The steady state characteristics(5)  of the 

amplidyne generator are obtained by plotting the following 

curves: 

1. Total Saturation. 

2. Total Regulation. 

2.1.  TOTAL SATURATION: 

A commonly accuring phenomenon in the field of electrical 

engineering is the phenomenon of saturation. The saturation can 

be either magnetic saturation or di electric saturation. In this 

analysis magnetic saturation is considered and the total saturation 

curve is a plot between the direct axis no-load voltage and the 

control field current with quadrature circuit closed. 

The complete hysteresis loops were found out by excit-

ing the control field F1F2  for the following configuration. 

(i) Without antihunt coil and with quadrature series 

field in the circuit. 

(ii) Without antihunt coil and without quadrature series 

field in the circuit. 

(iii) With antihunt coil and with quadrature series field in 

the circuit. 

12 
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(6. 

The complete hysteresis loops for the above connections 

are as shown in the Figures (4), (5) and (6) . 

The function of the quadrature field is clear from the 

no-load curves of Pigs. (4) and (5) . Because with the quadrature 

series field in the circuit we obtain a higher output voltage 

than what is obtained without the quadrature series field. Thus 

quadrature series field increases the over all gain of the 

amplidyne. 

From the mean no -load curve (mean curve of the 

hysteresis _loop), we see that as soon as the point is reached 

where the saturation in the iron becomes noticeable; it is 

found that the effect doe, not appear gradually but occurs a bit 

auruptly so that it may be described in tef'ms of ceiling voltage 

which the machine has reached. This phenomenon can be explained 

by the fact that the internal currents produce saturation under 

one control field pole and not the other. The loss in flux due 

to this saturation is such that it requires more control field 

magneto motive force. Now because both these currents are quite 

large compared to the original control field current, the 

demagnetizing effect is large and accounts for the adrupt saturatior. 

Referring(7)  to the figure 7, the validity of the follow-

ing equations is easily understood. 

K 
V = K I = !.V 	... (1) 
q 
	CC 	R C 

Ve  = Kq  Iq  = R Vq 	... (2) 

q 
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where K  and Kq  are the constants depending upon the respective 

slope of saturation curves and respective number of turns. 

4 MPL / v 1W. 
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FIG. 7. 

 

Let Ie  be the load current which when flowing sets 

up an m.m.f. on the some axis as that of control field current 

but in opposite direction. And therefore, 
K 

C V K {3) Vq  = Rc 	- e  Ie 	--- 

where Ke  is a constant depending on the slope of the saturation 

curve for the horizj ntal axis and the number of armature turns. 

In an uncompensated machine the m.m.f. due to the load current 

is very large in comparison to the m.m.f. which is required to 

generate Vq. And therefore for a given output voltage the 

control field current has to be greatly increased in order to 

neutralize the effect of the load current. And hence by neutral-

izing partially or fully the effect of armature reaction due to 

load current by compensating winding, the control field current 
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can be reduced to a very large extent. If C is the ratio of 

the mean ampere turns of the compensating 'winding to the mean ampe: 

turns of the arnature, then the equation (3) can be written 

as  K 
Vq = Fc V  - Ke Ie (1-C)  ---(4) 

c 

and equation (2) can be written as 

K 
q 

V - I Re 

	

R 	q 
q 

where Ie Re is the resistance drop in the Armature circuit 

including compensating winding. 

Combining equations (4) and (5) we get 

KK  KK 
V =° V - 	a. e 	(1-C) + R 

	

e RgRc 	 Rq 	 e e 

= KV - K1 (1- C) +R 	Ie 	---(6) 

KK c  VK 

Where K - 	 and K = 
Rq R~  1  Rq 

The equation (6) describes the load characteristics 

of the amplidyne. When the compensation is 100% then the equation 

(6) reduces to 

Ve = KV - Re Ie 

Equation (7) shows the characteristic similar to the 

separately excited D.C. generator. The voltage remains nearly 

constant over the load range and hence the constant voltage 

characteristic . In a: fully compensated amplidyne, the power 

amplification ratio which is defined as the ratio of output 

Ve = 
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power Veleto the input power VIc  can be of the order of 

2 x 10 or more. 

The load test was performed on the experimental amplidyne 

and the curves for over, under and 100 % compensations are 

plotted as shown in the Fig. 8. 

If the compensation is very low then the constant current 

characteristic is obtained. 

2.2. TOTAL REGUI 1T I ON: 

The total regulation curve shows the variation of the 

direct axis terminal voltage with the direct -axis current. 

One of the major use of emplidyne is in closed cycle 

cont rollers or regulating system. A closed cycle control system(8)  

is one in which the controlling agency is actuated by some function 

of the final output in such a manner as to minimize any deviation 

of the output from the ideal values This system mainly can be 

devided in to three parts : 

(i) 	A standard of ideal performance against which the out- 

put to be regulated can be compared. 

(2) An amplifier to amplify any deviation of output from 

the standard. 

(3) A means of feeding the amplifier output into the 

system in such a manner so as to minimize the deviation. 

One of the control field winding termed as the reference 

field is supplied with a current which represents the standard 

of performance (Fig. 9).  The second winding is supplied with a 

current which is a function of the quantity to be controlled. 
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This winding is so connected so that the m.m.f. developed by this 

winding is in opposition to that developed by reference field. And 

it is only the difference between the ampereturns pf these two 

windings by which the performance of the equipment differs from the 

ideal as dictated by the reference field. 

The - ig. 10. shows the complete set up of the voltage 

regulation of the generator by differential flux method using 

amplidyne. Now the loading was done on the generator and the 

observations were noted as shown in the table. The Fig. 11 shows 

the curves showing the voltage regulator action of the amplidyne. 

From the curve we see that the deviation of the voltage with the 

L) 
load is not much. According to British Standard 205, a voltage 

regulator is defined as " a device for varying, at will the 

voltage of a circuit or for automatica~ly maintaining it at or 

near a prescribed value". And hence in this system amplidyne 

acts as automatic voltage regulator. 

The form of total regulation curve is affected by speed, 

degree and nature of compensation and brush settings. And the 

form of total saturation curve is affected by speed, quadrature 

brush settings but it is not affected by the degree or nature 

of compensation and direct brush settings. 

It is clear from the no-load curve of amplidyne that 

nonlinearity is quite pronounced. And therefore consideration of 

the nonlinearity is very essential for the analysis and design of 

the machine. Although mostly all practical systems are nonlinear 

to some extent and then it depends upon the degree of nonlinearity 

and the rformance region of the machine that whether the existing 

nonlinearity can be neglected or not. One of the various methods 

knovvrn for linearizing the system is the describing function method 





This method is usually applied to those devices in which there 

is a large departure from linearity. 
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DESCRIBING FUNCTION ANALYSIS. 
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DESCRIBING FUNCTION APPROACH 

3.1. DEFINITION: 

The term non-linearity is interpreted as a phenomenon 

described by a nonlinear differential equation. A nonlinear 

system is one which includes one or more non-linear components. 

