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ABSTRACT 

Measured engine speed regulation and synchronization of 

various engines used in multi-engined aircraft is discussed. 

Designing the PID controller for engine speed regulation to 

attain the satisfactory transient response, which results in 

matching the dynamic behaviour of speed regulation of 

non-identical engines which has slight, changes in parameter 

used in multi-engine aircraft. Thus for synchronization to 

achieve the same steady state value. 

Reduced order model of high order (i.e. Aircraft Blind 

Landing) linear system is obtained by marshall method and 

predicting the transient response sensitivity using reduced 

order model of Aircraft Blind landing system. A new low order 

model i.e. marshall method with equivalent lag is introduced 

and when compared with the exact response, it is found to give 

an encouraging accuracy of prediction. 
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CHAPTER-1 

INTRODUCTION 

1.1 GENERAL 

Safe, economical, and reliable operation of modern 

aircraft is dependent upon the use of instruments. The first 

aircraft instrument were fuel and oil pressure instruments to 

warn of engine trouble so that the aircraft could be landed 

before the engine failed. As aircraft that could fly over 

considerable distances were developed, weather became a 

problem. Instruments are developed that helped to fly through 

bad weather conditions. Under adverse weather conditions, it 

had already found that pilots soon lost their sense of 

equilibrium and had difficulty in controlling an aeroplane when 

external references were obscured. Instruments were therefore 

required to assist the pilot in circumstances which became 

known as 'Blind Flying Conditions', to fly 'Blind' by means of 

a small group of instruments. 

Instrumentation is basically the science of measurement. 

Speed, distance, altitude, attitude, direction, temperature, 

pressure and rpm are measured and these measurements are 

displayed on dials in the cockpit. 

1.2 ADVANTAGE OF MULTI-ENGINE AIRCRAFT 

An aircraft can be single engined or multi-engined. If 

single engined, the engine is usually mounted at the nose of 
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the fuselage. If the aircraft has two or four engines, they 

are usually housed in the leading edge of the wing and are 

equally disposed of on either side of the fuselage. 

These are several reasons of using more than one engine 

in an aircraft. First reason is that the power of the machine 

and its weight carrying capacity are multiplied. Another 

reason is reliability. It is quite difficult to produce an 

engine which is so reliable that it can never break down. If 

this happens in a single engine aircraft, it is compulsory that 

the aircraft must land. It is likely that a satisfactory 

landing ground may not be available with in the reach. Under 

these conditions, it may be difficult for the pilot to avoid 

crash. The chances of accidents are reduced if the aircraft 

has two or more engines, since it will continue to fly 

satisfactorily even if one engine has failed. 

1.3 SYSTEM CONTROL 

Broadly a system can be thought of as a collection of 

interacting components, although some times interest might lie 

just in one single component. Two broad classes of control 

system are available, open loop control and closed loop control 

and these are depicted schematically in Fig.i.l 

(a) Open loop control : On the basis of knowledge about the 

system and of past experience, a prediction is made of what 

input should be to give the desired output; the input is 

adjusted accordingly. 
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FIG. 1.1 OPEN LOOP AND CLOSED LOOP CONTROL 
(a) OPEN LOOP (b) CLOSED LOOP 
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(b) Closed loop control : The system output is measured and 

compared with the desired value; the system continually 

attempts to reduce the error between the two. 

1.4 METHOD OF ANALYSIS 

The analysis of all physical systems start by building 

up of a model. The reason is that once a physical phenomenon 

has been adequately modelled so as to be a faithful 

representation of reality, all further analysis can be done on 

the model so that experimentation on the process is no longer 

required. The advent of the digital computer has meant that 

relatively complex models can be manipulated. , 

The output response as a function of time can be 

obtained for any specific forcing (Step, ramp or impulsive) 

function by computer solution of the differential equations. 

High order system can be approximated to reduce low order model 

by marshall method and the output response of reduced model as 

a function of time thus obtained which considerably reduces the 

computation time of computer. 

1.5 ORGANISATION OF A DISSERTATION 

Chapter-2, describes the speed control system and its 

various components i.e. Engine and tachometers used in 

aircraft. In chapter-3, it is shown how the synchronization is 



5 

maintained in multi engine aircraft at 'on speed' conditions 

with the help of synchroscope and thus minimising the effects 

of structural vibration and noise. 

Chapter-4, is concerned broadly with designing or 

modifying a speed control system to ensure that its dynamic 

behaviour is acceptable. It also describes the root locus 

method of analysis, a technique which asists in understanding 

of system behaviour by showing what effect variation of system 

gain or some other variable has on the transient response. it 

shows that increase in system gain is accompanied by a tendency 

towards more oscillatory behaviour and might give to 

instability. Integral and Derivative action has been also 

incorporated with controller to improve the transient and 

steady state behaviour for attaining the synchronization of 

various engines in aircraft. 

Prediction of transient response and sensitivity using 

the low order model of high order (Aircraft Blind Landing) 

system using marshall's approximation method is describe in 

chapter-5. The conclusion is drawn in the last chapter-6. 
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CHAPTER-2 

CONTROL SYSTEM AN COMPONENTS 

2.1 SPEED CONTROL SYSTEM 

2.1.1 Proportional Control System 

The Fig.(2.1) shows a typical speed control system [10] 

for gas turbines, steam turbines or diesel engines. The 

position of the throttle lever sets the desired speed of the 

engine. The speed control is drawn in some reference 

operating position so that the values of all the lower case 

parameters are zero. The positive direction of motion of these 

parameters is indicated by the arrowhead on each. 

The centre of mass of the flyweights is at distance R = 

Ri  + r from the center of rotation. The fly weights are geared 

directly to the output shaft, so that the speed 	of the 

flyweights is proportional to the output speed. A lever which 

is pivoted as indicated in Fig.(2.l) transmits the centrifugal 

force from the flyweights to the bottom of the lower spring 

seat. The pivot and lever rotate with the flyweights as a 

unit. If the speed of the engine should drop below its 

reference value, then the centrifugal force of the flyweights 

decreases, thus decreasing the force exerted on the bottom of 

the spring. This causes x to move downward, which in turn 

moves e downward. Fluid then flows to the bottom of the big 

piston to increase y and thus open wider the flow control 

valve. When more fuel is supplied, the speed of the engine 



will increase until equilibrium is again reached. For steam 

turbines, the flow control valve controls the flow of steam 

rather than fuel as in the case with gas turbines and diesels. 

Suppose that the throttle lever is moved to a higher 

speed setting, which in turn causes 2 to move downward. This 

in turn causes x to move downward. As just discussed, moving x 

downward opens the fuel flow valve, which increases the speed. 

2.1.2 Integral Control System 

By eliminating the linkage between x and y of Fig.(2.1) 

and using the hydraulic integrator shown in Fig.(2.2), the 

proportional control system is converted to an integral control 

system [12]. 

The operation of an integral control system may be 

visualized as follows : From Fig. (2.2 ), it can be seen that if 

x momentarily changes and then returns to its line-on-line 

position, the position of y has been changed permanently and so 

has the amount of flow going to the engine. Therefore, 

changing the amount of flow to account for a new operating 

torque does not change 	the steady-state position of x, which 

must be line—un-line. Because neither x nor the spring 

compression changes, the output speed must always be equal to 

the desired value in order that the flyweight force balances 

the spring force. While for the proportional control system, 
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FIG. 2.1 SPEED CONTROL SYSTEM 
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will increase until equilibrium is again reached. For steam 

turbines, the flow control valve controls the flow of steam 

rather than fuel as in the case with gas turbines and diesels. 

Suppose that the throttle lever is moved to a higher 

speed setting, which in turn causes 2 to move downward. This 

in turn causes x to move downward. As just discussed, moving x 

downward opens the fuel flow valve, which increases the speed. 

2.1.2 Integral Control System 

By eliminating the linkage between x and y of Fig.(2.1) 

and using the hydraulic integrator shown in Fig.(2.2), the 

proportional control system is converted to an integral control 

system [12]. 

The operation of an integral control system may be 

visualized as follows : From Fig.(2.2), it can be seen that if 

x momentarily changes and then returns to its line-on-line 

position, the position of y has been changed permanently and so 

has the amount of flow going to the engine. Therefore, 

changing the amount of flow to account for a new operating 

torque does not change 	the steady-state position of x, which 

must be line—on-line. Because neither x nor the spring 

compression changes, the output speed must always be equal to 

the desired value in order that the flyweight force balances 

the spring force. While for the proportional control system, 
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FiG.2.2 INTEGRAL CONTROLLER 

Unit 2 	V 	 Unit 1 

X FC 	
I  e 

y~  

.... 	 jY1 

J y1 

To flow 
control 
valve 

FIG.2.3 PROPORTIONAL PLUS INTEGRAL CONTROLLER 
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changing the fuel flow requires a permanent change in the 

position x. 

An integral control is also called a floating controller 

because of the floating action of the position y of the flow 

setting valve. 

2.1.3 Proportional Plus Integral Control System 

From a consideration of steady state operation only, 

integral control systems seem preferable to proportional 

systems. However, it is generally easier to achieve good 

transient behaviour with a proportional system than with an 

integral system. It is possible to combine the basic features 

of a proportional controller and an integral controller to form 

a proportional plus integral controller. 

The action of a proportional plus integral controller in 

response to a change in the input or external disturbance is 

initially similar to that of 	a proportional controller, 	but 

as the new equilibrium point is reached, 	the control 	action 

becomes the same as that of an integral controller. 

