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CHAPTER - 1

IN TRODUC TT ON




1.1 NECESSITY OF MODEL REDUC TION

Every physical system can be translated into
qathematical model. The mathematical model of large
scale systems are very complex and they can Vnot be
reduced by hand canclulations. Fast digital computers

can only be used to reduce these complex models.

The mathematical procedure 6f system modelling
often leads to comprehensive description of a process
in the form of high order differential eéuations,
which are difficult to use either for analysis or
controller synthesis.. It is hence useful and some -
times necessary to find the possibility of finding some
equation of the same typelbut of lower order that may
be considered to adequately reflect the dominant
characteristics of the system under consideratien. Some

of the reasons for using reduced order models of high

order linear systems could be

(1) A systém of uncomfortably high order poses
difficulties in its analysis, synthesis or
identification. So in its analysis, synthesis
or identification an obvious method of dealing
with such systems is to opproximate it by a low
order system for which characteristics such as
time constant, damping ratio, natural frequency

and their inter relationships are well known.



1.3 MODEL REDUCTION USING CFE

The principal philosophy underlying the derivation
of simplified models by CFE stems from the fact that the
continued fraction expansion resembles multiple'feedback
loops and feed forward paths with blocks corresponding to
the quotients., As quetients descend lower and lower in
position, or equivalently the blocks develop to more or
more inner loops, they have less and less significance as
far as the overall system performance is concerned. There-
fore, truncating the continued fraction often some terms

| is equivalent to ignoring the inner, less important loops.

Suppose an nth order model is expressed as
- 1l 2
&(s) = b1 s +E§ s T+ .é.. + bn vee(2)
sn+alsn_+azsn-+..+a

n
Because a general control system is a low pass
filter in nature, in the simplification, we should take
care of the steady state first and then the transient part,
'This means that we have to start the comtinued fraction
expansien from the constant terms, or arrange the polyno-

rials in the ascending order.

So first rewrite the polynomials in ascending order

4 n2 1
o(s) bn+ bn-l St eceee + b2 s T+ b1 s
8) = oy 1l n

' 8, S
/ an"' an_l S+ escee + 32 S 4' l +S

000(2)



(b) The development of state space methods and
optimal control techniques has made the design
of a‘control system for high order multivariable
systems quite feasible. When the order of the
system becomes very high speclal numerical
techniques are required to permit the calcula-
tions to be done at a reasohable cost on a
typical digital computer. So reduced order model
reduces computatienal complexity and computational
burden as well hence a saving in both the memory

and time requirement of computer.

1.2  APPLICATIONS OF REDUCED ORDER MODEIS

The reduced order models and reduction techniques
have been widely used for the analysis and synthesis of high
order systems. Some of the uses to which these have been put

are

(1) Prediction ef the transient response sensitivity of
high order systems using low order models.

(2) Predicting dynamic errors of high order systems

using low order equivalents.

(3) sSuboptimal controls derived by simplified models.
(4) Control system design.
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H1+ 1
H 2
st T3
H, +
3 H,
E—+

‘e (3)
Based on (3) we can draw a general feedback block diagram
as shown in Fig, 1 [(a). If an m order simplified model is
desired we only keep 2m quotients in (3) and omit the remai-
ning ones, and consequently the general feedback block diagram
reduces as given in Fig. 1(b).

The most important properties of the continued frac-

tion expansion are

A

(1) It converges faster than other series expansions.

(2) It contains most of the essential characteristics of
the origihal model in the first few terms.

(3) 1t does not require any knowledge of the model eigen
spectrum. '

(4) Since the denominator coefficients of the simplified
medel depend on both the numerator and denominator
coefficients of the original model, stebility of the
simplified model can ﬁot be guaranteed even if the
original model is stable,
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1.4 ORGANIZATICN OF THE THESIS

In the present work a few selected 'model order
reduction techniques namely Routh approximation. Routh
Hurwitz array, stability equation, Modal and polynomial
differentiation and each mixed Qith()auer 2nd form and

Cauer 3rd form are applied to

(1) SISO systems
(2) MIMO system

(3) Power system simplification

The thesis deals with frequency domain model order

reduction technioues. , 3

In chapter 2 various form of continued fraction
expansions and their use in model reduction is dealt

with,

Third chapter is devoted on various stability based
reduction methods and a few other important reduction

techniques.

Fourth chapter describes the'model reduction using
mixed method. Mixed reduction methods are obtained by
mixing the methods described in chapter - 3, with Cauer
second and third forms.

Chapter-5 deals with comparison of varieus reduction
methods. The transfer functions of various SISO and MIMO
models are reduced by pre-described reduction techniques,

and unit step and frequency responses of reduced models are



plotted with the responses of original models. The
final responses show the validity of each method and
their relative drawbacks.

Chapter - 6 describes the development of a

power system model. The problem is takén‘from [18]

and the development of the model is also from the same
reference, In the same chapter &arious reduction tech -
niques are applied to power system model, The transfer
functions obtained from different methods are given in
this chapter and all the reduced mbdels are summarised
and their responses are compared in the last showing
the validity and drawbacks of reduction techniques used

there in.



CHAPTER - 2

REDUCTION USING CONTINUED FRACTION
EXPANSIONS AND INVERSION
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The continued fraction expansion (CFE) method
for obtaining reduced order model s was first proposed
by Chen and Shieh [1]. Various ramification and exten-
sions of the GFE have since been presented by Chen and
Shieh [2,3], and Chen and Huang [4].As pointed out ﬁy
Wilson,'Chen's results are probably the best that have
been obtained, although the method is only applicable
to single input single output systems'.

Bosley and Leus [5] have compared the step res-
ponses of Chen and Shieh's reduced model and original
~ system and have found very little error. Chen [6] has
extended the CFE techniques [1,3] tc model reduction
and deéign of multivariable control systems. Shieh et.al [7]
have demonstrated that the First, Second [6] and Third
. Cauer form formulations for order reduction give good
,approximations'in the transient, steady staté and o#erall
region of the response curve respectively. Shieh and Goldman
[8] have shown that a mixture of the first and second Camer
forms give good approximations for both the transieht and
the steady state responses. Davidson and Lucas [9] have
formulated CFE mefhod about a general point to allow good
approximation to both transient, and steady state behavi-
our, One difficulty with the CFE approach is that the
stability of the model is not guaranteed, even though the

original system is stebled Chuang [10] has modified the
. -



the original CFE techniques to have expansions about
s=0 and s = o alternatively thereby showing good agree-

ment in both the transie‘nt and steady state regions,

CAUBR FORMS OF CFE

Consider the following rational transfer func -
fiono

nrl 2

n-
A, S fAZ, 1 S

3
’n + ocee A2’48+

2 .
A23 S + A225 + A21
n m1l i 3
Al,n+ls+sl,ns + ooe Al,hs +
2
A1,3 S+ A1,25'+ Al,l

(4)

T(S) =

where A are constants,
i,J

Equation (4) can be expanded into the following four

different Cauwer form representations.
2.1 THE CAUSR FIRST FORM

T, (s) = 1

1

' .

H_1 s+ 1..

H, +
2

(5)
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2,2 THE CAUER SECOND FORM

T2(S) = 1 (6)
hi + 1 1
h%/s + 1
h% + S ’
h,, + i
4/ s”

2.3 THE CAUER THIRD FORM

T(s) = 1 (7)
h1+Hls +
s th + ]
ho+H.s +
3t53°
4 .H
5 +Hy 3
2.4 THE CAUER MODIFIED FORM
hhl + S _
L u 1
119 s
h2 +

\n
H2 + .
..

Equation (7) is a combinatien of the Cauer first and
secocnd forms in such a way that if we let the h or H

in (7) approach zero, then (7) will be identical with
(5) or (6) respectively.
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2.5 EXPANSION BY GENERAIIZED ROUTH'S ALGORI THM

2 3 ' n2 1
Aal"' A223+ AQ}S *AZL"S *. 00+A2’n_ls + AZ,D.S

T(s) = ' 2 3 1 n
+ S + S + ST 4eeet S + S
B e T N CTEY
. (Ao Aihop 41Ln+lA%,l.~) s+(A = Aako3 A naahe
=1/ [ k! + w5 + fo1 n . > Ay __Pop
Azl A2n A21+A228+A235 f‘ooo
(ay,, - Mafon | A o2 1 el ol
. B Ay Ap !
- 1l
+A2n S (9(b))
Define
A .
h = —KEgl, p +112’3,o,o,n (10)
P p+l,1
H - ReD42T P=1,2,3, 000,00 | (11)
Ap+l,n+l—p :

where hp # 0,-Hp # 0, and substitute (10) and (11) into (9(b)) and
we have T
T(s) = 1/[b +H s
(A o=by Ao By Apy )+ (Ay 5 hlA23 MAp) S ee e by oyt o H1A2m-1>sn-1]

+ e
ml
A21+ Azzs +A235 +..0+A2n

(12)

in which (A -h A, -HAs ), (A13’hiA23'H1A22)v°°"(Ald'h1A2nféjA2,rrl)

can be wtitten as A31,A32,....A3’n_1, respectively, Therefore we

have
ml

. . 2
- AzqaS + AzoS ¢+ +A s
2 oo o
T(S) = 1/[h1+Hls + 31 2 3.!1;3:_1 ]
Azl + Azas *+ eeet Azns

(13)
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Dividing agéin,‘we have

_ Bhzp A2nA31)S

A ' A A
©(s) =1/ [bystysel/{ = 4 fon EX— o
A}ls A3,n-'l ABJ.S + ABZS +eoo

_Boghss  Aophsp _ A1t ma  Mophaeo

)SZ+"‘+(A2,nrl

(
A23 A5 A3, -1 A31 A3, n-1 )
mrl
"'A},n-ls
| | (14)
Finally, we have the expression
1 |
T(8) = : , (15)
%}%s+ 1 .
hy/ s+l + 4 .
h3+H3s + 1

The quotients in the expansion of (15) can be obtained by

the following generalized Routh algorithm and the modified
Routh array.

The coefficients in (9(a)) can be expressed by the
following double-subscript notation.

My Ko M3 oeeee By Ao
| (16)
by By M3z e by
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and the elements of the third, fourth, and subsequent rows
can be evaluated from the following algorithm

A’j’k=AJ“2,k{‘l—hj-ZAj-l,k'{'l-Hj—zA'j-l,'k J=3, b, ey n+1,k=1,2 .o,

(17)
and
A O :
=—-R"L ’ Hp =ﬁ)’n+ 2 ? p=19293,"0’n
Ap+l,1 A Ap+1,n*1-p
(18)

The complete array is

Ay A1 A2 M3eeedin A pa

o1 Ay Aoy ozeelop h2n
Arq A n
. = < : > Hy = =22
Pe K;I 2 A3,n—1
' A A L X} A
A 1 32 3,1 A
h, = —2% ¢ 3173 ’ > Hy = — .l
3 Ahl All'l.... Al",n"Z A"”n-z
@ 00 00 00 0000000000 0600000° 0000000060000 0000000000 (19)
Ay Ar1,1 Mp-1,2 Apea,3 Ap 3
. n,l An,l An’2 o H.Z
A ' A
S - 9 S | H = —Ba2
n Ans1,1 A oo
’ n+l,1 nel,l1

The triangular pattern in the formulation of (19) is
called the modified Routh array. '
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BEquation (17) is a generalized Routh algorithm. If all

H are zero, (17) is simplified as

Ajk = 252,041 7 Py2Ay-1, k010
J =3,4,e00,k =1,2,... (20)
Equation (20) is a regular Routh algorithm which is
'commonly used to obtain the quotients of the Cauer second

form. On the other hand, if all h are zero (17) reads

Bsyk™ By-2ke1 "H5-2B5-1,k41
J=3,4’...Q’k=1’2’000 (21)

where

Bl'i = Al,n"’z-i"‘i:l,'z'OOQw/

and

sz = A2,Il+1",j,3=1,2,o. 0’n

Equation (21) is a regular Routh Algerithm which is used
to evaluate the quotients of the Cauer first form. Either for -
mulated pattern by the algorithms shown in (20) or (21) will

be a zig-zag pattern. It is noted that the elements Aj kj=3,h,...
4
and k=1,2,+.., in (20) or (21) do not have the same values as

thoge elements of (19).

Cauer Modified Form

The Caner modified form (Chuang 1970) is obtained, by
carrying out a Taylor series expansion to both S=0 and S =

alternately. This would in effect mean that the expansion
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begins from the constant term and then from the highest
order term., The approximation is good both in the steady
state and transient period. The Cauer modified form is

1

T(S) =

. S |
hy' 4 Se——g

+—‘_
At

The transfer function.

T(s) is expanded into a Cauer type CFE about S = 0 and
(LS ] : '
S =e, }h.hz...,H'i, 2‘..., are evaluated by modified routh

array.
. 8 . 817 #2eceed p] ®n 1
LTEy Cbpy bpeeedy o by “
« 837 8y . STl
hy, = gé-; < b21 §22....82,n_1 1“
b2 zmy 2R =P
h‘;‘%<:$> H =1

| it S W |
where“

. .
‘ aj+19k = aj’k'l'l -hJ bj,k...l 3'41,2...11-1

.
bj"’l’k = bj’k H;j, aj‘.'l’k k=100000n-‘j
where
w aj,l u bj n+l=-j
hj = 5 H:j = : ,jlzl...n
J3»1 2541, nel-J
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2.6 CONTINUED FRACTION INVERSION

If the quotients of a continued fraction of the Cauer
third form are given, or all h and H are known, what is the
. cor’respor{ding transfer function. Thj‘.s is the problem of con-
tinued fraction inversion.

