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ABSTRACT 

The work included in this thesis deals with model 

reduction techniques in frequency domain i.e. based on a 
transfer function description of the original system. 

The first chapter introduces model reduction problem, 

its necessity and a broad classification of various model 

reduction techniques. Reduction by Cauer forms, 

Routh-Hurwitz array, the Integral square error methods are 

described in chapter-2. The method to obtain step response 

of a system is presented in chapter-3. The respective step 

response of the illustrative examples are shown for 

comparision purpose. A scheme to design controllers, using 

reduced order models obtained from Cauer forms method, is 

given in chapter-4. 

The computer programs, in FORTRAN, for 	I model 

reduction , 	step response and Nyquist plot, have also been 

developed and implemented successfully on a PC. 
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1.1 MOTIVATION FOR MODEL REDUCTION 

Every physical system can be translated into 

mathematical model. The mathematical models of large 

systems are very complex and they can not be reduced by hand 

calculations. Fast digital computers can be used to reduce 

these complex models. 

The mathematical procedure of system modelling often 

leads to comprehensive description of a process in the form 

of high order differential equations which are difficult to 

iic either for analysis or controller synthesis. It is 

hence useful, and sometimes necessary, to find the 

possibility of finding some equation of the same type but of 

lower order that may be considered to adequately reflect the 

dominant characteristics of the system under consideration. 

Some of the reasons for using reduced order models of hiyher 

order linear systems could be: 

(a) To have a better understanding of the system: 

A system of uncomfortably high order poses 

difficulties in its analysis, synthesis or identification. 

An obvious method of dealing with such type of system is to 

approximate it by a low order system which reflect the 

characteristics of original system such as time constant, 

damping ratio, natural frequency etc. 

(b) To reduce computational complexity: 

The development of state-space methods and optimal 
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control techniques have made the design of control system 

for high order multivariable system quite feasible. When 

the order of systems become high, special numerical 

techniques are required to permit the calculation to be done 

at a reasonable cost on fast digital computers. This saves 

both time and memory required by computer. 

(c) To reduce hardware complexity: 

A control system design for a high order system is 

likely to be very complicated and of a high order itself. 

This is particularly true for controllers based on optimal 

control theory. Controllers designed on the basis of 

low-order model will be more reliable, less costly and easy 

to implement and maintain. 

1.2 APPLICATIONS OF REDUCED ORDER MODELS 

Reduced order models and reduction techniques have 

been widely used for the analysis and synthesis of high 

order systems. Some of the uses to which these have been 

a put are: 

(1) Prediction of the transient response sensitivity of 

high order systems using low order models. 

(2) Predicting dynamic errors of high order systems 

using low-order equivalents. 

(3) Control system design. 

(4) Adaptive control using low order models. 

(5) Designing reduced order estimators. 

(6) Suboptimal control derived by simplified models. 
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1.3' STATEMENT OF MODEL REDUCTION 

The reduction of a high order system into its lower 

order approximants in frequency domain can be stated as: 

Given a transfer function description of a higher 

order single input - single output system: 

a0 +a1S+a2S2  + ...... +aSr 	N(S) 
G0(S) = 	 = 

b0 +b1S + b2S2 + ..... + bn+l S 	D (S) 

where n is the order of the system. 

A reduced order model is desired, which can adequately 

describe the significant dynamic behaviour of the original 

system and can be expressed as: 

Co  + C1S + C2S2  + .....+ CrS 
Gr(S) 	 5r 

	r<n 
+ djS + d2 S2 + ..... + dr+i 

where r is the order of reduced order system. 

In time domain, the systems can be described by the 

following state space equations. 

Original System 

(t) = AX(t) + Bu(t) 

y(t) = CX(t) + Du(t) 

where, 

X(t) = nxt state vector 

u(t) = mxl input vector 

Reduced Order System (r<n) 

= ArXr(t) + Bru(t)  

Yr(t) = CrXr(t) + Dr-U(t)  

where, 

Xr(t) = r x 1 state vector 

Ar 	= r x r system matrix 

Contd.. 
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Original System 

A = n x n system matrix 

B = n x m input matrix 

y(t)= 1 x 1 output vector 
C = 1 x n output matrix 

Reduced Order System (r<n) 

Br  = r x m input matrix 

Cr  = 1 x r output matrix 

Dr  = 1 x m transmission matrix 

yr(t)= 1 x 1 vector of reduced 
system 

D = 1 x m transmission matrix 

(For SISO 1 = m = i) and in physical systems, transmission 

matrix, in general, in zero. 

1.4 CLASSIFICATION OF MODEL REDUCTION TECHNIQUES 

The order reduction techniques can broadly be classified as: 

1.4.1 Time domain Simplification Techniques 

In time domain reduction techniques the original and 

reduced systems are expressed in state space form. The 

order of matrices Ar, Br, Cr  are less than A, B, C and the 

output yr  will be a close approximation to y for 

specified inputs. The time domain techniques belong to 

either of the following categories: 

(1) Modal Analysis: 

This category attempts to attain the dominant eiyen 

values of the original system and then obtains the remaining 

parameters of the low order model in such a way that its 

response, to a certain specified input should approximate 

closely to that of high order system. The method proposed 
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by DAVISON [1], AOKI [2] belong to this category. Davison's 

method consists of diagonalising of the system matrix and 

neglecting the large eigen values. In this case, the input 

is taken as step function and all the eigen values are 

assumed to •be distinct. This restriction, however, was 

removed by CHIDAMBARA [4] and DAVISION [3]. AOKI [2] took a 

more general approach based on aggregation. A method to 

improve the quality of simplified aggregated models of 

systems without increasing order of the state differential 

equations has been given by GRUCA et.al. [5]. It consisted 

of introduction of delay in the output vector of aggregated 

model to minimize a quality index function of the output 

vector. However, the numerical difficulties and the absence 

of guide lines for selecting the weighting matrices in 

performance index of this method were well observed by the 

researchers. INOOKA et.al. [6] proposed a method based on 

combining the method of aggregation and integral square 

error criterian. An important variation of dominant eLyen 

value concept was proposed by KUPPURAJULU and ELANGOVAN [7] 

wherein the high order system is replaced by three models, 

successively representing the initial, intermediate and 

final stages of the transient response. 

The above out-lined approaches, though useful in 

many applications, suffer from the following disadvantaggs: 

(i) 	The computation of eiyen values, eiyen vectors and 

the aggregation matrix may be quite formidable for a 

very high order system. 
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(ii) In cases, where the eigen values of a system are 

close together or where the eigen values are not 

easily identified, these methods obviously fail. 

(iii) There may be considerable difference between the 

steady_ state responses of the high order system and 

its low order model to certain inputs [1]. However 

this shortcoming was removed by CHIDAMBARA [4] at the 

cost of poor matching during transient period. The 

above mentioned points led to the optimum order 

reduction approach. 

(2) Optimum Model Reduction 

This second group is based on obtaining a low order 

model of a given high order system so that its impulse or 

step response will match to that of the original system in 

optimum manner with no restriction on the location of eiyen 

values. Such techniques aim at minimizing a selected 

performance criterian. Which in general, is a function of 

error between the response of the original high order system 

and its reduced order approximant. The parameter of reduced 

order model (ROM) are then obtained either from the 

necessary conditions of optimality or by means of a search 

algorithm. The approximations have been studied for step 

and impulse responses. 

Chidambara (1969) gave two techniques for model order 

reduction where the integral of the squared error between 
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the step response of the exact and simplified model is 

minimized. SINHA and BERZNAI [8] solved the problem by 

using pattern - search algorithms. BANDLR et.al. [9] used 

three different gradient techniques for the minimization of 

performance index in the simplification problem. YAHAGI [10] 

obtained low order model by using the technique of least 

square fit, linear, programming and parameter optimization. 

For state space representation the most important results 

were obtained by WILSON et.al. [11]. But this also requires 

the solution of Lyapunov type equations. 

But whatever be the approach to the problem, the main 

objective is that the reduced order approximant should 

reproduce the significant characteristic of the parent 

system as closely as possible. 

1.4.2 Frequency Domain Simplification Techniques 

Most frequency domain simplification techniques start 

with the transfer function description of the original 

system. The objective in this case is that the frequency 

domain properties of the original system match closely with 

those of its reduced order equivalent. They can mainly be 

classified as: 

(i) Continued fraction expansion and truncation (CFE) 

This method was first proposed by CHEN andSHIEH[12]. 

Since then various improvements and extension of this 



approach have been presented by Chen and Shieh [13]. 

Chen [14] has extended the CFE techniques to model 

reduction and design of multivariable control systems. In 

the formulation of reduced order models by using CFE 

techniques, the CFE and inversion operation is extremely 

time consuming and laborious. 	Computer oriented 

algorithms for expansion into continued fraction and their 

inversion have been devised for various Cauer forms. Shieh 

et.al. [15] have demostrated that.  the first, second and 

third Cauer form formulations for order reduction give good 

approximations in the transient, steady-space and overall 

region of the response curve respectively. Shieh and 

Goldman has shown that a mixture of first and the second 

Cauer forms give good approximations for both the transient 

and the steady-space responses. 

One difficulty with the CFE approach is that the 

stability of the model is not guaranteed, even though the 

original 	system 	is stable but this 

method can be used for single-input single-output as well as 

multi-input multi-output systems. Chen et.al. [34] has 

given a method for finding the denominator polynomial of the 

reduced model using the Routh stability criterian and 

the numera? or polynomial coefficients by C.L'E teclhni(1ue,, 

hence, reduced model will be stable if the original system 

is stable. 
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(2) Pade'-approximation technique : 

Shamash [16] has shown that for the case of rational 

transfer function, the continued fraction methods are a 

special case of the time-moments method, which is equivalent 

to the Pade' approximation method. Pade approximation 

techniques have a number of very useful advantages, such as, 

computational simplicity, the fitting of the intial time 

moments; and the steady-state value of the output of system 

and model being the same for input of the form aiti. The 

main drawback of this method is that the reduced order model 

may be unstable (stable) even though the original high order 

system is stable (unstable). Shamash [18] has given a 

method for finding the denominator polynomial of the reduced 

model by using the Routh stability criterion and the 

numerator polynomial coefficients by matching the initial 

few time-moments of the system and the model. This ensure 

that the reduced-order models will always be stable if the 

high order system is stable. 

(3) Moments matching method : 

The moments matching technique aims at equating a few 

lower order moments of the model to those of the original 

system, and no consideration is given to the remaining 

moments. This would preserve the low frequency response of 
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the system G(S) while the transient response of R(S) would 

be in error. The simplification of large order systems using 

moments was first suggested by Paynter [19]. A computer 

oriented algorithm for evaluating moments has been presented 

by Lal and Mitra [20]. 

The main drawbacks of methods based on moment matching 

is that the transient performance of the reduced model may 

not always be satisfactory and more over there is no 

guarantee that the reduced order model wil be stable for a 

stable system. 

(4) Matching frequency response : 

The main aim of this method is that the magnitude 

curve of the frequency response of the reduced order model 

should close enough to the magnitude curve of the frequency 

response of the original large order system in the 

bandwidth of interest. In this method due to Levy [21], an 

error function in the frequency response match over a 

frequency-range of interest is minimized in a least square 

sense. Rao et. al. [38] presented a method based on Lavy's 

curve fitting technique. It is claimed to be useful for 

classical design of non-linear control system, computational 

time required is high in this method. The method of 

Elliott et.al.[35] matches the frequency response of low and 

high order systems at a prespecified frequencies, though 
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computational effort is small but there seems to be no 

prescribed method of selecting the number and frequency 

points for exact matching. The stability of the reduced 

system is also not guaranted in this method. 

Reddy [40] proposed four error function in which phase 

error function is minimized between real & imaginary parts 

of original and reduced order models. The drawback of this 

method is that reduced model may be unstable though original 

system is stable. This method can be used for multivariable 

systems also. Another method for multivariable systems 

using response matching is reported by Pujara et. al .(37). 

In this method, error function is minimized at the end 

frequencies of the band within which matching is required. 

This method is very simple.0uyang et.al.[36] reported a mixed method in which 

the denominator of the reduced order model is constructed from the poles 

of large disspersion based on the concept of power decomposition i.e. 

by neglecting dynamic modes with small dispersion. 

Numerator parameters are then determined by apply frequency 

response matching technique. Latest technique in this field 

is due to Whitfield et.al.[33], they suggested three error 

criterion method. One is differential equation error 

criterion, second one is Integral-equation error criterion, 

and third one is signal error criterion. The first one i,e. 

differential equation error criterion method is best for 
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high frequency characteristics matching while integral 

equation error criterion method is best for low frequency 

characteristics matching and signal error criterion method 

is best for middle frequency characteristics matching. 

(5) Reduction based on stability criteria : 

Hutton and Friedland [22] based their reduction 

method on a-B 	expansion that uses the Routh table of the 

original transfer function. This has a number of useful 

properties : if the original system is stable, then all 

approximants will be stable, the sequence of approximants 

converge monotonically to the original in terms of 'impulse 

response energy'; the approximants are partial pads 

approximants in the sense that the first K coefficients of 

the power series expansions of the ICth  order approximant and 

of the original are equal. 

This method has the advantage of computational 

simplicity, because once the R-H array is constructed for 

tilt numerator -  and denominator polynomials; the various 

reduced order models follow by inspection. 



II 	 fl U 	II 
methods for model reduction 
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2.1 MODEL REDUCTION USING MATRIX CONTINUED FRACTION 

EXPANSION AND INVERSION 

A transfer function matrix is often used to express 

the relationship between the inputs and outputs of a 

multi-terminal circuit or a multivariable control system. 

The expansion of the transfer function matri.x into a matrix 

continued fraction and the inversion of a matrix continued 

fraction to a transfer function matrix are two fundamentally 

important operation in multiterminal network and 

multi-variable system analysis and synthesis. Shieh and 

Gaudiano [31] developed a generalized Routh algorithm for 

performing matrix continued fraction expansion and inversion 

of three matrix cauer forms. 

The CFE approach has the major disadvantage that the 

reduced model may be unstable although the original system 

is stable. For multivariable systems, this method is 

restricted to square transfer-function matrices (i.e. the 

number of inputs and output must be same), but due to Chen 

et. al. [341. 	It becomes possible to get a stable reduced 

order.,  model by OFF technique. 

