
MICROCOMPUTER-BASED TWO LEVEL SUPERVISORY
CONTROL AND DATA ACQUISITION SYSTEM

A DISSERTATION

Submitted in partial fulfilment of the
requirements for the award of the degree

of

MASTER OF FNGINEERI(NG
in

ELECTRICAL ENGINEERING 	_. J

By

ANUPAMA SINGHAL

° yL4 S 196~c'' Acc. Nom, 	 t

y date 	 90 i !

1,1

DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF ROORKEE

ROORKEE-247 667 INDIA
FEBRUARY, 1990

CANDIDATE'S DECLARATION

I hereby certify that the work presented in this disser-

tation entitled," MICROCOMPUTER-BASED TWO LEVEL SUPERVISORY CON-

TROL AND DATA ACQUISITION SYSTEM" in partial fulfilment of the

requirements for the award of degree of "MASTER OF ENGINEERING"

(ELECTRICAL) with specialization in "MEASUREMENT AND INSTRUMEN-

TATION" submitted in the Department of Electrical Engineering,

University of Roorkee, Roorkee(India) is an authentic record of

my own work carried out during the period of July 1989 to Febru-

ary 1990, under the supervision of Dr. H.K. Verma, Professor,

Electrical Engineering Department, University of Roorkee, Roorkle.

India.

The matter embodied in this dissertation has not subm-t.e--

ed by me for any other degree or diploma.

Dated: a26kt F'6', 1`l c O
	

(Anupama Singhal)

This is to certify that the above statement made by the

candidate is correct to the best of my knowledge.

Dated: ;2(* 	19 9D .
i Dr. H.K. VERMA

Professor
Electrical Erigg , DeptL .
University of Roorkee
ROORKEE, U.P. INDIA

ft

u

A C K N O W L E D GEME NT

The author considers it a pleasent duty to express her

heartiest appreciation and gratitude to Dr. H.K. VERMA, Professor,

Department of Electrical Engineering, University of Roorkee, Roor-

kee for his keen interest, invaluable and painstaking excellent

guidance, continuous calms and throughout advice during each and

everyphase of present work.

I, owe, my sincere thanks to Dr. R.B. SAXENA, Professor

and Head, Department of Electrical Engineering for providing all

the facilities.

I also take the privilege of thanking Mr. G.R.Verma,

Mr.C.P. Kansal and Mr. S.D. Mishra who took keen interest and great

pleasure to enhance my enthusiasm for this dissertation.

I am again greatly thankful to Mr. M.K. Vasantha, Profe-

ssor in Electrical Engineering, Dr.J.D. Sharma, Professor in Elec-

trical Engineering who did their best to co-ordinate me in succ-

essful completion of this work.

I also sincerely thank my parents, my in-laws and my hus-

band Mr. Pankaj Agarwal, who constantly inspired me even though

from a distance, during this work.

$JWA

Anupama Singhal

S Y NO PSI S

The industrial systems in which there are distinct units

of operation, often unattended and which require supervision from

a central facility, use supervisory control and data acquisition

(SCADA), where in control centre operators can monitor and con-

trol the devices at remote place. Functionally, SCADA consists

in the acquisition of data from the controlled system, process-

ing the data, displaying the processed data ata central computer

system and giving the commands to operate devices at remote pla-

ces from the control centre.

A review of the developments in remote control, telemetry

and supervisory control techniques since the World War II has

been carried out. trends in communication with respect to the im-

pact of the development of transistors, large automatic tracking

antennas, phase locked FM detector and technologically superior

communication mediams, are also looked at. The use of computers

in SCADA is overviewed.

A two level SCADA system has been developed in this project.

For the hardware of the remote terminal unit (RTU) of this system,

Intel 8085 micro-processor based card cage micro-computer system

is used. With the help of different modules of the micro-computer

system, various facilities of SCADA on RTU side are achieved. Data

of analog and digital variables/quantities is acquired, integra-

tion of variables in the form of pulses is carried out and the

data is processed and relevant information, is displayed on CRT.

Relevant information is sent to MCS also. Provision is made to

enable the operator to give control commands from keyboard.

The Master Control Station (MCS) is based on 80286 PC. It

acquires relevant information from RTU at intervals. System con-

figuration in the form of a mimic diagram is displayed along with

the real time information. Hard copy of this display and data can

be obtained on printer. The MCS issues control command for RTUs.

The communication of information between RTU and MCS is

done via RS 232 C link using the standard three wire configura-

tion. A protocol for exchange of information between the two sta-

tions, is designed in a manner as could ensure minimum error dur-

ing communication.

The entire software for the RTU is written in the assembly

langauge of 8085. The control and communication software for the

MCS has been developed in the assembly langauge of 8086 while

Fortran-77 has been used for writing the display software in the

MCS.

Suggestions are made at the end for further work on the

project.

(iv)

C 0 N T ENT S

Page

CANDIDATE'S DECLARATION

ACKNOWLEDGEMENT

SYNOPSIS iii-iv

CHAPTER-1 INTRODUCTION
;1-1 - 1-9

1.1 What is SCADA

1.1.1 Remote Terminal Equipment

1.1.2 Communication System

1.1.3 Computer System (Control Centre)

1.1.4 SCADA Software

1.1.4.1 Data acquisition software

1.1.4.2 Supervisory control software

1.1.4.3 Man-machine interface software

1.2 Scope of Present Work-Objectives

1.2.1 Facilities in RTU

1.2.2 Facilities in MCS

1.3 Organisation of Dissertation

CHAPTER-2 LITERATURE SURVEY 2-1 - 2-13

2.1 Early Conception

2.2 Later Manifestation

2.3 Example for Telecontrol of a Remote Plant

2.4 Trends in Communication

2.4.1 Transistorized circuits

2.4.2 Large automatic tracking antennas

2.4.3 Phase locked FM Discriminators

2.4.4 Communication Media

2.5 Computers in SCADA

2.5.1 Centralised computer control

2.5.2 Distributed Computer Control

2.5.3 Centralized or Decentralized

contd.

Contents(contd.)

Page

2.6

2.6.1
2.6.2
2.6.3

Modern SCADA Systems using Distributed Com-

puter Control

Necessity of Computer Control

Heirarchical Control

Description

3-1 - 3-19 CHAPTER-3

3.1
3.2

3.2.1
3.2.2

3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

CHAPTER-4

4.1
4.2
4.3

4.3.1
4.3.2
4.3.3

CHAPTER-5

REMOTE TERMINAL UNIT

Facilities Provided

Hardware

Hardware Description

Use of the Data Acquired at RTU

Software

Data acquisition, Processing Software

Application Example Software

Display Software

Communication Software

Control Software

MASTER CONTROL STATION

Facilities Provided

Hardware

Software of MCS

Communication Software

Control Software

Display Software

COMMUNICATION

4-1 - 44-4

5-1 - 5-12

5.1

Communication Link

5.2

Communication Protocol

5.3

Data Structure

5.4

RTU Software for Communication

5.5

MCS Software for Communication

contd.

Contents(contd.)

Page

CHAPTER-6 CONCLUSIONS AND SCOPE OF FURTHER WORK

6.1 Conclusions

6.2 Scope of Further Work

REFERENCES

APPENDICES:

A - REMOTE TERMINAL UNIT (RTU) SOFTWARE

8 - MASTER CONTROL STATION (MCS) SOFTWARE

C - COMMUNICATION SOFTWARE

D - THE MODULAR MICRO COMPUTER SYSTEM TYPE

EP-131

E DOS INTERRUPTS

F GRAPHIC SOFTWARE PACKAGE (GRAPH-X)

6-1. - 6-3

CHAPTER-1

INTRODUCTION

1.1 WHAT IS SCADA

SCADA stands for supervisory control and data acquisition

system. Supervisory control consists of telemetry and telecontrol.

Telemetry implies measuring a quantity or quantities, from a pri-

mary sensor, transmitting the results to a distant station, and

then there interpreting, indicating and/or recording the quanti-

ties measured[1]. Remote control includes any system of control

which requires a definite communication system to control action

at a distance from the control point. The essence of the systems

is that some pgrt of the system must be located at a remote loca-

tion. Interest in the remote location in most cases stems from

the need to avoid a hostile environment, at the same time accom-

plishing the necessary measurement or control. Examples are air-

craft test flights, missile remote control, nuclear reaction test,

space-satellite monitoring, power plant monitoring, etc.

SCADA systems are typically found in industries where there

are distant units of operation, often unattended, that require

supervision from a control facility [2]. The main components of

SCADA are :

1. Remote terminal equipment

2. Communication system

3. Computer system

4. SCADA software

1-1

1.1.1 Remote Terminal Equipment

The data is captured from the field by suitable transducers

and special equipment and consolidated at remote stations in a

microprocessor based terminal equipment (called as remote termi-

nal unit or RTU)[2]. The RTU's at various stations send the data

to the control centre under computer control via data communica-

tion links. Typically the RTUs perform the following functions:

1. Support communication line protocol and message formats

2. Maintain a local data base of the current state of field

data.

3. Receive and analyse requests from the control centre

4. Execute control functions

The RTU works as telemetry and telecontrol equipment. It

acquires, monitors and controls various parameters(generator vol-

tage, bus voltage, generator power, CB condition etc.). It scans

its inputs at predetermined intervals, compares the readings with

previously stored data, thus enabling detection of any change of

state and alarms[3]. This information is kept ready by RTU for

onward transmission to the control centre when called for.

1.1.2 Communication system

It provides a path for data and control signals between RTU's

and the computer system at the control centre[2]. Quite often

existing communication links between stations and the control

centre are used for data communication purposes in SCADA applica-

tions. The data communication media could be :

1-2

1. Voice-grade line

2. Power line carrier link

3. VHF link

4. Microwave/UHF link

5. Fibre optic link

6. Satellite link

A communication link may be a combination of one or more

types with suitable interfaces. RTUs are connected via MODEMS to

the communication systems.However,if the RTUs are in close proxi-

mity to the master control station, data is transmitted to the

host computer in digital form using RS-232C links format and em-

ploying MODEMS or line drivers if necessary.

The security of the transmitted data distinguishes a SCADA

system from normal data acquisition systems[3]. This security

includes multiple data transmission, encryptions for coding the

data, bit data techniques to assume correct messages and software

for generating statistics on the number and types of errors.

Reliability of transmission and flexibility in communica-

tion are high priority items in SCADA systems[3]. The communica-

tion control modules that poll the RTUs and concentrate. data for

transmission to the host can handle more than one communication

protocol to communicate with various systems.

Accuracy of data depends more on the sensors than the SCADA

system. However, as accuracy demands increase, they will have an

effect on transmission systems [3].

j-3.

1.1.3 Computer System(Control Centre)

The computer at the control centre is responsible for gath-

ering the data from the RTUs using pre-defined protocols. The

following two types of protocols are used for acquisition of da-

ta [2].

1. Polling

2. Interrupt

In the polling protocol, the computer and RTUs follow the

master/slave pattern where RTU sends data only on request from

the master [2]. In the interrupt protocol the RTU sends data as

soon as it is ready and this is treated as an interrupt by the

control centre computer which processes it immediately.

Various configurations of the control centre computer are

possible [2]. Earlier systems had a single computer to perform

all functions. A modern trend has been to incorporate a front-

end system to carry out the task of data acquisition.

Fig.1.1 shows a configuration overview of the computer sys-

tem for a typical SCADA application [2]. The system reliability

is enhanced by providing two super micro computers, the on-line

system dedicated to the supervisory control of the remotes where-

as off-.line system used as cold standby or for the purpose of

operator training [4]. It has been found necessary to provide

such computers in order to maintain a reasonable scan time and

yet provide for the large amount of data processing. Moreover

1-4

N
U
x
W

Q
J
Q

Q

J w

°p N

J 	u(J
w Z
a a
U
U = 0 0
0

w~ I-.
00 '"'
N m
z
o)
OW LL

o

QU
ix
aQ ow
_ 0
J
0
0

the demand on processor time for task scheduling in a system such

as this makes the choice of such large computers an unavoidable

necessity.

The health of the on-line and off-line system is continuous-

ly monitored through Watchdogs and in case of on-line system fai-

lure a manual change over is done to standby system[4].

The Piaster Controller support's two operator workstations for

controlling predefined and physically demarcated section of the

OHE. Each work station is provided with two colour VDUs, one on-

line and one standby and a keyboard containing functional and al-

phanumeric keys [4]. One of the VDUs can be configured as an op-

erator console to view alarms, graphs etc. whereas the other can

be configured as an engineer console from which commands can be

given to the remote controllers. Various alarm, status, log and

database displays and graphs, histograms, and trend curves are

possible on master controller.

The Master Controller supports two printers which can be us-

ed to log alarm data and other either on demand or on event tri-

gger [4].

A mimic diagramboard can be connected through suitable inter-

face to the Master. This MDB provides a visual indication of the

state of the equipment at the various stations.[4]. The dual front-

end computers perform the functions of data acquisition[2]. The

'active front-end carries out data acquisition from RTU and the

other one (called 'standby') waits for the failure of 'active' com-

puter to take over immediately.

1.- 5

1.1.4 SCADA Software

SCADA software can be classified as

1. Data acquisition software

2. Supervisory control software

3. Man-machine interface software

1.1.4.1 Data acquisition software:

It supports data exchange between RTUs and computer systems

at the control centre, generates the necessary commands for infor-

mation required, performs error checking to ensure the validity

of the data, proper completion of scan requests, and updates and

maintains the data base [2]. It also provides support for the su-

pervisory control functions by transmitting commands and perform-

ing error checks.

The data acquisition software allows for multiple cyclic

scans(for obtaining data), each having assigned priority and in-

terval between scans [2]. For each such scan, the software formats

the appropriate data request, transmits the request and checks

the return transmission for errors. All valid received data is

then subjected to processing according to the data type. The re-

ceived and any associated calculated data are then entered into

the data base. Typical processing requirements are primarily ori-

ented to detection and treatment of alarm conditions.

1.1.4.2. Supervisory control software:

This software is primarily responsible for the formatting

of the control messages, transmission of the messages and valida-

tion of the check back responses according to the defined message

protocol [2].

1.1.4.3 Man-machine interface software:

The software provides the following capabilities [2[

1. CRT Displays : Typically, the following picture types may be

supported:

- Tabular data displays

- Trend - graphs of variables with time

- Bar charts

- Data entry forms

- Menus for selection of CRT pictures, data logs, and initia-

tion of application programs.

2. Wall diagrams/strip chart recorders and other special analog

and digital displays.

These are output devices only [1].

1.2 SCOPE OF PRESENT WORK - OBJECTIVES

Trends in SCADA system are studied. Some typical systems made

by world class manufacturers are reviewed and compared. Important

application of SCADA systems in India are also identified. On the

basis of the state-of-art information " A MICRO COMPUTER BASED TWO

LEVEL SCADA SYSTEM" of general purpose type has been developed.

In this general purpose type system B0286- based PC is used for

the master control station and 8085 based micro computer system

for RTIJ (Remote Terminal Unit). Following facilities are provided

in the MCS and RTU.

1-7

1.2.1 Facilities in RTU:

Data Acquisition:

Raw analog and digital data is acquired from the real world.

Analog data is acquired with thehelp of an ADC unit and digital

data with the help of digital I/O subsystem.

Data Display:_

After acquiring and processing the analog and digital data

it is displayed on CRT screen. The data is displayed in table for-

mat. Linking of CRT with 8085 is done serially with the RS232C link

and all the communication between micro-computer & CRT is in serial

form with a baud rate of 2400.

Control Functions:

A facility to control some analog variables by PID contrail-

?r is is provided. Some control commands can also be given by the op-

eration through keyboard. Through one interrupt of 8259 (progra-

mmable interrupt controller) a start command is given for the pl-

ants. Through a second interrupt of 8259 a start command is given

for the switching devices. One interrupt serves to switch off a

failing switching device. This interrupt comes from the protection

units of the switching devices.

1'.2.2 Facilities in MCS:

The MCS has these following general purpose facilities:

1) It displays on PC monitor the information received from each

RTU alongwith the mimic diagram of the controlled. system. Data

received from the various RTUs are displayed in sequence.

2) It gives all the control commands to the RTU including the

reference values for the PID controllers.

3) It has a PID controller of its own.

Communication between RTU & MCS is serial via RS232C link

using a USART (Universal synchronous & asynchronous receiver

transmitter) at either end. Protocol is designed to ensure flaw-

less transmission of data and repeating the message in case an

error is detected by the receiver.