From (9(b)) is noted that

Ay,1 = Bn Ane1,1

A-1,1= Bor1®n,1 = BraPae,a

Ar2,1% Bpobp-1,17 -2 14041,1

A31 = hzA,y = Bahy.. 'hnAn-t-l,l

fo1 = Bohsy = TobzeeeBhn g

Ay =y =hboecebidy g 4 O (22)

and
An, 2 = Hphnaa 1
Apa , 7H-180,1 = Bafnfngg i

Apy,37Hp38p2 = B-afpdng g

.

(X 3

Apy,x= Tohs pog = FoHzeeeHuhn g g

Aon =Hby =Rty g (23)



17
Equation (22) and (23) can be written as the following

general equation. Let Am-l,l = 1, then

n . v
A ’313 By, Pedyd+lye.e,n (24)
and n
A'j'n+2_3 = ;E H.p, p=j,.j+1,ooo,n . (25)

where j is the row number in the medified Routh al;ray.me
intermediate terms can be evaluated from (17), starting
frox’n the element in the last row of the modified Routh
array and ending up at the elements in the first row, O

if we substitute j = m#¢l and k=1, yields

An+1,1 = An-1,2 "1 An,2 -HrrlAn,l (26)

Likewise, if we rearrange the order of (26), we have

Ari12 = Apy1,1 ¢t b3 Ap,2 * Hpy Ap,1
If we perform the same procedures on other elements, we have
Apr2,2 =4Ap1 * Byl 2 + Hopobpg g

o0

Ajp = Ag et Byl + Hhy g

The general form for (27) is

Ay e = 252 k-1 * Byhyak *Hyhyaa,k-10
3=l m2,..,l, K=2, 3, o0 0y 0+l (28)
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Equation (24), (25) and (28) are used to obtain

the continued fraction inversion.



CHAPTER -3

STABILITY CRITERIA BASED
REDUCTION METHODS
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Hutton and Friedland [11]) based their reduction method
on an a - B expansion that uses the Routh table of the ori-
ginal transfer function. This has a number of useful pro -
perties. If the original Transfer Fﬁnction is stable, then
all approximants are stable., This method was modified by
Krishnamurthi et.al [12] to reduce computations by avoiding

reciprocal transformation.

Chen. et.al [13] have given a technique which uses the
stability equation method for getting the reduced polynomials

of the mumerator and denominator of the model.

Hutton and Friedland's method has been modified for
simplification of unstable systems. Singh [lh].has.pointed
out that Routh approach may lead to the same reduced model
for different high order systems, while Shamash (15] has
provided examples where suéh techniques fail to give accep -

table models.

Now the detailed description of above three methods is

as under

3.1 REDUCTION BY ROUTH APPROXIMATION [BY HUTTON AND

FRIEDLAND - 1975] -
Consider a linear time invariant (SISO) system having

the transfer function (TF)

b m1l
_G(S) = *’Ls

n mrl
aes + als +teee +a,

+ cese + bn

(29)
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A T.F, of the form (29) that is asymptotically stable

can always be expanded in the ‘following canonical form.

G(s) = B, Fy(s) + By Fy(s) Fo(8) + eenes
Bn Fi(s) Fo(8) oo Fy(s)

n
n
- - (3
Z_A }[2 Fy(s) o9

whérekgi(i=1,2.;.n) are constants and FJ(J=2....n) are

defined by continued fraction expansions

1

Fy(s) = 7 (31)
xS + r
J 1 .
a‘j+ls +
Y32t t,
€ -8 —t—
n-1
ans

For Fl(s) definition (31) is modified slightly, the
first term in the CFE is 1+ @;s instead of «;s. The canonical
(30) is referred to as the alpha-beta expansion of G(s) and

‘plays a fundamental role in the theory of Routh approxima -
tions. ‘ .

The n'coefficients @ appearing in the alpha - beta
expansion can be computed using the algorithm for construc-
ting the Rough table as shown in Table No.l. The first two
rows of the table are formed from the coefficients of the
denominator of G(s) where by assumption the entries ag = §_1=0

for j > n. The remaining entries'are;formed by cross multipli-

cation rule
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i+l i-1 _ i
ao =& ai 82
i+l i-1 _ i
a =8 ®; 8
i+l i-1 _ i
ri-2= %17 %4 %y
i1=leee,mrl (32)

For mi odd, the last egquation in (32) is replaced by

i+l i-1 |
8ri-1 = %141 (33)
The a; are marginal entries given by
a:f-l
ai = = i 31’200. PO ¢ } (34)
b |

The coefficients pi appearing in the canonical form éan
also be obtained by use of tabular algorithm as shown in
Table 2, The first two rows of the § - table are obtained
from the coefficients of the numerator of G(s). The remai-
ning entries are computed from entries in the Routh table
computed as shown in Tabie-2 and the earlier rows of the

beta table, using the following recursion.

B, =bL /& i=1,2 ..o n (35)
2,4, .,..0~i for
b;:g = bi; - pi 3‘3 J = n-i,evep
2,4,.,.ri~1 for
mi odd

i =1’2,‘00. n“‘2 (36)
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ROUTH CONVERGENTS

The K*! Routh convergent Rk(s) for the transfer
function H(s) is obtained by truncating the alpha-beta
expansion (30) and arranging the results as a rational
function of s, The truncation eliminates those terms in
the alpha-beta expansion containing “k+1""'dn’ Bk+1"
....ﬁn and hence depends only on the first k alpha and beta
coefficients. Let Ak(s) and Bk(s) denote the denominator

and numerator respectively of the kth Routh convergents

i.e. .

A (s)

Bl(S) =B

als+1

AQ(S) =@, ap 32 + a8 + 1

By(8) =ap By s+ B

A3(s) = @ az s 4 @y az s2+(a1+a3) s+l
2

33(3)‘= @ &3 51 S +agz fo s+ (51+§3)

L4

More generally,

8 (8) = @ s A_5(8) + A_o(s) (37 (2))
and
By (s) = o 5 B_1(s) + B_o(s) +8
K =1,2,00000..37(b) (37(b))
with

A_l(S) = 0 B_l(S) =0
Ay (s) =1 ' By, (s) =0



I1lustration -1

Consider an 8th order example.

3557 +10865°4+1 3285 87482402 5442 3837657+511812 5 +4829645+19 4480

26

G(S)z

tS‘t’:ep -1

19448057 +482964504511812 57 +2 38 37654482402 57+1 3285541086 5+ 35

Performing reciprocal transformation te get G(s),

B335/ 4437 L3017 7 +118708 4274708+ 3T492 5= +288805+9600

C(s)=

é'ﬁep -2

Constmcting a Table

960058+2888087+ 37492 564-2 747055 +118<70s4+ 3017 s’ +437 82+33s+1

9600 37492 11870 437
28880 27470 3017 1
oy = 0.33240 28360.698 10867 .119 436 66759 -o
ap= 1.,01831 16403.897 2572 ,3368 1
xz= 1.7289 6419,.8058 434,93869 0
o= 2.5552 1460.9808 1
5= 4,394175 430,5445 0
a6= 3039331 l
.Constructing B table .
194480 511812 82402 1086
482964 278376 13285 35
By= 6.7340 326827,04 62085 .305 1079.2659 0

85=19.9237  10834.726
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Step 3 Cons‘ti‘ucting Routh convergents
AZ(S) =a o & + a5 +1

= 0.338486s° + 1.01831s + 1

B,(8) = ay B8 + B
= 6.85738 + 17.02934
' 6.8573s + 17.02934
E(S) = .

0. 338486541 .01831 s+1

Applying reciprocal transformation again te obtain
record order reduced model as |

17 0029343 + 608573

R(S) =
s+ 1.01831s + 0.338486

3.2 REDUCTION USING ROUTH HURWITZ ARRAY
[BY V.KRISHVAMURTHY et.al.-1978]

This method uses the Routh stability array directly
to reduce the order of the system. No algorithm is required

to reconstruct the reduced order transfer function.

Let the transfer function of the high order system

be _
bll g% + bzlsm'1+bl2sm-2+ b22 sm-3+ ses
G(9)= FT 3

an Sn + 8218n- +&128n—2+ 822 Sn- ceee

where m ¢ n | (38)
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The Routh stability array for the mmerator and
denominator palynomials of (38) are shown below in
table 3 and 4 respectively.

TABLE -3

NUMERATOR STABILITY ARRAY

byq by o3 boy e . .
b31 b32 b33 o [ ] [ 4 [ ]
bL}l bl].z bl‘s 3 ° . 3
bm,l
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. TABLE - 4
DEMONINATOR STABILITY ARRAY

a1 %2 43 Y4 ¢ < e
azl 322 8.23 aza . . .
831 832 a33 L] [ ] [ o
1 B2 43 . .
an_z’l an_z’e * L4 . . 3
8r1,1 81,1

an,l

®n+l,1

The tables are completed by the algorithm

Cy = Ci-2,341 = (G1-2,1-Ci-1,342)/ (G-1,2)
for 1 > 3 and 1 ¢ j g[(mie3)/2] (39)

The transfer function of a system with reduced order
K(¢ n) can easily be constructed with (m+2-k)th and
(m+3k)th rows of table -3 and (n+l-k)th and n+2~k)th
rows of table 4 as in (40).



k-2

k-1 -
P(me2-k),15 ~ * P(mi3-k),15 ¢

k-3
b(m-‘»Z'-k),Zs

+* eee

G(S) =

k .
a(n+l-k),ls * 8(m2-k),1°

k-1

k-v
+ a(n*l_k)’zs + o0 .

- (40)

for k > (m+l), the first two rows of Table 3 should be

used for the numerator polynomial, while for k = 1,only

the last row should_be used.

Illustration Consider the same 8th order example art -3.1.

Numerator and denominator stability arrays are

194480

-

35 13285 278376 482964
1086 82402 511812 - 194480
10629.3186 - 261881.1381  476696.2283
55645,54206  463107.8334 194480

173419.0523  439546.9831

322068 .,9463 194480

334828 ,6062
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Denominator stability array

1 437 . 11870 37492 9600
33 3017 27470 28880

345,5757 11037.5757 36616.8485 9600
1962,9907 23973.,3537 27963.26887

6817 .1744 31694,0405 9600

14847 1229 25198 9 6951

201237335 9600

18116,1695

Using last twe rows of the stability arrays, second
order approximamnt is obtained as
334828,6062s + 194480
20123.73355°+18116 .1695 549600

Ry(s) =

16,638516s + 9.664226

sz+009002425 + 0477049

3.3 REDUCTION USING STABI1ITY EQUATION METHOD [T.C.

CHEN AND C.Y.CHANG - 1979]
The approach in this method is to reduce the order of

the stability equations of a transfer function and then
the order of the original transfer function can be

reduced, |



let the T.,F., of a high order system be
m m1

bm S + bm_l S + seee + bls + bo
G(s) = n -l
ans +an_1 S + eesoe +als+a°
Fy(s)
= X (41)
Fp(s)

Where n > m and FN(s) and FD(s) are the numerator and
the denominator of G(s), respectively. Separating,FN(é) and

FD(s) into their even parts and odd parts one has

Fyo(8) + Fy ()
FDe(s) + FDO(S)

G(s) = (41(a))

where,

P =T b,
Ne§s) i-0,2,4 L ° | (41(D))

m
Fo (s) = £ b, s
No i=1,3,5 i

ahd

=

Fn..(s) =% ' s
De 0,2,k b

| ]

(41 (e))

=

F.(s) =¢ a, s,
De i=1,3,5 * 1

Equation (41(b)) and (41(c)) are called stability equations

of mimerator and denominator respectively,

For a stable system equation (41(b)) and (él(c))

can be factored as
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Fyo(s) = ]7; (s° 42

]

R 2 2
FNq(s) =35 |] (s+ Py ) (41(d))

FDe(s) = ;?E (82 + Z%j_)

n' 2
Fpo(s) =5 T (8+ P5y) < (41(e))

B
1]

 =m/2 if m is even

(r-1)/2 if m is odd

=
n

‘ = n/2 if n is even

(r1)/2 if n is odd | (l;l(f)‘)

2 2
pz < p3 € eee

o

(41(e))

2 2
<22(_Z3< ooe

N
-

Since poles ar zeros with gmaller magnitudes are
more dominant than those poles a zeroes'with larger
magnitudes, descarding the poles orzeroes with larger
magnitudes is a method of reducing the order of the
stability equations. Then, the reduced models ofvthe
polynemials Fy(s) and Fy(s) can be constructed and the

reduced model of G(s) can be obtained.

In order to make the steady state response of the

reduced model the same as thgt of original system and
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the coefficients of the reduced model the same as those
of original system, the coefficients of reduced stability
equations are multiplied by the magnitudes of the pales
or zereoes which have been discarded. For example, the

reduced stability equations of FN(s) can be written as

1
Fre(8) = Zi El (s + Zi ) (42(a))
- ot - .
FyofS) f’s P Izl (52 + Pf ) (QZ(b))

Then the reduced T.F. is

Fy(s)
G, (s)= =N (43)
Fb(s)
where,
[ ¥ . \
GN(S) = FNe *FNe
if m.is even
. .
= FNO + FNe
if m is odd (44)
FB(S) = Fpo + Fo. 1f nis even
= FI")O + Fp, 1if nis odd (45)

Following the same procedure the reduced models

with lower order can be obtained. ,
Illustration - Consider the same 8th order example as in(3.1).
The numerator stability equations are
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Fyo(s) = 3557+ 132855 + 27837657 + 482964 = 0

6 4

Fio(s) = 1086s%+ 824025+ 5118125°+ 194480 = 0

The denominator stability equations are

Fpo(s) = 3387 + 30178 + 274708 + 28880s = 0

4

FDe(S) = 4 43786 + 118708 " + 3749282+9600=O

The pole-~zero patterns are shown in Fig. l(c).-The
reduced order models are obtained as

4829645 + 194480

Ry(s8) =

'A3419432 + 28880s + 9600

14.,12428 + 5.6875475

82+ 0.84459s + 0.28075

3.4 OTHER METHODS

Two methods, which are quite important have also been
included in this chapter., They are not based upon stability

criteria but still they are very powerful.

