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The work included in this thesis deals with model reduction 

tech ni.cl LIC S 	ill 	f' req tic ric,y 	ciom,iiil 	i.. c:. 	Ici:u'(I 	c,il 	:I 	I. 	Ii 	1 , 1111c[ ic>ii 

description of the original system. 

The first chapter introduces model reduction problem, its 

necessity and a broad classification of various model reduction 

techniques. This is followed ww a detailed procedure X minimization 
of a performance index, the Integral square cr. ror (iii:,) , in Chapter-? 

Stability based reduction methods are d/scribed in Chapter-3. The 

mixed methods to obtain reduced order model (ROM) are presented 

in Chapter-4, by combining the stability based reduction methods 

of Chapter-3 and error minimization technique. The denominator 

of the ROM is obtained by the stability based reduction, methods 

and optimal coefficients of numerator polynomial arc obtained 

by minimizing, the performance index, ISL;. The respective step-

response of the illustrative examples ure Shown For comparison 

purposes. The mixed methods described in Chapter 1I , are extended 

to reduce the order of discrete-time systems in Chapter-5. A scheme 

to design a controller, using ROMs obtained from mixed methods, 

is given in Chapter-6. 

The computer programs, in FORTRAN, for both continuous and 

discrete time case1;'a have also been devc l oped and =i.mplcmcrlted success-
fully on a PC. 
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1.1 NECESSITY OF P:'ODEL REDUCTION :. 

There are many existing large scale systems, presenting 

a great chaliange to both system analyst and control system 

designers. Such systems may be traced to almost every facet of 

human activity e.g. networks, structures, power system, control 

system, socio—economic system, transportation, process industries 

etc. 

The mathematical procedure of system modelling often leads 

to comprehensive description of a process in the form of high 

order differential equations (For continuous time systems)and 

difference equations (for discrete case) which are 'Jifficult to 

use either for analysis or controller synthesis. It is hence 

useful, and sometimes necessary, to find equations of the same 

-type but of lower order that may be considered to adequately 

reflect the dominant characterstics of system under consideration. 

Some of the main reasons for using reduced order models of higher 

order linear system could be : 

(a) To have a better understanding of system : 

A system of uncomfortably high order poses difficulties 

in its analysis, synthesis or identification, An obvious method 

to deal, with such type of system is to approximate it by a low 

order system which reflect the characteristicaof original system 

such as time constant, damping ratio, natural frequency etc. 

(b) To reduce complexity 

The development of state—space methods and optimal control 

techniques have made the design of control system for high order 
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multivariable system quite feasible. When the order of systems 

become high, special numerical techniques are required to permit 

the calculation to be done at a reasonable cost on. fast digital 

computers. -In such cases an adequate low order model, if avail-

able may substantially reduce the computational burden, hence 

saving in both the memory and time requirement of computer.. 

(c) To reduce hardware complexity : 

A control system design for .a high order system is likely 

to be very compl,cated and of a high order itself. This is 

particularly true for controllers based on optimal control theor,  

Controllers designed based on a low order model will be less 

costly and.easy to implement and maintain. 

(d) To make feasible design 
C, 

Reduced, order models, may effectively be used in sfcial 

situations like 

(i) On line interactive system modelling. 

(ii) Sub optimal control derived by simplified model. 

(iii) Adaptive control. 

(iv) Prediction of transient response sensitivity, 

dynamic error of high order systems. 

1.2  STATEMENT OF MODEL REDUCTION : 

The reduction of a high order system into its lower order 

approxirnants can be done in frequency-domain and time-domain as 

well. In frequency domain the problem can be stated as.- 

Given a transfer function description of a higher order 



single input — single output (SISO) system : 

a + als + a s2  + ... +' an, sn—1  Ns 
Co (S)  ` b + b1s + b2s + ... + b +is  = D $ 

o  n 

where n is the order of the system. 

A reduced order model is desired, which can adequately 

describe the significant dynamic behaviour of the original system 

and can be expressed as 

co  + cis + c2s2  + ... + Cr 
Gr (S) = 	 ----- 	, r < n 

do  + d1s + d2s + o .. + dr+lsr  

where r is the order of the reduced order system. 

In time domain, the systems can be described by the 

following state space equations 

Original System 	(Reduced Order System (r < n) 

2( t) = AX(t)  + Bu( t) 	 = A r( t) + Bu( t) 

y(t) = CX(t) + DU(t) 	y( t) = C j Xr( t) + Du(t) 

where, 	 where, 

X(t) = nx1 state vector 	Xr( t) = rxl state vector 

u( t) = mxl input vector 	Ar 	= rxr system matrix 

A = nxn system matrix B 	= rxm input matrix 

B = nxm input matrix Cr 	= fxr output matrix 

y(t) = (/xi output vector Dr 	= 'xm transmission matrix 

C = gxn output matrix (For SISO (' = m = 1) 	and in physical 
D = 	xm transmission matrix 
systems, transmission matrix, in general,is 	zero. 
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1.3  CLASSIFICATION OF MODEL REDUCTION TECHNIQUES  : 

The order reduction tebhniques can broadly be classified 

as — 

1.3.1  Time domain simplification techniques 

In time domain reduction techniques the original and 

reduced systems are expressed in state space form. The order 

of matrices Ar, Br , Cr  are less than A, B, C and the output 

yr  will be a close approximation to.y for specified inputs. The 

time domain techniques belong to either of the following 

categories ;  

(1)  Modal Analysis  : This category attempts to ttain 

the dominant eigen values of the original system 

and then obtains the remaining parameters of the 

low order model in such a way that its response, 

to a certain specified input should approximate closely 

to that of high order system. The method proposed by 

DAVIS,pgj [2],  AOKI [ 12] belong to this category. 

Davison's method consists of diagonalising of the 

system matrix and neglecting the large eigen values. 

In this case, the input is taken as step function 

and all the elgen values are assumed to be distinct. 

This restriction, however, was removed by 

CHIDAMBARA [4] and DAVISON [3]. AOKI [12] took a 

more general approach based on aggregation. A method 

to improve the quality of simplified aggregated models 
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of systems without increasing order of the state 

differential equations has been given by GRUCA et-al-

[5]. It consisted of introduction of delay in the 

output vector of aggregated model to minimize a 

quality index function of the output error vector. 

However, the numerical difficulties and the absence 

of guide lines for selecting the weighting matrices 

in performance index of this method were well observed 

by the researchers. INOOKA et.al.[6] proposed a method 

.based on combining the method of aggregation and 

integral square error (ISE) criterian. In important 

variation, of dominant eigen value concept was 

proposed by KUPPURAJULU and ELANGOVAN [7] wherein 

the high order system is replaced by three models, 

successively representing the initial, intermediate 

and final stages of the transient response.. 

The above out-lined approaches, though useful 

in many applications, suffer from the following 

disadvantages : 

(i) The computation of eigen values, eigen vectors 

and the aggregation matrix may be quite formidable 

for a very high order system. 

(ii). In cases, where the eigen values of a system 

are close together or where the eigen values are not 

easily identified or for system without dominant 

mode, these methods cbviously fail. 

(iii) There may be considerable difference between 

the steady state responses of the high order system 
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and its low order model to certain inputs [2]. 

However this shortcoming was removed by CI-IIDAMBARA [4] 

at the cost of poor matching during transient period. 

The above mentioned points led to the optimum model 

order reduction approach. 

(2) Optimum model reduction : This second group is 

based on obtaining a low order model of a given 

high order system so that its impulse or step res- 

ponse will match to that of the original system in 

optimum manner with no restriction on the location of 

eigen values. Such techniques aim at minimizing a 

selected performance criterion. Which in general, 

is a function of error between the responses of the 

original high order system and its reduced order 

approximant. The parameters of reduced order model 

(ROM) are then obtained either from the necessary 

conditions of optimality or by means of a search 

algorithm. The approximations have been studied for 

step and impulse responses. 

Chidambara (1969) gave two techniques for 

model order reduction where the integral of the 

squared error between the step responses of the 

exact and simplified model is minimized. SINHA and 

BERZNAI [8] solved the problem by using pattern-search 

algorithms. BANDLR et, al. [9] used three different 

gradient techniques for the minimization of performa-~ 

nce index in the simplification problem. YAHAGI [l.Oj 
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obtained optimal low order model by using the 

technique of least square fit, linear, programming 

and parameter optimization. For state space represent-

ation the most important results were obtained by 

WILSON et. al. [ll]. But this also requires the solution 

of Lyapunov type equations. 

But whatever be the approach to the problem, 

the main objective is that the reduced order approxi-

mant should reproduce the significant characteristic 

of the parent system as closely as possible. 

1.3.2 Fre uenc domain sim lification techniques : 

Most frequency domain simplification methods start with 

the transfer function (T.F.) description of the original system. 

The objective in this case is that the frequency domain propert-

ies of the parent system and its reduced order approximant should 

match as closely as possible. They can mainly be classified as 

(1) Continued fraction ex  sion and truncation CFEj : 

This method was first proposed by CHEN and SHIEH 

[13]. Since then various improvements and extension 

of this approach have been presented such as by 

CHEN and SHIEH (.17 , CFIEN and HAN [ 19] etc. In 

this approach the transfer function of the original 

system is expanded in continued fraction form and 

then some of its terms are truncated to get the 

desired order reduced model. CF-HEN [16] extended the 

CFE technique to multivariable system's reduction 



and their design. In this technique, the continued 

fraction expansion and subsequent inversion operations 

to find the simplified model are extremely time 

consuming and laborious, . Though the computer 

oriented algorithms for expansion into CFE and their 

inversion [14] have been divised for various cauer 

forms [17,18], but the serious disadvantage associated 

with the method is that the stability of the ROM is 

not guaranteed, even though the original system is 

stable. This problem may be avoided by CHEN, CHANG 

and HAN [19]. CHUANG [15] suggested an alternative 

CFE technique to have expansions about s = 0 and 
G 

s =  alternatively showing good agreement in both 

transient and steady state regions. 