1.3 ORGANISATION OF DISSERTATION:

Followed by this introduction, a literature survey on the

subject will be presented in the second chapter. The third chap-

ter presents the details of the RTU, including the facilities pro-

vided, the hardware used, the software and the display of infor-

mation on CRT. The fourth chapter discusses similarly the details

of the MCS. Fifth chapter deals with the communication between RTU

and MCS. Sixth and last chapter summarises the total work and

brings forth the scope of further work.

l-9

CHAPTER-2
LITERATURE SURVEY

In this chapter, the trends in remote control, telemetry and

supervisory control since the World War II are reviewed. Trends

in communication, with respect to the impact of the development

of transistor, large automatic tracking antennas, phase-I locked

FM detector and technologically superior communication mediams,

are also looked at. Finally the use of computers in SCADA is over-

viewed. Some interesting and representative examples are also pre-

sented to highlight some important advancements.

2.1 EARLY CONCEPTION

An early conception of remote control was the bridge tele-

graph system between a ship bridge and engine room [5]. This sys-

tem required human intervention to read signals and to activate

the necessary control valves. Later, in the process plant control,

these were actuated remotely. Telemetered data were used to esta-

blish the need for valve control and the extent of control..

2.2 LATER MANIFESTATION

The development of remote control has been principally cen-

tered around the drove and missile programs of the armed forces,

that began during World War II[5.1. Early droves were piloted air

craft with the pilots removed and autopilots with remote radio con-

trol substituted. During test phases a pilbt was usually carried

to perform take offs and landings and to observe the results and

2-1

deficiencies of the control equipment. Whenthe drove was used as

a weapon the pilot was removed and the equipment functioned both

automatically and by remote control. It soon became apparent that

these missiles could be made smaller, of higher performance, and

more economically if in their initial design no provision was made

for a pilot.

One of the early missiles of pilotless design was designated

as IB-2. Remote-control equipment from the drone programs was ad-

apted to the IB-2 [6]. Telemetry was developed to measure the per-

formance of the control equipment and the missile. In this evolu-

tion it is apparent that remote control equipment preceded tele-

metry by some years, but it was an "on-off" system rather than one

permitting a continuous control. Furthermore, remote control was

an intermittent function in as much as the vehicles were stabilized

by internal automation equipment. Telemetry, on the other hand,

required proportional and linear transmission of measurements on

a continuous basis consequently, remote control systems were "ad-

opted" in concept only and development of telemetering-equipment

proceeded independently.

Another forerunner was telemetry and supervisory control in

electric and gas utility transmission and distribution systems[6].

The public-utility measurements were made slowly, requiring

only a very narrow band of frequencies for intelligence. With wire

connections, there were no problems of radio fading, and many of

the systems could be used only with continuous links between trans-

mitter and receiver. Fades such as were normally occuring in

radio systems would render the data valueless. Transducers were

large and weighty, made for durability and easy servicing. They

were not considered expendable and were chosen largely with a view

toward long life and reliability; their response was slow.

Instead of techniques being borrowed from the utility field,

the reverse trend has now appeared and utility telemetering has

borrowed from the techniques of radio telemetering developed for

missile testing.

2.3 EXAMPLE FOR TELECONTROL OF A REMOTE PLANT

A characteristic example for telecontrol of associated re-

mote plant is the telecontrol of dam installations in hydro power

stations which draw their driving water from a distant dam through

a canal or a tunnel [7] . To use the water influx as effectively

as possible, the control and supervision of the dam installation

must be carried out from the power station control room. An early

installation (year 1956) of great technical significance is the

Runserau dam installation of the IMST power station in the Tyrol,

Austria. The Runserau Dam installation of the Imst power station

on the river Inn in the Tyrol was linked with the power station

by a tunnel approximately 12.5 km long, which cuts off the bend

of the river Inn at Landeek. The dam installation consisted of

three sluice gate assemblies. It was manned by only one attendent

who had the sole task of maintaining the mechanical equipment. The

dam installation was remotely controlled from the power station.

2-3-

However, since this could only be traversed during inspec-

tion periods, there would have been the fear that a possible break-

down in the cable could not be repaired for months or could re-

quire the emptying of the tunnel thus increasing the time of an

operational failure [7]. The cost of the cable and its laying would

have amounted to at least 10000, whereas renting costs for the

27 km long telephone link with two superimposed audio frequency

channels amounted to about 1- 3000 in ten years. The cost for the

cable would thus be more than three times as large as this amount.

As the transmission method for both the commands for contro-

lling the sluice gates, as well as for the signals from the dam

installation, including the position values of the sluice gates

and two water-level quantities, the pulse telegram method was cho-

sen. The pulse telegram apparatus worked in both transmission di-

rections each over qn a.m. audio transmission channel on duplex

traffic [7]. (Semi duplex equipment could not be used, so that the

commands, especially the stop command, could be transmitted at any

time even during the transmission of messages). The pulse telegram

were transmitted in rest current operation over the audio trans-

mission channels. An emergency stop command was superimposed on

the command channel, if the command signal is not received for

longer than about 0.5s in the dam installation, sluice gates which

happen to be in motion are brought automatically to a halt. This

ensures that the sluice gates, during a failure of the transmi-

ssion line and audio transmission apparatus or after a breakdown

in the pulse telegram equipment, cannot move further into an unde-

sired position. (This is one of the most important safety require-

2-4•

ments in the tele-control of dam installations). The telecontrol

installation went into operation in 1956.

If it had been designed according to the state of telecon-

trol engineering at the time, the following major difference would

be then:

1) FM audio transmission channels would probably be used.

2) In place of control by means of high, low and stop commands,

servo control would be considered today.

2.4 TRENDS IN COMMUNICATION

The 50's saw the pulse telegram method as the transmission

method for commands and messages [6]. The pulse telegram apparatus

worked in both transmission directions each over an a.m. audio

transmission channel on duplex traffic. The pulse telegrams were

transmitted in rest current operation.

In the late 60's, electronic pulse methods with PCM or PDCM

transmission were being used. FM audio transmission channels also

came into use. Some major developments in the area of communica-

tion are reviewed below :

2.4.1 Transistorized Circuits:

The development of the transistor, and particularly the sili-

con transistor, has been very significant, especially to missile

control [6]. It has permitted the reduction of size, weight, and

power requirements - three factors which are of vital importance

to missile operations. The replacement of the vacuum tube has been

2-5-

a gradual process, however, since stable operation over a wide

range of temperature is more difficult with transistors. High fre-

quency operation is just being achieved.

Other solid-state components were developed which can be used

at micro-wave frequencies between 3 GHz to 10 GHz. These include

the tunnel (Esaki) diode and the varactor. The former can be used

as oscillator, switch, or r-f amplifiers and the later as switch

or frequency multipliers. Microwave components based on travell-

ing wave amplification have been developed with sufficient compact-

ness and ruggedness for operation upto 10 GHz.

2.4.2 Large Automatic Tracking Antennas:

The development of large immovable parabolic reflecting an-

tennas was largely accomplished under studies of forward-scatter

propagation and the antennas were later adopted to telemetry use.

[6]. The high gain of the large reflectors dictates that the beam

width be relatively narrow and, therefore, tracking difficulties

are presented in missile and satellite operations. It was not un-

til the automatic tracking feature was added to the forward-scatter

propogation antenna that it became practical for telemetering

from guided missiles. Basically, there is a 10-db improvement in

reception over previous techniques. This has made continuous data

reception possible where otherwise there were losses due to fading.

On the other hand, for the same performance characteristics, the

missile transmitter power may be reduced by a factor of 10.

2-6

2.4,3 Phase-locked FM Discriminators:

Another improvement in telemetry receiving techniques has

been the phase-locked frequency modulation - (FM) discriminator, or

detector[6]. The phase locked principle is one in which the fre-

quency of a local oscillator is varied to correspond with the in-

coming frequency. This makes it possible to transmit the resulting

beat frequency through a filter of narrow bandwidth. The local

beat frequency oscillator is voltage controlled, the control vol-

tage being the demodulated signal. The detector is a phase detec-

tor or multiplier instead of the conventional heterodyne detector.

In a typical design, this technique added another 6-db of improve-

ment to telemetry receiving stations, and this improvement increa-

sed to 15 db when the phase locked principle was also applied to

the higher subcarriers [5;.].

2.4.4 Communication Media:

SCADA system's functioning is totally dependent on the comm-

unication system for transmitting voice, data and signal [8]. Power

line carrier communication happens to be the most common form from

earlier time and this is supplemented by switched telephone, radio

communication and dedicated lines (Hot line despatcher-telephone

system). Fibre optics is now becoming more popular communication

medium due to technological superiority.

2-7,

capabilities in the same mainframe. So these mainframe computer

were superceded by minicomputers.

The mini computers were effectively superceded by the large _cen-

tralised computer system for process control tasks in the early

1970's. They were developed to satisfy the requirements of DDC[9].

The large models of mini-computers, in fact, form the basis

for nearly all supervisory control installations at present. How-

ever, for the smaller installations they have been superceded by

the microprocessor.

2.5.2 Distributed Computer Control:

Withthe emergence of microprocessor and micro-computers an

argument quickly developed in favourof distributed control.

As the control processes are often distributed over a wide

area, it is natural that the computing power required to 'manage

the plant is also distributed and concentrated where most work is

required, to limit the data flow and achieve greater independence

in case of failure of parts of the plant [9] . A general rule is

that the structure of the control system should match the struc-

ture of the plant it controls. A process control system today is

distributed among computing system whether or not it is portrayed

in that way. Only the small data acquisition stations exhibit a

concentrated structure.

2.5.3 Centralized or Decentralized:

A centralized system can respond faster, requires less inter-

2-9-

action and the operator can control it better [9]. A decentralized

system requires more local intelligence and imposes a communica-

tion overhead, but is less sensitive to partial outages and can

be more easily tested and expanded. In fact the choice is quanti-

tative, how much should be decentralized and how much to be cen-

tralized.

2. 6 MODERN SCADA SYSTEMS USING DISTRIBUTED COMPUTER CONTROL

The advent of computerised process control and distributed

control systems has enabled revolutionising the control of chemi-

cal and other industrious process, from simple parametric control

to one of object and goal-oriented control system, leading to eco-

nomic optimisation of the process. Petroleum refineries world-over

have done pioneering work in fuller utilisation of the power of

distributed control systems since the location of these refineries

are geographically distributed. These systems mainly help in push-

ing the operating units to its maximum level of output, while keep-

ing track of the dynamic constraints that exist in any given point

of time.

2.6.1 Necessity of Computer Control:

The fundamental aim of process control is to keep aprocess

value as close to a desired value, for as much time as possible.

The proper solution of these desired process variable value depend

on various factors such as through put, better product yields, con-

sistent product qualities and demand of the products. While the

conventional controls using either pneumatic or electronic instru-

2-10-

mentation do a fairly good job in maintaining the individual pro-

L
cess values to the desired value, they grossly fail to take care

of the several interactions that exists between various variables

and to that extent the control performance becomes inferior.

Further there are unnumerable process values which are not direct-

ly measured, but are only calculated based on input of several

variables. The conventional controls provide no answer to control

them. Thirdly, the proper solution desired process values which

is the main controlling factor is achieving the set objectives

of the plant, are purely left to the operator's judgement. With

the introduction of distributed control system with its supervi-

sory computers answers to these problems have become possible.

Computer control have come to state, in solving many of the vagg-

ing problems in the management and control of complex process in-

dustries and help to increase productivity.

The whole technology of computer control is built on the

bottom-up control levels approach, which ensures certain level

of controllability even when the higher level layer fails. This

is very important aspect, without which the whole control system

will fail like a pack of cards when failure occurs in one level.

2.6.2 Heirarchical control:

In large systems, the control is provided in four heirarchi-

cal levels. Functions incorporated at each level are as follows:

2-11

LEVEL-0:

Control of basic parameter using PID type regulating con-

trol.

LEVEL-1:

Dynamic computer control using certain advanced control

techniques such as fuel forward control, adaptive gain control,

calculation variable control etc.

LEVEL-2:

Optimisation of set points with minimisation/maximisation

of suitably defined objective functionwhile ensuring quality and

quantity of production.

LEVEL-3:

Time and space scheduling of production using techniques

of operation research.

Fig.2.1 shows the general heirarchical structure of compu-

ter control.

2. 6.3 Description:

LEVEL-0: aims at identifying basic regulatory controls like con-

ventional flow, temperature, pressure and level controls. Proper

pairing of variables are considered and basic loops are tuned

scientifically based on process responses.

LEVEL 1 : is built over level-0, uses certain advanced control

techniques. This is based on the stability and variability of the

desired control. If interactions from other variables contribute

substantially, it may be required to feed forward the effects of

2-12-

PROCESS

FIG. 2.1 CONTOL SYSTEM HIERACHY

these variables to control the desired variables. There may be

instances where the desired variables to be controlled may not

be a variable, which is directly measured. But it is controlled

through other measured variables. In order to stabilise them, cal-

culated or inferential controls are used. For example in a Dis-

tillation column, the desired controlled variable is the end

point of the side draws. The variation in this affects the product

quality. The variable which is controlled is the side draw pro-

duct flows, which may not yield the desired stability in the end

point. In such cases, advanced controls are used in which the

calculated end points are the controlled variables and set point

to the basic flow controllers are calculated to achieve the de-

sired end point.

LEVEL-2 : constraint control is an important and easy computer

control tool for optimisation of yield in many of the process

applications. Thus constraint controls fit into LEVEL-2 in the

hierarchy of computer controls.

In addition to constraint controls, LEVEL-2 controls also

uses various optimisation techniques. This-requires building up

mathematical models of the problem and to derive optimum set points

for critical variables using optimisation algorithms like linear

programming, or generalised reduced gradient algorithm whenever

non-linear optimisation is required.

LEVEL-3 : refers to problems of optimisation of whole process.

Generally, optimisation should consider steady-state of the pro-

cess rather than the dynamics which are handled by advanced control.

2-13-

CHAPTER-3
REMOTE TERMINAL UNIT

This chapter discusses the details of the RTU of our system.

Intel 8085 micro processor based card cage micro-computer system

is used for hardware of RTU. With the help of different modules

of the micro computer system, various facilities of SCADA on RTU

side are achieved. All the facilities available in our system are

given in detail along with an example for each facility. The hard-

ware & software to achieve these facilities are described. Fi-

nally, detailed description on how the data or information is dis-

played on CRT is given.

3.1 FACILITIES PROVIDED

The following facilities are provided in the present system.

1. PID Control : PID control is used to control 4 analog vari-

able.

2. 16-status inputs from switching devices

3. 16-status outputs for switching devices

4. 16-Analog inputs

5. Display : Out of 16 analog variable 4 analog variable are

sampled at a rate of 1.25 ms and after the collection of every

16 samples their RMS values are calculated and displayed on CRT.

Next 8 analog variables are sampled at a rate of 20 ms and after

collection of every 50 samples, their average, minimum and maxi-

mum values are calculated. These values are displayed on the CRT

3-1.

after every second. The last 4 analog variables are controlled

by PID controller and there are also sampled at a rate of 20 ms.

Reference and actual (instantaneous) values are displayed on the

CRT repeatedly at an interval of 1 sec.

6. Monitoring : Maximum and minimum value of 8 analog variables

are monitored and compared by their higher and lower limits stor-

ed in memory. In case of any variable exceeds its limit, one bit

corresponding to the variable number is set in memory and an

alarm is also given to indicate the fault.

7. Integration : Two variables are integrated by taking running

sum of pulses representing the variable.

8. Control Command from Keyboard : Some of the operator control

commands can be given by key board. The programs to achieve this

is described under control software in software section.

9. Control Commands : Eollowing two control command can be gi-

ven by operator:

i) STOP SWITCHING DEVICE

ii) STOP PLANT

The functional block diagram of RTU is shown in Fig.3.1.(a).

With the help of this system the above facilities are achieved.

3-2.

0
a

w
a
0

N
J
Q
z
0
V

Ẑ
U.

F-

U.
0

cc

0

U
O

~ J

3.2 HARDWARE

3.2.1 Hardware Description:

The hardware of RTU is shown in Fig.3.1(b). Sixteen analog in-

puts are multiplexed through one Analog to digital convertors (ADC-

573). Each ADC 573 is a 10-bit ADC.4 of these inputs axe controll-

ed by a software PID controller and the controlled outputs are fed

to digital to analog controller (DAC 0800). 16 digital inputs are

fed through 8255 (programmable peripheral interface) to the 8085

pp. To control 8 switching devices, control commands are given via

a port of 8255. Similarly the control 8 plants 8 control commands

are given by 8255.

