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ABSTRACT

The work included in this thesis deals with model
reduction techniques in frequency domain i.e. based on a

transfer function description of the original system.

The first chapter introduces model reduction problem,
its necessity and a broad classification of various model
reduction techniques. Reduction by Cauvuer  forns,
Routh-~Hurwitz array, the Integral square error methods are
described in chapter-2. The method to obtain step response
of a system is presented in chapter-3. The respective step
response of }he illustrative examples are shown for
comparision purpose. A scheme to design controllers, using

reduced order models obtained from Cauer forms method, is

given in chapter-4.

The computer programs, in FORTRAN, for © model
reduction , step response and Nyquist plot, have also been

developed and implemented successfully on a PC.
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Introduction



1.1 MOTIVATION FOR MODEL REDUCTION

Every physical system can be translated into
mathematical model. The mathematical models of large
systems are very complex and they can not be reduced by hand
calculations. Fast digital computers can be used to reduce

these complex models.

The mathematical procedure of system modelliny often
leads to comprehénsive description of a process in the form
of high order differential equations which are difficult to
use either for analysis or controller synthesis. It 1is
hence useful, and sometimes necessary, to find the
possibility of finding some equation of the same type but of
lower order that may be considered to adequately reflect the
dominant characteristics of the system under consideration.
Some of the reasons for using reduced order models of higher

order linear systems could be:

(a) To have a better understanding of the system:

A system of uncomfortably high order poses
difficulties in its analysis, synthesis or identification.
An obvious method‘of dealing with such type of system is to
approximate it by a low order system which reflect the
characteristics of original system such as time constant,

damping ratio, natural frequency etc.

(b) To reduce computational complexity:

The development of state-space methods and optimal



control technigues have made the design of control system
for high order multivariable system quite feasible. When
the order of systems become high, special numerical
techniques are required to permit the calculation to be done
at a reasonable cost on fast digital computers. This saves

both time and memory reguired by computer.

(c) To reduce hardware complexity:

A control system desiyn for a high order system 1is
likely to be very complicated and of a hiyh order itself.
This.is particularly true for controllers based on optimal
control theory. Controllers designed on the basis of
low-order model will be more reliable, less costly and easy

~
S

to implement and maintain.

1.2 APPLICATIONS OF REDUCED ORDER MODELS

Reduced order models and reduction techniques have
been widely used for the analysis and synthesis of high
order systems. Some of the uses to which these have been

s put are:

(1) Prediction of the transient response sensitivity of
high order systems using low order models.
(2) Predicting dynamic errors of high order systems

using low-order equivalents.

(3) Control system design.
(4) Adaptive control using low order models.
(5) Designing reduced order estimators.

(6) Suboptimal control derived by simplified models.



1.3' STATEMENT OF MODEL REDUCTION

The reduction of a high order system into its lower

order approximants in frequency domain can be stated as:

Given a transfer function description of a higher

order single input - single output system:

GolS) = = —

where n 1is the order of the system.

A reduced order model is desired, which can adeyuately

~

describe the siynificant dynamic behaviour of the oriyinal
system and can be expressed as:

2 r
Co+C S +CyS%+ oo, +C,S

G,.(8) = . ¥ r<n
* do+dls+d2sz+.....+dr+15r

where r 1s the order of reduced order system.

In time domain, the systems can be described by the

following state space equations.

Original System Reduced Order System (r<n)

%(t) = aX(t) + Bu(t) X (t) = AX (t) + Bpu(t)
y(t) = CX(t) + Du(t) yplt) = C X (t) + Dpu(t)
where, where,

X(t) = nx1 state vector Xplt) = r x 1 state vector
u(t) = mx 1 input vector A, = rxr system matrix

Contd..



Original System Reduced Order System (r<n)

A = n X n system matrix Br = rxm input matrix
B = n x m input matrix Cr = 1 x r output matrix
.y(t)= 1 x 1 output vector D = l xmtransmission matrix
C = 1 x n output matrix yr(t)= 1 x 1 vector of reduced
system
D = 1 x m transmission matrix
(For SISO 1 = m = 1) and in physical systems, transmission

matrix, in general, in zero.

1.4 CLASSIFICATION OF MODEL REDUCTION TECHNIQUES

The order reduction techniques can broadly be classified as:

1.4.1 Time domain Simplification Techniques

In time domain reduction techniques the original and

reduced systems are expressed in state space form. The

!

order of matrices Ar, Br’ Cr are less than A, B, C and the

output Y, will be a close approximation to y for

specified inputs. The time domain techniques belony to

either 'of the fdllowing categories:

(1) Modal Analysis:

This category attempts to attain the dominant eigen
values of the oriyinal system and then obtains the remaining
parameters of the low order model in such a way that its
response, to a certain specified input should approximate

closely to that of high order system. The method proposed



by DAVISON [1], AOKI [2] belong to this category. Davison's
method consists of diagonalising of the system matrix and
neglecting the large eigen values. 1In this case, the input
is taken as step function and all the eigen values are
assumed to be distinct. This restriction, however, was
removed by CHIDAMBARA [4] and DAVISION [3]. AOKI [2] took a
more general approach based on agyregation. A method to
improve the quality of simplified agyregated models of
systems without increasing order of the state differential
equations has been given_by GRUCA et.al. [5])]. It consisted
of introduction of delay in the output vector of ayggregated
model to minimize a quality index function of the output
vector. However, the numerical difficultiesﬁand the absence
of guide 1lines for selecting the weighting matrices in
performance index of this method were well observed by the
researchers. INOOKA et.al. [6] proposed a method based on
combining the method of aggregation and integral square
error criterian. An important variation of dominant eigen
value concept was proposed by KUPPURAJULU and ELANGOVAN [7]
wherein the high order system is replaced by three models,
successively representing the initial, intermediate and

final stages of the transient response.

The above out-lined approaches, thouyh useful in
many applications, suffer from the followiny disadvantaggs:
(i) The computation of eigen values, eigen vectors and

the aggregation matrix may be quite formidable for a

very high order system.



(ii) In cases, where the eigen values of a system are
close together or where the eigen values are not

easily identified, these methods obviously fail.

(iii) There may be considerable difference between the
steady state responses of the high order system and
its low order model to certain inputs [l]. However
this shortcoming was removed by CHIDAMBARA [4] at the
cost of poor matching during transient period. The
above mentioned points led to the optimum order

reduction approach.

(2) Optimum Model Reduction

This second group is based on obtainihg a low order
model o% a given high order system so that its impulse or
step response will match to that of the original system in
optimum manner with no restriction on the location of eigyen
values. Such technigques aim at minimizing a selected
performance criterian. Which in general, is a function of
error between the response of the original high order system
and its reduced order approximant. The parameter of reduced
order model (ROM) are then obtained either from the
necessary conditions of optimality or by means of a search
algorithm. The approximations have been studied for step

and impulse responses.

Chidambara (1969) gyave two techniques for model order

reduction where the integral of the squared error between



the step response of the exact and simplified model is
minimized. SINHA and BERZNAI [8] solved the problem by
using pattern - search algorithms, BANDLR et.al. [9] used
three different gradient techniques for the minimization of
performance index in the simplification problem. YAHAGI [10]
obtained low order model by using the technigque of least
square fit, linear, proygramming and parameter optimization.
For state space representation the most important results
were obtained by WILSON et.al. [11]. But this also requires

the solution of Lyapunov type equations.

But whatever be the approach to the problem, the main
objective 1s that the reduced order app:gximant should
reproduce the significant characteristic of the parent

system as closely as possible.

1.4.2 Frequency Domain Simplification Techniques

Most frequency domain simplification techniques start
with the transfer function description of the original
system. The objective in this case 1s that the frequency
domain properties of the original system match closely with
those of its reduced order equivalent. They can mainly be

classified as:

(1) Continued fraction expansion and truncation (CFE)

This method was first proposed by CHEN and SHIEH [12].

Since then various improvements and extension of this



approach have been presented by Chen and Shieh [13].

-

Chen [14] has extended the CFE technigues to model
reduction and design of multivariable control systems. 1In
the formulation of reduced order models by wusing CFE
techniques, the CFE and inversion operation is extremely
time consuming and laborious. Computer oriented
algorithms for expansion into continued fraction and their
inversion have been devised for various Cauer forms. Shieh
et.al. [15] have demostrated that the first, second and
third Cauver form formulations for order reduction give good
approximations in the transient, steady-space and overall
region of ‘the response curve respectively. Shieh and
Goldman has shown tﬁat a mixture of first énd the second

Cauver forms give good approximations for both the transient

and the'steady—space responses.

One difficulty with the CFE approach 1is that the
stability of the model is not guaranteed, even thouygh the
original system is stable but this
method can be used for single-input single-output as well as
multi-input multi-output systems. Chen et.al. [34] has
given a method for finding the denominator polynomial of the
reduced model wusing the Routh stability criterian and
the numerator polynomial coefficients Dby CIEE technigue,
hence, reduced model will be stable if the original system

is stable.



LINEAR SYS8TEM ORDER REDUCTION

|

TRANSFER FUMNCTION MODEL

5150 [M1r0]

MIXED TECHNIQUE CONTINUED FRACTIOCN
7
MOMENT MATCHING PADE MODELK
7

PADE APPROXIMATION ROUTH APPRDXINQTIDNk—-————
’ 7/
ROUTH APPROXIMATION PADE ROUTH APPROXIMATION
COMTINUED FRACTIOHN ERROR HMINIMIZATIONK

U

ERROR HINI!‘!IZRTIDN'~J <

ZITIME RESPONSE

TIME RESPONSE

FREQUENCY RESPONSE

FREQUENCY RESPONSE

FIG.14.1 CLASSIFICATION OF LINEAR SYSTEM ORDER REDUCTION

IN FREQUENCY DOMAIN
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(2) Padecapproximation technique :

Shamash [16] has shown that for the case of rational
transfer function, the continued fraction methods are a
special case of the time-moments method, which is equivalent
to the Pade' approximation method. Pade approximation
techniques have a number of very useful advantages, such as,
computational simplicity, the fitting of the intial time
moments; and the steady-state value of the output of system
and model being the same for input of the form aiti. The
main drawback of this method is that the reduced order model
may be unstable (stable) even though the original high order
system is stable (unstable). Shamash [i%] has given a
method for finding the denominator polynomial of the reduced
model by wusing the Routh stability criterion and the
numerator pclynomial coefficients by matching the initial
few time-moments of the system and the model. This ensure

that the reduced-order models will always be stable if the

high order system is stable.

(3) Moments matching method :

The moments matching technique aims at equating a few
lower order moments of the model to those of the original
system, and no consideration is given to the remaining

moments. This would preserve the low frequency response of
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the system G(S) while the transient response of R(S) would
be in error. The simplificationof large order systems using
moments was first suggested by Paynter [19]. A computer
oriented algorithm for evaluating moments has been presented

by Lal and Mitra [20].

The main drawbacks of methods based on moment matching
is that the transient performance of the reduced model may
not always be satisfactory and more over there 1is no
guarantee that the reduced order model wil be stable for a

stable system.

(4) Matching frequency response : =

The main aim of this method is that the magnitude
curve of the frequency response of the reduced order model
should close enough to the magnitude curve of the frequency
response of the original large order system in the
bandwidth of interest. In this method due to Levy [21], an
error function in the frequency response match over a
frequenéy-range of interest is minimized in a least square
sense. Rao et.al. [38] presented a method based on Lavy's
curve fitting technique. It is claimed to be useful for
classical design of non-linear control system, computational
time required is high in this method. The method of
Elliott et.al.[35] matches the frequency response of low and

high order systems at a prespecified frequencies, though
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computational effort is small but there seems to be no
prescribed method of selecting the number and frequency
points for exact matching. The stability of the reduced

system is also not guaranted in this method.

Reddy [40] proposed four error function in which phase
error function is minimized between real & imaginary parts
of original and reduced order models. The drawback of this
method is that reduced model may be unstable though original
system is stable. This method can be used for multivariable
systems also. Another method for multivariable systems
using response matching is reported by Pujara et. al .(37).
In this method, error function is minimized at the end
frequencies of the band within which matching is required.
This method is véry simple.Ouyang et.al.[36] reported a mixed method in which
the denominator of the reduced order model is constructed from the poles
of large disspersion based on the concept of power decomposition i.e. ,
by neglecting dynamic modes with small dispersion.
Numerator parameters are then determined by apply frequency
response matching technique. Latest technique in this field

is due to Whitfield et.al.[33], they suggested three error
criterion method.  One 1is differential equation error
criterion, second one is Integral-equation error criterion,
and third one is signal error criterion. The first one i,e.

differential equation error criterion method is best for
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high frequency characteristics matching while integral
equation error criterion method is best for low frequency
characteristics matching and signal error criterion method

is best for middle frequency characteristics matching.

(5) Reduction based on stability criteria :

Hutton and Friedland [22] based their reduction
method on a=8 expansion that uses the Routh table of the
original transfer function. This has a number of useful
properties : if the original system is stable, then all
approximants will be stable, the sequence of approximants
éonverge monotonically to the original in terms of 'impulse
response energy'; the approximants are partial padé
approximants in the sense that the first K coefficients of
the power series expansidns of the K™ order approximant and

of the original are equal.

i

This method has the advantage of computational
simplicity, because once the R-H array is constructed for
tiie numerator” and denominator polynomials; the various

reduced order models follow by inspection.
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2.1 MODEL REDUCTION USING MATRIX CONTINUED FRACTION
EXPANSION AND INVERSION

A transfer function matrix is often used to express

the relationship between the inputs and outputs of a

multi-terminal circuit or a multivariable control system.
The expansion of the transfer function matrix into a matrix

continued fraction and the inversion of a matrix continued

fraction to a transfer function matrix are two fundamentally
important operation in multiterminal network and
multi-variable system analysis and synthesis. Shieh and
Gaudiano ([31] developed a generalized Routh algorithm for

performing matrix continued fraction expansion and inversion

of three matrix cauer forms.

