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ABSTRACT

The work included in this thesis deals with model reduction
Lechniques in o frequency domain di.ce. basced on o bransfer uncl ion

%{scription of the original system.

fhe first chapter introduces model reduction problem, its

nece831ty and a broad C]&SS;flCTLlOﬂ of wvarious model wreduction
techniques. This is followed @;Zﬁ a detailed procedurc /Qf'mmnlmlzatlon
of a performancc indecx, the Integral squarce crror (ISE), in Chapter-2
Stability based reduction methods are q;%Eribed in Chapter—S.bThe
mixed methods to.obtain reduced brder model (ROM) are prc bLhLod
in Chapter-4, by combining the stability Dbased reduction methods
of Chapter—3 and c¢rror minimization technique. The denominator
of the ROM is obtained by the stability based reduction methods
and optimal coefficients of. numerator polynomial arc obtained
by minimizing, the performance index, 1ISE. 'The respcctive step-
response of the illustrative examples arc shown f[or comparison
purpoges. The mixed methods‘describcd in Chaptér—ﬂ, are cxtended
to reduce the order of discrete-time systems in Chapter-5. A scheme
to design a controller, using ROMs obtained from mixed methods,

is given in Chapter-6.

The computer programs, in FORTRAN, for. both continuous and
discrete time caseA;huvc also been developed and implemented success-

L]

fully on a PC.

* %
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1.1 NECESSITY OF MODEL REDUCTION

There are many existing large scale systems, presenting
a great challange‘to both system analyst and control system
designers. Such systems may be traced to almost every facet of
human activity e.g. networks, structures, power system, control
éystem, socio~-economic system, transportation, process industries

etc,.

The mathematical procedure of system modelling often leads
to comprehensive description of a process in the form of high
order differential equations (For continuous time svstems) and
difference equations (for discrete case) which are difficult to
use either for analysis or controller synthesis. It is hence
useful, and sometimes necessary, to find equations of the same
type but of lower oxrder that may be considered to adequately
reflect the dominant characterstics of system under consideration.
- Some of the main reasons for using reduced order models of higher
order linear system could be :

(a) To have a better understanding of system :

A system of uncomfortably high order poses difficulties
in its analysis, synthesis or identification, An obvious method
to deal with such type of system is to approximate it by a low
order system which reflect the characteristicsof original gystem

such as time constant, damping ratio, natural frequency etc.

(b) To reduce complexity :

The development of state=space methods and optimal control

techniques have made the design of control system for high order



multivariable systeh qulte feasible. When the order of systems
become high, special numerical techniques are required to permii
the calculation to be done at a reasonable cost on fast digital
computers. In such cases an adequate low order model, if avail=-
able may substantially reduce the computational burden, hence

saving in both the memory and time requirement of computer.

(¢) To reduce hardware complexity

o

A control system design for a high order system is likely
to be very complicated and of a high order itself. This is
particularly true for controllers based on optimal control theor
Controllers designed based oh a low order model will be less

costly and easy to implement and maintain.

(d) To make feasible design :

e

Reduced order models, may effectively be used in saﬂtial

situations like

(i) On line interactive system modelling.

(ii) Sub optimal control derived b? simplified model,
(iii) Adaptive control.

(iv) Prediction of transient response sensitivity,

dynamic error of high ordexr systems.

1.2 STATEMENT OF MODEL REDUCTION @

The reduction of a high order system into its lower ordex
approximants can be done in frequencyndomain and time-domain as
well., In frequency domain the problem can be stated as -

Given a transfer function description of a higher oxrder



single input - single output (SISO) system :

2 -1
a, + a;s + A8 + eee tra, S

= =2 n_. _N(s
Go(s) - bo + bls 4 DASE + eee 4+ b sh = D(s

2 n+l

where n is the order of the system.

A reduced order model is desired, which can adequately
describe the significant dynamic behaviour of the original system
and can be expressed as

2 r~l A
C. .+ C1S 4+ CAS° 4+ +ue + C. S
1 2 4 , ¥ r < n

r = 2 T
do + dls + d2s + seo + dr+ls

where r is the order of the reduced'order system.

In time domain, the systems can be described by the

following state space equations

Original System Reduced Order System (r < n)
X(t) = 4 X(t) + Bu(t) £ (8) = A X (t) + BLu(t)
y(t) = Cx(t) + Du(t) y(t) = CX.(t) + Du(t)
where, ‘ | where,
X(t) = nxl state vector zr(t) = rxl state vector
u(t) = mxl input vector AL = rxT system matrix
A = nxn system matrix Br = rxm input matrix
B = nxm input matrix C. = fxr output matrix
y(t) = {x1 output vector D, = {xm transmission matrix
C = éxn output matrix (For SISO f = m = 1) and in physical
0 = {xm transmission matrix

systems, transmission matrix, in general,is zero.




1.3 CLASSIFICATION OF MODEL REDUCTION TECHNIQUES :

The order reduction tebhniques can broadly be classified

as -

1.3.1 Time domain simplification techniques :

.

In time domain reduction techniques.the original and
reduced systems are expreésed in state space form. The order
of matrices Ar’ Br’ Craxe less than A, B, C and the output
Yy will be a close approximation t@xy'for specified inputs. The
time domain techniques belong to either of the following
categories : | rusbxlrp
(1) Modal Analysis : This category attempts to

‘the dominant elgen values of the original system

and then obtains the remaining parameters of the

low order model in such a way that its response,

to a certain specified input should approximate closely
to that of high order system. The method proposed by
DAVISom [2], AOKI [12] belong to this category.
Davﬁson's method consists of diagonalising of the
system matrix and neglecting the large eigen values.
In this case, the input is taken as step function
and all the eigen values are assuméd to be distinct,
This restriction, however, was removed by
CHIDAMBARA [4] and DAVISON [3]. AOKI [12] took a
more general approach based on aggregation. A method

to improve the quality of simplified aggregated models
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of systems without increasing order of the state
differential equations has been given by GRUCA et.al:
[5]. It consisted of introduction of delay in the
output vector of aggfegated model to minimize a
.quality'index function of the butput erroxr vectoi.
However, the numerical difficulties and the absence

of guide lines for selecting the weighting matrices

in performance index of this method were well observed
iby the researchers. iNOOKA et. al.[6] proposed a method
_based on combining the method of aggregation and
‘integral square error (ISE) criterian. Bn important
- variation of dominant eigen value concept was

proposed by KUPPURAJULU and ELANGOVAN [7] wherein

the high order system is replaced by.three models,
successively representing the initial, intermediate

and final stages of the transient response.

The above ouf~lined apprecaches, though_uéeful
'in many applications, suffer from the following
'disadvantages :
(i) The computation of eigen values, eigen vectors
and the aggregation matrix may be quite formidable
for a very high order system.
(ii). In cases, where the eigen values of a systgm
aTe close together or where the eigen values are not
easily identified or for system without dominant

mode, these methods cbviously fail.

(iii) There may be considerable difference between

the steady state responses of the high order system



and its low order model to certain inputs [2].
However this shortcoming was removed by CHIDAMBARA [4]
at the cost of poor matching during transient period.
The above mentiéned points ledlto the optimum model

order reduction approach.

Optimum model reduction : This second group is

based on obtaining a low order model of a given

high order system so that its impulse or step res-

‘ponse will match to that of the original éystem‘in
‘optimum manner with no restriction on the location of
elgen values. Such techniques aim at minimizing a
"selected performance critériono Which in general,

~is a function of error between the responses of the

original high order system and its reduced ordex
approximant. The parameters of reduced ofder model‘
(ROM) are then obtained either from the necessary
conditions 6f-optimality or by meéns of a search
éigbrithm. The approximationé have been}stddied for

step and impulse responses.

Chidambara (1969) gave two techniques for
model order reduction where the intcgral of the

squared error between the step responses of the

eéxact and simplified model is minimized. SINHA and

BERZNAI [8] solved the problem by using pattern=search
algorithms. BANDLR et,al.[9] used three different
gradient techniques for the minimization of performa-

nce index in the simplification problem. YAHAGI [10]



obtained optimal low order model by using the
technique of least square fit, linear, programming

and parameter optimization. For state sSpace represent-
ation the most important'results were obtained by
WILSON et.al.[11]. But this also requiresthe solution

o% Lyapunov type equations,

But whatever be the approach to the problem,
the main objective is that the reduced order approxi=-
mant should reproddce the significant characteristic

of the‘parent~system as closely as possible,

l1.3.2 Frequency domain simplification techniques :

Most fiequency domain simplification methods start with

the transfer function (T.FE) description of the original system.