(2} Pade approximation technique  : In pale approximation 

the power series expansions of high order transfer 

function and that of approximants are equated to 

obtain the prarameters of ROM. Though the method 

renders various advantages such as computational 

simplicity, fitting of steady state value of.output 

of the system and RO&1 for inputs of the form alt, 

However it suffers from serious disadvantage that 

ROM may be unstable (stable) even though the original 

system is stable (unstable). CHUANG [21] proposed a 

partial solution to the stability problem through the 

homographic transformation s = co/(a + 3w), that 
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gives a family of reduced — models of same order. 

CHEM, et, al. [ 19] have obtained stable reduced order 

pade, approximants by using stability equation method. 

(3) Moment matching technique o This technique aims at 

equating a few lower order moments of the reduced 

order model to those of the original system, and 

no consideration is given to other moments. This 

would preserve the low frequency response of the system 

while transient response will be error prone 

BOSLEY et,al.[22] discussed the similarity between 

CFE and moment matching method. However some researchers: 

have shown that the methods based on moment matching, 

pade approximation or CFE are essentially equivalent 

[ 36] .- The- dis advantage of this method is that the 

transient performance of the reduced order model (RUM) 

may not always be satisfactory and also, the stability 

of ROM may not be guaranteed. 

(4) Reduction based on stability criteria  HUTTON and 

FRIED LAND [23j based their method on a — G expansion 

that, uses the Routh table of the original transfer 

function. The advantage of this method Is that the 

ROM will be stable if the original model is stable. 

Another Routh—based model reduction scheme has been 

suggested by KRISHANAMURTHY et. al. [24] . This has the 

advantage that once' the Routh-Hurwitz arrays for 
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the numerator and denominator polynomial of the 

original model are constructed, the various ROM 

are produced by mere inspection•SHAL'ASH [25] combined 

this method with Pade approximation technique to get 

stable ROMS. CHEN et.al.[26]  have given a technique 

which uses stability equations for finding stable 

reduced order models. 

This chapter has introduced the model reduction problem 

along with a broad classification of reduction techniques. Only 

appropriate references have been cited for the methods which will 

be used in this thesis. 

1.4 MOTIVATION AND SCOPE OF THE THESIS 

The objective of this thesis is to study _some_..mixedmethods 

of model order reduction using error minimization techniques for 

continuous and discrete time systems and then check the suitabil-

ity of reduction methods for controller designes. The author has 

developed the computer programs for reduction of continuous and 

discrete time SISO systems. This work is based on error minimiz-

ation technique which has been described in detail in the next 

chapter. 



atn nammeters  
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In previous chapter it has been stated that in some 

reduction techniques we chose certain performance criterion which 

is a function of unknown system parameters. The maximum or mini- 

mum value of this index then corresponds to optimum set of 

parameter values. A number of such performance criterion are 

used in practice.. The most common being the integral square 

error (ISE) given by 

Ca 

ISE = f e( t) dt 
0 

which is nothing but the square of the error between input and 

output when a step input is given to it. This chosen performance 

index (P.I.) is then minimized as under. 

2.1 PROCEDURE TO CALCULATE I.S.E. 12Z : 

With :reference to the Fig. 2.1 let 
n—i 	i 

E(S) 

E cis 
_ i_o 	C s 

' 	n 	=  
E 	di s c 
1-o 

the error transfer function 

E(s) = 1+G s) 
	 ...( 2•2a) 

The I.S.E. is given by 

in = f e2( t) dt  
0 

+jco 

2-x ~ f 	E(s) E(—s) ds (by using p ars oval theorem) 
J 	 .... (.;.-S:.2c) 



v 
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The steps involved are 

(i) Start with Fourier transform of error as a function 

of the complex frequency s. This function will involve 

the free parameters of the system as unknown coeff-

icients. 

(ii) Use Parseval's theorem, to get T.S.E. in terms of 

the error transform, E(s) [equation (2.1)]. 

(iii) Solve the _integral encountered, solution of which 

will be internis of coefficients appearing in E(s), 

i.. e. In  = f (c0 , cl  ..... , cn _1; d0U , d10... dn ) 

(iv) Use the standard minimization procedures, to obtain 

the values of unknowns. In other words, to minimize 

ISE, co, c1  c2.... cn_l  and do , d1..... d are 
adjusted by equating partial derivatives of In  to 

zero with respect to these parameters and solving 

the resultant set of equations for the values of 

parameters. 

2.2  METHODS TO SOLVE DEFINITE INTEGRAL  : 

There are a number of methods available to solve the 

integral as in equation (2.2c) . Here, however we give two 

methods to solve the integral. 

2.2.1  Method I : Using initial value theorem  : 

Taking equation (2.1.) as a reference point, the ISE for 

a nth  order system will be 
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In — 2nj 
:;:: 	ds  ...(2.3) 
_J 

where, 

C(s) is a polynomial in s, and can have roots in right 

half of complex frequency plane and D(s) is a polynomial in s, 

and can have roots only in left half of complex frequency. plane. 

For s = jw 

C( ~~ _ C( ;) = C(—s) , ;,;,here b0.i: denotes the complex 
conjugate 

and 
D(—s) 

Let 

where, 

Cs X C—s 	As + s  Ds D—s ^ Ds 	D s
) 

 

n—1 
A(s) = Y.ais~ 	 ...(2.4a) 

i=o 

n—1 
B(s) = E 	bisi 	 ...(2.4b) 

i =o 

Since, C(s) x C(a-s) will be an even function of 's' (complex 

con jugate property) 

= A( --s ) 

So, integral in equation (2.3) can be rewritten as 

	

I — 	1 	fj0C As 	A—s 	ds 

	

n — 	2inj 	 Co_ 	Ds 	D—s 

1 
— 2nj Cf_C0Us ds + f 	D!$ ds 

+jam 
2 I f 	A 5 ds ] (by- change o 	... (2.5) — 2nJ 	~, ja, 	s 	variables) 



15 

Equation (2.5) shows that the I will be equal to the one 

half of Laplace inverse of A(s)/D(s) evaluated at t = 0. 

Thus, usinr initial value theorem, 
1n = 2 x ,C 	Hs, 	0 	2 x L —1[ 	1 imi t Gf-3 ] t--~0 

_ limit 	1 A s 	_ limit 	A s _ an-1 
~" [ 	S)] _ s _  >oo s X ll s — 	...... 

n 
•,0(2.6) 

Thus only one coefficient an-1 is needed to compute the 

integral's value. 

From equation (2.4) 

A(s) x D(-s) + A(-s) D(s) - C(s) x C(-s)  

in expanded form , 

n-i 
A(s) x D(is) = E 

1=0 

n 
ais' x F d j(—s) J 

,J-0 

n-1 n 
_ E  E  (-1)i x ai x d. x si+~ 

i-0 j=0 

Likewise, 

n-1 n 
A(—s) x D(+s) = E 	E (_1)1 x ai x d j x s l+a 

i=0 j=0 

collecting equal powers of s in eqn. (2.7) 
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m=2n-1  2n-1 
A(s) x D(—s) + A(—S) x D(s) = E 	Em Sm + E 	(_1)m E sm m=0 	 m=O 	m 

m=2n-1 
z  (1+(_1)m)  Em sm 
m=0 

where, 

Em = 

m (_1)m-1 aidmwi, for 0< m < n— 1 
i=0 

n—i 
F. (-i)' 	al dmei ; for  n < m< 2n-1 
i=m—n 

.•.(2.8) 

n—i 	n-1 
C(s) x C(—s) = E 	c. s x 1 	c.(-s) i=0 i 

J=fl 

n-1  = E 	( _1) cicjs 
i,j=0 

Again, collecting equal powers of 's' 

2n-2 
C(s) x C(—s) _ E 	2 mxsm 

m=0 

m 
where,  z (-1)k ckcm_k : for 0 < m < n-1 

2x C = k 
n-i 

(-1) kck cm_ k; for n < in < 2n-2 
k=m—n+1 

...(2.9) 

Putting all the deduced values in equation (2.4) yields 

2n-1 1+ —1 in  m 2n-2  m 
E 	( 	 ) Fms = L 	C s 	 ...(2.x,0) 2  
rn~ 	 rn= 0 

Due to the cancellation of coefficients, only even powers 

of s will appear. Equating even powers of 's' will give rise to 
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n non-linear algebraic equations i.e. Em=C ri(m= C,;',...,n r2) 

m 
E (1)' aidm` Cm ; for 0 < m < n - 1 
1=0 -i 

n-1 
E (...i) 3 	a 	dm_ j  = Cm  ; 	for n < m < 2n-1 

The coefficient matrix will slightly differ according to 
'n' whether even or odd. That is to say 

(i) 	for n even, 	the equations will be 

d0  00 	......0 a© 00  

d2 d1d0..... 0 -al. C2  
• 
• 

s 	• 

- • •.(24.1) 

do do-1 	..... dl  
0 0 	do... 	d3  
0 0 	0 	... 	do-1 

n- 
(-l)1 en-1 C2n_2 

(ii) 	for n odd, 
d0  0 	0 ... 	0 aU ICU 7 
d2  dl  d0... 	0 -al  I  C2  

do-1 do-2 ... 	d0  • L ' 	...(2.12) 

0 do do-1.. d2  • ,  
• 

0 0 	.... 	dn..l 
n-1 

( 1) 	an-1 C2n-  2 J  

In general DA = C . , . (2.13) 



Hence, the coefficient an—i  can be evaluated. 

2.2.2  Usina residue theorem  : 

(a) Considering the first order transfer function : 

G(s) = Co 	— Co 

where, 
d0  

a= dl 

1 +j00 co 	co ISE , I I 	2n j f dls x  d — dis 	ds 

The roots of the G(—s) will be complex conjugate of G(s) 

and will lie outside the contour, and thus will have no effect. 