The CFE approach has the major disadvantage that the
reduced model may be unstable although the original system
is stable. For multivariable systems, this method is
restricted to squarc transfer-function matrices (i.e. the
number of inputs and output must be same), but due to Chen

et. al. [34]. It becomes possible to get a stable reduced

order model by CFE technique.
2.1.1 Method No:1 [31]
Method using second matrix Cauer form CFE

Let the nth order square-transfer function matrix

[G(S)] and its rth order reduced equivatent [R(S)]
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be representd as

-1 -2 2
[Az Sn + Az’n_lsn + -t AZ,BS + A2,25+ A21]

[G(s)] = 2«1 >
n n-1
[Al’n+lS + Al,nS + -- 4+ AlIBS + Al,25+ All]
.. (2.1)
Where AiJ are constant, m by m, matrices, and AlJ = aJ[I],
J = 1,2,..,n+l. Where each ay is a coefficient of the
- . n+l J~-1
common-denominator polynomial or (S) =f=l aJS and [I] 1is
an identity matrix.
and
[B2 rSr'l + B2 r_lSr—2+ -= + B2,352+Bz'2s + le]
[R(S)]= —= -
r r-1 2 B
[Bl,r+ls + Bl,rS e T Bl’3S + Bl'zs + Bll]‘
. (2.2)
o = b
Where_Bi,J are constant, m by m, matrices, and BlJ .J[I],
J=1,2,..,r+l. Where each b is a coefficient of the

J

common-denominator polynomial or
r+
I

1
F-1 by s9-1 ang [I] is a identity matrix.

(s) =
Egqn.(2.1) can be expanded in the first matrix Cauer form
as

[6(5)) = (Hy+(Hple[Hg + [Hyg * [--17147 7t

..(2.3)

The reduced models are obtained by truncating the expansion

and discarding some partial guotient matrices Hi‘ The

procedure are as follows



1o -

Step 1 : Evaluate Hi' i=1,2,..r; by.the generalized matrix

Routh algorithm [31]

A1 B12. M3 Mg o-eeee-
-1
Hy=Aq 1A
17A11821 By Ays By -
_ -1
Hy=Rj183]
A3y Ly -
H3=A3184]
Agy ---
Where,

Ai,J = Ai‘2'J+l—Hi—2Ai“l,J+l; i=3,4,..,n+l;J:l,2,.. ..(2.4&)

- -1, . _
Hi = Ai,l(Ai'l'l,l) M l,2,..,2n --(2.4b)

Provided det (Aj,.;,1) # 0 ..(2.4c)

Step 2 : Using Hi coefficients from step 1, evaluate Bi 3

of eqn.(2.2) by using the following reverse matrix Routh

algorithm [31].

Borsr,1 = L1 ..(2.5a)

B = H

P,1 PBP+l,l; P = 2r12r'l/--12/l ..(2.5}3)

B J=2r+1,2r,..,3;1=1,2,..,r
..(2.5¢)

By-2,1+17 By, 1 M52 1417

Step 3 : Using eqn.(2.5), the reduced order model as in
eqn.(2.2) is formed. If m=1, same method can be used for

single input single output systems.
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Example 2.1 : This is taken from Shieh [31l] and is given by

22 2 0 1 0
0 O 1 O -
( )S + ys2171
0 O 0 1

The generalised matrix Routh array is given by

1 0 0 0 1 0
Lo 1] J o of Lo 4!
Hy=[ 25 —0.5]
17" 25 -0.5 -2 2 2 0
1 -1 T
-2 6
Hp= L, 4} N
05 .4 0 .5 0 1
Hy==l-.05 .11 6 2,
=[5 3] 20 )
1 o
[p 1]
Solving eqn. (2.5) we get
22 2 0 1 0 0 0 1 0,.2,°1
[Ry(8) 1= [(_l —1) + (l l)S][( 0 l) + (0 0)S+ (0 l)S ]

Example 2.2 This is taken from (17) and is given by

s3+ 752 + 24s + 24
s4+ lOs3+ 50s + 24 +3552

G(S)

The generalized Routh array is given by
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24 50 35 10 1
Kl"':l

24 24 7 1
K2 = .923

26 28 9 1

Ky = -14.083
-1.846 -1.308 .077

K, = -.193
9.583 10.083 1
Kg = 15.097
653 .27
Kg = .106
6.014 1
K, = 36.667
.164
Kg = .164
8 1

Solving eqn.(2.5)d we get

.730s + 2.504
s?+ 3.443s + 2.504

R,(s) =

Step respouses and Nyquist plots for both original and

reduced model are shown in Figures 2.4, 2.5.

2.1.2 Method No.2 [31]

Method using Mixed matrix Cauer form

The nth order system transfer function G(S) given by

eqn.(2.1) may be expanded into the third form CFE as

.

[G(S)] = [Ry+K{S + [Kyg+k) + [Ky+K}S + [Ky2 + Kot
S R i B Rt
..(2.6)

For arriving at the rth order model R(S) given by

(2.2), the following steps are followed:
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Step 1 : Evaluate the matrix quotients of eqn.(2.6) by the

generalized matrix Routh algorithm [31].

Aj1 Byz--+ BAy,n A1,n+1

K,=A,,A"1 . -1
- -1 . 1
31 A3;  Azp... A3 2 /N3, n-1
Anll An’2
K,=A . 1
n “n,l1 — Kn— n,2(An+1,l)
(a -1 el
n+l,1 -
Where,
B30 = Ag-2,141 7 KyopByg 141 T KyooPo-1,1 - (2.72)

J = 3,4,..,n+1

1 1,2,..

and

Ky = Ap 1(Apy; )71 . (2.7Db)

Kp = Ap’(n+2_p)(Ap+l’n+1_p> ..(2.7¢c)

Provided det. Apyy,q # 0i det. Ay nyq o # 0

P=1,2,...,n

Step 2 : Using Ky and Ki coefficients from step 1, evaluate

B of eqn.(2.2) by using following reverse matrix Routh

i,J

algorithm,
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Br+1,l = [I] ..(2.8a)
BP,l = KPBP+1,1 ;s P=1r,r-1,..,1 ..(2.8b)
Bp, (r+2-p) = Xp B(ps1), (n+1-p) 7
P=r,r-1..,1 ..(2.8¢c)
and

Bg-2,1+41 = By,1 * Kg2Byo1,141 * KyopByop,q +-(2.8d)

J=zr+l,r,...,4,3

l1=1,2,...,(r+2-J)

Step 3 : Using egn.(2.8), the reduced order model as in
eqn.(2.2) is formed. If m=1, same method can be used for

~

cingle input -single output system.

The generalized matrix Routh array for example 2.1 by this

method (method 2) is given by

=25 -.5 1 0. 0 0 1 0 . .50
f17 b s o5l Do g1 0 ol L g1 K =lis )
-2 2 2 0
( I ]
o - (L5 -1 -1" "1 1 1.2
27 5 -5 . 2= L5 5!
o 25!

Solving eqgn.2.8) we get

-1 .6 1
["VS -|5] + [5

5 1. .0 0 5.
[0 gl Lp pls+ [7g 13ls

.2
5]S
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and

generalized Routh array for example 2.2 by this method

(method 2) is given by

24 50 35 10 1

Kl=l Ki:l
2¢ 24 7 1 '
‘2 =12 2 4 2 270
K3= -.08 ~25 -19 K3 = -.105
K,=164.931  _ 15, K; = 125.347

Solving eqn. (2.8) we get

.5 s + 12
.5 s2+ 13.58+12

R, (s) =

Step responses and Nygquist plots for both

original and reduced model are shown in Figure 2.4 and

2.1.3 Method No.3 [31]

Method using First Matrix Cauer Form CFE

The nth order system transfer function G(S) given by

eqn.(2.1) may be expanded into the first form CFE as
, - , ~1,-1 -1 -1 .-1
[G(S)] = [H}S + [H)+[H3S + [Hy+ [--17217 177 177 170 | (2.9)
For arriving at the rth order model R(S) given by

(2.2), the following steps are followed
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Step 1 : We rewrite the eqn.(2.1) as follows

- - -2 n-3 :
(85 sn-1l . By, sh + By3 S +..+ By,
[c(s)] = ) ) ..(2.10a)
[Byy S™+ Byy S"75+ ..+ By n41l

Where Bl,i = Al,(n+2_i); i = l,2,..,n+l ..(2.10b)
BZ,J = A2,(n+l—J); J = l,2,..n ..(2.100)
Step 2 : Evaluate H£ for 1 = 1,2,...r; by the generalized

matrix Routh aglrithm [31]

. -1
Hi=B1B 7 .

-1
H'!'=B,.1B
21 -
2 31 B31 B3
v2p. . p-1
H3=B31B4) By —---

Where, BJ,l = BJ_2’1+1— Hj—ZBJ—l,l+l7 J=3,4,...,2r+]1;
1=1,2,...,r ..(2.11a)
and
HY = By 1(Boyy, 1) ti p = 1,2,... ..(2.11b)

Provided det Bp+l,l £ 0

Step 3 : Using H£ coefficients from step 2, evaluate Ai 3
14

by using following reverse matrix Routh algorithm[31].

BRpryy,1 = [I] ..(2.12a)

Ay,1 = Hy Anyy 15 p = 2r,2r-1,..,2,1 ..(2.12b)

p,l

Aj‘2,l+l= AJ,l + H&—ZAJ—1,1+1; J=2r+l,2r,...,3;
1 =1,2,..r ..(2.12¢c)
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and calculate B

. by following equations.
1,d

Bl,i = Al,(r+2—i) i1 =1,2,..,r+l ..(2.124)
BZ,J = A2,(r+l-J); J=1,2,...,r ..(2.12e)
Step 4 : Using egn.(2.12) the reduced order model as in the

eqn.(2.2) is formed.

If m =

single output systems.

The generalized matrix Routh array

by the method (method no.3) is given by
1 0 0 0 1 0
[ ] [ ] [ ]
0 1 0 o0 0 1
Hiz[.s 0,
-5 1 2 0 2 2
| [l l] [—l —l]
H =
2= [1 1] 1 -1 1 0
. [0 2] [0 l]
(74 -]
: -4 1
[_2 _2]
' -4 1
4=l-2 =31 1 0
[O l]

Solving eqn.(2.12 we get

[—2 2] N [2 O]S

-1 -1 1 1
[RZ(S)] =

(g 11+ 100 ols + [ 31s?
and

Generalized Routh array for example 2.2 by this

(method no.3) is given by

1 same method can be used for single input

for example 2.1

method
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H!=1
! _ 1 7 24 24
H)y= .33
3 11 26 24
Hé= .90
3.33 15.3 16
H&= -1.19
-2.8 11.6 24
Hé= -.1
29.1 44.6
Hé= 1.83
15.9 24
H;= 29.78
.53
H, =
8 .02 24

Solving eqn. (2.12) we get

.06s%+ .34s + .98
.06s3+ .5352+1.38s+1 .

R3(S) =

Step responses and Nyquist plots for both original and

reduced model are shown in Fig.2.4 and 2.5.

2.2 MODEL REDUCTION USING THE ROUTH STABILITY CRITERION

Krishnamurty et. al. [32] have presented an interesting
method for the reduction of dimension of a high order
transfer function. Their method makes use of the classical
Routh—Hurwitz stability array and is applicable to single-
'input single-output systems. The advantages of this method
is that 1if original system is stable then reduced order
model will be stable and computational time is less than CFE

method.
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Let the transfer function of nth order system be

m-1 -2 -3
o(s) - by1S™ + byyS + 0,870+ by ST (2.13)
B n n-1 n-2 n-3 e
allS + 3218 + alZS + 3225 + -

Where mg n -
To get the reduced order model by this method, the procedure

are as follows :

Step 1 : Form Routh stability array for the numerator
polynomial. Routh stability array for the numerator

polynomial for (2.13) is given by

by by, byy by - - -

by by, byy by, - - - . (2.14)
by; b3y b33 --

byy Py bByy

1

bm,l

P+l 1

Where first row of array consists of odd coefficients (i.e.,
first, third, fifth, etc.) and the second row consists of

even coefficients (i.e., second, forth, sixth, etc.)

The routh array are completed in the conventional way

by computing the coefficients of succeeding rows by the

algorithm.
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Big = Bi-2,041 7 Pi-2,1% -1,001 05, |

;i 1 >3 and I € J ¢ (n-1i+3)/2 . (2.15)
and [.] stands for the integral part of the

quantity.

Step 2 Form Routh stability array for the denominator

polynomial. The Routh stability array for the denominator

polynomial for (2.13) is given by

a1 a2 213 a14
a5 a2 b23 a4 T
aszl a32 a33 - |
a41 a42 243 -- T ..(2.16)

n.,l

n+l,1

Where first row'of array consists of odd coefficients and
the second row the event coefficients.

The Routh array are completed in the conventional way
by computing the coefficient of succeeding rows by the

algorithm.

a. =

ig = 242,341 ~ (@

i-2,1 'a'i-l,J+l)/ai_l ,l;

i»3and 1 ¢ J ¢ (n-1+3)/2 .. (2.17)

and [.] stands for integral part of the quantity.
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Step 3 : rth order numerator polynomial may be easily

constructed with the (n+2-r)™" and (n+3-r)™ rows of Routh
stability array of numerator and denominator polynomial with

4=
the (n+l-r)~™ and (n+2-r)th rows of Routh stability array

of denominator polynomial of original system.