The objective in this case is that the frequency domain propert-
ies of the parent system and its reduced order approximant should

match as closely as possible. They can mainly be classified as :

(1) Continued fraction expansion and truncation (CFE) :

This method was first proposed by CHEN and SHIEH
a[lS]. Since then various improvements and extension
of this approach have heen‘presented such aé by
CHEN and SHIEH {17}, CHEN and HaN [19] etc. In
this approach the transfer function of the original
system is expanded in continued fraction form and
theh some of its terms are truncated to get the
desired order reduced model. CHEN [16] extended the

CFE technique to multivariable system's reduction
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and their design. In this technique, the continued
fraction expansion and subsequent inversion operations
to find the simplified model are extremely time
consuming and laborious . Though the computer
oriented algorithms for expansion into CFE and thelr
inversion [14] have been divised for various cauer

forms [17,18], but the serious disadvantage associated

with the method is that the stability of the ROM is

not guaranteed, even though the original system is
stable. This problem may be avoided by CHEN, CHANG
and HAN [19]. CHUANG [15] suggested an alternative

CFE technlque to have expansions about s = O and
[}

s = © alternatively showing good agreement in both

transient and steady state regions.

Pade approximation technique : In pade approximation,

the power series expansions of high order transfer
function and that of approximants are equated to
obtain the prarameters of ROM. Though the method
renders various advantages such as cometational
simplicity, fitting of steady state value of. output
of the system and ROM for inputs of the form aitl,

Hovever it suffers from serious disadvantage that

RO may be unstable (stable) even though the original

system is stable (unstable). CHUANG [21] proposed a
partial solution to the stability problem through the

homographic transformation s = w/(a + Bw), that



(3)

(4)

gives a family of reduced = models of same order.
CHEN. et.al.[19] have obtained stable reduced order

padé}approximants by using stability equation method.

Moment matching technigue : This technique aims at
equating a few lower order moments of the reduced

order model to‘those of the original systeh, and

no consideration is given to other moments. This

would preserve the low frequency response of the system
while transient response will be error prone

BOSLEY et.al.[22] discussed thé similarity between

CFE and moment matching method. However some researchers:
have shown that the methods based on‘moment’matchihg,

pade approximation or CFE are essentially equivalent

- [36]).-The disadvantage of this method is that the

transient performance of the reduced order model {ROM)
may not always be satisfactory and also, the stability

of ROM may not be guaranteed.

Reduction based on stability criteria ¢ HUTTON and

FRIED LAND [23] based their method on « - 8 expansion

that -uses ﬁhe Routh table of the original transfer
function. The advantage of this method is that tﬁe
ROM will be stable if the original model is stable.
Another Routh-based model reduction scheme has been
suggested by KRISHANAMURTHY et.al.[24]. This has the

advaﬁtage that once' the Routh-Hurwitz arrays for
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the»numerator‘and denominator polynomial of the
original model are constructed, the various ROM

are produced by mere inspection.SHAMASH [25] combined
this method with Pade approximation teéhnique to get
stable ROMS. CHEN et.al.[26] have given a technique
which uses stability equations for finding stable

reduced order models.

This chapter has introduced the model reduction problem
along with a broad classification of reduction techniques. Only
appropriate references have been cited for the methods which will

be used in this thesis.

1.4 MOTIVATION AND SCOPE OF THE THESIS :

The objective of this thesis is to study some mixed methods

of model order reduction using error minimization'techniques for

continuous and discrete time systems and then check the suitabil-
ity of reduction methods for controller designes. The author has

developed the computer programs for reduction of continuous and

discrete time SISO systemss This work is based on error‘minimizu

~ation technique which has been described in detéil in the next

Chaptera

* ¥
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In previous chapter it has been stated that in some
reduction techniqueswe chgég certain performance criterign which
is a function of unknown system parameters. The maximum or mini~
mum Valne ofvthis index then corresponds to optimum set of
parameter values. A number of such performance criterien are
used in practice . The most commbn being'fhe integral square

error (ISE) given by

ISE = [ e2(t) dt
0

which is nothing but the square of the error between input and
output when a step input is giVen to it. This chosen performance

index (P.I.) is then minimized as under.

2.1 PROCEDURE TO CALCULATE I1.S.E. [27] :

With .reference to the Fig. 2.1 let

n-1
z Cisi C( ) -
_ i=o _ S P
. E:(S) = n 1 = D(S) _ ...(2.1)
z dis
i=0

the error transfer function

E(S) = l+G S) '...(2.28)
The I.S.E. is given'by ;
@ 5 -
n . .
0 |
1t
= 53 J E(s) E(=s) ds (by using parseval theorem)

jeo veoo(242¢)
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The steps involved are

(i) Start with Fourier transform of error as a function
of the complex frequency s. This function will involve
the free parameters of the system as unknown coeff=-

icients.,

(ii) Use Parseval's theorem, to get I.S.E. in terms of

the error transform, E(s) [equation (2.1)].

(iii) Solve the integral encountered, solution‘of which
will be interms of coefficients appearing in E(s),

i, eo I = f (co, CpL eever 9 €13 oo dl"f' dn).

(iv) Usé the standard minimization procedufes, to obtain
the values of unknowns. In othexr words, to minimize
ISE, Co? €y Cpeees cn;lband dO, dl""‘ dn are
adjusted by equating partial derivatives of In to
zero with respect»to these parameters and{solﬁing
the resultant set of equations for the valuéé of.

parameters.

2.2 METHODS TO SOLVE DEFINITE INTEGRAL :

There are a number of methods available to 'solve the
integral as in equation (2.2c¢). Here, however we give two

methods to solve the integral.

2421 Method 1 ¢ Using initial value theorem :

Taking equation (2.l1) as a reference point, the ISE for

anth order system will be
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4 joo

1 C c(-
In = 3 {jw D%i% X D%-z% ds ves(2.3)

where,

C(s) is a polynomial in s, and can have roots in right
half of compléx‘frequency plane and D(s) is a polynomiél in s,
“and can have roots only in left half of complex frequency plane,

For s = jw

c(s) = C( 5)= C(~s) , where bar denotes the complex

conjugate
and
D(s) = D(=-s) )
Let - R |
Cls Cl=-s Al's B{s
D(s .x'ﬁfﬁﬁ% = ﬁ%%% ¥ b%ﬁé) eee(2.4)
where,
A(s) = ¢ a; s eee(2.42)
i=o .
n-l i
B(S) = I biS oe.(204b)
i=0 '

Since, C(s) x C(~s) will be an even function of 's! ( complex

congbgate property)
= B(s) = A(-s)

So, integral in equation (2.3) can be rewritten as

= 1 B A%ég A(=s
In = 2n3 fjm_[ b(s) " D§_s§ ] ds

+joo + joo
1 Als Al =5
2 +jm4AS . o A
= : d (by' change of . -
2mJ L/ sy ¢ ) variables) ++(2.5)
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Equation (2.%) shows that the I, will be equal to the one
half of Laplace inverse of A(s)/D(s) evaluated at t = O.

Thus, using initial value theorem,

. -1 Als _ -1r 1 .. .. Als
I =2x & Eég%lt ~0=2x £ 5 limit 5= ]

t =0
_limit  -1pA(s)y _ limit Als) _ Zn-l
=10 4 MhEy] = 5 s *D(s) T A
Jee(2.6)

Thus only one coefficient a1 is needed to compute the

integral's value.
From equation (2.4)

A(s) x D(=s) + a(-s) D(s) = C(s) x C(=s)  ...(2.7)

in expanded form ,

n-1 i n .
A(s) x D(=s) = ¢ a,s” x =% dj(--s)J
i=0 *  §=0 .
n=1n . ’ .
=z & (-3 xa, xd. xstd
| i=0 j=0 * J
Likewise,
n-ln . ..
A(=»s) x D(+s) = % r (-1)' x 5. x d, x s**J
i=0 =0 1o

collecting equal powers of s in eqn. (2.7)
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m=2n=-=1 0 2n=1
A(s) x D(=s) + A(~s) x D(s) = I E " + I (=2)1 Emsm
m=0 m=0
m=2n-1
=3 (L4(-1)™ x E T
m=0
where,
m m"‘i ' .
r (-1) a:d .3 for0O<{m<n-1
_ 320 i m=i (2.8)
Em S— ® e B L]
n-l1
L (--l)m Ta,d . s forn <{m < 2n-1
L=men i “m-i
ne-l i ne
C(s) x C(=8) = I c; ST x & c.{=s)7
i=0 =0
nel . .
= I (-1)J cicjs1+J
i,3=0
Again, collecting equal powers of 's'
: 2n-2 0
C(s) x C(=s) = ¢ 2C xs
m=0
vhere, I (-D¥ ¢t for 0 ¢ mg n-l
2xG = k;? ce(2.9)
Ne=
; k
z (=1)%¢c, ¢ ,3 for n < m £ 2n-2
k=m-n+1 k “m-k?

Putting all the deduced values in equation (2.4) yields .

2n=1 Cooym 2n=2
m=0 m=0 :

Due to the cancellation of coefficients, only‘even powers

~of s will appear. Equating even powers of 's' will give rise to



n non-linear algebraic equations i.e.Em

i=0

n-1
z

i
z (“;) aidm_

j=m=n-

L
é

(«1)J a. d

J

m=-j

. = C

m

9

-t

=

mn

(m=C,

-

for 0 { m<{n-~-1

n b forn <mg 2n-1

.',ono,

2ne2)
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The coefficient matrix will slightly differ according to

'n' whether even or odd. That is to say

(i) for n even, the equations will be

dy

dy

© O a

d9..... 0

L 3

»- dn-l .‘..‘.dl
0 d ... d,

O

00 seve0d0

O L3R N J

(ii) for n odd,

[ dg

L.