3.4.1 Reduction using polynomial differentiation

Per 0l of Gutman proposed this method [16] for model
reduction using polynomial differentiation. In this method
the reciprocals of numerator and denominator polynomials of
the high order transfer function are differentiated, suitably

many times to yield the coefficients of reduced order model.
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The method is computationally very simple and is equally
applicable to unstable and nonminimum phase systems. The
question naturally arises how well a polynomial is appro~

ximated by its derivative, A partial answer is given by

following lemma.

ILemma - Given the polynomial
n
Pn(s) = an ]J (s- Zi) . , (46)
i=1
Then the zeros to P; (s) do not lie outside the convex

tull of zeros of Pn(s) (This result is originally due to
F. Gauss and F.lucas).

A drawbackldf straight forward differentiation is
that zeroes with large modulus tend to be better appro-
ximated than those with a small modulus. This problem is
remedied e.g. by differentiating the reciprocal polynomial,
reciprocating back and normalizing. Given the polynomial
(46) the reduced order polynomial then b2comes.

P _,(s) =P (s) - 2 .P(s) (47)
- Algorithm

let the transfer function be

a(s) ,
G(s) = . (48)
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Factorize q(s) = q (s). 3 (s)

: . A
and p(s) =P (s). p (s)

e
where q(s) and I/J\(S) include those zeros and poles of
G(s) which we want to retain in thevreduced order trans-

fer function Gregd(s). Reduced the order of q(s), kg times

and the order of P (s8), k. times, each time according to

P
(47). let the resulting polynomials be '&red(s) and D, 4(s),

respectively. Construct the reduced-order transfer func -

tion.

where C is a real constant,

a\(s) might, e.g. include the zeros whose real parts are

non negative,.ﬁ(s) might, e.g. include the unstable poles,
the purely imaginary poles, the badly dampéd high frequency
poles and the control pbles. kp and kq are non-negative, not
necessarily equal integers chosen, e.g. such that the polé
zero excess of Gred(s) is equal to pole zero excess of G(s).

C is adjusted to give the best approximation in the relevent

frequency range.

Brror Analysis It can be shown that if kp = kq =1

and if the mean value of the zeros and poles are approxima-

tely equal, then C can be chosen such that the relative error
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between G(s) and Qfed(s) is approximately zero in

both the high frequency and low frequency‘ranges.

Illustration

Consider an 8th order model

3587+ 108650 + 132858 + 82402s™ +278376s5+
5118125° + 4829645 + 194480

G(S) =
843357 + 4375° 4 3017s° + 11870s"
+2747Os3 + 3749232+ 28880s+ 9600
Step 1

As the system is stable and minimum phase, we let .

f)\(s) =1 and @(s) =1 -

Step 2

We let kp = kq =k in order to get approximants
Gr(s) that are comparable to those of G(s). This means
thgt the polé zero excess is kept equal to one and that

the high frequency slope of the Bode plet is retained.

Step 3
C is chosen such that the low frequency gain of

Gr(s) is equal to low frequency gain of
G(S) iee C =1
Step 4

Using equation (47) successively six times, separately

for numerator and denominator polynomials we get second order



reduced model.
Q.oq(8) = 347734080s + 980179200
Proq(s) = 269942408° + 1455552008 + 193536000

3477340808 + 980179200
269942405+ 1455552008 +19 3536000
5.1527s + 145.24272 |

G, (8) 4 X

L}

824 5.39208s + 7.169529

The pole zero locations are tabulated in following
table -5, It is apparent how well the poles and zeros

of the reduced order syStems approximates those of the

original system,

TABIE -5
Order of Poles Zeros
approximant - I
r=8 -1 41, -1, =3, -4, =1.03 + 0.6311, -2.64
(ExaCt) -5’ -8, -10 -3083, -4.90’ -7080,
. . V -9 .78
r=6 -1027,'1045:10102, "10"42I006961’ ‘3032,
' -3065,-5¢18,-7o72 -4097, -70L"9
r=l+ "1.76, -2029 s 0091481, -2 015 3 006191,-4090
' =5.23
r=2 =2 038, "'3001 -2082

r:l -42 .66
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%,4,2 Modal method or model reduction using dominant

pole;retention

Originally this method was proposed by E.J.Davison
[17]. The principle of the method is to neglect eigen-
values of the eriginal systemiwhich are farthest from
the origin, and retain only dominant eigenvalues and
hence the dominant time constants of the original system
in the reduced model. This implies that the overall
behaviour of the approximate system will be very similar
to the original system. Since the contribution of the
unretained eigenvalues to thé system response are impor-
tant only at the beginning of the response, whereas the
eigenvalues retained are important throughout the whole
of the response and, in fact, determine the type of the

responSe which system will have.
let the poles of an nth order system are shown as

Inm

Pn Ps Py Py Real

If an rth in order reduced model is needed. We will retain
the yr poles nearest to the origin and will neglect the

rest, So poles of reduced- order model can be shown as
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e Real
Py P, Py | e

ue i o
._‘ﬁ

This is the gist of the method. [For detailed
mathematical description refer'[17].

Illustration

Consider eighth order Krishnamurthy Seshadri's

model

3567 + 1086s° + 132855 + 824028

+ 27837655+5118125%+ 482964s +194480

' G(S) =
8 43387 +4370 + 301787+ 118705t +274705+
+3749252+288808+ 9600

System has poles at

s= -10, -8, -5, =4, -1 + j, =3, =1

Discarding poles at s= -10, =8, =5,~4, =1 + J
We get the second 6rder reduced\Qenominator as

3+4s +s2

Pole zero pattern of the system is given in Fig. (1(c)).
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CHAPTER - 4

MODEL REDUCTION USING MIXED METHODS
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Mixed methods are used only to incofporate the
advantages of two different methods. CFE method is
a very powerfﬁl frequency domain method of meodel
reduction. The only drawback of this method is that
the redﬁced model may‘be unstable even though the
original system is stable. To overcome this difficulty,
this method has been mixed with various other frequency
domain methods by so many researcher and resultslcame

out to be very attractive.

In this chapter five methods namely (1) Routh
approximation (2) Routh Hurwitz array (3) stability
equation (&) Polynomisl differentiation (5) Dominant

pole retention are mixed with

(1) Cauer second form

(2) Cauer third form
séparately.

Each method is followed by an jllustrative example
in order to reveal under lying technique. In all the mixed
methods, denominator is reduced by respective method and
coefficients of reduced numerator are found out by matching

the cauer coefficients of original and reduced model.
Consider a transfer function is given as

1l n2 3 2
Az’ns +A2,l’!'ls +o o.+A248 +A233 +A22$+A21

n nrl 3 2
A‘_‘L,m-ls + Al,ns +...+A1,+s +A13s *A:LZS*AJ.J

G(s) =



Lh

(A) To find out numerator coefficients by matching
Cauer II1nd forms coefficients ,

Step -1
Bvaluate Cauer 2nd form coefficients h; (p=1,2,3...n)
by forming Routh array [18].

p o Ay My A3 oceeee My Mg
: E ket e o

h' .= <
2 A31 A.31 A32 [N X ]
pe LA
3 = <A ’
Ay oo

® o0 oo

®0 s sa

®e e 0o @

where first two rows of this array are copied from the
Denominator and numerator coefficients respectively of

G(s), and rest elements are computed by well known Routh's

algorithm.
_h

A = A2,k P2 A5-1 ke

and J = 3,4 eee o N+l (49(3.))
R = 1,2 s 00 '

h‘ = il p 4,2,30000 n (l@(b))

P Ap+1,l
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Step -2

Reduce the denominator polynomial by any one of the
five methods enumerated in previous chapter., let the
reduced kth polynomial is

: 2
Ar(s) =B11 + B12 S + 313 S + eec¢

r
oo OOBh" S

Step -3

Mafch the Cauer Quotients h; (i=1,2...r) for finding

-

the numerator terms of the reduced order model (ROM).For

this construct inverse Routh array as under

. P
Bi+1,1 = Bi,l / hi 1*1’2,0001.

— L]
By-1,k+1=B3-2, k4175, k) By-2
k = 1.20000(1‘-2)
J = 3,‘4"50000(1."'1—’{) Where r -S. n

forr =2,
i =1
By =Ba/B (49(c))
Byp = (By »7Bs;)/ By
Ly b -
h’ -
By - —2-L2_ 2.3 (49 (a)
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Step - 4
Reduced transfer function is
' Brr S +
22 B,
R(s) = e . | (49(e))

B13 S + Blzs + B11

(B) To find out numerator coefficients by matching

cauer 3rd form coefficients .

Step - 1 _
Evaluate Cauer 3rd form coefficients hp and Hb

(p=1,2...n) by forming Routh array [18].

Ay A Ap Bz oeeees Mg A po

h, = < A
1 ZE d a0+l
1 A21 A22 A23 oo e 0o Azn A(_)_ H1= A2n ~‘+ .
| > Hy= 7~
h A21 < A31 A32 ®0 00 0o, A3,n_l AB,H’I
2 % TAL.
o) .
h =A3J < ALl'l secve e > L N
A".'l ssses

Where first two rows of this array are copied from the
Denominator and numerator coefficients respectively of G(s)
and rest elements are computed by wéll known Routh's algo -

rithm,

h

Arx = J-2 Ar1,K41 ~

J,K J-2,K+1

Hip Bpy x

T = 3,4 4.e0ntl
K = 1,2 eoue (50(a))

and
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2 U

P a

p+l,1
H = Ap,n«pz-J
p
Ap+1,n+l-p
P=1,2,3 eeee 1 (5O(b)
Step - 2

Reduce the denominator polynomial by any one of
the five methods enumerated in previous chapter.let

the reduced polynomial be
. . 2 .
Ar(S) = Bll + B12 S+ 313 S +ooooB1r Sr

Step -3
_ . i 2 ~
Match the coefficients Bl,j (step-2) and hp,Hp
of step 1 by applying the following reverse Routh
algori thm, |

Bjoa,1 ©B1,1/ 1y 1=1,2 ...r

=B

Bj+l,r+l-j j,r+2fj/Hj

,j 311,2 ‘..(I‘-l)‘
Bi-2 ksl “Hy-2B5-1,k7 B4k

B._ =
j=1,k+1
J™4y hj" 2

k = 1,2, ece o(r-z)

J = 3,4,5 oooo(r*l"k) and rs n
so for r =2 i=d
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B
By = By (50(c))
and B13 :
o = 52 (50(a))
Step-4

Reduced T.F. is

Pag 5 * Poy (50(e))

An 8th order model is used inallthe inixed methods
below to illustrate the methods.

355 +1086s0+132858 + 82402s™
+27837633+ 511812 52 +

4829648 + 194480

G(S): —

B +3387+l+37 S6+ 301785 + 1187 Osh

+27“#70$3 + 3749282 + 28880s +
+ 9600

4,1 Mixed method using Routh approximation and CFE

The combination of CFE and Routh approximations for
order reduction simply needs to cbnstructing an a table
for the denominator and find stable reduced order polyno-
mial for it, However, a short coming of the original Routh

approximation as suggested by Hutton and Fried land (1975)
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is having to go through two reciprocal processes in
addition to constructing the a table., This method mixed
with CFE ensures the stability of the reduced system.

Routh Table of the Original System

9600, 28880, 37492, 27470, 11870,
3017, 437, 33, 1

194480, 482964, 511812, 278376,82402,
13285, 1086, 35

h; =0,049 3624 5039 « 7367

ha =58.589317 Cauner second form coefficients
} Cauer third form coefficients

H1 =1/35

(1) Routh approximation mixed with CFE of Cauer second

form
Step-1 Cauer coefficients are
| -ni = 0,0493624
Step -2 2nd order denominator polynomial (refer

illustrative example of Article 3.1l) reduced by Routh
approximation is given as

%4 1.01831s + 0.338486
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Step - 3
As per equation 59(c) and 59(d)
B, - B%l _ _0.338486 |
hy 0.0493624
= 6,857
B, = B 1312"' By
hy by
= 17 .029441
Step - 4

As per eaquation 59(e)

17 .029441s + 6.8571625
R(S) = 2 .
5+ 1.01831s + 0.338486

(II) Routh approximation mixed with CFE of Cauer
3rd form .

Step - 1

Cauer coefficients are (50(b))

B
!

Step - 2
2nd order reduced polynomial (by Routh approximation)

0,0493624
1/35

is given as '
s°+ 1.01831s + 0.338986
2ﬂa>§“li;¢f

SR B T T T IR AU LU Y o
9y hiu]dld blnl AT Y] Ul KU,‘“, b

RQOQRKEE
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Step - 3

As per equation 50(c) and 50(d).

Bia
E21 = EI— = 6,8571625
B
13
22 Hl
Step - 4

As per equation 50(e)
35s + 6 8573

R(s) =
%4 1.00831s + 0.338486

4,2 Mixed method using Routh Hurwitz array and CFE

A short coming of the original Routh approximation
as suggested by Hutton and Friedland (1975) is having to
go through two reciprocal processes in addition to cons-
tructing the a table. The latter difficulty is not so
serious because this table is essentially the standard
Routh-Hurwitz array and the former problem can be avoided -
by a regrouping of the entries of o table as suggested
by Krishnamurthy and Sheshadri (1976) which gives the «
coefficients of the full model without having to perform a
reciprocal transformation. The construction of § table
which is more cumbersome than the « téble is avoided all

together, This method is nothing but Routh Hurwitz array.
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Since the numerator in present method is approximated
by the CFE method, this mixed CFE-Routh Hurwitz array method
makes use of stable reduced polynomials for the denominator
and takes advantage of computationally convenient scheme of

CFE method for mamerator.