Example 2.3 : This is taken from Krishnamurthy [32] and is

given by

G(S) =

3557+10865°+1328555+824025%+27837653+5118125%44829645+194480

s84335744375%430175°+11870544+2747053+3749252+288805+9600

The complete numeraor and denominator Routh array are given

below

Numerator table

35 13285 278376 482964
1086 82402 - 511812 194480
10629.3 261881.1 476696 .1
55645.5 463107.8 194480.0

173419.1 439546.9
322069 194480
334828.5

194480
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Denominator table

1 437 11870 37492 9600
33 3017 27470 28880

345.6 11037.6 36616.8 9600

1963 23973.4 27963.3

6817.2 31694 9600

14847.1 25199

20123.7 9600

18116.2

9600

hence third order model is given by

32206952 + 334828.5s + 194480
14847.1s3 + 20123.7s2 + 25199s + 9600

R3(S) =

2 .
Ry(S) = 32.83 s© + 60.98s + 39.45 (BY method 1)

s3 + 31452 + 4.03s + 1.95

2
Ry(5) = <05 8% + 3.23s + 23.16 (BY method 3)

.002s3 + .1s% + .84s + 1.00

Step response and Nyquist plot for all three cases are shown
in Fig.(2.6) and (2.7). Different order reduced Tansfer
function of example 2.3 by method 1, method 2 and method 3

are shown in tbale 1 and step responses and Nyquist plots

for these models are shown in Figures from 2.8 to 2.15.
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25

20 —

15

Original system

§ Reduced model (n=7)by method !
Q Reduced model (n=7) by method 2
v Reduced model (n=7) by method 3
e 10

5

0 | ] J 1 )|

0 1 2 3 4 5
Time in seconds |

Fig. 2.8 Step responses for example 2.3
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~
X

Original system
Reduced model (n=6)by method 1
"~ ) Reduced model (n=6) by method 2
Reduced model (n=6) by method 3

1 | 1

-
-

1 2 3 4 5
Time in seconds

Fig. 2.9 Step responses for example 2.3
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25
20 e — -
o’

15
o Original system _— X
p Reduced mode!l (n=5)by method 1
e Reduced model (n=5) by method 2
9 a-Reduced model (n=5)by ‘method 3
a 10

S

0 ] 1 1 -

0 2 3 4 5

Time in seconds

Fig. 210 Step responses for example 2.3
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25
20
15
o Original system
P a { Reduced model (n=4)by method 2
a Reduced model (n=4) by method 1
:‘é 0 b - Reduced model (n=4)by method 3
5
0 1 { 1 1 L.
0 ] 2 3 4 5

Time in seconds

Fig. 2.11 Step responses for example 2.3
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2.3 REDUCTION BY INTEGRAL LEAST-SQUARES TECHNIQUES

Several least-squares methods have been proposed as
solutions to the problem of fitting a transfer function to
a set of frequency response data. The original linear least
squares frequency domain curve fitting method was due to
Levy in 1959, but is known to give biased parameter
estimates. The method was improved by Sanathanan and
Koerner in 1963 and in 1979 Lawrence and Rogers introducing
an iterative error <criterion. In 1988 Whitfield and
Williams proposed three different techniques for linear SISO
system model reduction [33]. Each method is based on an
integral error criterion in the frequency domain which 1is

~

derived from an equivalent time-domain. criterion.

2.3.1 Differential-equation Error Criterion [33]

Let a specified high~order model transfer function
G(S) is used to generate frequency response data {G(ka);
k = 1,2,..,M} and the required low-order approximate
transfer function of specified order n, be represented as

]

a_ + aysS+ - - + asm
G(S) = é(—s-)_ = o l m 5T n ..(2.18)
B(S) by + b3S + - - + b, 18" 48
The sought parameters (ao,..am, bo""bn—l) will be

T, bT). The system governed by the transfer

represent as (a
function (2.18) can also be represented by the associated

time-domain differential equation.
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x(0)(£) + b,y xP D) + —— + byx{D () + b x(t) =

ag £'™ ()4 ==+ ayr)(e) + ajr(t) -+ (2.19)

The error function in time domain is given by [33] as

eqit) = [y(M(t) + by yP Do)+ —= + by (e)+b oy (1))

can e (e) 4~ - -+ ar(e) +agr(e)] L.(2.20)

Where an input r(t) produces output x(t) for lower order

system and y(t) denotes the response of a higher order

system to the same input i.e. r(t). In frequency domain
error function is given by [33)] ~
E = M W w w 22 W 2
da = & Y |B(I®)G(I%)) - A(J ) 1€ IR 39| ..(2.21)
k=1 _
in which {“} = 1,2,.. M} range between v . and ©
min max.

Eqn. (2.21) can be solved by linear least-squares

solution techniques.

2.3.2 Integral-equation error criterion

For =zero initial conditions the transfer function
represented by (2.18) can also be represented by the

associated time-domain integral eqn.

xO(t) + byop X (£) + ——= + by X" D) + px(M) ()

= a RM £y 4 ———way RO (g) 4+ ag RUM (&) L.(2.22)
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Where an input r(t) produces a corresponding output x(t) and

the notation is described by the recurrence relationship.

XO(t) = X(t) ..(2.22a)
x(1)(g) = 71t x(i-L)(yae ; i=1,2,.. ..(2.22b)
O

If y(t) denotes the response of a higher order system to a
same input r(t), then, error function in time domain is

given by [33] as
e; () = [y°(t) + b1y () Loapy (D ey + by(M ()]
“lagR™™ (b)) + Lo+ ag ROV (g) +ag ROV (6)] L (2.23)

and corresponding error function is frequency domain is

given by [33] as

M- 2
Eia = 3 “Ix|B(I¥)6(I%) - A(I¥ )] IR(ka)Iz/win .. (2.24)

K=1
Eqn.(2.24) can be solved by linear least-square solution

techniques.

2.3.3 Signal Error Criterion

If a signal r(t) is input to a system with transfer
function G(S) subjected to zero initials conditions and the
corresponding output signal y(t). If the same signal r(t)
is input to the reduced transfer function A(S)/B(S) and the
corresponding output signal is x(t), then the error between

two output signals is given by
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e(g) = y(t) - x(t) ..(2.25)

The error function in time domain is given by [33] as

.
0

- 2
Eg = of eg (t)at ..(2.26)

and In frequency domain error function is given by [33] as

- M ) N 2
Esa = 5 o fe(ie, ) - éilak)l R(J%) 2 .. (2.27)
] k B(J“k) k21

Egn.(2.27) can be solved by non-linear least-squares solution

techniques.

2.3.4 Linear least-squares Solution Techniques

-~

The problem of linear least-squares problems is given

by [33]
Min Y v
« 2 [ 2 Hig Xy cy1? ..(2.28)
=g

in which the vector of optimizable parameters is denoted x

T

(Xl, x2,..,xv) and the constant (H i=1,2,..u;J=1,2,

ig’
...V} and {Ci; i =1,2,..1 are prescribed. The optimal

solution of (2.28) denoted X* is given by [33].

_ T
X* = (HTH) 1 H..C ..(2.29)
in which H is a (uxv) dimentional matrix and C is a

u-dimensional vector.

Egn. (2.29) can also be written as

(H)X* = HLc ..(2.30)
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The preferred approach is to find the Householder solution

to the associated set of over determined equations

HX* = C ..(2.31)

The differential-equation error criterian Eyg, defined by
(2.21) and Integral equation error criterian Eia defined by

(2.24) are of the linear least square type.

Both criteria can be expressed in the general form

[33] by
M 2
By = ¥ YpglB(J9) G(JI¥) - A(I¥)] .. (2.32)
k=1
With o = w_ |R(Jw )12 for E4, and o o |R(J® )|2/
ka k k da ka = k k
wk2n for E
ia.. Therefore a convenient way of forming

the over-determined eqgn. set(2.31) for Householder solution
is to supply a total of 2M equations, the 0dd rows of which

are formed by the Coefficients of @ Re[B(Jw

Ka )G(aw

) - A(J

k k

wk) and even rows of which are formed by the coefficients of

wea Im [B(I%) G(I%) - A(I%)] [33]

2.3.5 Non-linear least-square Solution Techniques

1

If X = [Xl' X2,... XV)T is a v-dimentional vector of
optimizable parameters, then the most general problem of
non-linear least-squares problems can be given by [33]

. u
Min

w2 £
i=1

2
| ..(2.33)
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and the signal error criterion E.o is of this structuresince
the modulus squared term can be decomposed into the sum of

real and imaginary part squared.

Egn.(2.33) can be minimized by any method of

non-linear optimization technique.

Example 2.4 : This is taken from [33] and is given by

5 + 15S

G(S) 5 3
1+8.1s+7.8s“+.7s

Reduced order model based on integral -equation error

criterion E., with r(t) = 1 is given by

G(s) = 5.+ 15.47s 5 -ﬁ{¥ﬂ “f_
1+8.193+8.265s '

reduced order model by method 1 i.e. second Cauer form is given

by
.604 + 1.869s
.121 + .99s + s?

G,(S) =

The step responses and Nyquist plots for above two cases

are shown in Figs.2.16 and 2.17.

Example 2.5 : This is also taken from [33] and is given by

1

G(s) =
6 + 1lls + 652+s3

Reduced order model based on integral-equation error

criterion E., with r(t) = 1 is given by

G(g) = ~L667 : 245 480
HrE-83355% ontral Library Dniversity ot Pense:

©OORKEE
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6
5
A
Original system
Reduced model (n=2)by method 1 .
Reduced model (n=2)by Ejq T
a
c
(o]
a
]
v
@
]
L 1
OO 10 20 30

Time in seconds

Fig. 216 Step responses for example 2.4
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Fig. 2.18 Step responses for example 2.5
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reduced order model by method 1 i.e. second Cauer form is

given by

.24 - .04s
1.44 + 2.4s + s2

GZ(S) =

The step responses and Nyquist plot for above two cases
are shown in Figs. 2.18 and 2.19.
2.4 MODIFIED CONTINUED FRACTION EXPANSION AND INVERSION

Let the nth order transfer function G(S) and its rth

order reduced equivalent R(S) by CFE method be represented

as ~
A sP-l ya .sP2 4 .- 4+ a5 + A
G(s) = =2 n-1 2 ! (3.34)
B4y ST+ ann‘l+ —=- + B,S + By
and
r-1 r-2 :
R(s) - C, s + Cp_y S + ==+ Cp5 + (3.35)
Dpt1 st + Drsr‘l + -- 4 DyS + Dy

' Steady state values for original nth order system and

reduced model are give by

Steady state value of original system = gig G(S)
- M
By
Lim
Steady state value of reduced model = 0 R(S)
s>

!
@]

}.—J
~
o

H
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We can get the same steady-state value by reduced model
only if
Al Cl
noo
By
Cy = Dy X EI A ..(2.36)

Hence reduce order model is given by

A

c_stl 4 Cr_lsr“2 + == + CpS + Dy 1

R(S) = < - 2l .. (2.37)

r r-

The steps are as follows

(1) Get reduced order model by either Cauver first, Cauer
second or mixed Cauer method. ‘

(2) If the sign of Bl and Dl are opposite, change the
sign of Dl as the sign of Bl'

(3) Get the value of ¢y by equation (2.36)

(4) Put this calculated value Cl in reduced model which

is calculated by CFE method.

The method is illustrated below with two numerical example.

Example 2.6 : Let a system with a transfer function G(S) is
given by [17]

_ s34+ 7% 4 245 + 24
s4+ 10s3+3552+50s5+24

G(S)
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reduced order model (n=2; by method-3 is given by

.357s + .857
.357s%+ 1.929s -]

GZ(S) =

and reduced order model (n=2) by modified CFE is given

by
Gé(s) _ .35752+ 1
.357s4+1.929s+1
Step responses for both cases are shown in
Fig. 2.20.

Example 2.7 : 2nd order model of example 2.3 by method 3 is
given by

23.15 + 2.84s
1 + .82s + .0852

G2(S) =

and reduced order model (n=2) by modified CFE is given by

20.258333 + 2.84s
1 + .82s + .08s?

Gl (s) =

Step responses for both cases are shown in Fig.2.21

We can get the same steady-state value of both
original and reduced model at the cost of transient response
and transient response is acceptable but it is not guaranted
that at the cost of acceptable transient response we can get

the same steady-state value.
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Fig. 2.20 Step responses for example 2.6
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Fig.2.21  Step responses for example 2.7
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3.1 INTRODUCTION

For the unit-step input(R(S) = =], the output response

ni—

is given by

G(s)
S

i.e.,step response of the system is nothing but the inverse

C(s) =

Laplace transform of G(s)/S. Dubner and Abate (23) used

fourier series for the numerical inversion of laplace
transformation. Durbin (24) improved the same method. Further
authors, Simon and Crump [25] used different acceleration
methods in order to speed up the convergenee of the fourier
series. The biggest disadvantage of the above mentioned
»methods is. the dependence on the discretization, truncation
error on the free parameter. At the same time method is a bit
complex to implement through software. The Laplace transform

of a real function f:R » R with f(t) = O for t < O and its

inversion formulae

F(s) LIE(t)]

= Je f(t)dt ce. (3.1)

F(t) = L Y[£(s)]

.y e®“F(s)ds ee. (3.2)

With S = v+i i,e R
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V ¢R 1s arbitrary, but greater than the real parts of all
the singularities of F(s). The integrals in (3.1) and (3.2)

exist for Re(s) > aeR if.

(a) £ 1is locally integrable

(b) there exist a t, > O and K, a ¢R such that

0

|£(t)| < K ®% for all t » t

(c) for all te (0,») there is a neighbourhood in which £ is

of bounded variation [26].

vt
f(t) =

7 [Re(F(V+J w)) coswt-I_(F(V+Ju))sinot]de
ee. (3.3)

~

and onreq.(3.3) fourier transforms are applied in the

existing methods.

3.2 Method Implemented

The method implemented for Laplace transform is quite
different from the conventional computer methods
[23], [24), [25]. The method used in this dissertation is
basically based on the conventional way of inverse laplace
transform which has been studied in the class room. Only

numerical method techniques are applied to it.

The method involves the classical way of finding
partial fraction and then applying residue theorem (27). Let

us assume that a given rational function F(s) be written
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in the form [27].