So, 

I1 = 21  [2n j E residues at all L.N.S. poles] 

c 2 _ d2  [ do  + 

I dl 

C2  

2o 	0 
0 

1 d1 	di  

So, 	 2  
0 

(b) Considering a second order transfer function .G(s) i.e. 

co  + c1s 	co 	cIs 
G(s) 

do  + d1s + d2s2 	s + ac1TtYs+a2 
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where, 

a1 and a2 are poles of G(s) and , 

a1 + a2 	d1/d2 

al. a2 = do/d2 

Then, 
1 	+ jco 	co + cis 

-jco 	do +- d1s + d2s2 x 
co - cls 	- ds 
do - d s + d2 s2 

Again the roots of the G(-s) will be complex conjugate of G(s) 

and will lie outside the contour, and so, 

I2 = 2- 	2n j E residues at all L.H.S. poles j 

2 22 
 2 C - c a  c - c2 a2 y o 	1 1 	+ 0 	1 2 

d2(a2-a1) (2a1) (al+a2 ) 	d (--a2+a1) (-a2-a1)( -2cc2) 

ca (a2~-al) + c1a1 2(a2 -- al) 	cp + C 

= d2(a2-al) (al+a2) (2a1a2) 	w d2(al+a2) (2ala2) 

(by putting values of ala2 and (aI + a2)) 

c02 d2 + c1d1 
12 = 2d0d1d2 

Likewise, 

c dod1 . (c1--2c0c2)dod+cod?d3 

3 _ 	2d0d3~. 	c,d3 t LLL CA ) 

(for other values of I.S.E. refer Newton et.al.[27]). 



The error calculated from above procedures comes in terms 

of the unknown system parameters whose optimum values can be 

found by usual gradient method. 

The error minimization technique is employed to obtain 

reduced order models in a different way -- i.e. instead of taking 

the error between output and input, the performance criterion 

is taken as the error between the step responses of original and 

reduced systems. This error can always as the ratio of two 

polynomials as in equation (2.1) . 

The next chapter introduces the stability criterion 

based reduction methods which will be utilized in subsequent 

chapter. 



:;~ tiMn+.;,~ 	 ~~yw~~~ .,~. 	4_„ sr•—"p~, 	iu,{4 ~ 	.~~F' ~.~"+a 	~y jp . 
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rs 

5' tab/e re '~....Jc t ?r rr~etho~ ~u 
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In this chapter we will introduce the four different 

methods used to find the stable denominator of the ROM. 

The methods are — 

3.1  DOMINANT POLE RETENTION METHOD  : [ 2] 

In this method, the reduced denominator (Dr) is formed 

by selecting the dominant poles, which are generally the poles 

nearer to iima.ginary axis in s—plane. The magnitude of residues 

at respective poles can be considered as the guiding factor to 

decide about dominant poles. The poles with large residues are 

said to be dominant. 

Considering the Dr of the original system of order n 

D(s) = (s + al)( 	s + 	a2)........ 	(. 	f:a)`  . 

A reduced denominator is formed by selecting r dominant poles, i.e. 

Dr($) = (s + a1 )( s + a2).,.., (s + a) 

However, this method suffers from the following disadvan- 

tages: 

(i) There is no enough justification (apart from the stability) 

as to why a reduced order model must have only those 

poles that are present in the large order system and 

none else. 

(ii) The computation of roots of polynomial may be quite 

formidable for high order system. 

(iii) In case,. the poles are close together, the method will 

obviously fail. 
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3.2 1i1iETHODS BASED ON STABILITY CRITERIA : 

3.2.1 Routh approximation method : [ 23] 

The basic idea underlined in this method is to construct 

South— Hurwitz array for denominator of the original system and 

then to construct the denominator for ROM in a manner such that 

the coefficients of its Routh— Hurwitz array agree upto a given 

order with those of the original model. The approximation 

ensures the stability of RO1.'l. The procedure to construct deno-

minator of ROPA is as follows : 

Any transfer function of a system can always as written 

as : 

G(s) = P1F1(s) + P2F2('s)F1(s) + P3F3(s)F2(s)F1(s) + ...... 

+ p Fn(s) ....  n 

n  i 
c  p1 	F.(s)  ...(3.~) 
i=1 i j=l 

where, 13i are constants and Fi are defined by GFE, 

F (s) = i 3 1 + 1 

i+1 	ai , s + 
'~ 	1 

o ~n—Is + as 

For i = 1, the definition is modified slightly , i.e. 

the first term in CFE is taken as (i+ a1s) instead of a1s. 

The canonical form of eqn. (3.1) is refered as the cx—N expansion 

of G(s) and plays a fundamental role in theory of Routh—approxi- 

mation. The table constructed with denominator polynomial of 
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G(s) is called a-expansion and with that of numerator is called 

as p-expansion . Here, we are showing as how the a-table is 

constructed, as shown in Table -- 3.1 

Table - 3.1 : Alpha (Routh) Table. 

do - d d2 = d2  d4 -- d4  ... 

d3  d4 	d5  

d
0 

a1'= --°— do=d2 -ald1  d2=d4 a ld1 	.... 	.... 
d 
0 
1 

a2  = d2 d3=d2-a 
22 

 d2=d4 .... 	... a2d4 
d o 
0  

• 
• 

• dneZ 	°. 	 ° 
a  _ 	dn+ 1_dn-l-a  do 

n 	do 	o 	n 	n 2 	°"° 	°°" 
0 

The first two rows of the table are constructed from the 

denominator of the original system under the assumption, 

d = 0 = d_1 L j > n 

The ream i. X3.entries are formed by cross-multiplication rule; 

di+1 
0 

di-1 
2 	

_ di a 
i 2 

d1+l _ di-1 _ 
4 a. dI 	; 2 i 4 

s • • 
'S.  

do -i.-2 ' dn-i do  c'i 	-i 

; for 5. = 1,2,3,..., n-1 

...( 3.3) 
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(where denominator D (s) = E 	d.s') 

n 	i=o 

The al  are marginal entries given by 

o 	, 
ai =- — -- 

for  (n — i) odd, the last equation of eqn. (3.3) is modified — 

i+l _ :L--t 
do —i_1  ..,(3.4) 

Assuming the G(s) to be asymtotically stable i.e. all 

the poles have negative real parts, the Routh —stability test 

guarantees that all do, in first coloumn of Table — 3.1 are 

non—zero and will have the same sign. The denominator for ROM 

is now computed from the a—expansion Table — 3.1 by introducing 

Routh—convergents. 

3.2.1.1 Routh convergents_ : The rth  order Routh—convergent 

for G(s) is obtained by truncating the a—expansion and arranging 

the results as a rational polynomial in s. The truncation 

eliminates those terms in a—expansion . containing ar+l, a1.+i, , •. 

an  and thus depends on only first ar  coefficients i.e. 

Dri(s) = 1 + als 

D 2(s) = a1a2s2  + a2s + 1 	
...(3.5) 

• • • . 

Drr  (s)• = ats ' x  

For control application, it is preferable to obtain a 

low frequency response approximation by applying the reciprocal 

transformation, which is merely the operation of reversing the 

order of polynomial coefficients. 
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This means, 

D( s) = S n( l/s) = do sn + dn-1s'1 + .... + d 

It is obvious that a second transformation will give 

the original denominator. Thus for rt h order model, 

D..~(s)  

Let us ellaborate a step—wise procedure by taking 

an example. 

Ex. 3.2.1 — Let Dos) = 2s4 + 36s3 + 204s2 + 360s + 240 

Step (i) : 	n(s) = S D4(.1/s) = 240s + 3~Os3 + 204s2 + 36s + 2 

Step (ii): 	Construct thetable for a — expansion 

240 204 2 

360 36 0 

al - 2/3 	 180 	2 0 

a2 2 	 32 	0 0 

a3 = 45/8 	 2 	0 0 

a4 16 

For second order (say) 

D2(s) = 4/3 s2 + 2s + 1 

= 1/3 (4s2 + 6s + 3) 

D2(s) = 3s2 + 6s + 4 
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3.2.2 Routh-Hurwitz arra method : [24] 

This method does not require reciprocal transformation, 

reduces the mathematical manipulation encountered in the cal-

culation of a-expansion coefficients. This is an alternative 

approach of obtaining Routh type models. It uses the Routh-

Hurwitz array formulation of the denominator of the original 

system. Let the denominator of the original system be 

	

n 	 «~ 	n3 U(s)jI(s) = c11s, + c21sn-1 + c12sn2 + c22s - + .... e 

The Routh -stability is depicted in Table - (3.2) . 

Table - 3.2 : Routh - Hurwitz array. 

	

c11 	c12 	C13 	.... 

	

C21 	c22 	C23 	°••• 

C31 
c32 ••• •••" 

C41 C42 .•• •••. 

• S 

• 

cn-191 cn-1 , 2 . , . .. • 

cn l ••e• ••• ese 

C .••• ••• e•• n+ l , l 
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The first two rows of the table are constructed from the coeff- 

icients of denominator, iDn(s) of G(s) . The first row consists of 

the odd numbered coefficients and second row is formed by the 

even numbered coefficients. While the numbering is done from 

higher power of s to lower one. The rest part of the table 

is completed in conventional way by computing the coefficients 

of succeeding rows by — 

— [c 	x c 	]/ c  ci, j~ ci-2' j+l 	i-2,1 	i-1,+]. 	i-1,1 

for 	i >3 and 1 < j < [(n—i + 32] 

Where [ . ] stands for integral part of the quantity. 

A reduced order polynomial can always be constructed with 

this table. It should be noted that the effect of all coefficients 

of the previous two rows have already been taken into account 

while computing the subsequent rows. For a rth order model 

(n—r+l) th and (n-r+2) th rows are chosen to form the denominator 

polynomial of the reduced order model. 

Ex. 3.3.2 : D4(s) = 240 s4 + 360 s3 + 204 s2 + 36 s + 2 

s4 I 	240 	204 	2 

S3 	360 	36 

s 2 	:180 	2 	• 

$l 	32 	 •• 

S0  2 



For a second order reduced order model, the denominator will 

be 

D2(s) = 180 s2 + 32 s + 2 

3.2.3 Stability equation method : [ 26] 

In this method only two equations (called stability 

equations) with one-half of the order of original model need 

to be factored. The method proceeds in the following way 

Let, 	
a21 + a22S + a23S2 + .... + a2 n S

n•-1 	Fn(s) 

H(s) 	 ~ 	 ~ 	~ F s 

	

11 + a12s 	...... 	+ a1 	 1s 	d 

For stable systems, the even and odd parts i.e. stability 

equati:)n car' -be factored as 

Fd(s) = all 	(1+s2/ x2) 

. • s (3 . 7 ) 

and 	Fdo(s) ; a125 	(1 + s2, y1) 
1=1 

Where, f 1 and 2 are integer parts of n/2 and (n-l) /2 respect- 

ively and 

2 •  x < y2 < x2  2 < y < ..... 1 	1 	2. 	2 

The y and x are in sequence. Discarding the factor 

with larger magnitude of y or xi alternatly is the process 

of reducing stability equations. 

