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1.1 NECESSITY OF MODEL REDUCTION 

&very physical system can be translated into 

mathematical model. The mathematical model of large 
scale systems are very complex and they can not be 
reduced by hand canclulations. Fast digital computers 
can only be used to reduce these complex models. 

The mathematical procedure of system modelling 
often leads to comprehensive description of a process 
in the form of high order differential equations, 

which are difficult to use either for analysis or 
controller synthesis.. It is hence useful and some - 
times necessary to find the possibility of finding some 
equation of the same type but of lower order that may 

be considered to adequately reflect the dominant 
characteristics of the system under consideration. Some 
of the reasons for using reduced order models of high 
order linear systems could be 

(1) A system of uncomfortably high order poses 
difficulties in its analysis, synthesis or 
identification. So in its analysis, synthesis 
or identification an obvious method of dealing 
with such systems is to opproximate it by a low 
order system for which characteristics such as 

time constant, damping ratio, natural frequency 
and their inter relationships are well known. 
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1.3 MODEL REDUC ON USING CFE 

The principal philosophy underlying the derivation 

of simplified models by CFE stems from the fact that the 

continued fraction expansion resembles multiple feedback 
loops and feed forward paths with blocks corresponding to 

the quotients. As quotients descend lower and lower in 

position, or equivalently the blocks develop to more or 

more inner loops, they have less and less significance as 

far as the overall system performance is concerned. There-
fore, truncating the continued fraction often some terms 

is equivalent to ignoring the inner, less important loops. 

Suppose an nth order model is expressed as 
n-2 

( 
l 	+ b2 s 	+ .... + b 	1  

II 	... ) 
sn  + al  s + a2 an- +..+ an  

Because a general, control system is a low pass 
filter in nature, in the simplification, we should take 
care of the steady state first and then the transient part. 

This means that we have to start the continued fraction 

expansion from the constant terms, or arrange the polyno -

mial s in the ascending order. 

So first rewrite the polynomials in ascending order 

G(s) 
bn+ bn„1 s+ ..... + b2  5r -2+ bl sn-1 
an+ awl  s+ ..... + a2  s+ al  sn'l+s° 



(b) The development of state space methods and 

optimal control techniques has made the design 

of a control system for high order multivariable 

systems quite feasible. When the order of the 

system becomes very high special numerical 

techniques are required to permit the calcula 
tions to be done at a reasohable cost on a 

typical digital computer. So. reduced order model 

reduces computational complexity and computational 
burden as well hence a saving in both the memory 

and time requirement of computer. 

1.2. APPLICATIONS OF REDUCED ORDER MODEMS 

The reduced order models and reduction techniques 

have been widely used for the analysis and synthesis of high 

order systems. Some of the uses to which these have been put 
are 
(1) Prediction of the transient response sensitivity of 

high order systems using low order models. 

(2) predicting dynamic errors of high order systems 
using low order equivalents. 

(3) Suboptimal controls derived by. simplified models. 

(4) Control system design. 
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1 
a 

H1+ 1  

s + • 1 
H3 + 

H4  

S + 

S 	(3) 

Based on (3) we can draw a general feedback block diagram 

as shown in Fig, 1. (a). If an m order simplified model is 

desired we only keep 2m quotients in (3) and omit the remai-

ning ones, and consequently the general feedback block diagram 

reduces as given in Fig. 3(b). 

The most important properties of the continued frac-

tion expansion are 

(1) It converges faster than other series expansions. 

(2) It contains most of the essential characteristics of 

the original model in the first few terms. 

(3) It does not require any knowledge of the model eigen 
spectrum. 

(4) Since the denominator coefficients of the simplified 
model depend on both the numerator and denominator 

coefficients of the original model, stability of the 
simplified model can not be guaranteed even if the 

original model is stable. 
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1 .4 ORGANIZATION OF THE THESIS 

In the present work a few, selected 'model order 

reduction techniques namely Routh approximation. Routh 

Hurwitz array, stability equation, Modal and polynomial 

differentiation and each mixed with C auer Znd form and 

Lauer 3rd form are applied to 

(1) SISO systems 

(2) MIMO system 

(3) Power system simplification 

The thesis deals with frequency domain model order 

reduction techniques., 

In chapter 2 various form of continued fraction 

expansions and their use in model reduction is dealt 

with. 

Third chapter is devoted on various stability based 

reduction methods and a few other important reduction 

techniques. 

Fourth chapter describes the model reduction using 

mixed method. Mixed reduction methods are obtained by 

mixing the methods described in chapter - 3, with Cauer 

second and third forms. 

Chapter-5 deals with comparison of 'var.ious reduction 

methods. The transfer functions of various SISO and NIMO 

models are reduced by pre-described reduction techniques, 

and unit step and frequency responses of reduced models are 
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plotted with the responses of original models. The 

final responses show the validity of each method and 

their relative drawbacks. 

Chapter - 6 describes the development of a 
.power system model. The problem is taken from [181 

and the development of the model is also from the same 

reference. In the same chapter various reduction tech - 

niques are applied to power system model. The transfer 

functions obtained from different methods are given in 

this chapter and all the reduced models are summarised 

and their responses are compared in the last showing 
the validity and drawbacks of reduction techniques used 

there in. 



CHAPTER - .2 

REDUCTION USING CONTINUED FRACTION 

EXPANSIONS AND INVERSION 



The continued fraction expansion (CFE) method 

for obtaining reduced order models was first proposed 

by Chen and Shieh Li].  Various ramification, and exten-

sions of the GFE have since been presented by Chen and 

Shieh [2,3]. and Chen and Huang [4] .As . pointed out by 

Wilson,,'' Cheri s results are probably the best that have 

been obtained, although the method is only applicable 

to single input single output systems'. 

Bosley and Leus [5] have compared the step res-

ponses of Chen and Shieh` s reduced model and original 

system and have found very little error. Chen [6] has 

extended the CFE techniques [1,3] to model reduction 

and design of multivariable control systems. Shieh et.al [7] 

have demonstrated that the First, Second [6] and Third 

Cauer form formulations for order reduction give good 

approximations in the transient, steady state and overall 

region of the response curve respectively. Shieh and Goldman 

[8] have shown that a mixture of the first and second Cau'er 

forms give good approximations for both the transient and 

the steady state responses. Davidson and Lucas [9] have 

formulated CFE method about a general point to allow good 

approximation to both transient, and steady state behavi-

our. One difficulty with the CFE approach is that the 

stability of the model is not guaranteed, even though the 

original system is stabled Chuang [10] has modified the 

43.. 
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the original CFE techniques to have expansions about 

s=o and s = co alternatively thereby showing good agree- 

ment in both the transient and steady state regions. 

CAUER FORMS OF CFE 

Consider the toll owing rational transfer func - 

tion. 

A2 n srrl +A2 rr1 	... A2 4 s3+ 
~ 	

, 
	s 

A23 s2 + A22 s + A21 
T(s) 

A1, n+l s + sl, n 8+ ... A10 4 S + 

A1,3 s 2 + A1, 2s' + A1,1 

(4) 

where Ai, are constants. 

Equation (4) can be expanded into the following four 

different Cauef form representations. 

2.1 THE CAUER FIRST FORM 
1 

Hi s+ 1 

H2+ 1 
H s + 1 3 H4 + .1 

 • 

(5) 
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2,2 THE CAUER SECOND FORM 

T2(s) = 1 	 (6) 

h1 +   
 + 1 

~s h~ + 
3  

h415+ 

2,3  THE CAUER THIRD FORM 

T3(s) = 1 	 (7) 

h1 +Hl s + l 
h2 

+H2 + 1 
h3+H3 s +1 

h
4 +H4+ 1 

2,4 THE CAUER MODIFIED FORK! 

T4(s)= 1 	 (8) 
hti'' + S 

1 
Hl + 

ht + s 
2 H~" 1 

2 , 
• 

Equation (7) is a combination of the Cauer first and 

second forms in such a way that if we let the h or H 

in (7) approach zero, then (7) will be identical with 

(5) or (6) respectively. 



11 

2.5 EXPANSION BY GENERALIZED ROUTH* S ALGORITHM 
A21+ A22s + A23s2 +A24s3+..,+A2 n,1sn-2+ A2 as l 

T(s) 
A11+ Al2 s + A13 s +A14s3+... +A1 nsrr+Al , n+l sn 

(9(a)) 

	

_ All A2 2 	Al n+lA2l 	All A2 3  

 A1     	 1 	-- 	A_l , n+1A2 
.1/I 	+ 	.n+l + 2A21 	A2 n 	)s+(A 3 —A21 -  2 

-  A2n 
A21 A2 n 	 A21 +A22 s+A2 3 s + ••• 

( 	_ i9 A 	n - Al . n+lA2 n-1 	) sn-1 

	

~n A21 	A2n +  I. 
+A2n S 	 (9(b)) 

Define 

h  
p r Ap+l

- ---?~ 	+1.2►3,...,n 	 (10) 
l 

Hp =  n+2  p=1,2,3,....n  (11) 

where h 	O,Hp # 0, and substitute (10) and (11) into (9(b)) and 
we have  

T(s) = 1/C +Hjs 

+ (Al2-hIA22 H1A21)s+(A13 h1A2 
A21+ A22s 

3 H-IA22)s2+...+(Aln blA2n H1A2 
+...+A2ns rr 1 

(12) 

in which (Al2 h1A22 HiA21)' (A13 h1A23 H1A22 ) 0 • • •, ( ~7 ri A2n H1 A2, rrl) 
can be written as A31,A32,...,A3t,1, respectively. Therefore we 

have 
A31s + A 2s2+ 	 rrl 

T(s) = 1/[h1+}ils + 	 ] 
A21 + A22s + ...+ Asrr-1 

(13) 
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Dividing again, we have 
A21 A32 _ A

2 
A31 (A22 	----~-- ) s 

	

T(s) 1/{h 	s+1/ { A= + 	n + 	A31 	A31 

A31 s A3, rrl A31 s + A32 

(AZ 	A21A 3 - A2 n 32 ) s2+... +(A_- A21A3. n-1 A2nA. nt 2) 

	

3 	A31 	3, n- 	
2

1 	' 
n1 
	A31 	A3, n-1 

+A3, u- l s rr1 

(14) 

Finally, we have the expression 

1 
T(s) 1 	 (15) 

h1 +H1 s + 

h3+H3s + 

h4/ s+H4+ 1 ------ 

The quotients in the expansion of (15) can be obtained by 

the following generalized Routh algorithm and the modified 

Routh array. 

The coefficients in (9(a)). can be expressed by the 

following double- subscript notation. 

A11 Al2 	A13 ... • Al 	A1, n+1 
(16) 

A21 A22 A23 .... ~n 
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and the elements of the third, fourth, and subsequent rows 
can be evaluated from the following algorithm 

A  j, k=Aj-2, k+1- hi-2Ai-1,  k+1 H3-2Ai-1, k J=3,4, ..., n+l, k=1,2 ... 

(17)  
and 

hp  =-  , 	Hp = 	n+2-p—  , p=1, 2 , 3, ... , n 

(18)  
The complete array is 

All  Al2  A13. • . A1 Al, n+l _1 	 > Hl  ----= n+l 
21 A21  A22  A23...A2n 	 n 

31 
_ AZ.n  > H2 	A3, n-1  

h 	< A31  A32  ... A3, n- 1  , H  = A3.  it 1 
3 	A41 A41.... A4,..2 	3 	A4,  rr  2  
................................................ (19) 

A 	< Ar,1,1 An-1,2 Aryl, 3 
Ii 
	s  	- Arr-1 3 
n-1 An,1 	A ,1  A ,2  rr 1 An, ,2  

h  = _,LL... < 	 Hn_ n 	An,2  
n+l,l An+1,1 	 An+l,l 

The triangular pattern in the formulation of (19) is 
called the modified Routh array. 
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Equation (17) is a generalized Routh algorithm. If all 
H are zero, • (17) is simplified as 

= Aj-2,k+1 hj-2Aj-l,k+l' 
j =3,4,...,k = 1,2,... 	(~0) 

Equation (20) is a regular Routh algorithm which is 
commonly used to obtain the quotients of the Cauer second 
form. On the other hand, if all h are zero (17) reads 

B j,k= 3j-2k+1 -Hj-2Bj-1,k+l 
j=3,4, ...,k=2,2,... 	(21) 

where 

Bl,i 	Al, n+2-iui=.1,2 , • •. td 
and 

_ j 	,n+l-j,j=1,2,...,n 

Equation (21) is a regular Routh Algorithm which is used 
to evaluate the quotients of the Cauer first form. Either for - 

mulated pattern by the algorithms shown in (20) or (21) will 
be a zigzag pattern. It is noted that the elements Aj9k j=3, 4, ... 
and k=l, 2, ... , in (20) or (21) do not have the same values as 
those elements of (19). 

Cauer Modified Form. 

The Cauer modified form (Chuang 1970.) is obtained, by 

carrying out a Taylor series expansion to both S=0 and S = oo 

alternately. This would in effect mean that the expansion 
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begins from the constant term and then from the highest 
order term. The approximation is good both in the steady 
state and transient period. The Cauer modified form is 

1 
T(s) _ 

Hip + 

The transfer function. 
T(s) is expanded into a Cauer type CFE about S = 0 and 
S = .. hl.l ...,, H2..., are evaluated by modified routh 
array. 

w 	all 	
811 a12... a1, rr 1 

1~1 b11 b12. • • • bl rr 1 

M a21 a21 
h2 = b i <b21 a22....a2,n-1 

. b22• ..'b2 rr1 . .......................:..... 
a 	a 

hn a bnl bnl >.  s 

where 

a1n 1 

b1 	4 

> Hl -b1 n s 

1 
rl, 

> HZ = 

aj+1,k = aJ,k+1 -h~ bj,k+l 	=1,2•••u'1 

bj+l,k = bJ,k 	
-H,, aj+l,k k=1.....n-j 

where 

biV:ii 	i 	aj+1, n+1-i 
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2.6  CONTINUED FRACTION INVERSION 

IS the quotients of a continued fraction of the Cauer 
third form are given, or all h and H are known, what is the 
corresponding transfer function. This is the problem of con-
tinued fraction inversion. 

From (9(b)) ,  is noted that 

An,l ` hn A,1,1 
A_1,1= n-1,1= hn-1An,1 = hrrlhn+l,1 

An 2,1- hrr2Ah-l,l=hn-2hn-lAn+l,I 
A31  = h3A41  = h3h4..  