A(S)
F = =
(s) B(S)
2 m
a_ + ays + a»s® + . . . + aps
= -0 L 2 : m .. (3.4)
by + bys + byse + . . . + bpsh

Where s is a complex frequency variable, coefficient a; and
bi are real gquantities, and the degree of the numerator
polynomial A(S) 1is less than degree of the denominator
polynomial B(S) (i.e. m<N), The poles of the function F(s)
[the roots of the polynomial B(S)] can be found using
Newtons-Horners algorithms. The roots obtained either may
be simple root or complex roots. But first considering that
we have a simple root located at the éslue of complex
frequency variable P, then
Lim

F(s) = ———r
S->P; (S-P;)

The coefficient Ki in above eq;;t;on is reffered to
as the residue of the simple pole at Pi/is.real, Ky will be
real. In addition, since poles that are complex will
always occur in conjugate pairs (this assumes that the bi
are real) it may be shown that the residues of such
conjugate pair will also conjugate [26]. The value of the

residue Ki may readily be determined directly from the

function F(S).
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_ A(P;)
i B'(Pi)

Where Py is a simple pole of F(S), A(Pi) is the numerator
polynomial of F(S) evaluated at § = Pi and B’(Pi) is the
derivative of the denominator polynomial of F(S) (taken

with respect to S), evaluated at S = Pi'

If we have multiple roots 1located at (S—Pi)m, i.e
N(S)

(5-P;)™ K(S)

(s-P;) as a factor, i.e., K(P;) # 0. Putting (8-P; )=y,

*:

G(S) is given by where K(S) does not contain

we obtain

G(s) = —¥tBy)
= ..(3.5
Yk (y+p;) )

Arrange the terms in N(y+pi) and K(y+pi) in
ascending power of y and devide the numerator power by the
denominator continuing the process until ym is obtained as

a factor of remainder, then we have

G(s) = SQ + El + Eg_ + m-1 + Nly) ..(3.6)
T ym—l ym—2 k(y+pi)
C C C C
(S-p;) (S—pi) (S—pi)m.—2 (S—pi)
+ N(S-py) .. (3.7)
K(S)

The above relationship can easily be programmed for
micro computer. In this way partial fraction expansion
could be implemented on micro computer. After getting the
partial fraction output, the next aim is to get its
inverse Laplace so as to get result in time domain. For

this we proceed as follows. Let us assume that such a
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function has J simple real pole P; and h pairs of complex
conjugate pole located at piC and p;C. K multiple poles

located at Pi'

Where PiC is the complex conjugate of PlC. The
function may be expanded in the form
. k:C
F(S) = g Ki + E le + g 1 .
i=1 S-Pj i=1 S-p;C i CF1
. (3.8)
5 .. (3.
i1 (s-p;)"

Where Ki and Kf are residues of which Ki has a

form Kg = a; + Jb,, where a; is the real part of the

i i
residue and bi is the 1imaginary part. If we write
c i .
Pi = Pi + J pi where pi is the real part of the loca-
tion of Pi and pl is the imaginary part then it may be
i

shown that each pair of complex conjugate poles and the
residues associated with them will have an inverse
Laplace transform of the form
r
Pt .
2 e *ay COS(pit) - by Sin(pit)] ..(3.9)
Thus the complete inverse transform for a

function of the type is given by

J p:t h e .
f(t) = ¢ k; e 742 s epl [a; cos(p?t)—bi
. i
i=1 i=1
. k  k,*th-l p:t
i i i ..(3.10)
Sln(pit)] + Zl —— e
l:

The complete flow chart of this method is given in App.-B.
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4.1 INTRODUCTION

The classical techniques of control system design
using logarithmic frequency response plots of Bode and
Nichols, root locus diagrams of Evans or Nyquist plots are
well documented in the literature. These methods are
graphical in natural and are normally limited to single
ihput single output systems. With the advent of state
space theory, the optimal control approach has been
developed to tackle both deterministic and stochastic
signals. This requires the solution of high order
nonlinear differential equations. With the availability
of new computing powers of modern fast digital computers
alongwith graphic display facilities, controller design

has entered a new era.

The problem of model matching may be stated as -"We
have a process (reduced model) whose performance is
unsatisfactory and a process (original model) having the
desired performance, we have to derive a controller such
that the performance of the augmented process matches with

that of original model"

In the design of a control system in the frequency
domain, the specifications that are usually considered as

design goals may be classified as

1. The time domain specifications, e.g. rise time,

overshoot etc.
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2. The frequency domain specifications, e.g. bandwidth

and the phase margin etc.

3. The complex domain specifications, e.g. the damping
ratio and the undamped natural angular frequency

etc.

To improve the efficiency of any design method, it
is advantageous to have the design goals expressed as
mathematical functions or transfer function (defined as

the standard model).

4.2 THE DESIGN METHOD [28]

=

The design entails the following steps :

(1) Construction of a specification model that the

closedloop system must approximate.

(2) Specification of the structure of the controller.

(3) Determination of the closed-loop transfer function

consisting of unknown controller paramcters.

(4) Order reduction of the transfer function of step 3

to approximate to that of the model in step 1.

(5) Step 4 vyields a set of non-linear algebraic
equations that are sequentially solved for the

controller parameters.
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The model transfer function may be specified as

9o * ng + g282+ -—-=- + guSu

G,(S) =
M h

..(4.1)

2 \Y

Where V u and in general, g4 = hg

Let the structure of the precompensator be specified as

Kng + KgiS + - - + Kp: St
Go(s) = 20 0l 01 .. (4.2)
Kyg + K18 + - - + KygSY
With the plant transfer function as
Qa +a S + ~ - + 6] Sm
Gpts) = & 1 i .. (4.3)
- BO + %S + - = +8 nS
Where n > m and, in general, o j =8 g A
We have the closed-loop transfer function as
G.(S) G_.(S8)
Go.p,(S) < P .. (4.4)

1 + Gg(8) G, ()

Substitution from equation (4.2) and (4.3) in (4.4) yields

an overall transfer function of the form

- - a, + a;S + - - + A, S9
Ge.p.(8) = 2—— 4 ..(4.5)
b, + byS + - - + b_S
= Cp + C1S + Cp8% + --- .. (4.6)
Where q = (m+i) and r = (n+J)

Co =1 When ag = by
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The coefficients agr al,...,aq; bo’ bl”"'b

Cor Cl' Cyree. etc. will, in general, contain the

r; and

controller parametrs KOO’ KOl""’KOi7 KlO’ Kll""KlJ and

the known constant coefficients a,, a,,.. « and 8.,
1 2 m 1

CPYRRE Bn: ' Then for GM(S) to be a Pade' approximant of
GC.L.(S)' we have :

99 = hgCy

91 = BhpCy + Gy

g, = hOC2 + thl + h2CO

gy = hOCu + thu_l+ .. + huCO ' - (4.7)

0 = hy Cuyy * hyCupyoy + -+ + hyCy

(i+J+3) equations of the above type can be sequentially
solved for (i+J+2) unknown <controller parameter of
eqn.(4.2). The first equation, i.e. 9o = hOCO will be, in

general, redundant when ag = b It should be pointed

0°
that the particular triangular form of the non-linear
algebraic equation in (4.7) makes their solution possible

by simple hand calculations. The design method 1is

illustrated by an example below.
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Example 4.1 : Consider the high order plant transfer

function from Shamash (29)

4, . 83 4 128% + 545 + 72
s? + 1853 + 9752+ 180S + 100

Applying mixed Cauer form method of Chapter-2, we have the

following second order reduced model,

2.182 S + .217
3.0382%+ 3.4835 + .217

cZ(s) =
2(5) -

The model transfer function is chosen as [30]
28

1 + of = )S
S = Y N ~
Gy(S) 5F 52 ..(4.8)
l+(z—)s + 3
n n

Where ¢ 1is the damping ratio, o is the undamped natural
frequency and o 1is a design variable which has special
significance in so far as o« = 0 in egn. (4.8) will
result in a zero displacement error system, while o = 1

will result in a zero velocity error system.

Choosing w, = 5.0, = 0.707 and « = .7; we have

25.0 + 4.242S
25.0 + 7.07S + S2

GM(S) =

.

A closed loop system using a proportional integral type of
1

), and unity feadback is

precompensator, Kc(l + =

15
designed on the basis of Gé(s).
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The closed loop transfer function becomes

2.182 7S%+(2.182+.217 7 )S+.217

G (s) =
C.L.
3.03KS3+(3.48K+2.182 1) S+ (L 217K+2.17 7 +2.182)S+.217
= Co + C;S + C,5%4+ C,83
=Gt G 2 387+ - -
Where Tl/KC = K and
Co = 1
Cl = =K
c, =:1283922 - .024578% _ 654018 - .11326261,

.217

From eqn. (4.7) we have

25 = 25 ..(4.9a)
4,242 = 25C1 + 7.07 ..(4.9p)
0 = 25C2 + 7.O7Cl + 1.0 ..(4.9¢c)
6 = 25C3 + 7.07C, + C; ..(4.94d)
Since there are three unknown controller

parameters, four equations in (4.9) are formed where
(4.9a) 1is redundant. Though the equation (4.9) are

non-linear, the particular triangular form makes them

amenable to hand computations by successive
substitutions-as explained below. Eqn.(5.9b) yields
K = .11312. On substituting this in eqn. (5.9c) we get
o= 5.8114624. Thus we get the following controller

parameters.
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X 51.374314

C

Tyos 5.8114624

and the closed loop transfer function becomes

36.9652 + 108 + .633
S° + 38.1552+ 10.12S + .633

Go.p,.(8) =

From fig. 4.2, it 1is seen that the closed 1loop
response matching of the original fourtn order system with
the above controller is exact for the steady-state region

and acceptably good for the transient region.

Thus if a high order system can be
well-approximated by its reduced order model, a controller
design 1ﬁay be based on such a model. From the above
example it is found that such controllers when designed by
the method of section 4.2 can effectively control the

original high order systems.

For matching the steady-state values of original
system and reduced model, PI contrdller 1is designed,
while for matching the transient part, PD controller is
designed. If we want to match both transient as well as
steady state region, PID controller is designed. We can
design all three type of controller by this method.
However, this design method should be applied with caution
for unstable plants and guite obviously, there 1is no

getting around difficulties of non-minimum phase plants.



72

sasuodsal da}s jo wosiupdwon 'y biyg

-+ (°S29G) 9Wli]

L 9 S 7 £ [4

-
-

] I | l

10}DSUAdWOD YiIM |9pOW JOPIO PuUodAs jo 2suodsal dooy pasol) — g
jopow 18pi1o Y3inoj jo asuodsas doo) pasold - )

|8pow 13pl10 puodes jo @suodsals doo) uedp -~ g

19pow 13pJo Yiinoj jo dsuodsal dooj uadQp - v

%0

i.wto._.
a

A

ju2wabubpiip Jojpsuadwodalq |y By

(s)do (s)°9

(s)A = T (s)4

<«—— ndjinQ



73

Because, this method 1is based on approximate model
matching and hence, may lead to an unstable overall due to
truncation error. This drawback may be overcome by
prespecifying some of the pole zero positions in the
compensator to exact cancel the effect of right hand side

poles and zeros.
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CONCLUSIONS

The advantages of system order reduction techniques
are well known. The main obvious advantages are saving in
computational work in the analysis of large scale systems
and economy 1in the design of associated hardware, for

optimal and suboptimal controllers.

In this thesis continued fraction expansion technique
for reducing the order of large scale systems have tried on
typical systems, considered by various researchers. The
applicability of continuous time reduction method has been
tested for controller design. The softwdre for continued
fraction expansion method, step response and Nyquist plot
developed'in FORTRAN and have bheen successfully implemented
on PC. The main draw back of CFE technique is that; the
ROMS may be unstable (stable), even though the original

system is stable (unstable).

The first dintroductory chapter 1lists the various
possible reasons for going in for reduced order models

(ROMs) and for the use they have been put to.

In second chapter a detailed proceduce for continued

fraction expansion, Routh-Hurwitz array and Integral square

methods «are presented.

Contral fibrarg Oniversitn pt voorim,
T SIRIRER
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A method has been given for step response of a system

in chapter-3.

In chapter-4, the method for controller design has
been given. The method is based on Pade approximation and
algebraic in nature. The desired performance is converted
into a transfer function model which is matched with closed
loop system to have identical few time moments. This
method does not require any trial and error procedure.
However, as this method is based on the principle of
approximate model matching. It may lead to poor or unstable

control for non-minimum phase or unstable systems.

~






DETAILS OF THE COMPUTER PROGRAM DEVELOPED

The organisation of the program is as shown in Fig.l.
This program consists a main program and 15 subroutines.
The purpose of various subroutines used in the program and

call statement alongwith their arguments'are described below:

——MATIN

———MATIN1

Main

Program MATMUZ

——DC1

—— DC2
L— MATMU1
—DC3
—— DC4
—— MATINZ
— MATMU3
—— DC5
—— DC6
—— ROGT

—— PFE

L—LAPIN

Fig.l Organisation of the softwave developed



Subroutine MATIN : It reads the transfer-function
data and calculates the Ki quotients of the mixed
Caver form, Hy quotients of Second Cauerform. It is

called by the instruction.

Call MATIN (A,M,II,B,Kl)

Subroutine MATINl : It reads the transfer-function
data and calculates the K; quotients of the mixed
Cauver form. It is called by the instruction.

CALL MATINl (A,M,II,MM,B,K2)

Subroutine MATHIU2 : It reads the transfer-function
and Ki and K'.l data and calculates the rest elements
of Routh array for mixed cauer form. It is called
by the instruction.

CALL MATMU2(A,K1,X2,M,JJ,L,1I,D,D1l)

'Subroutine DC1 It reads Ki and K'i data and

calculates the elements of reduced transfer function
by mixed cauer form. It is called by instruction.

CALL DC1l(C, K1, K2, M, II, MM).

Subroutine DC2 : It reads K and K‘i data and
calculates the rest element which are not calculated
by subroutine DCl of reduced transfer function by
mixed Cauer form. It is called by instruction.

CALL Dc2(Kl,K2,C,J,L,M,K4[K3) .

Subroutine MATMUL : It reads transfer function and
Ki data and calculates the rest element of Routh
array for second Cauer form. It 1is called Dby

instruction.

_—— = f e e ace 4 - P - - - - e e A
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11.

12.

Subroutine DC3 : It reads Ki data and calculates
the elements of reduced trans. function by second
cauver form. It is called by instruction.

CALL DC3(C,K1,M,II,MM).

Subroutine DC4 : Itreads K ; data and calculates the
rest element of the reduced transfer function which
are not calculated by subroutine DC3 of second cauer
form. It is called by the instruction.

CALL DC4 (XK%LC,J,L,M,K3).

Subroutine MATIN2 : It reads T.F. data and
calculates H'j; quotients for firstCauer form. It is

called by instruction.

CALL MATIN2 (B1l,M,II,B,K2).

Subroutine MATMU3 : It reads T.F. data and H’i data
and calculates rest elements of Routh array for
first cauer form. It is called by instruction.

CALL MATMU3(Bl,K2,M,JJ,L,1I,D1l).

Subroutine DC5 : It reads H'i data and calculates
the elements of reduced T.F. by firstCaucr form. It
is called by instruction.

CALL DC5(C,K2,M,II,MM).

Subroutine DC6 : It reads H'i data and calculates
the rest elements of reduced T.F. which are not
calculated by subroutine DC5 for first Cauer form.
It is called by instruction.

CALL DC6(K2,C,J,L,M,K4).
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14.

15.

Subroutine ROOT : This subroutine is used to get
the 'roots' of a polynomial. It is called by
instruction.