Non-linearities can be of two types(10~ namely, incidental and 

intentional. Incidental nonl,inearities occur in the system due 

to the limitations of physical equipment and include such pheno-

menon as saturation, backlash etc. Intentional non-linearities 

are introduced in the system in order to modify system character-

istics. Non-linearities can also be classified according to the 

rate of.change of the characteristics of the nonlinear element. 

Slow nonlinearities are those in which the system remains linear 

over a time interval which is long compared to the response time 

of the system. And fast non-linearities are those in which the 

mode of operation of the system changes rapidly compared to the 

response time. Saturation is the non-linearity of this kind. 

Mathematical methods for the analysis of nonlinear 

systems are very very tedious and therefore the recent developed 

method of describing function has proved to be a very useful 

tool in the design and analysis of non-linear systems. 

"Describing function by definition(11) is an equation 

expressing the ratio of amplitudes and the phase angle between 

the fundamental component of the output and the input sinusoid, 

26 

for all frequencies from zero to plus infinity". Therefore it is 
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a type of linearization)  'because the steady-state periodic output of 

the non linear device is considered to be a sine wave of the same 

frequency as the input sine wave. The following are the four basic 

assumptions on which the describing function analysis is based: 

(1) The input to the non-linear device is a pure sine wave. 

(2) The higher harmonics in the output of the non-linear 

device are neglected. 

(3) The output of the non-linear element depends only on the 

present value and the past history of the input. 

(4) There is only one no-n-linear element in the system. If 

there are more than one then all non-linear element3can 

be grouped as a single non-linear component. 

These assumptions are generally satisfied in most of the 

feed back control systems. Generally linear elements used have 

one or more tirrze constants in their denominators and vke, are 

equivalent to low pass filter, attenuating higher harmonics 

except the fundamental, and secondly the amplitude of harmonics is 

much smaller in comparison to the amplitude of the fundamental. 

Representing the non-linear system by the block diagram 

as shown in the Fig. (12) where G1  (S) , , G2  (S) and Gb  (S) 	are 

the transfer functions of the linear elements in the forward and 

backward, path respectively. Gd  being the describing function. 

Then the overall response(12)  of the system can be expressed as 

C 	G1(S)G2(S)Gd  

Y 	1+ G1  (S) G2(S) GdGb(S) 

The Nyquist plot is based on the characteristic equation 
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which is 

1 + G1(S)G2(S) GdGb(S) 	= 0. 

Now denoting G(S) as the product of all the linear transfer 

functions around the closed loop. 

G(S) 	= G1 (S) G2(S) Gb(S) 

The characteristic equation can be written 

1 + G(S) Gd 	=0 

1 
or 	G(S) _ - G 	 ----(~) 

d 

Now the Nyquist plots of the locus of the negative reciprocal 

of the describing function - G 	and the locus of the product 
d 

of the linear transfer functions around the loop,"G(S) can be 

plotted, and the degree and nature/of stability of the Amplidyne 

(machine) can be studied. 

Thus the describing function, obtained for the known 

non-linearity can be used to determine the stability of the 

system. The describing function for the component is found by 

evaluating fourier series for the output wave shape and then 

obtaining the complex ratio of the fundamental-frequency term 

in the series to the expression for the input signal. 

Expressing mathematically, if sinusoidal input is 

i(t) = I Sin (wt) then fourier .eries of the output is 

Ao 
0(t) _ 	+ Al Cos wt + B1 Sin wt + A2 Cos (wt) 

2 

+ B2 Sin 2(wt) + ---- 	 (B) 

Where 	An and Bn are given by 
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2
5 
 0(6) Cos nwt dt. 

rc 
Bn 	= 	t 0(0)` Sin nwt dt 

a
J 

We only require Al  and B1  , the first coefficients of 

the seriesI because in evaluating describing function expression 

we neglect all harmonies except the fundamental one. If we write 

the equation(13)  in the form as shown below 

C 
0(o) = 2 	+ C1  Sin (wt +01 ) +C2Sin(2wt+O2) + ....... 

Where Ci  =a i+ bi 

a 
and 0i  T tan-1 	i 

bi 

then the describing function can be expressed as 

C1  Gd - I 	Li- 

3.2. DERIVATION OF THE DESCRIBING FUNCTION FOR VARIOUS APPROACHES: 

It is difficult to know the practical saturation charac-

teristics in the exact analytical form and therefore the most 

accurate method of determining the amplitudes of the various 

components of the output is to perform fourier analysis. This 

method is very tedious and an alternative method is to approximate 

the actual saturation characteristic by a curve which may be 

described analytically. Thereby making the fourier analysis 

more accurate and easier. 

The following are the various approaches (14)  considered 

for deriving the describing function: 
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I. Piecewise Linearization : 

The Amplidyne system is linearized by approximating the 

output-input curve of the actual non-linearity with two straight 

line segments as shown in the figure (13) . 

II. Froelich's Equation Curve: 

Replacing the noload saturation curve by the Froelich's 

equation 	= a i Z 	and then finding the describing function. 

III. Exponential Rise: 

Denoting the open-circuit characteristic of amplidyne by 

exponential equation. 0 = K ( 1 - e-a1) 

That is, assuming the rise and decay of the total saturation 

curve exponentially and then finding the describing function. 

IV. Rectangular Hysteresis Loop :  

The describing function is found for the hysteresis loop 

as shown in the figure (14). 

V. Hysteresis loop Considering the Effect of Brush Contact Resistance 
drop: 

The describing function is found for the hysteresis loop 

considering the effect of brush contact resistance drop. The 

considered shape of the loop as shown in the figure (15). 

This shape of the h~•steresis loop has been taken for 

the analysis due to the fact that the various obtained amplidyne 

loops are characterized by the shown p(pculiarity. 

Now the describing function expression for these 
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approaches are found one by one. 

1. Piecewise-Linearization: 

As mentioned earlier, the no-load saturation curve is 

replaced by two line segments. The initial slope is assumed 

as unity. 

F/6./6. 