A21 = h2A31 -  
Ali 	h1A21  h1b2  ... hnAn+l, 	 (22) 

and 

A,2 = HnAn+l, l 

An-1,3-  -1An,l ` Hn-1HnAn+1,1 
`n-1, 3=Hrr-l AIr2 = -1HnAn+1,1 . . 
A_1,3= H2 A3, irl = H2H3...HnArr1,1 

H1A2n 	= H1H2 ...HnAn+l,1 	 (23) 
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Equation (22) and (23) can be written as the following 
general equation. Let An+l, l 1, then 

n 

A 1 = _9 h, 	p= , j+ls•••,n 	 (24) s 	p=j 

and n 
Aj,n+2_ j = P Hp, p=j,J+3,...,n 	 (25) 

where j is the row number in the modified Routh array.The 

intermediate terms can be evaluated from (17), starting 
from the element in the last row of the modified Routh 
array and ending up at the elements in the first row. . 
if we substitute j = n+1 and k=1, yields 

An+l, l = An-1, 2 -1 n 1 A,2 - Hrr1An,1 	 (26) 

Likewise, if we rearrange the order of (26) , we have 

Aa-I t 2 = An+l, l + hrr l An, 2 + Hn-1 
If we perform the same procedures on other elements, we have 

Aff-2, 2 = An, l + hn-2An-1, + Hn-2An-1,1 
A2,3 AM 2 + hrr 2 An_ 1, 3 + Hir 2 Arr 1, 2 

(27) 

A,n 	= A3,rr~1+ h1A2n + Hl A2, n-1 
The general form for (27) is 

Aj,k = A~+Z,k-1 + hjAj+l,k +HjAj+l,k-l' 

j = rrl,rr2,...,1, 	k=2,3,...,n+1-J 	(28) 



Equation (24), (25) and (28) are used to obtain 

the continued fraction inversion. 



CHE -3 

STABILITY CRITERIA BASED 

REDUCTION METHODS 
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Hutton and Friedland [ii] based their reduction method 

on an a - p expansion that uses the Routh table of the ori-

ginal transfer function. This has a number of useful pro - 

perties. If the original Transfer Function is stable, then 

all approximants are stable. This method was modified by 

Krishnamurthi et.al [12] to reduce computations by avoiding 

reciprocal transformation. 

Chen. et.al [13] have given a technique which uses the 

stability equation method for getting the reduced polynomials 

of the gamer. ator and denominator of the model. 

Hutton and Friedland` s method has been modified for 

simplification of unstable systems. Singh [14] has pointed 

out that Routh approach may lead to the same reduced model 

for different high order systems, while Shamash [15] has 

provided examples where such techniques fail to give accep - 

table models. 

Now the detailed description of above three methods is 

as under 

3.1 REDUCTION BY ROUTH APPROXIMATION [BY HUTTON AND 

FRIEDLAND - 1975] 

Consider a linear time invariant (SISO) system having 

the transfer function (TF) 

bl  sal  + .... + bn  
G(s) 2 

a0sn  + aIsrrl+... +an 	
(29) 
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A T.F. of the form (29) that is asymptotically stable 
can always be expanded in the 'following canonical form. 

G(s) _ Al  F1(s) + P2  Fl(s) F2(s) ,+ 00.40. 

On  F'(s) 	F2(s) ... Fn(s) 

n 
	n 

i =1 	3.2 
 F(s) 
	

(30) 

where pi(i=1,2...n) are constants and Fi(J=2.... n) are 

defined by continued fraction expansions 

1 
F (s) _

1  
--- 	 (31) 

ads+  

a j+ls  + 1 
a j+2s +. 

a l  s +-1 
ans 

For F1(s) definition (31) is modified slightly, the 
first term in the CF S is 1+ als instead of als. The canonical 

(30) is referred to as the alpha-beta expansion of G(s) and 

plays a fundamental role in the theory of Routh approxima - 
tions. 

The n coefficients ai  appearing in the alpha - beta 
expansion can be computed using the algorithm for construe-
ting the Rough table as shown in Table No.l. The first two 

rows of the table are formed from the coefficients of the 

denominator of G(s) where by assumption the entries as = aj_1=0 
for j > n. The remaining entries are formed by cross multipli- 
cation rule 
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aio+l _ 4-1 	ai 4 

a2+1 =a4 1 	mia4 

 
an- i- 2 = a n-1 ai am i 

(32) 

For rri odd, the last equation in (32) is replaced by 

i+l 	i-1 
arri-1 a (33) 

The ai are marginal entries given by 
ai-1 

a = 	i =1,2.... n 	 (34) i o 

The coefficients Pi appearing in the canonical form can 
also be obtained by use of tabular algorithm as shown in 
Table 2. The first two rows of the p - table are obtained 
from the coefficients of the numerator of 0(s). The remai-
ning entries are computed from entries in the Routh table 

computed as shown in Table-2 and the earlier rows of the 

beta table, using the following recursion. 

= b0 / a0 	i =1,2 ... n 	(35) 

2,4,...n-i for 

	

b~ 2 = b j - Pi as j = 	rr i, even 
2, 4, ... n-i-1 for 

n-i odd 

i =1,2,... rr2 	(36) 
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ROUTH CONVERGENTS 

The Kth  Routh convergent Rk(s) for the transfer 

function H(s) is obtained by truncating the alpha-beta 
expansion (30) and arranging the results as a rational 
function of s. The truncation eliminates those terms in 
the alpha-beta expansion containing ak+l' "''an' k+i" 
....On  and hence depends only on the first k alpha 'and beta 

coefficients. Let Ak (s) and Bk(s)  denote the denominator 
and numerator respectively of the kth Routh convergents 
i.e. 

Al  (s) = al  s+l 
B1(s) _ p1  

A2  (s) = al  a2  s2  + a2  s + 1 

B2  (s) = a2  Al  s+ 92 

A3  (s) = 	a a3  s3  + a2  a3  s2+ (al+a3) s+l 

B3(s) -= a2  a3  01  S + a3  P2  s+ (P13) 

More generally, U 

Ak (s) = ak  s Ak_i(s) + Ak_2(s) 
and 

Bk(s) = ak S Bk-l (s) + Bk-2(s) +Pk 
k =  

(37 (a)) 

(37(b)) 

with 

A 1(s) = 0 
	

B 1(s) =0 

A©  (s) = 1 
	

Bo  (s) =0 
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Illustration -1 

Consider an 8th order example. 

35 s7+106 6s6+13285 s5+82 402 x4+2 38376x3+511812 s2+482964s+194480 
c(s)~ 

s8+33s7+437 s +3017 s5+11870s +27470s +37492s +28880s+9600 

St= Performing reciprocal transformation to get G(s), 

194480s7 +482964s6+511812 x5+2 38 376 s4+82402 s3+13285 s2+1086 s+35 
~(s)= 

96005 +2888057+374925 +27470 +118;7,Os +3017s +437s +33s+1 

Step  

Constructing a Table 

9600 37492 11870 437 
28880 27470 3017 1 

0.33240 28 360.698 a 1= 10867.119 436.66759 0 

a2= 1.01831 16403.897 2572 .3368 1 

a3= 1.7289 6419.8058 434.93869 0 

a4= 2.5552 1460.9808 1 

a5= 4.394175 430.5445 0 

a6= 3.39331 1 

,Constructing 	table 
194480 511812 82 402 1086 
482964 278376 13285 35 

p= 6.7340 32682 7.04 62085.305 1079.2 659 0 
P2=17.C293 93316.124 5848 .8387 35 
3-19.9237 10834.726 
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Step 3 Constructing Routh co nverge nts 

A2 (s) = al a2 s2 + a2 s +1 

= 0.33848652 + 1.01831s + I 

B2(s) = a2 Pls + 02 

= 6.8573s + 17.02934 

n(s) 
	6.8573s + 17.02934 

0.338486 s2+1.018 31 s+l 

Applying reciprocal transformation again to obtain 

record order reduced model as 

17.02934.s + 6.8573 
R(s) _ 

s2+. 1.01831s + 0.338486 

3.2 R$DUC TI ON USING ROUTH HURWI TZ ARRAY 

BY V.KRISHNAMURTHY et.al.-1978] 

This method uses the Routh stability array directly 
to reduce the order of the system. No algorithm is required 
to reconstruct the reduced order transfer function. 

Let the transfer function of the high order system 

b11 sm + b21 sar i+b12 siu- "-+  

	

G(s)= 
all sn + a21s~ +a12s~ + a22 s 	.... 

where m j n 	 (38) 
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The Routh stability array for the numerator and 

denominator polynomials of (38) are shown below in 

table 3 and 4 respectively. 

TABLE -3 

NUMERATOR STABILITY ARRAY 

b11 b12 	b13 	b14 	 • 

b21 b21 

	

b23 	b24  

b31  b32 	b33  

b41 b42 	b43 

bm, 1 

bm+l,l. 
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TABU - 4 

DEMONINATOR STABILITY ARRAY 

all 	8] 2 	a13 	a14 

a21 	a22 	823 	824 	 . 

a31 	832 	a33_ 	• 

a4l 	a42 	a43 	 • 

• 
a 21 	arr2:2 

arr1,1 	arr1,1 
an, I 

an+l, l 

The tables are completed by the algorithm 

Cj j a 	(Ci-2,15Ci-1, +1)/ (Ci_1,1.) 

for i > 3 and 1 . j ~[ (rri+3)/2] 	(39) 

The transfer function of a system with reduced order 

K(, n) can easily be constructed with (m+2-k)th and 
(m+3-k)th rows of table -3 and (n+l-k)th and n+2-k)th 

rows of table 4 as in (40) . 
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k-1 	k-2 
b(m+2-k),ls 	+ b(m+3-k),1s 	+ 

k-3 
b(m+2-k),25 	+ ... 

k 	k- 
a(n+l-k),1$  + a(2-k),ls  

k-2 
+ a(n+l-k),2s+ ... 

(40) 

for k > (m+l), the first two rows of Table 3 should be 

used for the numerator polynomial, while for k = 1, only 

the last row should be used. 

Illustration  Consider the same 8th order example art -3.1. 

Numerator and denominator stability arrays are 

35 

1086 

13285 

82402 

278376 	482964 

511812 	.194480 

10629.3186 • 261881.1381 476696.2283 

55645.54206 463107.8334 194480 

173419 .©523 439546.9831 

322068.9463 194480 

334828.6062 

194480 
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Denominator stability array 

1 437 11870 	37492 	9600 

33 3017 27470 	28880 

345.5757 11037.5757 36616.8485 	9600 

1962.9907 23973.3537 27963.26887 

6817.1744 31694.0405 9600 

148471229 25198.9' 6951 

20123.7335 9600 

18116.1695 

Using last two rows of the stability, arrays, second 

order approximant is obtained as 

334828.6C62s + 194480 
(s) 

20123.7335s +18116.1695s+9600 

16.638516s + 9.664226 
a 

s2+0,900242s + 0.477049 

3.3 REDUCTION  USING  STABILITY EQUATION METHOD (T.C. 

CHEN AND C. Y. CHAN G - 1979 ] 

The approach in this method is to reduce the order of 
the stability equations of a transfer function and then 

the order of the original transfer function can be 

reduced. 
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Let the T.F. of a high order system be 
b sm + b~l sm-1 	+ b 

G(s) = 
as + ar,l srrl + .... + al s + ao 

FN(s) 
= 	 (41) FD(s)  

Where n > m and FN(s) and FD(s) are the numerator and 

the denominator of G(s), respectively. Separating .FN(s) and 

FD(s) into their even parts and odd parts one has 

FNe(s) + FNo(s) G(s) = 
(41(a)) 

FDe(s) + FD0(s) 

where, 

( 
FNes) = 

m 
E b. si 
i=0,2 ,4 1 (41(b)) 

FNo(s) =z 
m 

b Si 
i=1, 3,5 

and 

FDe(s) = 
n 
E ai si 
i =0,2,4 

(41(c)) 

F 	(s) = Do 
n 
E a i s i ice, 3,5 

Equation (41(b)) and (41(c)) are called stability equations 
of numerator and denominator respectively. 

For a stable system equation (41(b)) and (41(c)) 
can be factored as 

7 



m' m/2 ifmis even 
_ (m-l)/2 if m is odd 

n' = 4/2 if n is even 
= (n-1)/2 if n is odd 

p1 < P2 < P3 < 	... 

zi < 

 

4 < 

m 
FN e  (s) _ 	(s2  +ZNi ) 

i =1 
m 

FNQ(s) =si(s2+r1i ) 
i a=]. 

(41(d)) 
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F(s) 

FDO(s) = s 

n' r (s2  + zD) 
i =1 

(s2+ PDi) 
i=1  

(41(e) ) 

(41(f)) 

(41(g)) 

Since poles ar zeros with smaller magnitudes are 
more dominant than those poles or zeroes with larger 

magnitudes, descarding the poles orzeroes with larger 
magnitudes. is a method of reducing the order of the 
stability equations. Then, the reduced models of the 

polynomials FN(s) and FD(s) can be constructed and the 
reduced model of G(s) can be obtained. 

In order to make the steady state response of the 
reduced model the same as that of original system and 
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the coefficients of the reduced model the same as those 

of original system, the coefficients of reduced stability 

equations are multiplied by the magnitudes of the poles 

or zeroes which have been discarded. For example, the 

reduced stability equations of FN(s) can be written as 
2  m-1

• FNe(s) = Zn  i 	(s2 + Z  ) 	 (42 (a)) 
i =1 

r m -1 
F 0(s) = s Pn TT1  (s2  + Pi ) 	 (42 (b)) 

= 

Then the reduced T.F. is 

F(s) ---N--'- 	 (43) 
F,  (s) 

where, 

G1(s) = FNo +FNe 

if m• i s even 

=FNo +FNe 

if m is odd 	 (44) 

FD(s) = FDo  + FDe  if n is even 

=FDo +FDe 

 

ifnis odd 	 (45) 

Following the same procedure the reduced models 

with lower order can be obtained. 
Illustration - Consider the same 8th order example as in(3.1). 

The numerator stability equations are 
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FNo(s) = 35 2
+ 13285s5  + 278376s3  + 482964 - 0 

FNe(s) _= 106686+ 82402x4+ 51181282+ 194480 = o 

The denominator stability equations are 

FDQ(s) = 337 + 3017s5  + 27470x3  + 28880s = 0 

FDe  (s) = s8  + 4376  + 11870s4  + 3749282+96000 

The pole-zero patterns are shown in Fig. 1(c). The 

reduced order models are obtained as 

R2 (s) _ 
	482964s + 194480 

34194s + 28880s + 9600 

14.1242s + 5.68 75 475 

s2+ 0.84459s + 0.28075 

3.4  OTHER METHODS 

Two methods, which are quite important have also been 

included in this chapter. They are not based upon stability 

criteria but still they are very powerful. 