CALL ROOT (E,N,NCOFS).

Subroutine PFE This subroutine is wused for
partial fraction expansion. It is called by
instruction.

CALL PFE (NP,NZ,XA,XB).

Subroutine LAPIN : This subroutine 1is wused for
Laplace inversion. It is called by instruction.

CALL LAPIN (N,MX,P,Q,F,F1N,STEP,Pl,IFIN).

Tx

The flow chart of the computer program is as shown in

Avpendix-B _ .



appendix—D



START

4

READ INPUT DATA
DEFINING THE
NUMERATOR/DEN.
POLY. OF QRIGINAL
SYSTEM

¥
GET REDUCED MODEL
USING MIXED,FIRST
OR SECOND CAUER
FORW METHOD

1
FIND THE ROOTS
OF DENOMINATOR
POLY . (POLES)

Y

FIND THE PARTIAL
FRACTION EXPANSION
OF G(8)/5 & G,(5)/8

Y
CALL PROCEDURE
INVERSE LAPLACE

5TOP

FIG.4 MAIM FLOW CHART



START

Y

READ S1ZE OF MATRICES(M),
ORDER OF ORIGINAL T.F.
(HM) ,ORDER OF REDUCED I.F
(NR) Q€2 ,J)3d0=1,2,~~, MM
AC1,0050=1,2,~- 44

1=1
J=2

CALCULATE By

KLD=ALT, 1T+, 1)

K2C1)=ACT, MH+2-1) %
ACT+L,MMe1-1)

RENES
YES
NO
I=1
¥
CALCULATE

Add,L)=a(J-2,Lt1)-

K2(3-2)¥\(3-4,L)

C1

K1(J-2)%1(J-1,L+1)~



7

LzL+1

1=141

. ]
NO ~
YES

¢
~—»{ MH=NR

1=NH
A(MH+L,1)=1.0

CALCULATE
p | ALK,
ACE MM+2-1)2R2(1 )
—]

AINMEL-1,1)

1=1-1




C2

20
D

VES

J=MN+L

1=1

h 4

CALCULATE
A(d-2,L+1)=A0J, L)+

K1(J-2)%A(J+1,L+1)
+X2(J-2)%(J-1,L)

L=L#1

YES

J=d-1

FI1IG.2 FLOW

NO

CHART FOR

P

MIXED

CRUER FORN



START

Y

READ M,MM,NR
Rmn g(l ]J) ;J:l .2 P ,m*l

f(2,930=1,2,--, M8

AL+, L)

JzJ+i

YES

=1

¥

CALCULATE
A, L=A{J-2,1)-

KICJ-2)4d-1,L¢1 | F

L=+l




14141

E
NO

YES

G NH=2#MR
1=M

¥

AiMM+L,1)-1.0

\
CALCULATE
AcT, =K1

ACleL, 1
Y

I=1-1

Y

YES

JzMMeL




4
1)

Y

+K1(J-2)% M-~
*M(J-1,Lt1)

L=L+1

nad
FI1G.2 _FLOM CHART FOR 2 CAUER FORM

\



START

\

READ M,NM,MR
READ A(1,d)3d=1,2,-~ M)

ﬁ(Z.J) ;J:l = " ,”H

Do
B(1,J=A{1,Mi+2-0)

B(2,J)=A(2 ,MM+1-J)

Iz1
J=2
4
CALCULATE y
K2<1)=B¢1,1)% e
B(I+1,0)
Y
J=J+1




CALCULATE
B(J,L)=B(J-2,L+1)-K2(J-2)

*¥B(J-1,L41)

L=L+1

NO

YES

1=1+1

O

YES

X MH=2 MR
I-Hd

¥

C(MM+1,1)=1.0

¥

E
(1%
C(I+4,1)

~
bon
o
11
X b3

h

~




JoMM+ 1

L={

v

\

CALCULATE

+K2(J-2)%
C(J-1,Lt1)

C{J-2,L41)=C(J,L)

L=L+1

YES

J=d-4

YES

STOP

6

8o

FIG.4 FLOW CHART FOR

ST
1

CAUER FORHN

18



START

Y

READ DEGREE OF
POLY.(N) AND
POLY . F(X)=(@)+
ACLX+-~-+a (X"

L
| SET INITIAL

"JVOLUE OF X(1)

ey
=i

CALCULATE
H(NI=G(N)
H(dI=GLd) +X(1)
H(J+1)
J:"—Z ’N‘3 P ’1

¥

CALCULATE
XC141)=5(1)-G(B) /
K1)

F(X)=F (X)/7X-C
N-1 N
C=ROOT OF F(X)

YES

RO

STOP

rI1G.5 FLUOW CHART FOR ROOTS

OF A POLY.

1



12

START

¥
READ TOTAL NO.OF POLES
(N) ,ROOTS OF DENOMINATOR
POLYNOMIAL(POLES)P(1)};
I=1,2,~---,N
NUNERATOR POLYNOMIAL

L

I=1

Y
FIND VALUE OF
NUMERATOR 4
POLY. AT PLD)

\
DIFFERENTIATE DEHOMINATOR
POLYROMIAL AND FIND THE
VALUE OF DIFFERENTIATED
POLYNOMIAL AT R(1)

CALCULATE
RESEDUE AT K(I)=
ACPCL))/BCR(I)

)

1=144

15
I YES

NO

FIG.6 FLOW CHART FOR PARTIAL FRACTION



KD ,0D N
I=1,--- N
¥
———H¥ Iz
Y
1=0 +

START

Y

READ N,TFIN,STEP

13

J=M(1)-1 J=M(1)-1
i |
CALCULATE
CALCULATE
FCE Ty=2aT s xEXPREAL(0¢
. 1))%T) CREAL(P(1) )%
FC1,T)=REAL(P(1)) ATV CosAINAGCU(1))xD)
-ATMAGCP(1))*
EXPCREAL(QCI) 1)) SINCAINAGCDC1))#D)
RS .
15
KN NO
VES

T=T+5TEP
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RO

YES

1=6

\

I=1 4

3

F(1L,T)=F(1-L,T)4
F(1,D &

I=141

10

YES

T=T+STEP

FIG.7 FLOW CHART FOR LAPLACE INVERSE



FI1IG.8 FLOW

START

|

READ ORDER OF
T.F. AND T.F.
DEFINING NUM./DE
POLY.A(8)/B(5)

¥

-0

SzJH

15

1

-1 CALCULATE

G(5)=A(S)/B(8)
AT SzJM

1

K=l
STEP

NO

YES

CHART FOR HNYQUEST PLOT
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BB R R A 0 BT B e 06 B 0 I 3 9 3 B e B e e B 0 B 26 6 0 0 0 06 2 [0

W R

MODEL ORDER REDUCTION USING FRE,

CAUER FORM FOR

DOMATIN TECH.
BY
MIMO SYBTEM

X 2 ey P S LR LS L L SRS L IS S LI LS LS LI ILLLILEL ST ST ELL LSS S

ARGE

MM=(RDER OF THE QR
MR=0RDER OF THE MO
M=R1ZE OF MATRICES
1l and E2 ARE MATR
DIMENSION A(B,8,2,
l..‘..((.:'.,'.,».-gx.. P"(B
QWORP(T7),U(3&) v
CDMFLFY XAC2D) 4 KE (5
INTEGER  XM{Z Q)

REAL A,B,E1,D,DL, F
DFFN’UNlT 1 FTLEM
OFEN(UNTT=2,FILE=
DFhN(UNLT-E,FILE=‘
OFEMUNTT=4 ,F TLE==
DPLNfUNTf~uqFILE=
WRITE (%,734)
FORMAT (4%, " #*ENTER
READ (% ,%) M

WRITE (%,73&)

FORMAT (4%, " #*ENTER
READ (%, %) MM

WRITE (%,37)
FORMAT (44X, " #*ENTER
READ (*,%) MR
WRITE (#,53)

FORMAT (ENTER 1 FO
READ (% ,%) CAL

IGINAL MODEL
DIFIED MODEIL

IX DUOTIENTS OF THE MATRIX LHUFh FORM

2 ,ki8,8,2,2) ,k11(8,8,2,2),0(8,8,7,2),D1(8,8,2,D)
B, D, L EACR, 8,0, ,008,8,2,0) ,EL(8,8,2,2) ,E(37)
(36) Mx<1@)qFtim,iwmy,wx(aqiwmpuaafzmzw
D), XC R OO (D) P OB RO
2 ‘",ra »
LOUT )
‘ HHDUT’)

DE.QUT )

‘DAL 0UT )
‘DELQUT )

SIZE OF MATRICES *#7)

ORDER OF ORIGINAL MODEL %% ')
ORDER OF MODIFIED MODEL ##%°)

R FRIBT,2 FOR SECOND,S FOR MIXED CAUE RFORM)

NR]TE(YgJﬁﬂ)ﬂ My HM MR

FORMAT (48X, ° MATRLLF

. “REDUCED MODEL ORDER=’

B

s -y T

l:l}a..

J=1, MM
DO T K=1,M
DO 5 L=1,M
WRITE (#,739)
FORMAT (4X ,

Do
Do

-
=

1,0,K,

TENTER VALUES OF

q SIZE=",212/4X, 'ORIGINAL MODEL Ty 1E/4X

L, 15

L.

1)

(,4812,

READ (% ,%) (T, 0,K,L)

WIRTTE (3, 4) 1,08, L,A00,J,k,L)
FORMAT (X, 'A(C ,412,1%, ") = ,F10.%)

CONT INUE ,
JS=Mi

B0 TO 5102

IFACE, 35,1, 10 JNE,
JE=J38-1

GO TH 512
ACL=A(2,08,1,1)
o BRema T 63 1
WRITE(Z,%)J5
WJE I8 1
IFAIB.ER. L) GO
DO 4007 I=3,2
DO 40@7 J=1,J5
DO 4082 k=1 ,M
DO 4B@E L=1,M
WRITE (2,

TO

*¥) AT IT,K,

@.@) GO TO 511

400

L) /7R



=3

CONTINUE

GO TO 406073

IIMESH IR

WRITE(2,%*) MM

DO & T=1,1

DO & J=1,MM

DO & k=1 ,M

DO & L=1,M

WRITE (%,4&) 1,0,k L
FORMAT (4X, "ENTER VALUES OF 407 ,412,7)")
READ (%, %) &H(1,J,E,L)

WHRITECEZ,7) T,J,E,L,A00,J,E,L)
FORMAT (4X, 'a0",412,1X, 7y =", F1@.3)
CONT INUE

WRTTE (%, 17358

FORMAT (2X, "ENTER TOTAL TIME OF REGSFONBE,STEF #4%7)
READ (%, ¥) FIN,STEF

DO 1IESRY E=1,M

DO 1299 L=1,M

B0, L) =@0.0

COLD,E,L)=0.0

CONTINUE

AU2=A0L MM, 1, 1)

DOOoLEes I=1,1

DO OLER8 JI=0,MM

DO 1398 E=1,M

DO13E28 L=1,M

WRITE (2% AT, 0,E,L) 7602

CONT INUE

ACE=A01 /0802

MM=Mii~1

DO 1@ I=1,5

DO 1@ J=1,5

D12 E=1,5

DO L=1,5

AT, 0k, L) =0.0

20D, I,K,L=0.8

CCONT INUE

IF(CALLER. LY GO TO |
IFACALLER. ) BO TQ 3

WRITE (3,201

FORMAT (4X, "MODEL. ORDER REDUCTION USIMG MIXED CAUER FORMD)
JJe=3

DO 3@ IT=1,MM

Call, MATINGA M, IT, B, EL)

Call MATINI(A,M, T MM, BED)
NRNENAE S

IFOIILET. (MM+1) ) G0 TO 10
Ll=MM-T1

DOAR =1 ,LL

Call, MATMUZ (ALK EZ,M,J3,L,11,D,D1)
CONT INUE

CONTINUE

DO 22 Tl=1,MM

DO 92 I=1,M

DO 92 J=1,M

WRITECT,2Z) IT1,I11,7,3,81¢17,11,1,0)
FORMAT (4%, "K1 ¢ ,412,7) =" Fi@.2
CONT IMUE

DO 94 IT=1 ,MM

DO R4 I=y,M

DO 24 J=) ,M



144

g

3

WRITE (35,96) I, 11,1,3,K2(11,11,1,D
FORMAT (4%, K2 ,412, ) =" Fi@.2D)
CONT ITNUE

MM=ME

Do 2@ I1=1,M

DO 2 J=1,M

Cimm+l,1,1,0)=0.0

TFCILERLTY COMM+1,1,1,0)=1.0
CONT ITNUE

T T=MM

GO TO 56

CALL DOLIC, KL, E2,M, 11, MM)
TI=31~1

IF(IT.LER.@® GO TD &0

GO TO =@ ’

NESTU N :
GO TO 89

TTI=MM+z-d

no 7@ L=1,111

Call DREONL K, C,d, 0L M ES, KD
CONT ITNUE ,
\:‘::J“‘":l.