The reduced stability equation with desired order r are 

written as : 
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ml 

Fde(3i = all 
i=l 

m2 

Fdo(s) = a12s 
i=1 

(1 + s2/x2) 

(1 + s2/YI) 

. . . ( 3..10) 

where, ml and m2 are integer part of r/2 and (r—l) /2, 

respectively. Then the reduced denominator can be constructed as 

r 
Fdr(s) = Fe(S) + Fdo(s) 

r 
'  a1 +1 j=o  ~J 

Again, the method is well—illustrated by an example. 

Ex. 3.2.3 : Let a system with a transfer function 

H(s) = 	1 
(`s3 + 3s2 + 2.99 $ + 0.99) 

Fde(s) = 0.99 (1 + . 33 	) 

2 
Fdo(s) = 2.99 s ( 1 + 2S& 

discarding the factor with y.= 2.99, the reduced denominator 

will be 

Fd2(s) = 32 + 2.99 s + 0.99. 

Various stability based reduction methods have been 

described in this chapter for reducing the denominator which 



30 

w1.1.l be used for finding the ROMs. The mixed methods using 

advantages of error minimization technique and stability based 

methods forms the content of Chapter m 4. 
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4.1 INTRODUCTION : 

The importance and necessity of the subject of reduced 

order modelling of high order complex systems have been detailed 

in first chapter. The topic has aroused widespread interest 

which is evident from the large number of research publications. 

The work included in this chapter deals with frequency domain 

mode1 reduction techniques based on transfer function discription 

of the original high order system. 

4.2 METHOD NO. 1 : 

Mixed Method Using Dominant Pole Retention : 

In this method the denominator of ROM is found using 

dominant pole retention method, while the numerator coefficients 

of the ROM are found by error minimization technique described 

in Chapter - 2. 

Let G0(s) be the nth order trnnsfer function descript- 

ion of a system -- 

G0(s) 
 _ a0 + aIs + 0 0 0 0 `E' an sI al 	

~4. ~  n 	 ...( 	) 
bo + 6is +.... + ins 

• Let si, s2, 0000, Sr be the dominant roots of denominator 

of G0(s) then rth order ROM can be chosen (r<n) which will have 

unknown coefficients in its numerator polynomial, while the 

denominator polynomial is formed by dominant poles i.e. 

0000.+ c  sr'i co + r- 
Gr(s)  r  ...(.2) 

d0 + dls+.....+ drs 

where, 
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- 
(s-~s1) (s-s2) ... (ss) = F 	dis' 

i=o 

4.2.1 Computation of Numerator coefficients : 

The numerator of the Gr(s) is determined by minimizing 

step response error between the original system and. its ROM 

while also satisfying the steady state value matching constraint. 

Let x(t)= Step response of original system. 

xr(t)= Step..: response of reduced system. 

Then, the step response error is given by 
CO 

e = H x(t) - xr(t) ` 1 2 = f [ x(t) - xr(t) l 2 dt 
0 
CO 

= f[Y(t) - Yr( -t)72 dt 	...(4.3) 
0 

where, 

Y( t) =X( °O) — X( t) 

yr(t) = x(°°) - xr(t) 

...(4.3a) 

Matching the steady state values of original and reduced order 

model, 

c  a 

0  0 
also 

Y(s) = PC f Y(t)I 

y.r(s)= 4yr(t)~ 

So, 

G (s) 	a 	n-1 	n 
Y(s) - X~-- 	- s .- -- ° - E 	1) . s' / E E .

~. 
s r x s 

S  s 	s 	_i=1 	i=o  
0 



33 

ao + als + a2s2+ ..... + an—Zsn"'i 

bo + bis + b2s2+ ..... + bnsn 

Likewise, 
~ 	Gr(S) 

Yr(s) = 
x
S 	— — --- 

r-1 i 	r 
Y(s) = ~: 	cis 	/ 1 d dJ 	 ...(4.5) 

1=0  j=o 

where the following equation can be identified, 

a = aobi+l — a. 1  ; i = o, 1, ..., n-2 	... (4.6a) i 	bo i+ 

an-1 = ao/boxbn  ...(4.6b) 

ci = co/do x di +l 	ci+1 ; r 	o,1,2,... r--2 	,..(4.6c) 

cr—1 = co/do x dr  ..,(4.6d) 

Expanding equation (4.2) 

e = f y2(t) dt — 2f y(t)yr(t) dt + f yr(t) dt 
0 	0 	 0 

By Parsval e s theorm the integrals are transformed into frequency 

domain,  __ 

	

JC* 	 ~ e = ----- 	[,f 	Y(s) Y(—s)ds + f Y r(s)  Y (_s) ds — 21 Y(s)Y(_s)ds 2d  _jam  —jam  —jam  x 

...(4.7) 

The integral 
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1 +j0 	 1 +iCO 2nd-  Y(s) Y(-s) ds and 2~j j  Yr(s) Yr(_s)ds, can 
~OO 	 -jam 

be evaluated in terms of ai, bi of Y(s) and ci, di of Yr(s) 

by using approach given in Chapter - 2. The coefficients ai, bi, 

d are already known at this stage. 

The integral 

+jam 
J Y(s) Yr(-s) ds 

_ joo 

Can also be expressed in terms of cl, C2, .... cr-1 

by extending - the approach of Newton et al [27] and is discussed 
in Appendix — A. Thus 

e = K. + Ar_1 	En--1 + Vr-1 ...(4.a) 

where, 

+jCO 
K =  f  Y(s) Y(—s) ds, is completly known and can 

—jco 
be calculated from the knowledge of ai and bl. 

For the second terms in eqn. (4.7) using same approach, we get 

0 0 .... 0 .... 0 
P 

—A1 

2d0 

2d2 2d1 0 ... 0 ... 0 

2d  2d  2d  2dr-2..  2d  2d1  .. 

c 
0 

2 2coc2—c1 

2coc4-2c1c3"rc2 

O 

SI 

0 	0 	.. 0 	•• 2dr-3 2d r~-1 j E Ar_i 	--2cr-3cr_l+cr-2 
—Cl 



35 

Symbolically, 

DA = C 

Thus inverting D, an expression for An 	in terms of 

co, c1,.... can be found out. Likewise for the third term in 

equation (4.7) we get, 

do 0 0 ... 0 bo 0 .... 0  i Eo 

—dl do 0 ... 0 b1 —bo ... 0  E1 

d—d d ... ® b  —b ,.. 0 2 1 0 	 2 . 
• 

• i 	En —1 

0  0 0 dr-1..—dr10  0 0  —bn  
vo 

8000 

alcc—aocl 

a2c0—alc1+aoc2 

an-~lcr_2 — an-2cr-1 —an—lcr-1 X 

Or symbolically 

NF = p 

vi 

r-1 
•.(4.10) 
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Again by inverting N, expression for En_1  and Vr-1  can be 

obtained. Thus, eqn. (4.7) will be 

e = K + [ml m2 ... mr ] C - [(p l+ gl)(p2-i-q2)... (pn-hr+qn+r)]P 

...(4.11) 

Where, mi  are the elements of the last row of D-1  and 

pi  and qi  are elements of nth  and (n+r) 
th 
 rows of'  In In the 

case of step. response error minimization it is obvious from 

equation(4.7) that co, c10... , Cr-2  are unknown parameters 

while cr_1  is known one. Minimization of e with respect to 
co, c1  .... Cr-2 i.e. 

ae  =0 , i= 0, 1, 2.... r-2 bc. 

will yield (r - 1) linear simultaneous equations 

2m1c0  + 2m2c2  + 2m3c4  .... - K1  = C) 

- 2m2C1  - 2m3c3  v... -- K2  = 0 	...(4,1 2) 

2mr-1 cr-2 + .... 	-Kr-1 =0 

The equations (4.12) can uniquely be solved to obtain c
o' cl"- Cr-2 

which when substituted in eqn. (4.6) will give cl, c2... cz_1  

This completes rth  order reduced model computation. 

Ex. 4.1 : Let a system transfer function discription be [23] 

14s3  + 24892  + 900s + 1200 G0(s)  =  
 s4  + 18s3  + 102 s2  + 120 
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D(s) = (s4  + 18s3  + 102s2  + 120) 

The roots are - REAL PART  IMAGINARY PART 

	

-1.196684 	-0.693370 

	

-1.196684 	+0.693370 

	

-7.803316 	-1.357582 

	

-7.803316 	4-1.357582 

To reduce it to a second order approximant, we assumed 

CD  + cl  S 

G2(s) 
s +2.3934s + 1.9128 

Where, denominator of G2(s) is formed by taking dominant poles 

of the original systems, i.e. 