2.1.1 Method No:1 [311 

Method using second matrix Cauer. form CFE 

Let the nth  order square-transfer function matrix 

[G(S)] 	and its 	rt h  order reduced equivatent 	[R(S)] 
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be representd as 

[A2,n Sn-1 + A2,n-1Sn-2+ --+ A2,3S2+ A2,2S+ A21] 
[G(s)] _ 

[Al,n+lSn  + Al,nSn-1  + -- + A1,3S2+ A1,2S+ All ] 

Where Ai J  are constant, m by m, matrices, and Al J 	a J  [ I ] 

J = 1,2,..,n+l. Where each a is a coefficient of the 
n+1 

common-denominator polynomial or (S)= J 

	

	a SJ-1  and [I] is =1  

an identity matrix. 

and 

[B 	Sr-1 + B2,r-1Sr-2+  -- + B2,3S2+B2,2S  + B21] 
[R(S)1= 2,r 

[Bl,r+lSr+ Bl,rS
r-1+ -- + B1,3S2+ B1,2S + B11] .  

(2.2) 

Where Bi,J  are constant, m by m, matrices, and B1J  

J=1,2,..,r+1. Where each b is a coefficient of the 

common-denominator polynomial or 

- r+l 	
1 (S) 	bJ  SJ- _ 	and [I] is a identity matrix. 

J=1 

Eqn.(2.1) can be expanded in the first matrix Cauer form 

as 

[G(S)] _ [H1+[H22+[H3 + [H41 + 
 

(2.3) 

The reduced models are obtained by truncating the expansion 

and discarding some partial quotient matrices H. The 

procedure are as follows : 
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Step 1 : Evaluate Hi, i=1,2,..r; by.the generalized matrix 

Routh algorithm [31] 

All 	Al2 	A13 A14 ------ 

-1 
H1=AllA21 ---  A21 	A22 	A23 

H2=A21A31 

A31 	A32 	--- 

-1 
H3=A31A41 

A41 	--- 

Where, 

Ai-2,J+1-Hi-2Ai-1,J+1; i=3,4,..,n+l;J=1,2,.. ..(2.4a) 

Hi  = Ai,l(Ai+l,l )-l; i = 1,2,..,2n 	..(2.4b) 

Provided det (Ai+l,l ) 	0 	 ..(2.4c) 

Step 2 : Using Hi  coefficients from step 1, evaluate Bi,J 

of eqn.(2.2) by using the following reverse matrix Routh 

algorithm [31]. 

B2r+l,l 	[I] 	 ..(2.5a) 

BP,1 	HPBP+1 1; P = 2r,2r-l,..,2,1 	..(2.5b) 

BJ-2,1-+-1= BJ,1 HJ-2,1+1; J=2r+l,2r,..,3;1=l,2,..,r,  

..(2.5c) 

Step 3 : Using egn.(2.5), the reduced order model as in 

eqn.(2.2) is formed. If m=l, same method can be used for 

single input single output systems. 
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Fij. 2.1 BLOCK DIAGRAM SCR ' SECOND CAUER FORM 

Fig, 2.2 BLOCK DIAGRAM FOR F1RST CAUER FORA 
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Example 2.1 : This is taken from Shieh [31] and is given by 

	

[G(S)] = [ci 2 + (1 1)S] [t 	1) + 

	

0 0 	1 0 
t 	)S + ( 	)S2]-1  

	

00 	01 

The generalised matrix Routh array is given by 

10 00 10 

-.25 	-0.5 _ [0 1]  0 0] 	[0 	1]  

Hl-[ 	.25 	-0.5 -2 [ 2]  2 0 ] 
-1 - 1 

-2 	6 

H2= 	[-1 -1] 1 .5 1 0 
[0 .5

] 
 

= 0 H3 -[ -05 .1] 	-6 2 
H [4 -6 	[2 0 
4_ 2 2 

10 
[0 1]  

Solving eqn. (2.5) we get 

[R2(S)1= [(-2 2)  + ( 
	0)S][( 1 0)  + ( 

	0)S+  ( 
	0)S2]-1 

Example 2.2 : This is taken from (17) and is given by 

G(S) = s3+ 7s2  + 24s + 24 
s4+ 10s3+ 50s + 24 +35s2  

The generalized Routh array is given by 
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24 50 35 	10 	1 
K1  = 1 

24 24 7 	1 
K2  = 	.923 

26 28 9 	1 
K3  = -14.083 

-1.846 -1.308 .077 
K4  = -.193 

9.583 10.083 1 
K5  = 15.097 

.653 .27 
K6  = 	.106 

6.014 1 
K7  = 36.667 

.164 
K8  = 	.164 

1 

Solving eqn.(2.5)d we get 

„ 	.730s + 2.504 z(S)  _  

s2+ 3.443s + 2.504 

Step responses and Nyquist plots for both original and 

reduced model are shown in Figures 2.4, 2.5. 

2.1.2 Method No.2 [31] 

Method using Mixed matrix Cauer form 

The nth  order system transfer function G(S) given by 

egn.(2.1) may be expanded into the third form CFE as 

[G(S)] = [K1+KjS + [K21+K2 + [K3+K3S + [K41  + K4+ 

[ _] 1] l] 1] 1]  

..(2.6) 

For arriving at the rth  order model R(S) given by 

(2.2), the following steps are followed: 
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Step 1 : Evaluate the matrix quotients of eqn.(2.6) by the 

generalized matrix Routh algorithm [31]. 

All  Al2... Al,n Al,n+l 

K1=AllA
21 

A21  A22... A2,n 

2- 21 31  A  A32... A 31  3,n-1 

An,l An,2 
Kn=An,l 

l)-1 An+l,l 

'1 
•K1-Al,n+l A2,n 

'  1 K2=A2,nA3,n-1 

Kn=An,2(An+l,l
)-1 

Where, 

= AJ-2,1+1  KJ-2AJ-1,1+1  KJ-2AJ-1,l ••(2.7a) 

J = 3,4,..,n+1 

1 = 1,2,.. 

and 

Kp = Ap,1(Ap+1,1)
-1  

..(2.7b) 

' 

 

Kp = Ap,(n+2-p)(Ap+l,n+l-p)
1 
	 ..(2.7c) 

Provided det. Ap+l,l r' 0; det. Ap+l,n+l-p ~ 0 

P = 1,2,...,n 

Step 2  Using K and Ki coefficients from step 1, evaluate 

Bi1J of eqn.(2.2) by using following reverse matrix Routh 

algorithm, 
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and 

Br+l,l = [I]  

Bp,1  = KPBP+1,1 ; P = r,r-1,..,l 

BP,(r+2-P) = KP B(P+1),(n+l-P)' 
P=r,r-l..,l 

..(2.8a) 

..(2.8b) 

..(2.8c) 

BJ -2,1+1 = BJ,1 + K J-2BJ-1,1+1 + KJ-2BJ-1,1 .. (2.8d) 

J = r+l,r,...,4,3 

1 = 1,2,...,(r+2-J) 

Step 3 : Using egn.(2.8), the reduced order model as in 

eqn.(2.2) is formed. If m=1, same method can be used for 

single input-single output system. 

The generalized matrix Routh array for example 2.1 by this 

method (method 2) is given by 

-.25 -.5 

Kl 	[ .25 -.5]  

_ -1 .6 
K2  

-.5--.5
I 

 

10 00 10  
1 [ o  o] 	 l 

-2 2 2 0 

[-1 -1] [1 1]  

2 -.5  
2.5 

.5 0 
Kl =[ -.5 1]  

1 	.2 
2 [.5 .5]  

Solving egn.2.8) we get 

15 -651  + I5 .5
]S  

[R2(S)] = 

[.0 	 E 	gis + 	[•0 	.4]s2 
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and 

generalized Routh array for example 2.2 by this method 

(method 2) is given by 

24 50 	35 	10 	1 
K1  1 Ki = 1 

24 24 	7 	1 
K2  12 K2  = 	 5 

2 4 	2 

K3= -.08 -25 -19 K3 = -.105 

K4= 164.931 -.152 K4 = 125.347 

Solving eqn. (2.8) we get 

•5 s + 12 R2 (S)  _  
.5 s2+ 13.5s+12 

Step responses and Nyquist plots for both 

original and reduced model are shown in Figure 2.4 and 

2.5. 

2.1.3 Method No.3 [31] 

Method using First Matrix Cauer Form CFE 

The nth  order system transfer function G(S) given by 

eqn.(2.1) may be expanded into the first form CFE as 

[G(S)] = [HiS + [H2+[H3S + [H4+ [--]1] 	1-1 1-1 1
-1 ..(2.9) 

For arriving at the rth  order model R(S) given by 

(2.2), the following steps are followed : 
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Step 1 : We rewrite the eqn.(2.1) as follows 

[B21 Sn-1 + 
B22 Sn-2 + B23 Sn-3+..+ B2n] 

[G(S)] _ 	 ..(2.10a) 

[B11 Sn+ B12  Sn-1+ .. + Bl,n+l]
-1  

Where 	Bl1i  = A1,(n +2-i); 	i = 	1,2,..,n+l ..(2.10b) 

B2,J = A2,(n +l-J); 	J = 	1,2,..n ..(2.10c) 

Step 2 : Evaluate Hi for i = 1,2,...r; by the generalized 

matrix Routh aglrithm [31] 

_ 	B11 	B12 	B13 	B14 	- - 
H1=B11B21  

B21 B22 B23 -- 

H_2=B21B31 --  B31 B32 

H3=B31B41 	B41 ---- 

Where, BJ,l  = B_211+1- HJ-2BJ-1,1+1; J = 3,4,...,2r+1; 

1=1,2,...,r 	 ..(2.11a) 

and 

Hp = Bp,l(Bp+1,1)-1; p = 1,2,... 	..(2.11b) 

Provided det Bp+l,l  # 0 

Step 3 : Using H coefficients from step 2, evaluate Ai J 

• by using following reverse matrix Routh algorithm[31]. 

A2r+1,1 = [I] 	 ..(2.12a) 

Ap'l  = H
P 
 A +1,1; p = 2r,2r-l,..,2,1 	..(2.12b) 

AJ-2,1+1-  AJ,1 + HJ-2AJ-1,1+1; J=2r+1,2r,...,3; 
1 = 1,2,..r ..(2.12c) 
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and calculate Bi`J by following equations. 

Bl,i = Al,(r +2-i)  ;  
i =  1,2,..,r+l ..(2.12d) 

B2,J = A2,(r +1-J)'  
J = 1,2,...,r ..(2.12e) 

Step 4 : Using eqn.(2.12) the reduced order model as in the 

eqn.(2.2) is formed. 

If m = 1 same method can be used for single input 

single output systems. 

The generalized matrix Routh array for example 2.1 

by the method (method no.3) is given by 

H1-[-55 l~ 

H2 
 11 

H 
34 .4 -.81 

0  0 
[  ] 
0 0 

-2 2 

[-1 -1' 

1 0  

1 

H4-[-2 -21 

Solving eqn.(2.12 we get 

-2 2 	2 0 
[-1 -1' + ~1 1Is 

[R2(S)) 

[0 11  + [0 0]+ [0 1]s2 

and 

Generalized Routh array for example 2.2 by this method 

(method no.3) is given by 
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D 

O 
01 	E 
O 	0 

X a 
L 0 

O 	 0 	 0 	 0 
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0 	0 	6 	6 



1 10 35 	50 
H1=1 

1 7 24 	24 
H2= .33 

3 11 26 	24 
H3= .90 

3.33 15.3 16 
H4= -1.19 

-2.8 11.6 24 
H5= -.1 

29.1 44.6 
H6= 1.83 

15.9 24 
H'= 29.78 

.53 
H8 = 	.02 

24 

Solving eqn. (2.12) we get 

R3(S)  _ .06s2+ .34s + .98 

Step responses and Nyquist plots for both original and 

reduced model are shown in Fig.2.4 and 2.5. 

2.2 MODEL REDUCTION USING THE ROUTH STABILITY CRITERION 

Krishnamurty et.al.[32] have presented an interesting 

method for the reduction of dimension of a high order 

transfer function. Their method makes use of the classical 

Routh-Hurwitz stability array and is applicable to single-

input single-output systems. The advantages of this method 

is that if original system is stable then reduced order 

model will be stable and computational time is less than CFE 

method. 

24 

.06s+ .53s`  +1.38s+1 
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Let the transfer function of nth  order system be 

bl1Sm + b21Sm-1 + b12Sm-2 + b22Sm-3+-- 

G(S) 
= 1  + a21Sn-1 + a12Sn-2 + a22Sn-3 	..(2.13) 

+-- 

Where m <1 n - 

To get the reduced order model by this method, the procedure 

are as follows : 

Step 1 . Form Routh stability array for the numerator 

polynomial. Routh stability array for the numerator 

polynomial for (2.13) is given by 

b11 	b12 . b13 	b14 

b21 	b22 	b23 	b24 - - - 	••(2.14) 

b31 b32 b33 --

b41 b42 b43 -- 

Where first row of array consists of odd coefficients (i.e., 

first, third, fifth, etc.) and the second row consists of 

even coefficients (i.e., second, forth, sixth, etc.) 

The routh array are completed in the conventional way 

by computing the coefficients of succeeding rows 	by the 

algorithm. 
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B. =
BBi-2,J+l (Bi-(Bi 	i 

 

i >, 3 and I .< J 4 (n-i+3) /2 	 .. (2.15) 

and [.] stands for the integral part of the 

quantity. 

Step 2 Form Routh stability array for the denominator 

polynomial. The Routh stability array for the denominator 

polynomial for (2.13) is given by 

all a12 a13 	a14 	--- 

a21 a22 b23 	a24 	--- 

a31 a32 a33 	-- 

a41 a42 a43 	-- 	..(2.16) 

Where first row of array consists of odd coefficients and 

the second row the event coefficients. 

The Routh array are completed in the conventional way 

by computing the coefficient of succeeding rows by the 

algorithm. 

aiJ ai-2,J+1 (ai-2,1•a 	•_i-l,J+l)/a ~ 1,1; 

i > 3 and 1 < J < (n-i+3)/2 	..(2.17) 

and [.] stands for integral part of the quantity. 
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Step 3 : rth  order numerator polynomial may be easily 

constructed with the (n+2-r)th  and (n+3-r)th  rows of Routh 

stability array of numerator and denominator polynomial with 

a h_ 

the (n+1-r)" and (n+2-r)
th  rows of Routh stability array 

of denominator polynomial of original system. 