3.4.1 Reduction using polynomial differentiation 

Per Olof Gutman proposed this method [16] for model 

reduction using polynomial differentiation. In this method 

the reciprocals of numerator and denominator polynomials of 

the high order transfer function are differentiated, suitably 
many times to yield the coefficients of reduced order model. 
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The method is computationally very simple and is equally 

applicable to unstable and nonminiwum phase systems. The 

question naturally arises how well a polynomial is appro-

ximated by its derivative. A partial answer is given by 

following lemma. 

Lemma - Given the polynomial 
n 

Pn(s) = an  IT (S zi) 	(46) 
i=l 

Then the zeros to Pn (s) do not lie outside the convex 

bull of zeros of P( s)(This result is originally due to 

F. Gauss and F.Lucas). 

A drawback of straight forward differentiation is 

that zeroes with large modulus tend to be better appro-

ximated than those with a small modulus. This problem is 

remedied e.g. by differentiating the reciprocal polynomial, 

reciprocating back and normalizing. Given the polynomial 
(46) the reduced order polynomial then becomes. 

Prri(s) = Pa(s) - n . Pn(s) 	 (47) 

Algorithm 

Let the transfer function be 

q(s) 
G(s) _ 	 (48) 

p(s) 
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Factorize q(s) = Q (s). q (s) 

n 
and p(s) = p (s)• p (s) 

where q(s) and p(s) include those zeros and poles of 
• G(s) which we want to retain in the reduced order trans- 

fer function Gred(s). Reduced the order of q(s), kq  times 

• and the order of p (s), k times, each time according to 

(47). Let the resulting polynomials b.e gred(s)  and  pred(s)' 
respectively. Construct the reduced-order transfer func - 

ti on. 

9red(s) • q (s) 

Gred(s)  - C 	(s) • P (s) red 

where C is a real constant. 
A 
q(s) might, e.g. include the zeros whose real parts are 
non negative,.p(s) might, e.g. include the unstable poles, 
the purely imaginary poles, the badly damped high frequency 
poles and the control poles. kp  and kq  are non-negative, not 
necessarily equal integers chosen, e.g. such that the pole 
zero excess of Gred(s)  is equal to polo zero excess of G(s). 
C is adjusted to give the best approximation in the relevent 

frequency range. 

Error Analysis It can be shown that if kp  = kq  = 1 

and if the mean value of the zeros and poles are approxima- 
tely equal, then C can be chosen such that the relative error 



between G(s) and reds) is approximately zero in 

both the high frequency and low frequency ranges. 

Illustration 

Consider an 8th order model 

35 s7+ 1086 s6  + 13285 s5  + 82402 s4  +2 78 376 s3+ 

G(s) = 51181282  + 482964s + 194480 

s8+33s7  + 437s6  + 3017s5  + 11870s4  

+27470s3  + 3749252+ 28880s+ 9600 

Step 1 

As the system is stable and minimum phase, we let .. 
A 
p(s) =1 and q(s) =1 	- 

Step2 

We let kp  = kq  =k in order to get approximants 

Gr(s) that are comparable to those of G(s). This means 

that the pole zero excess is kept equal to one and that 

the high frequency slope of the Bode plot is retained. 

Step ..  3 

C is chosen such that the low frequency gain of 

Gr(s) is equal to low frequency gain of 

G(s) i.e. C = I 

Step 4 

Using equation (47) successively six times, separately 

for numerator and denominator polynomials we get second order 
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reduced model. 

gred(s) = 347734080s + 980179200 

Pred(s) = 26994240s2  + 1455555200s + 193536000 

34?734080s + 980179200 
G2  (s) 	=4x 

 269942405 + 145555200s +193536000 

5.1527s + 145.24272 
a 

s2+ 5.39208s + 7.169529 

The pole zero locations are tabulated in following 
table -5. It is apparent how well the poles and zeros 
of the reduced order systems approximates those of the 
original system. 

TABl E -5 

Order of 	Poles 	 Zeros 
approximant- 

r = 8 	-1 + i, -1, -3, -4, 	-1.03 ± 0.631i, -2.64 
(Exact) 	-5, -8, -10 	-3.83, -4.90, -7.80, 

-9.78 

r=6 	-1.27,-1.45+1.102, 	-1.42+0.6961, -3.32, 
-3.65,-5.18;-7.72 	-4.97, -7.49 

r=4 	-1.76, -2.29 + 0.948i, -2.15 + 0.619i,-4.90 
-5.23 

• r=2 	-2.38, -3.01 	-2.82 

	

ral 	 -2.66 
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3.4.2 Modal method or model reduction using dominant 

pole. retention 

Originally this method was proposed by L.J.Davison 

[17] . The principle of the method is to neglect eigen-

values of the original system which are farthest from 

the origin, and retain only dominant eigenvalues and 

hence the dominant time constants of the original system 

in the reduced model. This implies that the overall 

behaviour of the approximate system will be very similar 

to the original system. Since the contribution of the 

unretained eigenvalues to the system response are impor-

tant only at the beginning of the response, whereas the 

eigenvalues retained are important throughout the whole 

of the response and, in fact, determine the type of the 

response which system will have. 

Let the poles of an nth order system are shown as 

1- . 

F 
Real 

If an rth in order reduced model is needed. We will retain 

the r poles nearest to the origin and will neglect the 

rest. So poles of reduced- order model can be shown as 
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This is the gist of the method. [For detailed 

mathematical description refer' [17] . 

Illustration 

Consider eighth order Krishnamurthy Seshadri`s 

model 

35 s7  + 108656  + 13285 s + 82 402 s4  

+ 27837653+51181252+ 482964s +194480 

s8  +33x7  +437x6  + 3017s5+ 11870x4  +27470x3+ 

+37492  s +28880s+ 9600 

System has poles at 

s= -10, -8, -5, -4, -1 + j, -3, -1 

Discarding poles at s= -10, -8, -5,-4, -1 + j 

We get the second order reduced denominator as 

3+4s +s2  

Pole zero pattern of the system is given in Fig. (1(c)). 



Jw 	 Jw 

I j183122 	j 20.2030 

1 9.0178 

FN 18.3122 	
FD 

j 4.4985 j 5.0260 

j 2.9823 
j2-5250 

j 1 .3612 	 j 1.1000 
j 1 •8211 

10.6376 j 0.5299 

.j 0.6376 -j0`5299 
-1 1 .3812 	 - j 1.1000 

-j 	1.8211 
-j 2.5250 

-j 5,0260 
.  44985 

-1 5.0260 
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-J 18.3122 
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FIG(1C)ATTERNS OF POLES AND ZEROS OF AN EIGHT ORDER SYSTEM 
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MODEL REDUCTION USING MIXED METHODS 
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Mixed methods are used only to incorporate the 

advantages of two different methods. CFE method is 

a very powerful frequency domain method of model 

reduction. The only drawback of this method is that 

the reduced model may be unstable even though the 

original system is stable. To overcome this difficulty, 

this method has been mixed with various other frequency 

domain methods by so many researcher and results came 

out to be very attractive. 

In this chapter -five methods namely (1) Routh 

approximation (2) Routh Hurwitz array (3) stability 

equation (4) Polynomial differentiation (5) Dominant 

pole retention are mixed with 

(1) Cauer second form 

(2) Cauer third form 

separately. 

Each method is followed by an illustrative example 

in order to reveal under lying technique. In all the mixed 

methods, denominator is reduced by respective method and 

coefficients of reduced numerator are found out by matching 

the cauer coefficients of original and reduced model. 

Consider a transfer function is given as 

n-1  G(s)  a 
A2sns+A2,rr1sm2+0..+A24s3+A23s2+A22s+A21 

rrl 	3 	2  A2,n+lsn+ A1,ns 	+...+A14s+A13s+Al2s+A 
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(A)  To find out numerator coefficients by matching 
Cauer II nd forms coefficients  . 

Step -1 

Evaluate Cauer 2nd form coefficients hp (p=,l,2,3...n) 
by forming Routh array [18]. 

h% = All < A1.1 
1  p_  A21 

h►  =11  < 
2  A31  A31 

h►  A31  < 
3  A41 A41 

Al2 A13 ""' A11  A1,1  
A22 423  ..... A2  n 
A32 .. . 

..• 

where first two rows of this array are copied from the 
Denominator and numerator coefficients respectively of 
G(s), and rest elements are computed by well known Routh" s 
algorithm. 

Aj,k = Aj-2,k+1 j-2 j-2,k+1 

and 	 J = 3,4 ....n+l 	 (49(a)) 
k = 1,2 .... 

► Al 	 (49(b)) hP  a 	p x,2,3.... n 
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Step -2 

Reduce the denominator polynomial by any one of the 
five methods enumerated in previous chapter. Let the 
reduced kth polynomial is 

d r (s)  = Bll + B12 s + B13  

....B 	sr 

Step -3 

Match the Cauer quotients hh (i=1,2...r) for finding 
the numerator terms of the reduced order model (ROM) .For 
this construct inverse Routh array as under 

Bi+1,1 = B s  i 1  / h 	i=1,2,...r 

Bj-l,k+l =(Bj-2,k+1-Bj,k )  -2 

J = 3,4,5....(r+2-k) where r < n 
forr=2, 

i =1 

`  B2,1 	B:11 / h 	 (49(c))l 
R B22  = (B1, 2-B31)/ 14 

= (B1,2  -` )/hj 

h2  B22 =h 81,2 B2,1  

	

hl 	 (49(d) , 
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Step - 4 

Reduced transfer function is 

R(s) = B22 s + B21 	
(419(e)) 

B13  S + B12  s + B11  

(B)  To find out numerator coefficients by matching 

cauer 3rd form coefficients  . 

Step - 1 

Evaluate Cauer 3rd form coefficients hp  and HP 
(p=1,2...n) by forming Routh array L18]. 

h1= All 
A2l 

h 	 1  
2  A31 

h = Ail 
A41 

All Al2 A13 ..... A1' A1 ,+a +l < 	 Al zn+l 
A22 A22 A23  ..... A2n 	n  Hl=  A.  

A31  A32 ...... A3,1  C 
A41 .....  

Where first two rows of this array are copied from the 
Denominator and numerator coefficients respectively of G(s) 
and rest elements are computed by well known Routh` s algo - 
r ithm. 

AJ,K = AJ 2,K+1 hj-2 AJ-1,K+1 

HJ_2 AJ-1,K , 

J=3,4....n+1 
K = 1,2 ... . 	 (50(a)) 

and 
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h = 
A ,1 

. 	p 
Ap+l,l 

H = AP' n+2-P 
Ap+l,n+l-p 

p = 1,2,3 .... n 	 (50(b) 

Step - 2 

Reduce the denominator polynomial by any one of 
the five methods enumerated in previous chapter.Let 

the reduced polynomial be 

Ar (s) = Bl l + B12 s+ B13 s2 + .... Bir sr° 

Step-3 

Match the coefficients B1, j (step-2) and hp,HP 
of step 1 by applying the following reverse Routh 
algorithm. 

Bi+ls 1 o B
s 

i 1 / hii 	i -1,2 .r 

B j+l,r+l- j = Bj,r+2- j/Hj 

j =1,2 ... (r-1) 

B ._2 k+l -H -2B '-1 k B k 
Bj-1,k+1 = 	h. ~-2 

k =  

j = 3,4,5 ....(r+l-k) and r 	n 

So for r = 2 • 	i.1 



B21 = B13 	 (50(c) ) 

and B22 	
B23 

	
(50(d) ) 

Step-4 

Reduced T.F. is 

R(s)  _ B22 s + B21 	 (50(e)) 
B13 s+B12s+ B11 

An 8th order model is used jnafthe mixed methods 

below to illustrate the methods. 

35 s7+3086s6+13285s5  + 82402s4  

+278376s+ 511812 s2  + 

482964s + 194480 
G(s)= 

s8+33s7+437s6+ 3017s5+ 11870s4  

+27470$3  + 3749252  + 28880s + 

4.1  Mixed method using Routh approximation and CFE 

The combination of CFS and Routh approximations for 

order reduction simply needs to constructing an a table 

for the denominator and find stable reduced order polyno-

mial for it. However, a short coming of the original Routh 

approximation as suggested by Hutton and Fried land (1975) 
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is having to go through two reciprocal processes in 

addition to constructing the a table. This method mixed 

with CFE ensures the stability of the reduced system. 

Routh Table of the Original System 

9600, 	28880, .37492, 27470, 11870, 
3017., 437, 33, 1 

194480, 482964, 511812, 278376,82402, 

13285, 16, 35 

hi 

 

=0.0493624 } 	5039.  7367 

h =38.589317 	Cauer second form coefficients 

hl  = 0.0493624 
} Caner third form coefficients 

Hl  = 1/35 

(1) Routh approximation mixed with CFE of Cauer second 
form 

Step-1 	Cauer coefficients are 

hi = 0.0493624 

h2 = 38.589 317 

Step -2 	2nd order denominator polynomial (refer 

illustrative example of Article 3.1) reduced by Routh 

approximation is given as 

s2+ 1.01831s + 0.338486 
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Step-33 

As per equation 59(c) and 59(d) 

B11 	0.338486 

21 = hl 	0.C493624 

= 6.857 

h2 B12 - B21 
B22=h1 h2 

. 17.029441 

Step- 4 

As per equation 59(e) 

17.029441s + 6.8571625 
R(s) 

s+ 1.01831s + 0.338486 

(II) Routh approximation mixed with CFS of Cauer 
3rd form. 

Step- i 

Cauer coefficients are (50(b) ) 

k 1 = 0.049 362 4 

Hl = 1/ 35 

Step- 2 

2nd order reduced polynomial (by Routh approximation) 

is given as 

s2+ 1.01831s + 0.338986 

ili l~uW~, 
IQQ 
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Step - 3 

As per equation 50(c) and 50(d). 

B21= aE _~ 6.8571625 
1 

B13 
B22 = Hl = 35 

Step - 4 

As per equation 50(e) 

35s + 6.8573 
R(s) = 

s2+ 1. CL1831 s + 0.338486 

4.2 Mixed method using Routh Hurwitz array and CFE 

A short coming of the original Routh approximation 

as suggested by .Hutton and Friedland (1975) is having to 
go through two reciprocal processes in addition to cons-

tructing the ,a table. The latter difficulty is not so 

serious because this table is .essentially the standard 

Routh-Hurwitz array and the former problem can be avoided 

by a regrouping of the entries of a table as suggested 

by Kri shnamurthy and Sheshadri (1976) which gives the a 

coefficients of the full model without having to perform a 

reciprocal transformation. The construction of p table 

which is more cumbersome than the a table is avoided all 

together. This, method is nothing but Routh Hurwitz array. 
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Since the. numerator in present method is approximated 

by the CFE method, this mixed CFE-Routh Hurwitz array method 

makes use of stable reduced polynomials for the denominator 

and takes advantage of computationally convenient scheme of 

CFE method for numerator. 