(1) Routh Hurwitz array method mixed with CFE of Cauer

2nd form

Step - 1
Cauer coefficients of original system

b

h)

0.0493624
38.589317

Step = 2
2nd order reduced (by Routh Hurwitz array method)
denominator polynomial (refer illustrative example of

Article-3.2) is givdn as

20123.7335s> + 18116 » 16955 + 9600

Step - 3
As per equation 49(c) and 49(d).
Bo. = P11 _ 9600
) 0.0493624
= 194480.01
hy Byp = Byy
B22 = v
hl h2
264906.73

u



Step - 4
Reduced transfer function (eq. 59(e)).

264906.73s + 194480.01
R(s) =

20123.7335 s° + 18116.1695s
+ 9600
13.163955s + 9.6642177

52+ 0.90242s + 0477049

=

(II) Routh Hurwitz array method mixed with CFE of

Cauer Srd form

Step =1

Cauer coefficients of original system.

hy

Hy

0.049 3624
1/3

Step- 2
2nd order reduced denominator polynomial

(refer Art., 3.2).

20123.73358 + 18116.1695s + 9600

Step -3
As per equation So(c)_andlﬁo(d).
B
B21 = K; = 194480001
B, =3l _ 704330.66
22 - H. ~ ¢

1

52
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Steg -4

Reduced T.F. 15 (50(e)).

704330,668 + 194480.01

20123.73355°+18116.16958 + 9600
358 4+ 9,664226

24 0.9002425 + 0.477049

4,3 MIXED METHOD USING STABILITY EQUATION AND CFE

The main objective of thig method is to make use of
the advantages of the stability equation method and

contimied fraction method.

'CFE has a short coming namely the reduced model
may be unstable even though the original system is
stable. Stability equation method was proposed by chen
and Han (1979). The reducing procedure is simple and only
two equations'with one half of the order of the original
system need to be factored. All the reduced models are
quaranteed to be stable if the original system is
stable, However there is a disadvantage of this method.
i.e., it can not be applied directly to reduce the
transfer functions of non minimum phase systems, The

procedure consists of three steps.
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l. to reduce tﬁe denominator of a transfer function by
stability equation method, |

2. to obtain partial quotients by the algorithm of CFE
me thod,

3. to discard the undesired partial quotients and to
reconstruct the reduced model of which the denomi-

nator is obtained from step-1l.

(i) stability equation method mixed with CFE of Cauer

2nd form

Step -1

Cauer coefficients of original system are
hi = 0.0493624

hé = 38.589317

Step =2
2nd order réduced (by stability equation method)

denomi nator polynomial (refer illustrative example of Art

3.3). is given as
341945°+ 28880s + 9600
Step -3 '

As per equation 49(c) and 49(d)
= '

h1
= 194479 .3
B, hy By = Bpg

2 = . "

R

= 1’82962055

Boy
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Step -4
Second order reduced transfer function is
given as 49(e).
482962 ,55s8 + 194479 .3
34194s° + 28880s + 9600

R(S) =

32+ 0.84459s + 0,28075

(II) Stabilitv equation method mixed with CFE .of

Cauer 3rd form

Step -1
Cauer coefficients of original system are given
as

Step -2
Second order reduced denominator polynomial

(refeff Art 3.3) is given as

3419452 4+ 28880s + 96

Step -3
As per eaquation 50(¢c) and 50(d)
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Bia
B
13
322 P FI_I- = 1196790
Step -4
Second order reduced transfer function is given
as 50(e)
1196790s + 194479,.3
R(S) =

3&19452+ 28880s + 9600

358 + 5.6875475
sz-o- 0.84459s + 0.28075

4,4 MIXED METHOD USING POLYNOMIAL DIFFERENTILATION
AND CFE

Reduction method, polynomial differentiation was
proposed by Per Olof Gutman, This is a very simple method
and this is equally applicable to unstable and nonminimum
phase systems., This‘method mi.xed with CFE gives good
results, Computationally this method is the simple most one
and qualitatively is comparable with other appreciated

methods,

(1) Model reduction using polynomial differentiation

and CFE of Cauer 2nd form

Step -1

Cauer coefficients of eriginal system are
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hy = 0.0493624
b, = 38.589317
Step -2
2nd order reduced (by polynomial differentiation

method) denominator polynomial (refer illustrative

example of Article (3.4.1) is given as

26994240s° + 1455552008 + 193536000

Step -3
" As per equation 49(c) and 49(d)
I ¥
21 h!
1

= 3.92071 x 10°
h, By, - Byg
Byo = v
.o B
1.39093 x 10°

I

Step -4
Reduced transfer function eGe. 49(e).

1.39093 x 10°s + 3.92071 x 10°

R(S) =
26994240s%+ 1455552005 + 193536000

51.5271525 + 145.24272
& + 5.392088 + 7169529
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(II) Model reduction using polynomial differentiation

and CFE of Cauer 3rd form

Step -1

Cauer coefficients of original system are

0.0493624
Hy =1/3

-
0

2nd order reduced (by polynomial differentiation

- method) denominator polynomial (refer illustrative example

of Art 3.4.1) is given as
26994240 s° + 145555200s + 193536000
Step -3
As per equation 50(c) and 50(d)
B

By, = 11 - 3.92071 x 1&°
b
Bz
By, = —2 = 9,44798 x 1P
Hy
_Steg -4

Reduced transfer function is (equation 50(e).

9.44798 x 1055 + 3.92071 x 10°
26994240s° + 1455552008 + 193536000
358 + 145,24272

$245.392085 + 7.169529
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4.5 MODEL REDUCTION USING DOMINANT POLE RETENTION
AND CFE

An alternative method especially for reduction of
MIMO systems has been introduced by Shieh and Wei (1975)
which retainé the dominan® poles of the full model and
applies the matrix continued fraction method to find a
reduced order mumerator matrix polynomial, The method
eliminates the unpredictable results of the straight
matrix continued fraétion. Such as providing higher order

" reduced models.

(1) Model reduction using modal method and CFE of

Cauer 2nd form

Cauner coefficients of original system are -
Step -1

By

h) = 38.589317

0.0493624

Step ~2
2nd order reduced (by Modal method) denominator
polynomial (refer illustrative example of Art 3.4.2) is

given as

£ 4+ bs + 3
Step -3
As per equation 50(c) and 50(d)

B
- -%.l = 60.775003

ny

Byy

.
-
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.
5 hy Bip, = By
“ mu
= 49,128125
Step -4

Reduced transfer function (eq. 50(e)).
49,128125s + 60.775003

R(S) = =
s+ bs + 3

(II) Model reduction using modal method and CFE of

Cauer 3rd form

Cauer coefficients of original system are
Step -1

Hy

Step =2

= 1/35

second order reduced (by modal method) dencminator
polynomial (refer illustrative example of Art 3.4.2) is
given as |

52 + bs + 3

Step -3
As per equation 50(c) and 50(d)
B
By, = —L% = 60,775003

h1

B
: 1
Bop = 'ﬁ‘f‘“ 3



Step -4
Reduced transfer function (eq. 50(e)
is

35s + 60,775003

R(s) =
s + 45 + 3

61



CHAPTER - 5

COMPARISON OF PROPOSED
REDUCTION METHODS
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In this chapter the reductioen methods proposed
in earlier chapters i.e. Chapter 3 and Chapter -' 4
are applied to various SISO and MIMO systems, The
step responses of original system and of reduced models
are compared. Following methods are used for compara -

tive study of step responses.

Method 1 - Routh approximation method

Method 2 = Routh approximation mixed with Cauer
2nd form.

Method 3 - Routh approximation mixed with Cauer
3rd form, |

Method 4 - Routh Hurwitz array method.
Method 5 - Routh Hurwitz array mixed with Cauer_an
| form., | |

Method 6 = Routh Hurwitz array mixed with Cauer
3rd form. |

Method 7 --Stability equation method

Method 8 - Stability equation method mixed with
Cauer 2nd form,

Method 9 -~ Stability equation method mixed with

| Cauer 3rd forh.

Method 10 - Polynomial differentiatidn method.,

Method 11 - Polynomial differentiation mixed with
Cauer 2nd form.

Method 12 - Polynomial differentiation mixed with

Caner 3rd form.
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Method 13 - Modal method mixed with Cauer 2nd form.
Method 14 - Modal method mixed with Cauer 3rd form.

5.1 ILIUSTRATIVE EXAMPLES

Three celebrated SISO models, namely

1, Hutton‘s modal [11]

6. - (s) 1487 + 2485° + 900s + 1200
s =
;1 84+1883 + 102$2+ 180s + 120

2. Chuang's model [10]

852+6s+2

8" + 4g” + 58 + 2
3. Krishnamurthy and Sheshadri's model [12].

3587 + 1086s° + 132855 + 82402s™

27837657 + 5118125+ 482964s + 194480
4

G13( S)::

8433574 43704 30178 + 118705 2747053+

37“928 +28880s + 9600
have been reduced by aforesaid methods and step responses
have also been plotted in order to compare themqualitatively
in Art 5.1.1.
One 4th order MIMO model has also been reduced and

step responses are plotted in Art 5.1.2.
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51,1 Illustrative Examples
' (SISO system)

1. BExample -1 ((Huttons model)

2nd order reduced models by various methods enlisted

in the begining of this chapter are -

1. By method 1

( ) lOs + 13032
S =
fat sS428 + 1,332

2, By method 2

( ) 10.015 + 13032
S = -
R12 - 52+25 + 1.332

3« By method 3

) lhs + 13.32
b3 =
"3 s°¢ 25 + 1.332

L, By method 4

9 0046285 + 13 00434

Rjy(s) = — |
S™+ 1.701328 + 1.304

5 By method 5

7.2332s + 13.04

R]_s(s) = >
S + 1.70132s + 1,304

6. Method 6
l4s + 13,0434

Ryg(s) = —
: S + 10701325 + 10304
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8.

9.

10.

11,

12,

Method 7
8.9277176s + 11.903624
317(8) = 2
S+ 1.7855435s + 1.1903624
Method 8
8.927717s + 11.903624
Rjg(s) =
2
s+ 1.,7855435s + 1.1903624
Method 9
_ l4s + 11.903624
Rig(s) = > - ’
S + 1.78554358 + 1.1903624
Method (10)
17 .64711s + 70.588235
R. s) =
1,208%) = T2 o0ue + 7.000823
Method }1
70,5882 35
S =
Rl,ll( ) 52+ 5.29418 + 7.0588235
Method 12

l4s + 70.588235

Rl,lz(s) = > '
S + 5.2941s + 7.0488235

66
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13, Method 13

9.587571s + 19.128148

Ry ,13(8) ==
8 +2 039336825 + 1.9128148

14, Method 14

14s .+ 19.128148

Ry aa(8) == |
s+ 2,3933682s + 1.9128148



TIME RESPONSES 68
TABLE -6
EX-1l, METHOD 1,2,3
No. Tive 0y (s) Ra(s)  Rip(s)  Rys(s)
1. © o ¢] (€] 0
2. 0.5 4,674 4,185 4,1876 5.3810
3, 1 7.0025 6.9182 6.9186 83066
b, 1.5 8.48169 8.5565  8.5544  9.7297
5, 2 9.3351 9.4567  9.4522  10.3085
6. 2.5 9.7713 9.9009 - 9.8947 10,4583
7.3 9.9645 10,0865  10.079 10,4195
84 3.5 10.0324 10,1389 10,1307 10,3194
9., &4 10,0442 10,1316 10.1229 10,2171
10, 4,5 10,0359 10,1038 10,0943 10,135
11. 5 10.62% 10,0741  10.0651 10,0772
12. 5.5 10,0137 20.0499  10.0408  10.0401
13. 6 10.0C7 10,0326  10.0235  10.0182
_14. 7 9.9992 10.0147 10.0057 10.0008
15. 8 9.2999 10,0093 -10.0003 9.9980
16. 9 9.9999 10.0084  9.9994  9.,9986
17.10 9.9999  10.0086  9.9996  9.9994
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TIME_RESPONSES

TABLE = 7 EX-1 METHOD - 4,5,6

Rig(s)  Ris(s)  Ryg(s)

- ga

1. © Lo e 0 0

2. 0.5 b.674 4,1053  3.5267 5.6849
5, 1 7.0025 17,1191  6.4165  9,0352
by 1.5 8.48169 9.0226  8.4166  10.6725
5. 2 9.3351 10,0451  9.6093  11.2281
6. 2.5 9.7713 10,4728 10,2023 11,2029
7. 3 9.9645 10.5549 10,4122  10.9351
8. 3.5 10,0324 10.472  10.4138  10.6209
9. &4 10,082  10.3%2 10,3261  10.7540
10. 4.5 10.0359 10,207  10.2189 10,1644
11, 5 10,0239 10,1081 10.1264 10,0482
12, 5.5 10.01% 10,0433 10.0598  9.9883
13. 6 10,007 10,0069 10.0186 9.9652
14, 7 99992 9,986 9.9884 9.9697
15. 8 9.9999 9.9915  9.9894 - 9,9876
16. 9 9.9999 9.9988  9.9955 9.9978
17. 10 9.9999 . 10 .0022 9.9991 10,000




TIME RESPONSE

TABIE 8, EX-1l, METHOD ~7,8,9

70

Gll(s)

By7(s)

No. é[‘ixg; R18(s) ng(s)
1. © 0 0 0 0
2. 0.5 4,674 3.9126  3.9126  5.5091
3. 1 7. 0025 6.6841  6,6841 8.6277
4e 1.5 8.48169 8.4558  8.,4558 10,1684
54 2 9.'3351 9.4780  9.4780 10,767
6. 2.5 9.7713 9.5968  9.9968 10,8648
7. 3 9.9645 10.2099 10,2099  10.7388
8. 3.5 10.0324 10.2568 10,2568 10.5453
9. 4 10,0442 10,2267 10,2267  10.3614
10, 4.5 10,0359 10,1703 10,1709  10.2166
11. 5 10.0239 10,1152 10,1152  10.1157
12, 5.5 10.0137 10,0702 10,0702  10.0522
13. 6 10.0C7 10.0383 10.0383  10.0161
14, 7 9.9992 10,0061 10,0061 9.9913
15. 8 9.9999 9.9976  9,9976 9.9915
16. 9 949999 9.9973  9.9973  9.9958
10 9.9999 9.9986  9.9986  9.9986