0(9) is the output of the non-linear element in response 

to the sinusoidal input i(,@). 	 , 

1 

 

.. i(8) 	= I Sin 9 	, A = wt 

Now the out-input characteristic of this type can 

mathematically be expressed as follows . (Referring to the 

Fig. 16). 
C 

0(Q) = 	i 	0 < i <a 
a 

C a  
= 	I sin 8 	0< 8 K Sin-1  a 



3~ 

( •.• I Sin 81 = a , ,  
I 

.. 0(0) _ —ac I Sin 6 	 0 .6 < Sin-1 S 

 

be-ad  d-c  -1 a  rt 0(0) = b-a + b-a I Sin 6 	Sin I < 6 

Now a1 = 0 , as curve is symmetrical about y - axis 

T`l)- 
and b1 = 4  0(0) Sin 6 d6 

 

4 [ 01  ( 
I Sin2 6 dO + ( bc-aa)Sine+ d_a 1Sin26d6 

0 	 1 	 , 

 

4 cT  "0 i 

L
2a 
Lf (1-Cos20)d0l + be -ad Cos 6 +(d

-c 

 

b-a  1  b-a 
0 

2  ~ (1-Cos 20)d0l 
J 

01 

 

cI  d-c 
(81- Sin201 ) + bebaaCos 61 +( 	bb-a) 2 ( t' /2 -61 ) 

+ ( 	(2 ) (Si 201) 

2 cT 
_ 	} a (01 2Sin281 ) +( bebaa) 2Cos 6 1 

(d-c) T 

	

+I 	) ( 2-01) +(b 	Si2 

	

-a) 2 	01 (b-a 

Now substituting the value of 81 = Sin-1 a , we get 

b1 = 	(Sirs-1 I- Sin2Sin-1a )+( b a )2Cos Sin-1 a 1 	 I 	 I 
d-c + I (b-a )(/2 -Sin1 

I)+( b-a ) -'Sin2Sin T 



a1 

but Gd 
 tan bj 

I 

2 	c 	"1a 	 -1 a 	be-ad 2 	-la 
•. Gd = 	a (Sin 	-  Sin 2 Sin y ) +( b a I os Sin T 

d-c ) (T _Sin 1 a 	- 	 1 a 

	

+(b-a  2  I ) + 
 t

c 	ri-a )Sin 2 Si  I 

II. Froelich''s Equation: 

The mathematical equation for the curve in this approach 

is E 
a +ib 

	

Substituting i 	I Sin 0. , we get 

	

E 	I Sin 0 
a 3 b I Sin 0 

r% 

a1 = 0 , and b1 = 2 0S 0(0) Sin 0 dO 
R 

2 	I Sin 0 	Sin 0 dO or b1 _~ 
0  a+blSinO 
r 

2I  Sin2 B 	d0. 
- T 0 	a+bISinO 

T 
2I2b2 	Sint 0 

= 	2 	d 0 . 
T b I 0 a+blSin 0 

T 	 a2 d0 
2 	~ (biSinO +a)(bISinO-a) d0 + 

	

T Ib2 	0 	a+bISinO 	 a+bISinO 

a2 d0 _ 	2 	 + 	_ ( bI S Ln 0 ~-a) d0 
2 	0 a+bISine 0 1~b I 



Ir 

	

2 	-bI CosO -a0  + ~ a dO 
r Zi~b2 	 0 0 	a+bISinO 

7' 
2  ( a2 d0 

= 	 bI - a +bI 	+  

	

I Tb2 	 0 a+bISinO 

Let X= I 	1 ..— dO 
0 a+bISinO 

i 
put 6 = 2 +y , .. dO = dy 

	

X _  dO 	_  + F/2 	dy 

0 a+ bI Sin 6 	.. 	'FY2 	a+ bI Cos y 

+M/2 	 dy 

X )n12 2 	2 	2 	2  a(Cos2 y/2 + Sin y/2) +bI(Cos y/2 -S±n y/2) 

dy 
 2 - IX/2 (a+bI)' Cos y/2 + (a-bI)Bin y/2 

	

172 	 1fC 2 y/2 	. dy 

	

-~2 	 Sin2 

	

/ 	(a+bI) + (a-bI) 	y/2  
Cos2 y/2 

1\/2 
Sec2 y/2 

	

-IN/2 	(a+bI) +(a-bI)tan2 y/2 

2 	4 T/2 	2 Sec2 y/2 dy 

 a+bI 1 ( 	-T' 	+bI + tang y/2 
a-bI 

putting tan y/2 = t  .  tan 7`'.  4 	= 

2 	j+~ X = 	dt 

a-bI 	a+bl + t2 
a-b I 

37. 



Case (i) if a 	bI 

X _ 	 1 
a-bI 

a+bl 
a-bI 

_  +1 

tan 1 	t 
a+bI 
a-bI 	-1 

2  a-bI  

a-hI  
tan~1 a-bI tan1  

a`bI 

- 	a+bl 	 a+bl 	(-1 +I 

2 _  
~(a-K), (a+bl) 

4 

(a2-(bIj,2 )* 

Ta -bI 2 tan 	a +bI 

tan`1 	a- bI 
a+b I 

2 2bI - art +  4a2  tan-1  
a-bI 

	

..b1 
= I b r1 	 /. a2-b2I2 	

a+bl 

-1 
a 

a~ 	~ 	t  
We know that Gd = 	

+b 	an 
--------  

I 
2  2  a -bI 

. Gd = 	2 bI + 	
24a2 2 	tan-1 	a+bI 

	

I2 'b2 	 a-bI 
-a7 

ease (ii) When a 4 bI 

2  +1  at 

X = a-b a+bI + t2 
-1 	a-bI 

+1 
2  dt 

	

bI -a 	 a+bI 2 -1 	bI-a '"t 



2 	 1 	log 
bI - a 	2 	a+bI 

bI a 

a+bI + t 	+1 
bI-a 

a+bI -t 
bI-a 	- -1 

(bI)2-a2 

a+bI +1 	 a+bI 1 
bI-a 	 b I-a log 	 -log 
a+bl _ 	a+bI 

bI-a  
bI-a +1 

a+bI+bI-a 

log 
a+b I-b I+a  

- 	~ 
a+bI-bI+a 

(bI)2-a2 	I a+bI+bI-a 	- 
2bI 

1 	 2a 
— log 

_a2 	 2a 
2bI 

log bI X bI 
(bI)2-a2 	 a 	a 

_ 	 log 	bI 2 
(bI)2-a2 	

a2 

2a2 
b1  22  log() + 2b1 - a 

I b ~  (bI)2-a2 

2  2a2  bI  
+2bI -aT and Gd = 	--- 	log ( a ) 2  2 I T b ,(bI)2 -a2 
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III Exponential rise: 

In this approach , mean to load saturation curve is 

approximated by the expdnential curve . The analytical equation 

governing the curve is as mentioned below 

E 	= K ( 1 - e-ai ) 

where K is the ceiling value of the voltage,"a" is a constant 

and i is sinusoidal input current 

:. i= I sin, 6 
-aI  hence E = K ( 1 - e 	Sin 0 

7" 

here a = 01 and b1 = 	0(6) Sin 8 d6 . 
0 

.. b1 
_ 2K 	

f
T e-alSin 6 	Sin 6 dO 

0 

now 	e-aI Sin 0 	= ej.jalSin 6 

putting j aI = x , we get 

e-aI Sin 0 - ejx Sin 0 

jxSin  
and we know that e 	

0
= Jo(x) + 2J2(x)Cos 20 

+ 2J4(x)Cos 40 +2J4(x)Cos 60 + ... 