A programmable timer of IC 8253 is made to generate a periodic

interrupts at every 1.25 msec. Two counters of IC 8253 are used to

count the pulses from integral device.

4 control commands can be given via the 4 interrupts of 8259

(Programmable interrupt controller). Each interrupt of 8259 is a

logical OR of 8 interrupts from different devices. To identify the

interrupting device, the ports of 8255 are polled. The processed

data is displayed on CRT, which is interfaced serially to 8085)ip

through USART (Universal synchronous asynchronous receiver trans-

mitter IC 8251). The communication between the RTU up and the Master

Control Station (MCS) also takes place via 8251.

The keyboard is interfaced to the pp via IC 8279 (key board in-

terrupt controller).

3-3

r N

H

O Q. O. J
Z Z C O •a1- r z >-a _j 	_J 1c1 wQ

N' 	Q i 0cI Y O
= S tY W m

(~ (1 F-
W W r r- 'o z Z
~ ~ Oill O

y1X Z

C

O N
a+

1
'n F- M

r
IY Ni

N
X
J

~L
J

Y
J

N N O O

U U U
N
CD

QD co G.

] ___ I i_j

~jtn
11,

a

O ~
N a

0. w
w U 0

Ix a

O
0

Q O U

LJ 0 - -

z
0
U

to

:

o
' 	t!1 O O V, O O

' N m OD O m W
O O

O
O

~ O
1 X U U U U
r Q Q Q Q

' L----- --- ----1 S
00 O O

J~o Ix
1-/

N L=
In
N
GD Q

I-

1 0 a

N
N
O O a

r

z

o Z Q -En
w r O

,
d

3w
N U

ate
LL. 	W

crW
0
LL

0
<L N J

J or
Q ~In
z~- z _o
In U

In lJ ~" 	U' 	1••.
0 'M• 	0

I.

Q r 	Q a.
Z 7 	Z

ri 	4o 	(.0
N 	O

7 L 	O in
O 	f O Q

c~
0
Q 3 a

.-11 m 	Q Z 	O1 	w

CIRCUIT BREAKER STATUS
tL

CBI ON CB9 OFF
T2 	 'bT3 CB2 ON C018 OFF

SSI 	 C2 SS2 _ C3 CB3 ON CR11 ON

C6 TC? 	 co: :C9 	 :C1C11 CH ON C112 ON
CBS ON CB13 ON
CR6 ON CB14 ON
CB? ON CR15 ON
CBS on

BUS VOLTAGE(KV)
4C15 :;C14 i.013::kCi2 CS1 132

.C4 :::C5 G82 132
GS" .4T4 fT5 851 132

L SS2 132
553 132 —

VOLTAGE(XV) POWER(MW) MAX TEMP(C)
REF 	INSTA REF 	INSTA BEARING 	WINDING DIS. VOLTAGE(KV)

CENI 11 	18.8 100 	101 80 	60 SSI 33
GEN2 15 	18.2 200 	198 8S 	65 SS2 11

883 11

Temporary storage of program and intermediate data are stored

in a RAM area of addresses •B000- BFFFhI . 	RAM address area is
to -bt=FFN-

also between 4000H to AFFF COUO IC 6264' (RAM) chips are used and IC

2716 (ROM) chips are used in RAM and ROM cards respectively.

3.2.2 Use of the Data Acquired at RTU :

We have assumed that our RTU is for the (generating station-

1) (GS.a) of Fig.3.2. The Fig.3.2 is example of a power system

generating and distributing network.

Following variables are sensed at this generating station.

a) Generator Voltage:

Generator is generating power at a certain voltage and that

voltage should remain constant at a value, so that voltage is sen-

sed and controlled by PID controller. The reference of the vol-

tage is set by Master Station or by operator.

b) Generator Power :

How much power is generated by generator is sensed and it is

again a controlled variable. The generator power is again contro-

lied by a PID controller whose reference value is given by Master

station or operator.

The two controlled variables are sampled at a rate of 20 ms.

c) Bus voltage:

The bus voltage after the transformation of the generator

3 -4-

voltage is sensed. This parameter is a uncontrolled parameters

which is sampled at a rate of 1.25 ms and after one cycle its rms

and average values are calculated. The rms value of this variable

is sensed and given to master station.

d) Bearing Temperature

The temperature of bearing is sensed at 0 rate of 20 ms and

after every 1 sec i.e. after collection of 50 samples its maximum

temperature is seen and sent to master station. The maximum tem-

perature is also checked up by its higher limit. If it is exceed-

ing its higher limit operator can give a command to stop the plant.

e) Winding Temperature :

The temperature of winding is sensed at a rate of 20 ms and

after every 1 sec i.e. after collection of 50 samples its maxi-

mum temperature is also checked up by its higher limit. If it

is exceeding its higher limit operator can give a command to stop

the plant.

f) Positions of CB1, CB6, CB7 are sensed. These inputs are the

digital input in form of 3 bits. If'bit is set implies that CB

is closed (ON) else OFF.

g) Energy generated by generator is also sensed by pulsed input

and that can be read by master by giving command.

3-5

3.3 SOFTWARE

Software for RTU is divided into several subsection accord-

ing to the use of software.

3.3.1 Data Acquisition, Processing Software:

a) Input Analog Value:

This routine inputs the analog variable for the specified

channel. In this routine channel number is latched and then a de-

lay of 20 is is called, so that conversion (Analog to Digital)

is over by Analog to Digital Convertor (ADC. Then higher and

lower bytes of digital 0/P is read. The lower byte contains use-

ful information only in two L.S.Bs, so the higher 6 bits are mask-

ed. The lower 6 bits of higher byte are shifted to the higher 6

bits of lower byte and bit 6 and 7 of higher byte are shifted to

bit 0 and bit 1. So the 10 bit of result are placed properly in

the memory. Flow chart is shown in Fig.3.3.

b) Delay :

This routine gives a delay of 20 .is. The delay count is in

register pair BC and the count is decremented till it is zero

which gives a delay of 20.us. The flow chart is shown in Fig.3.4.

c) Output Analog Value :

This routine outputs the equivalent analog value of 8-bit

data. In this routine initialise the channel number and output

3-6

SAVE REGISTERS

LOAD ACC. WITH CHANNEL NO.

IMATCH CHANNEL ADDRESS

CALL 20 AS DELAY

READ LOWER BYTE

ROTATE LEFT

N CARRY 7 	,

READ HIGHER BYTE

SAVE HIGHER TWO BITS OF REGISTER H

SAVE LOWER SIX BITS OF REGISTER BI

READ LOWER BYTE

MASK HIGHER SIX BITS

ADD WITH B TO GET LOWER
8 BITS OF NO

MOVE LOWER 8 BITS IN REGISTER L

I SAVE THE DIGITAL VALUE IN MEMORY

IRETRIEVE REGISTERSI

>Y,

Fig.3.3 : Routine to Read Analog Inputs

ENTER

SAVE REGISTERS]

COUNT IN BC REGISTER PAIR

DECREMENT COUNT

N 	COUNT' = 0

Y

REFURN

Fig.3.4 : Routine to give 20,us delay

the digital value to that channel. The flow chart is shown in

Fig.3.5.

d) Input digital value :

This routine inputs the 16-bit digital input via input port.

of 8255. The digital values are the status of 8-switching device

andA8 plants. k .

e) Output digital value

1I

This routine outputs the control command (8-bit) to 8-switch-

ing devices, and for 8 plants also.

f) Multiplication (16-bit by 16-bit multiplication):

This subroutine multiplies the contents of Register pair D

by the contents of register pair B. Multiplier and multiplicant

trom the memory are load in subsequent register pairs. The 32-

bit result will be contained in register pair H (the two least

significant bytes) and register pair D (the most significant by-

tes). Finally the result is stored in memory. The flow chart for

this routine is shown in Fig.3.6.

g) Division (16-bit •by 16-bit division):

This subroutines divides the 16-bit quantity in register pair

D by the 16-bit quantity in register pair B. The divident in DE

and divisor in BC can be loaded from memory. The result can be

stored in register pair D, which is finally stored in a memory

location. The flow chart for division routine is shown in Fig.3.7.

3-7

ri

SAVE ALL REGISTERS

INITIALISE CHANNEL NO.

MOV THE COUNT TO BE OUTPUTED IN ACC

OUTPUT IT TO PARTICULAR CHANNEL

RETRIEVE REGISTERS

N.

RETITRN

Fig.3.5 : Routine to output analog value

SAVE REGISTERS

LOAD THE ACCUMULATOR WITH '[HE
NO. OF BITS IN MULTIPLIER

INITIALISE MEMORY POINTER AND GEF
MULTIPLIER IN DC REGISTER PAIR

INITIALISE MEMORY POINTER AND GE
MULTIPLICANI' IN BC REGISTER PAIR

SAVE 0 AS THE MSW OF PARTIAL
SUM IN STACK

IGET MULTIPLIER MS B IN CARRY

IADD MULTIPLICANT TO LSW OF
PARTIAL SUM IN HL

TARRY ?

ADD 1 TO THE MSW WHICH IS SAVED
ON TOP ON THE STACK

IDECREMENT THE BIT COUNT I

A I- 	 '-'~zOUNT = 0

THE MSW OF RESUL;I' LN DL AND)
LSW OF RESULT' IN BC

INI'T'IALISE MEMORY tU.LNI'IRR Will-! 1'f-i 1I~
MEMORY WHICH WILL. BE SAVED

0

G

ISAVE THE RESULT IN MEMORY)

RETRIEVE REGISTERS

RETURN

ROTATE LSW OF RESULT LEFT

GET MSW OF RESULT IN HL

ISAVE ACCUMULATOR &

ROTATE MSW LEFT

RETRIEVE COUNT & CARRY

CARRY ?

INCREMENT MSW BY 1

SAVE BACK MSW IN STACK

A

Fig.3.6: Routine for 16 x lb Bit multiplication

ENTER

SAVE REGISTERS

INITIALISE MEMORY POINTER

SAVE DIVISOR IN TWO SUBSEQUENT MEMORY
LOCATION

SAVE THE COUNT IN NEXT MEMORY
LOCATION

CLEAR REMINDER REGISTER PAIR

GET DIVIDENT INTO DE REGISTER PAIR

INITIALISE THE MEMORY POINTER WHERE THE
BIT COUNT IS STORED

GET THE MSB OF 16 BIT DIVIDENT
IN CARRY & SAVE DIVIDENT IN DE

DECREMENT THE BIT COUNT

N
' COUNT = 0

Y

STORE THE RESULT IN MEMORY

RETRIEVE REGISTERS

RETURN

A)

il(YI 'All ': 'fill: MSW OF DIVIDIM' INTO
PARTIAL DIVIDENT IN BC

SUBSTRACT THE DIVISOR FROM
PARTIAL DIVIDENT

CARRY

Y

ADD DIVISOR TO THE RESULT OF SUBSTRACTION
SO THAT THE PREVIOUS VALUE OF PARTIAL

DIVIDENT IS RESTORED

COMPLIMENT CARRY

Eli

Fig. 3.7 : Routine for 16 x 16 Bit Division

h) Addition (32-bit):

This subroutine adds the contents of four consecutive memory

location to the content of register B,C,D and E. Register E con-

tains the least significant byte,and stores in memory location with

the lowest memory address. The result is finally stored in mem-

ory. Largest number for this system is 20 bit number and maximum

50, 20 bits no.-canbe added, so the result never exceeds by 32

bit. The flow chart is shown in Eig.3.8.

i) Average (16-Bit):

This subroutine calculates the average value of 50 or 1616-

bit data stored in sequential memory location. The ADC 0/P is a

10 bit output. The result of addition of 50) 10-bit (max) number

will never be more than 16-bit. So the procedure of 16-bit addi-

tion is right. After getting the addition result the result is

then divided by the count and finally the average value is cal-

culated and stored in memory. The flow chart is shown in hig.3.9.

j) Binary to ASCII conversion

Binary data is converted to ASCII before being output to dis

play device. Binary numbers are easily converted to BCD through

repeated division by binary ten.. Then 30H is added to this BCD

no. to convert it into ASCII No. This method is useful if the

microprocesses has a divide instructioin. A binary to ASCII con-

version method that is useful when a divide instruction is not

SAVE ALL REGISTERS

INITIALISE MEMORY POINTER IN HL
& THE COUNT IN ACCUMULATOR

CLEAR REGISTER PAIR D&B SOI
PARTIAL SUM IS ZERO

ADO
NO.AR

IT
STORED IN MEMORY

DECREMENT THE COUNT

N COUNT = 0 ?

Y'

STORE THE 32 BIT RESULT IN 4
MEMORY LOCATIONS WHOSE ADDRESS IS IN

HL REGISTER PAIR

RETRIEVE REGISTERS

RETURN

hig.3.8 : Routine for 32 Bit Addition

INITIALISE THE NO. OF DATA WORDS
IN ACCUMULATOR

INITIALISE THE MEMORY POINTER
AND SAVE IN BC REGISTER PAIR

CLEAR THE PARTIAL SUM IN HL
AND SAVE IN STACK

STORE THE COUNT

GEF BYTE & ADD WITH PARTIAL SUM

SAVE SUM IN STACK

DECREMENT' COUNT

N CUUN'I'=U?

TY
SAVE THE COUNT IN DIVISOR MEMORY

SAVE THE R SUU1' IN DIVIDENT
MEMORY

CALL DIVISOR TO CALCULATE
AVERAGE

I11

A

SAVE THE VALUE IN
MEMORY

CALL BOTH SO IT IS AVAILABLE
FOR DISPLAY

RETRRIEVE REGISTERS

RETURN

Fig.3.9 : Routine to calculate average of N
16 Bit Numbers

available is repeated substraction if powers of ten in binary.

The highest power of ten possible in the binary number is repeat-

edly subtracted from the no. until the difference becomes negative.

The number of times the subtraction can be accompolished without

a negative difference provides the digit associated with the power

of ten being subtracted. The next highest power of ten is then

substracted from the positive binary difference resulting from

the determination of previous digit. When the digit associated

with 10° is obtained, the positive remainderis the digit corres-

ponding to 10°. Every time a decimal digit is obtained add 30H

to convert it into ASCII. This procedure (shown in Fig.3.10) con-

verts the binary no. in HL pair to its ASCII equivalent. Binary

no. can be laod in HL from memory and finally the ASCII no. is

also stored in memory.

k) Square root (32-bit number):

Simplest way of finding the square root of a number is by

using successive approximation algorithm. Successive approxima-

tion works as follows :

Let B be the value for which the square root is desired and

A be the guess value of B. The value of A is squared and compared

to the value of B. If A 2 is greater than B, A is decreased, but

if A' is less that B, then A is increased by any arbitary number.

This procedure is repeated until A 2 is approximately equal to B.

The user decides how close A 2 needs tobe compared to B before the

loop is terminated.

3-9

SAVE REGISTERS

INITIALISE THE DIGIT COUNTER
B, N-4

LOAD DE WITH POINTER DIGIT
STORAGE AREA

SAVE POINTER IN TEMP
MEMORY

LOAD HL WITH THE NO. TO BE
CONVERTED

PLACE POWER OF TEN CONSTANT
ON STACK

GEF POWER OE TEN OF DIGIT TO BE
CALCULATED

CALL DIGIT = SUBROUTINE RETURNS
DIGIT NC

SAVE BINARY Dif FERENCE AND
STORE DIGIT

INCREMENT & STORE POINTER

A

4

0

GET BINARY DIFFERENCE IN
HL

DECREMENT COUNTER

1~1
A 	 COUNT=~J?

Y

STORE LAST DIGIT

IRETRIEVE REGISTERSI

RETURN

rig.3.10.1 Part of Binary to ASCII Conversion

INITIALISE C TO 1

INCREMENT C

1UBSTRACT LOWER ORDER POWER
OF TEN FROM BINARY NO.

SUBSTRACT HIGHER ORDER POWER OF
TEN FROM BINARY NO.

POSITI

*NZGATIVE

RESTORE THE DIFFERENCE

CONVERT C INTO ASCII

RETURN

h'ig.:3.1U.2 : Digit Calculation

Fig.3.10 : Routine for Binary to ASCII Conversion

Calculation of square root of a 32-bit no. is shown in Fig.