A proportional plus integral controller combines the 

desirable transient characteristics of a proportional 

controller and the feature of no steady-state error of the 

integral controller. 
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A proportional plus integral controller [12] is shown in 

Fig.(2.3). The proportional action is provided by unit 1, 

which is the same as that for the proportional controller shown 

in Fig.(2.l). The integral action is provided by unit 2, which 

is the same as that for the integral controller shown in 

Fig.(2.2). The proportional and integral actions are added by 

a walking-beam linkage such that y = (yl+y2)/2. 

The action of this controller is as, suppose the 

throttle lever is moved to increase the speed. This causes the 

position x to move down, as does e . Hence yl  changes rapidly 

to increase the flow setting. The resulting motion of yl, 

returns e' to its line-on-line position. 

For integrating unit, y2  continues to move at slower 

rate to provide corrective action. As the speed increases, the 

position x moves up. The integrating unit continues to provide 

corrective action until x is returned to its line-on-line 

position (that is x = 0). In summary, for proportional plus 

integral control, the initial effect is provided primarily by 

the proportional action, and the final effect is provided by 

the integrater. 

2.1.4 Proportional Plus Integral Plus Derivative Control 

In addition to proportional, integral and proportional 

plus integral control, another mode of control is derivative or 
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rate action. The output of a derivative controller is 

proportional to the rate of change of error. For any constant 

value of the actuating signal e, the output of the control 

elements is zero. Thus, steady state may exist in a derivative 

control system with any constant value of error signal. 

Because a derivative controller operates on the rate of change 

of error and not the error itself, the derivative mode of 

control is never used alone, but rather in combination with a 

proportional, or integral or proportional plus integral 

controller. The advantage of using derivative action is that 

the derivative is a measure of how fast the signal is changing 

and, thus tends to give the effect of anticipation. 

2.2 ENGINE 

The main purpose of an aircraft engine [5] is to provide 

a force for propelling the aircraft through the air. Aircrafts 

can be classified according to their propulsion as follows. 

(1) Piston Engine 

(2) Turbo jet 

(3) Turbofan or Turboprop. 

2.2.1 Piston Engine 

It is powered by gasoline fed reciprocating engine and 

is driven by propeller or airscrew. In this system the engine 

rotates a shaft with a considerable amount of torque. A 

propeller is mounted on the shaft to absorb the torque. When 
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JET EXHAUST 

LEGEND 

OUT-SIDE AIR TAKEN INSIDE 

INSIDE AIR IS COMPRESSED 

BURNING FUEL CAUSES COMPRESSED AIR TO EXPAND 

11111111111111 	TURBINE ROTATES THE COMPRESSOR 

FIG. 2.4 PRINCIPLE OF TURBO JET PROPULSION 
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the rotating propeller attains its rated speed, huge masses of 

air hurled rearward, there by pulling the aircraft forward and 

creating lift on the wings. These conventional aircraft 

engines are suitable to operate at low altitudes and moderate 

speeds. 

2.2.2 Turbojet 

The Schematic sketch of turbo jet engine aircraft is 

given in Fig.(2.4). To start the machine, the compressor is 

rotated with a motor. As the compressor gains its rated speed, 

it sucks in air through the air intake and compresses it in 

the compression chamber. The air is ignited by a fuel. The 

expanding gases pass through the fan like blades of the 

turbine. The turbine extracts that much power from the gases 

which is sufficient to keep the compressor rotating. The 

compressor rotates at the same speed as the turbine because the 

two are fastened solidly to one shaft. The hot gases, with the 

remaining energy escape through the tail pipe which become 

smaller is diameter at the exit end. The hot gases, having 

high velocity, give a forward thrust to the engine. 

2.2.3 Turboprop 

It is similar to the turbo jet engine except that a 

propeller is provided in it. Main difference is in the design 

of turbines. The turbine in turboprop 	extracts enough power 

to drive both the compressor and the propeller. Only a small 
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amount of power is left as a jet thrust. Principal advantage 

of the turbo prop is its high degree of performance over a 

general range of altitude. While the turbo jet has a 

considerable lower performance ratio at moderate altitudes than 

at high altitudes, the turbo prop performs well at both. 

2.3 TACHOMETER 

The tachometer indicator is an instrument for indicating 

the speed of the crankshaft of a reciprocating engine and the 

speed of the main rotor assembly of a gas turbine engine. The 

dials of tachometer indicators used with reciprocating engines 

are calibrated in r.p.m.; those used with turbine engines are 

calibrated in percentage of r.p.m. being used, based on the 

take off r.p.m. [1]. 

There are two types of tachometer systems in wide. use 

1. The mechanical indicating systems. 

2. The electrical indicating systems. 

2.3.1 Mechanical Indicating Systems 

Mechanical indicating system consist of a magnet which 

is continually rotated by a flexible shaft coupled to a drive 

outlet at the engine. An alloy-cup shaped element (known as a 

drag cup) fits around the magnet such that a small gap is left 

between the two. The drag cup is supported on a shaft to which 

is attached a pointer and a controlling spring. As the magnet 
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rotates it induces eddy currents in the drag cup which tend to 

rotate the cup at the same speed as the magnet. This, however, 

is restrained by the controlling spring in such a manner that 

for anyone speed, the eddy current drag and spring tension are 

in equilibrium and the pointer then indicates the corresponding 

speed on the tachometer dail. 

2.3.2 Electrical Indicating Systems 

A number of different types and sizes of tachometer 

generators and indicators are used in aircraft electrical 

tachometer-c-ystems. Generally, the various types of tachometer 

indicator and generators operate on the same basic principle. 

The typical tachometer system Fig. (2.5) is at 

three-phase a.c. generator coupled to the aircraft engine, and 

connected electrically 	to 	an 	indicator 	mounted on 

the instrument panel. These two units are connected by a 

current-carrying cable. The generator transmits three-phase 

power to the synchronous motor in the indicator. The frequency 

of the transmitted power is proportional to the engine speed. 

Through use of magnetic drag principle, the indicator furnishes 

an accurate indication of engine speed [1]. 
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CHAPTER-3 

OPEN LOOP CONTROL 

In aircraft powered by multi-arrangement of either 

piston engines or turbo propeller engines, the problem arises 

of maintaining the engine speeds in synchronism at 'ON-SPEED' 

conditions and so minimizing the effects of structural 

vibration and noise. 

3.1 MANUAL 

The simplest method of maintaining synchronism between 

engines would be to manually adjust the throttle and speed 

control systems of the engines until the relevant tachometer 

indicators read the same. This, however, is not very practical 

for the simple reason that individual instruments can have 

different permissible indication errors; therefore, when made 

to read the same operating speeds, the engines would in fact be 

running at speeds differing by the indication errors. In 

addition, the synchronizing of engines by a direct comparision 

of tachometer indicator readings is made some what difficult 

by the sensitivity of the instruments causing a pilot or 

engineer to overshoot or undershoot an on-speed condition by 

having to 'Chase 	the pointer' [11]. 

3.2 SYNCHROSCOPE 

In order to faciliate manual adjustment of speed an 
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FIG.3.1 DIAL PRESENTATIONS OF SYNCHROSCOPES 
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additional instrument known a synchroscope is introduced. The 

synchroscope is an instrument that indicates whether two (or 

more) engines are synchronized; that is, whether they are 

operating at the same r.p.m. It provides a qualitative 

indication of the differences in speeds between two or more 

engines, and by using the technique of setting up the required 

on-speed conditions on a selected master engine, the instrument 

also provides a clear and unmistakable indication of whether a 

slave engine is running faster or slower than the master. 

The instrument is designed at the outset for operation 

from the alternating current generated by the tachometer 

system, and it therefore forms an electrical part of this 

system. The dial presentations of synchroscopes designed for 

use in twin and four-engined aircraft are shown in Fig.(3.1) 

(a) and (b) respectively, while a combination dual r.p.m and 

synchroscope presentation is shown at (c). 

3.2 CONSTRUCTION AND PRINCIPLE 

The operation is based on principle of the induction 

motor. Which, for this application, consists of a three-phase 

star -wound laminated stator and a three-phase star-wound 

laminated rotor pivoted in jewelled bearing with in the stator. 

The stator phases are connected to the tachometer generator 

of the slave engine while the rotor phases are connected to 

the master engine generator via slip rings and wire brushes. A 
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disc at the front end of the rotor shaft provides for balancing 

of the rotor. The pointer, which is double-ended. to symbolize 

a propeller, is attached to the front end of the rotor shaft 

and can be rotated over a dial marked INCREASE at its left-hand 

side and DECREASE at its right-hand side [11]. 

On some synchroscopes the left-hand and right-hand sides 

may be marked SLOW and FAST respectively. Synchroscopes 

designed for use in four-engined aircraft employ three separate 

induction motors, the rotor of each being connected to the 

master engine_ tachometer generator while each stator is 

connected to one of the three other generators. 

3.4 OPERATION 

For understandinq the operation of a synchroscope let us 

consider the installation of a typical twin-engined aircraft 

tachometer system, the circuit of which is shown in Fig.(3.2). 

Let us assume that the master engine, and this is usually the 

No.1, has been adjusted to the required 'on-speed' condition 

and that the slave engine has been brought into synchronism 

with it. 