+ 26 LJ1 (x)Sin© +J3 (x)Sin 30 +... 
TT 

.'. b = 	1-(Jo (x) +2J2(x)Cos 20 +2J4 (x) Cos 46 •.. 
0 

+ 2j ~J1 (x) SinO +2jJ1 Sin36+.. 	Sinddd . 



A 1, 

or b1 = 2 K2 	2 - 2 Jo(x) + 3 J2(x) + - J4  (x) + 35 J6 (x)  
4  

+ 63 J8(x)  + 99 J10 (x )  + 
 

2 	2 a1 
Gd = 	tan 1. 

b1 
I 

Gd  _ 	2K 	
C 	

2 - 
' 

2J0(X) + 	J 	(x)  + 2  15  J (x) TI 3 154  

+ 5J6(x)  + 63 J8  (x)  + 4  J10(x) + 

IV Rectangular Hysteresis Loop 

The shape of the hysteresis loop is approximated as 
shown in the fig. 17. The slope of the loop is assumed unity 
for the derivation. 

F16. /7. 

Expressing the output input characteristic mathematically we get, 



Al. 

From (1) to (2) 0(t) _ (I Sin 0 - b/2) 	0 < 

From (2) to (3) 0(t) _ (I - b/2) 	 TI/2<0 / - 
from (3) to (4) 0(t) _ (ISSin 0 +b/2) 	TV - 	 0 G Tc 

2 	'K/2 a1 	= 	j (I Sin 6- b/2) Cos 0 dO. 
0 

2 M 
+ 7. 	( I - b/2) Cos 0 dO. 

T1/2 

2 	T 
+ tr 	( I in 6 + b/2) Cos 6 M. 

7/2 	 T% - 
_ 	[i s±2 	

Sin 0 b ~- 	2 - 2 	] ( I- 2) Sin B, 
0 	 7/2 

+ 	I Sin26 + b Sin 0 
2 	2 	1 

= 2 ( - I 	2 ) +( I- b )Sin (n - ) - (I- b ) + 0 - ISin2 Ts - f ) 
7 	2 	 2 2 

b 
- 2 Sin ( -~)J 

2 /I - 2 (I - 2 )' Sinp-(I - 2 ) - I Sin2 $ - 2 Sinf3) 

( 4 2 + I Sin 	- b Sin ~- 2 Szn2 r ] 

2 C

I 
- 	1+ Sin2 ~+ Sin .( I - b ). 
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- 	C - 2 ( i + (II- b)2 + I I b( I - b) 
I 

'.' 	I - b _ I Sin 	' 	= Sin-1 	I - b 
I 

2 f 1 2 +( I-b)2 	(I-b)2 
7T 	2I 	I 

1
C - b2 +2 1b1 

- 1 	1b - 2b 
7' 	Z 

_ 4' i2 _ 	b 
n 	2 	2 

41 	
I 

 

b 2 ~' 2 _ 	(b/2) _  
T I2 	I 

n/2 
Now b1 - 2 	( I~in0 - b2 ) Sin 0 d 0 

0 

+ 2 

 

 (I - b/2) Sin 0 M. 

T/2 

7c 
+ 2 ( 	( ISin0+ 2 	) Sin 0. d 0. 

l 

Sin 20 J 

2 	['(1- - 4 )+ 2 co] 
0 

+ 	I Cos 0+ 2 Cos 0 

+ 
 [

I (0 	Sin 20 _ b Cos 01 7l 
2 	4 	2 	J 

7~—~ 

9 



AA. 

b _ 2 [.L+I2  	IT+I('+ICosf-bCosP-Cos
7T 	4 	2 	2 	2 	2 

- I Sin (n -P) Cos (Ti -A )I 
2 

T 2__ 

 ++ 2 Cos (- bL Cos I-= I Cos j -» Sin (7r -- f ) 

.Cos (iv- - 

I ' -   + 	+ 2 Cos 	- 2 b Cos p + Sin 	Cos 
2  I 

_ 
	
Xb 

	2I -2 b+I-b 
- I L   2 + I2 ( 	I 	) 

-I 
 

- 

_ I 
L

_ + 
2 	I2 	b 

we know that Gd = 
I 

Now putting 8 = 
	b/2 	, we get. 

I 

1 
Gd - 	+ Sin 1(1-2R) + 1RR x 2R (1-2R)]

2 

T ~ 2 

 

2  1/2 
+ [ 4 (R2 - R) 



- 1 	+ Sin-1(1-2R) 2 + 4R2(1-2R)2 (1-R) 
T  2 	 R 

1-R 
+[ T + 2 Sin-1(1-2R)] L 2R (1-2R) 

R 

1/2 

+ 16 R2 [ R (R -2) +,1 

r +Sin-1 (1_2R) 2 +[7+  2 Sin-1(1-2R~ [2R(1-2R) 

1/2 
1R 1+ [_16R4+32R3-20R 2 +4R +16R4_32R3+16R2 
R _.I 

2 
Gd = 	+ Sin-1 	) + 4 R(1-R) +( 7v+2Sin 1 i--)2R 

1/2 
1-R 

(1-2R)  R 

2 -1 
+ Sin  (1-2R) 	

+ 4 R (1-R) + 7T + 2 Sin- 1(1-2R) 

	

T 	 ~  -  

	

 
2 	 I 

1_ R 
2R(1-2R)  

0 r tan.-1 ±1 = tan-14 RR -1 
b1 

2 + Sin-1(1-2R)'+ =R x 2R(1-2R) 



ii 

3. 

4'. 

V. Hysteresis Loop Considering the ]ffect of Brush Contact Drop : 

Input-output characteristic as shown in the above diagram 

is expressed analytically by the equations mentioned below 

0(0) = (ISin 6 - 2 ) 

0(8) = 	0 

0(6) = (I Sin 6 - b + 2) 

0(6) = (I- b + c/2) 

0(0) _ (I Sin 6 + A ) 

Where 	= Sin-1 2I 

= Sin-1 	b- c/2 

I 

= Sin1 I-b 
I 

~C < e , n/2 
z<e < X 
Y 40 < r 



Now 	a1 = 2 	0(o) Cos 0 d8 

0 

2 1 . 	- . a 	( (ISin 0 - 2 ) Cos 0 dO + + 2 	(ISin6-b+ 2) Cos0 
ivJ

r )  

0  .d8 

	

+ 	f (1-b+ )Cos 0 d8 + 	(I;;in6+ 2)Cos 0 dO 

~ -! Sin2~- 7, Sin (~ + 72' ~ (I/4-b+ 2)+(b- 2)Sin o(+ z Cos 2]l 

 

4  J 

Sind -I; +b- ~+ 	- 2 Sint Y - 2 Sin1t 1 
Substituting the values 	, (3 and y we get , 

a ` 	- ~2 + 4I2+4b2+c2--8bI+4cI-4bc 
1  81  81 

2 b2 -bc -2bI  bc-b2-I2+2bI-Ic 

2I 	 2I 

2 	8 b2 -8b1-4bc 
81 

2 b2 - 2bI - bc 
a1 

TV I 

7c' 
Now b1 = 2  f00)Sin0d0 

 

0 



X18. 