17




TABIE - 9 EX-1 METHOD-11,12,13

TIME RESPONSE

71

No. Hue G2 f,0 Bi,1 R,12
1. © 0 0 0 .0

2. 0.5 4674 6.1834  3.8396 546990
3., 1 7 40025 8.6899  7.4501° 8,433
be 1.5  8.48169 9.577%  9.0877 9.4762
5. 2 9, 3351 9.8693  9.6982 9.8340
6. 2.5 9.7713 9.9611  9,5051 99495
7. 3 9.9645 9.9887  9.9714 9.9851
8. 3.5 10,0324 9.9968  9.9917 9.9957
9. 4 10,0442 9.9991  9.9976 9.9988
10. 4.5 10,0359 9.9997 9.9993 9.9996
11. 5 10,0239 9.9999  9.5998 9.9999
12, 5.5 10,0037 9.9999 949999  9.9999
13, 6 10,067 9.9999 949999 9.9999
14, 7 19,9992 9.9999  9.9999 9.9999
15. 8 9.5999 9.9999  9.9999 9.999
16. 9 9.9999 10 10 10

17. 10 9.9999 10 10 10




TIME RESPONSE

TABIE -10 EX-1 METHOD 13,14 -

No. Time Gy (s) Rr,13(5) Ry p4(8)
1. © o 0 0
2. 0.5 b674h . 4,188 5,377
3, 1 7 40025 7.013 8,242
4, 1.5 8.48169 8.667 9.579
5. 2 9.3351 9.524 10,096
6. 2.5 9.7713 9,911 10,226
7. 3 9,965 10,051 10,205
8. 3.5 10,0324 10.08  10.143
9. 4 10,0442 10,06 10.086
10. 4.5  10.0359 10,045 10,046
1. 5 10.023%9 10.026 . 10.021
12, 5.5 10,0137 10.013  10.008
13, 6 10.007 10.006 10,002
14, 7 9.9992 . 10.600  9.9999
15. 8 19,9999 9.9999  9.9999
16. 9 9.9999  9.9999  9.9999

17. 10 9.9999 9.9999 99999
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EXAMPLE -~ 2 (CHUAG'S MODEL)

1,

3

7

Method gl!
1.6667s + 0.55555
Rgl(s) = o
8 + 1.3888s + 0.55555
Method (2)

1.,66655s + 0,5555

R22<S) >
S + 1.3888s5 + 00,5555

Methed (3)

88 + 005555
323(5) = >
’ 5 +1038885 + 005555
Method (4)
1.58 + 005
32’4(8)= 5
S + 1.1255 + 095
Method (5)
1.375s + 0.5
Ro,5(8)= —
. S+ 1.1255 + 0.5
Method (6)
8s + 005-
32’6(5) =

32+ 11258 + 0.5
Method (7) |

R2’7(S) =

1.5 + 0.9

&4 1,255 + 0.5



Method (8)
1.55 + 005

(s) =
R2'8 524- 1,258 + 0,5

Method (9)
88 + 005 .

Ry o(s) =

Method (10)
2,255 + 1.5

S2+ 10258 + 005

Ry,10(8)=—
s+ 2.58 + 1.5

Method (11)

3.255 + 105_
Ry 11(s)=

52+- 2,58 + 1.5

Method (12)
8s # 105

Rz’lz(s)é 2
. S + 2.58 + 1.5

Method (13)

o s + 1
B 13(8)= =
S +28 +1
Lqeﬁ'loé (14) 4
‘ 8s + 1

74



TABLE ~11 EX-2 METHOD 1,2,3

TIME RESPONSE

75

- 3.

No. <T§Z§> Gy (s) Ry9(8)  Ryp(s) Ry3(s)
1. o© 0 0 0 0
2, 0.5 1.8057 0.64239  0,6422 2.8731
1 1,77187 0.99956  0.9983 4,1224
3. 1.5 1.3649 1.1765 1,176 b 4372
5. 2 1.0692 1.2479  1.2477 4,254]
6. 2.5 0.9259 1.2590  1.2589 3.,8406
7. 3 0.8732 1.2389  1.2388 3.3529
8. 3.5  0.8691 1.,2052 1.,2051  2.8765
9. 4 0.8864 1.168  1,1680  2.4528
10, 4.5  0.9097 - 1.1328 1,320  2.097k
11, 5 0.9321 1.121 - 1.1021 1.8113
12, 5.5 0.9507 1.0766  1.0767 1.5861
13, 6 0.9652 1.0563  1.0564  1.4185
14, 7 0.9835 1.0287  1.0288 1.2004
15. 8 0.9926 1.013  1.0136 1. 0884
16. 9 0.9967 1.0058  1.0059 1.0331
17. 10 0.9986 1.002 1,0023  1,0117
18. 11 0.9999 1,000 1.0007 1.0024




TIME RESPONSE

TABLE =12 EX-2 METHOD 4,5,6

76

Ry5(8)

No. g‘;léle %1@) R, ,(8) Ryg(s)
1. © 0 0 0 0

2. 0.5 1,8057 0.6135  0.5667  3.048
5. 1 1.77187 0.9997  0.9306  4.591
4. 1.5 1,349 1,2197  1.1445  5.1303
5. 2 1.9692 1.3243 11,2527 5.0468
6. 2.5 0,925 1,353  1.290k  4.6164
7. 3 0,87 1.3362  1.2845  4.0289
8. 3.5 0.8691 1,2948  1.2541  3.4076
9. &4 0.8864 1.2432  1,2128  2.8258
10, 4.5 0,9097 1.1909  1.,1691  2.3216
11, 5 0,9321 1,143 1,1282 1,9092
12, 5.5 0.8507 1.1 1.0928 1.5882
13, 6 0.9652 1.0692  1,0638  1,3496
14, 7 0.9835 1.0253 11,0245 1,0673
15. 8 0.5926 1,0038  1.0047  0.9562
16. 9 © 0.9967 0.9957  0.99969  0.9327
17. 10 0.9986 0.9943  0.9956 0.9445
18. 11 049994 0.9954  ©,9960 0.964




TIME RESPONSE

TABLE 13 EX-2 MBTHOD 7,8,9 °

77

No. %‘;22) Gyq (s) Ry,(s)  Rog(s) Ryg(s)
1. © 0 0 0 0

2, 0.5 1.8057 0.5969  0,5969 2.9639
3. 1 1.7187 0.9536  0.9536 44,3697
by 1.5 1, 3449 1.1487  1.1487 4,8122
5, 2 1.0602 1,2395  1,2395  4,6983
6., 2,5 | 0.9259 1,266 1.266 4,2972
7. 3 0.8732 1.2558 142558 37792
8. 3.5 0.8691 1.2267  1.2267 3,2463
9. 4 0.8864 1.1903  1.1903 2.7544
10. 4.5 0.9097 1.1534  1.1534 2.2297
1. 5 0,9321 1.1194  1.1194 1.9800
12, 5.5  0,9507 1.0903  1.0903 1.7027
13, 6 0.9652 1, 0664 1, 0664 1.4897
14, 7 0.9835 1.033 1,033 1,2150
15, 8 0.9926 1.C144 1.,0144 1.0774
16, 9 0.5967 1,0051  1.0051 1.0167
17. 10 0.9986 1.0000  1.0010 0.9947
18, 1 0.999% 0.9996  0.9996"  0.9899




. TABLE -14 EX-2 METHOD 131,12,13

TIME RESPONSE

78

No. g‘tia:? Gyq () R 10(8) Ry 31(8) Ry 15(s)
. 0 o 0 0 0

2. 0.5 1.8057 0.7288 0.9972 2.2718
3. 1 1.7187 0,9940  1,28%  2.6586
bo 1.5  1.349 1.0712  1.3066  2.4251
5. 21,0692 1.0785  1.2496  2,0623
6. .2.5  0.9259 1.0643  1,1814 1.7378
7. 3 0.8732 1,0669  1,3262  1.4917
8. 3.5  0.8601 1.0321  1.0820  1.3191
9., 4 0.8864 1.0212  1,0529  1.2034
10. 4.5  0.9097 1.0137  1.03%  1.128
11, 5 0.,9321 1.0087  1.0210  1.0798
12, 5.5  0,9507 1,0054  1.0131  1.0494
13, 6 0,9652 1,0034  1.0081  1.0304
14. 7 0,983 1.0012  1.003 1.0114
15. 8 09926 1,000 1,001 1.0042
6. 9 0.9967 1,0001  1.0004 1,005
17. 10 0.9986 1,000  1,0001  1.0005
18. 11 0.9994 1,000  1.,0001  1.0002




TIME RZSPONSE

TABLE -15 EX-2 METHOD 13,14

79

Time

No. (oo GZl(s) R2.13(s) RZ,IQ(S)
1. 0 0 0 0

2. 0.5 1.8057 1.303 2,516
3. 1 1.7187 1.7% 3,207
L, 1.5 1. 3449 1.781 3,119
5. 2 1.0692 1.676 2,759
6. 2.5 0.9259 1.533 2.354
7. 3 0.8732 1.398 1.99
8. 3.5 0.8691 1.287 1.709
9. 4 0.8864 1.201 1.494
10. 4,5 0.9097 1.138 1.338
11, 5 *0.9321 1,004 1.229
12, 5.5 ° 0.9507 1,063 1.153
13. 6 0.9652 1.042 1.101
14, 7 0.9835 1.018 1,043
15. 8 0.9926 1.007 1.018
16, 9 0.9967 1.003 1.007
17, 10 0.,9986 1.001 1.003
18, 11 0.9994 1.000 1,001
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(III) BXAMPIE (3)

1.

3.

5

7o

80

(SHESHADRI"S MODEL)

Method -1

Rs;(s) =

Method -2

R32(3)

Method -3

R33(s)

Method ~4

R3'4( s)=

Method =5

R3’5(S.)=

Method -6

R3’6(S)=

Method -8

R38( S) =

17.0293s + 6.8573

%+ 1.01831s + 0.338486

35s + 6.8573

24+ 1.01831s + 0.338486

16.638516s + 9.,664226

s°+ 0.9002425 + 0.477049

13.163955s + 9.6642177

4 0.9002420s + 0477049

35s + 9.664226

L+ 0.9002425 + 0.477049

‘14.12h23 + 5.6875475

52+ 0.84459s + 0,28075

14,12419s + 5.6875271

& + 0.844598 + 0,28075



9.

10,

11,

"2,

13.

14,

Method -9
358 + 5.6875475
Rs,g(8) == 0.8445 0.280
Method ~10 s +0. 9s + 0.28075
51.527152s8 + 145,24272
R (s) =
' S 4+ 5.39208s + 7.169529
Method =11
: 32,986137s + 145.24272
RB,].I(S) = >
S+ 54392085 + 17.169529
Method -12
35s + 145 ,24272
R3,12(S) = 2 .
, S + 5,392085 + 70169529
Method =13 |
s =
R3’13 s+ bs + 3
Method 414.
355 +* 660775
RB,‘M(S) =

s2+ s + 3

81
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TIME RESPONSE

TABLE -16 EX-3 METHOD 1,2,3

No.  Time . Gy(s) Ra(s)  Ryp(s)  Rys(s)

1, (0] 0 o (0] 0

2, 0,5 11,8765 7.3026 . 7.302 14,245

3. 1 17,3889 12.5447  12.5447  25.2013
4. 1.5 19,665 16,203 16,203 28,32

5e 2 20,336 18,669 18.668 30,976

6. 2,5 20,355 - 20,255 20.255 , 31.‘.'323

7. 3 20,210 . 21.209 21,209 31,570

8. - 3.5 20,098 21,720 21,720 - 30,673

9. b 20,06 21,93 21,93 29,449

100 4.5 20,079 21,947 21,947  28.108

11. 5 20.124 21,845 21,845 26,785
12, 5.5 2028 21,487 21,487 24,475

13, 6 20,248, 21.104 21,104 22,709

14, 7 20,258 20.791 20,791 = 21.635

15 8 20,258 20,568 20,568 20,941

16. 9 20,257 20,423 20,423 20,549

17 10 20,258 20,337 20,337 20,348
18 11 20.258 20,29 20.29 20,256

19 12 20,258 20,266 20,266 20,256

200 ' 15 20.258 20.256 200256 200256




TIME RESPONSE

TABLE -17 EX~3 METHOD 4,5,6

83

No, :‘(iaxéu.e Gjl(s) R34(s) » R35(s) R36(s)
1. © 0 0 0 0
2, 0.5 11,8765 7,602 6,231 14.849
3. 1 17.3889 . 13.652 11.537  24.83
4, 1.5 19,665 18,138 15.749 30,759
5. 2 20,336 21,199 18.864 33,54
6. 2.5 20.355 23,061 20.982 34,051
7. 3 20,210 23.982 22,263 33,065
8. 3.5 20,098 24,215 22,890 3,218
9. 4  20.06 23.987 23.0%9 28,999
10, 4,5 20.079 23.487 22,869 26,753
11. 5 20,124 22,862 22,514 24.703
12, 5.9 20,208 21.017 21,617 21,613
13. 6  20.248 20,7 20,842 19,947
14, 7 20,258 20,194 20,351 19,364
15. 8 20.258 20.007 20,123 19.397
16, 9 20,257 20.007 20,071 19.671
17. 10 20,258 20.083 20,106 19 .96
18. 11 20,258 20,167 20,167 20,167
19. 12  20.258 20,228 20,218 20,279
20. 13  20.258 20.262 20.252  20.272




TIME RESPONSE

TABLE -18 EX-3 METHOD 7,8,9

84

No, :‘;.;ne GBI(S) R37(s) R38(s) R39(s)