0

d

0 ...

d

l OO..

-y

*

.

dn-lJ

0
0

dq

dp dp.10e 9o

0

In general DA = C

d

o |

Re

n-1]|

n-1
(-1) an-1

e . {

—

ooo(2¢ll)

000(2.12)

eeo(2.13)
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‘Hence, the coefficient a,.p can be evaluated.

2.2.2 Usinag residue theorém :

(a) Considering the first order transfer function :

c c
0 %
G(s) = dy + d;s T d,(s%a)

where,
r= 2
4
: + joo c c
_ 2 0 0 :
ISE ., I) = 2mj {jw d, + d;s X d, - d;s ds

The roots of the G(=s) will be complex conjugate of G(s)
and will lie outside the contour, and thus will have no effect.
So, . _
1

2n 3

[2nj £ residues at all L.H,S. poles]

)

vSO, ) 2
0

(b) Considering a second order transfer function G(s) i.e.

C_ + C,S cC + C.s
. 1 o) 1

A S + ,J)LS+ta)
'do + dls + dzs 1l 2
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‘where,

«, and a, are poles of G(s) and ,

aye tp = dy/dy

Then, ‘
+j C_ + ¢S C_ = C4S
12=271:jf o'*_dl —3 x = dl 7 ds
-joo do ls + 25 do — lS + 25

Acain the rocts of the G(=s) will be complex conjugate of G(s)

and will lie outside the contour, and so,

I, = Qij [ 2rj £ residues at all L.H.S. poles ]
2 2 2 | 2 2 2
) cg - ¢y @ s cg = ©] %3 3
d2(a2~al)(2al)(al+a2) | dg (~a2+al)(-a2-al)(«2a2)
2 2 2 2 .
_ c% (“2““1) + clalaz(az.- al) ) c, * C10, %,
qz(mQ-al)(a1+a2)(2ala2) dg(al+a2)(2ala2)

(by putting values of a;a, and (a; + a,))

2 2
I - 'Con + cldl
2 ‘2dodld2
Likewise, : : '
24 d, 4 (ﬁg*?c c~)d d +c2d d
Imc2‘ol‘”l_‘02 03" %% 3
3 2dou3 («dod3 -+ dla2)

(for other values of I.S.E. refer Newton et.al.[27]).
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The error calculated from above procedures comes in terms
of the unknown system parameters whose optimum values can be

found by usual gradient method.

The efror minimization technidue is émployed to obtain
reduced order models in a different Way - i.e. instead of taking
the error between outﬁut and inbut, the performance criterian
is taken as the error between the step reronses of original and
reduced systems. This error can always as the ratio of two

polynomials as in equation (2.1).

The next chapter introduces the stability criterian
based reductibn methods which will be utilized in sﬁbsequent

chapter.

F3E R
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In this chapter we will introduce the four different

"methods used to find the stable denominator of the ROM.

The methods are -

3.1 DOMINANT POLE RETENTION METHOD : [2]

In this method, the reduced denominator (Dr) is formed
by selecting the dominant poles, which are generally the poles
nearer to ihéginary axis in s-plane. The magnitude of residues
at.respective poles can be considered as the guiding factor tb
decide about dominant poles. The poles with large residues are

said to be dominant.
Considering the Dr of the original system of order n

Dn(S) =(S + al)( S + a2)0000.oo; (S +ax'])

-

A reduced denominator_is formed by selecting r dominant poles, i.s.

D.(8) = (s + a))( s + ay) weeun (s + a)
However, this method suffers from the following disadvan=-
tages: |
(i)  There is no enough justification (apart from the stability)
asvtd why a reduced order model must have only those

poles that are present in the large order system and

none else.

(i1)  The computation of roots of polynomial may be quite

formidable for high order systenm.

(1iii) In case, the poles are close together, the method will

obviously fail.
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3.2 METHODS BASED ON STABILITY CRITERIA :

3.2.1 Routh approximation method : [23]

The basic idea underlined in this method is to construct
Routh- Hurwitz array for denominator of the original system and
then to construct the denominator for ROM in a manner such that
the coefficients of its Routh~ Hurwitz array agree upto a given
order with those of the original model. The approximation
ensures the stability of ROM. The procedure to construct deno-

minator of ROM is as follows :

Any transfer function of a system can always as written

as
G(s) = B F,(8) + BoF(S)F(s) + BFa(s)Fo(s)F (s) + vueunns
+ QnFn(s) sose Fz(s)Fl(s),'
n i |
= 4 Biﬂ Fo(S) . 000(3;1)
i=1 . J .
. j=1
where, B; are constants and F; are defined by CFE,
N o1
Fi(s) Toa.s + 1 '
1 O s + 1 ...(3.2)
i+l Ay S+ .,
.° o l
R A s

For i = 1, the definition is modified slightly , i.e.
the first temm in CFE is taken as (1 + a;s) instead of s,
The canonical form of eqn. (3.1) is refered as the a-f expansion
of G(s) and plays a fundamental role in theory of Routh~approxi-

mation. The table constructed with denominator polynomial of



G(s) is called a-expansion and with that

as f-expansion . Here, we are showing as

constructed, as shown in Table - 3,1

Table - 3.1 : Alpha (Routh) Table.

23

-of numerator is called

how the a-table is

o _ o _ o _
1 i 1
‘do = dy dy = d, dy = de
do | 1 2
. _ 0O 2_ o_ 40 1
al = :j“i-“‘ do—d2 ald2 d2-d4 C(ld4 ss0e0 eseoo
0
dl
_ 0 3_,1_ 2 341 2 :
052 = """"d2 do-—d2 a2d2 d2~d4 a2d4 seeo0 o.ooo
o A
. : : : :
) R E : . :
_ .0 . ntl_n-=l_ ~ n
an Y dn . do _dn and2 -2 2 BN ) LK N A ]
o .

The first two rows of the table are constructed from

the

denominator of the original system under the assumption,

o

—
-

4

1 .

The reamdiningerries are formed by cross¥multipncation rule;;

i+l iel
do - d2
i+l _ i-l
artt = d}
iRl il
I S

i
- aid2

e

; fOI‘ i = l,2,3,goo, n"l

eee(3.3)
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(where denominator D _(s) =& disl)
i=o

The @, are marginal entries giveﬁ by

4i-1

=

Q

o o
-

for (n - i) odd, the last equation of egqn. (3.3) is modified =

i+l _ i1 ;
dhai-1 = dnoisl | eee(3.4)

Assuming the G(s) to be asymtotically stable i.e. all
the poles have negative real parts, the unfh -stability test
guarantees that all dg, in first coloumn of Tabie - 3.1 are
non-zero and‘will have the S ame signe The denominator for ROM
is now computed from the a-expansion Table = 3.1 by introducing
Routh-convergents.

th

3.2.1.1 Routh convergéngg : Ther order Routh=convergent

for G(s) is obtained by truncating the a-expansion and arranging
the results as a rational polynomial in s. The truncation
eliminates those term; ip a-expadsion . contalning o, 15 & qyeee

e and thus depends on only first a_ coefficients i.e.

n T
Drl(s) =1+ als
- 2, '
DrQ(S) = aya,8° + s + 1 L (59)

For control application, it is preferable to obtain a
low frequency response approximation by applying the reciprocal
transformation, which is merely the operation of reversing the

order of polynomial coefficients.



This means,

B(s) =

1
s

- R
951/5) = dn s + d

n-l

+ ® 0 00 + d
o
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It is obvious that a second transformation will give

the original denominator., Thus for r

D.(s)

v
F

0l

D_(s)

th

order model,

voo(3.6)

Let us ellaborate a step-wise procedure by taking

an example.

Ste ii)

D(s)

—

4

1
s

£ Dy(1/s) = 240s? + 3

~

L

Os

+ 204s

Construct the table for @ - expansion

+ 3633 + 20432 + 360s + 240

+ 36s 4 2

240 204 2

360 36 O
a, = 2/3 180 2 0
@, = 2 32 0O O
ay = 45/8 - 2 0 0
Oy = 16

For second order (say)

D, (s)

Dy(s)

==

4/3 6% 4+ 25 + 1

1/3 (452 + 65 + 3)

3s

2

+ 6s + 4



26

3.262 Routh-Hurwitz array method : [24]

This method does not require reciprocal transformation,
reduces the mathematical manipulation encountered in the cal=
culation of a—expansion coefficients.‘This is an alternative
approach of obtaining Rouﬁh type models. It uses tﬁe Routh=
Hurwitz array formulation of the denominator of the original

system. Let the denominator of the original system be ~-

ey n n-1 n=-2 . N=3 :
Y (s) = €138 * €3S Tt €4S T CppS F oeese

i
n

The Routh ~-stability is depicted in Table - (3.2).