(ISinb -  ••b1 = 	I 	2) Sin 0 d0 + (ISin 8 -b+ 2 )SinOdO. 

LL 0 	 o~ 

T 

+ ` (I-b+•)Sin 8 dO + 	(ISin 0 + 2) Sin 0 d8. 

- 2 	2 

	

(r- Sin P Cos p) + • (CosP- 1 )1 + 2r 
	-O(+SinoLCosoC ) n 

+Cosd (2-b) - T -I Cosy+ b Cos\'- 2 Cos Y 1 + , t (n - Y + SinyCos ') 2 (1 + 
L 	 cosy/~I 

After substituting the values of oC, 1 and ', weSe~ 
c 

4I2Sin-1 ( -4 +c . 4I -c2-41c 21'I  - 4ISin-1 ( 2 
b1 =-

)I. 
	 + 	 T 

8I 	 8 

2Ib - b2 (8b-4c-8I) 

8I 

4T I2-4I2Sin-1 (I-b')+(4I_4b) 2Ib-b2+4IC+4e. 2Ib-b2 
I 

8I 

b- 	 I-b 	2 
b1 = 	4I2 Sin-1(2I)-Sin-1 ( 1 2 )-sin-1( I ) +6 T I 

4 I 	t. 

and Gd = 

+ c 	4I2 -c2 + 4. 	2Ib - b2 (b-I) 
a  

a1 +b1 	
/ tan 	~

b, 
11 

The value of Gd is found after knowing.the numerical 

values of a1 and b1 which are found after substituting the values 
of constants in their respective expressions. 
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The complete expressions for various describing function approach- 

es are as given below : 

I Piece wise Linearization: 

Gd. = 2  2 (Sin-1 a - * Sin 2 Sin-1 a ) + ( be-ad 

)
2 

Tr a 	I 	 I 	b-a  I 

-1 adc  -1 a  d-c  -1 a 
Cos Sin  + { -)( b-a2 -Sin •I) - (b ) -a Sin 2 Sin 

I 

II Froelichts Equation: 

Case (i) if a> bI 

2 Ja-bI  

Gd = T~I2b2 [ 2b1 + 24a 2 tan'1 a+bl 	a~ 
L  a -(bI) 

Case (ii) if a L bI 
z. 

Gd j'= 	2 	 2 U`  
I2 b

2 C 	2 2 

III Exponential Rise: 

Gd = 
2K 

 I ̀ 2- 2J0(jaI) + 3 J2(jaI) + 15 (jaI) 

+ 4 J6(jaI) + •64 JS( jaI) ..... 

- jJ1 (jaI)T 1 
 

LQ 

IV Rectangular Hysteresis loop: 

2 
Gd = r 	+ Sin- 1 (1-2R) 	+ 4R(1-R)+ [tt +2Sin-1 

2 

(1-2R)l 2R(1-2R) 	
1/2 

1-R 
R 



,0 = 	tan-1 	 4R (R-1) 

2 + Sin-1  (1-2R) +2R(1_2R)  1RR 

V.  Hysteresis Loop Considering the Effect of Brush Contact 

Resistance Drop: 

a1  - 2b2-2bI -bc 
rci 

b- 2 
b1  = 1 	L4I2 (Sin-'( 21 ) -Sin-1( 	) - Sin-1(I-b  

I 	I') 

+ 675 I2  + c 	4I2  - c2 	+ 4 	2Ib-b2  ( b-I)] 

J aj + b2 
.'. Gd = K 

I 

a 1 	1 tan
9 	 b1 



3.3.  DERIVATION OF THE TOTAL TRANSFER FUNCTION OF THC SYSTEM 

The describing functions for the nonlinearities such as 

saturation and hysteresis existing in the amplidyne have been 

found. Now the total loop transfer function of the system is 

found out, assuming all system elements to be linear. Because in 
describing function analysis non-linear block 	has been 

separated from linear components. 

The system under consideration is as shown in the fig.19 

Amplidyne is serving the purpose of automatic voltage regulator 

in this system. First the transfer functions of the various 

system blocks are found out separately and then by suitably 

reducing the block diagram of the system, the overall G(s) of 

the system is known. 

G(s) of Voltage Regulation bystem: 

Referring to the fig. 19,  the forward loop comprises of 

three blocks namely Amplidyne, Generator and describing function 

block. 

Transfer function of the Amplidyne : 

In deriving this transfer function the following 

assumptions (16)  are made:- 

(i) Zero - coupling between the flux in the Direct axis 

and the flux in the quadrature axis. 

(ii) Non-linearity is neglected as it has been taken in to 

account in the describing function analysis. 

Referring to the figure 20, the voltage equations 

for both the windings are as follows : 
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V f 	= (R1 + 	i) hi + S MIb 	--- 	(i) 

Vb 	= (RI +sI ) Ib 	+ ZMI1 	--- 	(2) 

Windings (1) and (2) are identical in nature. 

Vf (R1 +SI,1 ) - VbSM 
.'.I~ =  --- (3) 

(R1+SL1 )2 - S2 M2 

V (R +SL ) - V SM I_ b 1 1 
 

b 	2 
(R1+SL1) -(SM) 



(Vf -Vb ) (R1+SL1+SM ) 

R1 + 2 SL1R1  + 2  ( L1 

(I1  - Ib) ()  - 	(R1  + SL1  + SM ) 
--(6) 

VV 	 2 f - b) 	(R + 2 SL1  R1  + S2  (L - M2  

eq = Kq d 

	

= K1(i1  -ib ) 	 --- (8) 

Where K1  = no. of volts induced in the q axis per unit control 

fld . current in amps. 

also 	eq 	= l R + : L2 	dr2 	 --- (9 ) 22 	dt 

or K1 ( 11 - 1b ) 

I 
or 	2 	(S) 

(71  _Ib) 

di2 -- (10) = i2  R2  + L2 	-  
dt 

K1 
--- (11) 

R2(1 + ST2 ) 

Now ea = K2  i2 	 --- (12) 

where K2  = number of volts induced in the d- axis cmrcuit 

for per amperO3 in the a axis. 

or Ed 	(S) 	= K2 	 --- (13) 
I2  

Multiplying equations (6 )` , (11) and (13 )we get. 
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Ed 	 12 	(I1 - Ib) 	Ed 

	

(S) x -- 	(s) = 	(s) z2 (S} x (I - Ib) 
	(Vf - Vb) 	(V -V ) 1 	 f b 

Ed 	K2 K1 (R1 + SL1 + SM) 
.. T. F = G CS)= 	(S) _ - 	 --- 14} 

1 	Vf - Vb 	R2(1+ST2)(R1+2SL1R1+S2(L1-M) 

Transfer Function of the Generator The schematic diagram 

of the generator is as shown below 

R3 

G£ NER4TVR 

. i 1. 	21 

Referring to the figure 21 the equation for the field can be 

written as 

V1 = i3R3+ L3 	d~3 	 --- (1 ) 
dt 

and Vo 	= Kg i3 ---(2) 

Where Kg is the generator constant numbor of volts generated 



56 . 

for per unit field current in ampere. 