3.11. The no. whose square root has to be calculated is stored

in memory location MEM100, MEM101, MEM102, MEM103. Highest byte

in memory location MEM103 and lowest byte in MEM100. The approxi-

mate no. A is taken as the middle of the 16-bit No. i.e. the com-

parison starts from 8000H. And If A 2 > B than highest bit is reset

and next higher bit is set i.e. 4000H. And If _A2(B than the next

higher bit is also set C000 H. Like this way the comparison is

performed. The square root of 32 bit no.by.the comparison is per-

formed. The square root of 32 bit no. is a 16-bit no. in register

pair BC which is finally stored in memory.

1) Square (This program square the no. in BC register pair):

This routine squares the 16 bit no. in register pair BC. As

for this routine multiplier and multiplicand are the same so load

the contents of BC pair to the DE pair also. The result will be

stored in meliory location (MEM107 to MEM 104). The highest sig-

nificant byte is MEM107 and lowest significant byte of result in

MEM 104. The flow chart is shown in Fig.3.12.

m) RMS (16-bit numbers):

This routine calculates the RMS of sixteen 16-bit numbers

stored in sequential memory location. The logic used for RMS cal-

culation is first the squares of all sixteen nos. are calculated

and again the result is stored in sequential memory location.

Then addition of these sixteen nos. by calling ADD32 subroutine

is done. Now instead of calculating the mean of the result first

3-10

(aural UbruT Unt/ rs°''~' o 	oori e

SAVE ALL REGISTERS

GEI' MSB OF SHIFT COUNTER IN HL

CLEAR THE BINARY VALUE IN BC

c

GET THE BINARY VALUE IN BC

I SQUARE THE VALUE

Y 'BYTE 3 BYTE 3 of
NO.?

N

N YTE 3 - BYTE 3 0
NO. 	?

Y

Y BYTE 2 BYTE 2 OF
NO . ?

N

(L 	N BYTE 2 = BYTE 2 C
NO.?

Y

Y YTE 1 BYTE 1 OF
-- 	_ NO.?

—BYTE 1 = BYTE 1
NO.?

Y

N 	 YTE 0 BYTE 0

Y

A

RESET 'THE BIT IN BINARY NO.

SHIFT COUNT RIGHT

N HII = 1

Y

GEF 'THE DIFFERENCE OF BYTE 0
AND BYTE OF NO.

Y
ULT C

SAVE THE COUNTER ROOT IN MEMORY

RETRIEVE REGISTERS

RETURN

Fig.3.11 : Routine for square root calculation of a
32-Bit Number

ER

SAVE REGISTERS

LOAD ACCUMULATOR WITH THE NO
BITS IN MULTIPLIER

(
INITIALISE MULTIPLIER DE WITH THE

COUNTERS OF MULTIPLICANT IN BC

SAVE 0 AS THE MSW OF PARTIAL(
SUM IN STACK

GET MULTIPLIER MSB IN CARRY

CARRY ?

ADD MULTIPLICANT TO LSW OF
PARTIAL SUM IN HL

CARRY ?

ADD 1 TO THE MSW WHICH IS SAVED
ON TOP OF THE STACK

I DECREMENT THE BIT COUNTI

6

A

A

= 0?

ROTATE LSW OF RESULT

GET MSW OF RESULT IN HL] 	GET THE MSW OF RESULT IN DE AND
LSW OF RESULT IN BC AND s'roR.E
IN MEMORY 107 TO MEMORY 1.07

SAVE ACC. AND CARRY 1 	 1

ROTATE MSW LEFT! 	 I RETRLEJE RE61S`cERS

RETRIEVE COUNT & CARRY

CARRY 	 L R ETU R N

INCREMENT MSW BY 1

SAVE BACK MSB IN
STACK

B

Fig.3.12 : Routine to square BC register pair

its square root is calculated by calling SQRT subroutine. Now the

result of SQRT routine is divided by the square root of the to-

tal nos. i.e. it is divided bythe 04 decimal. The flow chart of

this routine is shown in Fig.3.13.

n) Search Max No.:

This routine finds the Max Number (16-bit) from the N 16-bit

numbers stored in sequential memory location. After getting the

max no. from the block of data it compares it with its highest

limit.If the max no. is exceeding higher limit it setsone corres-

ponding bit in memory location BYTEMAX. The flow chart is shown

in Fig.3.14.

o)' Search Min No.:

This routine finds minnumber (16-bit) from the N 16-bit num-

bers stored in sequential memory locatioin. After getting the min

no. from the block of data it compares it with its lowest values.

If the min no. is lower than its lowest limit it setsone corres-

ponding bit in memory location BYTEMIN. The logic used is the com-

parison logic. The flow chart is shown in Fig.3.15.

3.3.2 Application Example Software:

To show the use of data acquired and processed one example

is coated. In this example 16 analog variables are subdivided in-

to fast and slow variables. Fast variables are sampled at a rate

of 1.25 ms and slow variables are sampled at a rate of 20 ms.

3-11 -

its square root is calculated by calling SQRT subroutine. Now the

result of SQRT routine is divided by the square root of the to-

tal nos. i.e. it is divided bythe 04 decimal. The flow chart of

this routine is shown in Fig.3.13.

n) Search Max No.:

This routine finds the Max Number (16-bit) from the N 16-bit

numbers stored in sequential memory location. After getting the

max no. from the block of data it compares it with its highest

limit.If the max no. is exceeding higher limit it setsone corres-

ponding bit in memory location BYTEMAX. The flow chart is shown

in Fig.3.14.

o) Search Min No.:

This routine finds minnumber (16-bit) from the N 16-bit num-

bers stored in sequential memory locatioin. After getting the min

no. from the block of data it compares it with its lowest values.

If the min no. is lower than its lowest limit it sets one corres-

ponding bit in memory location BYTEMIN. The logic used is the com-

parison logic. The flow chart is shown in Fig.3.15.

3.3.2 Application Example Software:

To show the use of data acquired and processed one example

is coated. In this example 16 analog variables are subdivided in-

to fast and slow variables. Fast variables are sampled at a rate

of 1.25 ms and slow variables are sampled at a rate of 20 ms .

3-11-

INI'T'IALISE ALL MEMORY LOCATION
THEIR MEMORY POINTERS

LEAD THE COUNT IN ACC. AND
STORE IN TEMP 2

GET 16 BIT DATA WORD

CALL MULT 16 TO SQUARE THE WORD

STORE IN MEMORY

DECREMENT THE COUNT

CALL ADD 32 TO ADD THE SQUARED DATA

CALL SORT TO CALCULATE SQUARE
ROOT

CALL DIV 16 TO CALCULATE THE RMS

I SAVE THE RMS VALUE IN MEMORY

CALL BINTA TO CONVERT IT INTO
ASCII AND STORE

RETRIEVE REGISTERS

Fig.3.13 : Routine for RMS Calculation

INITIALISE COUNT 50 D IN B
REGISTER AND STORE IN MEN 94B

INITIALISE MAX NO. AS 0 IN REGISTER
PAIR DE

COMPARE THE NO. WITH MAX NO.

C.T.

REPLACE MAX. NO. WITH THENO.
IN MEMORY

DECREMENT COUNT

UNT = 0

STORE THE NO. IN MSM & FOR BINTA
CONVERSION

STORE THE NO. IN MMAX1 ALSO

INITIALISE MEMORY POINTER WHERE THE
HIGHER LIMIT IS STORED

COMPARE THE MAX NO. BY .ITS
HIGHER LIMIT

A

fA

CARRY _ ?

Yy

SET CORRESPONDING BIT IN BYTE
MAX MEMORY

ROTATE THE TEST BYTE

SAVE THE POINTER

CALL BINT A

(RErIJRNfl

Eig.3.14 : Routine for finding maximum number in a string

INITIALISE COUNT 50 DECIMAL IN B
REGISTER AND STORE IN MEMORY 94C

INITIALISE MIN NO. AS FFFFH
IN REGISTER PAIR DE

ICOMPARE THE NO. WITH THEI
L 	MINIMUM NO.

N NO L.T. MIN NO

Y

REPLACE MIN NO. WITH THE NO. IN
MEMORY

DECREMENT COUNT

jY

STORE THE NO. IN MEN 4 FOR BINTA
CONVERSION

ISTORE THE NO. IN MMINI ALSOI

INITIALISE MEMORY POINTER WHERE THE
LOWER LIMIT IS STORED

COMPARE THE MIN. NO. WITH
ITS LOWER LIMIT

id

SET CORRESPONDING BIT IN BYTEMIN
MEMORY

A

Fig. 3.15 : Routine to find Minimum Number in a String

1

There are four number of fast variable and 12 no. of slow variable,

again in which 4 variables are controlled. These analog variables

are the variable of a plant. There are 8-status inputs from swi-

tching devices like C.B etc. The status of switching devices are

repeatedly sensed at a rate of 1 sec. To get an interval of 1.25

ms, interrupt RST 6-5 is used. The 0/P of the counter 1 is conn-

ected to the RST 6.5. The counter 1 is initialised to mode 0

(interrupt on terminal count) and then loaded to give an interrupt

after 1.25 ms. In ISS inspite of other work done in that routine

the counter is again loaded to give again an interrupt after 1.25

ms, so in this manner repeated interrupts are generated after

1.25 ms.

Following routines and main program are used to simulate the
example:

a) Main:

This main programs (shown in Fig.3.16) intialises all the

interfacing chips, define public and external variables and ini-

tialise all the memory location. This will unmask all the three

interrupts (RST 7.5,RST 6.5, RST 5.5) and then inputs all the

16-analog variables and store their value in memory. Analog vari-

ables inputted by call slow and fast subroutine. Load the counter

1 with 1.25 ms count and waits for an interrupt.

b) Slow:

This subroutine (shown in Fig.3.17) inputs the value of four

analog controlled variable (01 to 04) and store their value in

3-12

INITIALISE ALL MEMORY LOCATIONS

DEFINE PUBLIC AND EXTERNAL VARIABLES

ENABLE RST 7.5,RST 6.5
AND RST 5.5

INITIALISATION OF CHIPS
8255,5259,8251,8253

SET TEMP 10, TEMP 20 MEMORY
LOCATION TO ZERO

CALL SLOW

CALL FAST

I LOAD COUNTER 1 WITH 1.25 ms
l COUNT

ENABLE INTERRUPT SYSTEM

HAULT

Fig.3.16 : Routine to input fast and slow analog variables

ENTER

SAVE ALL REGISTERS

INITIALISE MEMORY POINTER WITH MEMINS

I SET CHANNEL NO. TO 00 AND STORE

I CALL READ ADCI

STORE THE VALUE IN MEMORY MEMINS
AND INCREMENT POINTER

INCREMENT CHNUM

N

STORE STORED 0 IN TEMP00

CALL SLOW

A

RETRIEVE REGISTERS

Eig.3.17 : Routine to input 4 analog variables
(01,02,03,04) (SLOW)

memory. These values are also converted into ASCII to directly
I

display on CRT. Within this routine SLOWI is called.

c) Slow 1:

This subroutine (shown in Fig .3.18) inputs the value of 8

analog uncontrolled variable (05 to 12) and store them in memory.

d) Fast 1:

This subroutine (shown in F'ig .3.19) inputs the value of 4

analog variable (13-16) and store them in memory.

e) Interrupt service subroutine for RST 6.5:

The following functions are performed in this routine. The

flow chart is shown in Fig.3.20.

1) It reloads the counter 1 with 1.25 ms count.

2) It checks if the one cycle of 50 Hz is over by checking if

the 16 samples of fast variables are taken.

2a) If 16 samples are over, it calculates average and rms values

of those variable and store in memory after converting them into

ASCII. And increment the count for slow variables and input slow

variables. If L0 ms period i.e. 16 samples are not over it inputs

the value of fast variable by calling fast subroutine and returns

to the main program.

3) It checks if the 50 samples of slow variables are over. If

the 50 samples are not over, it repeats the step 2(a). If the 50

samples i.e. 1 sec period is over., it calculates the average,

Max, Min values for variable (05-12) and again calculate rms

3-13-

SAVE ALL REGISTERS

SET CHNUM TO 04

CALL READ ADC

STORE DIGITAL VALUE IN STORE MEMORY

I SAVE- POINTER

INCREMENT CHNUM

N CHNUM =0B

RETRIEVE REGISTERS

(- RETURN

Nig.3.18 : Routine to input 8 analog Variables (05-12)
(SLOW)

W

Fig. 3.19 : Routine to input 4 analog variable(OC-OF)
(FAST)

ALL r'A I'

DEFINE EXTERNAL VARIABLES

SAVE ALL REGISTERS

RELOAD THE COUNTER

LOAD ACCUMULATOR WITH TEMP 10

INCREMENT COUNTER AND STORE
IN TEMP10

lj

COMPARE WITH 16 DECIMAL

N ZERO FLAG=?

LOAD ACCUMULATOR WITH TEMP20

.1
INCREMENT THE COUNT & STORE IN TEMP20

COMPARE WITH 32 H

~► v ERU FiAG=.

N

CALL LESS

CALL AGAIN 1

E

RETRIEVE REGISTERi]

1
f RETURN

A

STORE 32H IN COUNT & MEM94A

CALCULATE THE AVERAGE VALUES OF 50
SAMPLES OF EACH VARIABLE (05-12)

AND STORE THEM IN MEMORY

CALCULATE THE MAX VALUE OF EACH
VARIABLE (05-12) FROM THE 50
SAMPLES OF EACH VARIABLE

CALCULATE THE MIN VALUE OF EACH VARIABLE
(05-12) FROM THE 50 SAMPLES OF

EACH VARIABLE

CALL LESS

CALL DISPLAY

CALL STATUS

CALL AGAIN 5

E

Fig.3.20 : 1oucine to Input, Process and Display Analog and
digital variables (INT 65)

SAVE ALL REGISTERS

CLEAR ACC. AND STORE IN TEMP 10

CALL SUM I

CALCULATE THE RMS VALUE OF EACH
VARIABLE (13-16) FROM THE 16 SAMPLES

OF EACH VARIABLE

CALCULATE THE AVERAGE VALUE OF EACH VARIABLE
(13-16) FROM THE 16 SAMPLES OF EACH VARIABLE

RETRIEVE REGISTERS

Fig.3.21 Routine to calculate RMS and Average Values
for Fast Variables

NTE

SAVE REGISTERS

INITIALISE MEMORY LOCATIONS
FOR VARIABLES (13-16) AND STORE

RETRIEVE REGISTERS

RETURN

Fig.3.22 : Routine for Initialisation of Memory Location for
Fast Variables (Again 4)

rER

SAVE ALL REGISTERS

INITIALISE MEMORY LOCATION FOR
VARIABLES (05-12) AND STORE

RETRIEVE REGISTERS

RETURN

Fig.3.23 : Routine for Initialisation of Memory Location for
slow variables (Again 5)

value for fast variables (13-16). After the whole proce-

ssing it calls display routine to display the whole processed

data on CRT. It also calls status routine will inputs the status

of 8-switching device and displays on CRT their ON & OFF position.

Then it returns to the main program.

In this manner the application example is developed to show

the use of various inputs.

3.3.3 Display Software:

The display software manages to display the information shown

in Table 3.1 on CRT. In the table it self the memory location

where the codes (IN ASCII) are stored for each line is also shown.

The whole block ('B~.000 H to B.45FH) is used to store this infor-

mation. To achieve this first the whole block is filled with the

ASCII code of blan:k, (20) then from the program itself the value

for instantaneous, maximum, minimum, average, RMS comes which are

stored in proper memory location. The status of 8 switching de-

vices are also sensed and it is also stored in proper memory lo-

cation. The constant data for example codes for variable No. etc.

are permanently stored in memory location. When the whole block

is filled with ASCII data bytes then following two routines are

called to transmit the information on CRT.

a) Display Analog Information :

The routine flow chart is shown in Fig.3.24. This routine

initialises the counter with the length of memory block and initia-

3-14

Corresponding
Memory Location

B000

B050

BOAO

BOFO

B140

B190

B1EO

B230

B280

B2DO

B320

B376

B3CO

B410

V
M 10

XX
MI

AV

VA

RMn

SW'

ST 6
X

11 	12
xxxx xxxx

it

„ 	'I

	

07 	08

	

X 	X (ON OR OFF)

Correspondiny
Memory Location DISPEAY ON CRT

8000

8050

BOAO

BOFO

8140

100

B1E0

B230

8280

BN
8320

837

B3U

8410

VARIABLES

REFERENCE

INSTAWTNEOU

VARIABLE

MAXIMUM

MINIMUM

AVARKE

VARIABLE

RMS

SWT DEVICE

STATUS

N0, 	01 	02 	03 	04

XXXX XXXX XXXX XXXX

XXXX XXXX XXXX XXXX

N0, 	05 1 06 	01 	08 	09 	10 	11 	12

XXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

It 	11 	It 	11 	II 	It 	11 	It

It 	11 	11 	II 	11 	11 	„ 	~t

N0, 	13 	14 	15 	16

XXXX XXXX XXXX XXXX

N0, 01 	02

X

	

03 	04 	05 	06 	01
	

08

X X X X X

X (ON OR OFF)

TABLE 3,1 INFORMATION DISPLAY ON CRT

INITIALISE TOMERO OF 8253
TO GIVE REGISTER

I INITIALISE 8251

INITIALISE THE LENGTH OF MEMORY
BLOCK IN REGISTER PAIR BC

INITIALISE HL WITH 'THE STARTING
ADDRESS OF THE BLOCK

ICHECK IF TRANSMITTER READYI

L 	CARRY

IY

TRANSMIT BYTE

DECREMENT COUNT

+Y

RETRIEVE REGISTERS

Eig.3.24 Routine to display a block of memory on CRT

q

lises the memory pointer with the starting address of memory block.