Example 2.3 : This is taken from Krishnamurthy [32] and is 

given by 

G(S) = 35s7+1086s6+13285s5+82402s4+278376s3+511812s2+482964s+194480 

s8+33s7+437s6+3017s5+11870s4+27470s3-F37492s2+28880s+9600 

The complete numeraor and denominator Routh array are given 

below 

Numerator table 

35 

1086 

10629.3 

55645.5 

173419.1 

322069 

334828.5 

194480 

13285 278376 	482964 

82402 511812 	194480 

261881.1 476696.1 

463107.8 194480.0 

439546.9 

194480 
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Denominator table 

1 437 11870 	37492 	9600 

33 3017 27470 	28880 

345.6 11037.6 36616.8 	9600 

1963 23973.4 27963.3 

6817.2 31694 9600 

14847.1 25199 

20123.7 9600 

18116.2 

9600 

hence third order model is given by 

R3(S)  _ 322069s2  + 334828.5s + 194480 

14847.1s3  + 20123.7s2  + 25199s + 9600 

R3(S)  = 32.83 s2  +60.98s + 39.45 	(BY method 1) 
s3  + 314s

2 

 + 4.03s + 1.95 

R3(S)  _ .05 s2  +  3.23s + 	23.16 	(BY method 3) 
.002s3  + .ls + .84s + 1.00 

Step response and Nyquist plot for all three cases are shown 

in Fig.(2.6) and (2.7). Different order reduced Tansfer 

function of example 2.3 by method 1, method 2 and method 3 

are shown in tbale 1 and step responses and Nyquist plots 

for these models are shown in Figures from 2.8 to 2.15. 
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Fig. 2.8 Step responses for example 2.3 
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Fig. 2.9 Step responses for example 2.3 
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Fig . 2.10 Step responses for example 2.3 
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2.3 REDUCTION BY INTEGRAL LEAST-SQUARES TECHNIQUES 

Several least-squares methods have been proposed as 

solutions to the problem of fitting a transfer function to 

a set of frequency response data. The original linear least 

squares frequency domain curve fitting method was due to 

Levy in 1959, but is known to give biased parameter 

estimates. The method was improved by Sanathanan and 

Koerner in 1963 and in 1979 Lawrence and Rogers introducing 

an iterative error criterion. In 1988 Whitfield and 

Williams proposed three different techniques for linear SISO 

system model reduction [33]. Each method is based on an 

integral error criterion in the frequency domain which is 

derived from an equivalent time-domain. criterion. 

2.3.1 Differential-equation Error Criterion [33] 

Let a specified high-order model transfer function 

G(S) is used to generate frequency response data {G(Jwk), 

k = 1,2,..,M} and the required low-order approximate 

transfer function of specified order n, be represented as 

4 

A(S) 	ao  + a1S + - - + amSm 
u(S) = 	- 	 ..(2.18) 

B(S) 	bo  + b1S + - - + bn_1Sn-  +Sn  

The sought parameters (ao,..am I b0,..1bn-1) will be 

represent as (aT, bT). The system governed by the transfer 

function (2.18) can also be represented by the associated 

time-domain differential equation. 



x(n)(t) + bn-1 x(n-1)(t) + -- + blx(1)(t) + box(t) = 

am r(m)(t)+ ---+ alr(1)(t) + aor(t) 	..(2.19) 

The error function in time domain is given by [33] as 

ed(t) = [y(t) + bn-1 Y(n-1)(t)+ -- + bly(1)(t)+boy(t)] 

-am  r(m)(t) + - - - + alr(1)(t) + aor(t)] 	..(2.20) 

Where an input r(t) produces output x(t) for lower order 

system and y(t) denotes the response of a higher order 

system to the same input i.e. r(t). In frequency domain 

error function is given by [33] 

M  
Eda  = F w kIB(Jwk)G(Jw k) - A(J k ) 2 I 2  IR J`'kl2 	..(2.21) 

k=l 

in which {wk  = 1,2,.. M} range between' min  and  'max. 

Eqn. (2.21) can be solved by linear least-squares 

solution techniques. 

2.3.2 Integral-equation error criterion 

For zero initial conditions the transfer function 

represented by (2.18) can also be represented by the 

associated time-domain integral eqn. 

X°(t) + bn-1 X(t) + --- + bl  X(n-1)(t) + boX(n)(t) 

= amR(n-m)(t) + ---+al  R(n-1)(t) + ao  R(n)(t) ..(2.22) 



47 

Where an input r(t) produces a corresponding output x(t) and 

the notation is described by the recurrence relationship. 

X°(t) = X(t) 	 ..(2.22a) 

X(i)(t) = ft X 1 (T)dT ; i=1,2,.. 	..(2.22b) 
0 

If y(t) denotes the response of a higher order system to a 

same input r(t), then, error function in time domain is 

given by [33] as 

e1(t) _ [Y°(t) + bn-ly(1)(t)+ ..+bly(n-1)(t) + b0y(n)(t)] 

-[amR(n-m)(t) + .. + al R(n-1)(t) + a0 R(n)(t)]  ..(2.23) 

and corresponding error function is frequency domain is 

given by [33]'as 

2 
Eia = - w::kJB(Jwk)G(Jwk) - A(Jwk)I IR(Jwk)1 2/~2n 	..(2.24) 

K=l 

Eqn.(2.24) can be solved by linear least-square solution 

techniques. 

2.3.3 Signal Error Criterion 

If a signal r(t) is input to a system with transfer 

function G(S) subjected to zero initials conditions and the 

corresponding output signal y(t). If the same signal r(t) 

is input to the reduced transfer function A(S)/B(S) and the 

corresponding output signal is x(t), then the error between 

two output signals is given by 



e(s) = y(t) - x(t) 	 ..(2.25) 

The error function in time domain is given by [33] as 

ES = 	f e 	(t)d t 	 ..(2.26) 
0 

and In frequency domain error function is given by [33] as 

_ M 	 w 2 
Esd - 	w k ~G(jw k ) - AB(Jk) I IR(JW k) I 2 	..(2.27) 

k=l 

Eqn.(2.27) can be solved by non-linear least-squares solution 

techniques. 

2.3.4 Linear least-squares Solution Techniques 

The problem of linear least-squares problems is given 

by [33] 

Min u v X 	[ Z H1 XJ - CJ]2 

i=1 J=1 
..(2.28) 

in which the vector of optimizable parameters is denoted x 

= (x1, x2,..,xv)T and the constant (H.; i = 1,2,..u;J=1,2, 

...,v} and (Ci; i = 1,2,..u} are prescribed. The optimal 

solution of (2.28) denoted X* is given by [33]. 

T X* = (HTH)-1 H,.0 	 ..(2.29) 

in which H is a (uxv) dimentional matrix and C is a 

u-dimensional vector. 

Eqn. (2.29) can also be written as 

(HTH)X* = HTC 	 ..(2.30) 
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The preferred approach is to find the Householder solution 

to the associated set of over determined equations 

H X* = C 
	

(2.31) 

The differential-equation error criterian Fda  defined by 

(2.21) and Integral equation error criterian Eia  defined by 

(2.24) are of the linear least square type. 

Both criteria can be expressed in the general form 

[33] by 

M 
Ea  = F_ W ka lB(Jwk) G(Jwk) - A(Jwk )I 2 	..(2.32) 

k=1 

With w ka  = wk  IR(Jwk ) I 2  for Eda  and w ka - w  kJ R(Jw k ) 12/  
wk2n for 	E ia .. Therefore a convenient way of forming 

the over-determined eqn. set(2.31) for Householder solution 

is to supply a total of 2M equations, the Odd rows of which 

are formed by the Coefficients of Wka  Re [ B (J'°k) G (,7 ldk  ) - A ( J 

wk) and even rows of which are formed by the coefficients of 

U) ka  Im [B(J wk ) G(J wk) - A(J wk ) ] 	[ 33 ] 

2.3.5 Non-linear least-square Solution Techniques 

If X = [X1, X2,... Xv)T  is a v-dimentional vector of 

optimizable parameters, then the most general problem of 

non-linear least-squares problems can be given by [33] 
u 

Min 
If(x)I

2 	
..(2.33) X 

i=1 
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and the signal error criterion Esa  is of this structuresince 

the modulus squared term can be decomposed into the sum of 

real and imaginary part squared. 

Eqn.(2.33) can be minimized by any method of 

non-linear optimization technique. 

Example 2.4 : This is taken from [33] and is given by 

G(S) = 5 + 15S 
1+8.ls+7.8s2+.7s3  

Reduced order model based on integral.-equation error 

criterion Eia  with r(t) = 1 is given by 

G(S) 5 + 15.47s 

	

_ 	. 
1+8.193+8.265s2  

reduced order model by method 1 i.e. second Cauer form is given 

by 

G2(S)  _ .604 + 1.869s  

.121 + .99s + s2 

The step responses and Nyquist plots for above two cases 

are shown in Figs.2.16 and 2.17. 

Example 2.5 : This is also taken from [33] and is given by 

	

G(S) = 	1  
6 + lls + 6s2+s3  

Reduced order model based on integral-equation error 

criterion E. with r(t) = 1 is given by 

	

G(S) _ 	
.1667  

1+1.833s+s2 t W rwrltsr 
1 ;antral library Onivcrsct n. r 	 , 
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reduced order model by method 1 i.e. second Cauer form is 

given by 

.24 - .04s G2(S) - 	2 

1.44 + 2.4s + s 

The step responses and Nyquist 	plot for above two cases 

are shown in Figs. 2.18 and 2.19. 

2.4 MODIFIED CONTINUED FRACTION EXPANSION AND INVERSION 

Let the nth order transfer function G(S) and its rth 

order reduced equivalent R(S) by CFE method be represented 

as 

An Sn-1 + An_1S
n-2 + -_+ A2S + Al 

G(S) _  ..(3.34) 

Bn+l Sn+ BnS
n-l+ --- + BS + Bl 

and 

R(S) = 

Cr Sr-1 + Cr_i 5r-2 + -- + C2S + Cl 

Dr+l Sr + DrS
r-1 + -- + D2S + Dl 

..(3.35) 

Steady state values for original nth order system and 

reduced model are give by 

Steady state value of original system = Lim G(S) 
s~0 

Al 
Bl 

Lim 
Steady state value of reduced model = si0 R(S) 

= Cl/Dl 



56 

We can get the same steady-state value by 	reduced model 

only if 

Al 	Cl 

Bl 	Dl 

Al  
Cl  = Dl 

 X Bl 
..(2.36) 

Hence reduce order model is given by 
A
l  Cr Sr-1 + Cr-1Sr-2 + -- + C2S + Dl  B  

R(S) = 	 1 	..(2.37) 
Dr+lSr  + DrSr

-1  + -- 	+ D2S + Dl  

The steps are as follows 

(1) Get reduced order model by either Cauer first, Cauer 

second or mixed Cauer method. 

(2) If 	the sign of Bl  and D1  are opposite, 	change 	the 

sign of Dl  as the sign of Bl. 

(3) Get the value of C1  by equation (2.36) 

(4) Put this calculated value C1  in reduced model which 

is calculated by CFE method. 

The method is illustrated below with two numerical example. 

Example 2.6 : Let a system with a transfer function G(S) is 

given by [17] 

G(S) = s3+ 7s2  + 24s + 24 

S4+ 10s3+35s2+50s+24 
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reduced order model (n=2; by method-3 is given by 

G2(S)  _ .357s +  .857 

.357s2+ 1.929s -1 

and reduced order model (n=2) by modified CFE is given 

by 

G2(S) = .357s + 1 

.357s2+1.929s+l 

Step responses for both cases are shown in 

Fig. 2.20. 

Example 2.7 : 2nd order model of example 2.3 by method 3 is 

given by 

G2(S)  _ 23.15 + 2.84s 

1 + .82s + .08s2  

and reduced order model (n=2) by modified CFE is given by 

G , (S)  _  20.258333 + 2.84s 
2 	1 + .82s + .08s2  

Step responses for both cases are shown in Fig.2.21 

We can get the same steady-state value of both 

original and reduced model at the cost of transient response 

and transient response is acceptable but it is not guaranted 

that at the cost of acceptable transient response we can get 

the same steady-state value. 
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3.1 INTRODUCTION 

For the unit-step input[R(S) = S], the output rPsponso 

is given by 

C(s) = G(s) 
S 

i.e.,step response of the system is nothing but the 	inverse 

Laplace transform of G(s)/S. Dubner and Abate (23) used 

fourier series for the numerical inversion of laplace 

transformation. Durbin (24) improved the same method. Further 

authors, Simon and Crump [25] used different acceleration 

methods in order to speed up the convergence of the fourier 

series. The biggest disadvantage of the above mentioned 

methods is- the dependence on the discretization, truncation 

error on the free parameter. At the same time method is a bit 

complex to implement through software. The Laplace transform 

of a real function f : R 4 R with f(t) = 0 for t < 0 and its 

inversion formulae 

F(s) = L[f(t)] 

= Xe-St  f(t)dt 	 ... (3.1) 
0 

f(t) = L-1[f(s)] 

V+i 

21  ,r.i 	eSLF(s)ds 	... (3.2) 
V-i - 

With S = V+i ;,c R 



V ER is arbitrary, but greater than the real parts of all 

the singularities of F(s). The integrals in (3.1) and (3.2) 

exist for Re(s) > a E R if. 

(a) f is locally integrable 

(b) there exist a t0  > 0 and K, a eR such that 

If(t)I 	K eat  for all t >, t 

(c) for all tE (0,-) there is a neighbourhood in which f 	is 

of bounded variation [26]. 

vt 
f(t) = 2 T  j [Re(F(V+Jw)) COSwt-Im(F(V+Jw))Sinwt]dw 

... (3.3) 

and on eq.(3.3) fourier transforms are applied in the 

existing methods. 

3.2 Method Implemented 

The method implemented for Laplace transform is quite 

different from the conventional computer methods 

[23], [24], [25]. The method used in this dissertation is 

basically based on the conventional way of inverse laplace 

transform which has been studied in the class room. Only 

numerical method techniques are applied to it. 

The method involves the classical way of finding 

partial fraction and then applying residue theorem (27). Let 

us assume that a given rational function F(s) be written 
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in the form [27]. 