D2(s) = ( s+1.196684+ j 0.69337) (s+1.1.96684- j 0.69337) 

Matching steady state values of G0(s) and G2(s) yields 

co  = 19.128 

s + (2.3934 - cl) 
Step response of ROM Yr(s)  =  D s 

2 

s + c 
0 

—  U2  S  

Following the procedure described in section 4.2.1; the 

value of co  is obtained as,- 7.5133 which will give 

Co  9.9062 (  co  = 2.3934 - co  ) 

Hence the second order model is 

9.9067 s + 19.1281 G2( s)  

s + 2.3934 s + 1.91281 



4.3 	THOD NNo . 2 : 

Mixed Method Using Routh Approximation : 

In this method, the denominator is obtained by usual 

procedure discribed in section 3.2.1 while the numerator poly-

nomial is obtained by error minimization technique as detailed 

in method No. 1. The ROM of ex. 4.1 is obtained as : 

G2( s ) 	12.296 4 s + 13.3333 

s + 2s + 1.3333 

4.4 METHOD No. 3 : 

Mixed Method Using Routh Stability : 

This method takes the advantage of Routh stability array in com-

bination with the error minization procedure. The denominator 

is obtained by procedure of section 3.2.2. Hence a reduced second 

order model is deduced 

G2(s  ) = 1158.148 s + 1200 

92 s2+156.5217   s + 120 

4.6 METHOD No. 4 : 

Mixed Method Using Stability E cation : 

Combining the method of article 3.2.3 and article 4.2.1 

the second order model is obtained as 

G (s) — 0.1480 s + 100 

2 
 s + 6.6667 s + 10 

Table 4.1 shows the cummulative errors which occur in the output 

for the step input after every 20 seconds, taken for comparison 

purposes i.e. 
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N 
cummulative error, j = f [y(t1) — yr(t i ) 2 dt lh~re y(ti) and 

0 
yr (ti) are the responses of original and reduced order systems 

at t1 and,is the number of sample period, i =(0, 1, 2, 3...N) 

Table — 4.1 : Cummulative error. 

Model from Steady state 	Joutput ( after CMERR 
method no. value 20  secs,) 

1.  10 10.0005 2.13406 

2.  10 10.0000 1.89589 

3.  10 10.0003 52.93622 

4.  10 10.0000 13.09305 

Original 10 9.9997 — 

The step responses of the system and its approximants are depi- 

cted in Fig. 4-.1. 

Ex4.2 : Considering an 8th order model [ 24) 

G ( s) = 35 s2 +1086s6+13285s5+84203s4+278376s3+511812s2+482964s 
o  + 194480 

s8°~33s+437s6+3017s5+11870s4+27470s3+37492s2+28II800 

The third and second order models (obtained by the methods 

outlined in this Chapter) for this problem are, 

Third Order Models 

31.1575s2 + 75.8557s + 40.5167 G3( S)  

s + 3 s + 4s + 2 

(by method No. 1) 



G3(s) 	23.5207 s2  + 25.4971 s + 13.0988 
 s3  + 1.3554 s2  + 1.6972 s + 0.6466 

(by method no. 2) 

03(s)  _ --322212.94s2.+ 5887.145 s + 11.8557
2  s + 2.0613 s + 1.7606 s + 0.5852 

(by method no. 3) 

G3(S)  _ 18.3163 s2  -  221.5941 s + 17.1101 
s + 0.6980 s + 0.2808 s + 0.8446 

(by method no. 4) 

Fig. 4.2 shows the step responces of the original and 

the ROMs. Table 4.2 gives the errors which occur in output. 

II 	Order Models : 

31.3518 S + 20.258 3 02(5  ) y   
s + 2s + 1 

G2(s)  = 16.8766 s + 9.6642 
s +0.9002s+0.4770 

18.5134 s + 6.8574 02( s)   
s + 1.0183 s + 0.3385 

02(S)  _ 4.9888s + 24.5126 
s + 0.4022 s + 1.2.1. 

The table - 4.3 and Fig. 4.3 show the cummulative error 

and responses respectively. 
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Table - 4.2 : Cum ulative error. 

Model from fteady state Output after 	CMERR 
method 	value 	(20 sec.) 

1. 	20.2584 	20.25835 	214.709 

2.  20.2584 20.218227 	Large error 

3.  20.2584 20.260999 	263.82054 

4.  20.2584 20.29067 	Large error 

Original 20.2584 20.25834 	- 

Table - 4.3 : Cumryiulative error. 

Model from ISteady state Output after CMMiRRR 
method value 	J(2O sec.) 

1.  20.2583 20.2583 13.742 

2.  20.2583 20.2569 369.52 

3.  20.2583 20.2600 587.589 

4.  20.2583 20.2575 

Original 20.2584 20.2583 - 
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4, 6 OTHER EXXAPLES : 

The program output and step responses of the following 

systems and their respective ROMs are given in (.) 

0 (S) = 5+ 15 s 

	

' ° 	1 + 1.8 s + 7.8 s + 0.7 

(WHITEFIELD [35] , Fig. 4.4, Second order ROMs) 

5 +, 99.8432 s + 506.649782 + 81.06913_ s3 

	

° 	5+ 101.05 s + 521.01 s2 + 105.2 s3 1- s4 

(SHAVASH [25"1, Fig. 4.5, Third order ROMs) 

Ex.ti•S G0(s) 	2 + 6 s + 8s22 

2+ 5s + 4s + s 

(CHUANG [ 15 3, Fig. 4.3a, Second order ROMs) 

°x •G•~ Multivariable System 

Considering the transfer matrix of a linearized model 

for a gas turbine developed by rAULLfR (1971) for which 

rh2l

il(s) 	h12( s)

H(s) _ (s) 	h22(s ) 
L)( s) 

where, 

hll(s) = 14.90 s2 + 1506.473s + 2543.2 

h12(s) = 95150 s2 + 1132094.7 s + 1805947 

h21(s) = 85.2 s2 + 8642.888 s + 12268.8 

h ?2(s) = 12400 s2 + 1.492588 	s • 252680 

D(s) = s4 + 113.225 s3 + 1357.275 s2 + 3499.75 s + 2525 

(s + 1.3471) (s+x..8735) (,j+10.0047) (s-+-99.999) 
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Let us select the denominator by domainant pole retention method. 

Then 
Bo  + 81  s 

Car  
bo  + b1s + b2s 

where, 

bo  + bls + b2s2  = (s + 1.8235)(s + 1.3471) 

= 	+ 3.2206 s + 2.5238 

To match the steady state value of the system and ROM 

	

2.542 	1805.10 
Bo = 

	

12.2630 	252.56 

Minimization of error will yield four unknown linear equation, 

which will give 

	

[1.2033 	932.8647 
gl 
 
- 

	

7.154 	1436.2 

by other methods, the coefficients matrices are 

Method No. 	Bo 	 B I 

29 	 ri

543.2 
2268.8 	1 252680 

1805947.` 
j 

X344.9 

L1197 

1699679 
903236.4. 

3. rl.9938  1415.779 
198.0894) 

900.9204 
9.6182 

[61.1884 
.8422 1201.063 

4. E31.1325 22107.43 
[P.7476
-1.6918 —62.3381 

50.188 3093.173 8512.143 

The step responses of the system are shown in Fig. 4.6, 4.7, 
4.8, 4.9 respectively. 
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On the basis of the results of the examples taken and from 

their respective step responses, the following conclusions may be 

drawn - 

In the example 4.1, responses of the ROMs are well matched 

for all methods, while method number 3 gives some error in trans-

ient zone, but the steady state response is matched properly. For 

the example 4.2, the system is reduced to its third and second 

order approximants. The step responses of third order MhAs are 

shown only for method number 1 and 2. It may be seen that method 

number 1 gives satisfactory results while method number 2 shows 

some oscillatory behaviour (Fig. 4.2). This may be due to the 

existance of complex poles of ROM. When the same system is reduced 

to its second order ROM, the better response is given by method 

number 1 as compared to method number 2 and 3.respectively. This 

has also been confirmed by the step response error in Table 4.3. 

For example 4.3, all the four methods yield good responses. 

However, model obtained by method number 3 shov;s poor matching in 

transient period. In example 4.4, the method number 4 fails to 

give satisfactory results while others give good matching of res-

ponses with that of original system response. In case of CHUNG 

model (example 4,5), all methods give good results. 

All the presented methods have been sucessively applied 

to each element of transfer matrix of a MItvO system. As shown in 

Figures (4.6 - 4.9) the results are quite satisfactory. 

The methods outlined in this chapter have been extended to 

discrete time system in chapter— 5. 

* * * 
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5.1 INTRODUCTION : 

The analysis and design of high order discrete time 

dynamic systems are often required in many applications. Hence, 

of late, as evident from the many recent investigations model 

reduction of discrete — time systems has assumed immense 

importance. 

As for continuous time systems, several investigations 

have been made for the model order reduction of discrete time 

systems. Some of these attempts to simplify directly in Z—domain 

while many other have used the bilinear transformation to extend 

continuous time reduction methods to discrete time case. 

Nodal approach of DAVISON [2] for continuous time state—

space model has been extended to the discrete time case by 

WILSON et.al. [28], which is based on obtaining a discrete time 

ROM on least square fit of ROM to that of original Z—domain 

system, . The CFE method [ 14] has extended to Z--domain by 

SHIH and WU .[29] and SHAMASH [30].   Pade type approximation and 

moment matching method have also been used in the same way {32]. 

A mixed method of PARTHSARTHY et.al. [31] matches a combination 

of time moments and Markov parameters and is claimed to be 

computationally superior to that of SHAMASH [32).  CHUANG [ 21] 

has given a partial solution to the problem of Pade type [OM 

( being unstable)by using homographic transformation Z. = w/UA + Bw) 

where, A E are constants, gives a family of ROMs of same order. 

A mixed method using a combination of Pade—approximation and 
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dominant pole retention have also been proposed. SHIEH et.al. 

[33] have also given a mixed method utilising the dominant 

eigen value concept and CFE approach. APPIAH [3'1] proposed a 

method using HURWITZ polynomial approximation coupled with Pade-

type time moment matching. CHEN et.al. [26] have used the stab-

ility equation method to get stable low- order approximants. 

After . SHIH and WN [29],   used the bilinear transformation to 

extend the CFE approach to simplify discrete time systems, it 

became well known that most of the reduction methods for 

continuous time domain can also be applied to discrete time 

systems, such as CFE method [29,33], stability equation method 

[26] HURWITZ polynomial method [34]. 

In -spi-te of the success of the extension of continuous time 

systems reduction methods to discrete time system using billinear 
transformation (or similar transformations), there still 

remains two distinct disadvantages 

(i) Due to the nature of bilinear transformation, the 

initial value of the step response of reduced 

model may not be zero, inspite of zero initial 

condition of original step-response. 