Table = 3.2 ¢ Routh = Hurwitz array.

cll C12 cl3 s ¢ o &
C2l C22 C23 LI R N ]
C3l C32 LA BN 3 * e 0 O
C4l c42 . e » L B Y
Cn"'lyl Cn-l,2 oo *se 0
Cn,l XXX ese eeo

Cn+l,l seve oof cee
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The first two rows of the table are constructed from the coeff-
icients of denominator,mDn(s) of G(s). The first row consists of
the odd numbéred coefficients and second row is formed by the
even numbergd'coefficients.‘While the numbering is done from
highér powei of s to lower one. The rest part of the table

is completed in conventiohal way by computing the coefficlents

of succeeding rows by =

€55 = €3 pr341 = LS5ap,1 ¥ S50, 541)/ Cio1,1 vee(3.7)

for i>3and 1< Jg [n-1+ 3Y2)
where [ . ] stands for integral part of the quantity.

A reduced order polynomial can always be constructed with
this table. It should be noted that'the effect of all coefficients

of the previous two rows have already been taken into account

th

while compuﬁing the subsequent rows. For a r° order model

)th )th rows are chosen to form the denominator

(n=-r+1 and (n-r+2

polynomial of the reduced order model.

Exe. 3.3.2 : ~D4(s) = 240 s4 & 360 s3 + 204 s2 4 3 s + 2

¢4 240 204 2
53 360 36

N : 18 s,
Sl E 32 :
O [ ] * » [ ] *» o L ] L ] » *»
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For a second order reduced order model, the denominator will

be

D,(s) = 180 s2 4+ 325+ 2

3.2.3 Stability equation method : [26]

In this method only two equations (called stability
equations) with one-=half of the order of original model need

to be factored. The method proceeds in the following way

Let . .
’ C@g) fag,S a23s2 Foeeee oAy o sn'l Pn(s)
H(S) = - .+ " sn = Fd(S)
al} 12 seceee ay,n+1°
. oc(.3.8)

For stable‘systems, the even and odd parts i.e. stability

equation can e factored as

¢ |
a1, T% (l+32/x§)

i=1

Fdepé)

' 0.0(‘369)
ay5$ %% (1+ s/y2)
12 i=1 i

1l

and Fdo(s)

Where, fl and fz are integer parts of n/2 and (n=1)/2 resnsct=~
ively and

2 2 2 2
X1 < Y1 < Xn < Yo < coeoe

The y? and xf are in sequence., Discarding the factor

2

with larger magnitude of Yf or X3 alternatly is the process

of reducing stability equations,

The reduced stability equation with desired order r are

written as :
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‘ ml
r : : 2, 2
Fi(s) = apy TTl (1 + s%/x5)
1=

ees(3.10)
m

2
T 2,2
Fdo(s) = a12§ IIl (1 + s /yi)

where, m; and m, are integer part of /2 and (r-1)/2,

reSpectively; Then the reduced dehominator can be constructed as
T T

Fdr(s) = Fde(s) + Fyols)

eee(3.11]

T J
al,j+l s

|
(ST e o

=0 -
Again, the method is well-illustrated by an example.

EXe 3243 ¢ Let a system with a transfer function

H(s) = — 21
(s + 35 + 2,99 s + 0.99)
52
Fde(S) = 0099 (l 4 - 033 )
, 2
Fdo(s) = 2.9 s ( 1+ 5753)

discarding the . factor with y%-= 2.99, the reduced denominator

will be

Fdz(s) = 352 + 2.99 s + 0,99.

Various stability based reduction methods have been

described in this chapter for reducing the denominator which
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L

will be used for finding the ROMs. The mixed methods using
advantages of error minimization technique and stability based

methods forms the content of Chapter - 4,

HERAR
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4,1 INTRODUCTION

The importance and necessity of the subject of reduced
order modelling of high order complex systems have been detailed
in first chapfer. The topic has aroused widespread interest
which is evident from the large number of research publications.
The work included in this chapter deals with frequency domain
moded reduction techniques based on transfer function discription

of the original high order system.

4,2 METHOD NO. 1 s

Mixed Method Using Dominant Pole Retention :

In this method the denominator of ROM is found using
dominant pole retention method, while the numerator coefficients
of the ROM are found by error minimization technique described

in Chapter = 2.

Let Go(s) be the n'" order transfer function descript-
ion of a system -

’ 3 +§ls +eone + 3 n—l
GO(S) = -2

-l oo‘(4ol)
- n
by + Bls Feveo + an

Let Syt Sy seeey S, be the dominant roots of denominator

th Grder ROM can be chosen {r<n) which will have

of Go(s) then r
unknown coefficients in its numzrator polynomial, while the

denominator polynomial is formed by dominant opoles i.e.

- - - r-1
C 4+ C S+ seseet C S
G (s) = —2——-% — ..o (4.2)
do + dls""oooo.o'*‘ drS

where,
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[ae}

Q.

n
~

: i

(s»sl)(s-52) cee (s»sr) =1
. i=o

4,2.1 Computation of Numerator coefficients :

The numerator of the Gr(s) is determined by minimizing
step response error between the original system and its ROM

while also satisfying the steady state value matching constraint.

Let x(t)= Step response of original system.

xr(t)= Step.. response of reduced system.

Then, the step response error is given by

e = 11x(6) = x (112 = JIx(1) - (112 at
(o]

[y(t) - y(£)1% at  ...(4.3)

0“3

where,

y(t) = x(=) - x('t)
eoo(4.32)
ya(t)= x(=) = x.(t)

Matching the steady state values of original and reduced order

model,
() EO EO (= x(=))
X oo D em—— _ = o
_ : 0 bo
also
¥(s) = £{y(t)f |
vy(s)= Ly ()
So,
vio) =6 Sl B o a R e
s S EOS i=1 j=0 *
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2 n=1
4 + S 4+ eeve + ¢

= 2 n L 2R 2N ] (404)
bo + bls + bzs + eeses + bns
Likewise,
- G_(s)
. Y (S) - -)SL-)- _--r
r S (3
r-l " r . '
Y (s) =% ¢cys* /& d.gd e oo(4.9)
i=o j=0 J .
where the following equation can be identified,
a_b, |
i+l - . -
ai - np“b";""" - ai+l ; 1 = O, l, oo vy n-2 000(4068>
an"'l = ao/bOan ooo(4.6b)
c; = 'c’o/d0 x diq Ei+l ;3 i=0,1,2,4.. -2 eee(4.6¢C)
Croy = C,/dy x d eea(4,6d)

Expanding equation (4.2)

v2(

D
i :
O 3

t)dt—zj?ﬂtwgt)dt+fﬁﬁﬁdt
: [0} o]

By Parsval's theorm the intearals are transformed into frequency

domain, -
1 + joo e 4o ;
e = w5 [/ ¥(s) Y(=s)ds + [/~ Y_(s) Y. (~s) ds = 2 [7Y(s)Y_{~s)ds]
I Tlje —joo T r - joo T
090(407)

The integral
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+ joo t joo

. L4
Y(s) Y(-s) ds and 3 {jw Yr(s) Yr(—s)ds, can

L
27 ]

-j-oo

be evaluated in terms of a;, b; of Y(s)} and ciy dy of Yr(s)
by using approach given in Chapter = 2. The coefficients ajy bi’

di are already known at this stage.

The integral
1 + joo ‘
573 [ Y(s) Y.(s) ds
—Joo
Can also be expressed in terms of C1s Cpy eoss Cry

by extending  the approach of Newton et al [27] and is‘discussed

in Appendix - A. Thus

e=K+ A _y =-[E _;+ V.l vse(4.8)
where,

K = 53 [ Y(s) Y(~s) ds, is completly known and can
be calculated from the knowledge of as and bi‘

For the second terms in eqn. (4.7) using same approach, we get

[2d, 0 0 .ee. O ee.. O IR, ct
2d2 2dl 0 s e O es 0 O -‘Al 2C0C2“'Cl
2C_¢€ ,=2C c-rc2
L) . o0 oo LX) o @ s e .o (—O 4 13'2
9]
2dr 2dr"""l 2dr—»2. . 2d2 &.dl o e )
0 2
S - 2
| "Cr-1 |
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Symbolically,
DA = C

Thus inverting D, an expression for Ar—l in terms of
Cys Cpreees Can be found out. Likewise for the third term in

equation (4.7) we get,

, | 1 7
do 0 O s e O bo O e® o0 O i EO
|
"dl do O e e O bl "'bo “co O El
- {
d2 -dl do e ° @ O‘\ b2 bl soe O .
: - : s : E0el |
O O O dr"l‘ "'fdr lO O O "‘bn ) vo
\Jl
‘vr~l
aO(:O
21%7%:°1

m...

n=1%r-2 = -2%r-1

Ten-1%r-1
L*O J

Or symbolically

NF =P

..(4.10)
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Again by inverting N, expression for En-l and vr~l can be

obtained. Thus, egn. (4.7) will be

e = K + {mlmz... mr] C - [(pl+ ql)(p2+q2)"‘ (pn+rfqn+r)]p
' ceel4,11)

1

Where, m; are the elements of the last row of D™ and

th and (rH-r)th TOows of~N"l. In the

Pi and q; are elements of n
case of step response error minimization it is obvious from
equation(4.7) that ¢, Cyoeee 5 C._, aTe unknown parameters
while c__, is known one. Minimization of e with reSpeét to R
e

0! C1 *+** Crop ilee

98 20 ,i=0,1,2. 0.1 =2
X

will yield (x - 1) linear simultaneous equations

2mlco + 2m202 + 2m3c4 ceese - Kl = O
Lad hd ceoe ™ == ;oo 4,12\
2m,Cy - 2mc v K, =0 ( J
er*l cr“? tT eeeas et Kr“l = O‘

The equations (4.12) can uniquely be solved to obtain Cyr Cyees Co_no

which when substituted in eqn. (4.6) will give ¢, Coens Er-l

This completes rth order reduced model computation.