After this it checks if the transmitter of 8251 is ready to trans-

mit byte, when it is ready it transmits one byte and in this ma-

nner the whole information is transmitted. The starting address

of memory block is B000H.

b) Display Digital Information :

The flow chart for this subroutine is shown in Fig.3.25. This

routine first inputs the status of 8-switching deviced from 8255

and checks the status of devices (ON OR OFF) and stores the corres-

ponding code in memory. The status is checked bybit shifting.

After the status of all 8-devices are checked the information is

displayed on CRT. The starting address of memory block is B3COH.

3.3.4 Communication Software:

The communication with MCS is achieved by using a definite

protocol and according to that protocol software for RTU is de-

veloped which is discussed in Chapter 5 on communication.

3.3.5 Control Software:

a) PID Controller :

The control signal 0/P of PID controller is as follows

d mit = K e _ KD am- +K1 t e dt + Mo

p

e = r-b

r = reference value

p = true or instantaneous value

3-15-

SAVE ALL REGISTERS

INITIALISE MEMORY POINTER WITH
MSTATUS() -

STORE THE POINTER

INITIALISE COUNTER 08 IN C

INITIALISE B WITH 01 N
CHECK Bn

INITIALISE 8255 AND READ THE
STATUS AND STORE

WAD FROM TEMP MEM

SAVE CODE FOR
"OFF" IN MSTATUS
AND STORE POINTER

CHECK IF BIT IS ZERO

Y ZERO FLAG=9

SAVE CODE FOR "ON" IN
(STATUS AND STORE POIN-

ROTATE THE CHECK BIT

DECREMENT COUNTER

N

}Y

DISPLAY STATUS OF VARIOUS
SWITCHING DEVICE

IRETRIEVE ALL REGISTERS(

RErURN

hig..i.LS routine to display status'o1 switching

e = error signal

M = initial value when no. error
0

t = sampling interval

Kp = proportional constant

KD=TD = differentiation constant

K1 = T = Integration constant

n
mn = K en + KI ! 0 e

J
 t + KDt + Mo

P j=

n
m =K e +K e f +K (en - en-1) + Mo j=0

(1)

four constants Kp, K1 1 , KD and Mo are stored in memory.

The equation (1) is simulated for PID control action and its flow

chart is shown in Fig.3.26.

b) Control Commands via Interrupts :

Two control commands as follows :

1) Stop switching device

2) Stop plant

Command comes via two interrupt of 8259 (programmable interrupt con-

troller). These interrupts are IRO, IR1. Each command can come

from eight control/protection units. The eight signals for each co-

mmand are ORed and the output of OR gate is given to the interrupt

pins of 8259. These control commands are sensed and then displayed

3-16

SAVE ALL REGISTERS

READ r, bn, Mo, Kp,Ks',Ko'
FROM MEMORY

I CALCULTE en=(r-bn)I

CALCULATE Pn=Kb en

CALCULATE In = In-1+Ki en

CALCULATE Dn = KD' (en-en-1)

CALCULTATE Mn = Pn + In + Dn + Mo

SAVE IN MEMORY

IRETRIEVE ALL REGISTERSI

Fig.3.26.1 Routine to calculate Mn (MORE)

SAVE ALL REGISTERS

INITIALISE IN-1, en-1

READ SET POINT (r) AND STORE

READ bn AND STORE

ICALL MORE TO CALCULATE Mn

OUTPUT Mn TO THE DAC

ISTORE en Cn en-1 and In as In-1

RETRIEVE REGIS'T'ER

Fig.3.26 : Routine for PID Controller

on CRT. The two routines developed for individual commands are

shown in Fig.3.27. The logic used to display the commands are same

but only the contents of memory location changes according to the

control command.

Display Control Command:

The two routine named IRO, IR1 are developed according to the

control command interrupt. The logic to develop these routines is

shown in Fig.3.27.

In these two interrupt service subroutine, the status of 8 in-

puts for each routine are sensed through ports of 8255 (programmable

peripheral interface) and then by checking the status of each bit

it is known, from which devices or plant control commands are com-

ing. After sensing the status of various devices display subrout-

ine (DISP) is called to display the control command.

Display Information (DISP):

This routine (shown in Fig.3.28) transmits the byte to CRT stored

from a particular memory location. For interrupt IRO, ASCII data

is stored from B500, ASCII data for IR2 is stored from B600 memory

location.

B500 STOP SWT. DEVICE NO.

B600 STOP PLANT NO.

3-17

SAVE ALL REGISTERS

INITIALISE COUNTER E WITH OOH

INITIALISE CHECK BIT IN B(01H)

READ THE 8-COMMANDS VIA
A PORT OF 8255

ISAVE THE VALUE IN MEMORY

LOAD THE ACC. FROM MEMORY

CHECK IF BIT IS ZERO

N ZERO FLAG

jY

LOAD THE VALUE OF E IN MEM17

CALL DISP

INCREMENT THE COUNTER

ROTATE THE CHECK BIT

CHECK IF ALL BITS
CHECK CD MEMS

Y 	
ZERO FLAG

;N
RETRIEVE REGISTERS

Fig.3.27 : Routine which checks various commands and
displays

SAVE REGISTERS

INITIALISE THE LENGTH OF MEMOR
BLOCK IN REGISTER B

(INITIALISE HL WITB THE STARTING
ADDRESS OF THE BLOCK

CHECK IF TRANSMITTER READY

Y ZERO FLAG=?

N

TRANSMIT BYTE

DECREMENT COUNT

N COUNT=O?

TRANSMIT THE NO. OF PLANT OR
SWITCHING DEVICE

TRANSMIT THE CODE OF CR(OD)

TRANSMIT THE CODE FOR LF(OA)

RETRIEVE REGISTERS

• RETURN

Fig.3.28 : Routine to'display the control command

Before displaying control commands on CRT, the screen is cl-

eared via BLANK OUT CODES then these commands are displayed. Af-

ter the display of command display of analog and digital infor-

mation is also done by calling their routines. The codes for blank-

ing OUT CRT screen are [1B,5B,4B,5B,32,4A]. The blocking out of

screen is done to display commands more clearly.

c) Control Commands via Keyboard:

The control command given by MCS to RTU can also be given in

RTU by operator. The operator can gives following commands via

key-board.

CODE FUNCTION OF THE CODE

1 START PLANT

2 STOP PLANT

3 START DEVICE

4 STOP DEVICE

5 REVIEW REFERENCE VALUE

6 CHANGE HIGHER LIMIT

7 CHANGE LOWER LIMIT

8 RESET COUNTER 0

9 RESET COUNTER 1

A READ COUNTER 0

B READ COUNTER 1

If any other code is pressed, than it will display "WRONG

CODE PRESSED". The logic for these control commands are the same

3-18

as used for MCS control commands, the only difference is for MCS

control commands values are provided by MCS and in these the val-

ues for different commands are given via keyboard. The details

of these codes are discussed in Chapter-5.

These commands are useful in case of any communication fail-

ure occurs and if the operator wants to override the MCS then by

using these commands operator can perform its job.

3-19.

CHAPTER-4
MASTER CONTROL STATION

This chapter discusses the details of master control station

(MCS) of our system. WIPRO 80286 based PC is used for hardware

of MCS. With the help of different hardware modules of PC various

facilities of SCADA on MCS side are achieved. The hardware and

software to achieve these facilities are described.

4.1 FACILITIES PROVIDED;

The following facilities are provided in the present MCS.

1. Collection of information from RTU's and displaying it in

the form of MIMIC diagram.

2. Control command from MCS: Different control commands are

given to RTU's via operator's key board on MCS. These commands

are read by the CPU of MCS and sends that to RTU.

3. Hard copy : A printer is used for getting hard copy of the

information with in the MCS.

4.2 HARD WARE:

Various hardware modules are used for achieving different

facilities of MCS, shown in the form of a block diagram in Fig.

4.1. Two communication ports 1 and 2 are provided through 8251

(universal synchronous asynchronous receiver transmitter). Two

different RTU's are connected by these communication ports. The

communication between MCS and RTU is a serial communication. For

4-1'..

U

LL
0

Q
C7
Q

U
0
J
oD

the display of information one video display unit is linked with

80286 up. The information displayed can be graphical as well as

in text or tabular. form. For the permanent storage hard disc. is

used. This disc contains the operating systemand users software.

For transporting software, a floppy disc drive is incorporated.

RAM is used to store the programs transferes from hard disc and

to execute them. ROM contains some of the monitor program. One

parallel printer is provided for obtaining hard copy of any dis-

play or software when required.

4.3 SOFTWARE OF MCS:

MCS software is divided into 3 parts on the basis of the

use as below :

4.3.1 Communication of Software:

Protocol for the communication is described in Chapter-5.

The software for the MCS end has been written in the assembly lan-

guage of 8086.

4.3.2 Control Software:

Control commands to be sent to RTU can be given by operator

through keyboard of MCS. The PC reads the key board by using INT

16H of DOS. The function of INT 16 is described as follows[11].

i) Interrupt:

16H keyboard I/O

4-2-

ii) Function Request:

OOH Read next keyboard character

To activate this function request AH should contain OOH and AL

will contain the keyboard character pressed.

iii) Description:

This function request reads a character type at the keyboard.

If the character has already been typed, and resides in the key

board puffer, the character is returned immediately. Otherwise,

this function request waits until a character is typed.

This function request returns with the ASCII code of the

character typed in AL.

In this way the command inputted byoperator is registered

in PC and which is further used.

Various Control Command:

Type Function

0 SEND PREASSEMBLED PACKET

1 START PLANT

2 STOP PLANT

3 START DEVICE

4 STOP DEVICE

5 RENEW REFERENCE VALUE

6 CHANGE HIGHER LIMIT

7 CHANGE LOWER LIMIT

8 RESET COUNTER 0

4-3-

9 RESET COUNTER 1

A READ COUNTER 0

B READ COUNTER 1

If any other than these codes is pressed an alarm is given

in the form of a keep.

The plant and device number to be stopped or started is

input through keyboard. Similarly the reference, higher and lower

limits are also input through keyboard. This control software has

also been written in assembly langauge of 8086.

4.3.i Display software:

The display includes a mimic diagram of the system being

controlled and numerical information in tabular form. The mimic

is made using the graphic software package GRAPH-X (Details given

in the Appendix-F). The display software has been written in For-

tran-77. An example of display is given in Fig.4.2.

4-4.-

CIRCUIT BREAKER STATUS
r ! CB1 ON CR9 OFF
~,T1 ;I T2 	 bT3 CB2 ON CB18 OFF

GS1 	.1.C1 SS1 	C2 	532 	.C3 CR3 ON CB11 ON

(C? ' C88 	CC9 	::Ci0:#.C11 CB4 ON CB12 ON
CBS ON CB13 ON
CB6 ON CE14 ON
CB7 ON CB15 ON
CBS ON

BUS VOLTAGE(XU)
:C1S .;;C14 1C131C12 GSI 132

c `~"c5 csz 132
GS2 ';T4 SS3 	tTS 331 132

! 	G 	'
 v 1 832 132

383 132

UOLTAGE(XU) POWERUIW) MAX TEi1P(C)
REF !HST A REF INSTA BEARING WINDING DIS. VOLTAGE(KU)

GEM 11 18,8 188 181 88 E8 831 33
GEN2 15 10,2 208 198 85 55 582 11

383 11

CHAPTER -5

COMMUNICATION

In this chapter the link used for communication between Re-

mote Terminal Unit(RTU) and Master Control Station(MCS) is des-

cribed. This is followed by a detailed discussion on the protocol

used for the exchange of information between the two stations.

Data structure for communication between the two stations is dis-

cussed and finally the software for Master Control Station and

Remote Terminal Unit are presented.

5.1 COMMUNICATION LINK:

The communication link used between MCS and RTU is an RS232C

link. This is a serial communication link. It is achieved by co-

nnecting only three lines (TXD, RXD & CND) between the 8251(Uni-

versal Synchronous Asynchronous Receiver Transmitter) IC's of

the two stations with 3 wires. Following format of serial communi-

cation is used.

No. of start bits = 1

No. of data bits = 8

Parity bit - 1

Stop bit = 1

For the transmission of one byte of data, the transmitter

of 8251 formats the data byte by adding start, parity and stop

bits. The number of bits in the formatted data is eleven and tra-

nsmission is done at a rate of 4800 bauds.

F-1-

5.2. COMMUNICATION PROTOCOL:

The protocol for communication between MCS & RTU is similar

for both MCS & RTU. The system that wants to send a message has

to go through the following steps. In the present system requests

always go from MCS to RTU at an interval of every one second.

1) MCS sends a request in the form of "Identity Number" of RTU

and then enters a time out-routine.

2) If MCS gets an acknowledgement for the request, it termina-

tes the time ., out routine and goes to step(5).

3) If the acknowledgement is not received in the time out perod,

MCS repeats step (1) twice more.

4) In case the acknowledgement is not received after the third

attempt too, MCS goes to an error routine.

5) MCS sends a byte to specify the type of communication bet-

ween RTU & MCS and again enters the time out routine.

6) If MCS gets an acknowledgement for the type, it terminates

the time out routine and goes to step (8) provided the type sent

was other than zero. If the type is zero, then MCS goes to step

(11).

7) If the acknowledgement is not received within the time out

period MCS repeats step (5) twice more. If even after the third

time, acknowledgement is not received,MCS goes to the error rou-

tine.

8) MCS sends the message which is kept ready in the prescribed

structure (the data structure of the message is explained in the

next section of this chapter).

5-2

9) MCS enters the time out routine and waits for the message

received acknowledgement.

10a) If MCS gets the acknowledgement for the receipt of message,

it terminates the time out routine and goes to step(12).

10b) If the acknowledgement is not received within the time out

routine period MCS repeats step (9) twice more. If the acknow-

ledgement is not received after third time also, MCS goes to the

error routine.

11) MCS starts receiving the preassembled packet from RTU till

end of transmission (EOT) byte is received and within the period

of time out routine sends acknowledgement(ACK) or negative ac-

knowledgement (NAK) depending upon the validity of data. If ac-

knowledgement, it goes to step (12). If negative acknowledgement,

MCS waits to again receive the same packet.(The step (11) is re-

peated twice more in case of NAK and after the third time it goes

to error routine).

12) End of message transfer

The steps performed by MCS for this protocol is shown in

Figure 5.1.

Codes;

For the transmission of data between RTU & MCS, some stan-

dard ASCII Codes are used for the

data transmission which are

as follows :
ASCII Code (Hex)

SOH - Start of header = 01

ACK - Acknowledgement = 06

5 -3-

FIG. 5.1 STEPS PERFORMED BY MCS

START
SOH - STORE OF HEADER BYTE

ACK - ACKNOWLEDGEMENT BYTE COUNTER=0
NAK-NEGATIVE ACKNOWLEDGEMENT

BYTE
SEND SOH (START OF HEADER)

EOT - END OF TRANSMISSION BYTE

15 mS WAIT ROUTINE

ACK 	? N 	COUNTER
=COUNTER+1

Y

COUNTER=O COUNTER■3 	N

Y
SEND 	TYPE

15 mS WAIT

ACK 	? N 	COUNTER
=COUNTER+1

N
TYPE=O? OU NTER= 	N

COUNTER=O Y Y

READ BYTE
SEND

PACKET

EOT N

Lm5 WAIT

COUNTER' N CALCULATE

=COUNTER +1 CHECK-SUM
AND CHECK IF

Y ANY ERROR
N OUNTER■3

A

ERROR 	? Y SEND NAK

B
N

SEND ACK LCOUNTER=COUNTER +1

A COUNTER=3? 	N

Y

1 SEC DELAY

A

ERROR

B

NAK = Negative Acknowledgement = 15

EOT = End of transmission = 04

STEPS PERFORMED BY RTU:

When MCS interrupts RTU for data communication, following

steps are performed by RTU. RTU CPU interrupts its main programme

and branches to I.S.S. for communication. In this I.S.S. there

are 4 entry points and according to the prior conditions CPU will

branch to relevant entry point but initially the entry point=1.