1. 0 -0 0 0 o

2, 0.5 11.8765 6.3 6.31 14,725

3. 1 17.3889  11.241 11,241 24,693

b, 1.5 19.665 14,986 14,986 30.975

5. 2 20.336 17.742 17,742 34,484
6. 2.5 20,35 19,691 19,691 35,974

7. 3 20,210  21.001 21.001 36.056

8. 3.5 20,098 21,818 21,818 35,211

9. 4 20.06 22,265 22,265 33.806

10, 4.5 20,079 22,443 22 , 443 32,113

11. 5 = 20.124 22,436 22,436 30,329

12, 5.5 20,28 22,106 22,106 26,970

13, 6 20,248 21,622 21,622 24,283

14, 7 20,258 21,161 21,161 22,383

15, 8 20,58  20.796 20,796 21,173
16. 9 20,257 20,539 20,539 20,483
17. 10  20.258 20,377 20,377 20,145

18. 11 20.258 20.285 20,285 20,021

19. 12 20,258  20.241 20,241 20,011

20. 13 20.25%8  20.251 20,251 20,053
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TIME RESPONSE

TABLA-19 EX-3 METHOD=10,11,12

Noo Time Gy(s) Ry ao(s) Ry pp(s) R 50(s)
1. © 0 0 o 0

2. 0.5 11.8765 14527 12,109 124372
3, 1 17.3889 18,611 17,339 17477
by 1,5 19.665 19,778 19,272 19,327
5. 2 20,336 20.117 19.937 19,956
6. 2.5 20,355 = 20,216 20,156 20,162
7. 3 20.210 20.246 20,226 20,228
8, 3.5 20,098 20,254 . 20.248 20,249
9., 4 20,06 20,257 20,255 20,255
10, 4.5 20.079 20,258 '20;257 20.257
11. 5 20,124 20,258 20,258 © 20,258
12, 5.5 20,208 20.258 20,258 20.258
13, 6 20,248 20,258 20,258 20.258
14, 7 20,258 20,258 20.258 20.258
15, 8 20,258 20.258 20,258 20.258
16. 9 20,257  20.258 20,258 20.258
17. 10  20.258 20,258 20.258 20.258
18. 11  20.258 20.258 20,258 20.258
19, 12 20,258 20,258 20,258 20,258

20. 13 20,258 20.258 20,258 20.258




TIME RESPONSE

TABLE ~20 EX 3 MBETHOD -13,14

86

No.  Time, G51(8) R3,13(8) R p4(e)
1. 0 0 o 0

2. 0.5 11,8765 13.505 10.757
3. 1 17.3889 17.397 15.150
4, 1.5 19.665  18.798 17.3
5 2 20,336 19,434 18,495
6. 2.5 206,355 19.772 19.196
7. 3 20,210 19.966 19.615
8. 3.5 20,008 20,082 19.869
9. 4 20,060 20,151 20,022
10, 4,5 20,079 20,193 20,115.
1. % 20,124 20,219 20,171
12, 5.5 20,208 20,234 20,205
13, 6. 20,248 20.243 20,226
14, 7 20.258 20,253 20,246
15. 8 20,258 20,256 20,254
16, Q 120,257 20,257 20,256
17. 10 20.258 20,298 20,257
18, 1 20,258 20,258 20,258
9. 12 20,258 20,258 20,258
20, 13 20,258 20.258 20,258
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Plot of Frequency responses of various reduced models

have also been attached herewith,

(5.1.2) Multi Input Multioutput System (MIMO)

One MIMO system has been considered in this section.
It is reduced by a few selected reduction techniques mixed

with Cauer third form of contimied ﬁ'actidn expansion

namely,
1. Routh approximation Mixed with ¢gFg of Cauer 3rd

form = Method -3,
2, Routh Hurwitz array mixed with CFE of Cauer 3rd
form - Method 6.
3. Stability equations mixed with CFE of Cauer 3rd
form - Method 9.
L. Polynomial differentiation mixed with CFE of Cauer
3rd form - Method 12, |
5 Dominant pole retention mixed with CFE of Cauer 3rd -

form - Method -14.

MIMO system is given as

X =AX +B
Y=CX

where,



0 0
0 0
-120 -180
— -
0 1]
B =
0 0
0 =2
1. o
1200 900
C =
2160 720

248

264

88

14
6

Applying Faddeeva leverrier algorithm as described in

section 5,2 of this chapter, we get the Transfer function

as )
(156 704 5 2728 12048
[ 66 1632 187+ [2gos 28440 15 +
9900 32880:15 N 13200 68160
7920 160560 23760 226080
G,(s) =
4( ) s4 + 18s3 + 102 52 + 180s + 120

Original models and reduced models can be given as



89
Original model (Bxample - &)

Elsh 7041 $3 4 [2'728 IZOQBJ 2, {9900 62880] S

66 1632 2904 28440 7920 160560
13200 68160
+ [ axeg 226080

sl* + 1853 + 102s  + 180s + 120

| Reduced Model by Method 3

{154 704J [ 146 .52 756.576}
66 163248 + L 263,736 2509,488

R4,3 =

52 +2s + 1,332

Reduced Model by Method? 6

154 704 (143,44 740,672
66 1632 { 5* [258.192 2456.736

R, (9= :
s- + 1.70132s + 1.304

Reduced Model by Method 9

154 704 130.93986 676.12584
66 1632 { S* }235,69176 2242,6428

99 2
s= + 178554358 + 1.1903624

Reduced model by Method =12

154 70k 776.47059 4009 4117
66 16321 S * li3g7.6473  13298.823

Rh'lz(s} -
L+ 5.2941s + 7.0588235
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Reduced Model by Method -14

154 704 21040963 1086.4788
[ 66 1632 1* Uspa.73735 36037431

Ry, 14(8) =
’ 2 ‘
s“+ 2.3933682s + 1,9128148

Suppose original model is given by

gll(s) 312(5)
'[,ggl(S) - &2(s) ]

G =
4(5) ()

and reduced model is given as
rll(s) rlz(s)

rzl(s) rzz(s)

RA(S)_ = _
ar(s)

Then for comparing step responses of original system, We
will have to decompose this MIMO system into four SISO

systems as given below,.

g4 (s)
G =
4,1(8) NE|
glg(s)
G =
4,2(3) ()
G 5(8) = 81 (8)
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8 o(8)

AS

GQ’Q(S) =

and respective reduced order modes can be given as
rqy(s)

ar(s)

rlz(s)

ar(s)

Rl'",l(s) =

Rh’g(s)

rzl(s)
ar(s) |
roo(s)

ar(s)

R4’3(S) =
Ry,4(s) =

Applying this decomposition technique to Example-4,
we get following SISO original models and their respective
reduced models, The unit step response for every original
model and its reduced model has also been shown sequentially,

Reduced.order model is denoted by Ra,b(c)(s)'

where,
a is number of the example

b is number of the method'by which it has been
reduced

¢ is number of the deéomposed SISO model.,
Original model is denoted as
G, 5(5)

where, |
A = number of the example

B = number of the decomposed SISO model.



Original model
15&33 + 272832'4 9900

Gl‘. (S) =
1 4 3 2 .
s + 188” + 1025 + 180s + 120

Reduced models

1543 + 146052

R (S) =
4,3(1)
’ A 52+ 2s + 1.332

15“’5 + I“‘BOA’L"

R[&,s(l)(s) = 2 ' ‘
s+ 1.,70132s + 1304 |

154s + 130.93986

R4:9(1)(s)'= 2
' S + 1.7855435s + 1,1903624

Ry,12(1)(8)= —
s"+ 5.2941s + 7.0588235

1545 + 210,40963

Ry, 14(1)(8) =~ >
. s+ 2.3933682s + 1.9128148
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Original Model

704 + 120485° + 62880s + 68160

G, -(s) =
QOZ SL} + 1833 + 10252 + 180s + 120

Reduced Model
% 3(2)(5) i 2043 + 7?6.576
T S  + 25 + 1.332
7045 + 740,672
| "u 60200 = T a5 4 1. 08

o 704s + 676.12584
R 5) =
4,9(2) s° + 1.78554% s + 1.1903624

704s + 4009.4117

R, 12¢2y(8) =
4,12(2) 52 + 5.2941s + 7.0588235

- 704s + 1086,4788
R s) =
4,14(2) s° + 2.3933682s + 1.9128148
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original Model

'6053 + 290432 + 7920s + 23760

96

G (8) =
8 + 1887 4 102‘5 + 180s + 120

Reduced Modéi ‘
| 165 + 263.736

-

R (s) =
4,3(3)
T s24 25 & 1.332

66s + 258,192

R (s) =
4,6(3) , .
’ 52+ 1.70132s + 1.304

665 + 235.,69176

"R (s) =
4,9(3) ‘ ‘
’ s°+ 1.7855435s + 1.1903624

663 + 1397.6471

Ry,12(3)(8)= —
_ S + 5.29413 + 700588235

66s + 378.73733

Ry, 14(3)(8)= — |
8"+ 2,3933622s + 1.,9128148




97

66°L6T

$

86T L6°L6T 96°L6T 66°L6T 86T OT °6T

66° L6T 86T 86°L6T 88°.L6T T0°86T 66°L6T 6 °8T
86T 86T 80°86T T8°L6T OT*86T 86T 8 Lt
#0°86T 66°L6T 86T 86°.L6T L2° 86T 86T L ‘9T
¢2°*86T 66°L6T 72°66T L5°86T 9 °86T 82°86T 9 °*¢T
,9°86T 66°L6T 9z°*002 6¢ * 102 68°86T £9°86T G ‘T
08°86T G6°L6T GS*66T ¢T°H02 T¢*L6T TO°86T 7 °¢T
2L°H6T 649°L6T 09°06T 6T°002 82°88T Tz°T6T ¢ *zt
GGo2LT 99°26T TS 66T 6L°TLT 8.°8GT 62 °¢9ot z  °rT
8G°¢9T 19° 68T TO* 64T 00°T9T 7L°8yT OT*¢csT  8°T Ol
Lq°2¢T #6°H8T 6L°9¢ T 7T 8nT 66°9¢ T TT°THT  9°T *6
96°8¢ T L8*LLT g8 zet 7T¢eeT a2t 62°LeT 4°T °8
26°22T 8£°L9T ¢T*LO0T J0°9TT g0°* 80T 8T°TT 2°1 )
S¢ *#0T CT* 26T 68°68 9T*.,6 00°T6 ce°ch 0°T ‘9
£5%8 2L0¢T 27°TL 28°9. g6zl Gy 8. 8°0 e
L0°T9 £6°TOT ¢2°z¢ PAL44 GT*¢g #6°T9 9°0 °Y
8T 8¢ ¢T°99 TTce 68°H¢ 0L°¢¢ L8 Gh 7°0 °¢
18°91 96°LZ 6T° ¢t 69° ¢t 6¢ ° 6T 9Lz 20 "2
0 0 0 0 0 0 0 ‘T
) ET Ny () (©)eT iy ()6, ()€ ()()EMy  ()€™y  swyr  con

'
HT2T*6°9*c-a0HITN ((S)E€ 9) h-xg ¢z-gT1avi

ASNOJSHY W 1L



¢l

9 —— G = Vt 8= € % 2T —— | e

Spuoosg 1
oL 8 o 14 2 O

| 1 l 1 T
vi-poyiew Aq |opon 9 |
Z1-poytew Aq 19pol g

6-Poyiaw Aq |opoyy +
9-poylew Aq |epoN €
€-poylew Aq [9pON 2
1apow peuibii0

(s)e'vD
¥ s|dwex3 |
sasuodsal dais jiun jo uosiredwon gl bi4



1632 57 4 28440 & + 1605605 + 226080

Original Model

th(S) =

Ra, 304 ()

Ru6 (4)(2) =
Ru,0(4) (%) =
Ry, 12(4) (%)=

Ry, 14(4)(8)=

s“+ 18s3 + 102 s2+ 180s + 120

Reduced model

1632s + 2500.488

52+ 25 + 1.332

1632 S + 2456 0736

32+ 1.70132s + 1,304

16323 + 2242 ,6428

5%+ 1.7855435s + 1.1903624

16325 + 132980823

2
© 8%+

5.,2941s + 7.0588235

1632s + 3603.7431

2
S +

2.3933622 + 1.,9128148

98
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5,2 ERADDEEVA -~LEVSRRIER AND MODIFIED FADDEBVA 1EVERRIER
Al GORITHMS FOR DERIVING TRANSFER FUNCTION MIMO SYSTEM

————

In this section the algorithm due to leverrier is
described with modificatibns highlighted in [18]. The
Leverrier algorithm gives numerical errors when the dimen~
sion of matrix A increases, Tpe modified algorithm increases

the accuracy.