Now, both generators are producing a three-phase 

alternating current for the operation of their respective 

indicators, and this is also being fed to the synchroscope, 

generator No.1 feeding the rotor and No.2 the stator. Thus, a 
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magnetic field is set up in the rotor and stator, each field 

rotating at a frequency proportional to its corresponding 

generator 	frequency, and for the phase rotation of the 

system, rotating in the same direction. For the conditions 

assumed, and because generator frequencies are proportional to 

speed, it is clear that the frequency of the synchroscope 

stator field is the same as that of the rotor field. This 

means that both fields reach their maximum strength at the same 

instant; the-torques due to these fields are in balance, and 

the attraction between opposite poles keeps the rotor 'locked' 

in some stationary position, thus indicating synchronism 

between engine speeds. 

Consider now the effect of the slave engine generator running 

slower than the master engine generator, and consequently the 

stator field will be lagging behind the rotor field; in other 

words, reaching its maximum strength at a latter strength at, 

say point a in Fig. (3.2). The rotor, in being magnetized 

faster than the stator, tries to rotate the stator and bring 

the stator field into alignment, but the stator is a fixed 

unit, therefore, a reactive torque is set up by the interaction 

of the greater rotor torque with the stator. This torque 

causes the rotor to turn in a direction opposite to that of its 

field so that it is forced to continually realign itself with 

lagging stator field. The continuous rotation of the rotor 

drives the propeller-shaped pointer round to indicate that the 

slave engine is running-SLOW and that on INCREASE of speed is 

required to bring it into synchronism with the master engine. 
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If the slave engine should run faster than the master 

then the synchroscope stator field would lead the rotor field, 

reaching maximum strength at say point b. The stator field 

would then produce the greater torque, which would drive the 

rotor to realign itself with the leading stator field, the 

pointer indicating that the slave engine is running FAST and 

that a DECREASE of speed is required to synchronize it. 

As the speed of the slave engine is brought into 

synchronism once again, the generator frequency is changed so 

that a balance between fields and torques is once more restored 

and the synchroscope rotor and pointer take up a stationary 

position. 

From the foregoing description we see that a 

synchroscope is, in reality, a frequency meter, its action 

being due only to the relative frequencies of two or more 

generators. The generator voltages play no part in 

synchroscope action except to determine the operating range 

above and below synchronism. 
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CHAPTER-4 

DESIGN OF CLOSED LOOP CONTROL SYSTEM 

4.1 THE GENERAL APPROACH TO DESIGN 

The requirements for a system will be described by some 

appropriate performance specification, expressed as the time 

domain requirements (defining the transient and steady state 

response for a step change or other forcing function). 

There are two basic approaches to design. The older, 

but still very widely used one is an orderly trial and 

observation intuitive approach aimed at finding an acceptable, 

but not necessarily the best possible, design solution. The 

alternative approach is one of true synthesis, where an attempt 

is made to determine a unique solution in accord with a rigidly 

defined specification in some optimal way [13]. 

The simplest and most widely used arrangement is series 

compensation where the controller or compensation device is 

positioned in the forward loop as shown in Fig.(4.1). For 

studying the response of a closed loop system where the loop 

gain can be adjusted but where otherwise the dynamic 

characteristic are fixed such an arrangement with a series 

controller which is simple a gain element gives what is termed 

proportional control action, where no suitable value of gain 

can be found to achieve the specification, additional loop 

elements are needed i.e. the use of integral action and derivative action. 
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FIG. 4.2 	ACCEPTABLE REGION FOR DOMINANT ROOTS 
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The steady state accuracy requirement dictates the form 

of open loop transfer function and the value of gain needed. 

Design in time domain to achieve specific transient response 

characteristic is facilitated by studies of root locus plots 

for the system. The dominant poles are the most critical, and 

considerations of settling time and maximum overshoot in 

response to a step change dictate the area which should give 

acceptable behaviour as indicated in Fig. (4.2). The response 

is, however, influenced both by the secondary poles and by any 

system zeros which are present, and hence root locus studies 

must be supplemented by simulation studies to confirm that the 

specifications are satisfied. 

For automatically tuning the PID controller, the most 

well known method is that of Ziegler and Nichols [17]. Their 

method determines the parameters for the given plant. 

Proportional gain, integral time constant and derivative time 

constant by observing the gain at which the plant becomes 

oscillatory and the frequency of oscillation. Thompson [14] 

presented a procedure for designing multivariable controllers 

for unidentified plant. For such plant no mathematical model 

is required in order to generate multivariable PID controllers, 

but it has assumed that the open loop plant is stable and its 

response to step inputs are basically nonoscillatory. 

Gawthrop and Nomikos [3] very recently has developed 	the 

continuous time self-tuning algorithms which are capable 
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of generating tuning parameters for commercial PID 

controllers. 

4.2 CONSTRUCTION OF ROOT LOCI 

The root locus program is used to obtain and plot the 

zeroes of the equation 

1 + G(s)H(s) 	= 0 	 ..4.1 

as a function of K. Here G(s)H(s) is assumed to be rational 

function of the form 

G(s)H(s) = K  N(s) 	 ..4.2 
D(s) 

So that we may also consider the problem of obtaining the root 

locus of the polynomial 

DK(s) = D(s) + KN(s) 	 ..4.3 

as a function of K 

Theory : The polynomials N(s) and D(s) are written as 

N(s) = nl  + n2s + . . , + nmsm-1+ sm 

D(s) = d1  + d2s + . . . + dnsn-l+ s 

Where m<n<20, then DK(s) is given by 

DK(s) = (Kn1+d1) + (Kn2+d2)s+ ,.+(K+dm+l
)sm+..+sn  

Now as K vary DK(s) is computed. 

..4.4 

..4.5 

..4.6 
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An algebraic plus linear progression is used to vary K in the 

following manner. 

K  new = 1.15(Kold + 0.05) 	 ..4.7 

This procedure has been found to lead to a reasonably 

uniform spacing of the roots. The use of this procedure 

assumes that K takes only positive value. If K is to range 

through negative values, the algebraically smaller (less 

negative) value must be used as the minimum value. Hence the 

routine star-ts at the maximum (less negative) value and becomes 

increasly negative until the lower limit is reached. If both 

positive and negtive values are desired, then two separate runs 

must be made with only positive and only negative values [9]. 

When the entire desired range of K has been exhausted, 

the subroutine SPLIT is used to plot the resulting root locus. 

This program also has an option which allows one to plot only 

the portion of the root locus which lies in a specified 

rectangular region in the s-plane. If this option has been 

selected a rectangular region of s-plane is specified by 

giving 	, v • , w 	and w • . Only the portion of the max min max 	min 

root locus which lies in this region will be plotted, when this 

option is selected, the progression of gain values is 

calculated by the rule 

Knew = 1.04(Kold + 0.02) 	 ..4.8 
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This expression leads to a larger number of gain values 

and hence a more refined plot. The basic use of option is to 

refine a portion of the root locus which is of particular 

interest. 

4.3 DIGITAL CONTINUOUS SYSTEM SIMULATION 

As a consequence of the very rapid development of 

digital computer hardware and software giving ever greater 

capability and flexibility at decreasing cost, system 

simulation is inevitably being carried out more and more on the 

digital computer. There is effectively no problem of 

overloading, so very wide ranges of parameter variation can be 

readily accommodated, any desirable accuracy can be attained 

and with the aid of appropriate high level languages program 

writing is straight forward. 

The solution of a differential equation involves the 

process of integration, and for the digital computer analytical 

integration must be replaced by some numerical method which 

yields an approximation to the true solution. A continuous 

signal x(t) is represented by a series of number x0, x1, x2, 

x3...xn, say, which define the signal amplitude at times 

to'tl,t21t3.*tn. These sample values are normally at equally 

spaced time intervals, and if the sampling interval is chosen 

to be small enough then no information about the signal is lost 

[13]. 
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A complex and efficient algorithm which uses only the 

current value to estimate the next value, but estimates three 

or more usually four derivative values to do so, is the 

Runge-Kutta Method, which is discussed in appendix-B. 

From Runge-kutta method, the solution is ascertained in 

discrete form i.e. signal is sampled at equally spaced 

interval, which can be plotted by a CalComp Electromechanical 

Plotter. - - 

The CalComp Host Computer Basic software (HCBS) package 

consists of a set of subroutines written in FORTRAN and/or 

assembly language which control elementary_ operations of the 

plotter and provide certain aids in plotting graphs. The 

subroutines are called by CalComp (and user) written 

applications programs and host computer functional software. 

All output to the plotting system should go through the basic 

software package. 

4.4 PERFORMANCE CHARACTERISTICS (TIME DOMAIN) 

What is a 'good' type of transient response ? How should 

the transient response of a practical system, or the type of 

response desired for a system be described ? The algebraic 

equation is not very helpful since the form of the response is 

not readily apparent. A plot of the response is not 

satisfactory since a numerical description is required for 

analysis. 
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A first order system can be completely described by 

specifying the value of the time constant. A second order 

system can be clearly described by specify the two time 

constant values if overdamped, or the values of y and w n  if 

underdamped. For a higher order system, values of E , and wn  

cannot be specified since they do not exist though values of 

these can be given for the dominant roots. 

In general the following parameters, shown in Fig.(4.3) 

give an adequate description and are used to describe the step 

response of a system : 

(i) maximum overshoot - this is usually, expressed as a 

percentage of the step size. 