Transforming we get, 
Vo 

Kg =  (S)  ----(3) 
13 

and V1(S) = R313(S) +S1313(S) 	----(4) 

,•• Vo(S) 	_ 	Kg 13(S) 	----(5) 
V1 	 5I3(S)> +SL313(S) 

	

K 13 	 K (S) 
= 	

g 	
g 

(R3 +SL3)I (S) 	R (1+S 	) 3 	3 	`r3 

Putting Kg/R3 = K , then the transfer function of the generator 

is V 

V (S) = 	K 	= G2(S) 1 	1+ST3 

Now the total transfer function G(S) of the system is found 

by block diagram reduction. And knowing both Gd(describing 

function) and G(S) - (Total transfer function) of the system. 

Nyquist diagrams can be plotted to study the stability of the 

machine. 

Referring to the diagrams we get, 
G1(S) G2(S) Gd(S) 

Over all T.F. - 
1+ G1(S) G2(S) Gd(S) 

.. G(S). 	= G1(S) G2(S) 

K1 K2 Kg of (R1 + SL1 + SNI) 
G(S) = 

R2 R3 (1 + S 2 	1+S 3) ~(R1 +2SL1R1 +S2 (L1 -M2 )j 

Hence the complete expressions for the describing function 

and for the overall transfer function are known. 
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3.4.  EVALUATION OF VARIOUS CONSTANTS: 

The values of constants needed in various describing 

functions and in over all transfer functions are found either 

practically or from total saturation curve and hysteresis loop. 

Amplidyne: 

The resistance self-inductance and mutual inductance 

of various windings are found and noted as shown below : 

D.C. Resistance of control field winding f 1f 2  and f3  f 4  

= 980 Ohms. 

.'. R1  = 980 Ohms. 

Resistance of quadrature circuit winding = .966 Ohms. 

Resistance of the series coil inserted in the quadrature 

circuit = 0.311 Ohms. 
•
' . Total resistance of the quadrature circuit =0.966 •f0.. 311 

= 1.277 Ohms 

,', R 	= 1.277 Ohms. 

Self inductance of control field winding f1f 2  and 

f = 	3.1 henery. 

.: Time constant of control field with ing - 980 -.0031 

Total self inductance of quadrature field circuit = .1048 henery 

:. Time constant of quadrature circuit 	=  .1048 	.082 
1,277 

Resistance of antihunt coil f13  f 14  = 55. 5  Ohms . 

Self inductance of antihunt coil = 1.56 H. 

Resistance of field winding f3f 4  = 980 Ohms. 

Self inductance of field winding f3f 4  = 3.1 henery. 
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Mutual inductance between f1f2and antihunt coil f13f14  =5.23 H. 

Mutual inductance between field. winding f3f4and f1f2= 2.7 H. 
V 

Value of 	o(, - 	b 	0.353. 
Vo  

Value of the rheostatic resistance in the antihunt 

circuit 	= 3.5 Ohms. 

Value of the capacitance in the antihunt circuit = C. = 12Q/ F 

K1  = number of volts induced in the q - axis for 	per unit 

control field current in amps. 	= 540 volts. 

Self inductance of direct axis circuits = 0.0446 H 

Resistance of direct axis circuit 	= 0.886 Ohms. 

K2  = number of volts induced in the d- axis circuit per 

ampere in the Q axis = 35 Volts. 

Resistance of compensating winding = .621 Ohms. 

Self inductance of compensating winding =.0338 H. 

Total time const. of D- axis circuit = .052. 

Moment of Inertia of the Machine: 

The value of moment of inertia is required in the 

motional impedance matrix (V Chapter) for finding the condi-

tion of electromechanical oscillations, 

W 
We know that moment of inertia I = 	dN  --(1) 

at any moment. 	0.0149N dt 
wi-,  ere 

W = Watt age at any moment. 

I = Moment of inertia in lb. ftp  

N = r.p.m. 

Retardation curve is plotted as shown in the Fig. 26 
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dN 
to find out — at N r.p.m.l  w is also the no load power 

dt 
at N (rated no load speed) . Substituting the numerical 

values in the above equation 1, we get 

I 	= 	1000 	= .421 lb. ft 2  
.0149 x 1800 x 90.2 

Generator: 

The following are values of winding parameters 

needed in the transfer function of the generator. 

Generator field resistance 	= 102.5 Ohms. 

Generator field inductance 	= 7.6 henery. 

Generator field time constant= 7.6 	= .074 
102.5 

Armature winding self inductance = .915 henery. 

Armature winding resistance = 1.01 Ohm. 

Armature winding time constant = .915  =.905 
1.01 

Kg = volts per field ampere of generator = 100 volts. 

Values of Constants required in Various Describing Function 

approaches:- 

(i) In piecewise linearization: 

a 	= 13.7 mA. 

b 	= 25 mA 

c 	= 125 V = 135 x103  mA 	127.55 
980 

d 	= 151 V = 	151 x1O3MA = 154. 
980 

(ii) Froelich's Equation: 

do 

The mean saturation curve is mathematically expressed 

as : 



d1. 

E - 	1 	or E =a +bi 
a + bi 

let E 	= y and i =x 

,'. Modified equation is y =a + bx 

Now if y and x are plotted then intercept on y-axis 

will give the value of "a" and intercept on x-axis will be 

equal to 	a  - 
From the figure 22 , a = .09 	, b = .0025. 

It is clear from the figure 23 that curve (B) which is drawn 

with calculated value of E closely fits the mean saturation 

curve. The following intuitive criteria should be kept in 

mind while fitting the curve. 

(a) The vertical distance between the two curves must 

be kept to c. minimum at all points. 

(b) The net area between the two curves should be as 

small as possible. 

(c) The slopes of the curves near the origin should 

be as close as possible. 

(iii) Exponential Rise: 

The mathematical equation representing the curve 

is E = K ( 1- e-ai),  

or K = (1-e-ai ) 	Or (1  K ) _ e-ai 
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Putting (1- K ) = y and i = x 

Modified equation becomes 

y =e -ax 

or loge  y = -ax 

where K = ceiling value of voltage = 154 volts. 

Plotting the curve between loge  y and x, the value 

of tat is found out. Reference Figure 24 , the slope of curve 

_ - a = -.13 therefore a = 0.13. Figure 25 shows the curve 

fitting of this approach. The curve (B) quite closely fits 

the curve (A) thereby confirming the value of a = 0.13. 