F(s)  _ A(S) 
B(S) 

ao  + als + a2s2  + 	. + amsm 

bo  + bls + b2s2  + . . 	+ bnsn 

Where s is a complex frequency variable, coefficient a and 

bi  are real quantities, and the degree of the numerator 

polynomial A(S) is less than degree of the denominator 

polynomial B(S) (i.e. 	m<n). 	The poles of the function F(s) 

[the 	roots of the 	polynomial B(S)] can be found using 

Newtons-Homers algorithms. The roots obtained either may 

be simple root or complex roots. But first considering that 

we have a simple root located at the value of complex 

frequency variable P,i  then 

Lim 	_ 	Ki F(S) 
(S-Pi ) 

The coefficient Ki  in above equation is reffered to 
If P• 

as the residue of the simple pole at Pi/is'real, Ki  will be 

real. In addition, since poles that are complex will 

always occur in conjugate pairs (this assumes that the bi  

are real) it may be shown that the residues of such 

conjugate pair will also conjugate [26]. The value of the 

residue Ki  may readily be determined directly from the 

function F(S). 
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A(Pi) 
Ki  = 

B'(Pi) 

Where Pi is a simple pole of F(S), A(Pi) is the numerator 

polynomial of F(S) evaluated at S = Pi  and B'(Pi) is the 

derivative of the denominator polynomial of F(S) (taken 

with respect to S), evaluated at S = Pi. 

If we have multiple roots located at (S-P1)m, i.e. r 

G(S) is given by (SLAPS}m  K(S) where K(S) does not contain 
i 

(S-Pi) as a factor, i.e., K(Pi) # 0. Putting (S-Pi)=y, 

we obtain 
G(S)  _ N(y+pi) 

ymk(y+pi) 	
. (3.5) 

 

Arrange the terms in N(y+pi) and K(y+pi) in 

ascending power of y and devide the numerator power by the 

denominator continuing the process until ym  is obtained as 

a factor of remainder, then we have 

G(S) _ o + Gl + C2 	+ Gm-1 + N(y) 	..(3.6) 
ym 	,iii ym-2 	y 	k(y+pi) 

G(S) =  Co 	+ Cl + 	C2 	Cm-i 
(S-pi)m (S_Di)m-1  (S-i)m_2 (S-pi) 

+ N(S-pi) 	
..(3.7) 

K(S) 

The above relationship can easily be programmed for 

micro computer. In this way partial fraction expansion 

could be implemented on micro computer. After getting the 

partial fraction output, the next aim is to get its 

inverse Laplace so as to get result in time domain. For 

this we proceed as follows. Let us assume that such a 
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function has J simple real pole pi  and h pairs of complex 

conjugate pole located at piC and p1C , K multiple poles 

located at P.. 
1 

Where PiC is the complex conjugate of P1C. The 

function may be expanded in the form 

F(S) -_ 
	Ki 	

+ 	
h 	k1C 	

+ 
h 	kiC 

F_ 	c 
i=1 	 l S-Pic 	i=1 S-Pl 

k 
K 

+ 	1 	..(3.8) 

i=1  

Where K. and KF are residues of which KK has a 1 	1 	 1 

form KC = a1 + Jb., where a• is the real part of the 

residue and bi  is the imaginary part. If we write 

P1 = Pi + J pi where pr 	is the real part of the loca- 

tion of Pc and pl is the imaginary part then it may be 
i 

shown that each pair of complex conjugate poles and the 

residues associated with them will have an inverse 

Laplace transform of the form 

r 

2 

 
pit 

e 	*[ai  cos(Pit) - bi  Sin(plt)] 	..(3.9) i 

Thus the complete inverse transform for a 

function of the type is given by 

J  pit h  prt  f(t) _ 	ki  e 	+ 2 	e I [ai  cos(p.t)-b1 i 
i=1 	i=1 

k k•*tn 1  pt 
Sin(pt)1 + Z 	1  n-1 	e i 

	..(3.10) 
i 

i=1 

The complete flow chart of this method is given in App.-'B. 
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4.1 INTRODUCTION 

The classical techniques of control system design 

using logarithmic frequency response plots of Bode and 

Nichols, root locus diagrams of Evans or Nyquist plots are 

well documented in the literature. These methods are 

graphical in natural and are normally limited to single 

input single output systems. With the advent of state 

space theory, the optimal control approach has been 

developed to tackle both deterministic and stochastic 

signals. This requires the solution of high order 

nonlinear differential equations. With the availability 

of new computing powers of modern fast digital computers 

alongwith graphic display facilities, controller design 

has entered a new era. 

Therublem of model matching may be stated as 

have a process (reduced model) whose performance is 

unsatisfactory and a process (original model) having the 

desired performance, we have to derive a controller such 

that the performance of the augmented process matches with 

that of original model: 

In the design of a control system in the frequency 

domain, the specifications that are usually considered as 

design goals may be classified as 

1. 	The time domain specifications, e.g. rise time, 

overshoot etc. 



2. The frequency domain specifications, e.g. bandwidth 

and the phase margin etc. 

3. The complex domain specifications, e.g. the damping 

ratio and the undamped natural angular frequency 

etc. 

To improve the efficiency of any design method, it 

is advantageous to have the design goals expressed as 

mathematical functions or transfer function (defined as 

the standard model). 

4.2 THE DESIGN METHOD [281 

The design entails the following steps 

(1) Construction of a specification model that the 

closedloop system must approximate. 

(2) Specification of the structure of the controller. 

(3) Determination of the closed-loop transfer function 

consisting of unknown controller parameters. 

(4) Order reduction of the transfer function of step 3 

to approximate to that of the model in step 1. 

(5) Step 4 yields a set of non-linear algebraic 

equations that are sequentially solved for the 

controller parameters. 
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The model transfer function may be specified as 

go  + g1S + g252+ --- + guSu 

GM(S)  _ 
 ho  + h1S + h2S2+ -- + hV  SV  

Where V >u and in general, go  = ho  

Let the structure of the precompensator be specified as 

G (S) = K00 + K
OlS + - - + KOi 	

( 
Sl 	

4 )) c 

With the plant transfer function as 

ao  + aiS + - - + a mSm  
G (S) _ 
p 	6 o  + R1S + - - + 

Where n > m and, in general, a o = s o  

We have the closed-loop transfer function as 

Gc(S) G(S) 

GC.L(S)  
1 + Gc(S) Go(S) 

.(4.3) 

(4.4) 

Substitution from equation (4.2) and (4.3) in (4.4) yields 

an overall transfer function of the form 

a + a1  S + -  
G 	(S) = 	0 	q 	..(4.5) C.L. 	bo  + b1S + - - + brSr 

= C0  + C1S + C2S2  + --- 	..(4.6) 

Where q = (m+i) and r = (n+J) 

CO  = 1 When a0 = b0 

K10  + K11S + - - + K1JSJ 
. . 	.  



The coefficients a0, al,...,aq; bo, bl,...l br; and 

Co, Ci, C21... etc. will, in general, contain the 

controller parametrs K00, K01 . "'KO1; K10,  Kl1'..K1J and 

the known constant coefficients 	all a2,.. a m  and Bl, 

62,... On. Then for GM(S) to be a Pade' approximant of 

GC.L.(S), we have : 

g0  = h0C0  

g1  = h0Cl  + h1C0  

g2  = h0C2  + h1Cl  + h2C0  

U 

0 

gu  = hOCu  + h1Cu_i+ .. + huCO 	••(4.7) 

0 	= ho Cu+v + hiCu+v-1 + ... + hvCv  

(i+J+3) equations of the above type can be sequentially 

solved for (i+J+2) unknown controller parameter of 

eqn.(4.2). The first equation, i.e. go  = h0C0  will be, in 

general, redundant when a0  = b0. It should be pointed 

that the particular triangular form of the non-linear 

algebraic equation in (4.7) makes their solution possible 

by simple hand calculations. The design method is 

illustrated by an example below. 



Example 4.1 : Consider the high order plant transfer 

function from Shamash (29) 

G4(S) _ 
S3  + 12S2  + 54S + 72 

S4  + 18S3  + 97S2+ 180S + 100 

Applying mixed Cauer form method of Chapter-2, we have the 

following second order reduced model, 

2(S)  = 2.182 S + .217 G  

p 	3.03S2+ 3.483S + .217 

The model transfer function is chosen as [30) 

1 + a( 2W  )S 
GM(S) = 	2 	n S2 	 ..(4.8) 

1+( w  )S +  w  
n 	n2  

Where 	is the damping ratio, w n  is the undamped natural 

frequency and a is a design variable which has special 

significance in so far as a = 0 in eqn. (4.8) will 

result in a zero displacement error system, while a = 1 

will result in a zero velocity error system. 

Choosing w = 5.0, 	c= 0.707 and a = .7; we have 

G (S) = 25.0 + 4.242S 

M 	25.0 + 7.07S + S2  

A closed loop system using a proportional integral type of 

precompensator, KC  (1 + T1S  ), and unity feadback is 
1 

designed on the basis of G2(S). 
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Ge(S) = Kc(1 + Tib) 

The closed loop transfer function becomes 

_ 2.182 T1S2+(2.182+.217T1)S+.217 

GC.L.(S)  3.03KS3+(3.48K+2.182T1)52+(.217K+2.17T1+2.182)S+.217 

= CO  + C1S + C2S2+ C3S3  + - - 

Where `l/KC  = K and 

C0  = 1 

C1  = -K 

1443922 
	
.024578 ,_ C2  = 	

= .6654018 - .1132626T1  
.217 

 

From eqn. (4.7) 	we have 

25 = 	25 ..(4.9a) 

4.242 = 	25C1  + 	7.07 ..(4.9b) 

0 = 	25C2  + 7.07C1  + 1.0 ..(4.9c) 

6 = 	25C3  + 7.07C2  + C1  ..(4.9d) 

Since there are three unknown controller 

parameters, four equations in (4.9) are formed where 

(4.9a) is redundant. Though the equation (4.9) are 

non-linear, the particular triangular form makes them 

amenable to hand computations by successive 

substitutions-as explained below. Egn.(5.c)b) yields 

K = .11312. On substituting this in eqn. (5.9c) we get 

Tl  = 5.8114624. Thus we get the following controller 

parameters. 
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Kc  = 51.374314 

5.8114624 

and the closed loop transfer function becomes 

36.96S2  + 10S + .633 
Gr. 	(S) _ 
	S + 38.1552+ 10.12S + .633 

From fig. 4.2, it is seen that the closed loop 

response matching of the original fourth order system with 

the above controller is exact for the steady-state region 

and acceptably good for the transient region. 

Thus if a high order system can be 

well-approximated by its reduced order model, a controller 

design may be based on such a model. From the above 

example it is found that such controllers when designed by 

the method of section 4.2 can effectively control the 

original high order systems. 

For matching the steady-state values of original 

system and reduced model, PI controller is designed, 

while for matching the transient part, PD controller is 

designed. If we want to match both transient as well as 

steady state region, PID controller is designed. We can 

design all three type of controller by this method. 

However, this design method should be applied with caution 

for unstable plants and quite obviously, there is no 

getting around difficulties of non-minimum phase plants. 
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Because, this method is based on approximate model 

matching and hence, may lead to an unstable overall due to 

truncation error. This drawback may be overcome by 

prespecifying some of the pole zero positions in the 

compensator to exact cancel the effect of right hand side 

poles and zeros. 



chapter :5 

conclusion 



74 

CONCLUSIONS 

The advantages of system order reduction techniques 

are well known. The main obvious advantages are saving in 

computational work in the analysis of large scale systems 

and economy in the design of associated hardware, for 

optimal and suboptimal controllers. 

In this thesis continued fraction expansion technique 

for reducing the order of large scale systems have tried on 

typical systems, considered by various researchers. The 

applicability of continuous time reduction method has been 

tested for controller design. The software for continued 

fraction expansion method, step response and Nyquist plot 

developed in FORTRAN and have been successfully implemented 

on PC. The main draw back of CFE technique is that, the 

ROMS may be unstable (stable), even though the original 

system is stable (unstable). 

The first introductory chapter lists the various 

possible reasons for going in for reduced order models 

(ROMs) and for the use they have been put to. 

In second chapter a detailed proceduce for continued 

fraction expansion, Routh-Hurwitz array and Integral square 

methods are presented.  

 a tr 	J rare Universiti' t yin„r. s 
v. 1 

'' N9~ 
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A method has been given for step response of a system 

in chapter-3. 

In chapter-4, the method for controller design has 

been given. The method is based on Pade approximation and 

algebraic in nature. The desired performance is converted 

into a transfer function model which is matched with closed 

loop system to have identical few time moments. This 

method does not require any trial and error procedure. 

However, as this method is based on the principle of 

approximate model matching. It may lead to poor or unstable 

control for non-minimum phase or unstable systems. 
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DETAILS OF THE COMPUTER PROGRAM DEVELOPED 

The organisation of the program is as shown in Fig.1. 

This program consists a main program and 15 subroutines. 

The purpose of various subroutines used in the program and 

call statement alongwith their arguments are described below: 

TIN 

TINT 

Main 
Program 	MATMU2 

DC1 

k-- D C 2 

MATMU1 

DC3 

DC4 

MATIN2 

MATMU3 

DC5 

DC6 

;• y 

PFE 

LAPIN 

1 

Fig.1 Organisation of the softwave developed 
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1. Subroutine MATIN . It reads the transfer-function 

data and calculates the Ki  quotients of the mixed 

Cauer form, Hi  quotients of Second Cauerform. It is 

called by the instruction. 

Call MATIN (A,M,II,B,Kl) 

2. Subroutine MATIN1 : It reads the transfer-function 

data and calculates the K', quotients of the mixed i 
Cauer form. It is called by the instruction. 

CALL MATIN1 (A,M,II,MM,B,K2) 

3. 	Subroutine MATH U2 : It reads the transfer-function 

and K. and K'. data and calculates the rest elements 
1 	1 

of Routh array for mixed cauer form. It is called 

by the instruction. 

CALL MATMU2(A,K1,K2,M,JJ,L,II,D,Dl) 

4. Subroutine DCl 	It reads K. and K'. data and 

calculates the elements of reduced transfer function 

by mixed cauer form. It is called by instruction. 

CALL DCl(C, Kl, K2, M, II, MM). 