(1)  Routh Hurwitz  arraymethod mixed with CFE of Cauer 

2nd form 

Step - 1 

Cauer coefficients of original system 

hl = 0.0493624 

h2 = 38.589 317 

Step - 2 

?nd order reduced (by Routh Hurwitz array method) 

denominator polynomial (refer illustrative example of 

Article-3. ) is givdn as 

20123.733552  + 18116. 1695s + 9600 

Step- 
As per equation 49(c) and 49(d). 

B21  = 8- 1-  
hl  0.0493624 

= 194480.01 

B22- h2  B12  B21 

h1 h2 
= 264906.73 

V 
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step4  

Reduced transfer function (eq. 59(e)). 

264906.73s + 194480.01 
R(s) _ 

20123.7335 s2  + 18116.1695 s 
+ 9600 

13.163955 s + 9.6642177 

s2+ 0.9042s + 0.477 049 

(II)  Routh Hurwitz array method mixed with CFE of 

Cauer 3rd form 

Step -1 

Cauer coefficients of original system 

hl  = 0.049 3624 

Hl  = 1/ 35 

St 

2nd order reduced denominator polynomial 

(refer Art. 3.2) . 

20123.7335s + 18116.1695s + 9600 

Step -3 

As per equation 50(c) . and 50(d) . 

B21  = Bj = 19 4480.01 

B22  =  BHl  = 704330.66 
l 



53 

Step - 

Reduced T.F. 15 (50(e)) . 

704330.66s + 194480.01 

20223.7335s +18116.1695s + 9600 

35'* 9.664226 

s2+ 0.900242s + 0.477049 

4,3  NIXED METHOD USIN G STABI LI TY SQUATI ON AND CFE 

The main objective of this  method is to make use of 

the advantages of the stability equation method and 

continued fraction method. 

'CFE has a short cont rig namely the reduced model 

may be unstable even though the original system is, 

stable. Stability equation method was proposed by chen 

and Han (1979). The reducing procedure is simple and only 

two equations with one half of the order of the original 

system need to be factored. All the reduced models are 

quaranteed to be stable if the original system is 

stable. However there is a disadvantage of this method. 

i.e. it can not be applied directly to reduce the 

transfer functions of non minimum phase systems. The 

procedure consists of three steps. 
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1. to reduce the denominator of , a transfer function by 
stability equation method, 

2. to obtain partial quotients by the algorithm of CF,E 
method, 

3. to discard the undesired partial quotients and to 

reconstruct the reduced model of which the denomi-
nator is obtained from step-i. 

(i) Stability equation method mixed with CF$ of Cauer 

2nd form 

Step -1 

Cauer coefficients of original system are 

hl = 0.0493624 

h a 38.589 317 

Step -2 

2nd order reduced (by stability equation method) 

denominator polynomial (refer illustrative example of Art 

3.3). is given as 
34194s2+ 28880s + 9600 

_:!p -3 

As per equation 149(c) and 49(d) 

s~1 B11 

19 4479.3 

B22= 
hi B12 - B21 

482962.55 
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Step -4 

Second order reduced transfer function is 

given as 49(e). 

482962.55s + 194479.3 
R(s) 

34194s2  + 28880s + 9600 

14.12419s + 5.6875271 

s2+ 0.859s +0.285 

(II)  Stability equation method mixed with CFE of 

Cauer 3rd for 

Stems-1 

Cauer coefficients of original system are given 

as 

hl  = 0.049 362 4 

Kl  = 1/35 

Step -2 

Second order reduced denominator polynomial 

(refeif Art 3.3) is given as 

34194s2  + 28880s + 9600 

St_e3 

As per equation 50(c) and 50(d) 
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B21 = Bl l = 19 4479.3 
b'1 

B13 B22  a 1196790 ~ Hl  

Step -4 

Second order reduced transfer function is given 

as 50(e) 

1196790s + 194479.3 
R(s) _ 

34194s + 28880s + 9600 

355 + 5.6875 475 

s2+ 0.84459 s + 0.23075 

4.4 MLXED METHOD USING POLYNOMIAL DIFFERENTIATION 
AND CFE 

Reduction method, polynomial differentiation was 

proposed by Per Olof Gutman. Thi's is a very simple method 
and this is equally applicable to unstable and nonminimum 
phase systems. This method mixed with CFE gives good 

results. Computationally this method is the simple most one 
and qualitatively is comparable with other appreciated 

methods. 

(1) Model reduction using polynomial differentiation 

and CFE of Cauer 2nd form 

Step-1 

Cauer coefficients of original system are 
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hl - 0.0493624 

h -38.589317 

Step-2 

2nd order reduced (by polynomial differentiation 

method) denominator polynomial (refer illustrative 
example of Article (3.4.1) is given as 

26994240s2 + 145555200s + 193536000 

Step-3 

As per equation 49(c) and 49(d) 

B11 B21 	b~ 
1 

3.92071x1t?9 

h2 B12 - B~1 
B22 

=1.39093x109 

Step -4 

Reduced transfer function eqP a 49(e). 

1.39093 x 109s + 3.92071 x 109 
R(s) 

2699424052+ 145555200s + 193536000 

51.527152s + 145.24272 

s2 + 5.39208s + 7.169529 



w 

(II) Model reduction using polynomial differentiation 
and CF F of Cauer 3rd form 

Step 1 

Cauer coefficients of original system are 

h1  = 0.049 362 4 

Hl = 1/35 

St, 2 

2nd order reduced (by polynomial differentiation 
method) denominator polynomial (refer illustrative example 
of Art 3.4.1) is given as 

26994240 s2  + 145555200s + 193536000 

Step -3 

As per equation 50(c) and 50(d) 

B 
B21  =  1  = 3.92071 x 109  

h1 

B22 =  B13 = 9.44798 x 1( 
H1  

Step -4 

Reduced transfer function is (equation 50(e). 

9.44798 x 108s + 3.92071 x 109  

26994240s + 145555200s + 193536000 

35s + 145.24272 

= 	s2+5.39208s + 7.169529 
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4.5  MODEL REDUCTION USING DOMINANT POLE RETENTION 
AND CFE 

An alternative method especially for reduction of 

MI MO systems has been introduced by Shieh and Wei (1975) 
which retains the dominant poles of the full model and 
applies the matrix continued fraction method to find a 

reduced order numerator matrix polynomial. The method 
eliminates the unpredictable results of the straight 

matrix continued fraction. Such as providing higher order 

reduced models. 

(1)  Model reduction using modal method and CFE of 

Cauer 2nd form 

Cauer coefficients of original system are - 

Step -1 

hi = 0.0493624 

h2 = 38.589 317 

Step-2 

2nd order reduced (by Modal method) denominator 

polynomial (refer illustrative example of Art 3.4.2) is 

given as 

s2 +4s+3 

Step -3 
As per equation 50(c) and 50.(d) 

B  B21 =
B11 

 = 60.775 003 
hl 



	

B22 	h2 Bj 2  _ B21  

	

22 	h h  
= 49.128125 

Step  _4 

Reduced transfer function (eq. 50(e)) . 
49.128125 s + 60.775003 

R(s) _ 
s+4s+3 

(II)  Model reduction using modal method and CFE of 
Cauer  3rd form 

Cauer coefficients of original system are 

Ste  

hi  = 0.0493624 

H1  = 1/35 

Step  -2 
Second order reduced (by modal method) denominator 

polynomial (refer illustrative example of Art 3.4.2) is 

given as 

s2 +4s+3 

Step -3 
As per equation 50(c) and 50(d) 

B'1  = B11  = 60.775003 
hi 

B 
B= 22 H1 



Step 4 
Reduced transfer function (eq. 50(e) 

is 

35s + 60.775003 
R(s) 

s2+4s+3 
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CHAPTER - 5 

COMPARISON OF PROPOSED 

REDUCTION METHODS 
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In this chapter the reduction methods proposed 

in earlier chapters i.e.  Chapter 3 and Chapter -'4 

are applied to various SISO and MIMO systems. The 

step responses of original system and of reduced' models 

are compared. Following methods are used for compara - 

tive study of step responses. 

Method 1 - Routh approximation method 

Method 2 - Routh approximation mixed with Cauer 

2nd form. 

Method 3 - Routh approximation mixed with Cauer 

3rd form. 

Method 4 - Routh Hurwitz array method. 

Method 5 - Routh Hurwitz array mixed with Cauer 2nd 

form. 

Method 6 - Routh Hurwitz array mixed with Cauer 

3rd form. 

Method 7 - Stability equation method 

Method 8 - Stability equation method mixed with 

Cauer 2nd form. 

Method 9 - Stability equation method mixed with 

Caner 3rd form. 

Method 10 - Polynomial differentiation method. 

Method 11 - Polynomial differentiation mixed with 

Caner 2nd form. 

Method 12 - Polynomial differentiation mixed with 

Caner 3rd form. 
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Method 13 - Modal method mixed with Cauer 2nd form. 
Method 14 - Modal method mixed with Cauer 3rd form. 

5.1  ILLUSTRATIVE EKAMPLES 

Three celebrated SISO models, namely 

1. Hutton` s model [11] 

24s3 ,+ 2 48 s + 9 0as + 1200 
G11(s) _ 

s +18 s + 102 s + 180s + 12 0 

2. Chuang+  s model [10] 

8s2 +6s+2 

s3 +4s +5s+2 

3. Krishnamurthy and Sheshadri" s model [12] . 

357 + 10865 + 13285s5  + 82402s4  

G13(s)  = +278376s3  + 511812s2+ 482964s + 194480 

s8+3357+ 434 + 3017s5  + 11870s4+ 27470s3+ 

37492 52+288805  + 9600 

have been reduced by aforesaid methods and step responses 
have also been plotted in order to compare themqualitatively 

in Art 5.1.1. 

One 4th order MEMO model has also been reduced and 
step responses are plotted in Art 5.1.2. 
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5.1.1 Illustrative Exam les 

(SISO system) 

1. Example -1 (: Huttons model) 

2nd order reduced models by various methods enlisted 
in the begining of this chapter are - 

1. By method 1 

10s + 13.32 

-11(s) = s+2s+1.332 

2. By method 2 

10.OQs + 13.32 
R12(s) 52+2S  + 1.332 

3. By method 3 

14s + 13.32 
R13(s) 

s+2s+1.332 

4. By method 4 

9.04628s + 13.0434 
~4(s) = 2 

s+1.70132s+1.304 

5. By method 5 

7.2332s + 13.04 
R15(s) 

s2+ 1.70132s + 1.304 

6. Method 6 

14s + 13.0434 
R16(s) 

s2+ 1.70132 s + 1.304 



7. Method 

R17(s) 

8.  Method 8 

8.9277176s + 11.903624 

s2+ 1.7855435s + 1.1903624 

8.927?17s + 11.903624 

s2+ 1.7855435s + 1.19 0362 4 

9. Method 

14s + 11.903624 
R19(s) •= 

s2+ 1.7855435s + 1.1903624 

10. Method (10) 
17.64711s + 70.588235 

R1,20(s) 	s + 5.2941s + 7.0588235 

11. Method 11 

R1 11(s)  a 	7 0.5882 35 
s + 5.2941a + 7.05882 35 

12. Method 12 

14s + 70.588235 
,12(s) a  2  

s + 5.2941s + 7.0L388235 



13. Method 13 
9.587571s + 19.128148. 

81,13(s) a 2  
s +2.3933682 s + 1.9128148 

14. Method 14 

14s.+ 19.128148 
R1,14(s) = 

s + 2.39 33682 s + 1.9128148 
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TABLE -6 

EX-1, METHOD 1,2,3 

No. Time G11(s) R11(s) R12(s) R13(s) 
(Sec) 

1.0 0 0 0 0 

2. 0.5 4.674 4.185 4.1876 5.3810 

3. 1 7.0025 6.9182 6.9186 8.3066 

4. 1.5 8.48169 8.5565 8.5544 9.7297 

5. 2 9.3351 9.4567 9.4522 10.3085 

6, 2.5 9.7713 9.9009 9.8947 10.4583 

7. 3 9.9645 10.0865 10.079 10,4295 

8.  3.5 10.0324 10.1389 10.1307 10.3194 

9.  4 10.0442 10.1316 10.1229 10.2171 

10.  4.5 10.0359 10,1038 10.0949 10,135 

11.  5 10.0239 10.0741 10.0651 10.0772 

12.  5.5 10.0137 10.0499 10.0408 10.0401 

13.  6 10.007 10.0326 20.0235 10.0182 

14.7 9.9992  10.0147 20.0057 10.0008 

15. 8 9.9999 10,0093 .10.0003 9.9980 

16. 9 9.9999 10.0084 9.9994 9.9986 
17.10 9.9999 10.0086 9.9996 9.9994 



TIME RESPONSES 

TABLE - 7 EK-1 METHOD - 4,5,6 

No. Time Gll(s) R14(s) P15(s) R16(s) 
Sec. 

1. 0 '. 	=b 0 0 0 

2. 0.5 4.674 4.1053 3.5267 5.6849 

3. 1 7.0025 7.1191 6.4165 9.0352 

4. 1.5 8.48169 9.0226 8.4166 10.6725 

5 . 2 9.3351 10.0451 9.6093 11.2281 

6 • 2.5 9.7713 10.4728 10.2023 13.2029 

7. 3 9.9645 10.5549 10.4122 10.9351 

8. 3.5 10.0324 10.472 10.4138 10.6209 

9. 4 .10.0442 10.3362 10.3261 10.3540 

10. 4.5 10.0359 10.207 10.2189 10.1644 

11. 5 10.0239 10.1C.1 10.1264 10.0482 

12. 5.5 10.0137 10.0433 10.0598 9.9883 

13. 6 10.007 10.0069. 10.0186 9.9 65 2 

14. 7. 9.9992  9.986 9.9884 9.9697 

15. 8 9.9999 9.9915 9.9894 9.9876 

16. 9 9.9999 9.9988 9.9955 9.9978 

17. 10 9.9999 10 .0022  9.9991 10.000 
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TIME RESPONSE 

TABLE 8, E}C-1, METHOD -7,8,9 

No. Time 	G 1(s) 	R17(s) 	R18(s) 	R19(s) 
Sees. 