The concept of entry points are used to eliminate the work of CPU

and to reduce the time of operation. Every time one byte comes

from MCS,gives an interrupt to RTU in the form of RXReady interr-

pt. This RXReady interrupt is connected to RST 5-5 of RTU. RTU

can perform its work irrespectable to when MCS wants to communi-

cate. As and when MCS wants to communicate with RTU it sends byte

and after reading the byte RTU with itself decide where to branch

out i.e. which entry point.

(a) Entry Point 1:

1) Read byte sent by MCS and check if this byte is SOH(start

of header).

2) YES - send an acknowledgement, set counter=0 and entry point

=2 and return to the main program.

3) NO: Return to the main program.

(b) Entry Point 2:

1) Read type sent for data communication and check if the type

is valid.

5-4

2) YES : Type sent is valid. RTU sends acknowledgement and

then identifies the type sent. If type = 0, then set counter=0

and calls entry point.3 and return to the main program.

Type=Any other, then set entry step = 4 and counter=0 and

return to the main program.

3) NO: Type sent is not valid. RTU increments the counter and

checks if counter = 3.

YES : Entry point sets to =1 and return

NO : Entry point sets to = 2 and return.

(c) Entry Point 3:

1) RTU sends the preassembled packet and enters the time out

routine of 15 ms.(and waits for ACK).

2) If ACK : Sets the entry point to 1 and returns.

3) If NAK : Increments the counter by one and checks if count-

ter=3.

YES : sets the entry point to 1 and returns.

NO : Repeat point (1) of entry step=3.

(d) Entry Point -4:

1) Read byte until EOT & store. After checking the validity of

data received send ACK or NAK.

2) If ACK : Set entry point to 1 and return

3) If NAK : Increment the counter and check whether counter=3.

YES : Entry point is set to 1 and return to the main program.

NO : Entry point is set to 4 and return to the main program.

Points performed by RTU are given in Fig.5.2.

5-5.

ENTER

SAVE REGISTERS

CHECK THE
ENTRY POINT

CALL IT'S ROUTINE

RETRIEVE REGISTERS

RET

FIG. 5.2 (a) 1. S' S FOR RST 5.5 THIS PROGRAM CALLS
DIFFERENT ENTRY POINTS

(a) ENTRY POINT-1

FIG.5.2.1(b) READ SOH BYTE

(b) ENTRY POINT-2 ENTER

I READ BYTE (TYPE) I

N COUNTER
TYPE VALID ? COUNTER+1

Y
N ENTRY

SEND CK COUNTER=3 POINT-2

Y

N E

TYPES 0 ?

I

I 	COUNTER -0

SENT COUNTER *0

ENTRY POINT=4

I CALL ENTRY POINT-3I

RETURN

FIG. 5.2.2 (b) READ TYPE BYTE FOR COMMUNICATION

Cc) ENTRY POINT-3

FIG. 5.2.3 (b SEND PACKET TO MCS

(d) ENTRY POINT-4
	

ENTE

I 	READ BYTE

EOT ?

CHECK THE VALIDITY (CS)
OF DATA RECEIVED

VALlO 7 	
N 	COUNTER

COUNTER+i

Y

READ TYPE OUNTER=> N

Y
CALL ITS SUB ROUTINE

ISET ENTRY POINT - 1
	 ET ENTRY POINT=4

RETURN

FIG. 5.2.4 (b) RECEIVE PACKET FROM MCS

FIG. 52(b) DETAILS OF DIFFERENT ENTRY POINTS

5.3 DATA STRUCTURE:

All the messages which fly between MCS & RTU should be put

in the format shown in Figure 5.3. It is a simple data structure

with one byte message header.

The communication between the two stations is always in

ASCII Code. The STX, ETX & EOT all the three have standard ASCII

codes. STX and ETX are used so that the start and end of data co-

mmunication are indicated. The number of data bytes is dependent

upon the type of communication between 'RTU and MCS. The one byte

of data is always split into two bytes for transmission between

the two stations. For example if the byte 2A has to be transmi-

tted then this byte will be transmitted as 32 and .̂41 between RTU

and MCS. This implies that number of data bytes for transmission

are just the half the number of bytes that are transmitted For

this reason checksum is also transmitted in two bytes although

the checksum itself is a single byte data.

Between the ETX and EOT, Checksum is sent to check the vali-

dity of received data. At the end EOT byte is sent to indicate

the end of transmission betweenm two stations.

5.4 RTU SOFTWARE FOR COMMUNICATION:

Following subroutines and main program comprise the RTU

software:

a) HEX TO ASCII CONVERSION:

(HXTA) - This subroutine converts a block of hex data stored

in memory to its ASCII equivalent and stores it the latter in

other memory area sequentially as shown in Fig.5.4.2. One byte

5-6

HEADER

TEXT (INFORMATION)

END OF TEXT

CHECK SUM

END OF TRANSMISSION

STX

N BYTES

ETX

CS (HIGHER BYTE)

CS (LOWER BYTE)

EDT

ASCII CODE (HEX)

STX - START OF TEXT 	 02

ETX- END OF TEXT 	 03

EOT - END OF TRANSMISSION 	 04

FIG. 5.3 DATA STRUCTURE

32

44

10 	 J 	31

I 30

4A 	 J 34

L 	41

35 	 33

35

	

HEX 	 ASCII

FIG.5.4•1 EXAMPLE ON HEX TO ASCII CONVERSION

ENTER

SAVE ALL REGISTERS

INITIALISE COUNTER AND MEMORY

POINTER OF BOTH THE BLOCKS

LOAD DATA FROM MEMORY

SAVE BYTE

MASK LOWER FOUR BITS

SHIFT RIGHT FOUR TIMES

ADD 3011

N
RESULT>39H?

Y

ADD 07 H

STORE AND INCREMENT POINTER

BRING BYTE IN ACCUMULATOR

MASK HIGHER 6 BITS

ADD 30 H

STORE AND INCREMENT POINTER

DECREMENT POINTER

	

N 	COUNT=09

Y
RETRIEVE REGISTERS

RETURN

FIG.5.4.2 LOGIC TO CONVERT HEX TO ASCII

of hex data is split into two bytes of ASCII. An example is shown

in Fig.5.4.1.

From the example of Fig.5.4.1, ASCII it is clear that memory

requirement after conversion is just double.

b) CALCULATION OF CHECKSUM:

Checksum is the one's compliment of the sum of all the data

bytes. The sum is done by disccirding the carry and it is an 8-bit

number. The ASCII equivalent of checksum is a two byte data.This

routine calculates checksum of data stored in a block of memory

and stores and then converts it into its ASCII format and again

store so that it is really available for communication. The flow

chart is shown in Fig.5.5.

c) ASCII TO HEX CONVERSION (ASTH):

The routine converts a block of ASCII data collected from

MCS to its HEX equivalent. The logic is shown in Fig.5.6.1, 5.6.2.

d) TRANSFERS THE BLOCK OF DATA TO MCS: (DATA TRANSFER):

This routine adds STX, ETX & EOT to the block of ASCII Data

stored in memory. The flow chart is shown in Fig.5.7.2. and exam-

pie shown in Fig.5.7.1.

This block of Fig.5.7.1 is transfer first by adding STX(02)

then data (30,35) after that ETX(03) and then CS(x'1.46) and then

EOT (04).

02,30,35,03,41,46, 01

5-7

NTER

I SAVE ALL REGISTERSI

INITIALISE MEMORY POINTER & I

SAVE COUNT IN REGISTER 8

(CLEAR ACCUMULATOR & CARRY
FLAG

LOAD BYTE IN MEMORY

ADD BYTE TO ACCUMULATOR

I 	DECREMENT THE COUNT

N
COUNT = 0 ?

Y

ONE'S COMPLIMENT

OF ACCUMALATOR

I STORE CHECK SUM

INITIALISE THE MEMORY POINTE

TO STORE CHECK SUM

CALL HEX TO ASCII

CONVERSION

I 	STORE THE ASCII BYTES

RETRIEVE ALL REGISTERS

RETURN

FIG.5.5 CALCULATION ON CHECK SUM

MEM POINTER 1 SIX 	01

35 	1
31 	

51 	+---MEM POINTER 2

31 	l

32 T 	
12

30 	1 	08 38 }

42 	1
Y.3

Jj 	 2C

ETX-- 	03

CS---►~ 	32 	} 	 25 	-+--MEM POINTER 3 35 	1

ASCII BLOCK 	 HEX BLOCK

FIG. 5.6.1 EXAMPLE TO CONVERT ASCII BLOCK
TO HEX BLOCK

NTER

SAVE ALL REGISTERS

INITIALISE BOTH THE MEMORY
POINTERS (1 a2)

INCREMENT POINTER 1 TO POINTI
DATA BYTE LOCATION

ILOAD DATA BYTE IN ACCUMULATOR

B

I SUB TRACT 30 H

RESULT > 094 	N

Y

SUB TRACT 07 H

I ROTATE LEFT 4 TIMES

I STORE IN B REGISTER

A

Al

I 	INCREMENT POINTER

I 	LOAD BYTE

SUB TRACT 30 H

RESULT>09H`~ 	N

Y

SUB TRACT 07H

ADD ACC. TO REG. B

STORE THE HEX BYTE

I INCREMENT BOTH THE POINTERSI

I LOAD NEXT BYTE

BYTE=03? 	N 	B

INCREMENT POINTER I

I 	INCREMENT POINTER 3 	1

I 	LOAD BYTE

I SUB TRACT 30 H

RESULT>09H N

Y

SUB. 07 H

ROTATE LEFT 4 TIMES

C

C

STORE IN REG. B

INCREMENT POINTER 1

LOAD BYTE IN ACC.

SUB TRACT 30 H

RESULT >09 H

SUB 0 7 H

ADD REGISTER 8 WITH ACC.

STORE CHECK-SUM IN MEMORY

RETRIEVE ALL REGISTERS

RETURN ,

FIG. 5.6.2 ASCII TO HEX CONVERSION

POINTER•1---►m DATA POINTER • 2-ø. 41
CHECK-SUM

4G

FIG. 5.7.1 DATA AND CHECK SUM EXAMPLE TO BE TRANSFERED
t

ENTER

SAVE ALL REGS

INITIALISE MEMORY POINTER (112)

INITIALISE COUNTER WITH A COUNT

EQUAL TO NO. OF ASCII BYTES

TRANSMIT STX

TRANSMIT BYTE
1

DECREMENT COUNT

N
COUNT = 0

Y

TRANSMIT EIX

TRANSMIT BOTH THE BYTES OF CS

1
RETRIEVE ALL REGISTERS

1

GTURN

FIG.5.7.2 SEND PACKET

Details of subroutine and flowcharts for all the four entry

points are given earlier.

There are different type of data communication according to

the type sent by MCS, RTU will respond. The details of different

types are as follows:

Type:

0 - for sending all the data from RTU to MCS

1 - Start Plant

2 - Stop plant

3 - Start device

4 - Stop device

The number of the device or plant to be started or stopped is

sent by MCS only.

5 - 	Renew r;.!Eerence value of variable (given by MCS)

6 - 	Change the higher limit of variabl_e

7 - Change the lower limit of variable

8 - Reset counter 0

9 - 	Reset couu:iter 1

A - Read counter 0

B - Read counter 1

e) DISPLAY THE COMMAND (SUB31 TO SUB 34):

The logic used for these four subroutines are same and their.

flow chart is shown in Fig.5.8. This subroutine displays the co-

mmand start or stop the plant or start or stop the switching de-

vice. The number of plant or switching device is loaded in M'LM17

5-8

f) RENEW REFERENCE VALUE (SUB 35):

This subroutine is for type-5 of control command. This will

renew the reference value of the variable. The variable number

is sent by MCS itself. The flow chart is shown in Fig.5.9.

g) CHANGE HIGHER OR LOWER UNIT (SUB 36 AND SUB 37):

These two routine changes the higher or lower limit of vari-

able whose value is given by MCS.

h) RESET COUNTER (SUB 38 AND SUB 39):

These routine reset the counter 0 or counter 1 to FFFFH.

i) READ COUNTER (SUB 41 AND SUB 42):

These routine reads the value of counter 0 or counter 1 from

RTU.

j) I.S.S. OF RST 5.5:

In this interrupt service routine the entry point is check-

ed by the number stored in memory Entry and accordingly the en-

try point routine is called. After performing these functiorrthe

routine returns back to main program.

5.5 MCS SOFTWARE FOR COMMUNICATION:

(a)Main Programme:

Main program for communication is always loaded from 100H

and code & data segment are initialised in one segment.

In main program following functions are performed:

5-9

ENTER

SAVE ALL REGISTERS

LOAD THE NO. OF PLANT TO
BE STARTED OR STOPPED OR
LOAD THE DEVICE NO. IN MEM.17

CALL DISPLAY

RETRIEVE ALL REGISTERS

RETURN

FIG. 5.8 DISPLAY ROUTINES (SUB 31 TO SUB 34)

ENTER

SAVE ALL REGISTERS

I READ THE VARIABLE NO.

READ ITS NEW REFERENCE
VALUE AND REPLACE FROM

OLDER ONE

I RETRIEVE ALL REGISTERS

RETURN

FIG. 5.9 RENEW- 'REFER'EN'CE VALUE (SUB 35)

ENTER

SAVE ALL REGISTERS

~ READ THE VARIABLE NO. I

READ ITS NEW MAX. OR MIN
VALUES AND REPLACE FROM

OLDER ONE

I RETRIVE ALL REGISTERS

RETURN

FIG.5.10 CHANGE HIGHER OR LOWER LIMIT
(SUB 36 OR SUB 37)

F ENTER

SAVE ALL REGISTERS

INITIALISE COUNTER 0

OR COUNTER 1 ,,TO FFFFH

RETRIEVE REGISTERS

RETURN

FIG.5.11 INITIALISE COUNTER 0 OR COUNTER 1
(SUB 38 OR SUP 39)

ENTER

SAVE ALL REGISTERS

READ THE COUNTER
0 OR 1

CONVERT ITS VALUE
INTO ASCII

CALCULATE
CHECK SUM

SEND IT TO MCS

RETRIEVE REGISTERS

RETURN

FIG. 5.12 READ COUNTER 0 OR COUNTER 1 AND TRANSMIT
TO MCS

1) 	Gives an interrupt to RTU by sending SOH at an interval of

1 second.

2). 	After sending the SOH it reads keyboard to input the type

of data transmission. If the type is beyond the range of (30H to

42 H) it displays the error in the form of a beat. And if the type

is valid then it performs its function. the flow chart is shown

in Fig.5.1.

b) Initialisation of Communication Port(Init):

The subroutine initiales the communication port for 4800

bands, even parity, 1 stop bit and 8 bits per character. The pro-

cedure is shown in Fig.5.1.3.

c) Send byte to communication port:(send-byte):

This subroutine shown in Fig.5.14 sends the byte in regis-

ter Al to communication port by using INT14. This function is re-

peated thrice in case of any error.

d) Send the whole preassembled packet(send-pkt):

In the routine shown in Fig.5.15 the whole packet which is

preassembled earlier is sent to RTU with the help of routine send-

byte. In this procedure, the offset of transmitter buffer is

loaded in SI(Source Index) register that will final give the EA

(effective address) and the number of bytes to be transferred

is loaded in CX register.

e) Receive byte from RTU (get-byte):

This routine shown in Fig.5.16 receives a byte in AL sent

on communication port and checks for any error. In case of error

that byte is read thrice with the help of INT 14H.