(ii) number of oscillations, 

(iii) rise time- this is usually defined as the time taken 

from 5% to 95% of the step size, or over some similar 

range; defining rise time thus avoids the practical 

difficulty of having to determine the exact start of 

the transient, and the finish, if over damped. 

(iv) peak time - 	this is defined as the time required to 

reach the peak of time response or the peak overshoot. 

(v) settling time - the time taken until the output falls 

within and remains with in +5%, say of the steady state 

value. 

(vi) steady state error. 
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These parameters are interrelated and requirements tend 

tc conflict. The maximum over shoot can generally only be 

decreased at the expense of an increase in rise time, steady 

state error can generally only be reduced at the expE!nse of 

~-nakirLg 'the transient mcre oscillatory. 

4.5 STEADY STATE ERROR 

Consider the unit feed back system of Fig.(4.4a). The 

error signal e(t) is the difference between the reference input 

and the controlled output : 

e(t) = r(t) - c(t) 	 ..4.9 

The reference input signal can thus thought of as desired 

output. The steady state error ess is the limiting value of 

the error e(t) as time t becomes very large. 

Steady error = ess 
= lim e(t) = lim sE(s) 	..4.10 
t+M 	s-* 0 

the final value theorem of Laplace transform analysis 

E(s) = R(s) - C(s) 

= R(s) - G(s).E(s) 

.': E(s) = 	R(s) 	 .4.11 
l+G(s) 

Hence the steady state error is 

	

= lim 	sR(s) 
ess 	s+0 	1 + G(s) 	

..4.1.2 

This equation shows that the steady state error is a 

function both of the type of system as described by G(s) and of 

the type of input R(s). 
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For unit step input function i.e. a constant input for 

values of time t > 0. The Laplace transform of input is then 

R(s) = 1/s 

Inserting this in Eq.4.12 gives 

	

ess  = l 	 1 im 	1 	1 	= 	..4.13 

	

s -  0 1 + G(s) 	1+limG(s) 	1 + Kp  

s+0 

Where KQ  = lim G(s) is called the positional 
s+0 

error coefficient or positional error constant. Rearranging 

the expression for ess  gives 

	

- 1 	ess 
K = 
p 	ess 

lim 
Hence K

P 
 = s+0  G(s) 

_ desired output - allowable steady state error 
allowable steady state error 

..4.14 

Systems are classified as being Type 0,1, or 2, where 

the type number is the value of a , which corresponds to the 

number of open loop poles at the origin. Table 4.1 summarised 

the steady state error for these type of system 

Table 4.1 

System 	Steady state error to step input 

Type 0 	Finite 

Type 1 	0 

Type 2 	0 
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4.6 PROPORTIONAL CONTROL 

Consider the following model, which controls the speed 

of engine by varying the governor setting in closed loop system 

[13]. This arrangement assumed is that shown in block diagram 

Fig. (4.5a). The governor is simple one with the proportional 

gain term kl, only the actual engine speed is sensed by an 

electrical tachometer with a first order transfer function and 

a reciprocating engine can for such a study be adequately 

described by a second order transfer function. 

The open loop transfer function can be written as 

kl K2K 3 
G(s)H(s) _ 

(l+tcs) (s2+2awns+w2) 

kl K 2 K 3/ 

(s+l/ T) (s 2+2 wns+ w2 ) 
.n 

_ 	K 	 ..4.15 

(s+l/ T ) (s2+2 wns+ w2 ) 
n 

K 
= 

wn /T+(2 / -r+wn) wns+(1/T+2~wn)s2+s3 	..4.16 

Where K = kl K2 K3/ r and H(s) = 1 as it is a unit 

feed back system, the closed loop transfer function is then 

T(s) 	
= C(s) _ 
R(s) 

K 

(s+l/ T) (s 2+2 wns+ 2)+K 
n 

..4.17 

_ 	 K 

(K+wn/ T)+(2 / T+wn ) . wns+(1/,r+2wn)s2+s3 ..4.18 



37 

Selected 	 Engine 	Actual Governor 	 Measured 
engine 	 engine Tachometer 	engine 
speed 	k 	 1(2 	1 speed jK3 1 speed 

R!s) E!s) 	 S2+2%Qns+w4  

(a) 

im 

kUI 

FIG. 4.5 ENGINE SPEED REGULATING SYSTEM 
(a) BLOCK DIAGRAM (b) ROOT LOCUS DIAGRAM  

FOR VARIATION OF PROPORTIONAL ACTION (k1) 



The multi-engine aircraft different engines which are 

used are made identical but as a matter of fact, however hard, 

we go for identical engines there will be slight changes in the 

parameters. This is due to design problem or may be due to 

wear and tear of machines. Thus for the same setting of 

governors the speed of engines will be not same or in other 

words the steady state value is closed loop system will be 

different. 

In general G(s)H(s) can be expressed as from Eq.4.2 

n +n s+ --- + n sm-1+sm 
G(s)H(s) = K 	1  2 	

m n-1 n 	••4.19 
d1+d2s+ --- + dns 	+s 

Substituting value of G(s)H(s) in Eq.4.13 

1 	dl ess  = 	_ 	 ..4.20 

1 + K nl 	Knl+di 
dl  

dl[ 1-ess 
or 	Gain(K) _ 

nl ess 

= al*  desired output - allowable steady state error 
l 	allowable steady state error 

a '1 

Eq.4.21 shows if d1  and n1  are different values, the 

value of gain(K) have to be different for same steady state 

error. The Eq.4.21 can also be expressed as 

Gain(K) = — * [T(T(0)] 
	

..4.22 
1 
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Where T(0) is steady state value = 1-c55  (in closed 

loop). 

Thus it is obvious from Eq.4.22 for the same steady 

state value of different engines, the gain(K) has to be 

different. Thus for all engines have different governor 

setting (k1) for the same steady state value i.e. for same 

speeds. Thus, in other words, governor 	setting should be 

such as for each engine the steady state value should be 

identical so that all engine should in synchronism. 

Let us consider the four engine aircraft, which has 

parameters and the corresponding tachometers time constant as 

shown in Table 4.2. Thus the G(s)H(s) of four engines are 

evaluated by using Eq.4.16, which are shown in Table 4.3. 

Since K2, K3  T are constant for particular engine, so 

aain(K) can be vary by simply varying the kl. Thus the 

numerical value of this constant k1  determines the amount of 

corrective effort which is applied for a given magnitude of 

error. By varying the value of k1, the dynamic behaviour of 

the overall system can be altered. For very low values of kl, 

the corrective effort is small and hence the response would 

likely to be sluggish; as k1  is increases the response of the 

system for the same magnitude of error becomes more rapid and, 

if k1  is very large, instability would likely to result, or the 

oscillatory response would be so lightly damped that it would 

be unsatisfactory. 



Table 4.2 

Engine 	Natural freue- 	Damping 	Tachometer K2  K3  
Identifi- 	ncy(w )rad./sec. Factor() time const- 
cation 	n 	ant (T) 

A 5.0 0.90 1.00 1.0 1.0 

B 5.2 0.92 1.20 1.0 1.0 

C 5.1 0.91 1.30 1.0 1.0 

D 4.8 0.93 0.98 1.0 1.0 

Table 4.3 

Engine 	Coefficients of G(s)H(s) in ascending 	Gain (K) 
Identifi- order of s 	 = k1K2K3/1  
cation 	Denominator 	Numerator 

A 	25-000, 34.000, 10.000, 1.000 	1.000 	1.000xk1  

B 	22.524, 35.010, 10.401, 1.000 	1.000 	0.833*k1  

C 	20.002, 33.148, 10.051, 1.000 	1.000 	0.769*k1  

D 	23.501, 32.147, 09.948, 1.000 	1.000 	1.020*k1 

40 
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To make the steady state same of all the engines i.e. 

the same speed for synchronization of engines. The gain(K) is 

calculated from eq.no.4.22 for the steady state value of 0.7. 

From the root locus diagram Fig. 4.5b, it is clearly that 

dominant complex roots damping factor is in between 0.4 to 0.6 

for all engines. 

The C(s)/R(s) of four engines are calculated from 

Eq.4.18 for the particular value of gains which are calculated 

from Eq.4.22 to make the steady state value equal to 0.7 is 

shown in Table 4.4. The simulation study is done for unit step 

input from the table 4.4 for each engine which is shown in 

Fig.4.6 whose performance is listed in table 4.5. 

The response shown for this typical speed control system 

would in engineering practice normally be considered 

'satisfactory' having maximum overshoot of 20% and a peak time 

of 1.5 second and a setting time of 4.0 seconds. 

The major disadvantage for this control is the steady 

state error i.e. 30% for this example, increase in the gain(K), 

however, causes the dominant complex roots to move closer to 

the imaginary axis and to the instability associated with the 

root positions in the right half of the complex s-plane. 