(iv) Rectangular Hysteresis Loop: 

The following are the values of constants needed in 

this approach. 

b= 2mA. 

Slope_ 	50 x 103 	= 11.35 — 4.5 x 980 

(v) Hysteresis Loop considering the Brush contact resistance 
drop: 

In this approach, the hysteresis loop of the machine 

has been represented as already shown in the Fig. 15 and the 

required values of the constants are as given below 

b 	= 1.5 mA 	c 	= 1 mA 	slope = 11.35. 
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NYQUIST PLOT ANALYSIS. 
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0 

NYQUIST PLOTS ANALYSIS 

4.1. PLOTTING: 

On substituting the numerical values of the constants 

in the G(jw) des cribin g function expressions we get 

1785000 
G(jw) _ 

(S+ 12.2) (5+2107) (5+13) 

1.785 x 106 

(5+12.2 (5+2107). (S+13 ) 

I pproach• 

Gd = (4.41 Sin-1 13.75 „2.207 Sin 2 Sin-113. 5 +  121.5 
I 	 I 	I 

* Cos Sin-1 13.75  + 2.35 •) 
I 

II. Approach: 

Case (i) 	.09 '7 .00251 

Gd =  2  —  00 1 +  
4 (.09)2 tan1 /.09 -.00251 -.09 

2 2 ( 	5 	 V✓  .09+.00251 	) (.0025) I 	
+~ .0081-(.0025 )2I 

Case (ii). 	.09. < .00251 

2 	.0025 
Gd = 	2 2 2 (.0051 + 2 (.09) 	log 

.09 
 -.O9 75 	

). 

(.0025) I 	 . 
(.0025)2I2-G09)2 . 
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III. Approach: 

Gd  = 10G [(2-2J0(.13jI) +4- J2(•13jI) +- 
 J4(.13jI) 

+ -3~5 J6 (.13jI) + 64 J8(.13jI) + i4 J10 (.13jI) + .... 

- jJ1 (.13jI)] 

IV. Approach 

Gd. = 115 L( 	+ Sin-1 (1-2R)2+4R(1-R){( T%+2Sin-1 (1-2R)](2R-4R2 ) 
2 x fV 	1RR  

Where R = 1/I 

tan 1 4R (R-1) 
0= 

2 +Sin-1 ( 1 _2R) +J 	(2R -4R2 ) 

V. Approach: 

0.955 	(1I)_ a  = 
I 

b1 	= •019 	412 (Sin -1 -I5 	- Sin-1  - Sin-1 (1-~.5 	) 	+1.5 7i' )J 

+4 (f) (1.5  -I  ) 

'__ 	1 1 . 	5 	a1 +b1 
and 	 fly 	_ -fan 1 	a1 I b1 

The table on the next page shows the values of G(jw) for 

various voJues of w. 



TABLE . 

w  G(S)  Angle 

0.0 5.35 0.0 
0.5 5.35 - 	4.548 
1.0 5.35 - 	9.1 
3.0 4.95 - 26.5 
5.0 4.52 - 43.036 

10.0 3.23 - 76.572 
1.2.0 2.945 - 88.53 
13.0 2.59 - 92.153 
20.0 1.51 -116.193 
5C.0 0.313 -153.36 
75.0 0.1465 -163.76 

100.0 0.0834 -168.37 
200.0 0.0211 -178.2 
250.0 0.0134 -180.98 
300.0 0.0093 -183.3 
400.0 0.0052 -187.15 
500.0 0.0034 -190.46 

1000.0 0.00076 -203.95 
1500.0 0.0003 -214.535 
2107.0 0.000135 -224.32 
3000.0 0.000054 -234.65 
5000.0 0.0000132 -246.98 

10000.0 0.0000017 -258.0 
50000.0 0.00000029 -267.8 

OC 0 -270.0 

Now G(jw) and - 1/Gd terms are plotted to the same 

scale for all the approaches. These curves may fit into 

one of three classifications(11 ". (i) if there are no 

intersections between G(jw) curve and the - 1/Gd curve and 

6O> 
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if the G(jw) curve encloses all the -1/Gd curve, then the system 

is absolutely unstable '(ii) if there are no intersections and 

the G(jw) curve does not enclose - 1/ Gd curve, then the 

system is absolutely stable (iii) if there are intersections 

then the system may be unstable or may (exhibit limit cycle) be 

stable depending on the region of operation. 

Referring to the plotting of first approach in the 

Figure 27 , it is concluding that the system is absolutely 

stable. 

The Fig. 28, shows the plotting for the second approach. 

This analysis clearly shows the absolute stability of the system. 

The third approach ( exponential curve approximation) 

also proves the system to be absolutely stable. (Fig. 29). 

Hence the first three approaches come to the same 

conclusion of the absolute stability of the system. 

The plotting of fourth approach (Fig .30) shows that there 

are two intersection points A and B between the plots of 

G(jw) and - 1/Gd , thereby indicating the possibility of un- 

stability of the machine. 	PA is the stable range of the 

machine. As soon as the point A. is crossed then the machine 

becomes unstable and a periodic oscillation of increasing 

amplitude is set up. If the oscillation amplitude is increased 

beyond that defined at ,'~, then amplitude of oscillation will 

go on decreasing and ultimately the machine will exhibit limit 

cycle. The amplitude of periodic oscillation will be defined 

by the value of - 1/Gd at point B' and of fundamental frequency 

by the value of w associated with G(jw) at the point B. 
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The fifth analysis also shows the possibility of 

unstability as obtained in the fourth approach. It is seen 

from Fig. 31 that the two loci intersect at the point C. The 

system is stable in the region OC and beyond the point C of 

intersection periodic oscillation of amplitude defined by the 

value of - 1/Gd at point C and of fundamental frequency defined 

by the value of w associated with G(jw) at point C will be 

obtained. 

Thus it is observed that the last two approaches 

predict the possibility of the unstability of the machine and 

thereby depict the correct behaviour of the machine under 

consideration. Hence it can be concluded that it is the hyster-

esis effect and the excessive brush contact resistance drop 

which are responsible for the probability of unstability. 

a-n 
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4.2. TRANSIENT CHARACTERISTICS OF LINT AR SYSTEM: 

These are the characteristics of the system under sudden 

changing conditions. The rapidity of the response and the 

accuracy under transient conditions are more important in practice 

than the steady state. Anyway, the system should not become 

unstable either under steady state or under transient state. And 

therefore it is essential to study the behaviour of the control 

system under transient conditions as well when the voltage and 

currents vary with time in any manner. 

The oscillograms show the transient response of amplidyne 

The oscillogram No.1 is for the sudden application of the control 

voltage. The rises in the control voltage wave shape are for 

9.5 V and 90 volts respectively and their corresponding output 

voltage being 150 V and 182 volts. The comparative less rise in 

voltage at record time is due to the saturation of the machine. 