IF(JLLT. 3 BOD TO 19

GOOTO 8a

WRITE (3,95)

FORMAT (4X, "MODEL ORDER REDUCTION USING SECOND CAUER FORM')
M= 2 M

DOoES II=1,ME

CAaLL MATINGA,M, IT,B, KD

Jid=J 3+

TF(II.BT. (ZMM+1)) GO TD 105
DO 45 L=1,MM

CALL MATMUL (A, KL M, JT,L,11,D)
CONT INUE

COMTIMUE -

MM 2 9

DO 192 TI=1,MkE

PO 192 I=1,M

DO 197 J=1,M

WRITE (3, 19%) T, 11,1, 0,K14000,11,1,d
FORMAT (4%, ‘Ki¢ 412,y =" F8.5)
CONT IMUE

DO 2% I=1,M

DO a5 J=1,M
CIMM+1, 1,7, 0) =00

TF(I.ER.D) CMM+1,1,1,0)=1.@
COMT TNUE

I T

GOOTO S5

CALL DEIEC, KL ,M, 1T, MM
1I=11~1

TE(TILEG. @) GO TO &5

GO TO S5

NSV S|

GO TO 8%

ITI1=MM/2

DO 7S Ly, 111

CALL DEA (1,0, 0,0 M, )

CONT TNUE

-J:'-"J""l

TIF(ILLT.3) GO TO 19



30 TO B3
Jdw=d
DO 1E Je=1,MM
DO LE k=L M
DO 13 L=1,M
B (2, 0,6, L) mm (2, MM 1= kL)
A CONT TNUE
) M I =M1
Do 14 J=1,0d
DO 14 KE=1,M
DO 4 =1 M
B (g0, b, LY =A (1, MR-, 1, L)
4 CONT INUE
WRITE (2,295
E5 FORMAT (4%, "MODEL ORDER REDUCTION UBING FIRST LAUER FORM™
frip = MM
DO 31 1T=1,MK
Call MATINZMEBL M, I, B ED
Jedmd T4
TF(IX.67T., (Z2«MM+1)) GD TO 1@1
DO 41 L=1,MM
CALL MATMUT (BL,KZ,M,30,L,11,D1)
41 CONT ITNMUE :
k3 CONT INUE
181 M= 2R
DD 3SR II=1 .Mk
DO Z9Z I=1,M
DO 397 J=1,M
WRITE (3,39%) I11,11,1,d,K2¢(11,11,1,D
A FORMAT (4X, “K267,412, ) = Fi@.D)
R CONTIMUE
DO 21 Is=1,M
DO 21 J=1,M
CEMM+1, 1, 1,9) =0, @
TF(ILER.I) C(MM+d, 1,1, =10
21 CONTINUE
I T=pMp
GO TO =4
51 CaLL DOB(C, K2, M 1T, MM
IT=71~1
IFCIT.EQ. @) GO TO &1
GO TGO 51
&l JE=pe L
GO TD 81
a1 TT1I=MM/2
DO 71 L=1,TL1
CALL DO&(KF,C,0,L M, Eae)
71 COMT INUE
NENES
IFLLT.3) B0 70O 1119
GO TO 81
11i% T=1
DOOIBLE J=1 MR
DO 1@1E E=1 M
DO O12LE L=1,M
BL2,d,k,L)=0.0
B2, 0,0, L =002, MR 1-d K, L)
1d1E CONTINUE
Tt==pifee 1
DO 1@14 J=1,IM
DO 1214 k=1,M
DO 1914 Le=i,M



i~

rd

Bl (1, ,K,L)=0.0 |
81«123 kL) =001 MRE-T R, L)

1@14 CONT INUE

no 1015 J=1,MR
DO 1815 &.z M

1 L=, M
F?;gJ K l)—mnw

ClR T b, Ly=RL (2, T 6L

1@ coant INUE

DO 1016 J=1, 1M
DO 1B Ks=i,M

DO 1@1é4 L=1,M

Ce1,d,E,L)=0.0

COL Tk, L) =81 (1 ,J,8,L)

CONT INUE

GO TO 19

JHe=pIR

GO TO =@14 |

IF (C(2,dH,1,1) . NE.B.BIGD 10 5617

GD T mmll
CAL=C{E,dH, 1,1

of M T

WRITE (2, ) Jh

=Tk L 0
DO ERE L=, 3
DO 06 G=1, MR
DOSEE E=1,M

DOV S L=1,M

hAITE(QgKWQ) 1, b Lo C sr,agfqi>
FORMAT (4X, "C(° . 1 X, CLFLEA )
CONT INUE

IF(IHGER. LY 60 TO 4610

Doy o1Ee8 I1=2,2

DOLE@s =1 ,JH

DO 17288 k=1,M

D 1388 L=1,M

WRITE (2,%) C(I,d,k,L) /CAL

CONMT ITNLE

EOTO 4614

MR=MR+ L

WRITE (Z,%) MR

D416 I=1,1

DO 416 TI=1 MR

DO 416 k=1,

DO 416 L=l M

WRITE (3,417 T,3,K,L,001,.3,K,L)
FORMAT (4X, "0 ,412,8X, ) =',Fi@.2)
CONT TRNUE

CAZ=0 (1, MR, 1, 1)

DO 1397 I=1,1

DO 1LEY7 JI=@Q,MR

D l- 7 ok=1,M

DO 1E97 L 3.M

WRITE (2,%)C(1,d,K,L) /CAD
CONTINUE

CAZ=CA /0aE

IFMMLGT. 1) STOF

REBWIND 2

WHRITE(Z, 24)

FORMAT (2X, "ROOTS OF ORIGINAL T.F.
READ (2 %) N

MUMERATOR

FOLYMOMIAL.



IF (N ER. ) BD TO 4204

NCOF =N+ 1

DO 2E I=1,NCOFS

READ (2,%) E(D)

CONT INUE

GO0 TO 4004

READ (3, %) NA

WRITE (4,%) N,NA

IF(NLERL.B) GO TO 4005

CALL ROOT (E,N,NCOFS)

GO TO 4005

WRITE (3, 26)

FORMAT (2X, 'RODTS OF ORIGINAL T.F. DENOMIRATOR FOLYNOMIGL )

NERNE

NCOF SeN+ 1

DO 27 I=1,NCOFS

READ (2,%) E(I)

CONT INUE

CALL ROOT (E,N,NCOFS)
WRITE (3, 28) :

FORMAT (2X, "ROOTS OF MODIFIED T.F. NUMERATOR FOLYNOMIAL ©)

READ (2, %) N

IF(NLER.@) GO TO 4006

NCOF S=N+ 1

DO 29 I=1,NCOFS

READ (2, %) E(I)

CONT ITNUE

GO TO 4006

READ (2, %) NA

WRITE (4,%) N,NA

IF (NLER.@) GO TO 4007

CALL ROOT(E,N,NCOFS)

BO TO 4807

WRITE(Z,42)

FORMAT {2X, 'ROOTS OF MODIFIED T.F. DENOMINATOR FOLYNOMIAL )

N=NA

NCOF G=N-+ 1

DO 44 I=1,NCOFS

READ (2, %) E(I)

CONT INUE

CALL ROOT(E,N,NCOFS)

REWIND 4

DO 49 k=1,2,1

READ (4, %) NZ , NP

DO 47 I=1,NZ

READ (4,1001) IPE,7IM

FORMAT (2X,F2@. 6, 2X ,F20. &)

XA (1) =CMFLX (ZFE, ZIM)

CONT INUE

DO 48 J=1,NF

READ (4, 1001) ZPE,ZIM

XE(T) =CMPLX (ZFE, ZTM)

CONT INUE

CALL FFE (NF,NZ , XA, XE)

CONT INUE

REWIND =

READ (5, %) N

READ (5, %) (MX (1), T=1,M)

DO 302 J=1,N,1

READ (5, %) ZRE,ZIM
TF(ABS(ZIM LT, . 00001 ZIM=R.0

B () =CHPL Y CZRE , Z1M)



A
wad

1E92

£3

1393

1394

1ERE

144@

1396

148@

14752
L4@2

CONT TNUE
DO 139R J=1,N
READ (5, %) FRE,FIM
IF (ARG (FIM) . LT. . 20@B1) FIM=0.0
F (1) =CMPLX (FRE ,FTM)
CONT TNUE ,
CALL LAFIN(N,MX,F,0,F,FIN,STEF,F1, IFIN)
DO R k=@, IFIN,1
F1R,k) =F (N, k) »ACSE
CONT INUE
READ (%, %) N
READ (5, %) (MX (1), I=1 )
DO 13T J=1,N,1
READ (%, %) ZRE,ZIM
IF(ARS(ZIM) . LT. . 00001 2IM=0.0
6 (1) =CHMFLX (ZRE , 2 TM)
CONT INUE
DO 1394 J=1,N
READ (5, %) FRE,FIM
IF (AES (FIM) . LT. . Q00R1) FIM=0.@
(1) =CMPLX (FRE , FIMD
CONT INUE
CALL LAFIN(N,MX,F,8,F,FIN,STEF,F1, IFIM
DO 1395 k=@, IFIN,}
FLCS, K0 =F (N, K) %0AT
CONT INUE
DO 1396 K=@,IFIN,]
WRITE (1, 144@1F1 (1,8 ,FL(2,E) P13,
FORMAT (FB. 2,F8.4,F8. 4)
CONT INUE
WRITE (%, 1408)
FORMAT (6X, ‘TIME 5%, ‘ORIGINAL ' ,5X, 'REDUCED ")
Doo1407 r~m IFIN, 1
WRITE (3, 1430) F1(1,K) ,F1(2,K) ,FL(3,H)
FORMAT (6X,F4.2,5X,FB. 4,7X,F8. 4)
COMT INUE
S5TOF
END
BUBROUTINE MATINCA,M, 11,E, K1)

04 96 0 e 36 3 96 96 96 46 36 36 F B B I K B B B W R O S B R R R R R KRN R KR

»
» THIS SUBROUTINE CALCULATER THE K1 GUOTIENTE OF THE MIXED
e AND FIRST MATRIX CAUER FORM
&
(24 B 3 36 23506 06 0 BB B30 BB e B 06 e e N 3K B B R R B RS
DIMENSION A(8,8,2,2) K (8,8,2,2) ,K1(8,8,2,2)
REMAL A R, EL
DO % I=i,M
DD B J=1,M
BOTI+1,1,1,00=ACT1T+1,1,1,J)
G CONT INUE
DO 35 LM=1,1
DO EE N=1, M
DO 4@ I=1,M
DO 4@ J%I,M
TF L. NELRD GAND (T NELRD Y BROT I+, LM, T, D =R(IT+1 LM, T, D -BIT+1 LM, 1
JNYRE(TT+1, LM, N, J) ZBCIT+1 LM, N, N
4@ CONMT INUE
BOIT+L, LM NNy =1, @/B(TTI+1 LM Ny M)

nog s NN«l M
IF (NNLER. N) GO TO OEE
BOTTHL LM NN, NY =BT T LM, NN 3BT T+, LM NN D



BOIT41 LM, Ny NN =ROTTHL, LM, N, N *ROTT+1, LM, N, MM

it CONT INUE
DO E@ I=1,M
DO 50 J=1,M
BOIT+1,1, 1) ==E(TI41,1,1,d)
50 CONT INUE
DD @ I=1,M
DO 30 K=1,M
DO @ J=1,M
BACIT, I, 0,00 =k (I, 0T, T, B0 +ACIT, 1, 1,00 #B(IT+1,1,d,K)
%0 CONT INUE
RETURM
END
SUBROUTINE MATIND (A,M, TT,MM,E, K2
IS TR R EE BT R SRR R R T R R R SR R R R R R R R R R R R R R R R R
w
o THIS SUBROUTINE CALCULATES THE K2 DUDTIENTS OF THE MIXED
C MATRIX CAUER FORM
o

{0 eI 2 B 0 T R o e B I B R B e 9

48

DIMENSION A(8,8,2,2) ,E(8,8,2,0) ,K2(8,8,2,)
REAL A,B, K2
DO S I=1,M
DO S J=1,M
BOIT+1 MM-TT+1,1,0) =A(I1+1 , MM=TT+1,1,0)
CONT INUE
DO 35 Ml M
DO 40 T=1,M
Do 4@ J=1,M
TFCOTLNE,NY L AND, (0 NELAD Y BOTI+1,MM=T1T+1,1, 00 =R(II+1,MM-T1+1,1,J)~
BOTT+1 MM=TT41, T ND #BCT I+, MM=TI+1 N, J) /R CIT+1  MM~TT+1 ;NN
CONTINUE
BOIT+1 ,MM=TT+1 N NY ==, B/ECTT+1, MM=TT+1,M,N)
DO 35 NN=1 M
IF(NN EQ.N) GO TO 35
TT4+1 ,MM=TT+1 NN, N =B (TT+1 , MM=TT+1 , N, N) #E (T T+1, MM=-TT+1, NN, N)
B!II+} MM=TI+1, N, NN =B (TT+1  MM-TT+1 N TN) KB (TT41, MM=T 141N NN)
CONTINUE
DO SO I=1,M
DO S@ J=1,M
B(TT+1 MM“IIkl,J“J)=wBaI]+1 MM-TT+1,1,0)
CONTINUE
DOOI@ I=1,M
DO I@ Ke=l,M
DO 3@ J=1,M
E2CIT, 11, T,k =KECIT, T1, 1, ) +A T, MM=TT+2, T, ) %B(TI+1,MM-11
#1 0,k
CONT INUE
RETURN
END
BUBROUTINE MATMUZ (A,K1,K2,M,33,L,11,D0,D1)

(006 269036 e M 3 306 0 36 606 6 B0 I 3 0 36 0636 6 36 KD T B 66 B B B 36 06 36 0 06 0 6 B 0 6 R

-
G
¢

"

1

THIS SUBROUTINE CALCWLATES THE REST ELEMENT OF
ROUTH ARRAY

08 e B 605 T T K360 06 6 DI 636360636 6 0 5

DIMENSION A(8,8,2,2),K1(8,8,2,2),D(8,8,2,2) ,K2(8,8,2,2 ,01(8,8,2,2
)

REAL A,K1,D,D1,K2

DO 3@ I=1,M

DO 3@ k=i, M



24

D{IT,T11,1,K) =0.0

DO 3@ J=1,M

DOIT,TT, 0, k=D, 1T, 1, K0 +d (1T, 1T, 1,00 %A II~1,L+1,.0,H)
%0 CONTINUE

DO 48 I=1,M

DO 40 k=1 ,M

(11,11,1,K)=0.0

DO 40 J=1,H

DICIT, I0, T,k =D1(3T, 11,1,k +K2(11, SV RACIT~1, L, T, k)
4@ CONT INUE

DO &8 I=1,M

DO b@ J=1,M

BOIT,L, T, 0 =AId-2,L+1,1,70=D(11,11,1,03-D1(I1,T1,1,5

WRTTE(3,8) J0,0,1,0,8(00,L,1,d

4 FORMAT (4%, A 4]¢,’) =10, 2
& CONTINUE

RETURN

END

SUEROUTINE DR (T, K1, KE2,M, 1T, MM
(D03 e B B 0 3 96 e W B 36 K K 3 e e e P e B e e 3 BB A R e e A e N T e 3
o

C THIS SUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED

[ T.F

C

DR K B B B B T B A T B e B B 0 I BT R KR

DIMENSION C(8,8,2,7),K1(8,8,2,2) ,K2(8,8,7,2)
REAL K1,K2,0
Do 1@ I=1,M
DO 1B Jmi,ﬂ
CiIT,1,1,0)=0.0
Cor MM4J~IIQ£ =0, 0
10 CONT INUE
DO 0 I=1,M
DO 30 K=1,M
DO 3@ J=1,M
COIT, 1, I k) =0T, 0, 0, k) +Ka (T, 00,1, D %CIT+1,1,d,k)
COTT, MMeR=1T,T,6) =011 MM4?~IT_I.!\+!2f11,1[‘i,d)*CfII+IgMM+1MII“
1 d,)