Provided a value of gain(K) can be chosen which gives both an 

acceptable transient response and a small enough steady state 
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Table 4.4 

Engine Gain Coefficients of C(s)/R(s) 	in k1 Darning factor. 
Identi- (K) ascending order of s _ of Dominant 
fication Denominator Numerator complex root 

A 58.32 83.320, 	34.000,10.000 	1.000 58.32 0.4568 
1.000 

B 52.56 75.080, 	35.010, 10.401 	1.000 63.10 0.4442 
1.000 

C 46.67 66.673, 	33.148, 10.051 	1.000 60.69 0.5496 
1.000 

D 54.84 78.337, 	32.147, 09.948, 	1.000 53.76 0.4473 
1.000 

Table 4.5 

Engine Peak over Peak time 	Settling 	Steady 	Steady state 
Identif- Shoot(M 

p 
	(t )insec. time(ts) 	State 	error 

ication in% 	in sec. 	Value 

A 	1,7.0 	1.2 	3.6 	0.7 	0.3 

B 	12.0 1.2 3.6 0.7 0.3 

C 	11.0 1.4 3.6 0.7 0.3 

D 	18.0 1.2 3.6 0.7 0.3 
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than only the design problem will be solved. Since these 

requirements can not be satisfied simultaneously then the loop 

must be modified by the inclusion of some other form of 

control action i.e. integral control action and derivative 

control action. 

4.7 INTEGRAL AND DERIVATIVE CONTROL ACTION 

4.7.1 Integral Action 

To over come the steady state error or zero steady state 

positional error would require the system to be of Type-1, and 

this can be achieved by introducing integral action with in 

the controller. To the proportional term is added a signal 

proportional to the time integral of error i.e. The 

controller output m(t) is [k1e(t)+k2  e(t)dt) and it is this 

signal which actuates the system. The block diagram is now in 

the form shown-  in Fig.4.7. Since the error signal is 

integrated with in the controller, even the smallest error 

eventually produces a corrective signal of sufficient 

magnitude to actuate the system to eliminate the error. 

Consider the analytically the effect of integral action 

on the system of Fig. 4.7. From table 4.2, the transfer 

function of engine (A) and tachometer (A) can be written as 

Gl(s)G2(s) = 	1 	 ..4.23 

(s+l)(s2+9s+25) 
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i 	Proportional  

Selected 	I 	k~ 	(Manipulated 

	

engine speed 	Error 	 + 	variable 

R(s) 	+ 	E(s) I 	
M(s) 

r(t) 	e(t)i 	Integral 	+ 	i 	m(t) _  I 	` 
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FIG. 4.7 FEEDBACK SYSTEM WITH P+ I CONTROL ACTION 

FIG.4.8 ROOT LOCUS DIAGRAM FOO VARIATION OF PROPORTIONAL 
ACTION (k1) AND INTFGP ,\L ACTION (k2) 



With proportional action (k2  = 0) the closed loop transfer 

function is 

K 
R(S) 	K+25+34s+10s2+s3 

..4.24 

Where K = k1K2K3/ T 

Hence the steady state error for a unit step input is 

e 	- 1 _ lim s[l. 	K 	25 
ss 	s-0 S  K+25+34s+10s2+s3 	25+K 

With proportional plus integral (P+I) control 

C(s) __ Ks + B2 
R(s) 	B2+(25+K)s+34s2+10s3+s4 

Where B2  = k2K2K3/T 

..4.25 

..4.26 

and the steady state error for a unit input i.s 

• urn e55 	 1 
ess - 1 _  s+0 sL S ' 

Ks + B2 	
J = 0 

B2+(25+K)s+34s2+10s3+s4  

4.7.2 Root Contour 

The numerical values for the parameters k, and k, can be  
J.  

selected by use of a root locus or root contour plot. The 

root contour technique is extended to allow additional loci to 

be added to a root locus diagram. Such loci representing 

variation of roots with a second in dependent variable, and 

each corresponding to a given and each corresponding to a 

given value of first in dependent variable K(or k1) are known 

as root contours. This approach also enables a root locus 
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diagram to be plotted for an independent variable which is not 

normally a simple multiplying factor. The method employed to 

construct root contours necessitates the rearrangement of the 

system equations to an equivalent transfer function in which 

the independent variables does in fact appear as a simple 

multiplying factor; after this the plot can be drawn by root 

locus program. 

To illustrate the method of approach, consider the block 

diagram shown in Fig. 4.7 where B2  (or k2) is taken as 

independent variable of interest and the K(or k1) has been 

used as previously specified in proportional control. The 

closed loop transfer from Fig.4.26 must be arranged as follows 

C(s) _ Ks + B2  
R(s) 	B2+(25+K)s+34s2+1Os3+s4 

Where K = k1  K2  K3/T and B2  = k2  K2  K3/T 

From table from 4.4 for engine A,K = 58.32 or k1= 58.32, 

substituting this in above eqn. 4.26 

C(s) _ B2 + 58.32s 	 ..4.27 
R(Sj 	B +R-L 32s+34s2+1..Os3+s4  

Divide the eq.4.27 through by terms not containing 

the independent variable B2  to yield 

C(s) _ (B2+58.32s)/(83.32s+34s2+10s3+s4) 	..4.28 
R(s) 	1+B2/(83.32s+34s2+1Os3+s4) 



The transfer function written in this form corresponds 

to an equivalent system with different values of G(s)H(s) but 

with the same characterisitc equation. By inspection it can 

be seen that 

B2  
[G(s)H(s)l 	= 	 ..4.29 

equiv 	2 3 4 83.32s+34s +10s +s 

Where the independent variable B2(or k2) is now a 

simple multiplying factor and hence a root locus diagram can 

be plotted in normal way. A closer inspection of Eq.4.29 

reveals the poles of this equation are the roots of the 

characteristic equation of Eq.4.26 when k2  = 0. Hence the 

starting point points of the root contours are points on the 

root loci for G(s)H(s) for specific value K(or k2). 

To match the transient response characteristic such as 

rise time, initial over shoot etc. then the roots on the 

dominant loci must lie in between the damping factor ( ) 0.4 

and 0.6. Thus the equivalent G(s)H(s) of each engine is shown 

in table 4.6 for proportional action K(or k1) as selected in 

table 4.4. 

Now to select the B2(or k2) root locus program is run 

for equivalent G(s)H(s) from the table 4.6 for each engine and 

from the plot on the primary loci, we choose the B2(or k2) on 

the basis of the damping factor of dominant complex root which 

should lie in between 0.4 to 0.6. From the simulation study, 

we can able to choose still better value of B2(or k2) which 

will give the desil d transient response. 
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Table 4.6 

Engine Coefficients of Equivalent G(s)H(s) Gain(B2) 
Identifi- in ascending order of s 

=k2K2K3/ T cation 	K _ 
Denominator Numera- 

tor 

A 	58.32 0.000, 	83.320, 	34.000, 1.000 1.000*k2  
10.000, 	1.000 

B 	52.56 	0.000, 75.080, 35.010, 	1.000 	0.833*k2  
10.401, 1.000 

C 	46.67 	0.000, 66.673, 33.148, 	1.000 	0.769*k2  
10.051, 1.000 

D 	54.84 	0.000, 78.337, 32.147, 	1.000 	1.020*k2  
09.948, 1.000 

Table 4.7 

Engine 	Coefficients of C.(s)/R(s)'in 	Damping fac- 
Identif- B 	ascending order of s 	for of domi- 
ication 	

Denominator 	Numerator 	k2 	nant comp- 
lex root 

A 	50.67 50.670,83.320, 	50.67, 58.32 50.67 0.4246 
34.000,10.000,1.000 

B 	44.01 44.010,75.080, 	44.01, 52.56 52.83 0.5111 
35.010,10,401,1.000 

C 	38.22 38.220, 66.673, 	38.22, 46.67 49.70 0.5385 
33.148,10.051,1.000 

D 	45.00 45.000 , 78.337 	45.00, 54.84 44.12 0.4100 
32.147,09.948,1.000 
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On the basis of Eq.4.27 the C(s)/R(s) of each engine is 

shown in table 4.7 after selecting the value of B2(or k2). 

From the simulation study, unit step response is plotted from 

the table 4.7 of C(s)/R(s)   for each engine which is shown in 

Fig. (4.9) and the performance is listed in table 4.8. 

From the table 4.8 which shows the initial overshoot is 

less than 17% and the settling time is 5.5 sec. Thus the 

transient of all engines almost matches, which is from 

practical consideration is also satisfactory having maximum 

overshoot not more than 20% and peak time is 1.5 seconds and 

settling time is 5.5 second. 

To still reduce the maximum overshoot sand settling time 

we will go for the derivative action. 

4.7.3 Derivative Action 

This form of control action which can increases the 

effective damping in derivative action, this is not used by 

itself but in conjuction with proportional or proportional 

plus integral action. To the normal error signal is added 

signal proportional to its derivative giving a 2-term or 

3-term controller shown in Fig.4.10. The 3-term controller 

has a transfer function 

GC(s) = kl  + S2  + k3s 	 .. 4.30 
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Table 4.8 

Engine 	Peak over Peak time 	Settling 	Steady 	Steady 
Identifi- Shoot (M ) (t ) in sec. timet ) 	state 	state 
cation 	in o 	p 	p 	s 	Value 	error in sec. 