S. 	Subroutine DC2 	It reads K. and K'. data and 

calculates the rest element which are not calculated 

by subroutine DC1 of reduced transfer function by 

mixed Cauer form. It is called by instruction. 

CALL DC2(Kl,K2,C,J,L,M,K4,K3). 

6. 	Subroutine MATMU1 . It reads transfer function and 

K. data and calculates the rest element of Routh 

array for second Caucr_ 	form. 	It is called by 

instruction. 
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7. Subroutine DC3 : It reads Ki  data and calculates 

the elements of reduced trans. function by second 

cauer form. It is called by instruction. 

CALL DC3(C,K1,M,II,MM). 

8. Subroutine DC4 : It reads K i data and calculates the 

rest element of the reduced transfer function which 

are not calculated by subroutine DC3 of second cauer 

form. It is called by the instruction. 

CALL DC4 (KI,C,J,L,M,K3). 

9. Subroutine MATIN2 	It reads T.F. data and 

calculates H'i quotients for first Cauer form. It is 

called by instruction. 

CALL MATIN2 (Bl,M,II,B,K2). 

10. Subroutine MATMU3 : It reads T.F. data and H'i  data 

and calculates rest elements of Routh array for 

first cauer form. It is called by instruction. 

CALL MATMU3(Bl,K2,M,JJ,L,II,Di). 

11. Subroutine DC5 	It reads H'i  data and calculates 

the elements of reduced `1'.F. by firstCaucr form. It 

is called by instruction. 

CALL DC5(C,K2,M,II,MM). 

12. Subroutine DC6 . It reads H'i  data and calculates 

the rest elements of reduced T.F. which are not 

calculated by subroutine DC5 for first Cauer form. 

It is called by instruction. 

CALL DC6(K2,C,J,L,M,K4). 



4 

13. Subroutine ROOT . This subroutine is used to get 

the 'roots' of a polynomial. It is called by 

instruction. 

CALL ROOT (E,N,NCOFS). 

14. Subroutine PFE 	This subroutine is used for 

partial fraction expansion. It is called by 

instruction. 

CALL PFE (NP,NZ,XA,XB). 

15. Subroutine LAPIN . This subroutine is used for 

Laplace inversion. It is called by instruction. 

CALL LAPIN (N,MX,P,Q,F,FIN,STEP,P1,IFIN). 

The flow chart of the computer program is as shown in 

Anpendix-B _ . 
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START 

READ INPUT DATA 

DEFINING THE 

NUMERATOR/DEN. 

POLY. OF ORIGINAL 
SYSTEM 

GET REDUCED MODEL 

USING MIXED,FIRST 

OR SECOND CAUER 

FORM METHOD 

FIND THE ROOTS 

OF DENOMINATOR 

POLY .(POLES) 

FIND THE PARTIAL 

FRACTION EXPANSION 

OF G(S)/S R GR (S)/S 

CALL PROCEDURE 

INVERSE LAPLACE 

STOP 

I 

FIG.i h AI1•4 FLOW CHART 



2 

START 

READ SIZE OF NATRICES(N), 
ORDER OF ORIGINAL T.F. 
(MM),ORDER OF REDUCED T.F 
(4R)A(2,J);J=1,2,--,MM 
A(1,J)J1,2,--,N1+1 

1=1 
J=2 

CALCULATE 	
-1 

R1(1)=A(I,1)1l(1+1,1) 

K2(I)=A(I,NN+2-1)* 	
-1 	A 

	

A(I+1,NM+1-I) 	4-- 

J=J+1 

IES 	IS 

C 	J)MM+1 

NO 

L=1 

CALCULATE 

B 
K1(J-2)*A(J-1,L+1)- 
E2(J-2)*A(J-1,L) 

Cl 





4 

FIG.2 FLOW CHART FOR MIXED CAUER FORM 



START 

READ N,MM,KR 

READ A(1,J);J=1,2,--,MM+1 

A(2,J);J=1,2,--,PV$ 

1:1 

J=2 

CALCULATE 
K1(1)A(1,1)* -i  

A(1+1,1) 

J=J+1 

1S\ 
G  YES 	

J>2MM+1 

NO 

L=1 

CALCULATE 
A(J,L)=A(J-2,L)- 

K1(J-2)*A(J-1,L+1  F 

5 

L=L+1 

Cl 



G

it

NM=2*MR 
1:I4 

A(MM+1,1)=1.9 

CALCULATE 

A(I,U-K1(I)* 

A(1+1,1) 

IJ1 I 
NO 	S 

1=8 

YES 

J=NM+1 

6 

t 

C2 



C2 

L=1 

CALCULATE 
A(J-2,L+1)=A(J,L) 

+%1(J-2)* 
*A(J-1,L+1) 

FL---L--+-1 

IS 	NO 

L)KH 

VES 

J=J-1 

Is 

J< 3 
NO 

VES 

STOP 

rid 
FI G.3 - 'LOW CHART FOR 2 CAUER FORM 

7 



START 

READ N,MM,MR 
READ A(1,J)J=1,2,--,N I+1 

A(2,J);J:I,---,MN 

DO 
B(1,J=A(1,NN42-J) 

B(2,J)--A(2,MM+I-J) 

I 	I1 
J:2 

CALCULATE 
K2(I)8(1,1)* 

-1 
8(I+1,1) 

J_J+1 

ES 
X y 	J)2!($+1 

L--I 

Cl 



Cl 

CALCULATE 

B(J,L)=B(J-2,L+1)-K2(J-2) 

*B(J-1,L+1) 

L=L+1 

L>~11 	NO 

YES 

1=1+1 

I>2NM  1 

YES 

X JMH-2*KR 

I=Mf 

C(M14+1,1)=1.8 

CALCULATE 
C(I,1)=X2(1) 

C(1+171) 

1 
I:1-1 

NOS 
I=0 

YES 

C2 

9 



G2 

JzMM+i 

L=1 

CALCULATE 

C(J-2,L+1):C(J,L) 

42(J-2)* 

C(J-i,L+i) 

[—L=L+l 

is 
L)MM 	t10 

YES 

J=J-1 

t  
No  

- 	 ST 
FIG.4 FLOW CHART FOR I CAUER FORM 
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START 

READ DEGREE OF 

FOLY.(N) AND 

FOLY.F(X)=A()+ 

SET INITIAL 

VALUE OF X(I) 

CALCULATE 
G(N) =A(N) 
G(J)=A(J)+X(I) 

G(J+1) 

CALCULATE 
H(N)=G(N) 
H(J)=G(J)+X(I) 

H(J+1) 

CALCULATE 

H(1) 

IS 
NO 

(DELTA 

YES 

N=N-1 

E

F(X)=F (X)/X-C 
N-1 N 

C=ROOT OF F(X) 

IS 
YES 

K)0 

NO 

STOP 

11 

FLOW CHART FOR ROOTS OF A POLY. 



STARI 

READ TOTAL NO.01 POLES 

(N),ROOTS OF DENOMINATOR 

POLYNONIAL(POLES)P(I); 

NUMERATOR POLYNOMIAL 

I:1 

FIND UALUE OF 

NUMERATOR 

POLY. AT P(I) 

DIFFERENTIATE DENOMINATOR 

POLYNOMIAL AND FIND THE 

UALUE OF DIFFERENTIATED 

POLYNOMIAL AT P(I) 

CALCULATE 

RESEDUE AT X(I): 

A(P(1))/B(P(i)) 

1:141 

IS 

I(N  YES 

NO 

STOP 

12 

FIG.6 FLOW CHART FOR PARTIAL FRACTION 



START 

READ N,TFIN,STEP 

I=1 

T=8 

YES 	tro 
J=M(I)-1 	AIMAG(Q(1) 	J=M(1)-1 

=6.8 

CALCULATE 

F(I,T)=REAL(P(I))*T'r* 

EXP(REAL(Q(I)*T)) 

CALCULATE 
J(1,T)=2*T**J*EXP(REAL(Q( 

I))*T)(REAL(P(J))* 
COS(AIMAG(Q(I))*T) 
-AIMAG(F(I))* 
SIN(AINAG(Q(I))*T) 

1:1+1 	i- 

1S 

J(N 	NO 

YES 

T=T+STEP 

13 

C 
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FIG.7 FLOW CHART FOR LAPLACE INVERSE 



START 

READ ORDER OF 

T.F. AND T.F. 

DEFINING NUM./DE 

POLY.A(S)/B(S) 

W=0 

S=JW 

CALCULATE 

G(S)=A(S)/B(S) 

AT S=314 

W=W+W 
STEP 

.f IS 
NO 

W)W(FINAL) 

YES 

STOP 

15 

FIG.8 FLOW CHART FDR NYQUEST PLOT 



appe'ndix-C 



MODEL ORDER REDUCTION USING FRE,, DOMAIN TECH. 
BY 

CAUER FORM FOR MIMO SYSTEM 
*********************************************************************** 

MM=ORDER OF THE ORIGINAL MODEL 
MR=ORDER OF THE MODIFIED MODEL 
M=SIZE OF MATRICES  
K1 and K2 ARE MATRIX QUOTIENTS OF THE MATRIX CAUER FORM 
DIMENSION A(8,8,2,2),B(8,8,2,2) ,Ki ( 8 ,8 ,2 ,2),D (8,8 ,2 ,2),D1 (8 ,8 ,2 ,2 ) 

1 	,K2(B,8,2,2),K3(B,8,2,2),K4(8,8,2,2),C(B,8,2,2) ,Bi (8,8,2,2),E(37) 
1 ,AWORK(37),U(36),V(36),MX(10),F(10,100),P1(3,100),BB(121) 

COMPLEX XA(20>,XB(20),XC(20),CC(20),P(10),Q(10) 
INTEGER XM (20) 

~RGE 
REAL A,B,K1,DD1 ,K2 ,K3 ,K4 ,C 
OPEN(UNIT=1,FILE='D1.OUT'> 
OPEN(UNIT=2,FILE='D2. OUT '> 
OPEN(UNIT=3,FILE='D3.OUT') 
OPEN <UNIT=4,FILE='D4. OUT' ) 
OPEN (UN IT=5 v FILE='D5.OUT') 
WRITE (*,,34) 
FORMAT(4X,'**ENTER SIZE OF MATRICES **') 
READ(*,*) M  
WRITE (*.,36) 
FORMAT (4X,'**ENTER ORDER OF ORIGINAL MODEL **') 
READ(*,*) MM 
WRITE (*,37) 	 . 
FORMAT (4X '**ENTER ORDER OF MODIFIED MODEL **') ' 
READ(*,*) MR 
WRITE (*,53) 

READ(*,). CAU _- 
WRITE(3,202)M,M, MM, MR 
FORMAT(4X,'MATRICES SIZE=',2I2/4X, 

1 ,'REDUCED MODEL ORDER=' 12) 
DO 3 I=2,2 
DO 3 J=1,MM 
DO 3 K=1 ,M 
DO 3 L=1,M 
WRITE(*,39) I,J,K,L 

'ORIGINAL MODEL ORDER=' , I2/4X 

FORMAT (4X,'ENTER VALUES OF A(',4I2,')') 
READ(*,*) 	A(I,J,K,L) 
WRITE(3,4) 	I,JKLA(I,J,K,L) 
FORMAT(4X,'A(',4I2,1X,'> 	=',F10.2) 
CONTINUE 
JS=MM 
GO TO 5102 
IF(A(2JS,1,1).NE0.0)GO TO 5101 
JS=JS-1 
GO TO 5102 
AC1=A(2,JS,1,1) 
JS=JS-1 
WRITE(2,*)JS 
JS=JS+1 
IF(JS.EQ.1) 	GO TO 4003 
DO 4002 
DO 4002 J=1,JS 
DO 4002 K=1,M 
DO 4002 L=1,M 
WRITE(2,*) 	A(I,J,K,L)/AC1 



2 	CONTINUE 
GO TO 4003 

3 	MM~MM+1 
WRITE(2,*) MM 
DO 6 I=1,1 
DO 6 J=1,MM 
DO 6 K=1 1 M 
DO 6 L=1,M 
WRITE(*,46) I,J,K,L 
FORMAT(4X 'ENTER VALUES OF A(' 4I2 ')') , 	 v 	, 
READ(*,*) A(I,J,K,L) 
WRITE(3,7) I,J,KL,A ( I,JK,L) 
FORMAT(4X 'A(' 4I2 1X ') =' F10 2 ) , 	, 	, 	, 	, 	. 
CONTINUE 
WRITE (*,1350) 

0 	FORMAT(2X,'ENTER TOTAL TIME OF RESPONSE,STEP **') 
READ(*,*)FIN,STEP 
DO 1399 K=1,M 
DO 1399 L=1,M 

1,0K,L>=0.0 
C(1,0,K,L)=0.0 

9 	CONTINUE 
AC2=A(1,MM,1,1) 
DO 1398 I=1,1 
DO 1398 J=0,MM 
DO 1398 K=1 ,M 
DO 1398 L=1,M 
WRITE(2,*) A(I,J,K,L)/AC2 

8 	CONTINUE  
AC3=AC1/AC2 
MM=MM-1 
DO 10 I=1,5 
DO 10 3=1 '5 
DO 10 K=1,5 
DO 10 L=1,5 
K1(I,J,K,L)=0.0 
K2(I,3,K,L)=0.0 
CONTINUE 
IF(CAU.EQ.1) GO TO 1 
IF(CAU.E2> GO TO 5 
WRITE(3,201) 
FORMAT(4X,'MODEL ORDER REDUCTION USING MIXED CAUER FORM') 
JJ=2 
DO 30 II=1,MM 
CALL MATIN(A,M,II,B,K1) 
CALL MATIN1(A,M ,II,MM,B,K2) 
JJ=J+1 
IF(JJ.GT.(MM+1)) GO TO 100 
LL=MM-II 
DO 40 L=1,LL 
CALL MATMU2(A,K1,K2,M,JJ,L,II,D,D1) 
CONTINUE 
CONTINUE 
DO 92 II=1,MM 
DO 92 I=1,M 
DO 92 3=1 ,i1 
WRITE(3,93) II,II,I,J,K1 (II,II,I,J ) 
FORMAT (4X 'Ki ('4I2,') =' F10.2) 
CONTINUE 
DO 94 II=1,MM 
DO 94 I=1,M 
DO 94 J=1,M 



WRITE(396) IIII,I3K2(II,II,I,J) 
FORMAT(4XK2(',4I2,') =' F10.2) 