The output voltage build up obeys the ]aw(17)  
-R2 ti  e2  = E2  ( 1 -e Z2 	2 ) 

The oscillogram No. 2 gives the picture when the load is 

suddenly applied. Referring to the diagram we find that there is 

sudden rise cf load current along with the dip in the output 

voltage. The input voltage remains constant. The fourth wave is 

50 c/s time wave. The values of voltage and currents are as 

shown. 

Control field voltage 	= 145 volts. 

Control field current 	= 20 mA 

(f1f2) 
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unloaded output voltage 	= 160 volts. 

output voltage und. r 

loaded condition 	= 140 volts. 

Load current 	= 3.7 amps. 

The oscillogram No. 3 shows the action of amplidyne 

as voltage regulator . Referring, to the oscillogram.s Nos. 2 and 

3., we find that on sudden aplication of load there is much 

less drop in the output voltage wave of No. j in comparision 

to that of No. 2. The voltage drop in this case is of the ordr 

of 4.9 volts in comparison to 8 volts obtained in case 2. The 

va Lues of voltages and currents are as shown.l..00A  

The oscillogram No. 4 shows the hunting of the amplidyne 

when some disturbance is introduced in the system. This is 

achieved by varying the resistance in the antihunt circuit. It 

is clear from the oscillogram that with the decrease in feedback 

voltage, the amplitude and frequency of the oscillations increase 

upto a certain point . 

The condition for electromechanical oscillations can 

be obtained by framing the motional impedance array and then 

applying Routh's criterion to the characteristic equation. The 

figure 32 shows the system (Amplidyne with antihunt circuit) 

required for this analysis. 

The impedance matrix for the configuration of figure 32 

can be derived as follows. `he following assumptions are made 

in deriving the impedance matrix. 

1. System is fully compensated. 

2. All mutual impedances are equal. 

i . e . T, 1 	M2  = LI 12  = Ni 
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Zp  2 

d 

q 

M 

Considering the primitive machine, the impedance matrix can 

be written as ( 18)  

1 	2 	d 	q 

g2. 

. _ :i- -'-. 
The relation of currents in various paths for the connection 

as shown in Pig. 32 can be expressed as 

1  

i2  

1d  

iq  

Rd 
where r - — 

R2  +L2p +—i_  

c2p 

Therefore connection Matrix c 

1 

x id 

iq  



We know that the impedance matrix is given by Z = Ct Zp C and 

hence 

R1 +L1 p -r Mp 

-rMp+Mp r (R2+L2p) -rMp ~, p0 
+ (Rd+Ldp) Cl 

-Mp6 rMpO Rq+Lgp 

Let G be the torc:ue matrix ,. . 

Torque = ( Gi) = 
	 ii 

x 	id 	= I,q id 

-M I rM 	 iq  -Mi1 +idMrI 

and -im(G+Gt) 	
-i

i 
-id -iq x  -M 

q+rM 

-M Lq +rl' 

g3. 



and we know that motional impedance matrix is as given below : 

e 	Z 	U 
	

i 

X 
T 
	

iG 	"Ip 
	

p0 

Hence the motional impedance array :- 

R1 +L1p -rMp - - 

-rMp+Mp R2 +L2p)-rMp 
L (p0) q 	o  L i d +(Rd +Z 	) q 

-M(p6)0 rIVI(p0) Rq +Zqp Mi1 +idrM 

iqM -ig (rM+L~) i.1M-id (rM+Lq ) Ip 

Now after substituting the various numerical values in the above 

matrix, and taking the value of a in the expression of r equal 

to 0.2, we get. 

580+3.1p 
-1.89p 

2 
1.~6p +56.2p-~34 

0 0 

-1.891p2 .7p 	2 
1 .56p2+56.2p (1 .56p +56.2p+834, 
834+2.7p (55.5 	+1.56p) 3.1 	x 5.08 .1048 x120 

_ .7p x2.7p 

1.56p2+56.2p+834 

+(1.5+ 078p) 

-2.7x120 
227P 

1 .56p2+56.2p+834 
1.277+1048p -2.97x1 -2 

+ 	9.6p 

1 .56p2 +56.2p 
+834 



ow= 

-6.7p 29.7x10 3-5.08  
156p2+5566.2p (1o48 3.55 x2.7 +834 .01735p 
- 0.372 + 2.7x09 

1 .56p2+56.2p 
+834) 

The characteristic equation obtained after opening the 

above determinant is as follows 

-00312p12-30.94p111 +267-3P 10+10.57x104p9+45.8x105p8  

+4096x107p7  +11.86x108p6  +17.93x109xp5  + 21.4x1010p4  

+26.7x1011p3+19.46x1012p2  +50.56x1012p+54.6x1012  - 0 

The application of the Routh's criterion to the above 

equation clearly shows the unstability of the system as there is 

charge of sign from second term to third term. 

When machine is operated near the value of c = 0.2, 

the electromechanical oscillations were observed, thereby 

confirming the above analysis. 

0 

 —,. 



CHAPTER 5. 

196. 

C0NCI U S I 0 N S. 



CONCLUS IONS 

The actual mean curve is approximated by two analyticaly 

defined curves namely (1) Exponential curve (ii) Curve represented 

by Froelich's equation and also linearization. It can be 

concluded from these curves that the piecewise linearization 

technique is best suited for systems which have sudden 

limiting of their output, while Froelich's equation very well 

fits for gradual saturation curves (magnetization curves). The 

exponential curve lies in between the above mentioned curves and 

hence can be used at many places. Thus it is seen that depend-

ing on the nonlinearity of the system, the best suited analytica-

lly defined curves can be used. 

Secondly a peculiarity has been observed in all the 

hysteresis loops obtained for the various configuration of the 

machine. And . that peculiarity is the slight flattening of the 

loop near the origin. (Reference FiguresAv . And this is the 

reason for the probability of the unstability. The flattening 

of the loop near the origin is due to the excessive brush contact 

drop occuring in the machine. Hence the hysteresis loop can be 

modified as shown earlier. 

Thirdly, the residual voltage in the case of amplidyne 

is usually larger than that of a normal d.c. generator because 

the hysteresis effects in the first stage are amplified in the 

second stage. 

$T, 



Pourthly, the stabi-lity analysis plays an important 

role ii the study and design of the machine. For example the 

variation in the gain of unstable machine may result in an 

stable machine or vice versa. 

Finally, the electromechanical oscillation, may, it 

is guessed, be induced by electrical oscillation. However, 

it is seen that electrical oscillation has a comparatively 

higher frequency (110 rad/sec.) whereas the electromechanical 

one has a much lower frequency (about 10 rad/sec.) . It may be 

pointed out, without the mathematical analysis, that electro-

magnetic torque fluctuating at about 110 rad/sec., may give 

rise to subharmonic response of 10 rod/sec. since the system 

is essentially non-linear. The exact analysis of the nonlinear 

system, derivation of transient performance seems to be quite 

interesting and further work may be done in this line. 

M 
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