(ii) Most of the methods mentioned in section 5.1 are 

either in frequency domain or in time domain, and 

they are designed to secure a good fitting in 

their respective domain, consequently a reduced 

order model may be satisfactory in one domain, 

but unsatisfactory in another domain. 
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In order to circumvent, the problem associated (with 

order reduction of discrete systems) as mentioned in the last 

paragraph, -a more enhanced technique i.e. a combination of 

time and frequency domain approach for order reduction is 

utilized, with stability guaranteed. The method consists of 

four steps s fated below — 

(i) Transformation of denominator polynomial (Dn(z)) of 

Z—transfer function into w—domain by bilinear trans-

formation z = w + 1/ w — 1 

(ii) Using one of the method, among the methods available 

for order reduction of denominator polynomial in 

frequency domain to reduce Dn(W) 

(iii) Changing the reduced denominator polynomial into 

Z-domain, by using reverse I llinear transformation 

w = z + 1/z — 1 

(iv) To find the optimal coefficients of numerator polyno-

mial in reduced model the sum of the squared errors 

of unit step response of reduced order model and unit 

step response of original model is minimized. 

For completeness, a brief review of four stable redu-

ction methods for denominator polynomial is first given, 

5.2 . STABLE _-REDUCTION METHODS : 

5.2.1 Dominant pole retention. : 

Let the charact->Lstic polynomial of original system 

in frequency domain be (by using bilinear transformation) 



n 	n-1. D(w) = anw + an^lw 	+ ... +  

The reduced characterstic polynomial Dr(w) of rth 

order with r < n is obtained by retaining significant poles 

i.e. retaining poles which are near to imaginary axis. The 

reverse bilinear transformation will give the 

5.2.2  Routh—approximation  : 

HUTTON and FRIEDLAND [23] first introduced Routh—

approximation for reducing the order of continuous—time domain 

systems. Later a more simpler method was suggested by 

KRISHNAMURTHY and SHLSHADRI [24] . The extension to the w— . 

domain ( Routh approximation) is given as follows 

D+(w) = w +  

D2(w) = w2  + a?w + ala? 	 ... (5.)  

w + a2a3w + ala2a3  

The reduced order characteristic polynomial will be 

Dr(w) = w D o2(w) + arDr i(w)  

with 

= l/w ; D(w) = 1 

Here the coefficients ai  are obtained from modified Routh 

table (3.1). 

5.2.3 Hurwitz polynomial approximation  : 

The Hurwitz polynomial approximation proposed by 

APPIAH [34] is applied in the w —. domain. Equation (5.1) 

can be rewritten as : 



63 

Dn(w) = g(w2 ) + wh(w2) 	 • .. 

where, 

g(w2) = E(w) = ao  + a2w2  + .... (Even part of Dn(w) ) 

h(w2) = 1/w 0(w) = 1/w (alw ± a3w3+ ..,(odd part of Dn(w) ) 

CFE of h(w2)/g(w2) about w2  = 0 gives 

2 

g(w) 	Po + 1 

P,+ . 

	

at 	 • 

	

T 	 + 

Pp°1 + 1 
.ai l  

where, 

ao  = 0 and p = n/2 	if n is even 

and, 	ao  4 0 and p =((n — 1)/2) if n is odd. 

...(5,5) 

Now, the reduced order characterstic polynomial Dr(w) 

is obtained by truncating the high order terms of CFE i.e. 

Dr(W) = gr  (w2 ) * whr(w2) 

where, 

hr(w2) 
=a +1 

gr(w2 ) 	° 	bi o  + 1 
a lw' 

7' 1 
• 

.1- 1 
P q-1  + 1/aqw I 

...(5.6) 

•.•(5.7) 



where, 

q = (r - 

q = r/2; 

ao  0 (if r is odd) 

ao  = 0 (if r is even) 

The above discussion shows that ao  = 0 for even,implies 

that even order characterstic polynomial can only be reduced 

to even order models and ao 	0 for odd case. However, it is 

learnt that Hurwitz polynomial approximation gives same 

reduced polynomial as given by Routh approximation technique. 

Hence it can be said that Hurwitz approximation is only a 

special case of Routh-approximation by which even and odd 

characteristic polynomial can be reduced to even or odd order 

ones. 

5.2.4 Stability equation method : 

After getting the denominator of Z-domain transfer 

function in the w - domain (Eqn. (5.!)) , we rdduce the 

stability equations of the 1)n(w) by the method described in 

chapter - 3. After getting the reduced order denominator by 

this method, 	the reverse bilinear transformation will 
t 

yield the reduced order denominator for the ROM in Z-domain. 

5.3 OPTIMAL COEFFICIENTS OF NUMERATOR POLYNOMIAL : 

Once the reduced order characterstic polynomial is 

obtained by one of the methods of previous section. The 

numerator coefficients of the reduced order model's are 

calculated as follows - 
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Let the reduced polynomial in Z-domain (by inverse bilinear 
transformation w = z +1/z-1) be 

F( z)= a+ zm  + a+  zm-1  + ... + a+ z m 	m--1 	 1 	0  

and the transfer function of ROM be 
+ m-1 + m-2 	b+ z 

H+(z)  
0+ z _ bm-1  + brn-oz  -t- __.. + o  
U .z  z  ...(5.9) 

Here, b+, i = 0,1,2,... , m-1 are to be determined by matching 
the unit step response of the reduced and original system. 

For unit step input U(z) = z/z-1, the response will be 

bm-1 zm  + bm_ 2 zm-  + ... + bo z 

 

(z) _ °  m+l  s m  *  #  ...(5.10) 
am+lz.  + amz + ... + alz + ao  

+  + -2 = C t z 	+ C2 Z 	+ e. e 
where, 

az = ai_i-ai , i  = 0,1,2,...., m+l 

...(5.11) 

mi = a_ a  1  =0 

The relationship between the coefficjentsa , b+, c is as 

follow : 

+_ * + 
bm-1 	arn+ 1 c  1 

	

+ 	* 	-t. 	+ 
bm-2 = am-t-1c2 + amc1 
... 

bo - am+l.cm + am cm_1 + ... + a2c1 

0  = am+lcm+l + amcm + ..... + a2c2 -t- alc l  

0  - am+lcm+2 + am cm+1 + ... + a1c2 + aoc1. 
+ 	* + 	 + 	* + 

am+lck + amck_l 	
'  + .. +alc k—m+aaoc 1 

...(5.12') 
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Where c+ is response vector at k sampled points, b+ is unknown 

m vectors  . The solution of c  is 

c+ = A''1 Vb+ 
	 •..(5.14) 

In order to preserve steady—state response of the 

original model, whose steady state response with unit step 

input is r... Thus 

b + b + b + ...m + b = ro 

-► 	+ 	+ + = r 	 am) ro 	.( ao + a 1 + .... 	a m 

OR 
STb# = ro 

where ro = Steady state value of ROM 

and 	m x 1 vector S is, 

S = [I 1 	1 ... 1 ]T 

The sum of square errors of the unit step response of 

the ROM and original models be minimum subject to the constra iA, 
eqn. (5.15) i.e. 

k 
Minimize J = E (ci -- c.) 2 	 ,..(5.16) 

i=1 

where ci is the unit step response of original model at 1th 

sampling point. Letting 

c = [c1 C2 ... Ck] 
T 

J = (c - c~) T (c — c+ ) 

A more general form with different weighting on (ci — c ) is 

+ J = (c _ c+) T V.(c . c) 



diagonal 
Where W = k x k positive definite,,matrix. An a.Ug finented function 

Ji is formed by introducing Langrange multiplier A to take 

care of the constraint (in eqn. (5.15) ) 

J=(c 	c+) T 'WV(c-c+)+ T (81 b"-r0) 	...(5.17) 

Substituting . eqn. (5.13) in eqn. (5.17) 

,3 =(c - A-1 Vb+ ) T GWJ (c - A-1 Vb+) + A (Sr .b+ -- ro ) 

The necessary condition to minimize J is 

0 
Ob+ 

or 

2(A 1 V) T IN(c --A'Vb+) - A S = 0 	...(5.1.8) 

The equations (5.18) and (5.15) will give (m + 1) linear equations 

which can be solved to give .b+ and A . The above procedure is 

illustrated by an example. 

Ex. 5.1 : Consider an eight order system, 

1.682 27+1.116 z6 - 0.21 z + 0.152 z4 - 0.516 z3 - 0.262z2 

H( z)= + 0.044 z - 0.006 
8 z --5.04 z - 3.348 z + 0.63 z --~ 0..456 z + 1.543 z3 

+ 0.786 z2 _ 0.132 z + 0.018 

Using the bilinear transformation the denominator polynomial 

in w-domain is obtained as 

DM(w) = 8w8 + 78.64w7 + 292.982 w6 + 526.816 w5 + 584.144 w4 

+ 400.24 w3 + 139.232 w2 + 16 w + 2 



By retaining dominant pole the reduced order denominator 

polynomial is (for a second order ROM) 

D2(w) = 0.206896 + 0.0926 w + w2  

Thus, D2(z) = 0.982808 — 1.958626 z + 1.113291 z2  

(by inverse bilinear transformation) 

The second order model calculated from eqn. (5.15) and eqn. 

(5.18) with k = 50 and W = I is 

H+(z)  — — 0.165023 + 0.23935 z 
0.833638 -- 1.75831 z + z2  

Likewise choosing other methods the models are 

H+( z ) _ 28.7840 — 20.7840 z 
119.4411 — 212.5067 z + I01.0656 z2  

(by Routh approximation + error minimization) 

H+(z)  _ 0.4380 — 0.3483 z 
1.2018 — 1.9552 z + 0.8431 z2  

(by Routh stability + error minimization) 

H+( z) 	0.0593 z + 0.1099 
1.0476 z2  — 1.9154 z + 1.0370 

(by stability equation i• error minimization) 

The step responses of the original and ROPAs are depicted in 
Fig. 5.1. The step, response of the ROM deduced by method No. 4 

is not shown because of the poor matching. 
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Ex. 5.2  : Considering another system of 

280.333 z7  + 186 z6  — 35 z5  + 25.333 z4  — 86 z3  — 43. 666 z2  
+3 z — 1 
666 z — 280.333 z7  — 186 z + 35 z5  — 25.333 za  + 86 z3  

+ 43. .666 z2  — 7.333 z + 1 

The program results are given and the step responses are 

shown in Fig. 5.2. 
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fl FOR ORGl1c4LMODEL U 
----------- 

OLE *ZERO NPROfl S4PLEPO\NTS 

8 	7 	 50 

C0EFFS OF N(l) POLY. 11N>.Z\N-1)...' 