A 16.0 1.3 5.5 1.0 0.0 

B 15.0 1.5 5.5 1.0 0.0 

C 14.0 1.6 5.5 1.0 0.0 

D 16.0 1.4 5.5 1.0 0.0 

Table 4.9 

Engine 	Coefficients of Equivlent G(s)H(s) Gain(B3 ) 
Identi- K 	B2 

	ascending order of s 	=k K K 
fication 	2  

Denominator 	Numerator 

A 	50.67 58.32 50.670,83.220,34.000 0.000,0.000 	1.000*k3  
10.000,1.000 	1.000 

B 	52.56 44.01 44.010,75.080,35.010 0.000,0.000 	0.833*k3  
10.401,1.00 	1.000 

C 	46.67 38.22 38.220,66.673,33.148 0.000,0.000 	0.769*k3  
10.051,1.00 	1.000 

D 	54.84 45.00 45.000,78.337,32.147 0.000,0.000 	1.020*k3  
09.948,1.000 	1.000 
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FIG. 4.10 FEEDBACK SYSTEM WITH P+ I +D CONTROL ACTION 

FIG.4.11 ROOT LOCUS DIAGRAM FOR VARIATION OF INTEGRAL 
ACTION (k2) AND DERIVATIVE ACTION (k3) 
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The effect of derivative action on the position of the 

roots of the characteristic equation can be seen in fig.4.11 

which shows that the addition of derivative action has as 

expected improved the relative stability of the system. This 

is always a highly desirable feature in the design of a 

control system, since any changes in the values of parameters 

over a period of time is less likely to cause the system to 

drift into instability. 	The root locus is plotted again by 

root contour method as earlier discussed. The equivalent 

G(s)H(s) is shown in table 4.9 

Inspection of fig. 4.11 suggests that a useful value of 

k3  to reduce the overshoot with minimum affect on the other 

dynamic characteristic. This is study by simulation and will 

be selected best values to match the transient behaviour. 

For large value of B3(or k3) whose dominent root damping factor 

between 0.4 to 0.6 will give the large rise time or sluggish 

response which is not desired. So small B3(or k3) is 

selected. After selecting the B3(or k3) the C(s)/R(s) 

transfer function is shown in table 4.10 for different 

engines. 	From table 4.10, the simulation study is done for 

unit step input the plot is shown in Fig. 4.12. The 

performance index shown in table 4.11. which shows the 

overshoot is now reduced to less than 10% and settling time to 

4.0 and peak time is 1.5 seconds. This response is quite 

satisfactory as it matches reasonably good dynamic behaviour 

and steady state error to zero. 
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FIG. 4.12 MEASURED ENGINES SPEED RESPONSE TO UNIT STEP 
INPUT AT DIFFERENT, k1, k2 & k3 



Table 4.10 

Engi- 	Coefficients of C(s)/R(s) 	in ascending 
ne Id- 	order of s 
entif•i- K B2 	B3 	Denominator 	Numerator 	k3 
cation 

A 	58.32 50.67 5.072 50.670,83.320,39.072 50.67,58.32 5.072 
10.000,1.000 5.072 

B 	52.56 44.01 2.329 44.010,75.080,37.339 44.01,52.56 2.796 
10.401,1.000 2.329 

C 	46.67 38.22 3.742 38.218,66.673,36.890 38.22,46.67 4.866 
10.051,1.000 3.742 

D 	54.84 45.00 5.891 45.000,78.337,38.030 45.00,54.84 5.775 
09.948,1.000 5.891 

Table 4.11 

Engine 
Identifi- 
cation 

Peak over 
Shoot (M ) 
in % 	p 

Peak time 
(t 	) 	in 

p sec. 

Settling 
time(t 	) 
in secs 

Steady 
state 
Value 

Steady 
state 
error 

A 6.3 1.4 4.0 1.0 0.0 

B 9.5 1.5 4.0 1.0 0.0 

C 7.0 1.7 4.0 1.0 0.0 

D 4.5 1.4 4.0 1.0 0.0 





CHAPTER-5 

ANALYSIS BY ORDER REDUCTION 

5.1 MARSHALL'S APPROXIMATION METHOD 

The reduced-order model of higher order systems are 

obtained by Marshall's method of model reduction technique 

[6,7] when the model is represented by a large set of 

simultaneous non-linear partial differential equations, then 

it is approximated by a set of linear time invariant 

differential equations. The system can be represented by the 

vector differential equation 

x(t) = Ax(t) + Bu(t) 	 ..5.1 

y(t) = Cx(t) 	 ..5.2 

Where x is the n-state vector of the system. A. B & C 

are respectively nxn, nxr and qxn constant coefficient 

matrices and u is the r-input vector and Y is the q-output 

vector of higher order system. 

In this technique for reducing the large set of 

equations by neglecting the dynamic effects associated with 

the small time constants of the system. The eigen values of A 

should have negative real parts and distinct. This is a valid 

approximation where the spread of eigen values is large, 

because it is easy to distinguish which mode have a' more 

dominant effect in the transient or steady state, since the 



eigen values of A to be distinct and have negative real parts 

and to be arrange in the order of increasing moduli, x1,X2,... 

a n. Suppose now that the dynamics associated with the last 

n-m eigen values are to be neglected, i.e. it is required to 

reduce the order of model from n to m. 

For convenience, partition equ. 5.1 so that the m 

variables to be retained in the reduced model are the first m 

variables of the state vector X, the egn.5.l becomes- 

xl 	Al 	A2 	xl 	Bl 

+ 	u 	..5.3 

[2J 
	A3 	A4 	Lx2 J 	L B2J  

Consider now the transformation 

x = Uz 	 ..5.4 

Where U is the modal matrix of A and apply it to eq.5.1, giving 

z(t) = U-1AUz(t) + U-1Bu(t) 

i.e. z(t) = Jz(t)+U-1Bu(t) ..5.5 

Where J is the (nxn) diagonal matrix whose elements are 

eigen values of A. Eq.5.5 in the partitioned from becomes 

zl 	J1 	0 zl rvi 	V2 	Bi  
U 	..5.6 

L 2 J 	LU 
	J2  z2 V3 	V4 	

LB2 

Where V = U-1 
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The first m eigen values are contained in the submatrix 

J1  and the remaining (n-rn) eigen values in J2. Since J2  

contains only non-dominant eigen values resulting in small 

time constants, the state variables associated with them reach 

their steady state after a very short time. Hence, for the 

case of a step input, they may be approximated by an 

instantaneous step change. 

Mathematically the approximation is equivalent to 

putting 

Z2 0 	 ..5.7 

then eq.5.6 becomes 

zl  = J1Z1  + (VB1  + V2B2)u 	..5.8 

and 	0 = J2z2 + (V3B1+ V4B2)u 	 ..5.9 

Now from eq.5.4 

Z = U-1X = Vx 

or r 1 z  l 	V1 	V2 	rxi1  

_ 	 ..5.10 

Lz2J 	L3 	V4 	Lx 2 

giving- 

z2 	V3  xl  + V4  x2  = -J21  (V3B1+ V4B2) u 

x2  = -V41V3 1-V41J21 (V3B1+  V4B2)u 	..5.11 

Substituting equation 5.11 into eq.5.3 and using the 

relationships between U. and Vi, one obtains- 

= U1J1U11x1+[B1-A2V41J21(V3B1+V4B2)lu 	..5.12 



60 

This set of m equation approximates to the original set 

of n equations and is called the reduced system. One 

important aspect is that the steady state values of the 

reduced system are identical to the original system. 

5.2 INTER-RELATIONSHIP BETWEEN STATE SPACE AND FREQUENCY 

DOMAIN 

The equation 5.12 can also be written as 

x 1  = Arxi+ Bru 	 ..5.13 

yl  = Crxl 	 ..5.14 

Where xl  is the m-state vector of the system. Ar, Br  
and Cr  are respectively mxm, mxr and qxm constant coefficient 

matrices. 

The transfer function matrix of the system is 

G(s) = Cr[sIm Ar.]-1  Br 	 ..5.15 

Where s is the complex variable. Since the original 

higher order systems are generally identified in frequency 

domain, thus it is subsequently converted to state space in 

Bush form [10], because the software simulation for output 

response is developed using state space approach. 

5.3 RESPONSE OF ENGINE SPEED REGULATION SYSTEM 

OF LOW ORDER MODEL 

In previous chapter, the engine speed regulation system 

with P+I and P+I+D action has Fourth order system. The 
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computation time of computer can be reduced, when the higher 

order system is approximated to low order model for analysis 

purpose in control. 

The unit step response of third order model of engine 

speed regulation system is shown in Fig.5.1 and Fig.5.2 

respectively for P+I and P+I+D action. Table 5.1 and Table 

5.2 shows the performance index respectively for P+I and P+I+D 

action. It can be seen from table 4.8 and table 4.11, that 

performance index is matching respectively from table 5.1 and 

table 5.2. 

5.4 AIRCRAFT BLIND LANDING SYSTEM 

The block diagram of Aircraft Azimuth channel Blind 

landing system [16] is shown in fig.(5.3) where K is forward 

gain (in degree/foot), Tr  is beam rate time constant (in sec), 

Tn is noise filter time constant (in sec), Ta  is 

aircraft-autopilot time constant (in sec), Yi  is aircraft 

blind landing system azimuth displacement demand (in feet) and 

Yo  is aircraft blind landing system azimuth displacement (in 

feet). This is the sixth order zero-velocity lag system. 

Using the usual algebraic manipulation, it is readily shown 

that 

G(s) =  Yo = K(l+Trs) 
	

..5.16 
Y 	s2(l+Tn.$)3(1+Tas) 
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Table 5.1 

Engine 
Identifi- 
cation 

Peak over 
Shoot(M ) 
in% 	p  

Peak time 
(t 	) 

p 
in sec. 

Settling 
time(t 	) 

s in sec. 