Ex, 4.1 : Let a system transfer function discription be [23]

1453 + 24852 + 900s + 1200

G (s) =
° s% + 1853 + 102 s2 + 120




37

D(s) = {s? + 18s% + 10252 + 120)

The roots are - REAL PART IMAGINARY PART
~1.196684 -0.693370
~1.196684 +0.693370
~7.803316 ~1.357582

-7.803316 +1.357582

To reduce it to a second order approximant, we assumed

_ c + El s
Gy(s) = —3
$+2.3934s + 1.9128

Where, denominator of 62(5) is formed by taking dominant pdles

of the original systems, i.e.
D2{s) = (s+1.196684+j 0.69337)(s+1.186684~ j 0.69337)

Matching steady state values of Go(s) and Gz(s) vields

Co = 19.128
| | s + (2.3934 - ¢))
Step response of ROM Yr(S) = 02(5)
s + Cd
= "‘“mQ S

Following the procedure described in section 4.2.1; the

value of o is obtained as - 7.9133 which will give

Co = 909062 ( « o Co = 2.3934 o CO)

L]
Hence the second order model is

9,9067 s + 19,1281
Gz(s) = )
s 4+ 2,3934 s + 1,91281
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4,3 MBTHOD No., 2 :

Mixed Method Using Routh Aporoximation :

In this method, the denominator is obtained by usual
procedure discribed in section 3.2.1 while the numerator poly-
nomial is obtained by error minimization technique as detailed

~in method No. X, The ROM of exe. 4.1 is obtained as :

_ 10.2964 s + 13,3333
87 4 25 + 1,3333

4,4 METHOD No. 3 :

Mixed Method Using Routh Stability :

This method takes the advantage of Routh stability array in com-
bination with the error minization procedure. The denominator

is obtéiﬁed by procedure of section 3.2.2. Hence a regycedsecond
order model is deduced

1158.148 s + 1200
92 52 4 156.5217 s + 120

62(5) =

4.6 METHOD No. 4 :

Mixed Method Using Stability Equation :

Combining the method of article 3.2.3 and article 4.2.1
the second order model is obtained as
0.1480 s + 100

G (S) = 7
2 s 4+ 6.6667 5 + 10

Table 4.1 shows the cummulative errors which occur in the output
for the step input after evexry 20 seconds, taken for comparison

purposes i.e,
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N .
. . : 2
cummulative error,j = ][Y(ti) - Yr(ti)] dt where y(ti) and
. o
yr(ti) are the responses of original and reduced order systems

: N , :
“at t; and,is the number of sample period, i =(0, 1, 2, 3...N)

Table - 4.1 : Cummulative errox.

Model from Steady state |Output (after CMERR
method no. ‘value 20 secs.)
1. 10 10.0005 2.13406
2, BT 10.0000 1.89589
3. 10 10,0003 | 52.93622
4, 10 10.0000 13.09305
Original 10 9.9997 -

The step responses of the system and its approximants are depi-

cted in Fig. 4.1,

Ex., 4.2 ¢+ Considering an 8th order model [24)

6 2

G (s) = 35 5° +1086s°+132855°+842035 *+278 3765 *+5118125 %+ 4829645
(0] .

T 4194480

84335 1+437s°

3

+30175 24 118708 4+ 274708 “+ 374925 2+ 288805+9600

The third and second order models (obtained by the methods

outlined in this Chapter) for this problem are, :

Third Order Models :

2
2

+ 75.8557s + 40.5167
+ 4s + 2

31.1575s
G.(s) =
3 33 +.3 s

(by method No. 1)



2 L 05,4971 s + 13.0988

2 4 1.6972 s + 0.6466

Gs(s) _ 23.5207 S
s” 4+ 1.3554 s

(by method no. 2)

— 20212,945% 4 5887.145 s + 11.8557

Ga(s) = 3 5
-~ 63 4+ 02,0613 52 + 1.7606 s + 0.5852

(by method no. 3)

2 51,5941 s + 17.1101

2 4 0.2808 s + 0.8446

G3(s) - 12.3163 s
s¥ + 00,6980 s

( by method no. 4)

Fig. 4.2 shows the step respohces of the original and
the ROMs. Table 4.2 gives the errors which occur in output.

nd

Il Order Models : -

Gz(s)'~ 3%.3518 s + 20.2583
: s“ 4+ 2s + 1

16.8766 s + 9,6642

52 4 0.9002 5 + 0.4770

Go(s)

G ( ) 1.8051.34 S + 6.8574
o\S) =75
. 8T 4+ 1,0183 s + 0.3385

. 4,9888s + 24,5126
Gyls) = =3
s 4 0.4022 5 + 1.21

The table - 4.3 and Fig. 4.3 show the cummulative error

and resvonses respectively.
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Table = 4.2
Model from |Steady state [Output after CMERR
method value (20 sec.) :
1, 20,2584 20.25835 214,709
2. 20.2584 20.218227 Large error
3. 20.2584 20 .260999 263.82054
4, 20,2584 20,29067 Large error
Original 20,2584 20.25834 -
Table - 4.3 : Cumpulative error.
Model from |Steady state |Qutput after CMBRR
method value (20 sec.)
1. 20.2583 20.2583 13,742
2. 20.2583 20,2569 369.52
3. 20.2583 20.2600 587.589
4, 20.2583 20.2579
Original 20.2584 20.2583 -
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4,6 OTHER EXAMPLES =

The program output and step responses of the following
systems and their respective ROMs are given in (.)

5 4+ 15 s
1l 4+ 1.8 s 4+ 7.8 s

..G (s) =
~Ex43: 7 2 4 0.7

(WHITEFIELD [35], Fig. 4.4, Second order ROMs)

5 + 99.8432 s + 506.6497 s> + 81,6913 s°
5 + 101.05 s + 521,01 s° 3.8t

E.se. 4.2 GO( S) =
————— + 105,2 87 + s

(SHAASH [25], Fig. 4.5, Third order ROMs)

2

2 + 58 + 452 + 53

(CHUANG [ 45 ], Fig. 4.3a, Second order ROMs)

X446 Multivariable Svstem :

Considering the transfer matrix of a linearized model

for a gas turbine developed by MULLER (1971) for which

| hyy(s) hyols ]
Hs) =1ga(s)  hools)

D(s)

where,

2

14,90 s™ + 1906.473s + 2543.2

hyy(s)

2

hl2(s) = 95150 s” + 1132094.,7 s + 1805947

h,,(s) = 85.2 s2 4 8642.888 s + 12268.8

12400 s2

1l

h?p(s) 4+ 1492588 s 4+ 292680

D(s) = s? + 113.225 s° + 1357.275 s© + 3499.75 s + 2525

= (s + 1.3471)(s+1.873%) (s+10.0047)(s+99.999)
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Let us select the denominator by domainant pole retention method.

Then

BO + Bl S

G.(s) = -
r 2
b0 + bls + bzs

where,

i

, , ,
bo + bys + bys (s + 1,8235)(s + 1,3471)

= 52 4 3.2206 5 + 2.5238

To match the steady state value of the system and ROM

2.542 1805.10
12,2630 252,56

Minimization of error will vield four unknown linear equation,

which will give

Bl =

1.,2033 932.8647
7.154 1436.2

by other methods, the coefficients matrices are :

Method No. BO ' Bl
24 [2543.2 1805947 .~ 2344.9 1699679 |
: o)

‘_1.2268.8'(252680 —J 11988.7 903236.4J

3. 1.,9938  1415.779] (1.1884  900.9204 |
9.6182 . 198.0894 6.8422  1201.063 |.

4, (31,1325 22107.43] [-1.6918 -623,3381]
150.188 3093.173] 10,7476 8512,143 |

The step responses of the system are shown in Fig. 4.6, 4.7,
4,8, 4.9 respectively.
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On the basis of the results of the examples taken and from
their reSpective:step responses, the following conclusions may be
drawn -

In the exémple 4.1, responses of the ROMs are well matched
for all methods, while method number 3 gives some error in trans-
ient zone, but ihe steady state response is matched properly. For
the example 4.2, the system is reduced to its third and second
’order approximants. The step responses of third order ROMs are
shown only for method numbexr 1 and 2. It may be seen thaf method
number 1 gives éatisfactory results while method number 2 shows
some oscillatory behaviour (Fig. 4.2). This may be due to the
existance of complex poles of ROM, When the same system is reduced
to its second order ROM, the better response is given by method
number 1 as compared to method number 2 and 3.re5pectiveiy. This

has also been confirmed by the step reéponse error in Table 4.3,

For eXamplé 4,3, all the four methods yield good responses,
However, model 6btained by method number 3 shows poor matching in
‘transient period, In example 4.4, the method number 4 fails to
give satisfactory results while others give good matching of res-
ponses with that of original system response. In case of CHUNG

model (example 4,5), all methods give good results.