1.0 0 0 0 0 

2. 0.5 4.674 3.9126 3.9126 5.5091 

3. 1 7.0025 6.6841 6.6841 8.6277 

4. 1.5 8.48169 8.4558 8.4558 10.1684 

5. 2 9.3351 9.4780 9.4780 10.767 

6. 2.5 9.7713 9.9968 9.9968 10.8648 

7. 3 9.9645 10.2099 10.2099 10.7388 

8. 3.5 10.0324 10.2568 10.2568 10.5453 
9. 4 10.0442 10.2267 10.2267 10.3614 

10. 4.5 10.0359 10.1709 10.1709 10.2166 

11. 5 10.0239 10.1152 10.1152 10.1357 

12. 5.5 10.0137 10.0702 10.0702 10.0522 

13. 6 10.007 10.0383 10.0383 10.0161 

14. 7 9.9992  10.0061 10.0061 9.9913 

15. 8 9.9999 9.9976 9.9976 9.9915 

16. 9 9.9999 9.9973 9.9973 9.9958 

17. 10 909999 9.9986 9.9986  9.9986 
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TABLE - 9 EX-1 METHOD-1a.12,13 

No. Time 	G11 	R1,10 	81,11 	81,12 

1.0 0 0 0 0 
2, 0.5 4.674 6.1834 3.8396 5.6990 

3. 1 7.0025 8.6899 7.4501 8.4336 
4. 1.5 8.48169 9.577.5 9.c877 9.4762 

5. 2  9.3351 9.8693 9.6982  9.8340 
6. ' 2.5 9.7713 9.9611 9.9051 9.9495 
7. 3 9.9645 9.9887 9.9714 9.9851 
8. 3.5 10.0324 9.9968 9.9917 9.9957 
9. 4 10.0442 9.9991 9.9976 9.9988 
10. 4.5 10.0359 9.9997 9.9993 9.9996 

11. 5 10.0239 9.9999 9.9998 9.9999 
12,  5.5 10.0137 9.9999 9.9999 9.9999 

13,  6 10.007 9.9999 9.9999 9.9999 
14, 7 9.9992  9.9999 9.9999 9.9999 

15.8 9.9999 9.9999 9.9999 9.999 

16. 9 9.9999 10 10 10 

17. 10 9.9999 10 10 10 
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TIME RESPONSE 

TABLE -10 EX-1 METHOD 13,14 

No. Time G11(s) R1,13(s) R1,1.4(s) sec 

1.0 0 0 0 

2, 0.5 4.674 4.188 5.377 

3. 1 7.0025 7.013 8.242 

4. 1.5 8.48169 8.667 9.579 

5. 2 9.3351 9,524 10,096 

6. 2.5 9.7713 9.911 10.226 

70 3 9.9645 10.051 10.205 

8. 3.5 10.0324 10.06 10.143 

90 4 10.0442 10.06 10.086 

10. 4.5 10.0359 10.045 10.046 

11. 5. 10.0239 10.026  10.021 

12. 5.5 10.0137 10.013 10.008 

13. 6 10.007 10.006 10.002 

14. 7 9.9992  10.000 9.9999 

15. 8 9.9999 9.9999 9.9999 

16. 9 9.9999 9.9999 9.9999 

17. 10 9.9999 9.9999 9.9999 
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EXAMPLE - 2 (CHUAG' S MODEL) 

1. Method 1) 

1.6667s + 0.55555 
R21(s) = 

s2+ 1.3888s + 0.55555 

2. Method (2) 

1.66655s + 0.5555 
R22(s) = 2 

s + 1.3888s + 0.5555 

3. Method (3) 

.8s + 0.5555 
R~ 3(s) 

s2+1.3888 s + 0.5555 

4. Method (4) 

1,5s + 0.5 
R2 ,(s)= -  

s2+1.125s+0.5 

5. Method (5) 
1.375s + 0.5 

s2+ 1.125s + 0.5 

6. Method (6) 
8s + 0.5 

"L 6(s) a 
'  s2+ 1.125s + 0.5 

7. Method (7) 

1.5s + 0.5 R2 ,7(s) _ 
s2+1.25s+0.5 
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Method (8) 

1.5s + 0.5 
R2 8(s) 

s+1.25s+ 0.5 

Method (9) 

8s + 0.5 

R2 ,9(S) 
s2+ 1.25s + 0.5 

Method (10) 

2.25s + 1.5 
R2 10(s} a s 

s+2.5s+1.5 

Method (11) 
3.25s + 1.5 

R2,11(s)= 2 

s +.2.5s + 1.5 

Method (12) 

8s+1.5 
R2 12(s)~ 

s+2.5s+1.5 

Method (13) 

4s+1 
R2,13(s)° 2 

s+2s+1 

Method (14) 
8s+1 

R2,14(S) 

s2+2s+1 
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TIME RESPONSE 

TABLE -11 EX-2 METHOD 1.2.3 

No. 
(Sec
Time) G2,1(s)  R21(e)  R22(s)  R23(s) 

1. 0 0 0 0 0 

2, 0.5 1.8057 0.64239 0.6422 2.8731 

3. 1 1.77187 0.99956 0.9983 4.1224 

3. 1.5 1.3449 1.1765 1,176 4.4372 

5. 2 1.0692 1.2479 1.2477 4.2541 

6.  2.5 0.9259 1.2590 1.2589 3.8406 

7.  3 0.8732 1.2389 1.2388 3.3529 

8.  3.5 0.8691 1.2052 1.2051 2.8765 
9.  4 0.8864 1.168 1.1680 2.4528 

lo. 4.5 0.9097 1.1328 101329 2.0974 
11. 5 0.9321 1.1021 1.1021 1.8113 
22. 5.5 0.95W 1.a766 2.0767 1.5881 

13. 6 0.9652 1.0563 1.0564 1.4185 
14, 7 0,9835 1.0287 1.0288 1.2004 

15. 8 0.9926 1.013 1.0136 1.0884 

16. 9 0.9967 1.0058 1.0059 1.0331 

17. 10 0.9986 1.002 1.0023 1.0117 

18. 11 0.9999 1.000 1.0007 1.0024 
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TINE RESPONSE 

TABLE -12 FX-2 METHOD 4,5.6 

No. Time 	G21(s) 	R24(s) 	R25(s) 	R26(s) 
sec. 

1. 0 0 0 0 0 
2, 0.5 1,8057 0.6135 0.5667 3.048 

3. 1 1.77187 0.9997 0.9306 4.591 

4. 1.5 1.3449 1.2197 1.1445 5.1303 

5, 2 1.9692 1,3243 1.2527 5.0468 

6.  2.5 0.9259 1,3532 1.2904 4.6a64 

7.  3 0,8732 1.3362 1.2845 4.0289 

8.  3.5 0.8691 1.2948 1,2541 3.4076 

9.  4 0.8864 1,2432 1.2128 2.8258 

10. 4.5- 0,9097 1.1909 1.1691 2.3216 

11, 5 0,9321 1.143 1,.1282 1.9092 

12.  5.5 0.9507 1.021 1.0928 1.5882 

13.  6 0.9652 1.0692 1.0638 1,3496 

14. 7 0.9835 1.0253 1,0245 1.0673 

15. 8 0.9926 1.0038 1.0047 0.9562 

16. 9 0.9967 0.9957 0.99969 0.9327 

17. 10 0.9986 0.9943 0.9956 0.9445 

18. 11 0.9994 0.9954 0.9960 0.964 
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TIME RESPONSE 

TABLE 13 SX-2 METHOD 7.8,9 

No. Time G~1(s) R~7(s) R28(s) R29(s) 

1. 0 0 0 0 0 

2, 0.5 1.8057 0.5969 0.5969 2.9639 

3. 1 1.7187 0.9536 0.9536 4.3697 

4. 1.5 1.3449 1.1487 1.1487 4.8122 

5. 2 1.0692 1,2395 1.2395 4.6983 

6. 2.5 0,9259 1.266 1.266 4.2972 

7. 3 0.8732 1,2558 1.2558 3.7792 

8. 3.5 0.8691 1.2267 1.2267 3.2463 

9. 4 0.8864 1.1903 1.1903 2.7544 

10. 4.5 0.9097 1.1534 -1.1534 2.%297 

11. 5 0.9321 1.1194 1.1194 1.9800 

12, 5.5 0.9507 1.0903 1.0903 1.7027 

13. 6 0.9652 1.0664 1,0664 1.4897 

14. 7 0.9835 1.033. 1.033 1.2150 

15. 8 0.9926 1.0144 1.0144 1.7774 

16. 9 0.9967 1.0051 1.0051 1.0167 

17. 10 0.9986 1.0010 1.0010 0.9947 

18. 11 0.9994 0.9996 0.9996' 0.9899 



ig 

TIME RESPONSE 

TABLE -14 Ex-2 METHOD 11 12 .13 

No. Sece 	
G21(s) 	R2,10(s)  R,1 (S) 	R2,12(s)  

1. 0 0 0 0 0 

2, 0.5 1.8057 0.7288 0.9972  2.2718 

3. 1 1.7187 0.9940 1.2835 2.6586 

4. 1.5 1.3449 1.0712. 1.3066 2.4251 

5, 2 1.0692 1.0785 1.2496 2.0623 

6. 2.5 0.9259 1.0643 1.1814 1.7378 

7, 3 0.8732 1.0469 1.1242 1.4917 

8.  3.5 0.8691 1.0321 1.0820 1.3191 

9.  4 0.8864 1.0212 1.0529 1.2034 

10.  4.5 0.9097 1.0137 1.0336 1.128 

11.  5 0.9321 1.0087 1.0210 1.0798 

12.  5.5 0.9507 1.0054 1.0131 1.0494 

13.  6 0.9652 1.0034 1.0081 1.0304 

14. 7 0.9835 1.0012 1.003 1.0114 

15. 8 0.9926 1.0004 1.001 1.042 

16. 9 0.9967 1.0001 1.0004 1.0015 

17. 10 0.9986 1.000 1.0001 1.0005 

18 . 11 0,9994 1.000 1.0001 1.0002 
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TIME RESPONSE 

TABLE -15(-2 METHOD 13.14 

N. 	Time 	G21(s) 	R2 ,13(s) 13(s) 	R2'  14(s)  { sec)  

1. 0 0 0 0 

2 •  0.5 1.8057 1.303 2.516 

3. 1 1.7187 1.735 3.207 

4. 1.5 1.3449 1.781 3.119 

5. 2 1.0692 1.676 2.759 

6. 2.5 0.9259 1.533 2.354 

7. 3 0.8732 1.398 1.995 

8. 3.5 0.8691 1.287 1.709 

9. 4 0.8864 1.201 1.49 4 

10. 4.5 0.9097 1.138 1.338 

11. 5 '0.9321 1.094 1.229 

12. 5.5 0.9507 1.063 1.153 

13. 6 0.9652 1.042  1.101 

14. 7 0.9335 1.018 1.043 

15. 8 0.9926 1.007 1.018 

16. 9 0.9967 1.003 1.007 

17. 10 0.9986 1.001 1.003 

18. 11 0.9994  1.000 1.001 
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(III)  EXAMPLE (3) (SHESHADRI°S MODEL) 

1. Method -1 
17.0293s + 6.3573 

R31(s) 	
s2+ 1.831s + 0.338486 

2. Method  -2 
17.029441 s + 6.8571625 

R32(s) _ 
s2+ 1.01831s + 0.338486 

3. Method -3 

35s + 6.8573 
R33(s) 	

s`+ 1.01831s + 0.338486 

4. Method  -4 
16.635516s  + 9.664226 

R314(s)= s
2+ 0.900242s + 0.477049 

5. Method  -5 
13.163955s + 9.6642177 

R3,5(s)= 
s2  0.9 00242 05 + 0.477 049 

6. Method -6 
35s + 9.664226 

R3,6(s)= s
2+ 0.9002425 + 0.477049 

7. Method -7 

R37  (s) 

8. Method -8 

R38(s) 

14.1242s + 5.6875475 

s2+ 0.84459s + 0.28075 

14.12419s + 5.6875271 

s + 0.84459 s + 0.28075 



9.  Method -9 
35s + 5.6875475 

R3,9(s) _ 
82+0.844598 + 0.28075 10. Method -10 
51,527152s + '145.24272 

R3,10(s) _ 
s2+ 5.39208s + 7.169529 

11. Method -11 
32.986137s + 145.24272 

R3 11(s) 
s2+ 5.39208s + 17.169529 

12. Method -12 

35s +145.24272 
R3,12(s) = 

s2+ 5,39208s  + 7.169529 

13. Method -13 
49.128127s + 60.775 

R3,13(s)  = s + 4s + 3 

14. Method -14 
35s + 66.775 

R3,14(s) = 	
s2+4s+3 

ul 
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TIME RESPONSE 

TABLE 16 EX- 3 METHOD 1,2, 3 

No. Time G31(s) 	R31(s) R32(s) R33(s) 
(See) 

1. 0 0 0 0 0 
2, 0.5 11.8765 7.3026 7.302 14.245 

3. 1 17.3889 12.5447 12.5447 23.2013 

4. 1.5 19.665 16,203 16.203 28.392 

5, 2 20.336 18.669 18.668 30.976 
6.  2.5 20.355 20.255 20.255 31;823 

7.  3 20.210 21.209 21.209 31.570 
8.  3.5 20.098 21.720 21.720 30.673 
9.  4 20,06 21,93 21.93 29.449 
10.  4.5 20.079 21.947 21,947 28.108 

11.  5 20.124 21.845 21.845 26.785 

12.  5.5 20.206 21.487 21.487 24.475 

13.  6 20.248 . 21.104 21.104 22,709 

14. 7 20.258 20.791 20.791 21.635 

15 8 20.258 20.568 20.568 20.941 

16. 9 20.257 20.423 20.423 20.549 

17 10 20.258 20.337 20.337 20.348 

18 11 20.258 20.29 20.29 20.256 

19 12 20.258 20.266 20.266 20.256 

20. 13 20.258 20.256 20.256 20.256 



TIME RESPONSE 

TALE -17 EX-3 METHOD 4.5.6 

No. Time G31  (s) R34(s)  R35 (3)  R36(s)  sec. 