Steady 
state 
Value 

Steady 
state 4  
error 

A 18.0 1.2 5.5 1.0 0.0 

B 15.0 1.3 5.5 1.0 0.0 

C 14.5 1.4 5.5 1.0 0.0 

D 18.5 1.1 5.5 1.0 0.0 

Table 5.2 

Engine Peak over Peak time Settling Steady Steady 
Identifi- Shoot(M ) (t 	)in sec time(t5 ) state state 
cation in% 	p p in sec. value error 

A 8.0 1.1 4.0 1.0 0.0 

B 11.0 1.3 4.0 1.0 0.0 

C 7.5 1.4 4.0 1.0 0.0 

D 5.0 1.2 4.0 1.0 0.0 
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For- the design value Tn  = n 73 sec., Ta=0.50 sec, 

Tr.=10sec. The eqn. (5.16) becomes 

G(s) = K(1+10s) 	= 51.41K(s+0.1) 

s2(1+0.73s)3(1+0.50s) 	s2(s+1.37)3(s+2)2  

__ K'(s+0.1) 	 ..5.17 
s2(s+1.37)3(s+2)2  

Fig.5.4 shows the system root locus for variable gain, 

and for the design value K'. 
nom  ='0.9652 degree/foot. 	The 

system transfer function is 

T(s) =  Yo = 	0.9652 (s+0.1) 

Yi 	0..097+0.965s+5.143s2+13.833s3+13.851s4  

< +6.110s5+s6  
..5.18 

The eqn. 5.18 can also be written in factorised form 

T(s) = 	0.965 (0.1+s) 

(s+0.283)(s+2.379)[(s+0.112)2+(0.1784)2] 

[(s+1.612)2+(0.7961)2] 

1 + lOs 

(1+3.51s)(1+0.42s)(1+2.0.53/0.21s+s2/0.212) 

(1+2.0.9/1.8s+s2/1.82  ) 
	..5.19 

5.5 MARSHALL'S APPROXIMATION METHOD WITH EQUIVALENT LAG 

I:t is clear from fig.5.5 that for systems such as 

aircraft blind landing system the prediction of transient 

response by low order model from marshall method is not good. 

In the marshall approximation method of order reduction, J2 
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contains 	only non 	dominant 	eigen 	values 	resulting in small 

time 	constants, thus 	neglecting the effect of 	far off poles 

and zeroes from the dominant poles and zeroes. But now we 

will take account of the effect of the far off poles and 

-  
zeroes by equating them to equivalent time delay term [8] e

TS 

with Cr  output matrix, where Z is evaluated as 

T  = 
	

T1 T _JEq  T j 
i=m 	j=r 

..5.20 

Where T. and T. are time constant associated with i 
discorded poles and zeroes respectively. The equivalent lag, 

provided the complex poles and zeroes are sufficiently for 

removed from the dominant poles is simply 

Thus from eq.5.15, If the low order model from marshall 

method is 

G(s) = Cr[sIm  - AIBr  

Then the low order model for the marshall method with 

equivalent lag will be 

G(s) = e-TS 
Cr  [SI m-A

r 
 ]Br 	 ..5.21 

5.6 TRANSIENT RESPONSE OF AIRCRAFT BLIND LANDING SYSTEM 

Inspection of fig.5.4 suggests that the transient 

response is dominated by three poles one zero near the origin 

with the remaining three poles, approximately equal to time 

delay e-Ts 



Table 5.3 

Type 	System transfer function 

0.097 + 0.965s 
Exact 

0.097+0.965s+5.143s2+13.833s3+13.851s4+6.110s5+s6  

Marshall 	0.126 + 0.1256s 
Method 

0.0126 + 0.1076s + 0.5071s2  + s3  

Marshall Meth-
od with Equi-
valent lag 

0.0126 + 0.1081s -0.1789s2  

0.0126 + 0.1076s + 0.5071s2  + s3  

LSZS 

W 
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From eq. 5.19, & eq. 5.20, can be evaluated as 

T = 0.42 + 2 x 0.9/1.8 = 1.42 

e-Ts _ e-1.425 _ (1-1.42s) 	 ..5.22 

Table 5.3 lists the system transfer function of exact 

and low order model. Fig.5.5 shows that transient response 

is best predicted by marshall method with equivalent lag while 

marshall method is sufficient accurate for realistic 

prediction of important features such as, overshoot, rise time 

and settling time. 

5.7 CLASSICIAL TRANSIENT RESPONSE SENSITIVITIES 

It is shown by Horowitz [4] that the basic small 

perturbation sensitivity of system transient response to 

incremental change in scalar plant characteristics is given, 

in the case of unity feed back system by 

	

au(t) 	= h(t)*[1-u(t)] 	 ..5.23 
ap/p 

Where h(t) is system impulse response, u(t) is system 

step response, p is generic term for controlled element. 

The practical determination of  au(t)  can be achieved 
ap/p 

by simulating 

A 

	

aU(s) 	[ o   
e. 	 ..5.24 
i 

	

+/p  	Ai 

= [ eo  (s)l [e (s)] 	 ..5.25 
1 	 i 
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Where ei  and 6o  are system command variable and system 

controlled variable and e = 	(9i-eo). The time solution 	can 

be obtained by simulating on digital computer for unit step 

input. 

5.8 USE OF LOW ORDER MODELS FOR SENSITIVITY PREDICTION 

Tomovic[15] has suggested the use of classical 

sensitivity functions, which predict the incremental change 

in system response for incremental change in system 

parameters. In general, the use of classical sensitivity 

functions eq. 5.25 requires the solution of a differential 

equation of at least twice the order of the system. Thus use 

of low order models for sensitivity prediction is potentially 

of even greater practical significance than the use of models 

for response prediction alone due to the immense saving in 

computer facilities. 

It is proposed to replace the actual system impulse 

response h(t) and step response u(t) by the responses um(t) 

and h(t) of a suitable low order model, such that estimated 

sensitivity is now 

au(t) = 
a p/p 	

hm(t)*[1-um(t)] ..5.26 

It is evident from comparison of equations 5.23 and 5.26 

that the requirement for adequacy of the model is simply that 

transient response be satisfactorily matched to the transient 

response of high order system i.e.  U 111(t) = to (t) . 
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Table 5.4 

Model 	Basic Sensitivity Transfer Function 

(0.097+0.965s) (5.143s2+13.883s3+13.851s4+6.11055+s6) 
Exact 

(0.097+0:965s+5.143s2+13 . 833s3+13.851s4+6 .110s5+s6  ) 2 

Marshall 	(0.0126+0.1256s) (-0.018s+0.5071s2+s3) 
Method 

(0.0126+0.1076s+0.5071s2+s3)2  

Marshall 
Method 	(0.0126+0.1081s-0.1789s2) (-0.0005s+0.686s2+s3) 
with Equi- 
valent lag 	(0.0126+0.1076s+0.5071s2+s3)2  

Table 5.5 

Coefficients of basic sensitivity transfer 
Model 	function in ascending order of s 

Numerator 	Denominator 

0.00,0.00,0.496,6.299 0.009,0.187,1.929,12.554, 

Exact 	14.689,13.959,5.994, 	55.835,170.204,345.810, 
0.965 	447.979,371.175,196.925, 

65.034,12.22 

Marshall 0.00,-0.227x10-3, 

Method 	0.413x10-2,0.0763, 
0.1256 

Marshall 0.00,-6.3x10-6, 
Method 	0.00859,0.0865, 
with Equi- -0.0146,-0.1789 
valent lag 

0.159x15-3,0.27x10-2,0.0244, 

0.1343,0.4724,1.0142 

0.159x10-3,0.27x10-2,0.0244, 
0.1343,0.4724,1.0142 
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5.9 SENSITIVITY MODELS FOR AN AIRCRAFT BLIND LANDING SYSTEM 

From eq. 5.24, we can easily determine the sensitivity 

functions associated with various low order model (from table 

5.3) which is listed is table 5.4. Numerator and denominator 

coefficients of Basic Sensitivity transfer function from 

various model islisted in table 5.5. 

From table 5.5, the time solution is obtained for 

sensitivity transfer function, which is shown in fig.5.6. It 

is clear from the fig.5.6 that better result is obtained by 

using the marshall method with equivalent lag than marshall 

method this is due to the better matching of transient 

response to exact response from fig.5.5. 
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CHAPTER-6 

CONCLUSION 

It has been found that synchronization of engines in 

multi-engine aircraft is achieved in closed loop system with 

,-portional-  action, proportional plus integral action and 

proportional plus integral plus derivative action. In 

proportional action system, the major drawback is the steady 

state error. This has been eliminated in proportional plus 

integral action but the settling time and the maximum 

overshoot has increased. To further reduce the settling time 

and maximum overshoot while satisfactorly matching the 

transient as well steady state has been done with proportional 

plus integral plus derivative action. These scheme can be 

used in the autopilot because of closed loop speed 

synchronization. While open loop scheme of synchronization is 

achieved by the instrument known as synchroscope. 

It has been established that low order models adequately 

predict the response and transient response sensitivity of 

higher order linear systems, leading to considerable 

reduction in computation time and complexity. The use of low 

order models for sensitivity prediction is potentially of even 

greater practical significance than the use of models for 

response prediction alone due to the immense savings in 

computer facilities because a third order model of a tenth 

order system reduces the basic sensitivity function from 

twentieth order to sixth order. 
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APPENDIX-A 

CONSTRUCTION OF ROOT LOCI 

Construction of Root Loci 

The method is discussed in section 4.2 that how the roots 

are found for the root locous. The flow chart is shown in 

Fig. (A.l). 