	

3330 18, (000 -35.0000 	253.330 - 	0000 

'4J .o660 	7.333V 	-1.0000 

CUFFS UF D(D 0 	ZiN>.Z(N-D...' 

	

~~.0000 -260. 3.330 -06.Oho0 	3.U000 -5.JJ3V 

	

66.0000 	43.b660 	'7.l3JU 	1.O0O0 

U FUR REDUCED ORDER U 

METHOD N0. (0k ULND~)~A|UK)= 	l 

UU8MlNOrI[ POLEU 

COEFFS OF D(I) POLY. Z(M)l(N-U.... 

	

1.2655 	 \.70\3  
COEFFS OF fill) FOLY. Z(N).Z(N-U.... 

	

.6201 	-.4225 
[THOU ND.(FUk UENOUiNATOK)= 	2 

U8UUTH SlABLlTY** 

CO[FFS OF OIL) POLY. Z(N),I(N-U.... 

10691.3500 *#*~W** 7593.8020 
COE FS OF NIL) YULY. I(N).l(U-U.... 

1332.0000 1332.0000 
METHOD NO. (FUR DEN0NlNA0R)= 	J 

ROOF)) AYPK0X.$* 

COE FS OF U(fl YULy. l)N>.Z(N-U.... 

	

1.3116 	-1.9303 	.7576 
COEFFS OF fill) POLY. Z(N>.Z(N-U.... 

	

.7615 	-.6229 
h[[x0b flu. 0-OR DENOM1N80R)= 	4 



~| 

-----'------------- 
nS|8LTY [2.i$ 

CEFF8 0' C\D cULY. Z(H).Z(K-U.... 

1.0~2 -1.829 1.0/48 
COEFFS OF N(l> POLY. D~>.Z(N-U.... 

.1656 	.1768 
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TELE 5.2; STEP-1RESP01SES 
------------------------- 

c. ur;>al 
------------------------------------------------------------------ 

redurrd order odelz by u:iro 

d'a:rinant..00i2 rout ,sod. routh-aocrox. 	=tbea. 

1 .4207 .4930 .0623 .506 .1511 
2 .8774 .597' • 1.L.1 2234 .9604 .5644 

1,1.45 1.114, ,44j 1.1840 1.11,759 
4 1.3861 1.3328 .s553 1.2939 1.6041 
J 1.4 	63 1..?U1ta ,3551 1.3:`65 1,91+44 

6 1,3981 1.3601 1.9153 1.3109. 1.9170 

7 1.3184 1.2875 1,1274 1.269 1.6435 
8 1.2242 1.1949 1.1913 1.2168 1,1749 
9 1,1204 1.1038 1.2130 1,1537 ,6612 

10 1,1)340 1.0277 1.2021 1.1159 2635 
11 .9739 975 1.1693 1.07 1037 
12 .9386 .94220 1.1250 1.0453 .2269 
i .9146 .9306 1.0782 1.0229 .5893 

4 .9274 .9340 1 . 1+:'52 1.0075 1, 0731 
15 .9413 .94. 1.0005 .9(19 1.5249 

16 .9598 .9625  . 9758 .9928 1.8045 
17 .97 35 .98u5 .9614 .9907 1,8279 	 - 

18 .9945 .9949 .9561 .9905 1.5928 
19 1.0062 1.0052 .9580 .9916 1.1777 

1,; 1.0133 1.0114 9646 .9932 .7155 
21 1.0161 1.3139 .973.9 99 4 9 .1514 
22 1.0158 0135 38 96 1971 

21 . 1,0135 1.011.7 .9930 .9983 .2966 
24 1.0101 1.0002 1.0006 .9992 .6140 

25 1.0067  1.31151 1 . 0060 1.0(1110 1. 1459 

26 1.0037 1.0024  1. 009 1.0006 1.4554  

27 1.0014 1.0004 1.0105 1.0010 1./151 
28 1.0000 .9992 1.0102 1.0013 1.7449 
29 .9994 .998 1.0089 1.0014 1.5454 
39 .9994 .9987 1.0069 1.0014 1.1780 
31 .9998 .99y3 1,0049 1. (014 .11674 
1 1.0004 .9996 1.0019 1.0013 .4295 

33 1.+5011 1.1002 1.9012 1.0019 281' 
34 1.9016 1.0307 1.11091+ 1.0012 361+6 
35 1.0021 1.0011 .9491 1.0012 .6181 
36 1.21023 1.0017 .9999 1.0 _' 11 1.0215 
:'/ 1, 0025 1.0314 ,9990 ..Milli 1.794 
38 1.0025 1.0014 .799 1.0011 1.670? 
39 1.0024 1,0(113 .9997 1.0011 1.6/15 
40 1.0023 1.3012 1.01502 1.0011 1.54+12 
41 1.0022 1.111111 1,4+11116 1.01111  

42 1.0021 1.00117 1.0009 1.91011  

43 1.0020  1.0310 1 . Ui+12 1.0311  
44 1.u019 1.001+9 1.40+14 1.0011 .1571 
45 1.0019 1. U39 I,(+:1?  1.00 ,1  

46 1,o1 1,Uu{~7 1.0314 1.0011 bol6 
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47 	1)oi j.0u09 1.((14 1OO1i 	1.0052 
48 	1,{J(j19 t.)009 1. 00 1 j 1. Vol 1 	1.3407 
40, 	1.0020 1.0009 1.0012 i.u011 	1.5637 
5v 	1.0020 1.0009 1,0011 1.oull 	1.606 
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6.1 INTRODUCTION : 

The classical techniques of control system synthesis using 

logarithmic frequency response plots of BODE and NICHOLS, root 

locus diagrams of EVANS or Nyquist plots are well documented in 

literature. These above methods are graphical in nature and 

normally limited to 5150 systems. With the advent of state space 

theory, the optimal control approach has been developed to tackle 

both deterministic and stochastic signals. This requireshigher 

order non—linear differential equations solution and in addition 

it is difficult to translate industrial specifications into 

weighting matrices of the performance index which is normally chosen 

quite arbitrarily. Pole—zero assignment techniques are available 

but it is not clear how the desired pole—zero location in the 

case of multivariable systems are to be specified. 

With the availability of fast digital computers alongwith 

interactive graphic display, control system design has entered 

a new era. In this chapter a procedure for the design of controller 

is presented. This method is particularly useful for 

SISO systems. The same technique can also be extended to multi-- 

variable systems with transportation lag. 

6.2  PROBLEM STATEMENT  : 

The problem of model matching can be stated as — ''Given 

a process whose performance is unsatisfactory and a reference 
model having the desired performance, derive a controller such 

that the performance of the augmented process matches with that 

of the model''. 



e. 

The results are referred to those cases where the system 

model is actually implemented and incorporated in the control 

scheme. In the design of a control system in frequency domain, 

the specification that are usually considered as design goals 

may be classified as - 

1. The time domain specifications e.g. rise time, over-

shoot etc. 

2. The frequency domain specifications i.e. bandwidth, 

phase margin etc. 

3. The complex domain specification e.g. damping ratio, 

undamped natural frequency etc. 

6.3 THE DESIGN PROCEDURE : [37] 

To improve the efficiency of any design method, it is 

benificial to have the design goals expressed as mathematical 

functions or transfer functions (defined as the standard model). 

The first step in a model matching operation would be to specify 

such standard model. 

Hence, the design procedure proceeds as follows : 

STEP 1 : Construction of a specified model whose close-loop 

system must approximate to that of original closed loop- res-

ponses. Let it be specified as 

go + g1 + g2s2 + .... + g 
GM( S) - ---~ 	 v ~-- 	

go 

( u < v and in general 
ho + his + h2s + ... + hvs 	h 0 ) 0 

...(6.1) 
STEP 2 : Specification of structure of controller. Let it be - 
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k  + ko is + .... + ko is1 

Ge(S) ' k10 + klls + .... + k1js 	 ...(6.2) 

sTEP 3 : Determination of closed-loop transfer function consis-

ting of unknown controller parameters. 

If the reduced order plant transfer function be Gpr(s) 

(where r is the order of the model) then 

aO + ads + ... + amsm 

C (s) =  (n > m and in general 
pr 	Po+ai ls + ......+ Pnsn 	a 

o Ro) 

...(6.3). 

and, 	GC(s) G r(s) 

GCL(s) 	1 + G s G 	s) ( Fig. 6.1) 
C  pr 

ao + a1s + a2s2 + ... + a 

bo + bls + ............ + brsr 

= co + cls + C2s2 + 0400 

where, 

q= (m + i) and r= (n + j) 

co = 1 when ao = bo 

...(6.4) 

The coefficients a0 , a1.... aq; bo , bl.... br and co , c1 
c2...... etc. d;i tcV,. contain the unknown controller parameters 

koo , kol•.... koi, k11, k12 .... klj and known constant coeffic-
ients ao , al 0 0 0 0 am and P0 , Pl ..... .~3n . Thus, GM(s) to be a 

approximant of GGL(s) , we have 

go = h0c0 (redundant when ao = bo ) 

g1 = h c1 + h c oo 

g2 = ho c2 + hlc1 + h co 

gu = ho cu + h1cU-1+ 	+ tluco 

0 	= h C.. + h.. c 	, + ... -- h 

...(6.5) 



(i + j + 3) equations of the above type can sequentially 

be solved for (i ± j +2 ) unknowns controller parameters of 

equation (6.2). The particular traingular form of non—linear 

algebraic equations in eqn. (6.5) make their solutions very easy.;'' 

The method is well illustrated by an example. 