5-10

ENTER

MOVE ZERO TO AH AND
- - 	THE CW IN AL AND CALL

INT 14 H TO INITIALISE
THE PORT

RETURN

FIG. 5.13 INITIALISATION OF COM -PORT

ENTER

INITIALISE ERROR COUNT

LOAD AH WITH 01 H AND
AL WITH THE BYTE TO BE
TRANSFERED AND THEN CALL

INT 14

NY ERRO

Y

DECREMENT ERROR COUNT

N 	~
COUNT=O

Y

RETURN

FIG. 5.14 SEND BYTE TO COM-PORT

NCREMENT COUNTER N

ENTER

INITIALISE REGISTER
SI AND DI

LOAD BYTE IN AL

CALL SEND BYTE

ALL BYTE
RANSFERED

Y

RETURN

FIG.5.15 SEND PACKET

FIG. 5.16 GET BYTE FROM COM-PORT

f) Receive packet from RTU (GET PKT):

This routine (shown in Fig.5.17) receive packet from RTU

till EOT and store the packet in RX-buffer.

g) Make packet of number of HEX Data byte(make-pkt):

This subroutine (shown in Fig.5.18) converts the Hex data

bytes to equivalent-ASCII bytes and then adds STX, ETX & EOT to

ASCII data. With in this routine checksum is also calculated and

added between ETX & EOT. Before calling this routine CX should

contain number of hex data bytes.

h) Convert HEX byte to Numeric ASCII Word(HEX-to-ASCIII):

This routine (shown in Fig.5.19) converts hex byte to ASCII

word. This should be called with the Hex byte in Al register. And

this routine returns with word in Ax register.

i) Convert - ASCII word to Hex byte(ASCII-to-HEX):

This subroutine (shown in Fig.5.20) converts the ASCII word

in register AX to HEX byte. This routine return with byte in AL

register.

j) Calculate checksum(CHK-SUM):

This routine(shown in Fig.5.21) calculates the check-sum

and returns with checksum in AL.

k) Send the whole packet to RTU(send-out):

This routine (shown in Fig.5.22) first makes the packet from

HEX data and then sends the packet to RTU. Check if ACK is received

or not. In case acknowledgement is not received within 15 ms then

5-11-

the packet is sent twice and if after sending the packet three

times acknowledgement is not received then goes to error routine.

Before entering the routine ex should be loaded with the number

of HEX bytes.

1) Receive the whole packet from RTU(GET-IN):

This routine (shown in Fig.5.23) receive the whole packet

from RTU and then checks if the packet is received correctly by

checking checksum sent by RTU to the checksum calculated by MCS.

If the packet is received properly without any error, acknowled-

gement is sent to RTU else, NAK acknowledgement is sent to RTU

and accordingly Nak-error thus is set.

5-12

ENTER

GET BYTE FROM
RTU AND STORE

~EOT ?

I
RETURN

FIG.5.17 RECEIVE PACKET

NTER

INITIALISE Sc TO OFFSETT—BUFFERI

AND DI TO OFFSET TX—BUFFER

I SAVE CX

STORE SIX IN FIRST LOCATION

OF TX BUFFER

LOAD BYTE FROM
T—BUFFER

ICONVERT INTO ASCII

STORE THIS WORD IN TX—BUFFER

SI -07

Y

1 ORE ETX IN NEXT MEMORY

CALCULATE CHECK SUM AND

CONVERT IT INTO ASCII

STORE THE CHECK-SUM IN MEMORY

I STORE EOT IN MEMORY

RETURN

FIG.5.18 MAKE PACKET

ENTER

INITIALISE REGISTER
St AND DI

I 	LOAD BYTE IN AL

I 	CALL SEND BYTE

NCREMENT COUNTER N 	ALL BYTE
RANSFERED

Y

RETUR

FIG.5.15 SEND PACKET

FIG. 5.16 GET BYTE FROM COM-PORT

ENTER

I SAVE CX AND AX REGISTERS

I MASK HIGHER NIBBLE OF

AL RE6ISTER

ADD 30 H IN BYTE TO CONVERT

IT INTO ASCII

RESULT > 39 H

Y

ADD 07 H

I BRING (AX) IN (DX)

NOW BYTE IS IN DL REGISTER

MASK LOWER NIBBLE

I ROTATE LEFT FOUR TIMES

I ADD 30 H TO GET HIGHER BYTE

OF ASCII

RESULT>39 H?

Y

ADO 07H

I MOVE HIGHER BYTE IN AH FROM
DL REGISTER

RETRIEVE REGISTERS

RETURN

FIG.5.19 HEX BYTE TO ASCII WORD CONVERSION

ENTER

SUBSTRACT 30 H FROM AL
TO GET LOWER NIBBLE

RESULT> 0 9 ?~

Y

SUBSTRACT 07 H

SUBSTRACT 30 H FROM AH

TO GET HIGHER NIBBLE

RESULT> 09 ? N

SUBSTRACT 07 H

ROTATE LEFT AH 4 TIMES

TO PLACE HIGHER NIBBLE

IN PROPER PLACE

ADD (AL) TO (AH) 70 GET

BYTE IN AL REGISTER

RETURN

FIG.5.20 ASCII WORD TO HEX BYTE CONVERSION

NTER

CLEAR ACCUMULATOR

LOAD BYTE IN AL REGISTER

ADD WITH PARTIAL SUM IN AH

N ACC BYTES

OVER ?

" Y

MOVE SUM IN AL 1

COMPLIMENT THE AL CONTENTS
TO GET CHECK SUM

RETURN

FIG.5.21 CALCULATION OF CHECK-SUM

I CALL MAKE PACKET

I SAVE CX

SET READ-ACK TO ZERO

SET CX WITH NO. OF BYTES TO
BE TRANSFERED

• SEND PACKET

I iS rnS WAIT

B Y 	CK RECE

I INCREMENT COUNTER

TER~03 N

Y

A

A

MOVE 01 H TO ERROR
FLAG.

C
RETUR

FIG.5.22 SENDS PACKET

NTE

I SET SI TO OFFSET Rx-BUFFER

RELIEVE THE PACKET IN BUFFER

CONVERT THE DATA INTO HEX AND
STORE IN R-BUFFER

CALCULATE THE CHECK SUM

CONVERT IT INTO ASCII

Y 	ARE BOTH THE CHECK
SUM EQUAL

N

SET NAK ERROR FLAG

TO 1

ICLEAR THE WHOLE BUFFER

RETURN

FIG. 5.23 GET-IN THE PACKET

CHAPTER-6

CONCLUSIONS & SCOPE

OF FURTHER WORK

6.1 CONCLUSIONS

A review of the developments in remote control, telemetry

and supervisory control techniques since the World War II has

been presented. Trends in communication with respect to the im-

pact of the development of transistor, large automatic tracking

antennas, phase-locked FM detector and technologically superior

communication mediams, are also seen in detail. The use of compu-

ter in SCADA is overviewed. Based on this knowledge and the know-

ledge of computers a "Two level SCADA System" with one master con-

trol station (MCS-80286 PC based) and one remote terminal units

(RTU-8085 uc based) has been developed and implemented.

Some important facilities necessarily required at the re-

mote terminal units that are achieved by using the hardware mo-

dules of micro computer are the inputting, display and monitor-

ing of analog & digital variables, PID control, digital control

and integration of pulse inputs.

Software routines and programs has been developed for data

acquisition, processing of the data, displaying the relevant in-

formation on CRT and transmitting it to the master control sta-

tion on demand.

Facilities at the master control station are broadly the

control of variable, display of received information and communi-

cation with remote terminal units.

G-1

The software for these facilities has been developed and

implemented. Display software is in Fortran-77, and communication

and control software is in 8086 assembly langauge.

Communication between RTU and MCS is serial using RS232C

link. A protocol for exchange of information between the two sta-

tions for minimum error during communication has been designed

and implemented.

6.2 SCOPE FOR FURTHER WORK:

The system can be explained using additional RTU's by pro-

viding additional communication ports in the hardware of the MCS

By adding sufficient processing capabilities with physica-

lly distributed RTU's. This system can be developed into a power-

ful computer network with the help of a proper networking soft-

ware. The configuration for networking can be either a ring or

a star.

Modems can be used where different RTU's are placed at phy-

sically very large distances. To obtain high communication effi-

ciency, optical fibre can be used as the communication medium.

This can improve communication speed and almost eliminate data

loss.

To enhance user RTU interface in the system, graphic soft-

ware can be used to display system configuration and its relevant

information in the form of mimic diagrams. Colour graphic display

can be done on MCS to improve readability of the mimic diagram.

To enhance facilities on RTU, processing capabilities of

the CPU and RTU can be increased by using 16 bit processor. Fast

speed, high throughput and better real time interface can thus

be obtained. Similarly a 32-bit system for MCS can be used.

A 12-bit instead of 10-bit ADC can be used in the RTU to

provide better resolution, reduce the quantisation error and im-

prove sensitivity.

From the MCS software one of the more popular and control

oriented language like C can be used in place of assembly lang-

uage. This will improve maintainability of software and hardware,

improve portability of software and most importantly facilitate

changes in the software.

Real time system like iRMS is used to increase the through-

put.

The SCADA system can be expanded into a powerful management

information system using on appropriate Data Base Management

package like ORACLE, INGRESS, FOCUS and UNIFY. Different statis-

tics about the performance, maintenance etc. of all RTU's could

be captured into the data base and statistical reports for a RTU

could be taken out at a later stage for any period of operation.

6-3

REFERENCES

1. ELLIOT L. GRUENBERG (1967) : Fundamentals in 'Hand book of Tele-

metry and Remote Control' (Page 1-2 - 1-4)

2. H. RAMESH, S.GHOSH, M.G. DANIEL (1988): Systems Engineering

Approach : Relevance to SCADA in 'All India Seminar on SCADA for

Power Systems and Industries' (Page 11-4-1-11-4-11)

3. SURENDER KUMAR (1988) : Trends in SCADA Systems in 'All India

Seminar on SCADA for Power Systems and Industries' ,(page 1-1-5)
4. SURESH KAMATH, S.SUNDARARAJAN, SATISH MOKKAPATI: An Optimal So-

lution to SRC/DAS for 25 KV Traction Supply in 'All India Seminar
on SCADA for Power Systems and Industries' Page (11-6-3-11-6-4)

5. J.G. TRUXAL, M.L. SHOOMAN, W.B. BLESSER, J.W. CLARK: Remote Con-

trol in 'Hand book of Telemetry and Remote Control' Page (15-2-

15-3).

6. C.H. HOEPPNER, C.H. DOERSAM, J.H. SMITH, J.F.BRINSTER, HANS

SCHARIA-NIFLSE~V, LAVEAGNE E-WILLIAMS :,-RADIO-TELEMETRY SYSTEMS in
'Handbook of Telemetry and Remote Control' Page (4-2-4-3,4-24-

4-25).

7. GUNTHER SWOBOOA: The Design of Telecontrol Installations in

'Telecontrol : Mwethods and applications of Telemetering & Re-

mote Control' Page (312-314).

8. SUBHASH.C. CHOPRA, RAVI RAINA: Supervisory Control and Data Ac-

quisition System - An Overview in 'All India Seminar on SCADA

for Power Systems and Industries' Page (111-4-4-111-4-5).

9. LAMBA, Y.P.SINGH(1989): Architectures for Computer Control Sys-

tems in 'National Workshop on Distributed Computer Control Sys-

tems' Page (1-3).

10. C.N. VASUDEVAN(1989): Advanced Control and Optimisation in Re-

fineries in 'National Workshop on Distributed Computer Control

Systems' page (1-8_.

11. ARMBRUST & FORGERON (1988) : BIOS Interrupts and Function Request

in 'Programmers Reference Manual for IBM Personal Computers' page

(504-707).

APPENDICES

APPENDIX- A

sex ine external and public variables
EXThN 	MRMS1,MAVRAGd,MM1N1,MMAX1
PUBLIC ADI:READ,LISI'4,DISP1,DISP2,DISP3
EX h.N 	MEMMIN,MEM94C,MAXMAX,BYTEM.SIX,BYTEST,MINMIN,BYTEMIN,BYTEST0,MEM1
F'UBL1c_; RMS,MULT16,TDIV,ADD32,AVRAG,BINTA,SQRT,MAX,MIN,IR0,TR1,IR2,STATC
EXThN 	t-l.EtH]100 , MEM101, MEM102 , MEM103 , MEM104 . MEM1Q 5 , MEM106, MEM107 , MEM4
EXTRN IEMr1,MEM90,MEM92,MEM88,MEM86,MEM95,TEMP2,MEM94A,MEMMAX,MEM94B
EXTRN HADD32,MMULT16,MEM6,MDIV16,MEMA,MPOINT,TEMP4,MBINTA,TEMPMUL

This routine calculates the RMS value of N numbers (10-bit) stored
;in sequential memory location.

.00F.'4

PUSH H
PUSH B
PUSH U
PUSH F'SW
L~; I H , MEM100
ELU MADD32

LXI H,MEM&G
ah'' L I.1EMA
LXI U. TEMPMUL
SHLD HEI6
SHLD MMULT16
HVI A1 øH
LHLD MEMy6
NOV
t-10V B, H
LXI L,MEM88
LXI H,MEM86
STA TEMP2
LDAX B
MOV M,A
XCHG
MOV M. A
INX H
INX B
INX D
LDAX B
NOV M,A
XCHG
MOV M,A
LALL t°1ULT16
DCX D
DCX H
INX B

;save registers
;initialise the memory pointer of addition rout
;store in MADD32
;initialise the memory pointer for divident men
and store in MEMA
;initialise the pointers for multiplication &.
;store in memory multl6 & mem6

;load count in accumalator

;save the starting address of block in BC
;multiplicant memory in in DE
;multiplier memory in HL
;save the count

;set multiplier & multiplicant with the
;number to be squared
;call multl6 (for 16 by 16 Bit multiplication.

;decrement D,H pointer

•Jhu 	4y1Le-
Merin rxt•ernal and public variables

EXTRN MRMS1,MAVhAGa.MMINI,MMAX1
EUBLIC ADCREAD,DISP4,DISP1,DISP2,DISP3
EXThN MEI°1MM11N,MEM94C.MAXMAX.BYTEM.4X,BYTEST,MINMIN,BYTEMIN,BYTESTO,MEMI
PUBLIC RMS,MULTI6,DIV,ADD32,AVRAG,BINTA,SQRT,MAX,MIN,IRO.IRI,IR2.STATC
EXThIN t•IEtMi100 , MEM101, MEM102 , MEM103 . MEM104 , MEM105 , MEM106, MEM1Q 7 , MEM4
EXTRN TEMP1,MEM90, MEM92,MEM88,MEM86,MEM95,TEMP2,MEM84A,MEMMAX,MEM94B
EXTRN h1ADD32,MMULT16,MEM6,MDIV16,MEMA,MPOINT,TEMP4,MBINTA,TEMPMUL

This routine calculates the RMS value of N numbers (10-bit) stored
;in sequential memory location.