START 

Read & print the alpha numeric characters 

Read the Coefficients or the roots of numerator & Denominator of G(s) H(s) 

Read the minimum and maximum value of gain 

Read the option to be used or not to be u 

/Read IVES/ 

IYE 	- Y S 

Read the Steady state value for which gain is to be calculated 

Calculated the required gain I 

Print the gain,numerator & Denominator coefficients of closed loop system 

Set G=GMIN i.e minimum value of gain 

Calculate the coefficients of the characteristic eqn. 

Store & print the roots of characteristic eqn. 

Calculate & print the damping factor of dominant root of complex 

in nature having negative real part 

between- Check   whether 
	non- zero 	

NO 
 as 

	has  

inary part 

YES 

Print the angular freq, value as equal to imaginary part 

for marginal stable condition at this particular gain 

Calculate & print the steady state value of closed loop system 

~ Increase the gain 

IF G -GMAX 	negative & zero 

positive 

Use split Subroutine to plotthe root locus in increasing value 
of pain 

STOP 

END 

FIG. A.1 FLOW CHART OF ROOT LOCUS PROGRAM 





APPENDIX-B 

NUMERICAL SOLUTION 

B.1 Numerical Integration 

State equation may be solved numerically by Runga-Kutta 

method. The method is illustrated first for a single 

differential equations and then for simultaneous equations. 

A numerical solution of a first order differential 

equation could be described as a process of finding a, series 

of points on this line. If we substitute 	known set of 

values xn  and to  into the equation 

dx = f(t,x) 	 B.1 
dt 

We in effect get the slope of the curve at tn. 

The gist of this numerical integration method is finding 

an approximate slope of the function at a known point, and 

using this approximate slope and a small enough increment of 

time to proceed to the next point. Then, assuming that the 

new point is now a known point on the line, one proceeds to 

reNCat the operation of getting an approximate slope and 

incrementing to the next point. 

The Runge-kutta method finds the approximate slope to a 

higher degree of accuracy instead of using the slope found at 

the beginning of the .ntervai and assuming it constant for the 

entire interval, we find approximate values of the function at 

the beginning, the middle, and the end of the interval in an 



START 

Integer P Do K = 1,N 
0(K,L): H*FX(K 

Read M,N, P 
L=2 

DOI=1)M T=TN+H/2 

D0Kc1.N 
Doi - 1,N (10=XN( K)+Q(K,1)/ 

ead(1,*)(A(1,J),J =1,N) 
Do I:1,N 

Do I: 1,N FX(I): B(1,1) 
eod(1,  Do J = 1,N 

FX(I) a FX (I)+A(I,J)~E X(J ) 
ead (1,)F) TN, TO(JT, H, HP Do K c 1, N 

0 K L =H* FX(K 
Read(1,3f)(XN(K), K=1,N) 

L= 3 
Write (21,322) 

/'OUTPUT',MATRIX,C'7  T =TNf H ft 

Do I: 1,M Do K_1,N 
rite(21,323)( C (I,J), J: 	1,N) X(K)cXN(K)+Q(K,2) 

Write(21,324) Do I=1,N 
,SYSTEM, MATRIX A' FX(1)=B(t,1) 

Do J=1,N 
Do I c 1 , N X(I) c.FX(I)t A(I.J)IEX(J 

/rite(21,324)(A (1,J)) 1 = 1,N) 
Do Ka1.N 

Write (21,325 ) 
Q(K,L)= HiF FX(K) 

INPUT, MATRIX 	B' 

 Do I_1, T %N+ 
rite(21,323)(B(I  

Do K=1,N 
Do I : 1,M (K):XNCK)+L)/  

0 
DO=l.

J 
Do 	=1• N Do I=1,N  

XN(J) FX(1): B(I,1) 
DoJ=1.N 

FX(I) =FX(t) i-A(I,J)*X(J 
HNDX=1.0 

T z TN + H r--- 
DoM:1,N 

FX (M)-0.0 Do 	K = 1,N 
N(K)=XN(K)+Y6(Q(K,1)+2Q(K,2)+2Q(K,3 

Write(21,60) N.P,M 
4 Do i _ 1; M 

Vrite(21.90) TN, TOUT, HP/ V(1)= 0.0 
Do J : 1,N 

Y(I):  

YES 

21,200)TN,H.(XN(K),K=1,N),V(I),I_1,M 

HN
IF 

TN.LT• 	DX*HP 

 NO 
HNDX: HNDX+ 1.0 

li 

 

Write(21,200)TN,H,(XN(K),K.:1,N),(V(I),1 
K 

NO N 
I,1) IF TN.LT.TOUT 

N 5T( 
(I.J )!E X(J YES 

E N 

Do K=1,N ` 
)(K,L) mHxFX(K 

FIG. B.1 FLOW CHART OF RUNGA KUTTA METHOD 



iterative procedure. The final approximate value of f(xn+l'  

to 
+l) is an weighted average of these. 

We define terms. 

FX is the slope at point. 

H is the increment of t. 

Ql is the first trial value for xn+l  found by using the 

initial conditions. 

Q2 is the second trial value for xn+l  found at the half 

interval using for a slope a value of FX found by 

substituting Ql. 

Q3 	is 	a third trial 	value found at the half interval, 

using for a slope a value of FX found with the aid of Q2. 

Q4 is a fourth trial value found at the end of the time 

interval, 	using for a 	slope the value of FX found with 

the substitution of Q3. 

Each Q produced is used to produce the next one. 

TN is the initial value of t. 

XN is the initial value of x. 

H is the increment of t. 

FX is the number obtained by substituting into 

dx = f(t,x) 	 ..B.2 dt 

the 'present value' of x and t. 



START 

Integer P Do K = 1,N 
0(K,L)= HGF FX(K 

Read M,NP/  L.2 
DOI=1,9M 1=TN+H12 

Do K=1.N 
Do I a 1,N (K):XN( K)+Q(K,1)/ 

ead(ldt)(A(I 
Do I:1,N 

Do 	I= 1,N FX(I)=B(I,1) 

ead(1,it)(8(I,J), J=1, P) 4 Do J :1,N  
FR(I) : FX (I)+A(I,J)* XC) ) 

ead(1) TN, TOUT, H, HP Oo K :1,N 
0 K L =H* FX(K 

Read(1,%)(XN(K), K=1.N) 
L:3 

Write (21,322) 
'OUTPUT' , MATRIX , C' Y :TN$ H / 

Do I = 1, M Do K=1, N 
Vrite(21,323 )(C (I,J), j = 	1, N) X(K)=XN(K)+Q(K,2) 

Do I=1,N 

/
Write(21,324) 

SYSTEM,MATRIX A~ FX(I):B(1,1) 
Do J=1,N 

Do I =1,N K(I)c.FX(I)+A(I,J)1EX(J 
r(te(21,324)(A (I,J)j J = 1,N) 

Do K_1.N 

Write (21,325) 
Q(K,L)= H* FX(K) 

INPUT, MATRIX 	B L-4 

poI=1 N T=TN+H 
ite(21,323)(B(I)J), Ja 	1,P) 

Do K =1, N 
Do I = 1,M (K)=XN(K)+Q(K.3 

Y(1):0.0 
Do J1, N 

 
Do I=1,N 

FX(I) =FX(I) tA(I,J)!tX(J 
HN DX=1.0 

TzTN+H 
DoM=1,N 

F%( 
 

M)=0 0 Do 	K = 1,N 
N(K)=XN(K)+V6(Q(K,1)+2Q(K,2)+20(K,3 

Write (21,60) N,P,M 
Do!: 1,'M 

Write(21.90) TN, TOUT, HP Y (I)_ 0.0 
DO) : 1,N 

IF 	 YES 

(21 200)fN, H.(XN(K ),K =1,N),Y(i ),I=1,M 

TN. LT. HNDX*HP 
 NO 

HNDX= HNDX+ 1.0 

AFX(t)=FX(I 

Write(21,200)TN,H,(XN(K),K•c1,N),(Y(I),I= 

NO Is1) IF TN.LT.T0 r 
ST( 

(I.J )* XLI YES 

Do K_ 1,N 
(K,L) zHxFX (K; 

FIG. B.1 FLOW CHART OF RUNGA KUTTA METHOD 



E: 

The new value'xn+l  at the end of time interval H is xn  plus a 

weighted average of the Q's 

Calling 	dx 
dt - FX(t,x) 	 ..B.3 

We find the Runge-kutta equations are 

Qi = H.FX(tn,xrl) 	 ..B.4 

Q2 = H.FX(tn  2,xn+Q2) 	 ..B.5 

Q3 = H.FX(tn+ 2, xn  + Q2) 	 ..B.6 

Q4 = H.FX(tn+H,xn+Q3) 	 ..B.7 

1 
xn+l = xn+  6(Ql+2Q2+2Q3+Q4) 	 ..B.8 

B.2 Simulatenous Equations 

For solving simultaneous equations is much the same 

except that there are sets of Q's like the above for each 

equation in the set. These Q's must be found in the proper 

order, first, all the Ql's must be found, then all the Q2's 

and soon, because all the Ql's are needed to find the first Q2 

and all the Q2's are needed to find the first Q3 and soon. 

A flow chart for solving two or more state equations is 

shown in Fig. (B.1). 
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