CONTINUE 
MM= MR 
DO 20 I=1,M 
DO 20 J=1 ,M 
C(MM+1,1,I,J)=0.0 
IF(I.EQ.J) C(MM+1,1,I v J)=1.0 
CONTINUE 
I T=MM 
GO TO 50 
CALL DC1(C,K1,K%;M,II v MM) 
II=I I-1 
IF(II.EQ.0) GO TO 60 
GO TO 50 
J=MM+1 

 

GO TO 80 
III=MM+2-J 
DO 70 L=1,III 
CALL DC2(K1 ,K2,C,J,L,M,K4,K3)  
CONTINUE  
J=J-1 
IF(J. IT. 3) 60 TO 19 
8O TO 80 
WRITE (3,95) 
FORMAT 

-
(4X,'MODEL ORDER REDUCTION USING SECOND CAUER FORM') 

JJ=2 
MK=2*MM 
DO 35 II=1,MK 
CALL MAT IN(A,M,II,B,K1) 
JJ=JJ+1 
IF(JJ. ST. (2*MM+1)> GO TO 105 
DO 45 L=1,MM 
CALL MATML1(A,K1,M,J3,L,II,D) 
CONTINUE 
CONTINUE - 
MM=2*MR 
DO 192 II=1,MK 
DO 192 I=1,M 
DO 192 J=1 1 M 
WRITE(3,193) II,II,I,3,K1(II,II,I,J)  

FORMAT(4X,'K1(',4I2,') =' 
CONTINUE 
DO 25 I=1,M  

DO25 J=1,M 
C(MM+1,1,I,J)  0 
IF(I.EQ.J) C(MM+1,1,I,J)=1.0 
CONTINUE 
II=MM 
GO TO 55 
CALL DC3(C,K1,M,II,MM) 
II=II-1 
IF(II.EQ.0) GO TO 65 
GO TO 55 
J=MM+1 
GO TO 85 
III=MM/2 
DO 75 L=1,III 
CALL DC4(K1,C,31L,M,K3) 

CONTINUE 
J=J-1 
IF(J.LT.3) 60 TO 19 



GO TO 85 
JJ =2 
DO 13 J=1,MM 
DO 13 K:1 ,M 
DO 13 L=1 ,M 
B1(2,J,K,L)=A(2,MM+1-J,K,L) 
CONTINUE 
MJ=MM+1 
DO 14 J=1 ,MJ 
DO 14 K=1 M 
DO 14 L=1,M 
B1(131 K,L)=A(1MM+2-JKL) 

4 	CONTINUE 
WRITE(3,295) 

~95 	FDRMAT<4X,'MODEL ORDER REDUCTION USING FIRST CAUER FORM') 
MK=2*MM 
DO 31 II1MK 
CALL MATIN2(B1,M,II,B,K2) 
JJ=JJ+1 
IF(J3.GT.(2*MM+1)) GO TO 101 
DO 41 L=1,MM 
CALL MATMU3(B1,K2,M,JJ,L,II,Di) 

~1 	CONTINUE 
51 	CONTINUE 
101 	MM=2*MR 

DO 392 II=1,MK 
DO 392 I=1 ,M 
DO^392 3=1,M 
WRITE(3,393) II 3 II,I,3K2(.II,III3) 

393 	FORMAT (4X,'K2'•',4I2,') =' F10.2)  
392 	CONTINUE - 	 - 

DO 21 I=1,M 
DO 21 J=1,M 
C(MM+1,1,I,J)=0.8 
IF(I.EQ.J) C(MM+1,1,I,J)=1.0 

21 	CONTINUE 
II=MM 
GO TO Si 

Si 	CALL DC5(C,K2,M,II,MM) 
II=II-1 
IF(II.EQ.0) GO TO 61 
GO TO 51 

61 	J=MM+1 
GO TO 81 

81 	III=MM/2 
DO 71 L=1,III 
CALL DC6(K2,C,3,L,M,K4) 

71 	CONTINUE 
J=J-1 
IF(J.LT.3) GO TO 1119 
GO TO 81 

1119 	1=1 
DO 1013 J=1,MR 
DO 1013 =1M 
DO 1013 L=1,M 

131(2,J,K,L)=C(2,MR+1-J,K,L) 
1013 	CONTINUE 

IM=MR+1 
DO 1014 3=1IM 
DO 1014 K=1,M 
DO 1014 L=1,M 



Di (i.'3  
B1(1,J,K,L)=C (1 ,MR+2-J ,K,L) 

1014 	CONTINUE 
DO 1015 J=1,MR 
DO 1015 K=1 ,M 
DO 1015 L=1.M 
C(2,J,K,L)=0.0 
C(2 J~ K L)=B1(2,J,K,L) ~ 	" 

1015 	Cun `I nUE 

DO 1016 3=1,IM 
DO 1016 K=1,M 
DO 1016 L=1,M 
C(1,J,K,L)=0.0 
C(1,J ;K v L) :Bi (1 ,J,K,L) 
CONTINUE 
GO TO 19 
JH=MR 
GO TO 5011 
IF(C(2,JH,1, fl. NE. 0.0)GO lJ 5012 
JH=JH-1 
GO TO 5011 

2 	CA1=C(2,JH,1,1) 
JH=JH-1 
WRI TE. (2,*)Jh 
JH=JH+1  
DO 3Q8 1=~,2 
DO 306 J=1,MR  
DO 	K=1,M 	' 
DO JJ8 L=1 ,M 
~.~ITL:(3,309) I,J,K,L,C(I,J,K,L) 

 

FORMAT(4X,'C(',4I2,1X,') =,F10.2)  
CONTINUE  
IF(JH.E0.1> GO TO 4010 
DO 1308 I=2,2 
DO 1308 3=1 JH 
DO 1308 K=1 ,M 
DO 1308 L=1 ,M 
WRITE(2,*) C(I3,K,L)/CA1 

3 	CONTINUE 
GO TO 4010 
MR=MR+1 
WRITE(2,*) MR 
DO 416 I=1,1 
DO 416 J=1,MR 
DO 416 K=1,i 
DO 416 L=1 ,M 
WRITE(3,417> I,J,K,L,C(I,J,K,L) 
FORMAT (4X,'C(',4I2,iX,') =,F10.2) 
CONTINUE 
CA2=C(1,MR,1,1) 
DO 1397 I=1,1 
DO 1397 J=0,MR 
DO 1397 K1 ,M 
DO 1397 L=1,M 
WRITE (2,*)C(I,J,K,L)/CA2 

7 	CONTINUE 
CA3=CA1/CA2 
IF(M.GT.1) STOP 
REWIND 2 
WRITE(3,24) 
FORMAT(2X,'ROOTS OF ORIGINAL T.F. NUMERATOR POLYNOMIAL') 



IF(N.EQ.0)GO TO 4004 
NCOFS=N+ 1 
DO 22 I=1,NCOFS 
READ(2,*) E(I) 
CONTINUE 
GO TO 4004 

4  READ(2,*)NA 
WRITE(4,*) N,NA 
IF(N. EQ. 0) GO TO 4005 
CALL ROOT (E,N,NCOFS) 
GO TO 4005 

5 	WRITE(3,26) 
FORMAT(2X,'ROOTS OF ORIGINAL T.F. DENOMIRATOR POLYNOMIAL'> 
N=NA 
NCOFS=N+1 
DO 27 I=1,NCOFS 
READ(2,*) E(I) 
CONTINUE 
CALL ROOT(E,N,NCOFS) 

 WRITE(3,28) 
FORMAT(2X,'ROOTS OF MODIFIED T.F. NUMERATOR POLYNOMIAL') 
READ(2,*) N 
IF(N.EQ.0) GO TO 4006 
NCOFS=N+1 
DO 29 I=1,NCOFS 
READ(2,*) E(I) 
CONTINUE 

 

GO TO 4006 
6  READ(2,*)NA 

WRITE(4,*) N,NA 
IF (N.EQ.0) GO TO 4007 
CALL ROOT(E;N,NCOFS) 
GO Ti) 4007 

7  WRITE(3,42) 
FORMAT(2X,'ROOTS OF MODIFIED T.F. DENOMINATOR POLYNOMIAL') 
N=NA 
NCOFS=N+1 
DO 44 I=1,NCOFS 
READ(2,*) E(I) 
CONTINUE 
CALL ROOT(E,N,NCOFS) 
REWIND 4 
DO 49 K=1,2,1 
READ (4,*)NZ,NP 
DO 47 I=1,NZ 
READ<4,1001) ZPE,ZIM 

1  FORMAT(2X,F20.6,2X,F20.6) 
XA(I)=CMPLX(ZPE,ZIM) 
CONTINUE 
DO 48 3=1 NF' 
READ 4.1001) ZPE,ZIM 
XB(J)=CMPLX(ZPE,ZIM) 
CONTINUE 
CALL PFE(NP,NZ,XA,XB) 
CONTINUE 
REWIND 5 
READ (5, 

READ (5,*) (MX (I),I=1,N) 
DO 302 3=1,N,1 
READ(5,*) ZRE,ZIM 
IF(ABS(ZIM).LT..00001) ZIM=0.0 
Q(J)=CMPLX(ZRE,ZIM> 



302  CONTINUE 
DO 1392 J=1,N 
READ(,*) PRE,PIM 
IF (ASS (PIM>.  Li" ..00001) PIM=0.0 
P(J)=CMPLX(PRE,PIM) 

1392  CONTINUE 
CALL LAPIN(N,MX,P,Q,F,FIN,STEP,P1,IFIN) 
DO 2 K=0,IFIN,1 
P1(2"K)=F(N,K)*AC3 

2  CONTINUE 
READ(5,*)N 
READ(5,*) (MX (I),I=1,N) 
DO 1393 J=1,N,1 
READ(5,*) ZRE,ZIM 
IF(ABS(ZIM).LT..00001) ZIM=0.0 
Q(J)=CMPLX(ZRE,ZIM) 

1393  CONTINUE 
DO 1394 J=1,N 
READ (5,,*) PRE,PIM 
IF (ABS (PIM).LT..00001) PIM=0.0 

 

P(J)=CMPLX (ERE ,FIN) 
1394  CONTINUE 

CALL LAPIN(N,MX,P,Q,F,FIN,STEP,P1,IFIN) 
DO 1395  ,IFIN,1 
P1(3,K)=F(N,K>*CA3 

1395  CONTINUE 
DO 1396 K=0,IFIN,1 
WRITE(1,1440)P1(1,K),P1(2,K),P1(3,K) 

1440  FORMAT(FB.2,F8.4,F8.4) 
1396  CONTINUE 

WRITE(3,1400) 
1400  FORMAT (6X, 'TIME' 5X "ORIGINAL  REDUCED , 	, 	, 	, 

DO 1402 K=0,IFIN,1 
WRITE(3,1430) P1(1,K),P1(2,K) ,Pi (3,K) 

1430  FORMAT(6X,F4.2;5X,F8.4,7X,F8.4) 
1402  CONTINUE 

STOP  
END 
SUBROUTINE MATIN (A,M,II,B,K1)  

C************************************************************************ 

C 
C  THIS SUBROUTINE CALCULATES THE K1 QUOTIENTS OF THE MIXED 
C  AND FIRST MATRIX CAUER FORM 
C 
C************************************************************************ 

DIMENSION A(8,8,2,2),B(8,8,2,2),K1 (8,8,2,2) 
REAL A,B,K1 
DO 5 1=1 ,M 
DO 5 J=1,M  

B(II+1,1,I,J)=A(II+1,1,I,J) 
5  CONTINUE 

DO 35 LM=1,1 
DO 35 N=1,M 
SO 40 1=1 ,'1 
DO 40 J=1,M 
IF((I.NE.N>.AND.(J.NE.N)>B(II+1,LM,I,J)=B(II+1,LM,I,J)-B(II+1LM,I 

1 ,N)*B(II+1,LM,N,J)/B(II+1,LM,N,N) 
40  CONTINUE 

B(II+1,LM,N,N)=-1.0/B(II+1,LM,N,N) 
DO :35 NN=1,M 
IF (NN.EQ.N> GO TO 35 
B(II+1,LM ,NN ,N)=B(II+1,LM,N,N)*B(II+1,LM,NN,N) 



8(II+1,LM,N,NN)=B(II+1,LM,N,N)*B(II+1,LM,N,NN) 
35  CONTINUE 

DO 50 I=1,M 
DO 50 J=1,M 
B(II+1,1,I,J)=-B(II+1,1I,J) 

50  CONTINUE 
DO 30 I=1,M 
DO 30 K=1 ,M 
DO 30 3=1 ,i1 
K1(II,II,I,K>=K1(II,II,I,K)+A(II,1,I,3)*5(II+1,1,3,K) 

30  CONTINUE 
RETURN 
END 
SUBROUTINE MATIN1(A,M,II,MM,B 1K2) 

C************************************************************************ 
C 
C  THIS SUBROUTINE CALCULATES THE K2 QUOTIENTS OF THE MIXED 
C  MATRIX CAUER FORM 

C************************************************************************ 
DIMENSION A(82,2)B(8,8,2,2),K2(8,8,2,2) 
REAL A,B,K2 
DO 5 I=1,M 
DO 5 3=1,M 
8(II+1,MM-II+1,I,J)=A(II+1,MM-II+1,I,J) 

5  CONTINUE 
DO 35 N=1 ,M 
DO 40 I=1,M 
DO 40 J=1,M 
IF((I.NE.N). AND, (J.NE.N)> B(II+1,MM-II+1,I,J)B(II+1,MM-II+1,I,J)- 
B(II+1,MM-II+1IN)*B(II+1,MM-II+1,N,J)/B(II+1,MM-II+1,N,N) 

40  CONTINUE 
 

B(II+1,MM-II+1N,N)=-1.0/B(II+1,  MMI I+1N,N) 
DO 35 NN= 1,M 
IF(NN. EQ. N) GO TO 35 
B(II+1,MM-II+1,NN,N)=B(II+1MM-II+1, NN) *B(II+1,MM-II+1,NN,N) 
B(II+1,MM-II+1,NNN)=B(II+1,MM-II+1,N,N)*B(II+1,MM-II+1,N,NN) 