5.2.1 Faddeeva leverrier Algorithm

The algorifhm widely used_to calculate the coefficients
of the characteristic polynomial is the algorithm of leverfier,
alternatively called the algorithm of Souriau, Frame or
Faddgeva.'The algorithm calculates the coefficients & of

the characteristic polynomial p(s) of matrix Ag

p(s) = Det (sI-A) = aosn+alsn'l+azsn'2+...+ ay
(51)
and the matrices B; of the adjoint of (sI-4).
2

adj (sI-A) =-Bo$n-l+ Blsn- + eoe + B (52)
then ' '

BO=I ao=1

a- = %w Trace (A Bi-l) fori =1,n (53)
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A nice additional test on the accuracy of this

algorithm is given by the equality Bn = O

Though the method is easy to program but it is a
well established fact that nearly all arithmatic opera-
tions on a digital computer introduce an error due to the
lim ted accuracy with which the nos. are fepresented. Ffom
equation 53 it can be calculated that these errors will
accumlate from a to a, and from B, to B, so that a .1

and B,

541 will be less accurate than a and Bi respectively,

5.2.2 Modified Faddeeva leverrier Algorithm

Due to the above mentioned deficiency of fﬁe ordinary
algorithm, the latter coefficients should be obtained inmn a-
different manner, Such an épproach is possible by using the
coefficients b, of the characteristic polynomial q(s) of the
inverse of A and the matrices D; of the adjointAbf‘(sI~A-l),

', -1 n mrl
q(s) =.det (sI - A7) = byS+ DyST THeeet by
(54)

adj (sI-A' 1) = Dos“'1+ Dlsn'2+...+ D1 (55)

Then, the following relations between 8y and b; and

between.Bi and Di can be used.

a = (-1)P det A

1

a, 4= aﬁbi"Bn-i' a, A Di’ for i=l,n (56)
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For

q(8) = det (sI-A-l) = det [(-s Ahl) (s-II-A)]
= (det A-l) (-1)" (a0+als+a282+...+ansn)
| | (57)

Moreover,

adj(sI-A1) = det (sI-A"1) (s1-4"1)

(det A1) A(-1)"1 (I4Bs+.eusB 5T L)

. (58)

So, from above analysis, it is evident that by using
~ons additional matrix inversion and one determinant evalua-
tion, the same Faddeeva leverrier algorithm can bz used.
Fifst to calculate a and By from A and then bi and D; from
A"1l. only the first (m1) elements a; and B; of A and the
first (rm) elements b; and Dy of the 4 1 need to be cal -
culated. The vaiue of m has to be selected between (n/2)

and m. The critical value on average comes as 2n/3 offers

good results [18].

The modified algarithm is now

By = I, a8y = 1.0, m=2n/3

0

a

§ ;l Trace (A Bi-l) for i=1, mr1

i

B, = ABi"‘l + ai I

i

R ¢
Dy =1, &, = (-1)7 det A

-1
bi = - Trace (A Di-l)

Laad | 2]
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D =&1D_y+b I fori=l, mm (59)
an_iz an bi

IS
Brr-iz an A Di

5.2.3 Transfer Function

<o
5
g

[6(s)] = —L=0 | (60)

The B and a are calculated from (53). If the deter -
minant value of A is non zero then the modified algorithm

can be applied to calculate a and B; from (59).

5.3 Comparative study of reduction methods

Some of the methods for model order reduction have

been described in previous chapter, In this chapter these

me thods are applied to some typical high order SISO systems,
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and one MIMO system and a comparison is made with the.
resultant second order reduced models. The time responses
to unit step input' of all the reduced models and frequency
responses of a few reduced approximants, ®F® calculated
and the results are depicted in the form of compact tables

and graphs.

For the purpose of comparison of various models an

error index is chosen as
X [y(t;) (%) ]2
J =1 Ly -V
i = 1 r‘ii

~where y and y, are the outputs of a original system
G(s) and the reduced model R(s) respectively. N is the
number éf sampling periods.and ti is the ith sampling
instant. Errar index J is known as cummulative error,
and it has been dipicted in the form of tables for

all the four examples as shown below.



COMPARATIVE STUDY

TABLE-25 EX-1
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S T
1. 9.999 8424084 . 2112E+01
2. 9.999 . 285387 . 20424E+01
3, 9.999 .14784E-9 . Z7515E+02
4, 9.599 o 31464E-5 .12138E+02
5. 9.999 «16921E-5 «13049E+02
6. 9.999 .19835E-6 .84901E+02
7. 9.999 .33305E-5 .5 3186E+01
8. 9.999 3330585 .5 3186E+01
9. 9.999 .33785E-5 .521 35 E+02
10, 9.999 .83819E-8 . 33086402
11. 9.999 . 35926E-9 .10998E+02
12, .~ 9.999 . . 359268-9 +21601E+C2
13.  9.9% .48633E-8 . 23659E+00
14, 9.999 . 2640087 . 50940E+01

Yr = unit step output

of reduéed model .



106

COMPARATIVE STUDY

TABLE- 26 EX-2

Method Steady state Out put wr Cummulative
No. value at time t=lOsec  error(J)
1. .9986 1.0022 .13018E+02
2, .9986 "1.00<3 «13021 E+02
3. .5986 1.C117 « 5 3B58E+03
4, +9986 «9943 «15096E+02
5. .9986 «9952 «15316E+02
6. .9986 $9 445 « 77 95 E+02
7. .9986 1.0010 +14297E+02
8. .5986 1.0010  .14297E+02
9. .9986 : «9947 «33331E+03
10. .9986 1.000 »98865 E+(1
11, .9986 ~1.000 «11090E+01
12, «9986 1.000 « 23409 E+02
13. .9986 - 1.001 18327E+01
14, .5986 1.0003 «13450E+02
Y. = unit step output of reduced model.

r



COMPARATIVE STUDY

TABL B~ 27 EX-3
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Methoed Steady state Out put ¥r Cummulative
No. value at time t=10sec error (J)
1. 204257 20.423 +40168E+03
2, 20.57 20.423 ¢ 40163E+03
3. 20,257 20.549 +43489E+04
4, 20,257 20,007 «58271E+03
5. 20. 57 20.071 .63264E+403
6. 20.257 19.671 49861 E+04
7. 20,257 20.539 «66995E+03
8. 20,257 20.539 «66994E+03s
9. 20.257 20,483 «86415E+04
10. 20,257 20,258 +87289E+01
11, 20,257 20,258 5 3147E+00
12, 20,257 20.258 .67084E+00
13. 20,257 20,258 . 465 38E+01
14, 20,257 20.257 16911
Y. = unit step output of reduced model.

r
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COMPARATIVE STUDY

TABLE-28, EX - 4 (G, (s))
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No. of Steady state Output ¥r Cummulative error
Method value at time t=10sec (J)

3 110.00 109.993 16646E+04

6, 110.C0 - 11.ca1 +51365E+04

9« 110.00 - #0.998 « 31451 E+04

12, 110.00 13,000 '.13122E+OL+

14, 110.C0 10.599 «13361E+04

Yy = unit step output of reduced model.
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COMPARATIVE STUDY

TABLE -~ 29 EX -4 ( G, (s))

No. of Steady state Output Yr Cummul ative

method value at ti@e t=10sec  error (J)

3. 567,997 567,972  .88324E+03
6. 567,997 568.03 . 23601 E+05
9. 567,997 567,924 6185 E+04
2.  se7.097 567.99 . 395 28E+04
14, 567.997 567,997 41163E+03

Yr = unit step output of reduced model.



COMPARATIVE STUDY

TABLE =30 EX-4 (G, 3(s)

110

No, of Steady state Output yr Cummul ative
me thod value at time error (J)
t=10 sec.
3 198,00 197 .©997 «52751E+03
6 1198.00 197 .964 +12696E+04
9 198, 0C 197 .970 «56014E+03
12 ' 198.00 198.00 189 05E+05
14 198.00 197.998  .994LOE+03

Yr = unit step output of reduced model,



COMPARATIVE STUDY

TABLE 31 EX-4 (G4 (s) )
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No. of Steady state Output Yr Cummulative
method value at time error(J)-
t=10 sSecC,
3 1883.985 1883.935 « 3506 0E+05
6 . 1883,985 1883.918 +10819E+05
9 1883.985 1883.750 «17 332E+05
12 1883.985 1893.999 30354E+06
14 1883.985 1883.987 5677 3E+03

Yy = unit step output of reduced model.
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From the above we find that the steady state value
of all the methods match with original upto third place
of decimal except a few ones, The various methods presen
ted here in are algebraic in nature and require simple
calculations that can be easily automated. These methods
do not require finding the eigen values and eigenvectors
of high order systém° The solution of high order non -

- linear equations is not reaquired, Time response of all

models require almost same computational time (C.P.U.).

Method 1,2,3 are Routh approximation method, Routh
method mixed with Cauer 2nd form and Routh method mixed
withVCaﬁer third form respectively. Routh approximation
mefhod gives stable reduced order transfer function if
the original system is stable. This method can be applied
to both SISO and MIMO systems without any modification.
Models reduced by method-3 shows an overshobt in transient
region which in some cases, is a little bit excessive,
Also it stabilizes slower as compared to method 1 and 2
which more or less, give similar response to unit step
inputs. Brror analysis shows that method 1 and 2 gives

nearly same commulative errar which is the least alsoc in

all the three methods.

Method 4,5,6‘are Routh stability array méthod,
Routh stability array mixed with Cauer 2nd form and
Routh stability array mixed with Cauer 3rd form. Method 2
is computationally straightforward and simpler than

‘method 1. Model reduced by Method 6 shows overshoot and
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slow convergence, while' model by method 5 converges
faster than method 1. However all the threevreduced
models show good overall time response. Cammulative
error is the maximum for model by method 6 and the

minimum for the model by method 4,

Method No.7 based on stability equation gives
better results. Methbdrs and 9 which are actually
mixed form of Cauer 2nd and CauerABrd form respec-
tively with method 7 also give good results. Models
reduced by method 7 and 8 responds exactly to unit
step excitation, Cummulative error index shows the
least value for models by method 7 and 8 both, Step

responses show no undershoot,

Method 10 i.e. polynomial differentiation is
computationally simplest of the methods discussed.
Method 11 and 12 are its mixed forms with Cauer 2nd and 3rd
forms respectively, Model by method 10 and 11 gives
faster stabilization even than that of original sys-
tem, Error analysis shows that the best method among the
three is method-1l. These methods are equally abplicable

to unstable and non minimum phase systems also,

Method 13 and 14 employ the mixed form of dominght

pole'retention and Cauer 2nd and 3rd forms respectively,
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Method 13 gives the best unit step response among

the two and error analysiswise also method 13 is the

best.

In case of example 1 cummulative error is the

least for the model reduced by method No.l3.

For example 2, model reduced by method No.ll
seems to be the best one and for example 3, model
reduc ed by method 14 shows minimum value of cummule-

tive error,



CHAPTER -~ 6

APPLICATION OF REDUCTION METHODS
IN A POWER SYSTEM
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This chapter is deVoted on

1. Developing a power system model connected to
an infinite bus,

2. to derive ffansfer function from given power
system model (81) by [18]

Se to find out reduced order model by applications

of reduction techniques enumerated in chapter-4.,

6.1 MODEL FOR SINGLE MACHINE POWER SYSTEM CONNEC TED
T0 AN INFINITE BUS

The development of this model is based on [19] and

taken from [20]. The single machine power system is
connected to an infinite bus and shown in Fig. (24).

In this power system, generator is provided with a double

time constants speed governor,

MODEL_DEVEI OPMEN T

The electro mechanical oscillation of synchronous

generator about a stéady state operating point oo can be

given by

Mab+Da S+ P =D (é1)
where, ,

p=c;a8+baB (62)

0
le-‘- a—g = "'Eq vV le sin (§0= 812) (63)
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oP
bl = a_h:. = -Eq Y11 cos ell+ VY12 cos (80- 612)
q \
(64)
and

p = Eé Yy; 08 67 + By V Yy, cos (go- €,2) (65)

The electro magnetic oscillation of the power system

can be expressed by

4By + P Tgg & E:J =aE, (66)
where
AE;1 = By = (x4 x:i) Ig | (67)
and _ : .
I, = By Yy3 €08 €3 + V Ypp cos (8- 6)5) (68)
I4= -.Eq Yy4 sin 64= V Yyo cos (612- 80) | (69)
From equations (67) and (69) AE:::1 can be given by
.{;E:‘:1 = - '(xd—x'a) V Y, cos (912-80) AO + 1+(xd-x'(‘i)
Yy sin & aBq
E:l = c,A S+ b, AE, (70)
where
c, = -(xd_«le) V Y, cos (612-80) _ (71)
by = 1+ (x4 xg) Yp; sin Oy (72)

The terminal voltage V. is given by
&,
= /2 |

where,



118

Substituting for I, and Id in the above equation
we get
oV ov
vtzl_[v -—3+V-—-]AS+-——[Vq—-—-9'+Vd —4 9 Ap
ve Q@ 58 T 9B 0B q
o} aq
Vi =c3a S+ b3 AEq ' (76)
where
av 3.V
03=-1-(vq--—-3 —4 (77)
vy ) aS
oV, ov
by = 3= [V, —2 4y, —9) (78)
5y, % 5E d 58
t q . q

The governor output ‘p* in equation (61) can be given

by
d?p dp .
. a—..'.b—-.q.p-.:-cax (79)
a2 dt
Defining
w = A S
pp=P
AB
U = —X (80)
Tao

We get the following state equations from (61),(62),

(66), (70) and (79).



. B c 7]
aB, — 0 -2 0 0 AE(J
. TaoP2 L7
a$ 0 0 1 o0 0 ad
W ~by/M  -cy/M -D/M LM O w
5 0 0 o c 1 p
pl J 0 0 -c/a ~1/a -b/a pl_J
(81)

6.2 SYSTEM MATRIX A,B,C

The values of described parameters of A are taken

from [20] as

M = 1.000 | D = 0.50

Eé = 1.482 V, = 1.00

P, = 2,105 - §, = 60°

T,, = 5.0 sec y1y= 0,266 = 3 1,530
xy = 0,084 Yi2= 0180 + .j 1,080
xqg = 0.320 - a =T T, = 0.05

T, = 0,100 sec b = Ty+T5 = 0.6 sec
T = 0.500 sec c = 0.05

with the help of these values the matrix A is found as

-0.183 0.0  0.227 0.0  0.0]
0.0 0.0 1.0 0.0 0.0
A=|-1.815 =0.57 =0.50 1.0 0.0
0.0" 0.0 0.0 0.0 1.0
0.0 0.0 =10  -20.0 =120

(82)
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BT = [1.0 0.0 0.0 0.0  0.0]

and
T .