0 CONT INUE
RETURN
END
SUBROUTINE DOZ (K1, K2,0,0,L,M, K8, K3
IR T EE TN EL TR LR F R e I IR TR T R T E TSR IIEE LR R
" THIS SUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED
r T.F
C
Dt 3 W e B Yk XK R R R W KRR RRFEEERRRRERERRAEEEEREREREEEERRREEFRERERXR LK
DIMENSION C(8,8,2,2) ,K1(8,8,2,) ,K2(8,8,2,2) ,K3(8,8,2,2) ,K4(B,8,2
1,2

REAL K1,KZ,K3, K4,

DO 2@ I=1,M

DO 20 K=1,M

KA(T=1,L41, 1,k =0.2

I3 (- 1,L+1 1,K)=0,0

DO 2@ JD=1,M

K4 (I, L+, T, K=K (I~1 L1, T, ) +K2 (J-2,3-2,1,J0) %C (J~1,L,JD k)

(T, L], T K ka0~ 1, Lt , T k) +E 1 (I :‘; EHI,JDB*C(J—1?L+153D,H)
20 CONT ITNUE

DO 3@ I=1,M

DO IR K=1,M

G2, L1, 1) =000, L, T B +KE (I=1, e, T ) KA (I-1, L+d, T, k)



DO oEG I=1,.M
DO 3@ E=1,M e v o
Cid=m, bl T =0 0T, L, TR +ES0I-4 L+l T,k

I3 CONTINUE
RETLIRN
END

ROUTINE MATING (Bl M KD
SUBROUTINE MATINZ (81 M, 1T, R, ‘ ) o -
% % R % % K-';*****%********ﬁ'**%**%***%%**%*-ﬁ"ﬁ:***%***%*%***%** ¥ 3K N Fe e B R e

G

c THIS SUBROLTINE CALCULATES THE KZ DUDTIENTS OF THE SECOND
C MATRIX CAUER FORM
::E"k o3 W P I WP e e P PP P S e B e P W T P W R W P e R e P P P P P e WA W P WP B A R A W WP W KB

. e

DIMENSION B1(R,B8,2,2),B(8,8,2,5) ,K2{8,8,2,2)
REAL Bi,E, K2
Do 5 I=1,M
DO 5 J=1,M
BOIT+1,1,1,0)=B1(11+1,1,1,0
5 CONT INUE
DO 35 LM=1,1
DO 35 M=l ,M
DO 4B T=1,M
?g(??uggfﬁynﬁNDn(J,NE"N))B(II+1qLM¢IEJ)wB(II+1qLM,I,J)“B(II+1,LMqI
1 G M #BCTI+L LM, N, J) 7B (T I+1, LM, N, M)
4m CONT TNUE |
BUOITHL, LM, Ny MY == 1 /B CTT+1 LM, N, N
DO 35 Nl ,M

BUOITHL, LM, NN MY =BOTT1, LM, NN $BCTT+1, LM, NN, N)

BOIT+HL LM NG NND =BT T4, LM, N MY #B (T T41, LM, N, NN
35 CONT INUE

DO 5@ I=1,M

DO B Je=1,M

BOIT+1, 1, 0,00 =B (1141 ,1,1,0)

50 CONT INUE
DO 30 I=1,M

DO 2@ k=1,M
RQ 30 J=1,M

Kl 11,1, =k2 (1] AT, TR +RI(IT 1,0 g ) EE(TT+1, 1,0,
8 CONTINUE :

RETURN

END

SUBROUTINE MATMUS (B1,K2,M,30,L,11,D1)

Q%‘?@*'ﬁ-***'**%******%***ﬁ-%*****%i‘%%%*%%*%%***'%*%%***%**%**%*********%#-E-***%*
C

C THIS SUBROUTINE CALCULATES THE REST ELEMENT OF

- ROUTH ARRAY

™

CF ¥ 4% 3% ¥ e e He W BB e X H K W e e e e e W e R WKW e Tl K R He e W W3 ¥ %9’-%***%‘*%***3’*** L
DIMENSTON B1(8,8,2,2),k2(8,8,2,2),D1(8,8,2,2

DO 3@ I=1,M

DO 30 K=l ,M

DICIT,IT,1,K) =0.0

DOZQ Je=1,M
| Dl(II,II,I,H)*DI(II,II,I?H)+M£(IIQIIvI,J)*BI(JJWI,L+1,J3H>
%0 CONT INUE

DO 5@ =) ,M

DO @ J={,M

BLOIT,L, 1,0 =0.0
50 CONT INUE



=0 CONT INUE
RETURN
END
GUERDUTINE MATMU (A,K1,M,37,L,11,D)
C.'!f*‘****%**-!‘***********%%%*%**%*%**%*%******'ﬁ'*%%*‘ﬁ‘**%-*****-ﬁ--***********%%%*
r
c THIS SUBROUTINE CALCULATES THE REST ELEMENT OF
e ROUTH ARRAY OF FIRST
o CALUER FORM
C
(:,‘.%%'ﬁ-%‘:-ﬁ-**%***%%’V:********'K-'!‘:%*%ﬁ"ﬁ'**%**%*%%***%%%%%*1‘5.'*%**%*#’:***’%%*********%%*
DIMENSION A(R,8,%,2) ,K1(8,8,2,2),D(8,8,2,2)
REAL A,K1,D | ‘
DO 3@ I=1,M
DO 3B E=1,H
DT, IT,1,K)=0,0
DO 3@ J=1,M
DOTT,I1,T,k0=D01, 10,1, Kk CIT,11,1,0)#A(Jd~1,L+1,J,K)
50 CONT ENUE
DO 6@ I=1,M
DO 6@ J=1,M
AT, L, T, D =AII-2, L+1, 1,00 =-D{IT, 11,1,
WRITE (S, 1) JJ,L,1,3,A8010,L,1,0)
1 FORMAT (4%, "AC,812,7) = ,Fi@.2)
H@ CONT INUE
RETURN
END
SUBROUTINE DOZ (0, K1, M, 11, MM)
_ C:*-ﬁ--ﬁ-%**%****%**i-***%-ﬁ-*%*%******“ﬁ:*%*%**%*%**'R--5(--)HH%*%-i‘:-)i-%**%*******%%*%**%%*')'?
G
C THIS SUBROUTINE CALCULATES BOME ELEMENTS OF MODIFIED
C ' T.F
"
(T2 T 22T *'*%**‘ﬁ'*-ﬁ-%-ﬁ'*_-h'-*’ﬁ'-ﬁ-'ﬁ-*'ﬁ'&&-%'ﬁ'*-ﬁ“*ﬁ"*%-’i-%'***-)'}*-ﬁ‘-k'-§~ﬁ~-§~'§~-ﬁ~~ﬁ-~§'l§'*'ﬁ‘%***'ﬁ'ﬁ-‘ﬁ--ﬁ'%%{-***%-ﬁ-*ﬁ
DIMENSION (C48,8,2,2) ,H1(8,8,2,2)
REAL K1,0
DO il Is1,M
DR 10 J=1,M
CUIL,1,1,0) =08
10 CONT IMUE
DO 3@ I=1,M
DO 3D K=1,M
DO 3@ J=1,M
COTT,1,1,K)=011,1,1, ) +K10IT, 11, 1,0 ®C(IT+1,1,J,k)
0 CONT INUE :
RETURN
END
SUBROUTINE DC4 (K1 ,0,J 45, M, K3
*%%-K“*'ﬁ'%')i--K-%%*%**%****%*%**%**'ﬁ*%****%****%********%ﬁ**%********%***%%%***%
C
w THIS SUEROUTINE CALCULATES SOME ELEMENTS OF MODIFIED
- T.F
w
DIMENSION C(R,8,2,2),K1(B,8,2,5) Ki8,8,2,2)
REAL K1,K3,0
DO 200 T=1,M
DO 2@ k=i, M
EEI-1, L1, 1,K) =0.0
DD 20 JD=1,M
AT~ L], T, K =hE (Il , L1, T, K +K1 (I=2,0-2,1,dD) %0 (J-1,L+1,0D0,)
20 CONT TNUE



4
H@

DO &8 I=1,M

DO &@ J=1,M
B1(IT,L, 1,00 =Bl (33,1, 1, +B1(JI-2,L+1,1,1)-D1(I11,11,1,D
WRITE(3,4) JJ,L,1,J,R1(J3,L, 1,0

FURMQT("“X, ‘R (’ .,4-[':, D ELEL
CONTINUE

RETURN

END

SUBROUTINE DOS(C, k2,M, 1T, MM

TRt I R LI T LIRS LTI TSR T LT LT ST TR R R R LR R R

C
e
[
"

THIS BUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED
T.F

R I TR TR TR R Y TR R X R R R R R R MR R Y

in

DIMENSION C(8,8,2,2) ,K2(8,8,2,2)
REAL 2,0

DO 10 I=1,M

DO 1@ J=1,M

GOIT,1,1,0)=0.0

CONT INUE

DO 3@ I=1,M

DO 30 K=1,M

DO 3@ J=1,M

COIT, 1, T k) =C(TT, 1,1,k +k2(IT, 11,1, %CCII+1,1,d,kK)
CONTINUE

RETLIRN

END

SUBROUTINE DO& (K2, 0, 0,0, M, K

(D0 b B B IR MK N W N W B F e F R ERFURERRRERREEEREEREEEERERERERRREREREEE RS

C
C THIS BUBROUTINE CALCULATES SOME ELEMENTS OF MODIFIED
C T.F
o
{:}*%%%%-%"ﬁ"ﬁ'*%%*W—ﬁ'*-ﬁ***%%%%-h'v****%*%***%**%%*****%'ﬁ-%ﬁ%*%**ﬁ%%%**%*****%****%*%
DIMENSION C(8,58,2,2) ,K7i8,8,7,2) ,K4(8,8,2,2)
REAL K7Z,K4,C
DO 20 I=1,M
DO 2@ K=1,M
K4 (I-1,0+1,1,K)=0.0
D0 F@3 JD=1,M
KA (I, L+, 1K) =k (J=1,L+1, T, k) +KZ (J=52,J-2,1,J0) *C(J-1 ,L+1,JD,K)
20 CONTINUE
DO 3@ I=1,M
DO 30 K=1,M
COI=2, L1, TR =0T, L, T, ) +K4 (J-1,L+1, 1,K)
@ CONT INUE
RE TLIRM
END
SUERDUTINE ROOT (E,N,NCOFS)
C%**f:*-%*-ﬁ'****%**%********')‘.‘**-K'**-**'ﬁ'%******%*%*%%*%ﬁ%*%*%%%%v‘\‘*%***%****%****
C
e THIB SUERROUTINE CALCULATES THE RODTS OF A
» FOLYNOMIALS
G
C*K'*%%-)\"-)‘.-4\'--!'%*~)i~¥.-*}-i?**}**'ﬁ"ﬁ“ﬁ-')':**%***%***%%*%%**-*-ﬁ-*****ﬁ*******************ﬁ%%%%*
DIMENSION E(37) , AWORK (37) ,U(36) ,V(T6)
DATA U, V/36%0, ,36%0. /
1 WRITE (5,5) N
= FORMAT (2%, DEBREE OF FOLYNOMIAL®,2X,12)

IFINGLE.@) GO TO 200
IF(MLGT. 26 B0 TO 218



20

st
e

-
("
(ZL‘-
o
(W
o
i
C
C
C
C
e

TR=1
DO 1@ I=1,NCOFS
IMi=]-1 ,
WRITE (%, 28) IM1
FORMAT (2X, © COEFFS OF X#*%',12)
WRITE (3,%) E(D)
FORMAT (F15.5)
CONTINUE
CALL FOLRT (E, AWDRK ,N,U,V, IER)
GO TO (200,21@,220,23@) IER
WRITE (3, 105)
FORMAT (3X, ‘ROOTS ARE ")
WRITE (3,110
FORMAT (2X, "D, 9%, 'REAL FART ', 13X, ' IMABINARY FART )
WRITE (3,4) (U(I),V{I),I=1,M)
WRITE (4,4) (U(D) V(D) ,I=1,N)
FORMAT (2X ,F2@. 6, 2X ,F20. 6)
RETURN
WRITE (S, 205)
FORMAT (22X, ' O#*ERROFR*#DEGREE MUST EXCEED @)
GO TO 31
WRITE (3,21%)
FORMAT (3X, ' #*ERROR**DEBREE MUST BE LESS THAN 37°)
GO TR 1
WRITE (3,225
FORMAT (3X, " O%*WARNING*#ALEORTTHM DID MOT CONVERSE TO SPECIFIED
ACCURACY )
B0 TO 999
WRITE (3,235)
FORMAT (3X, *O#*ERROR®*COEFFICTENT OF HIGHEST FOWER CAMNOT EE = @
GO TO 1 .
RETURN
END ,
BUEROUTINE POLRT (XCOF,COF, M, ROOTR,ROOTY , TER)
DIMENSION XCOF (1) ,C0OF (1) ,ROOTR (1) ,RODTL (1)
DOUBLE FPRECISION XO,YD,X,Y,XFR, YFR,UX,UY,V, YT, XT, U, XT2, YTZ, SUMSE
, DX, DY, TEMF, ALFHA, DARS
XCOF -YECTOR OF M+i COEFFICIENTS OF THE FOLYNOMIAL
ORDERED FROM SMALLEST TO LARGEST POWER
COF  ~WORKING VECTOR OF LENGTH M+l
M ~ORDER OF FOLYNOMIAL
ROOTR-RESULTANT VECTOR OF LENGTH M CONTAINING REAL RDOTS
OF THE POLYNOMIAL.
ROOT1-RESULTANT VECTOR OF LENBTH M COMTAIMING THE
CORRESSFONDING IMAGINARY ROOTS OF THE FOLYNOMIAL
1ER  -ERROR CODE: WHERE IER=@ MEANS NORMAL RETURN, JER=1
MEANS DEGREE < 1, IER=2 MEANS DEGREE » 36, IER=3
MEANS ALBORITHM FAILED TD CONVERSE, AND IER=4