35  CONTINUE 
DO 50 I=1 ,M 
DO 50 J=1,M 
B(I%+1,MM-II+1,I,J)=-B(II+1MM-II+1,I,3) 

50  CONTINUE 
DO 30 I=1yM 
DO 30 K=1,M 
DO 30 J=1,M 
K2(II,III,K)=K2 (II II,I,K)+A(II,MM-II+2,I,J)*B<II+1,MM-II 

1 +1,J,K) 
30  CONTINUE 

RETURN 
END 
SUBROUTINE MATMU2(A,K1,K2,M,JJ,L,II,D,D1> 

C************************************************************************ 
C 
C  THIS SUBROUTINE CALCULATES THE REST ELEMENT OF 
C  ROUTH ARRAY 

DIMENSION A(8,8,2,2),K1(8,8,2,2),D(8,8,2,2),K2(8,8,2,2),D1(882,2  
1 

REAL A,K1,D,D1,K2 
DO 30 I=1,11 
DO 30 F(=1 ,N 



DO 30 :=i ,M 
D(II,II,IK)=D<II, II, I,K>+K1(II,II,I,J)*A(JJ-1,L+i,J,K) 

30  CONTINUE 
DO 40 I=i,M 
DO 40 K=1,M 
D1(II,II,I,K)=0.0 
DO 40 J=1 ,M 
D1(II,II,I,K)=D1(II,II,I,K)+K2(II, II, I,J)*A(JJ1L,J,K) 

40  COfINUE 
DO 60 I=1,M 
DO 60 3=1,M 
33,L,I,3)=A(JJ2,L+1I,3)-D(II,II,I,3)D1(II,III,3) 

WRITE(34) JJ,L,I,J,A(JJ,L,I,J)  
4  FORMAT(4X,'A(',4I2,')  ,F10.2) 
60  CONTINUE 

RETURN 
END 
SUBROUTINE DC1(C,K1K2~ M,II,MM) 

C************************************************************************ 
C 
C  THIS SUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED 
C  T.F 
C 
C************************************************************************ 

DIMENSION C(8,8,2,2),K1 ( 8,8,2,2),K2(88,2,2) 
REAL K1,K2,C 
DO 10 I=1,M 
DO 10 J=1,M 
C(II,1,I,J)=0.0 
C(II,MM+2-II,I,J)=0.0 

10  CONTINUE 
DO 30 :[=i ,M 
DO 30 K=1 ,M 
DO 30 3=1 ,M 
0(II,1,I,K)=0(II,1,I,K)+K1(II,II,I,3)*C(II+1,1,J,K) 
C(II,MM+2-III,K)=0(IIMM+2-II;I,K)+K2(II,II,I,3)*C(II+1,MM+1-II, 

1 J,K) 
CONTINUE 
RETURN 
END 
SUBROUTINE DC2(K1 ,K2,C,J,L,M,K4,K3)  

C************************************************************************* 
C 
C  THIS SUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED 
C  TF 
C 
C************************************************************************* 

DIMENSION C(8,8,2,2),K1(88,2,2),K2( 8,8,2,2),K3(8,(3,2,2) K4(88,2  
1  ,2) 

REAL K1,K2,K3,K4,C 
DO 20 1=1 ,M 
DO 20 K=1 ,M 
K4(3-1,L+1,I,K)=0.0 
K3(3-1L+1,I,K)=0.0 
DO 20 JD= 1,M 
K4(3-1,L+1,I,K)=K4(3-1,L+1,I,K)+K2(3-2,3-2,I,30)*C(3-1,L,3D,K) 
K3(J-1,L+1,I,K)=K3(J-1,L+1,I,K>+K1(J-2,J-2,I,JD)*C(J-1,L+1,JD,K) 

20  CONTINUE 
DO 30 I=1,M 
DO 30 K=1 ,M 



DO 30 I=1,M 
DO 30 K=1,M 

30 	CONTINUE 
RETURN 
END 
SUBROUTINE MATIN2(B1,M,II,B,K2) 

C************************************************************************ 

THIS SUBROUTINE CALCULATES THE K2 QUOTIENTS OF THE SECOND 
C 	 MATRIX CAUER FORM 

C************************************************************************ 
DIMENSION B1 ( 8,8,2 ,2)B(8,8, 2 , 2) ,K2 ( 8 ,8, 2 ,2) 
REAL B1,B,K2 
DO 5 I=1,M 
DO 5 J=1 ,M 
B(II+11,I,J)=B1(II+1,1,IJ) 

5 	CONTINUE  

DO 35 LM=11 1 
DO 35 N=1,M 
DO 40 1=1 ti 
DO 40 J=1 M 
IF(( I.NE.~ ) .AND. ( J.NE.N>>B(II+1,LM,I,J)=B(II+1,LM,I,J)-B(II+1 LM I 
,N)*B ( II+1 ,LM,N,J)/B(II+1LM,N,N)  

40 	CONTINUE. 
B ( II+1 ,LMNN)=-1.0/B(II+1LMNN) 
DO 35 NN= 1,M 
IF (NN.EQ.N) GO TO 35 
B(I1+1, LM , NN,N ) =0( II+1 ,LM,N,N)*B(II+1 `LM,NN,N) B( II+1 ,LM,N,NN)B(II+1,LMN,N)*B(II+1LM N NN) 35 	CONTINUE 	 ' ° 
DO 50 I=1,11 
DO 50 J=1M 
B( II+11,I,3)=-B(II+1,1,I 3 3) 50 	CONTINUE 
DO 301=1 3 11 
DO 30 
DO 30 J=1 ,M 

30 	
K2( II,II,I,K)=K2 (II ,II,I,K)+B1 (II 1IJ)*B(II+1 1 J K) CONTINUE    
RETURN 
END 
SUBROUTINE MATMU3 Cel ,K2 ,M,JJ , L.3 '~ L II D1) C**************************************************** C 

C 	THIS SUBROUTINE CALCULATES THE REST ELEMENT OF C ROUTH ARRAY 	
— 

C 
C************************************************************* DIMENSION OHS ,8,2,2),K2(8,8,2 ,2),D1(8 8 2 2) 	

*********** 
REAL B1K2,D1 	 ' ' ' 
DO 30 I=1,M 
DO 30 K=1 9 M 
D1( II,II,I,K)=0.0 
DO 30 J=1 M 

30 	
D1( II,II,I,K)=D1 (II ,III,K)+K2( II,II,I,J)*B1(JJ-1 L+1 J K> CmVTINUE 	 ~ 	, , 
DO 50 I=1,M 
DO s0 
Di <JJ,L,I,J)=0.0 50 	CONTINUE 



30  CONTINUE 
RETURN  
END 
SUBROUTINE MATMU1(A,K1,M3JL,II,D> 

C 
C  THIS SUBROUTINE CALCULATES THE REST ELEMENT OF 

C  ROUTH ARRAY OF FIRST 

C  CAUER FORM 
C 
C************************************************************************ 

DIMENSION A(8,8,2),K1(8,82,2),D(8,8,22)  
REAL A,K1,D 
DO 30 I=1 ,M 
DO 30 K=1 ,M 
D(II,II,I,K)=0.0 
DO 30 J=1,M  

D(II,II,IKD(II,II,I,K)+Ki(II,II,I,J>*A(JJ-1,L+1,J,K) 
30  CONTINUE 

DO 60 I=1,11 
DO 60 J=1 ,M 
A(JJ,L,IJ>=A(JJ-2L+1,I,J)-D(II,II,IJ) 
WRITE(3,1) JJ,LI,J,A(JJLIJ) 

1  FORMAT<4X,'A(',4I2,') =',F10.2) 
60  CONTINUE 

RETURN 
END 
SUBROUTINE DC3(C,K1M,II,MM) 

C 
C  THIS SUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED 

C  I  

C************************************************************************ 

DIMENSION  

REAL K1 ,C 
DO 10 I=1 ,M 
DO 10 3=1,M 
C(II,1,I,J)=0.0 

10  CONTINUE 
DO 30 I=1 v M 

 DO 30 K=1,M 
DO 30 3=1 Ii 
C(II,1,IK)=C (Iii ,I,K)+K1(II,II,I,J)*C(II+1,1 ,J,K)  

30  CONTINUE  

RETURN 
END 
SUBROUTINE DC4 (Hi ,C,J,L,M,K3)  

************************************************************************* 

C 
C  THIS SUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED 
C 

 

TF 

C*************************************************************************  

DIMENSION C(8,82,2),K1(8 8,2,2),K3<8822> 

REAL K1,K3,C 
DO 20 I=1,M 
DO 2  
K3(J-1,L+1IK)=0.0 
DO 20 J1)=1M 
K3(J-1,L+1,I,K>=K3(J-1,L+1,I,K>+K1(J-2,J-2,I,JD)*C(J-1,L+1,JD,K) 



~ 
DO 60 

DO 60 J=1 ,M 
B1(JJ,L,I,J ) =B1<JJ,L,I,J>+B1 (JJ-2,L+1,I,J)-D1(II,II,I,J) 
WRITE(3,4) J3L,I,3,B1(JJ,L,IJ) 

4 	FORMAT(4X,'B1(',4I2,') ='F10.2) 
60 	CONTINUE 

RETURN 
END 
SUBROUTINE DC5(C,K2,M,II,MM ) 

C************************************************************************ 
C  
C 	THIS SUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED 
C 	 T.F 
C 
C************************************************************************ 

DIMENSION C (8,8, 2 v 2),K2 ( 8,8,2 , 2) 
REAL. K2,C 
DO 10 %=1,M 
DO 10 J=1,M 
C(II,1,I,J)=0.0 

10 	CONTINUE 
DO 30 I=1 v M 
DO 30 K=1,M 
DO 30 J=1 v M 
C(II,1,I,K)=C( II, 1,I,K)+K2 CII, II,I,J}*C(II+1,1,J,K) 

30 	CONTINUE 
RETURN 
END 
SUBROUTINE DC6(K2,C,J,L,M,K4) 

C************************************************************************* 
C 
C 	'THIS SUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED 
C 	 TF 

C************************************************************************* 
DIMENSION C(8,8422),K2(8,82,2),K4(882,2) 
REAL K2,K4,C 
DO 20 I=1,M 
DO 20 K=1,M 
K4(J-1,L+1,I,K)=0.0 
DO 20 JD=1,M 
K4(J-1,L+1,I,K)=K4(3-1,L+1,I,K)+K2(3-2,J-2,I,JD)*C(J-1L+1,3D,K) 

20 	CONTINUE 
DO 30 I=1,M 
DO 30 ::1 1 M 

30 	CONTINUE 
RETURN 
END 
SUBROUTINE ROOT (E,N,NCOFS> 

C************************************************************************ 
C 
C 	 THIS SUBROUTINE CALCULATES THE ROOTS OF A 
C 	 POLYNOMIALS 
C 
C************************************************************************ 

DIMENSION E(37),AWORK(37),U(36),V(36) 
DATA U,V/36*0.,36*0./ 

1 	WRITE(3,5) N 
5 	FORMAT(2X,' DEGREE OF POLYNOMIAL',2X,I2} 

IF(N.LE.0) GO TO 200 
IF(N.GT"36) GO TO 210 



IR=1 
DO 100 I=1,NCOFS 
IM1=I-1 
WRITE(30) IM1 

20  FORMAT(2X,' COEFFS OF X**',I2) 
WRITE(3,*) E(I) 

30  FORMAT(F15.5) 
100  CONTINUE 

CALL POLRT(E,AWORK,N,U,V,IER) 
GO TO (200,210,220,230) IER 
WRITE(3,105) 

105  FORMAT(3X,'ROOTS ARE') 
WRITE (3,110) 

110  FORMAT(2X, 'O',9X, 'REAL PART',13X,'IMAGINARY FART') 
WRITE(3,4) (U(I>,V(I),I=1,N) 
WRITE(4,4) <1J(I),V(I),I=1,N> 

4  FORMAT(2X,F20.6,2X,F20.6) 
999  RETURN 
200  WRITE(3205) 
205  FORMAT (2X, 'O**ERROR**DEGREE MUST EXCEED 0') 

CO TO 1 
210  WRITE(3,215) 
215  FORMAT (3X,'**ERROR**DEGREE MUST BE LESS THAN 37') 

GO TO 1 
220  WRITE(3,225) 
225  FORMAT(3X,'O**WARNING**ALGORITHM DID NOT CONVERSE TO SPECIFIED 

1 ACCURACY') 
GO TO 999 

230  WRITE(3,235) 
235  FORMAT(3X,'O**ERROR**COEFFICIENT OF HIGHEST POWER CANNOT BE = 0') 

GO TO 1 
RETURN 
END 
SUBROUTINE POLRT (XCOF ,COF,M,ROOTR ,ROOT 1,IER) 
DIMENSION XCOF(1),COF(1),ROOTR(1),ROOT1(1) 
DOUBLE PRECISION XO,YO,X,Y,XPR,YPR,UX,UY,V,YT,XT,U,XT2,YT2,SUMSQ 

1 ,DX ,DY,  TEMP ,ALPHA ,DABS 
C  XCOF -VECTOR OF M+i COEFFICIENTS OF THE POLYNOMIAL 
C 

 

 ORDERED FROM SMALLEST TO LARGEST POWER  
CIF -WORKING VECTOR OF LENGTH M+1 

C  M  -ORDER OF POLYNOMIAL 
C  ROOTR-RESULTANT VECTOR OF LENGTH M CONTAINING REAL ROOTS 
C  OF THE POLYNOMIAL 
C  ROOT 1-RESULTANT VECTOR OF LENGTH M CONTAINING THE 
C  CORRESSPONDING IMAGINARY ROOTS OF THE POLYNOMIAL 
C  IER -ERROR CODE: WHERE IER=0 MEANS NORMAL RETURN, I ER= 1 
C  MEANS DEGREE < 1, IER=2 MEANS DEGREE > 36, IER=3 
C  MEANS ALGORITHM FAILED TO CONVERSE, AND IER=4 
C  MEANS COEFF OF HIGHEST POWER=0 

IFIT=0 
N=M 
IER=0 
%F(XCOF(N+1)>10,25,10 

10  IF(N) 15,15,32 
15  IER=1 
20  RETURN 
25  IER=4 

GO TO 20 
30  IER=2 

GO TO 20 
32  IF(N36) 35,35,30 
35  NX=N 



NXX=N+i 
N2=1 
KJ1=N+1 
DO 40 L=1KJ1 
MTKJ1L+1 

40 COF(MT)=XCOF(L) 
45 XO=.0500101 

YO=0.01000101 
IN=0' 