Ex. 6.1 : Consider the high order plant transfer function [37] 

G (s) 	s3 + 12 s2 + 54 s + 72 

p4 	 4 + 18 s3 + 97 s2 s 	+ 180 s + 100 

The reduced order model for the Gp4(s), by the methods described. 

in Chapter — 4 are 

0.6474 s + 1.44 Gp2 ~s) = 2 	 (Method No. '1) 
s + 3s + 2 

or 

G 2(s) 	79.2586 s + 72  (Method No. 2) 
p 	87 s + 159.3103 s + 100 

G (s) = 0.6311 s + 0.8276 	(Method No. 3) 
p2 	s2 + 2.069 s + 1.1494 

G2(s) _ —~ .9520 s + 7.2  (Method No. 4) 
s +5.5556s+10 

The model transfer function is chosen ., as [ 37] 

l+a(W~)s 
n 

G1(s) 
_ 
	1 +( w 1 )s+ s2 n 	w n 

where, 

t — damping ratio 

wn — undamped natural frequency. 



a — design variable which has special significance in 

so far a = 0 in GM(S)  will result in zero displace-

ment error system while a = 1 will result in a zero 

velocity error system. 

Choosing w = 5.0, 	= 0.707 and a = 0.7, 

G1(s)  = 

 

25 + 4.242 s 	2= 1-0.1131s —0.0080 s2 ... 
25 + 7.07 s + s 

A close loop system using a P — I (proportional integral) 

type precompensator 

k (1 + 1/t1s)-  and unity feedback, is designed on the basis of 

Gp2(s). 

Taking the first, second order model. The close — loop 

transfer function, with this will be (eqn. (6.4) ) 

GCL(s)  = 0.6474kcs2+(1.44kc+ 0.6474k 	s +l.44k/(1  

s"+( 3+0.6474kc) s+(2++•0.6474kc/ti+1.44kc/ j) s+1.44kc/T'i  

= c0  + cls + c2s2  + .... 

where, 

_ 	c = 1 
° 	1.44kcTj  -- 2t1  — 1.44k 

Cl 	 1.44 k 

-2.7738 T1  + 0.6474kcT, + 0.2361 kc  
c2 2' 	1.44 kc  

From equation (6.5) 

2 5 = 25 

4.242 = 25c1  + 7.07 

0 	= 25c2  + 7.07c1  + .. 

0 	=25c3 +7.07c2 + Cl 



M 

In this, the very first equation is redundant and putting the 

values of cd, C2, etc. in the above equations. We get 

k C = 10.6090 and T,1 = 0.8636 

The close loop transfer function or original and reduced model 

are 

__ 83.376 + 134.53 s + 67.896 s2 + 13.158 s2 + s4 
GCLO(s) 	83.376+143.96s+84.86s2+22.32s3+2.6967s4+0.0943s' 

and 
15.277 + 20.06 s +_5.93 s2  

OCL2( s) _ 15.277 + 21,79 s+8.522s2 + 0.8636s3 

Taking the ROM obtained from second method the kc and '~i are 
found to be i.e. 

kc = 10.609 and T1 = 0.0814. The close loop transfer 

function will be 

_ 8.78 + 14.2778 s + 5.7821 s2 

GCL2 s) r 8.78 + 15.2795 s + 7.5689 s2 + 0.8683 s' 

The open loop systems° step responses and closed loop 

step responses are shown in Fig. 6.2 and 6.3 respectively. It 

is obvious from the responses that they are having a very good 

match with the original close loop system's response. 

We conclude this chapter by giving certain properties 

of the method as — 

(1)  Once the desired specifications are translated 

into a model transfer function this method automat-

ically finds the parameters of a controller of 

specified structure. 
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(2) In contrast to classical techniques this is once 

through design method without resort to any trial and 

error process. 

(3) ThisAcomputationally simple. 

(4) With a minimum amount of efforts, this method yields 

practically realisable controllers conforming the 

desired industrial specifications. 

However, this design method should be applied with caution 

for unstable plants and quite obviously, there is no getting 

around difficulties of non—minimum phase plants. Because this 

method is based on approximate model matching and hence, may 

lead to an unstable overall system due to truncation error.This 

drawback my h overcome by prespecifythg some of the pole zero 

positions in the compensator to exactly cancel the effect of 

right hand side poles and zeros. This factor demands further 

considerations. 
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The advantages of system order reduction techniques 

are well known. The main obvious advantages are saving in 

computational work in the analysis of large scale systems and 

economy in the design of associated hardware, for optimal and 

sub optimal controllers. The CFE or Pade approximation techniques 

suffer from the inherent difficulties viz. (i) the ROMs may be 

unstable, (stable), even though the original system is stable 

(unstable) . (ii) The ROMs often show poor matching in transient 

zone and (iii) It may exhibit non—minimum phase characteristics. 

The methods presented in this thesis are devoid of these short-

comings. 

In this thesis several techniques for reducing the order 

of large scale systems have been tried on typical systems, 

considered by various researchers, using error minimization 

techniques for continuous and discrete time systems. The appli-

cability of continuous time reduction method has been tested for 

controller design. The softwares for the techniques.developed 

in FORTRAN and have been successfully implemented on PC. The 

error tables and step responses of the original and ROMs have 

been depicted for the comparison purposes. 

The first introductory chapter lists the various possible 

reasons for going in for ROMs and for the use they have been put 

to. 

In second chapter a detailed procedure for minimizing 

the error is presented. The third chapter gives the idea about 

0 

4 



M:]  

stability based reduction methods which have been combined with 

error minimization technique, in chapter - 4, to yield the ROMs 

for continuous time systems. Various mixed methods have been 

given for obtaining stable ROMs. As shown by different examples 

in this chapter, all methods work quite well. However it should 

be pointed out that the efficacy of a model reduction technique 

depends on the perticular use, the ROM put to. In some cases 

the stress can be on good matching in low frequency zone while 

in some other cases the main objective can be to retain the 

transient zone characteristics. 

The extensions of the above model reduction methods to 

discrete time system are given in chapter - 5. It is well known 

that by using bilinear transformation, discrete analog of 

continuous time model reduction can easily be obtained and similar 

conclusions, as in chapter 4, may be drawn. 

A method has been given for controller design in chapter 6 

using ROMs. The method is based on Pade approximation and algebraic 

in nature. The desired performance is converted into a transfer 

function model which is matched with closed loop system to have 

identical initial few time moments. The method does not require 

any trial and error procedure. However, as this method is based 

on the principle of approximate model matching, it may lead to 

poor or unstable control for non-minimum phase and unstable systems. 

This work is in the direction to provide useful methods 

for model order reduction and to design controllers for the 

various systems. The given reduction method can be extended for the 

reduction of systems with transportation lag and to design sub-

optimal. controllers. 
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APPENDIX — A 

The inte.cral (Chapter — 4) 

+joQ . 
—2~— j f 'Y(s) Yr(—s) ds 

Can be evaluated in the following way 

Jn _ 2nd f •~ Y(s) (—s) ds = 2n j f .~ b s X d, 4c s S )ds 
—J  J 

1 	s +. D —s ) ] ds 2% J 	_ oQ b sd -~S 

Where E(s) and D(s) are two polynomials of the form • 
ri 

E(s) = Eo + E1  + ..... + Entll s 

and 

D(s) = po + D1s + ..... + D 1 sr—1 

J 	ds + 1 f 	ds 	CE .1 	D 

	

-1 	r-•11 J 

En-1 and D
r_1 can be obtained from 

a(s) c (—s) = E(s) d(—s) + D(—s) b(s) 

E 

BILINEAR TRANSFORMATION OF POLYNOMIALS : 

In analysing the :situation of transformation, the 
procedure can be subdivided into a sequence of elementry operations. 

on polynomial which involves — 

(i) Scaling the magnitude of zeros. 

(ii) Replacing the zeros by their reciprocals. 

(iii) Shifting the zeros by a real constant. 



The first two operations are trivial, and for third, 

synthetic division is found satisfactory for numerical accuracy. 

The sub—division of a bilinear transformation into linear trans-

formation, and inversion and then another linear transformation 

is an established technique. 

(i) To scale the magnitude of zeros of polynomial (e.g. given 

F(x) ,;" to replace x by x/K) successive coefficients are 

multiplied by i.. , K, K2  .... etc. 

Thus if 

F(x)  = a xn  + an_1x  + .... + -,'' + ao  

then 

F( x/K) = anxn  + an_1xn-1  K +- an  2xn-2 K2  + y 

(ii) To replace the zeros by their reciprocal, F(x) is 

replaced by its reciprocal polynomial xnk'(t/x) i.e. 
n 	 n 	n-1 x F(1/x) = aox + aix 	+ .... + an—l x + an  

I 
or in other words, the coefficient order get reversed. 

(iii) Reducing all zeros by real constant, ' d'.,, requires eva!uatic 

f 	 of the coefficients of taylor's expansion i.e. 

(x+d) = F(d) + F' (d) 	+ F''(3.) x2 	.... + 	1 1 "(d) xn  
tre 

These coefficients /generated directly by synthetic divisic 

alogorithm. 



The sequence of operations required for transformation 

x -+ (x + 1) /(x — 1) is as follows : 

F(x) "-> F(x + 1) --> F(1/x + 1) -~ F(2/x + 1) --> F( x21 + 1) 

This completes the transformation. 

Sx. : Let F(x) = 2x3 + 4x2 + 6x + 5 

Step 1 : 	decreasing all zeros by 1 i.e. F(x) 	F(x+1) 

The synthetic division proceeds as follows : 

2 4 6 5 

2 	6 	12 

2 6 12 17 

2 8 

2 8 ;20 

2 

2 :10 

(i) 	F(x + 1) = 2x3 + 10 x2 + 20 x + 17 

( ii) 	Replacing all zeros by their reciprocals 

F(1/x + 1) = 17 x3 + 20 x2 + 10 x + 2 

(iii) Scaling all zeros b 2 i.e. 

F(2/x + 1) = 17 x3 + 40 x2 + 40 x + 16 



(iv) 	Increase all zeros by 1 i.e. F( 21x +_1) --3 FL2/x  

17 	Q0 	40 	16 
— 17 -- 23 — 17 

17 23 17 j 1 	^ 

— 17 — 	6 

17 6 i 11 
— 17 

17 +— 11 
t 17 

,. F(—xx--+--11-j = 17 x3  — 11 x2  + 11 x + 1 
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