C = [1.0 0.0 0.0 000 0.0]
The state vector

X = [aB ab W p p;]

Using the set of equations from (53) we get the
transfer function of the power system with given matrices

A,B and C as

114417 .85 + 26.575%¢ 12.550+5"

G(s) =
4

1412 .68815+429.3325°427.77915°422 .9928 8442 143257
(83)

This open loop transfer function can be writfen in

the form given below taking the coefficient of $ as unity,

5.31995+ 8.3240s + 12,397 35545 .832408%+ 0. 46659s™

0.46659+5.920128«013.6860852-»12,96146534-10.728228[{?55

G(S) =

(84)

6.3 APPLICATION OF METHODS
Method ~1

2nd order reduced model by this method is given as

0.65726860 + 0.4200035

RS,J(S) =
2 ,0. L6 745665 + 0.0368422

Method -2
0.6572756s + 0,4200035

R5’2(5) = ,
32+ 0.46745665 + 0.0368422
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Method =3

0.46659s + 0.4200029

Rg 3(s) = ——=— .
’ s~ 4+ 04674566 + 0.0368422

Method -4

0.68502485 + 0.6415572

(s) =
%5, b s° + 0.6294779s + 0.0562767

Method -5
0.0399463s + 0.64315572
R5 5(s) = 5
’ s° + 0.6294779s + 0.0562767
Method -6
(s) 0.46659s + 0,6415583
S = -
R5’6 s< 4+ 0.6294779s + 0.0562767
Method =7
. 0.6253949s + 0.3996359
R 7(8) = ==
. ’ s + 044478778+ °0.0350556
Method -8
0.6253978s + 0.3996358
Rs g(8) = —3 '
’ s< + 0,4447877s + 0.0350656
Method -9
. 0.466598 + 0,3996359
Rs o(8) = —
’ S + 0.4447877s + 0.0350556
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Method -10

1.5206206s + 3.8865341

R (s) = -
5,10 s & 1.7302602s + 0.340923

Method -11

o - 23.5054865 + 3.3865397
s = v
R5,11 2 + 1.,73026025 + 0.340923

Method -12

5)  0.46659s + 3.3865341
AL S =
Rs,12 T 5% 4 1.7302602s + 0.340923

Method-13

(s) 0.4860036s + 0.5878026
: s
%’13 52 + 0,6161566s5 + 0.,0515614

Method-14
( ) 0.46659s + 0.5878026
S = y ,
5,14 2 061615665 + 0.0515614
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TABL E-32 EX~5 , (POWER SYSTEM MODZ1) METHOD-1,2,3

No. 'g';réle G5 (s) ’Rﬁ,l(s) Ry o(s) R 3(s)
1. © 0 0 0 0

2. 2 1.5536 1.4558 1.455 1.4a4
3. 4 2.9739 2.9680 2.9680 2,654
L, 6 4,260 4,359 4,359 4,046
5. 8 5,556 5,571 5.571 5,289
6. 10 6.621 6.598 6.598 6.354
7. 12 7 460 7.456 7.456 7.250
8.7 14 8.171 | 8.165 8.165 7.994
9. 16 8.761 8.75 8.75 8.608
10. 18 9.237 9.23 9.23 9.114
11. 20 9.627 9,624 9,624 9.528
12, 25 10,324 10,324 10,324 10,266
13. 30. 10,747 10,748 10.748 10,713
14, 3 11.003 11.005 11.005 10.984
15. 40 11.159 11,161 11.161 11,148
16, 45 11.254 11,255 11.255 11,247
17. 50 11,311 11.312 11,312 11,307
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TIME RESPONSE

TABLE-33 EX~5 ( POWER SYSTEM MODEL) MZTHOD -4:5,6

——

No. Time (}5(3) Rl,h(s) R1,5(s) R5’6(s)
(sec) |
1. © 0 | 0 0 0
2. 2 1.5536 1.615 0.9079 1.375
35, 4 2.9739 3,303 2,L8h 3,026
4, 6 4. 260 4.801 4,053 4,547
5. 8 5,556 6,055 5,422 5.841
6.. 10  6.62 7.083 6.762 6.507
7. 12 7.460 7.918 . 7.494 7.77h
8. 14 8.7l 8.593 8.249 8.476
9. 16 8.761 9.137 8.86 9.043
10. 18 = 9.237 9.576 9.353 9.5
11, 20 9.637 9.930 9.750 9869
12, 25 10.32 10,056 10.438 10,407
13. 30  10.747  10.9 10.8%9 10.879
14, 35  11.003 11.108 11.073 11.096
15, 40  11.159 11.230 11.209 11,223
16. 45 11.254 11.300 11,288 11.296

17. 50 11,311 11.342 11,325 11.339
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TABIL £~ 34 EX-5 (POWER SYSTEM MODEL) METHOD-7,8,9

No.

él‘;ne:g) Gs () Rs 7(s) Rs g(s) Rs g(s)

1. O 0 0 0 0
2., 2 1.5536 1.409 1.409 1,204

. 4 2.973%9 2,905 2.905 2,634
L, 6 4,260 4,3 4,3 4,027
5. 8 5.556  5.525 5455 5,276
6, 10 6,621 6,567 6,567 6.351
7. 12 7.460 7.439 7439 7.256
8. 14 8,171 8.161 8.161 8.008
9. 16 8,761 8.755 8,755 8.629
10. 18 9.237 9.341 9.241 9.138
11. 20 9.627 9.640 9,640 9.555
12, 25 10.326  10.344  10.344  10.293
13. 30 10,747 10.767 10.767 10.776
14, 3% 11.003 11.00 11.00 11,002
15. 40 11.159 11,172 11,172 11,161
16, 45 11.254 11,263 11,263 11.257
17. 50 11.311 11.318 11.318 11,314
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TIME RESPONSE

TABLE-35 EX-5 (POWER SYSTEM MODEL) METHOD-10,11,12

No. (i’;?)e Gs () Rs 10(s) R5.12(8)  B5 q,(s)
1. © 0 0 0 0

2, 2 1.5536 3.667 -7.817 3,184
3. 4 2.9739 6.462 -1.402 6.131
4, 6 4,260 '8.261 3.235 8.050
5. 8 5.556 9.405 6.211 9.271
6. 10 6,621 10.132 8,102 10.04
7. 12 7.460 10.594 9.006 10.54
8. 14 8.171 '10.838 10.068 10.85
9. 16 8.761 11.075 10.554 11.053
10. 18 9.237 11.193 10.862 11.179
11. 20 9.6%7 11.268 11,058 11.‘259
12, 10,324 11.357 11.290 11,354
13, 30 10,747 11.386 11.364 11.385
14, 35 11.003 11.395 11.388 11.395
15. 40 11.159 11.398 11.396 11.398
16, 45 11.254 11.399 11.398 11,399 |

17. 50 11.311 11.399 11.399 11,399
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TIME RESPONSE

TABL 2- 36 _EX-5 (POWZR SYSTEM MODEL) METHOD-13,14

No. %’;Zg) Gy (s) Rs 13 (s) R5,14(3)
1. (0] (0] 6] 0
2, 2 1.5536 1.338 1.317
3. 4 20,9739 24,902 2,876
by 6 bi280 4,348 4,325
5., 8 5.556 5.592 5.572
6. 10 6.621 6.632 6.615
7. 12 7,460 7.491 7 477
8. 14 8,171 | 8.197 8,186
9. 16 8.751 8.776 8.767
10. 18 94237 ~ 9.51 A 9. 2hk
11. 20 9.627 9.640 9.634
12, > 9.324 10.332 10.328
13, 30 10,747 10,751 10.749
14, 35 11.003 11.006 11.005
15. 4o 11.159 1161 11.160
16. 45 11.254 11.255 11,254

17. 50 11,311 11.312 11.311
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6.4 COMPARATIVE STUDY

From the above we find that the steady state values of all

the methods match with original mostly upto second place of

decimal, Method 1 and 2 both gives the least error in the described

problem. Time response of each method and model requires almost

same computation time ( CPU..) about 0.9 seconds.

Since the transient response of synchronous machines in
electriéal power system is equally important as steady state
response, therefore the best reduced model will be that which gives
good transient and steady state responses,

On the)basis of unit step responses shown in respective
figures,models reduced by method 13 and 14 are thé best, However

- model s reduced by method 1,2,3,7,8 and 9 are also equally good.'



COMPARATIVE STUDY

TABL E- 37 EX-5 (POWER SYST&ZM MODEL)
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14,

No of Steady state Output Yr Cummulative
Method value at time t=50sec error (J)
1. 11,311 11.312 . 40190B- 01
2, 11.311 11,312 . 40190B-01
3. 11.311 11.307 «10855E+01
&, 11.311 11,342 « 37771E+01
5. 11,311 11.33 .17039E+01
6. 11.311 11.339 .17602E+01
7. 11.311. 11.318 .675878-01
8. 11,311 11,318 .57587E-01
9. 11.311 11,314 .108728+01
10. 11.311 11399 «18951E+03
11. 11.311 11.399 . 308488+03
12, 11.311 11.399 .17338E+03
13, 11.311 11,312 +12031E+00
11.311 11.321 / .13462E+00
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The development of reduced order models for the analysis
and synthesis of high order systems has been an areé of active
research during the past decade., The present work deals with the‘
applications of methods, with special emphasis on CFE methods for
model order reduction to three weil known SISO models, namely
Hutton's model, Chuang's model and Sheshadri's model and éne
MIMO model . Moreover these reduction techninues have also been
appliéd to reduce a power system model of a single machine system
connacted to an infinite bus. The work included here in deals
with frequency domain model reduction techniaques.

Infact in project work, different models were reduced by pure
CFE techniques. This dissertation is an extension of project work,
therefore mixed CFE methods have been taken up in this thesis.

The Second @hapter describes in brief CFE based reduction
techniques. The CFE approximation technique has an advantage of
computational simplicity and it can be used on digital computer
for reduction pufposes.

The second Cauer CFE originally proposed by Chen and
Shieh (1968) is equivalent to a taylor seriesexpansion about
s=0, It gives satisfactory approximation in the steadyvstate
region. The first Cauer form may also be applied for system
reduction. It provides a satisfactory approximation in the
transient region with an impul se input but gives error in the
steady state region, however as the order of the reduced model
increases the error under steady state response becomes negli-

gible. The first Cauer CFE is equivalent to expansion of G(s)
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about s= =, The mixed or third Cauer form (Goldman)
is a mixture of first and second Cauer CFE forms gives

satisfactory approximation for both the transient and

steady state responses.

The Cauer modified form (Chuang 1970) is a
Taylor series expansion about s = O and s =« both and
alternatively. This approximation is good both in the

steady state and transient period.

The Third chapter deals with stability criteria
based reduction techniques, and a few other ones. Routh
approximation method proposed by Hutton and Friedland pre-
serves the stability of the reduced model provided the |
original model is asymptotically stable. Reduction
using the Routh stability array proposed by V.Krishna-
murthy and V.Sheshadri is computationally very simple,
direct and gives a very similar frequency response as
that of original system, Stability equation based
reduction method is very convenient if applied by the
aid of computer. Since the basic approach of thisvmethod
is to discard the roots of the stability equations which
have large magnitudes, the reduced stability equations
will always have their roots in the left side of the
| s-plane, Therefore all the coefficients of the reduced

stability equations as well as reduced transfer function

will have positive sign. '
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Dominant pole retention method was proposed by
Davidson in 1966, It preserves stability and it is
applicable to MIMO models also, This is a very powerful
method. A new method of model reduction was introduced

by per-0lof Gutman et.al. based on polynomial differemn
tiation., The reciprocals of the numerator and denomine
tof polynomials of the high order transfer function are
differentiated suitably many times to yield coefficients
‘of the reduced order transfer function. The method is
computationally very simple and is equally applicable

to unstable and norminimum phase systems.

The Fourth chapter ddscribes model reduction

' using mixed methods namely

CFE and Routh approximation,

CFE and Routh Hurwitz array,

CFE and stability equation,
CFE and polynomial differentiation and CFE and dominant
pole retention. In‘all mixed methods, denominator is
reduced by non CFE methods and numerator is reduced by
CFE (Cauer 2nd and Cauer 3rd form) by mathing the Cauer

coefficients of original system,

In chapter 5, all reduction methods described in
previous chapters have been compared by the help of three
SISO models and one MIMO model. In the same chapter methods

for obtaining transfer function from given state variable
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equations have also been dealt with., The classical
Faddeeva approach is first described. This method is
known to give erroneous results if the system matrix A
is of high order. A modified algorithm is introduced
that removes this problem of inaccuracy computer pro-
grammes have been developed for these methods.

The Sixth chapter describes the development of
state space model for a power system which consists of
synchronous machine connected to an infinite bus. The
system model is developed using well known Parks equa-
tions.Further various model reduction techniaques
described in Chapter 3 and 4 are applied to the power
system model and a compafative study has been made,
The merits and demerits of the various models have also
been brought out'in tabular form.,
| Based upon the work carried out in this disser-
tation, various reduction techniques used here in can

be summarized as below.
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Method 2 and 3 are relatively easily implemented and thus
their computer memory and time are minimal. Stability
equation method also can be used by computer without

any difficulty,

Best methods are the mixed methods in which good

features of two schemes are combined together, For ‘
example in CFE-Routh method, the desired stability
feature of Routh and computational convenience of CFE

are put together to give a better medhod than any one

of those individually.

This work is an effort in the direction of compiling
the popular techniques for system order reduction in
the freQuency domain and to improve them by mixing with
CFE techniques especially Cauer 2nd and Cauer 3rd form.

A number of systems including SISO and MIMO are chosen
and these techniques are applied to determine the

reduced order models. Moreover one practical power

system model has also been reduced using these techniques.
The unit step time response and frequency response

for the reduced models alongwith the original system

are computed and the graphs are plotted. The accuracy

of reduced order modéls is quantitatively determined by

computing the cumulative error,
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There is a wide scope for research work in this
field especially for finding some innovative generalized
technique which could be applied to all type of systems.
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