All the presented methods have been sucessively applied
to each element of transfer matrix of a MIMO system. As shown in

Figures (4.6 - 4.9) the results are quite satisfactory.

The methods outlined in this chapter have been extended to

discrete time system in chapter- 5.

¥* b 3t
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5.1 INTRODUCTION :

The analysis and design of high order discCrete time
dynamic systems are often required in many appLications. Hence,
of late, as evident from the many recent investigations model
reduction of discrete - time systems has assumed immense

importance.

As for continuous fime systems, several investigations
have beeﬁ made for the model order reduction of discrete time
systems. Some of these attempts to simplify'directly in Z-domain
while many other have used the bilinear transformation to extend

continuous time reduction methods to discrete time case.

Modal approach of DAVISON [2] for continuous time state-
space model has been extended to the discrete time case by
WILSON et.al. [28], which is based on obtaining a discrete time
ROM on leaét_square fit of ROM to that of original Z-domain
system . The CFE method [l4] has extended to Z-domain by
SHIH and WU [29] ‘and SHAMASH [30]. Pade type approximation and
moment matching method have also been used in the same way [32].
A mixed method 6f PARTHSARTHY et.al. [31] matches a‘combination
of time moments and Markov parameters and is claimed to be
compufationélly superior to that of SHAMASH [32]. CHUANG [21]
has given a partial solution to the problem of Pade type ROM
being unstable)by using homographic transformation z = w/A + Buw)
where, A% B are constants,gives a family of ROMs of same order.

A mixed method using a combination'of Pade-approximation and



60

dominant pole retention have aiso been proposed., SHIEH et.al.
[33] have also given a mixed method utilising the dominant |
eigen value concept and CFE approach. APPIAH [24] proposed a
method using HURWITZ polynomial approximation coupled with Pade-
type time moment matching. CHEN et.al. [26] have used the stab-
ility equation method to get stable low-~ order approximants,
After SHIH and WU [29], used the bilinear transformation to
extend the CFE approach to simplify discrete fime systems, it
became well known that most of thé reduction methods for
continuous time domain can also be applied to discrete time
systems, such as CFE method [29,33], stability equation method
[26] HURWITZ polynomial method [34].

In-spite of the success of the extension of continuous time
' ’ : h:lv"\‘r W
systems reduction methods to discrete time system using bilinear
transformation (eor similar transformations), there still

remains two distinct disadvantages

(i) Due to the nature of bilinear transformation, the
initial value of the step response of reduced
model may not be zero, inspite of zero initial

condition of original step-response.

(ii) Most of the methods mentioned in section 5.1 are
either in frequency domain or in time domain, and
they are designed to secuxe a good fitting in
their respective domain, consequently a reduced
order model may be satisfactory in one domain,

but unsatisfactory in another domain.
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In order to circumvent, the problem associated {with
order reduction of discrete systems) as mentioned in the last
paragraph, a more enhanced technique i.e. a combination of
time and frequency domain approach for order reduction is |
utilized, with stability guaranteéd. The method consists of

four steps siated below =~

(i) Transformation of denominator polynomial (Dn(z)) of
Z-transfer function into w-domain by bilinear trans-

formation z = w+ 1/ w - 1

(ii) Using one of the method, among the methods available
for order reduction of denominator polynomial in

frequency domain to reduce Dn(w)

(1iii) Changing the reduced denominator polynomial into
Z=domain, by using reverse hilinear transformation

w=12z+ 1/2z =1

(iv) To find the optimal coefficients of numerator polyno-
mial in reduced model the sum of the squared eTrTrors
of unit step response of reduced order model and unit

step response of original model is minimized,.

For completeness, a brief review of four stable redu-

ction methods for denominator polynomial is first given,

5,2 . STABLE REDUCTION METHODS

9¢2.1 Dominant pole retention

Let the charact-rstic polynomial of original system

in frequency domain be (by using bilinear transformation)
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n n-1

Dn(W) = anW + an_'lw + see + ;]l‘l"" 4 ao 000(501)

The reduced characterstic polynomial Dr(w) of xth

order with r < n is obtained by retaining significant poles
i.e. retaining poles which are near to imaginary axis. The

reverse bilinear transformation will give the D _(z).

5.2.2 Routh-approximation :

HUTTON and FRIEDLAND [23] first introduced Routh-
approximation for reducing the order of continuous-time domain
systems. Later a more simpler method was suggested by
KRISHNAMURTHY and SHESHADRI [24]. The extension to the w-

domain ( Routh approximation) is given as follows
Dl(w)'z W+ @y o

5 ) .
W + (ZZU) + ala?_ - 000(5-2)

.*-
D (w)
D;(w),z wg(al+a3) @2 T AN T Oy

The reduced order characteristic polynomial wiii be .
+ 2+ T + ﬁl .
Dr( w) ’—‘: w Dr"2( U.)) + Ochr_l( (l)) | . L &00(503)

with
. |
D2(w) = 1/w 3 DY(w) = 1

Here the coefficients @; are obtained from modified Routh |

table (3.1).

5¢2.3 Hurwitz polynomial approximation :

The Hurwitz polynomial approximation proposed by
APPIAH [34] is applied in the © = domain. Equation (5.%)

can be rewritten as :
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D (w) = g(w?) + wh(w?) eos(5.4)
where,
g(wz) = E(w) = a, + a2w2 + esee (Even part of Dn{w))
h(wz) = 1/w O(w) = 1/w (alw 4 a3w3+_...(0dd»part of Dn(w))
NN 2
CFE of h{w*)/g(w*) about w* = O gives
h( 22
w2 =a_ + 1
g(w®) By + 1
@yt vee(55)
By +,
v T+l
5p—-l + 1 :
ap.wf
where,
x = 0 and p\= n/2 if n is even'_

and, o« % O and p =(n - 1/2)if n is odd.

Now, the reduced order characterstic polynomial Dr(w)

is obtained by ttuncating the high order terms of CFE iQeq

_ B 2 2
Dr(w) = gr(w ) # Qhr(w ) "’(5f6)
where,
2
h ()
5T = a + 1
gplw®) Bo + L __
alw 000(50'7)
Py +
..+ 1
B + J./ozqw"1
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where,

q=(r=-1)/2 a # 0 (if r is qdd)

q = r/2; ay =0 (if r is even)

The above discussion shows that a, = O for even,implies

0
that even order characterstic polynomial can only be reduced
tb eﬁen order models and @y # 0 for odd cases However, it is
learnt that Hurwitz polynomial approximation gives same
reduced polynomial as given by Routh approximation technique.
Hence it can be said that Hurwitz approximation is only a
special case of Routh«approﬁimation by which even and odd

characteristic polynomial can be reduced to even or odd order

ones.

5¢2.4 Stability equation method :

After getting the denominator of Z-domain transfer
function in the w - domain (Eagn. (5.1)), we rdduce the
stability equations of the Dn(w) by the method described in
chapter - 3. After getting the reduced order denominator by
this method,. - - the recverse bilinear transformation will

3
vield the reduced order denominator for the ROM in Z~domeain.

5.3 OPTIMAL COEFFICIENTS OF NUMERATOR POLYNOMIAL :

Once the reduced order characterstic polynomial is
obtained by one of the methods of previous sectione. The
numerator coefficients of the reduced order model's are

calculated as follows -
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Let the reduced polynomial in Z-domain (by inverse bilinear
transformation w = z +1/z~1) be

+m o+ m-l + +
P(Z) = amz + am_lz + et alZ + ao 000(508)

and the trénsfer function of ROM be

+ _m=l + _me2 +
H+(Z) = C+( 2) _ bm-lz + bm-—?.z ‘ + -7 bO ' (5 9)
U Kz) - F(z)’ , ® oo e

Here, b;, i= 0,1,2,...‘, m-1l are to be determined by matching
the unit step response of the reduced and original systeme

For unit step input U(z) = z/z-1, the response will be

N bfl£"+b+2f“i4...+tﬁz |
C ( ) = M= - Q (.. _10)
VA ¥ 1 ¥ m 3 ¥* eoal e
am+12 + amZ + see + alZ + ao

+ =] + =2
= Clz + C2Z +* ese

where,
* + + _ .
ai = ai_*i"ai y 1 = 0’1,2,004.0’ ml
eee(D.11)
+ 4 |
a1 = a; =0

) i3 .
The relationship between the coefficientsai, b;, c; is as

follow :
+ * 4
b _
m=-1 am+l(?l
+ * * |
b = + :
m-2 = %me1C2 t oa,cy
e * * g *
= + . + C
bo qmt1%m * 3 Cp-d M %, (5.19)
0 * 4 * 4 + + *C.‘. + *c+ PR o Ll
= am+lcm l + amcm eves e 82 2 al 1
* + 4 * 4 * 4
= : esse + B + C
0 qmk1me2 T % Sl T 81%2 7 3,
N % + *o4 * 4 * 4 '
= c A =
m+1%k MnCyml T oo +alck-—m'aock—m--l
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+ ., . + .
Where ¢ 1is response vector at k sampled voints,b is unknown

m vectors . The solution of c+ is

¢t = A"t wt L e.(5.14)