1. 0 0 0 0 0 

2. 0.5 11.8765 7.602.  6.231 14.849 

3. 1 17.3889 13,652 11.537 2 4.8 3 

4. 1.5 19.665 18.138 15.749 30.759 

5, 2 20.336 21.199 18.864 33.541 

6.  2.5 20.355 23.061 20.982 34.051 

7.  3 20,210 23.982 22.263 33.065 

8.  3.5 20.098 24.215 22.890 3&.218 

9.  4 20.06 23.987 23.039 28.999 

10.  4.5 20.079 23.487 22.869 26.753 

11.  5 20.124 22.862 22.514.  24.703 

21.017 21.617 21.613 

13. 6 20.248 20.7 20.842 19.947 

14. 7 X0.258 20.194 20.351 19.364 

15. 8 20.258 20.007 20.123 19.397 

16. 9 20.257 20.007 20.071 19.671 

17. 10 20.258 20.063 20.106 19.96 

18. 11 20.258 20.167 20.167 20.167 

19. 12 20.258 20.228 20.218 20.L'79 

20. 13 20.258 20.262 20.252 20.272 



TIME RESPONSE 	 94  
TABLE -18 EX-3 METHOD 

No. Time G31(s) R37( s) R38( s) R39( s) 
sec 

1. 0 '0. 0 0 0 
2. 0.5 11.8765 6.31 6.31 14.725 

3. 1 17.3889 11.241 11.241 24.693 
4. 1.5 19.665 14.986 14.986 30.975 

5. 2 20.336 17.742 17.742 34,484 
6. 2.5 20. 355  19.691 19.691 35.974 
7. 3 2 0, 210 21.001 21.001 36.056 

8. 305 20.098 21.818 21.818 35.211 
9, 4 20.06 22.265 22.265 33.806 

10.  4.5 20.379 22,443 22.443 32.113 
11.  5 20.124 22436 22.436 30.329 

12.  5.5 20.208 22.106 22.106 26.970 

13.  6 20.248 21.622 21.622 24.283 

14. 7 20.258 21.161 21.161 22.383 

15. 8 20,258 20.796 20.796 21.173 

16. 9 20.257 20.539 20.539 20.483 

17. 10 20.258 20.377 20.377 20.145 

18. 11 20.258 20.285 20.285 20.021 

19. 12 20.258 20.241 20.241 20.811 

20. 13 20.258 20.251 20.251 20.05_7 



• J 

TIME RESPONSE 

TABIS-1 EX-3 M€THOD-10 11 12 

No 	Time G31(s) 	R31  0(s) 	R3, 11(s) 	R312(s) 
(sec)  

1. 0 	0 	0 	0 	0 

2. 0.5 11.8765 14.527 	12.109 12.372 

3. 1 17.3889 18.611 17.339 17.477 

4. 1.5 19.665 19.778 19.272 19.327 

5, 2 20.336 20.117 19.937 19.956 

6. 2.5 20.355 20.216 20,156 20.162 

7, 3 20.210 20.246 20.226 20.228 

8, 3.5 20.098 20.254 20.248 20.249 

9. 4 20.06 20.257 20,255 20,255 

10.  4.5 20.079 20.258 20.257 20.257 

11.  5 20.124 20.258 20.258 20.258 

12.  5.5 20.208 - 20.258 20,258 20.258 

13.  6 20,248 20.258 20.258 20.258 

14. 7 20.258 20.258 20.258 20.258 

15. 8 20.258 20.258 20.258 20.258 

16. 9 20.257 20.258 20.258 20.258 

17. 10 20.258 20,258 20.258 20.258 

18. 11 20.258 20.258 20.258 20.258 

19. 12 20.258 20.258 20.258 20.258 

20. 13 20.258 20.258 20.258 20.258 



TIME RESPONSE 

TABLE -20 	EX 3 METHOD -13,14 

No. Time  G31(s) R3,13(s)  R3, 14(s)  sec () 

1.  0 0 0. 0 

2.  0.5 11.8765 13.505 10.797 

3.  1 17.3889 17.397 15.150 

4,  1.5 19.665 18.798 17.3 

5,  2 20.336 19.434 18.495 

6.  2.5 20.355 19.772 19.196 

7.  3 20.210 19.966 19.615 

8. 3.5 20.098 20.062 19.869 

9, 4 20.060 20,151 20.022 

10.  4.5 20.079 20,193 20415 

11.  5 20.124 20.219 20.171 

12, 5.5 20.208 20.234 20.205 

13. 6. 20.248 20.243 20.226 

14. 7 20.258 20,253 20,246 

15. 8 20.258 20.256 20,254 

16, 9 20.257 20.257 20.256 

17. 10 20.258 20.258 20.257 

18. 11 20,258 20,258 20..258 

19. 12 20,258 .20,258 20.258 

20, 13 20.258 20.258 20.258 
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M 
Plot of Frequency responses of various reduced models 
have also been attached herewith. 

(5.1.2) Multi Input Multioutput System (MIMO) 

One MTMO system has been considered in this section. 

It is reduced by a few selected reduction techniques mixed 
with Cauer third form of continued fraction expansion 

namely. 

1. Routh approximation Mixed with cFE of Cauer 3rd 

form - Method -3. 

2. Routh Hurwitz array mixed with CFE of Cauer 3rd 

form - Method 6. 
3. Stability equations mixed with CFE of Cauer 3rd 

form - Method 9. 
4. Polynomial differentiation mixed with CFE of Cauer 

3rd form - Method 12. 

5. Dominant pole retention mixed with CF S of Cauer 3rd 

form - Method -14. 

MIMO system is given as 

X=AX+B 
Y = C X 

where, 



A 0 1 O • 0 

0 0 1 O 

0 0 • 0 1 

-120 -180 -102 -18 

0 	1 
B 

0 	0 

0 	-2 

ll. 	0_i 
 

1200 900 248 14 
C = 

2160 720 264 6 

Applying Faddeava leverrier algorithm as described in 

section 5.2 of this chapter, we get the Transfer function 

as 

154 704 2728 12048 	
2  1 	66 1632 ] s3+ 12904 28440 	5 + 

9900 02880 ] s  + [13200 68160 
7920 160560 23760 226080 

G4(s) = 	4 	3 	2 s 	+ 18 s 	+ 102 s + 180s + 120 

Original models and reduced models can be given as 



Original model (Example - 4) 

154 704 1'.,3 + 2728 12048 s2+  9900 628801 
66 1632 	2904 28440 	7920 160560 

13200 	68160 
+ [ 23760 	226080 

s4  + 18 s3  + 102s + 180s + 120 

Reduced Model by Method 3 

154 704] 146.52 756.576 
66 	1632]s + L 263.736 2509.488 

R4,3 = 
s2 +2s +1.332  

Reduced Model by Method- 6 

154 704 [143.44 740.672 
66 1632 j S+  258.192 245.6.736 

R4,6(s)=—    
 s + 1.70132s + 1.304 

Reduced Model by Method 

154 7041 	1130093986  676.12584 
66 ' 1632 	

s+ [2130.93986 
35.69176 2242.6428 

R4.9( s)  
s + 17855435s + 1.1903624 

Reduced model by Method -12 

154 704 	4009.4117 
f. 66 1632 s 

 + [776.47059 
397.6471 .13298.823 

R4  (s)= 
s + 5.2941s + 7.05882 35 



Reduced Model by Method -14 

154 704 	210.40963 1086.4788 
66 1632 3 s+ 1378.73733 3603.7431 3 

R4,14(s) =  2 

s + 2.39 33682 s + 1.9128148 

Suppose original model is given by 

	

g11(s) 	g12(S) 

	

t g21(s) 	g22(s) 
G4(s) a 

o(s) 

and reduced model is given as 

	

r11(s) 	r12(s) 

 

r21(s)  r22(s) 

R4(s) 
ar(s) 

Then for comparing step responses of original system. We 

will have to decompose this MIMO system into :`OU?'- SISO 

systems as given below. 

s) 

G4.1(s) a gl~ o(s) 

04,2(s)   = g12(s)  

A(s) 

G4 (s) 	g---- 2 
'3 	A(s) 
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G4  4(s) _ g22(s)  
AS 

and respective reduced order modes can be given as 

R4 ,1(s) 	rn(s)  

r12(s) 
R4,2(s) =  

R4,3(s) a r2--- 1  
or(s) 

R 	(s) a 4'4 	Ar(s)  

Applying this decomposition technique to Example-L4., 

we get fol' owing SISO original models and their respective 

reduced models. The unit step response for every original 

model and its reduced model has also been shown sequentially. 

Reduced, order model is denoted by Ra,b(c)(s)• 

where, 

a is number of the example 

b is number of the method by which it has been 
reduced 

c is number of the decomposed SISO model. 

Original model is denoted as 

GAB(s) 

where, 

A = number of the example 

B = number of the decomposed SISO model. 



Orii  na1 model 

154s3  + 2728s2  + 9900 
G4,1(s) a 

s4+ 18s3  + 102s2  + 180s + 120 

Reduced models 

154s + 146.52 
R4  , 3 (1)  (s) =----  

s+2s+1.332 

154s + 143.44 
R4,6(1)  (s) 0_ 

s2+ 1.70132s + 1.304 

154s + 130.93986 
R4,9(1)(s) 

s2  + 1.785 5435 s + 1.19 0362 4 

154s + 776.47059 
2  

s+5.2941s+7.0588235 

154s + 210.40963 

s2+ 2.3933682s+ 1.9128148  

92  
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94 
Original Model 

704s3  + 1204852  + 62880s + 68160 
G4,2

(s) _ s + 18s + 102s + 180s + 120 

Reduced Model 

704s + 756.576 

R49 3(2) (s) 	s + 2s +1.332 

704s + 740.672 
R4, 6(2) (s)  = s + 1.70132s + 1.304 

704s  + 676.12584 

R4' 9 (2) (s) 4  s2  + 1.7855435s + 1.1903624 

704s + 4009.4137 

R412(2)(s)  s + 5.2941s + 7.0588235 

704s + 1c86.4788 
R4,14(2) 

 (s) = s + 2.3933682s + 1.9128148 
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s4+ 1833  + 102 s2  + 180s + 120 

Reduced Model 
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R4,3(3)(s) = 2  
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R4,6(3)(s) = 

s + 1.70132s + 1.304 
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84,12(3)(s)=  

s2+ 5.29413 + 7.0588235 

66s + 378.73733 
R4,14(3)(')=  

s + 2.39 33622 s + 1.9128148 
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Original Model 

1632 s3  + 28440 s + 160560s + 226080 
G44(s) - 

4+ 18s3  + 102 2 s 	 + 180s + 120 

Reduced model 

1632s + 2509.488 
R4,3(4) (s) = 

s2+ 2s + 1.332 

1632s + 2456.736 
R4,6(4)(s) =  2  
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• s2+ 5.2941s + 7.0588235 

1632s + 3603.7431 

R4,14(4)(s)= 	2 s + 2.39 33622 + 1.9128148 

r 



4 

H 

a 

4 
a' 
4 

U, 

4 

'0 
4 

to 

4 
4 

O 

	

Ow O\ u\ 'O f~ t{\ O coca at'- Ci' N 	Q' 

Kl l0 	Q V ~' tf\ lD h ice- N coca co cow ) CO r1 H r rl 	H 	rl 	r1 r 

U rc N- 
	01 NV 	a' ' ON 01 a,\ CJ' 

►M 	C~ l
ca

0
co
0 	CD 	00 00 CO 00 

r r'f r1 

0 

	

0 r~-1 raj M u\ ri N "D N O a' I~l 4(` 	M 	NC~ 

r{ 01 	t~ 	Q~ N N 	rOQi N 	U1 	00 CO 00 

	

X11 00 U N M 	~D C- [- Q' a O~ CO 00 CO c0 co 

• • • • • • • • • • • • • • • • • • 

M kn QO ri M 	N- ca co a' Q~ ET GV Qo 00 w CO 

l0 Irl (` 	u ice. 	co 4 	N- p~ H 4 K\ 

	

O n n CO 4 ri Oo 	l~ n fr1 N r i n l` 1~l N O~ m 
• • • • • • • • • • • • • • • • • • 

A l` m 	lf\ N 4 n t~ l0 L~ ri Lf pp U1 OD 	
p M Kl 

n 	00 O c~ K \ r~-1 	,O t 
r00 	a~13 	0000 co 

0 l- O 	H H u N 4 ir u U 4 N Ni H rn a' a` 
4 w o4 H WN u'\ O r<\ ap O \,b CT u1 4 ►~1 K1 N\ H 000 c 0 	 co 	N E` O*, ON co 	 co 
Kl ~D 00 0 N 4 tf\ 	lam- N- 00 00 00 Ca CO O o 00 

O N- to w O N 4 1O ca 
0000 ,1 4 4 9 H cV M 4 ul kD N-Wa' r- 

S 

O 
z 



N 

0 m O~ r 

0 0 0 0 0 

0 0 0 0 0 
Cm CO v to CD 

Ef 
o° 0 0 O° ° o 0 Un 0 (0 
N N r- 1 

Co 
a) 
co 
a 
0 
CL 
W 

Q 

L+ 

Q E 

C 

0v 

0 W 

E 

0 
a 
0 
N 

LL 

(O 
O 

It) 

c 

t3 
c 
0 ~ 

W j) (Y) 
 

N 

N 

m 



100 

5.2  RADDEEVA - LEVERRI ER AND MODIFIED FADDEZVA LEVERRI ER 

Al GOBI THI' FOR DERIVING TRANSFER FLATC TI ON MIM0 SYSTEM 

In this section the algorithm due to Leverrier is 
described with modifications highlighted in [18] . The 

Leverrier algorithm gives numerical errors when the dimerr 
sion of matrix A increases. The modified algorithm increases 
the accuracy. 

5.2.1 Faddeeva Leverrier Algorithm 

The algorithm widely used, to calculate the coefficients 

of the characteristic polynomial is the algorithm of Leverrier, 

alternatively called the algorithm of Souriau, Frame or 

Faddeeva. The. algorithm calculates the coefficients ai  of 

the characteristic polynomial p(s) of matrix At 

p(s) = Det (sI-A) = a0sn+a1s"-1+a2sn-2+...+ a 

(51) 

and the matrices Bi  of the adjoint of (sI-A) . 

adj (sI-A) = B0sn1+ B1sIr2+ ... + Brr1 	(52) 

then 

B0  = I 	a0 =1 

ai_ = 	Trace (A Bi_1) for i = l,n 	(53) 
i 

B _ABi_1+aiI 
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A nice additional test on the accuracy of this 

algorithm is given by the equality B. = 0. 

Though the method is easy to program but it is a 

well established fact that nearly all arithmetic opera-

tions on a digital computer introduce an error due to the 

limited accuracy with which the nos. are represented. From 

equation 53 it can be calculated that these errors will 

accumulate from al  to an  and from Bl  to Bn, so that aj+1 

and Bi+l will be less accurate than ai  and B respectively. 

5.2.2 Modified Faddeeva Leverrier Algorithm 

Due to the above mentioned deficiency of the ordinary 

algorithm, the latter coefficients should be obtained in a 

different manner, Such an approach is possible by using the 

coefficients b of the characteristic polynomial q(s) of the 

inverse of A and the matrices Di  of the adjoint of ' (sI-A 1), 

q(s) = det (sI - A) = b©sn+ b1  s 1+...+ b 

(54) 

adj (sI-A l) = D0s l+ Dlsrr2+...+ Dn„l 	(55) 

Then, the following relations between ai  and bi  and 
between Bi  and Di  can be used, 

an  = (-1)n  det A 

arri= ari i' .Bn-i- a A 1
Di, for i=1,n 	(56) 
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For 
q(s) = det (sI-A 1) = det [(-s A) (s-II-A)] 

= (det £2) (_1)n (a0+a1s+a2s2+...+a nsn) 
(57)  

Moreover, 

adj(sI-A 1) = det (sI-A 1) (sI-A 1) 

= (det A 1) A(_1) rr1 (I+B1s+...+B1srr1) 

(58)  

So, from above analysis, it is evident that by using 

one additional matrix inversion and one determinant evalua-

tion, the same Faddeeva Leverrier algorithm can b used. 