IFIT=0

Nz

VER=@

TF (XOOF (N+1)) 10,25, 10
IF N 15,159,302
TER=1

RETURN

1ER=4

G0 OTO 20

TER=S

G0 TO 20

IF (N~36) 35,35, 30
NX =N

)



MY ¥=p+ 1
NZ=1
Fod § =M+ 1
no 4@ L=1,KJ1
MT=d1-L+1
4@ CCOF (MTY =XCO0F (L)
4% X0=, B50Q1¢1
YO=0.Q1008101
IN=@
tw} X=X0}
A=—10, BxYD
¥Y=—-10Q, Q%X
X=X
Y=Y(
ITN= TR+
B0 TO 59
v IFIT=1
XF X
YHR=Y
59 1CT=@
HEB UX=@, @
LY=@, @
V=@, @
YT=@,8
XT=1.0@
L=COF (N+1)
IF ) 65,130,465
et DO 7@ I=1,N
[ B |
TEMP=C0OF (..}
XT2=X#XT-Y®YT
YTE=X®YTHY#XT

Ve TEMF*YT?
Fl=l
LIX=UX+F T # X T TEME
UY=UY~F I *YT#TEMF
XT=XTZ
0 YT=YTR
BUMER==L X * LN +L1Y =LY
IF (BUMSED 75,110,795
75 DX = (V#UY~UsUX) /SUMSEH
X=X+DX
DYz (LIRIY+V#UY) /BUMSEH
Y=Y +DY :
78 IF (DARS (DY) +DARS (DX) ~1. RD-B5) 100,88 ,80
o ATEF ITERATION COUNTER
80 ICT=1CT+1
IF(ICT-500) &40,8%,85
B35 IFCIFIT) 109,50, 100
90 IF (IN-5) 50, 9%, 9%
o SET ERROR CODE TD 2
9% TE R
BOOTO 2D
100 DO 105 L=1,NXX
MT w0 ] ] ]
TEMP=XCOF (MT)
XCOF (MT) =COF (L)
105 COF (L) =TEMF
T TEME =N
N X
MNX= T TEMF



IF(IFITY 120,585,128

11@ [F(TFIT)ii\,M@ 11E
115 X=XFR
Y=YFR
iz IFIT=0
122 TF(DARSIY) 1. D-4DARS (X)) 135, 155, 125
12% ALPHA=X+X
SUMBE=X*¥X+Y*Y
R E R
GHOOTO 148
1732 X=@,8

MA=NZ-1
NXX=NYXX~1

1A Y=, @
SUMBE=0. 0
ALFHA=X
N=N--1
148 COF (2)=00F (2) +ALFHA¥COF (1)

IF(NLET. 260 TO 145
COF C2)y=C0F O3 +ALFHA*COF (2) ~5UMBE*COF (1)

B0 TO 158
14% DO 15@ L=2,N
15@ COF (L4+1)=C0F (L+1) +8L FHAXCDF (L) ~SLIMSR=L0F (L-1)
155 ROOTL (NZ) =Y

ROGTR (NZ) =X

N2=N2+1
IF(NZLET. M GO TO 28
IF{SUMSED 168,165,160

16@ Y=Y
SLIMS50=0. 8
GOOTO 155
1465 TFINY 20,20,45
RETURN
END

SURROUTIME FFE(NF NZ XA XR)
TSR s s R R A A R S R R R S S R L

»

- THE FROGRAM DOES THE FARTIAL FRACTION FXFQHQIUH aF

[ FUB) 70 (5) = (B5-XA 1)) (S-XAL2)) .. (5=XAINY) 2 {S-XB (1)) .. (B-XE{N+1))
C HAVING NUMERATOR'E POWERC DENDMIN-TGR'POWERn

»

Cﬁ%%*%%%%%%ﬁ%%%*%**%%%%%%**%%%ﬁ%%%%%%*¥ﬁ**%{*%%%%%*%*%%**%**%*********
COMPLEY XA{ZA) , XBEG)  XCE@) ,CC M
INTEGER  XM(ZE)
WRITE(E, 1)

1 FORMAT (' #% DEGREE OF NUMERATOR < DEGREE OF DENCMINATOR ##°)
WRITE(3,2)
2 FORMAT (* %% DEGREE OF NUMERATOR & DENOMINATOR ARE *% )

WRITE(Z,51NT  MF
WRITE (5,%) NF
IF(N?.FQ M 6o 10 4
NRlTP(ﬁ A

7 FORMAT (' REAL % IMAGINARY VALUES OF Nr RODTS  ARE')
WRITE(3,5)
5 FORMAT ¢ REAL PART (Nr) IMAG. FART (M) )

WRITE (3,52) (REALAXA{D)) ,AIMAG (XA (D) ) , I=1 ,NZ)
4 WRITE (R, &)

é FORMAT (* REAL % IMAGINARY VALUES OF Dr RODTS ARE')
DO 3@ I=1,NF
XM (1) =1

50 CONT INUE

DO 15 I=1,NF



TF(XMOD) LER. @GR TG 13
Ti=1+1
DG 25 J=T1L,NP
TF(XRGT) JNEXB(DNDGD TO 13
XM(Ty=XM{I)+1
XM (J )y =@
CONT INUE
15 CONT INUE
WRITE (3,8)
FORMAT (" MULTIFLICITY )
WRITE(I,B3) (1, XMD) , I=1 N
WRITE (5, %) (XM, T= 1,NP)
WR$1E(3q“
FORMAT O REAL FART (D) IMaG, FART (Dr) ")
WRITE (3,52) (REAL (XBLIY) G ATMAG IXBOD) ), T=1 ,NF)
DO L T=1,NF
NRITE(ﬁ,*)REAL(XB(I))qﬁIMﬁG(XH(I))
CONT INUE
DO 18 EkE=1,NF
TFOAMOERED JEG. @GO TO 1@
IF(XMAEED BT H B0 TD 14
WRITE(R, 1)
FORMAGT ¢ THE COEFFS OF P.F.E FOR POLES OF MULTIFLICITY=1 ARE
1)
WRITE (3,54 XM (EE) KE
WRITE(SR, 1)
FORMAGT (7 RE&L FART IMAE FPART )
CCALL PARFL (XA, XEGNZ GNP ER, XD
WRITE C3, 52 REAL (XCORED Y  ATMAE (XD KD D
WRITE(S, #)REAL (XD REED Y ,ATHMAG (X (KED)
HOTO 1@
14 WRITE(S,1&)
FORMAT (' THE COEFFS OF P.F.E FOR POLES OF MULTIFLICITY>1 ARE
1 : )
WRITE (3,54 XMOER) EK
WRITE(Z,17)
FORMAT O © REAL FART IMAG FARRT )
CALL PARFMOXA, X8, XMOER) (NZ GNP ER,CE)
O 18 I=1,XMIKED
NRITFI¢,QE3EEAL(PL<{)) ATHAG(CC I
WRITE( 1.¥)REQL(GC(I))5QKMQG(DC(I))
18 CONTINUE
1@ COMT T NUE
Sl FORMAT (1%, 'ORDER Mr=",135,/,1X, "ORDER Dr=",13)
o FORMAT (1X,F1@. 6, BX“Flﬁnﬁ)

T FORMAT (1X, "FOLE NO.=", 32, 3X, "MULTIFLICITY=",12)
54 FQRMQT(ng'FUH MULTIFLICITY=",1&,8X, "POLE NO.=",12)
RETURM
END
SUBROUTINE FARFL (XA, XByNZ NP KR, XE)
COMPLEX XA (XBOL) X000 ,PNRL,DR,Q1, G2
Jd==

FNR=CMPLY (1. ,@.)
IF (NZ.EQ.@IGD TO 33
DO 2@ JI=1,MZ
FNR==FNR® O KED) XA (J0))
20 CONTINUE
D OIF(EKLLE. D BO TO 4@
Jek
D1=CMPLY (1. , @)
DD 3@ JJ=1,J-1
EL=01% (XE (KK =XE (31))



Ry CONTITNUE
IF(ILER.NPIED TO &R
GO TO 80
(Y] RR=CHPLX (1. ,@8.)
GO TO 7@
43 Q1=CMFLX (1. ,0.)
B@ QR=CMFLX (1.,0.)
DO E@ El=I+1 ,NF
PE=02% (XB(EE) -XB 1))
&R CONTINUE
7@ DR=(11 %22
XOORED =PNR /DR
1@ CONT INUE
RETURN
E MDD
SUBROUTINE FARFM XA, XE, MM, NZ ,NF, kF, CC)
COMPLEX XA (D) (XEOL) ,XCO1)  NUM2E) , XD 20 ,CO28) ,
1 CR2O) ,BR{28) , 66200 , B
Bl=XR (k)
NEN
IF (NZ.ER.@YED TO 12
DO 1@ Kw=1,NZ
AR D) =XAE) ~BY

19 CONTINMUE

11 NNE]
IF(RELLE. DGO TO 26
J=kk

DO I Jd=1,0-1
CROI =R {JJ)~B1

@ CONT IMUE

: IFIJ.EQ.NFIGO TO 48
s B I1=37"
DO SR El=J+MM, NP
BRI L) =XR{E1) ~-R]
CROID) =BR(ED
TI=11+1
5@ CONT INUE
NN={
MUM L) =CHMFLX (L. ,8.)
IFINZ.EQ. @GO TO 41
DO I=1,NZ
CaLL, FRODONUM,AA T NN
1 CONTINUE
41 ND =@
XDy =CHMPLX (1. ,@.)
DO 1@Q T=1,NF-MH
Cabtl FRODOXD,CROD) (NI
188 CONTINUE
CaLL DIV (NUM, XD, MM, 003
FETURM
END
SUBROUTINE DIV XA, AR, MM, CO)
COMFLEX XA1) ,XB0) ,C000) ,8
DO @ I=1,MM
S=CMPLX (8. ,8.)
DO 28 J=1,1-1
H=3+CC () *¥XB(I-J+1)
20 CONTINUE
CEOD =G0 -8) /7XBD)
1 CONTINUE
RETURN
END



SUBROUTINE FROD (XA, F NS
COMFLEX XA(Z1) F

X6 (NA+E ) =XA (MA+1)
MA=NA+L

TF (NALER. DGD 70 X

no 4 I=2,NA

N ENTAL SEE)

XA LD =XAGT-1) ~FEXa G
CONTINUE

XA (1) =—FeXA L)

RETURN

END

SURROUTINE LAFIN(N,MX,F,0,F,FIN,STEF,F1, IFIN

E***%%**%*%*%********%**%**%*%***%***%*%*&**********%**%*%****%%***%%***%

C
{
G

THIS SUBROUTINE I8 USED FOR LAFLACE INVERSBE

C‘,-)(—%*-)‘:**%--)(-%%'**%%*%*****%*%*%**%%-ﬁ-*****%-!i'%******%**%*%****%%%***%*%%**-i‘**-*

1@

G

2@

&

11@

4Q
30

i
=)

COMPLEX F(1@) 01

DIMENSION F (1@, 100) ,MX (1@) ,F1 (3, 188)
TF IN=F [N/ STEF

DO 1@ K=0,IFIN,1

F (1, k) =K «STEF

CONT INUE

DO 30 I=1,N,1

IF (AIMAG(RLT) ) NE. 0. @) BD TD 4@

J=M¥ (1) ~1

Li=d

PO S0 L=1,J,1
Li=ll ®l

CONT IRUE
1F(1.EQ. @) LL=]

DR 2@ K=, IFIN, 1

F T, = (REAL (R (1)) # (F1 {1, KD #%d) #EXF (REAL (R (1)) *F L 0L, /LL
CONT ITNUE

GO TO 2@

J=MY (1Y -1

Li=1

DO 19B L=1,0,1

b=l el

CONT IMUE

IF(J.ER. @) LL=1

DO 11@ KM=1,N,1

IF QD). NE.CONIG (B (EM))) (B0 TO 116

B (kM) =@

F (M) =0

CONTINUE

DO 40 K=@,IFIN,1

F T, ke (B 0L,k #d#24EXE (REAL (D (1) ) #P1 1, k0 % LIREAL (P (I) ) ¥
COSTATMAG (R (T #F L 1L ED ) — (ATMAB (P (1)) *SIN(AIMAG (BT I *F 1 (1,K) ) ))
y /L

CONT INUE

CONT ITNUE

DO B8O K=@,IFIN,]

Fif, k) =0,n

DO SO I=1,N

FODEY=F {I~1 k) +F (1K)

IF (I.NE.N)GO TO =@

CONTINUE

CONT INUE

RETURN

END)

(006080 36 B 06 B 36 0B I B B K A B B K R



DIMENSION A(2,10),002,18)
COMFLEX Al,AZ,AS (2000) (&
OFEN(UNIT=1,FILE="D7.0UT")
DFEN (UNTT=2,FILE=" D8, DUT )
WRITE (%,52)
2 FORMAT (' ##ENTER DRDER OF DRIGINAL T.F, %% )
READ (% ,%) MM
Mb4z= MM

)

DO 3 J=1, MM
WRITE (%,4) 1,4

4 FORMAT ('ENTER VALUE OF AC 218, 0"
READ (%, %) ACT,J)

5 CONT TNUE
Tui
DO B =1, MH
WRITE (%,6) 1,

b FORMAT C'ENTER VALUE OF A0 212,00

READ (%, %) AT D

COMT INUE

DO 1@ E=a, 1000, 1

Ak ==,

G=CMPLX (B, , 6

AL=CMPLY (8. @)

2=CMPLX (@, , 8.

A3 ) =CHMPLY (@, , 8.0

TF (bLER.@) GO TO 99

DO ER I=4 MM,

AL=AL+ALE, 1) * (Bxx(I~1))

gl CONTINUE
DO B J=1,MH, 1
BE=ATEA (1, ) ® (S#% (I-1))

30 CONT INUE
BOOTO 1G@

@ Al=A1+A(2, 1)
AR=AZ+A L, 1)

Lan A% (K =AL /A7
Xi=REAL (A ()
Y1=0TMAG (AT (K))

WRITE (2,23 X1,Y1

23 FORMAT (FB. %,F8. %)
WRITE (1, 25) Ak, X1,Y1

25 FORMAT (FB, 3,F8.35,F8.3)

i CONT INUE
STOF
END

e
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