In order to preserve steady-state response of the
original model, whose steady state response with unit step

input is r_. Thus

+ + + +
bl + b2 + b3 + ceeo t bm = I,
+ + + 000(5.15)
ro - I&Xao + al T eeee + am)
OR :
T, +
S'b = z,
where r_ = Steady state value of ROM
and mx 1 véctor S is,

S = [l l l e ee l ]T

The sum of square errors of the unit step response of
the ROM and original models be minimum subject to the constraint

eqn. (5.15) i.e.

k 4+ 2
Minimize J = I l(Ci - Ci) voe(5.16)
i= '

where-ci is the unit step response of original model at ith

sampling point. Letting

T
o = [Cl C2 e oo Ck]

(¢ = e -ch

il
¥
o
Hi

A more general form with different weighting on (ci - cz) is

| T
J=(c-c")" wec-ch
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diagonal
Where W =k x k positive definite,matrix. An augﬁmented function

J is formed by introducing Langrange multiplier A to take

care of the constraint (in egn. (5.15))

J=(c - d+)T We - ¢t) + 2 (S”I bt - ro) cee(Bel7)

Substituting . egn. (5.13) in egn. (%.17)

1 T 1

J=(c=-a" v w (e =A™ v+ A (sTpt - r))

The necessary condition to minimize J 1is

oxr

1

At VT e = A~ v') - 2 s =0 Ve o(5.18)

The equations (5.18) and (5.15) will give (m + 1) linear equations
which can be solved to give.b+ and A . The above procedure is

illustrated by an example.,

Ex, 5.1 ¢ Consider an eight order system,

7 6

1,682 2T+01.116 2% - 0.21 z° + 0.152 2% - 0.516 2° - 0.262,2

H(z)= + 0.044 z - 0.006

8 28 - 5,04 27 - 3,348 26 + 0,63 25 - 0..456 24 + 1,548 2

3
+ 0.786 72 - 0.132 z + 0.018

Using the bilineaxr transformation the denominator polynomial

in w~domain is obtained as

7 6

D (w) = 805 + 78,6407 + 292,982 W® + 526.816 w° + 584.144 o"

3

. ') ’
4+ 400,24 0~ + 139.232 w7+ 16w + 2
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By retaining dominant pole the reduced order denominator
polynomial is (for a second order ROM)

Dy(®) = 0.206896 + 0.0926 w + 0>

Thus, D,(z) = 0.982808 - 1.958626 z + 1.113291 72
(by inverse bilinear transformation)

The second order model calculated from egn. (5.1%) and eqgn.

(5.18) with k = 50 and W = I {is

qT(z) = =0.165023 + 0.23935 7
= 0.833638 - 1.7583L z + z2

Likewise choosing other methods the models are

gy = 28,7840 - 20,7840 2
= TI9.4211 - 212.5067 z + 101.0656 22

(by Routh approximation + error minimization)

HY(z) = 924380 = 0.3483 7
1,2018 ~ 1.9552 z + 0,843l z

2
(by Routh stability 4 error minimization)

+ 0.0593 z + 0.1099
1.0476 2= - 1.,9154 z + 1.0370

(by stability equation + error minimization)

The step responses of the original and ROMs are depicted in
Fig. 5.1. The step response of the ROM deduced by method No. 4

is not shown because of the poor matching.
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Ex, 5.2 ¢ Considering another system of

4 3 2

280.333 z! + 186 20 - 35 z° + 25.333 z% - 86 z° - 43. 666 2

666 2° - 280.333 z' - 186 2

+ 43, 666 22 = 7.333 z + 1

H(z) = .
0 4 35 22 - 25.333 2% + 86 23

The program results are given and the step responses are

shown in Fig. 5.2.
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6.1 INTRODUCTION :

The classical techniques of control system synthesis using
logarithmic frequency response pldts of BODE ahd NICHOLS, root
locus diagrams of EVANS br Nyquiét plots are well documented in
literature. These above methods are graphical in nature and
normally limited to SISO systems. With the advent of state space
- theory, the optimal contrél appxoach has been developed to tackle
bo th deterministic and stochastic signals. Thié requires higher
order non-=linear differential equations' solution and in addition
it is difficult to translate industrial specifications into
weighting matrices of the performance index which is normally chosen
. Quite arbitrarily. Pole-zero assignment techniques are_available
but it is not élear how the desired pole-zero location in the

case of multivariable systems are to be specified.

With the availability of fast digital computers alongwith
interactive graphic display, control system design has entered
a new era. In this chapter a procedure for the design of controller
is pfesented. This method is particularly useful for
SISO systems. The same technique can also be extended to multi-

variable systems with transportation lag.

6.2 PROBLEM SEATEMENT :

The problem of model matching can be stated as = ''Given
a process whose performance is unsatisfactory and a reference
model having the desired performance, derive a controller such
that the perfofmance of the augmented process matches with that

of the model''.



78

The results are referred to those cases where {he system
model is actually implemented and incorporated in the control
scheme. In the design of a control system in frequency domain,
the specification that are usually considered as design goals

may be classified as -

l. The time domain specifications e.g. rise time, errn
shoot etc.

2. The frequency domain specifications i.e. bandwidth,
phase margin etc.

3. The complex domain specification e.g. damping ratio,

undamped natural frequency etc.

6.3 THE DESIGN PROCEDURE : [37]

To improve the efficiency of any design method, it is
benificial to have the design goals expressed as mathematical
functions or transfer functions (defined as the standard model).
The first stép in a model matching operation would be to'Specify

such standard model.,

Hence, the design procedure proceeds as follows :

STEP 1 : Construction of a specified model whose close~loop
system must approximate to that of original closed loop- res-
ponses. Let it be specified as

2 u
9o + 9,8 + goST t eess + g8

2 v
ho + hls + hzs + cee + hvs

Gyls) = ( ug v and in general
9 = Do)
ees(6.1)

STEP 2 : OSpecification of structure of controller. Let it be -
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i
k + kOls + esee + kois

G (S) = 00 : .00}(6.2)
c klO + klls + eese + kljSJ . ¢

STEP 3 : Determination of closed-loop transfer function consise

tihg of unknown controller parameters.

If the reduced order plant transfer function be G__(s)

pT
(where r is the order of the model) then
m
A+ 0048 + oee + S
G (s) === 1 m - (n > m and in general
pr go+ﬁls + eeeseot an o =8)
o %o
000(643)
and,
() GC(s) Gpr(s) : 6.1)
G s) = Fig, 6.1
CL 1+ Gc(s) Gpr(%) |
2 q .
- ao + als f 325l T+ eee F aq$ '..(6.4>
T
bO + bls + secceccssosecs + brs
2
= CO + Cls + 025 T eeee
where,

qg={(m+1i) and r = (n.+ i)

= 1 when a_ = b
cO (o] 0

The coefficients ao,gl.... a_s bo, bl"" br and Cor €

q
Chessons etc. witchcontain the unknown controller parameters

koo’ kol”" koi’ kll’ k12 ce e klj‘and known constant coeffic-

ients @, Ay eoes O

m and Bo, By seses fo Thus, GM(s) to be a

approximant of G. (s), we have

CL

g, = hy¢, (redundant when a = b, )
g, = h ¢, + h.c
1l o°1 170 eeo(6.5)

= h ¢ : T e eew
gu B5% + h Cu—l N -+ huc
» -4

1
O =he¢  + h.c

o)
v ot eee h ¢



8l

(L + j + 3) equations of the above type can sequentially
be solved for (i + j +2 ) unknowns controller parameters of

equation (6.2). The particular traingular form of non-linear

algebraic equations in eqn. (6.5) make thelr solutions very easy.fh-;

The method is ‘well illustrated by an example.

Ex. 6.1 ¢ Consider the high order plant transfer function [37].“"“

sS4 12 524 54 8 + 72
Gpals) =77 3 7
P s’ 4+ 18 s¥ 4+ 97 s + 180 s + 100

The reduced order model for the Gp4(s), by the methods descfibed‘ L

in Chapter - 4 are

G (s) = 20474 s+ 188 (hetnod No. 1)
P %+ 35 + 2 | -

or
G_,(s) = 79°2286 s+ 72 (Method No. 2)
P 87 s + 1%9,3103 s + 100
G 2(5) - Oé63ll s + 0.8276 (Method No.‘3)
p s + 2,069 s + 1,1494

- 0.9520 s + 7.2

G_,(s) =
p2 s + 5.5556 s + 10

(Method No. 4)

The model transfer function is chosen .. as [37]

1+ a(gj& S
n i
G(S): 2
M 1 (é%~)s + S
n w
where,
¥ - damping ratio

w, = undamped natural frequency.
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a - design variable which has special signifiéance in
so far « = 0 in GM(S) will result in zero displace-
‘ment error system while o = 1 will result in a zero

velocity error system.