First to calculate a, and Bi from A and then bi and Di from 

f 1. Only the first (m-1) elements ai and Bi of A and the 

first (m-m) elements b1 and Di of the A 1 need to be cal - 

culated. The value of in has to be selected between (n12) 

and n. The critical value on average comes as 2n/3 offers 

good results [18] . 

The modified algorithm is now 

B0 = I. a0 = 1.0, 	m~n/3 

ai 	Trace (A Bi_1) for i=1, nrl 

B = A Bi_1 + ai I 

D0 =I, a=(-1)n detA 

b = - i Trace (A1 Di_l) 
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Di  = A 1  Di_1  + bi  I 	for i =1, rrm 	(59) 

alri= a b 

Brri = -a A1 Di 

5.2.3 Transfer Function 

X =AX+Bu 

Y = cx 
n- 1  n-i-1 C[ E 	s 	Bi] B 

[G(s)] = 	i=0 	 (60) 
n 
E as 
i=0 

n-1 
c[ E 	s l  Bi] B 

.=0 Q(s)  

where, 

n o(s)  _ 	ai  srri 
i=0 

The B and as  are calculated from (53) . If the deter - 

mi nant value of A is non zero then the modified algorithm 

can be applied to calculate a1  and Bi  from (59). 

5.3 Comparative study of reduction methods 

Some of the methods for model order reduction have 

been described in previous chapter. In this chapter these 

methods are applied to some typical high order SISO systems, 
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and one MIMO system and a comparison is made with the 

resultant second order reduced models. The time responses 

to unit step input of all the reduced models and frequency 

responses of a few reduced approximants, Or* calculated 
and the results are depicted in the form of compact tables 

and graphs. 

For the purpose of comparison of various models an 

error index is chosen as 

J = E 	[y(t)  - Yr  (ti) ] 2  
i =0 

where y an yr  are the outputs of a original system 

G(s) and the reduced model R(s) respectively. N is the 

number of sampling periods and t is the ith sampling 

instant. Error index J is known as cummulative error, 

and it has been dipicted in the form of tables for 

all the four examples as shown below. 
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COMPARATIVE STUDY 

TABI- E - 25 h' c-1 

Method Steady state Out put ' Cummulative 
No. value at time t-10 error (J) 

1. 9.999 .8424cBS-4 . ZI12E+01 

2 . 9.999 .2853E-7 .20424E+01 

3• 9.999 .14784E-9 .27515E+02 

4.  9.999 .31464E-5 .12138E+02 

5.  9.999 .169213-5 .13049E+02 

6.  9.999 .19835E-6 .84901E+02 

7.  9.999 .333O5-5 .5 3186E+01 

8.  9.999 .33305E5 .5 3186E+01 

9.  9.999 .33785-5 .52135E+02 

10.  9.999 .83819E-8 .33086E+02 

11.  9.999 .35926E-9 .10998E+02 

12.  9.999. .35926E-9 .21691E+02 

13.  9.999 .486339-8 .33659E+00 

14, 9.999 •26400&7 .40940E+01 

Yr = unit step output of reduced model. 



COMPARATIVE STUDY 

TABLE-26 &- 2 

Method Steady state Out put Yr' Cummulative No. value at time t=10sec error(J) 

1.  .9986 1.0022 .13018E+02 

2.  .9986 1.0023 .13021E+02 

3.  .9986 1.0117 .25358E+03 

4• .9986 .9943 .15096E+02 

5.  .9986 .9952  .15316E+02 

6.  .9986 .9445 .77295E+02 

7.  .9986 1.0010 .14297E+02 

8.  .9986 1.0010 .14297E+02 

9.  .9986 .9947 .33331E+03 

10.  .9 986 1.00 .98865E+01 

1J.  .9986 1.000 .11090E+01 

12.  .9986  1.000 .23409E+02 

13.  .9986 1.001 .18327E+01 

14.  .9986 1.0003 .13450E+02 

Yr  - unit step output of reduced model. 
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COMPARATIVE STUDY 

TABI E- 27 EX- 3 

Method Steady state Out. put Yr Cummulative 
No. value at time t-l0sec error (J) 

1.  20.257 20.423 .40168E+03 

2.  20.257 20.423 .40163E+03 

3.  20.257 20.549 .43489E+04 

4.  20.257 20.007 .58271E+03 

5.  20.257 20.071 .63264E+03 

6.  20.257 19.671 .49861E+04 

7, 20.257 20.539 .66995E+03 

8.  20.257 20.539 .66994E+03. 

9.  20.257 20.483 .86415E+o4 

10.  20.257 20.258 .87289E+01 

1), 20.257 20.258 .53147E+00 

12.  20,257  20.258 .67084E+00 

13.  2 0.25 7 2 0.25 8 .46538E+01 

14.  20.257 20.257 .16911 

Yr  = unit step output of reduced model. 

4 
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COMPARATIVE STUDY 

TABI E- 28, E( - 4 (G41(s) ) 

No. of 
Method 

Steady state 
value 

Output Yr 
at time t=lOsec 

Cummulative error 
(J) 

3 . 110.00 209.993 .16646E+04 

6. 110.00 11.001 .51365E+04 

9 w 110.00 .1-10.998 .31451E+04 

12. 110.00 1J..000 .13122E+04 

14. 110.00 10.999 .13361E+04 

Yr  - unit step output of reduced model. 



COMPARATIVE STUDY 

TABLE - 29 DC -4 ( G42  (s) ) 

No. of 
method 

Steady state 
value 

Output Yr 
at time t=20sec 

Cummulative 
error (J) 

3. 	567.997 	567.972 	.88324E+03 

6. 	567.997 	568.03 	.23691E+05 

9. 	567.997 	5 67.9 24 	.61085 Et04 

12. 	567.997 	567,99 	.39528E+04 

14. 	567,997 	567.997 	.41163E+03 

Yr  = unit step output of reduced model. 
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COMPARATIVE STUDY 

TABLE-30 EX-4  (G4, 3  (s ) 

No. of 	Steady state Output yr 	Cummul ative 
method 	value 	at time 	error (J) 

t=10 sec. 

3 198.00 

6 198.00 

9 198.00 

12 198.00 

14 198.00 

197.997 .52751E+03 

197.964 .12696E+04 

197.970 .56014E+03 

198.00 .18906E+05 

197.998 .99440E+03 

Yr  = unit step output of reduced model. 
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COMPARATIVE STUDY 

TAB1 E 31 Ex-4 (G44  (s) ) 

No. of 	Steady state 	Output Yr 	Cummulative 
method 	value 	at time 	error(J) 

t=10 sec. 

3 1883.985 188 3.9 35 .35060E+05 

6 1883.985 1883.918 .10819E+06 

9 1883.985 1883.750 .17332E+05 

12 188 3.985 189 3.999 .3O354E+C6 

14 1883.985 1883.987 .56773E+03 

Yr  = unit step output of reduced model. 
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From the above we find that the steady state value 

of all the methods match with original upto third place 

of decimal except a few ones. The various methods presen-

ted here in are algebraic in nature and require simple 

calculations that can be easily automated. These methods 

do not require finding the eigen values and eigenvectors 

of high order system. The solution of high order non - 

linear equations is not required. Time response of all 

models require almost same computational time (C.P.U.). 

Method 1,2,3 are Routh approximation method, Routh 

method mixed with Cauer 2nd form and Routh method mixed 

with Cauer third form respectively. Routh approximation 

method gives stable reduced order transfer function if 

the original system is stable. This method can be applied 

to both SISO and MEMO systems without any modification. 

Models reduced by methoc-3 shows an overshoot in transient 

region which in some cases, is a little bit excessive. 

Also it stabilizes slower as compared to method 1 and 2 

which more or 1 ess, give similar response to unit step 

inputs. Error analysis shows that method 1 and 2 gives 

nearly same commulative error which is the least also in 

all the three methods. 

Method 4,5,6 are Routh stability array method, 

Routh stability array mixed with Cauer 2nd form and 

Routh stability array mixed with Cauer 3rd form. Method 2 

is computationally straightforward and simpler than 

method 1. Model reduced by Method 6 shows overshoot and 
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slow convergence, while' model by method 5 converges 

faster than method 1. However all the three reduced 

models show good overall time response. Commulative 

error is the maximum for model by method 6 and the 

minimum for the model by method 4. 

Method No.7 based on stability equation gives 

better results. Method-8 and 9 which are actually 

mixed form of Cauer 2nd and Cauer 3rd form respec-

tively with method 7 also give good results. Models 

reduced by method 7 and 8 responds exactly to unit 

step excitation. Cummulative error index shows the 

least value for models by method 7 and 8 both. Step 

responses show no undershoot. 

Method 10 i.e. polynomial differentiation is 

computationally simplest of the methods discussed. 

Method 11 and 12 are its mixed forms with Cauer 2nd and 3rd 

forms respectively. Model by method 10 and 11 gives 

faster stabilization even than that of original sys-

tem. Error analysis shows that the best method among the 

three is method-il. These methods are equally applicable 

to unstable and non minimum phase systems also. 

Method 13 and 14 employ the mixed form of dominght 

pole retention and Cauer 2nd and 3rd forms respectively. 
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Method 13 gives the best unit step response among 

the two and error analysiswise also method 13 is the 

best. 

In case of example 1 cummulative error is the 

least for the model reduced by method No.13. 

For example 2, model reduced by method No.11 

seems to be the best one and for example 3, model 

reduced by method 14 shows minimum value of cummula-

t ive error. 

0 



CHAPTER - 6 

APPISCATION OF REDUCTION METHODS 

IN A POWER SYSTEM 
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This chapter is devoted on 

1. Developing a power system model connected to 

an infinite bus, 

2. to derive transfer function from given power 

system model (81) by [18] 

3. to find out reduced order model by applications 

of reduction techniques enumerated in chapter-4. 

6.1 MODEL. FOR SINGLE MACHINE POWER SYSTEM CONNECTED 

To AN INFINITE BUS 

The development of this model is based on [19] and 

taken from [20] . The single machine power system is 

connected to an infinite bus. and shown in Fig. (24). 

In this power system, generator is provided with a double 

time constants speed governor. 

MODEL DEVELOPMENT 

The electro mechanical oscillation of synchronous 

generator about a steady state operating point oo can be 

given by 

Mo 6+ Dai+op =p 	(61) 

where, 

p cl  o + bin Eq 	 (62) 

cl= 	_ -Eq  V Y12  sin o= 612) 	(63) 
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a? 

bl 	— = -'Eq Yll cos 611+ VY12 cos (S0 612) 
q 

(64) 

and 

p = 	Y11 cos 611 + 	v Y12 cos (I, 612) (65) 

The electro magnetic oscillation of the power system 

can be expressed by 

Eq + p Tdo A Eq  t Eex  (66) 

where 

AEq = Eq • (xd xd) Id 	 (67) 

and 
Iq =Eg Y11 COS all+VY12COB (~0 612) 	(68) 

Id = ,Eq Yll sin ( 1- V Y12 cos (0,2- S©) 	(69) 

From equations (67) and (69) oEq can be given by 

AEq = - (xd xa) V Y12 cos (612o) no + 1+(xd xd) 

Y sin 611 AEq 

Eq = c2A + b2 A.Eq 	 (70) 

where 
c2 = 	V Y12 cos (e12- So) 	(71) 

b2 = 1+ (xd xa) Yll sin all 	 (72) 

The terminal voltage Vt is given by 

Vt =V2d + V2q 

Vt = (Vd + Vq) 	 (73) 

where, 
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Vq = Fq xd Id 	 (74) 

Vd = xq Iq 	 (75) 

Substituting for Id and I q in the above ,equation 

we get 

Vt _ v [Vq 	+ Vd a v
d 

,QS + L [vq 'vq +Vd a Vd i 
LEq t 	a 	a S 	t 	a Eq 	6 Eq 

Vt = c3 A + b3 AEq  (76) 

where 
_ 3 1 [vq ~vq + 

Vd 
a vd ] 
	 (77) 

Vt 	as 	 as 

av 
b3 W 

1 
—~ [Vq 	

q 
+ Vd 

aVd
] 	 (78) 

Vt 	bEq 	aEq 

The governor output 1 p' in equation (61) can be given 

by  2 
d-p 	dp

• a — •+ b - — + p = - cos 	 (79) 
dt2 	dt 

Defining 

w =i 

p1= p 
U = ATex 	

(80) 

TdO 

We get the following state equations from (61) , (62) , 

(66), (70) and (79). 
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- 	1  0 
C2  

-  0 0 .Eq 	1 
TdOb2 b2 
0 0 1 0 0 O 

-bl/M -cl/M -D/M 1/M 0 w 	+ 	0 

0 0 0 0 1 p 	0 

0 0 -c/a -1/a -b/a pl 	0 

(81) 

6.2 SYSTEM MATRIX A,B, C 

The values of described parameters of A are taken 

from [20] 	as 

.M = 1.000 D 	= 0.50 

Eq 	= 1.482 V0  = 1.00 

PO 	= 2.105 do  = 600  

Tdo 	= 5.0 sec y11= 0.266 - j 1.530 

Xd 0.084 Y12  = 0.180 + , j 1.080 

Xd 	= 0.320 a 	= Tl  T2 = 0.05 

Tl 	= 0.100 sec b 	= T1+T2  = 0.6 sec 

T2 	=0.500 sec c 	=0.05 

with the help of these values the matrix A is found as 

-0.183 0.0 0.227 0.0 0.0 

0.0 0.0 1.0 0.0 0.0 

A = -1.815 -0.57 -0.50 1.0 0.0 

0.0' 0.0 0.0 0.0 1.0 

0.0 0.0 -1.0 -20.a -12.0 

ASq  

w 

p 
	

-I 

U 

(82) 



BT 	[1.0 

and 

CT = [1.0 

The state vector 
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0.0 	0.0 	0.0 	0.0] 

	

0.0 	0.0 	0.0 	0.0] 

X= (Asq 	o s 	w 	P 	P1] 

Using the set of equations. from (53) we get the 
transfer function of the power system with given matrices 

A,B and C as 
11.4+17.8s + 26.5752+ 12.5s3+s4  

G(s) 
1+12.6881 s+29.332 s2+2 7.7791 s3+22.9928s4+2  .1432 s5 

(83)  

This open loop transfer function can be written in 

the form given below taking the coefficient of s5  as unity. 