50 X=XO 
X0=-10.0*YO 
YO=-10.0*X 
X=XO 
Y=YO 
IN=IN+1 
GO TO 59 

55 IFIT=1 
X PR= X 
YPR=Y 

59 ICT=0 
60 UX=0.0 

UY=0.0 	 _ 
V=0.0 

XT=1.0 
U=COF(N+1) 
IF(U) 	65,130,65 

65 DO 70 I=1,N 
L=N-I+1 
TEMP=COF(L) 
XT2=X*XT-Y*YT 
YT2=X*YT+Y*XT 
U~U+TEMP*XT2 
V=V+TEMP*YT2 
F I = I 
UX=UX+FI*XT*TEMP  
UY=UY-F I *YT*TEMP 
XT=XT2 

70 YT=YT2 
SUMSQ=UX*UX+UY*UY 
IF(SUMSQ) 	75,110,75 

75 DX=(V*UY-U*UX)/SUMSQ 
X=X+DX 
DY=-(U*UY+V*UX)/SUMSQ 
Y=Y+DY 

78 IF(DABS(DY)+DABS(DX)-1.0D-05) 
C STEP ITERATION COUNTER 
80 ICT=ICT+1 

IF(ICT-500) 	60,85,85 
85 IF(IFIT) 	100,90,100 
90 IF(IN-5)50,95,95 
C SET ERROR CODE TO 3 
95 IER=3 

GO TO 20 
100 DO 105 L=1,NXX 

MT=KJ1-L+1 
TEMP=XCOF(MT) 
XCOF(MT)=COF(L) 

105 COF(L)=TE)1P 
ITEMP=N 
N=NX 
NX=ITEMP 



IF(IFIT) 120,55,120 
11C? 	IF(IFIT)115,50,115 
115 	X=XPR 

Y=YPR 
120 	IFIT=0 
122 	IF(DABS(Y)-1.D-4*DABS(X))135,125,125 
125 	ALPHA=X+X 

SUMSQ=X*X+Y*Y 
N=N-2 
GO TO 140 

130 	X=0.0 
NX=NX-1 
NXX=NXX-1 

135 	Y=0.0 
SUMSQ=0.0 
ALPHA=X 
N=N-1 

140 	COF (2) =COF (2) +ALPHA*COF (1) 
IF(N.GT.2)GO TO 145 
COF(3)=COF(3)+ALPHA*COF(2)-SUMSQ*COF(1) 
GO TO 155 

145 	DO 150 L=2,N 
150 	COF(L+1)=COF(L+1)+ALPHA*COF(L)-SUMSQ*COF(L-1) 
155 	ROOT 1(N2)=Y 

ROOTR(N2)=X 
N2=N2+1 
IF(N2.GT.M) GO TO 20 
IF(SUMSQ) 160,165,160 

160 	Y=-Y 
SUMSQ=0.0 
GO TO 155 

165 	IF(N) 20,20,45 
RETURN 
END 
SUBROUTINE PFE(NP,NZ,XA,XD) 

C********************************************************************* 
C 
C 	 THE PROGRAM DOES THE PARTIAL FRACTION EXPANSION OF 
C 	P(S)Q(S)=(S-XA(1))(S-XA(2))..(S-XA(N>)/(S-XB(1))..(S-XB(N+1)) 
C 	 HAVING NUMERATOR'S POWER::: DENOMI NAT OR'POWER, 

C********************************************************************* 
COMPLEX XA(20) ,XB(20) ,XC(20) ,CC(20) 
INTEGER XM(20) 
WRITE(3,1) 

1 	FORMAT ('## DEGREE OF NUMERATOR < DEGREE OF DENOMINATOR ##') 
WRITE (3,2) 

2 	FORMAT('** DEGREE OF NUMERATOR & DENOMINATOR ARE ** ') 
WRITE(3,51)NZ,NP 
WRITE(5,*) NP 
IF(NZ.EQ.0)GO TO 4 
WRITE (3,3) 
FORMAT(' REAL & IMAGINARY VALUES OF Nr ROOTS ARE') 
WRITE(3,5) 

5 	FORMAT(' REAL PART (Nr) 	IMAG. PART (Nr) ') 
WRITE (3,52) (REAL (XA(I)),AIMAG(XA(I)),I=1,NZ) 

4 WRITE(3,6) 
6 	FORMAT(' REAL & IMAGINARY VALUES DF Dr ROOTS ARE 

DO 30 I:1 ,NP 
XM(I)=1 

30 	CONTINUE 
DO 15 I~1,NP 



IF(XM(I).EQ00)GO TO 15 
I1 =I+1 
DO 25 J=I1,NP 
IF(XB(J).NE.XB(I)>GO TO 15 
XII (I>=XM(I)+1 
XM(J)=0 

25 
	CONTINUE 

15 
	CONTINUE 

8 
	FORMAT(' MULTIPLICITY '> 

WRITE (3,8) 

WRITE (3,53)(I,XM(I),I=1,NP) 
WRITE(5,*) (XM(I)I=1,NP) 
WRITE (39) 
FORMAT(' REAL PART(Dr) 	IMAG. PART (Dr) ') 9 
WRITE(3,52)(REAL(XB(I)),AIMAG(XB(I)),I=1 ,NP ) 
DO 91 I=1,NP 
WRITE(5,*)REAL(XB(I)),AIMAG(XB(I)) 
CONTINUE 91 
DO 10 KK=1,NP 
IF(XM(KK).EQ.0)GO TO 10 
IF(XM(KK)GT1>GO TO 14 
WRITE(3,12) 
FORMAT(' THE COEFFS OF P.F.E FOR POLES OF MULTIPLICITY=1 ARE 12 

1 
WRITE (3,54)XM(KK),KK 
WRITE(3,11) 
FORMAT(' 	REAL PART 	 IMAG PART 11 
CALL PARF1(XA,XB,NZ,NP,KK,XC) 
WRITE (352)REAL(XC(KK)),AIMAG(XC(KK)) 
WRITE(5,*)REAL(XC(KK)),AIMAG(XC(KK)) 
GO TO 10 

:1.4 	WRITE(3,16) 
16 
	

FORMAT(' THE COEFFS OF P.F.E FOR POLES OF MULTIPLICITY>1 ARE 

WRITE (3,54)XM(KK),K 
WRITE(3,17) 
FORMAT( ' REAL PART 	 IMAG PART 
CALL PARFM(XA,XB,XM(KK),NZ,NP,KK,CC) 
DO 18 I=1,XM(KK) 
WRITE (3,52) REAL (CC(I)),AIMA8(CC(I)> 
WRITE (5,*) REAL (CC(I)),AIMAG (CC (I)) 
CONTINUE 
CONTINUE 
FORMAT(1X 'ORDER Nr=' I3 / 1X 'ORDER Dr=' I3) , 	 , 	,, 	, 	 , 
FORMAT (ix ,F10.6,8X,F10.6) 
FORMAT 1X 'POLE NO =' I2 3X 'MULTIPLICITY=' I2) , 	. 	, 	, 	,  
FORMAT (1X,'FOR MULTIPLICITY=',I2,2X,'POLE NO.=',I2) 
RETURN 
END 
SUBROUTINE PARF1(XA,XB,NZ,NP,KK,XC> 

J=1 
PNR=CMPLX(1.,0.) 
IF(NZ.EQ.0)8O TO 33 
DO 20 331 ,NZ  
PNR=PNR* (XB (KK)-XA(JJ)) 
CONTINUE 
IF(KK.LE.J)GO TO 40 
J~KK 
Q1=CMPLX(1.,0.> 
DO 30 JJ=1,3-1 
Q1=Q1*(XB(KK)-XB(JJ)> 

17 

18 
10 
51 
52 
53 
54 

20 
33 



30 	CONTINUE 
IF(J.EQ.NP)GO TO 60 
GO TO 80 

60 Q2=CMPLX(1.,0.) 
GO TO 70 

40 	Q1=CMPLX(1.,0.) 
80 Q2=CMPLX(1.,0.) 

DO 50 K1=3+1,NP 
02=02*(XB(KK}-XB(K1)) 

50 CONTINUE 
70 DR=Q1*Q2 

XC(KK)=PNR/DR 
10 	CONTINUE 

RETURN 
END 
SUBROUTINE PARFM(XA,XB,MM,NZ,NP,KK,CC) 
COMPLEX XA(i),XB(1),XC(1),NUM(20),XD(20),CC(20), 

1 CB(20),BB(20),AA(20).Bi 
B1=XB(KK) 
J=1 
IF (NZ.EQ.0)GO TO 11 
DO 1.0 K=1,NZ 
AA(K)=XA(K)-B1 

10 	CONTINUE 
11 	JJ~1 

IF(KK.LE.J)GO TO 20 
J=KK 
DO 30 33=1 .3-i 
CB(JJ)=XB(J3)-B1 

30 	CDNTINUE 
IF(J.EQ.NP)GO TO 40 

20 . II=JJ 
DO 50 K1=J+MM,NP 
BB(K1)=XB(K1)-B1 
CB(II>=BB(K1>  
II II+1 

50 	CONTINUE 
40 	NN=0 

NUM(1)=CMPLX(1.,0.) 
IF(NZ.EQ.0)GO TO 41 
DO 1 	1=1 .? NZ 
CALL PROD (NUM,AA(I)NN) 

1 	CONTINUE 
41 	ND =0 

XD(1)=CMPLX(1.,0.} 
DO 100 I=1,NP-MM 
CALL PROD(XD,CB(I),ND) 

100 CONTINUE 
CALL DIV (NUM, XD,Mll,(..,C) 
RETURN 
END 
SUBROUTINE DIV (XA,XB, MM, CC) 
COMPLEX XA(1),XB(1),CC(1),S 
DO 10 I=1,MM 
S=CMPLX(0.,0.) 
DO 20 3=1I-1 
S=S+CC(J)*XB(I-J+1) 

20 	CONTINUE 
CC<I)=(XA(I)-S)/XB(1) 

10 	CONTINUE 
RETURN 
END 



SUBROUTINE PROD (XA,P,NA) 
COMPLEX XA(21),P 
XA(NA+2)=XA(NA+1) 
NA~NA+1  
IF(NA.EQ.1}GO TO 2 
DO 1 I=2,NA 
J=NA+2-I 
XA(J)=XA(J-1) -P*XA(J) 

	

1 	CONTINUE 

	

2 	XA(1)=-P*XA(1) 
RETURN 
END 
SUBROUTINE LAPIN (N,MX,P,Q,F,FIN,STEP,P1 ,IFIN> 

C************************************************************************ 

C 
C 	THIS SUBROUTINE IS USED FOR LAPLACE INVERSE 
C 
C*********************************************************************** 

COMPLEX P(10),Q(10) 
DIMENSION F(10,100),MX(10),P1(3,100) 
IFIN=FlN/STEP 
DO 10 K=0,IFIN,1 
P1(1,K)=K*STEP 

10 	CONTINUE 
DO 30 I=1,N,1 
IF(AIMAG(Q(I)).NE.(Zh0)GO TO 60 
J=MX CI) -1 
LL=1 
DO 90 L=1,3,1 
LL=LL*L 

	

90 	CONTINUE 
IF(J.EQ.0) LL=1 
DO 20 K=0,IFIN,1 
F(I,K)=(REAL(P(I))*(P1(1,K)**J)*EXP(REAL(Q ( I ))*P1(1 ,K )) >/LL 

	

20 	CONTINUE 
GO TO 30 

	

60 	J=MX(I)-1 
LL=1 
DO 190 L:131 
LL~LL*L 

190 	CONTINUE 
IF(J.EQ.0) LL=1 
DO 110 KM=1,N,1 
IF(Q(I).NE.CONJG(Q(KM))) GO TO 110 
Q(KM)=0 
P(KM)=0 

110 	CONTINUE 
DO 40 K=0,IFIN,1 

~ 1 	COS`AIMAG(Q(1))*P1(1K))>-(AIMAG(P(I)> *IN (AIMAG(Q(I))*P1(1,K)))) 
1 >/LL 

	

40 	CONTINUE 

	

30 	CONTINUE 
DO 80 K=0,IFIN,1 
F(0,K) 0.0 
DO 50 1=1 ,N 
F(I,K)=F(I-1K)+F(IK) 
IF (I.NE.N)GO TO 50 

	

50 	CONTINUE 

	

80 	CONTINUE 
RETURN 
END 



C 
C 	THIS PROGRAM IS FOR NYQUIST PLOT 

DIMENSION A(2,10),C(2,10) 
COMPLEX A1,A2,A3(2000),S 
OPEN (UN IT=1,FILE='D7. OUT ') 
OPEN (UNIT=2,FILE='  DS. OUT ') 
WRITE (*,2) 

2 	FORMAT('**ENTER ORDER OF ORIGINAL T.F.** ') 
READ(*,*) MM 
MH=MM+1 

2 
DO 3 3=1 MM 
WRITE(*,4)I,J 

4 	FORMAT('ENTER VALUE OF AC' .2I.2, 
READ(*,*) A(IJ) 
CONTINUE 
I=1 
DO 5 3=:L ,MH 
WRITE(*,6)I,J 

6 	FORMAT( ENTER VALUE OF A(',2I2,')') 
READ(*,*) A(IJ) 

5 	CONTINUE 
DO 10 K=0,1000,1 
AK=.05*K 
S=CMPLX(0.,AK) 
A1=CMPLX(0.0.) 
A2~CMPLX(0.,0.) 
A3(K)=CMPLX(0.,0.) 
IF(K.EQ.0) GO TO 90 
DO 20 I=1,MM,1 
A1=A1+A(2,I)*(S**(I-1)) 

20 	CONTINUE 
DO 30 J=1,MH,1 
A2=A2+A(1,J)*(S**(J-1)) 

30 	CONTINUE 
GOTO 100 

90 	A1=A1+A(2,1} 
A2=A2+A(1,1) 

100 	A3(K)=A1/A2 
X1=REAL(A3(K)) 
Y1=AIMAG(A3(K)) 
WRITE (2,23)X1,Y1 

23 	FORMAT (F8.3,F8.3) 
WRITE (1,25)AK,X1,Y1 

25 	FORMAT(F8.3,F8.3,F8.3) 
10 	CONTINUE 

STOP 
END 

C*********************************************************************** 
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