Choosing W, = 5.0, & =0,77 and a = 0.7,

25 + 4.242 s
25 + 7,07 s + s

_ 1 2
GM(s) = 5 = 1 - 0.1131 s - 0,0080 s“ ...

A close loop system using a P ~ I (proportional integral)

type precompensator

k, (1 + 1/T;s) and unity feedback, is desioned on the basis of
sz(s).
Taking the first, second order model. The close = lOOp

transfer function with this will be (eqn. (6.4))

. _
Gog(s) = 00474k 5% (1.44k 0.6474k_/()s +1.44k /]

s%4( 3006474k ) 5+(2+0.6474k /T 1.44k /T) s+ 1,44k /T,

2 .
5 + e 0o oe

= C +ClS+C?

o}
where,

== €y = 1
l.44k£@ -2 - l.44kC

C =
1 47 &

=2.7738 [ + 0.6474k [ + 0.2361 k_
€2 1,44k

From equation (6.5)
25=25

4.242 = 25¢; + 7.07

0 T 25c2 -+ 7.O7cl

= 25c3 + 707 ¢y + ¢y

+ 1
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In this, the very first equation is redundant and putting the

values of Cys Copo etc. in the above equations. We get

k= 10 6090 and'( = 0.8636

The close loop transfer function or original and reduced model

are

(s) = 83:376 + 134.53 5 + 67 896 s° 4+ 13.158 s2 + &%
83.376+143.965+84.865°4+22. 3?s3+? 69675 %40.0943s°

CLO

' and :
115,277 + 20.06 s + 5,93 8°
Georols) = o) 3
. 15.277 + 21,79 s+8.5225% + 0.8636s

Taking the ROM obtained from second method the k_ and Ty are

found to be i.e,

k., = 10.609 and (| = 0.0814. The close loop transfer

function will be

8.78 + 14.2778 s + 5.7321 s°

8.78 + 15.2795 s + 7.5689 s° + 0.8683 &°

Gopols) =

The open loop systems' step responses and closed loop
step responses are shown in Fig. 6.2 and 6.3 respectively, It
is obvious from the responses that they are having a very good

match with the original close loop system's response,

We conclude this chapter by giving certain properties
of the method as -

(1) Once the desired specifications are translated
into a model transfer function this method automat-
ically finds the parameters of a controller of

specified structure.
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(2) In contrast to classical techniques this is once
through design method without resort to any trial and

€rror process.
(3) This'computationally simple.

(4) With a minimum amount of efforts, this method yields
practically realisable controllers conforming the

desired industrial specifications.

However, this design method should be applied with caution
for unstable plants and quite obviously, there is no getting
around difficulties of non-minimum phase plants. Because this
’method is based on approximate model matching and hence, may

lead'to an unstable overall system due to truncation error.This

drawback may be overcome by prespecifying-seme—of—th

p ]...ug ome ne pUl!:‘ PASS NS
positions in the compensator to exactly cancel the effect of
right hand side poles and zeros. This factor demands further

considerations.

X ¥k
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The advantages of system order reduction techniques
are well known. The main obvious advantages are saving in
computational work in the analysis of large scale systems and
econbmy in the design of associated hardware, for optimal and
sub thimal controllers. The CFE or Pade approximation techniques
suffer from the inherent difficulties viz. (i) the ROMs may be
unstable, (stable), even though the original system is stable
(unstable). (ii) The ROMs often show poor matching in transient
zone and (iii) It may exhibit non-minimum phase characteristics.
The methods presented in this thesis are deyoid of these short-

comings.

In this thesis several techniques for reducing the order
of large scale systems have been tried on typical systems,
considered by various researchers, using error minimization
techniques for continuous and discrete time systems. The appli-
cability ofrpontinuous time reduction method has been tested for
controller dééign; The softwares for the techniques‘deVeloped
in FORTRAN and have been successfully implemented on PC. The
error tables and step responses of the original and ROMs have

been depicted for tﬁe comparison purposes.

The first introductory chapter lists the various possible

Teasons for going in for KROMs and for the use they have been put

to.

In second chapter a detailed procedure for minimizing

the error is presented. The third chapter gives the idea about

L]
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stability based reduction methods which have been combined with
error minimization technique, in chaptex -~ 4, to yield the ROMs
for continuous time systems. Various mixed methods have been
given for obtaining stable ROMs. As shown.by different examples
in this chapter, all methods work quite well, However it should
be pointed out that the efficacy of a model’reduétion technique
depeﬁds on the perticular use, the ROM put to, In some cases
the stress can be on good matching in low frequency zone while
in some other cases the main objective can be to retain the

transient zone characteristicse.

‘The éxtensions of the above model reduction methods to
discrete time system ére given in chapter - 5. It is well known
that by using bilinear transformation, discrete analog of
continuous tiﬁe model reduction can easily be obtained and similar

conclusions, as in chapter 4, may be drawn.

A methéd has been given for controller design in chapter 6
using ROMs. The method is based on Pade approximation‘and algebraic
in nature. The desired performance is converted into a transfer
function model which is matched with closed loop system to have
identical initial few time moments. The method doeg not require
any trial and error procedure. However, as this method is based
on the principle of approximate model matching, it may lead to

pooTr or unstable control for non-minimum phase and unstable systems.

This work is in the direction t§ provide useful methods
for model order reduction and to design controllers for the
various systems. The given reduction method can be extended for the
reduction of systems with transportation lag and to design sub-

optimal controllers,
P
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APPENDIX - A

Asd | The integral (Chapter - 4)

f 'Y(s) Y (-s) ds

2n3 = joo

Can be evaluated in the following way

[
!I

Y(s)\@;(-s) ds = -1-5

n 2nj f

U ES g e e
27Ij [f...jco (b s + d-‘s )] ds ~ "'f w:‘;:

Where E(s) and D(s) are two polynomialsof the form -

) n;—l

E(S) =EO+ Els+ eesse s + En“l [
— r-1

D(s) = D, + D;s f veses + D, s

1 MR 1 IR Des) 1 L
and n '27:3 1 ——g—{-s ds*'é?r'jf_jwd-s ds:-é\[.En_:_1+Dr_l‘] -

(9]
l

En_l‘and D,._, can be obtained from

a(s) ¢ (-s) = E(s) d(-s) + D(-s) b(s)
[ referz21] |
As2
BILINEAR TRANSFORMATION OF POLYNOMIALS :

In analysing the situation® of transformation, the

procedure can be subdivided into a sequence of elementry 6peration$”'

on polynomial which involves -

(i)  Scaling the magnitude of zeros.
(ii)  Replacing the zeros by their reciprocals.

(iii)  Shifting the zeros by a real constant.



The first two operations are trivial, and for third,
synthetic division is found satisfactory for numerical accuracy.
The sub-division of a bilinear transformation into linear trans-

formation, and inversion and then another linear transformation

is an established technique.

(1) To scale the magnitude of zeros of polynomial (e.g. given
F(x), to replace x by x/K) successive coefficients are

2
multiplied byl,. K, K .44 etc.

Thus if

F(x) = a, X7 4 an__lxn"l *oeeen X+ 2 ...(;)
then
n -1 n-2 2
F(x/K) = a, x4 2, _1X K+ a _oX KE 4 om——
+ a, x gn=1 e “ Ceels(11)

o
(ii) To replace the zeros by their reciprocal, F(x) is

replaced by its reciprocal polynomial x F(3/x) i.e.

n n n
= esee T X +

x F(1/x) a X + a)X + Foa, (X +oag

or in other words, the coefficient order get reversed.

(iii) Reducing all zeros by real constant, 'd',requires evaluatic

of the coefficients of taylor's expansion i.e.

E(xrd) = F(d) + F'(d) x 4 AF@) P 4 e+ E Fn(d)

are
These coefficients /generated dircctly by oynthetlc divisic

alogorithm,
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The sequence of operations required for transformation
x> (x + 1)/{(x - 1) is as follows :

2
X=1

F(x) = F(x + 1) = F(1/x + 1) = F(2/x + 1) = F( + 1)

esof{1idi)
This completes the transformation, ‘

2

Ex. : Let F(x) = 2x3 + 4x% + 6% + 5

Step 1 3  decreasing all zeros by 1 i.e. F(x) =—> F(x+1)
The synthetic division proceeds as follows :

2

4
2

2 6 12 17
2

(1) F(x + 1) =2 x3 + 10 x2 + 20 x + 17

C(i1) Replacing all zeros by their reciprocals @

F(1/x + 1) = 17 x5+ 20 x2 + 10 x + 2

(iii) Scaling all zeros by 2 i.e.

3 2

E(2/x + 1) = 17 x° + 40 x% + 40 x + 16



(iv) Increase all zeros by 1 i.e. F(2/x + 1) = F(2/x = 1). + 1:

17 40 40 16
-17 =~-23 - 17

17 23 17 i1
- 17 - 6
17 6 111
- 17
17 {-11
‘_______.-.—-_
;17
..F('H}=l7x3-llx2+llx+l
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