5.31935+ 8.3240s + 12.39735 s2+5.83240s3+ 0.46659 s4  

0.46659+5.92012  s+13.686 o8 s2+12.96146 s3+10.72822 s+ S5  

(84)  
6.3  APPLICATION OF METHODS 

Method -1 

2nd order reduced model by this method is given as 
0.65726860 + 0.4200035 

R5,1(s) 
S +0.4674566 s + 0.0368422 

Method -2 
0.6572756s + 0.4200035 

R5,2(s)   a 
 s2 + 0.4674566s + 0.0368422 



Method -3 

0.46659 s + 0.4200029 
R5 3(s) s2' + 0.4674566 + 0.0368422 

Method -4 

0.685 0248 s + 0.6415572 
R5 4(s) 

s '2+o.62947795   + 0.05 62767 

Method -5 

0.0399463s + 0.64.5572  
R5,5 (s)  _ 
  s2  + 0.6294779 s + 0.0562767 

Method -6 

0.46659s + 0.6415583 
(s) = R5, 6 	s2  + 0.6294779s + 0.0562767 

Method -7 

. 0.6253949s + 0.3996359 

R5, 7(s)  = s2  + 0.4447877s+'0.0350556 

Method -8 

0.6253978s + 0.3996358 
R5  s(s) 	z  

s + 0.4447877s + 0.0350556 

Method - 

0.46659s + 0.3996359 
R59(s) = 

s + 0.4447877s + 0.0350556 
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Method -10 

2.5205206s + 3.8865 341 

R5,10(s) 	+ 1.7302602s + 0.340923 

Method -11 

-23.505486s  + 3.8865 397 
11(s) 
	s2  + 1.7302&02s + 0.340923 

Method -12 

0.46659s + 3.3865 341 

R5,12(s) 	+ 1.7302602s + 0.340923 

Method-13 

0.4860036s + 0.5878026 
(s) -  R5,13 	` s2  + o.6161566s + 0.0515614 

Method-14 

0.4665 9 s + 0.5 878026 
R5,14(s)  = + 0.6161566s + 0.0515614 
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TIME RESPONSE 

TABI E- 32  E CzS . ( POWER S Y5 TEM MODEL) METHOD-2. 2,3 

No. Time G5  (s) R5  1(s) R5 	2(s) R5  3(s) 
'  ' 

1.  0 0 0 0 0 

2.  2 1.5536 1.4558 1.455 1.X14 

3, 4 2.9739 2.9680 2.9680 2.654 

4.  6 4.260 4.359 4.359 4.046 

5.  8 5.556 5.571 5.571 5.289 

6.  10 6.621 6.598 6.598 6.354 

7.  12 7.460 7.456 7.456 7.250 

8.  14 8.171 8.165 8.165 7.994 

9.  16 8.761 8.75 8.75 8.6w 

10.  18 9.237 9.23 9.23 9.114 

11.. 20 9.627 9.624 9.624 9.528 

12.  25 10.*324 I O.324 10.324 10.266 

13.  30 . 10,747 10.748 10.748 10.713 

14.  35 11.003 11.005 11.005 10.984 

15.  40 11.159 11.161 11.161 11.148 

16.  45 11.254 11.255 11.255 11.247 

17.  50 11.311 11.312 11.312 •11.307 
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TIME RESPONSE 

TABI E- 33 (-5 ( POWER SYSTEM MODEL) METHOD -4j-5.6 

No. Time G5(s)  R1 4(s) R1,5(s) R56(s)  
(see) r s   

1. 0 0 0 0 0 

2, 2 1.5536 1.615 0.9079 1.375 

3.  "4 2.9739 3.303 2.484 3.026 

4.  6 4.260 4.801 4.053 4.547 

5.  8 5.556 6.055 5.422 5.841 

6.  10 6.621 7.083 6.762 6.907 

7.  12 7.460 7.918 7.494 7.774 

8.  14 8.171 8.593 8.249 8.476 

9.  16 8.761 9.137 8.86 9.043 

10.  18 9.237 9.576 9,353 9.5 

11.  20 9.637 9.930 9.750 9.869 

12.  25 10.324 10.054 10.438 10.407 

13.  30 10.747 10.9 10.839 10.879 

14.  35 11.003 11.108 11.073 11.096 

15.  40 11.159 11.230 11.209 11.223 

16.  45 11.25 4 11.301 11.288 11.296 

17.  50 11.311 11.342 11.335 11.339 
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TIME RESPONSE 

-TABLE- 34 EK -5 (POWER SYSTEM MODEL) METHOD-7,8,9 

No. G5(s) R5,7(s) R5,8(s) R5,9(s) rrne)  
ec 

1. 0 0 0 0 0 

2,  2 1.5536 1.409 1.409 1.204 

3,  4 2.9739 2.905 2.905 2.634 

4,  6 4.260 4.3 4.3 4.027 

5.  8 5.556 5.525 5.525 5.276 

6.  10 6.621 6.567 6.567 6.351 

7.  12 7.460 7.439 7.439 7.256 

8.  14 8.171 8.161 8.161 8.008 

9.  16 8.761 8.755 8.755 8.629 

10.  18 9.237 9.341 9.241 9.138 

11.  20 9.627 9.640 9.640 9.555 

12.  25 10.324 10.344 10.344 10.293 

13.  30 10.747 10.767 10.767 10.776 

14.  35 11.003 11.00 11.00 11.002 

15.  40 11.159 11.272 11.172 11.161 

16.  45 11.254 11.263 11.263 11.257 

17, 50 11.311 11.318 11.318 11.314 
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TIME RESPONSE 

TABI E- 35 E)C-5 (POWER SYSTEM MODEL) MSTH0D-10,11,12 

No. Time G5  (s) 85,10 (s)  R5, 11 (s)  R5 912 (s)  sec ( 	) 

1.  0 0 0 0 0 

2.  2 1.5536 3.667 -7.817 3.184 

3.  4 2.9739 6.462 -1.402 6.131 

4.  6 4.260 8.261 3.235 8.050 

5.  8 5.556 9.405 6.211 9.271 

6.  10 6.621 10.132 8.102 10.04 

7.  12 7.460 10.594 9.005 10.54 

8.  14 8.171 10.888 10.068 10.85 

9.  16 8.761 11.075 10.554 11.053 

10.  18 9.237 11.193 10.862 11.179 

11.  20 9.627 11.268 11.058 11.259 

12.  25 10.324 11.357 11.290 11.354 

13.  30 10.747 11.386 11.364 11.385 

14.  35 11.003 11.395 11.388 11.395 

15.  40 11.159 L.398 - 11.396 21.398 

16.  45 11.254 11.399 11.398 11.399 

27. 50 11.311 11.399 11.399 11.399 
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TIME RESPONSE 

TABI E-36 ZC-5 _POWER SYSTEM MODEL) METHOD-13,14 

No. 	Time 	G (s) 	 R5 13 (s) 	R5 14 (s)  ( sec) 

1.  0 0 0 0 
2.  2 1.5536 1.338 1.317 

3.  4 2.9739 2.902 2.876 
4, 6 4250 4.348 4.3225 

5.  8 5.556 5.592 5.572 

6.  10 6.621 6.632 6.615 

7.  12 7.460 7.491 7.477 

8.  14 8.171 8.197 8.186 

9.  16 8.761 8.776 8.767 

10.  18 9.237 9.251 9.244 

11.  20 9.627 9.640 9.634 

12.  25 9.324 10.332 10.328 

13.  30 10.747 10.751 10.749 

14.  35 11.003 11.006 11.005 

15.  40 11.159 11.161 11.160 

16.  45 11.254 11.255 11.254 

17.  50 11.311 11.312 11.311 
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6.4 COMPARATIVE STUDY 

From the above we find that the steady state values of all 

the methods match with original mostly upto second place of 

decimal. Method 1 and 2 both gives the least error in the described 

problem. Time response of each method and model requires almost 

same computation time ( M.—) about 0.9 seconds. 

Since the transient response of synchronous machines in 

electrical power system is equally important as steady state 

response, therefore the best reduced model will be that which gives 

good transient and steady state responses. 

On the basis of unit step responses shown in respective 

figures, models reduced by method 13 and 14 are the best. However 

models reduced by method 1.2.3,7.8 and 9 are also equally good. 
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COMPARATIVE STUDY 

TABLE- 37 (-5 (POWER SYSTEM MODEL) 

No of Steady state Output Yr Cummulative 
Method value at time t=50sec error (J) 

1.  11.311. 11.312 .40190E-01. 

2.  11.311 11.312 .40190E-01 

3.  11.311 11.307 .1085 5 E+01 

4.  11.311 11.342 .37771E+01 

5.  11.311 11.335 .17039E+01 

6.  11.311 11.339 .17602E+01 

7.  11.311. 11.318 .67587E-01 

8.  11.311 11.318 .67587E-01 

9.  11.311 11.314 .10872E+01 

10.  11.311 11.399 .18951E+03 

11.  11.311 11.399 .30848E+03 

12.  11.311 11.399 ..17338E+03 

13.  11.311 11.312 .1 e031 E+00 

14.  11.311 11.311 	/ .1346 2E+00 



W 
cr 

0) 
U) 
C 
0 

L. E  
0) 

V 
C >' 
WV) 
O 
a'  O 

0 

O r 

s 

V 

c 

i 



CHAPTER - 7 

C ONCI USI ON 



131 

The development of reduced order models for the analysis 

and synthesis of high order systems has been an area of active 

research during the past decade. The present work deals with the 

applications of methods, with special emphasis on CFE methods for 

model order reduction to three well known SISO models, namely 

Hu tton' s model, Chuang` s model and Sheshadri' s model and one 

MIMO model . Moreover these reduction technicues have also been 

applied to reduce a power system model of a single machine system 

connected to an infinite bus. The work included here in deals 

with frequency domain model reduction techniques. 

Infact in project work, different models were reduced by pure 

CFE techniques. This dissertation is an extension of project work, 

therefore mixed CFE methods have been taken up in this thesis. 

The Second 4.hapter describes in brief CFE based reduction 

techniques. The CFE approximation technique has an advantage of 

computational simplicity and it can be used on digital computer 

for reduction purposes. 

The second Cauer CFE originally proposed by Chen and 

Shieh (1968) is equivalent to a taylor seriesexpansion about 

s=0. It gives satisfactory approximation in the steady state 

region. The first Cauer form may also be applied for system 

reduction. It provides a satisfactory approximation in the 

transient region with an impulse input but gives error in the 

steady state region, however as the order of the reduced model 

increases the error under steady state response becomes negli- 

gible. The first Cauer 'CFE is equivalent to expansion of G(s) 
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about s= co. The mixed or third Cauer form (Goldman) 

is a mixture of first and second Cauer CFE forms gives 

satisfactory approximation for both the transient and 

steady state responses. 

The Cauer modified form (Chuang 1970) is a 

Taylor series expansion about s = 0 and s = co both and 

alternatively. This approximation is good both in the 

steady state and transient period. 

The Third chapter deals with stability criteria 

based reduction techniques, and a few other ones. Routh 

approximation method proposed by Hutton and Friedland pre-

serves the stability of the reduced model provided the 

original model is asymptotically stable. Reduction 

using the Routh stability array proposed by V.Krishna-

murthy and V.Sheshadri is computationally very simple, 

direct and gives a very similar frequency response as. 

that of original system. Stability equation based 

reduction method is very convenient if applied by the 

aid of computer. Since the basic approach of this method 

is to discard the roots of the stability equations which 

have large magnitudes, the reduced stability equations 

will always have their roots in the left side of the 

s-plane. Therefore all the coefficients of the reduced 

stability equations as well as reduced transfer function 

will have positive sign. 
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Dominant pole retention method was proposed by 

Davidson in 1966. It preserves stability and it is 

applicable to MIMO models also. This is a very powerful 

method. A new method of model reduction was introduced 

Eby per-Olof Gutman et.al. based on polynomial differerr 

tiation. The reciprocals of the numerator and denomina-

tor polynomials of the high order transfer function are 

differentiated suitably many times to yield coefficients 

of the reduced order transfer function. The method is 

computationally very simple and is equally applicable 

to unstable and norminimum phase systems. 

The Fourth chapter ddscribes model reduction 

using mixed methods namely 

• CFE and Routh approximation, 

CFE and Routh Hurwitz array, 

CFE and stability equation, 

CFS and polynomial differentiation and CFE and dominant 

pole retention. In all mixed methods, denominator is 

reduced by non CF 3 methods and numerator is reduced by 

CFE (Cauer 2nd and Cauer 3rd form) by mathing the Cauer 

coefficients of original system. 

In chapter 5, all reduction methods 	described in 

previous chapters have been compared by the help of three 

SISO models and one MEMO model. In the same chapter methods 

for obtaining transfer function from given state variable 
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equations have also been dealt with. The classical 

Faddeeva approach is first described. This method is 

known to give erroneous results if the system matrix A 

is of high order. A modified algorithm is introduced 

that removes this problem of inaccuracy computer pro-

grammes have been developed for these methods. 

The Sixth chapter describes the development of 

state space model for a power system which consists of 

synchronous machine connected to an infinite bus. The 

system model is developed using well known Parks equa-

tions.Further various model reduction techniques 

described in Chapter 3 and 4 are applied to the power 

system model and a comparative study has been made. 

The merits and demerits of the various models have also 

been brought out'in tabular form. 

Based upon the work carried out in this disser-

tation, various reduction techniques used here in can 

be summarized as below. 
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Note 	i  

1. Method 2 and 3 are relatively easily implemented and thus 

their computer memory and time are minimal. Stability 

equation method also can be used by computer without 

any difficulty. 

2. Best methods are the mixed methods in which good 

features of two schemes are combined together. For 

example in CFE-Routh method, the desired stability 

feature of Routh and computational convenience of CFE 

are put together to give a better medhod than any one 

of those individually. 

This work is an effort in the direction of compiling 

the popular techniques for system order reduction in 

the frequency domain and to improve them by mixing with 
CF E techniques especially Cauer 2nd and Cauer 3rd form. 

A number of systems including SISO and MIMO are chosen 

and these techniques are applied to determine the 

reduced order models. Moreover one practical power 

system model has also been reduced using these techniques. 

The unit step time response and frequency response 

for the reduced models al ongw ith the original system 

are computed and the graphs are plotted. The accuracy 

of reduced order models is quantitatively determined by 

computing the cunmu'lative error. 
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There is a wide scope for research work in this 
field especially for finding some innovative generalized 

technique which could be applied to all type of systems. 
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