'13

)OF'4

PUSH H
F•USH B
PUSH ill
E'U SH IISW
Lfi 1. H , MEM1+?s)
Sk LD HADD32
iAl H,ME1 2

MEMA
LXI H,TEMPMUL
6HLL i'1EH6
SHED MMULT l6
i•1V I A , 10H
LHLL MEM95
111UV U, L
t•OV B,H
LXI L,MEM88
LXI H,MEM86
STA TEMP2
LDAX b
MUV M,A
XCHG
MOV 1.1, A
INX H
INX B
INX D
LDAX B
Nov M,A
XCHG
MuV MIA
CALL HULT16
DCX D
DCX H
INX H

:save registers
;initialise the memory pointer of addition rout
;store in MADD32
;initialise the memory pointer for dividerit men
;and store in MEMA
;initialise the pointers for multiplication &.
;store in memory multl6 & mem6

;load count in accumalator

;save the starting address of block in BC
;multiplicant memory in in DE
;multiplier memory in HL
;save the count

;set multiplier & multiplicant with the
;number to be squared
;call multl6 (for 16 by 16 Bit multiplication)

;decrement D,H pointer

1116

31''1'

LL 1'EMlr2
A .is all number over
LvuI 4 ;no : loopA to square next number

t,ALL ADD32 ;yes;call ADL3 to get the addition of numbers
CALL Sb411'I' ; call SORT
LXI H,0004H
SHLL MEM90
CALL DIV
LHLli MDIV16 ;call dvision to get rms value
SHLII MEM4
XCHG
LHLL t4RMSi.
MOV M,E
INX H
MOV M.D
INX H
SHLD MEMSI ;save the rms value in MRMS1
CALL BINTA ;convert the value to ASCII
Fur,

['SW

F'OI L
PCP B
PCP H ;restore registers
kE `i'

;This routine multipies the contents of register pair DE by the
;contents of register pair BC. The 32 bit result will be obtained

PUSH 	H
PUSH 	B
PUSH 	D
PUSH PSW ;save registers
MVI A.10H ;load the acc. with no. 	of bits in multiplier
LXI H,MEM86
MOV E,M
INX H
MOV D.M ;get the multiplier in DE
LXI H.l•IEM83
MyV C.M
I14X H
MOV B,M ;multiplier in BC
LXI H,0000H ;set register pair H and the last entry on stack
PUSH H
XCHG ;get the multiplier into H&L
DAD H ;rotate the MSB into the carry
XCHG :put the multiplier back into DE

,Jld,_C 1NuADDL ;it 	arry 	= k). 	don't add. 	The multiplicand
; t,o the partial result and the stack

Li h ;it 	1, 	add BC to HL, 	result in HL

;Ir 1, 	add BU to HL, 	result in HL
JNC NOADD ;should a 1 be added to the MSB's of the

;result stored on the stack 'r
XTHL ;Yes. 	exchange HL and the stack entry.
1NX H ;increment the 16-bit MSW by 1
XTHL ;then save it back on the stack

NOADD 	DCR A ;decrement the bit count
JNZ NOTEND ;the count is non zero. 	so test another bit

;of multiplier.
POP D ;pop the 16-bit result,
PUSH H
POP B
LHLD MMULT16 ;initialise the memory pointer

MOV M,C
INX H
MOV M , B
INX H
MOV M,E
INX H
MOV M,D ;store the result in memory
INX H
SHLD MMULT16
POP PSW
POP D
POP B
POP H ;restore registers
RET

NOTEND 	DAD H ;rotate LSW of the result left
XTHL ;get the MSW into HL
PUSH PSW ;save the count and carry on the stack
DAD H ;rotate the MSW once to the left
PUP PSW ;pop the count and carry off of the stack
JNC NOMSB ;was there a carry from the LSW ? no. then

do not add 1 to MSW
INX H ;increment the MSW by 1

NOMSB 	XTHL ;put the MSW on the stack
JMP NXTBIT ;and test another bit in the multiplier

;this routine adds 20 bit no. which is stored in sequenced
;memory location and result ins 32 bit

ADD32 PUSH H
PUSH D
PUSH 	B
PUSH 	PSW 	;save registers
LHL

CUNT3

L NEH6 ;initialise the mem. 	pointer
MVI A,1OH ;initialise the counter
LXI 8.0 ;initialise 	register pair B & L with zero a
LXI D,O
STA TEMPI ;save count
MOV AIM
ADD E
MOV E,A
.1NX H
MOV A,N
AIO D
MOV D.A
INX H
MOV A,M
ADC C
MOV C,A
INX H
MOV AIM
ADO B
MOV B,A
1NX H ;add partial rsult with 32 bit no.
LDA TEMPI ;load and decrement the count
OCR A
JNZ CONT3 ;is count zero .no:loop to add remaining no.
LHLD MADD32 ;,yes:initialise pointer from where 32 bit no
MOV M,E
INX H
MOV M,D
INX H
MOV MC
INX H
MOV M,B ;store no. 	in memory
INX H
SHLD MADD32 ;save the pointer
POP PSW
POP B
POP I)
FOP H ;retrieve reg.s
RET ;this routine calculates the average of N 10)

this routine calculates the average of N 10-bit numbers.

AVRAG PUSH PSW
PUSH H
PUSH B
PUSH D 	;s

ave registers
EXTRN CCUN`1'1

LDA MEM94A ;load the count in acc.

LHLD MEMy5 ;initialise memory pointer
MO V C , L
NOV B•H ;save the pointer in BC reg. pair
LXI H.ø ;initialise partial result with zero
PUSH H ;save result

CONTØ 5Th MEM94A
LDAX B
MOV E,A
INX B
LDAX B
MOV D,A ;i0ad 2 byte in DE reg pair
fvf, H
DAD D ;add the 16 bit no. to partial result
PUSH H
INX B
LDA MEM94A
DCh A
JNZ CONT© ;check if all the no.s addtion is over,no:loo
MV1 H.0 ;,ves
LDA COUNT1
MOV LA
SHLD MEM90
PUP H
SHLD MEM92
CALL DIV ;call 32 bit by 16 division routine
LHLD MDIV16 ;get the avg,. value in memory
SHLD HEM4 ;save in mem4
XeHu
LHLD MAVRAGf ;initialise the pointer from where avg. value
MUV ME
INX H
Mov M,L -
1NX H ;store the value
SHLD MAVhAGti ;save the pointer
CALL BIN'TA ;call BIN to ASCII routine which converts no.
POE, U
POP B
POE H
FOP P5W ;retrieve reg.
RET ;return

;this routine divides the 16-bit quantity in register pair DE by the
;1d-bit quantity in register pair BC

DIV

F•UaH 	raw
YU0H 	H
FUSH 	B

NXTBIT1

LGNT1

iUSH U save registers
LXI H , TI MF4
LXI D,MEM90 ;initialise DE with divisor mem loc.
LUAX L
NOV H1, A
INX H
INX L
LLAX U
MOV M.A
1NX H ;save the divisor in mem
MVI M.11H ;save the count 17 decimal. iii memory
LXI B.00OOH
LXI H,MEM92
NOV EM
INX H
NOV D,M
LXI H,TEMP4+2 ;load register pair H with the memmory

;addresses where the bit count is stored
NOV A.E ;get the LS Byte of the dividend into A
1L ;rotate the MSB into the carry
NOV E,A ;save the LB byte of the dividend back in E
NOV A,v ;get the MS byte of the dividend into A
RAL ;rotate the MSB into the carry
NOV 1)A ;save the dividend's MS byte in D
DCh M ;decrement the bit count
JNZ GUNT1 ;if count not equal to zero, Jump to CUNT
NOV LE
NOV 11,1)
SHLD MDIV16 ;save the result in memory..

1) BUE

F'up B
POP H
PUP F'SW ;retrieve 	reg.
RE'1'
NOV A,C ;rotate the MSB of the dividend into the parti
EAL .dividend stored in registers B and C
MuV C,A
NOV AB
RAL
NOV BA
LCX H ;decrement the memory address so that HL
LCX H ;points to the divisor in memory
NOV A,C ;get the LS Byte of the partial dividend
SU

;thin, routine calculates the square root of 32 bit no.

PUSH H
F'U SH B
PUSH - 	U
PUSH PSW

NOADDI

S~hT

ah!RT 1

Ii H
MuV j , A
INX H
NOV AB
SBB M
MUV B,A
JNC NOADUI

DCX H
MUV AC
ADD H
NOV t; , A
INX H
NOV Alb
ADC M
NOV B,A
CMC
JMP NXTBIT1

LX I. H , 8000H
LX.i. B, ØØØØH
H(JV A, C
OhA L
NOV C,A
IWUV A,b
CIA H
NOV B, A
CALL SQ..RBC
LLA MEM1p7
MOV D.A
LDA HEM103
CHP D
JC RST
JNZ SHFT
LDA MEN 106
NOV D,A
[ILA MEH102
CMF' L
JIJ kST
JNZ SHFT

;subtract the La byte of the divisor
;save the result back in C
;increment the address
;get the MS Byte of the partial dividend
;subtract with borrow the divisor in memory
;save the result in B
;if the carry is zero, do not add the divisor
;to the result of the previous subtrction
;the divisor is larger than the partial
;dividend,so the divisor must be added to the
;result of subtraction so that the previous
;value of the partial dividend is reestablish€

;complement the carry
:then test another bit in divisor

;set MSB of shift counter
;clear the bin value
;get a binary value set a bit in C

;get binary value set a bit in B
;square binary value in BC reg. pair

LDA HEM105
MOV D.A
LDA HEM101
CMB D
J'C RST
JNZ SHF'T
LDA MEM104
MOV AD
LDA MEM100
CMF D
JNC SHFT
MOV A.0
XRA L
MUV CA
MOV AB
XRA H
MOV B,A
MOV A. H
RAR
MUV H,A
MUV A,L
RAR
MUV LA
JNC HQRT1
CALL SQRBC
LDA HEM104
MOV D,A
LDA MEM100
SUB D
CMS' C
JO DONE
JZ DONE
1NR C
LHLD MEMA
Nov M,U
INX H
MCV M,B
POP PSW
POE' D
POP B
POE H
RET

hST

SHFT

DONE

;this routine squares the contents of BC register pair
;and result is stored in memory
;input-rp

lei►
output- MEM104 , MEM105 , MEM106 . MEM107 (ins-BYTE)

S6~RBC PUSH H
PUSH B
PUSH D
PUSH PSW
NOV
NOV E.0
MVI A. 10H
LXI H.0000H
PUSH H

NXTBIT4 XCHG ;get the multiplier into H&L
DAD H ;rotate the MSB into the carry
XCHG ;put the multiplier back into DE
JNC NOADD4 ;If carry = 0, don't add. The multiplicand

to the partial result and the stack
DAD B ;if 1, 	add BC to HL, 	result in HL
JNC NOADD4 ;should a 1 be added to the MSB's of the

;result stored on the stack ?
ATHL ;Yes, exchange HL and the stack entry.
INX H ;increment the 16-bit MSW by 1
XTHL ;then save it back on the stack

NOADD4 DCR A ;decrement the bit count
JNZ NOTEND4 ;the count is non zero, 	so test another bit

;o± multiplier.
POP D ;pop the 16-bit result.
JNZ NOTEND4 ;the count is non zero, 	so test another bit

;of multiplier.
PUP D ;pop the 16-bit result.
NOV A,D
STA MEM1017
NOV A.E
STA MEM106
NOV A,H
STA MEM105
NOV A,L
3TA MEM104 ;save the result in memory
pop PSW
POP D
POE B
FOP H ;restore registers
RET

NOTEND4 DAD H ;rotate LSW of the result left
XTHL ;get the MSW into HL
PUSH PSW ;save the count and carry on the stack
DA

NOMSB4

	

1) 	H

	

POP 	BSW

	

JNU 	NOMSB4

	

INX 	H
XTHL

	

JHP 	NXTBIT4

;rotate the MSW once to the left
;pop the count and carry off of the stack
;was there a carry from the LSW ? no, then
do not add 1 to MSW

;increment the MSW by 1
;put the MSW on the stack

;and test another bit in the multiplier

;this routine converts the binary number in HL pair to
its ASCII equivalent

BINTA PUSH H
PUSH B
PUSH L
PUSH P'SW
LHLD MBINTA

XCHG
LXI H,MPOINT
MOV 11.E
INX H
NOV MD
HVI B, 03H
LHLD MEM4

;save registers

;load HL with the address where the
;result will be stored
;save address in DE

;save the address in memory
;load the count in B
;load binary number in HL

; place powers of to 	LXI 	Li, ~Ci00AH

;get power of ten of digit to be computed
;subroutine returns digit in C
;save binary difference
;get pointer to digit storage area
;store digit
;increment pointer
;store pointer
;get binary difference

;more than one digit must still be determined

Loop 1

tax 1 D, 	 'Q AH
PUSH 1)
LXI D,0064H
PUSH h
LXI D, 03E8H
PUSH ,U
POE L
CALL 1)1(1T
F'USH H
LHLU [IPOINT
NOV MIC
INX H
SHLD MPOINT
POP H
L(;R B
JNZ LOOP1
MU'v' A,L
ADI 30H
MOV CA
LHLD NPOINT

:get pointer to digit storage area
Hu r H. : store digit.
.INX H
INX. H
INX H
SHLD MFSINTA ;save the pointer
PUP PSW
POP L)
POP B
POP H ;retrieve registers
hE'!'

DIGIT 	MVI C,OFFH ;initialise C to -1
AGAIN 	114h C

NOV A,L ;subtract lower order power
SUB E ;of ten from binary number
Nov L,A ;subtract higher order power of ten from

;binary number
MOV A,H
BBB D
NOV H,A
JNC AGAIN ;is difference positive, 	go back to subtract

; 	again
DAD D is difference negative, 	restore
NOV A, C
ADI 30H
NOV C,A ;convert the digit into ASCII
RET

;this routine finds the maximum number (10-bit) from a string of
;N numbers

MAX PUSH H
PUSH B
PUSH 	D
PUSH 	PSW 	;save registers
MVI 	A, 32H
STA 	MEM94B
LDA 	MEM94B 	;initialise count 50 decimal to HEM 94B and
MOV 	B,A 	;store it in register B
LXI 	D,0 	;initialise maximum number in DE register pair
LHLD 	MEt15 	;initialise memory pointer

CONT2 NOV AIM

SUB 	E

114X H
i.it) v
Hbb
JC LuOk'~
NOV D,M
DCX H
MUV EM
1NX H

L. u2 	1NX H
DCk B
JNZ CONT2
XCHG
SHLD HEM4
XCHG
LHLD MMAX1
NOV ME
INX H
NOV M, D
INX H
SHLD MMAX1
LHLD HAXMAX

NOV A,M
SUB E
1NX H
NOV A.M
Sbb L
JNC Luu?02
LDA BYTEMAX
NOV BA
LDA BYTEST
ORA B
STA BYTEMAX

LuOPs 2 	LDA BYTEST
RLC
STA BYTEST
INX H
3HLD MAXMAX
CALL BINTA
FOP FSW
POF D
F'OF' B
POP H
RET

;compare number with maximum number

is number > maximum number, NO jump to loop2
;yes, store number as maximum number

;compare with next number

;is comparison over.NO .jumpto cont2

;YES, store the number in memory

;store the number in MAX1

;load HL wit the address of the higher limit
;of the number

114
	

HUbH 	H
EU6H 	b
lUhH
I U;bH 	PSW 	; save registers

)N T5

UOP5

OOP05

MVI A,32H
STA MEM94C
LDA MEM94C
NOV B. A
LXI D , OFFFFH
LHLD MEII95
MUV A,M
SUB E
1NX H
NOV A,M
SBB 1)
JNC LOOP5
MuV D,M
DCX H
NOV E, L1
INX H
INX H
DCk B
JNZ CONT5
XCHu
SHLD MEM4
XCHL
LHLD MMIN1
NOV M,E
INX H
NOV M.D
INX H
SHLD MMIN1
LHLD MINMIN

NOV A.M
SUB E
INX H
4IOV A, M
SBB D
JO LOOP06
LDA BYTEMIN
NOV B,A
LDA BYTESTO
URA B
STA BYTEMIN
LDA BYTESTO
RLC

;initialise count 50 decimal to HEM 94C and
;store it in register B
;initialise minimum number in DE register pair
;initialise memory pointer

;compare number with minimum number

;is number < minimum number, NO Jump to loops
;Yes, store number as minimum number

;compare with next number

is comparison over,NO 3umpto cont5

;YES, store the number in memory

;store the number in MINI

;load HL wit the address of_the lower limit
;of the number

;compare it number is less than lower limit
;NO, jump to loop05

;YES, make that bit 1 in bytemin location

;shirt the bit

1NX 	H
aHLb 	I.11NM1N 	; store the addresss of next lower limit
CALL 	BINTA 	:convert the minimum number into ASCII
POP 	PSW
POP 	L
POP 	S
FOP 	H 	;restore registers
1E I

;displays the status of digital input in the form of ON or OFF
;input port-A of 8255-1

STATUS PUSH H
PUSH 	B

PUSH D
PUSH PSW ;save registers
LXI H,MSTATUS ;initialise the memory pointer and save its
SHLD TEMPS ;value in temps
MVI A,9BH ;initialisation of 8255-1
OUT 53H ;all input ports
MVI C.O8H ;initialise count
MVI B4O1H ;save shift bit count in reg. B
IN 50H ;read the status
STA TEMPSO ;store its value

CONT6 	LDA TEMPS(;load status in accumulator
ANA B ;check if bit is 0
Jz OFF ;YES. jump to store code of OFF
LHLD TEMPS
MVI A . 20H
NOV MA
INX H
MVI A,4FH
NOV M,A
INX H
MVI A,4EH ;store the ASCII code of " ON " in memory
NOV H.

1lJX H
[.1'v1
[lvv tl,
1NA H
6HLD TEMPS :save the pointer
JMF LAST

OFF 	LHLD TEMPS
MVI A, 20H
MUV M,A
INX H
MVI A,4FH
MOV M,A
INX H
tIVI A,46H ;store the ASCII code of "`OFF 	in memory
MOV M,A
INX H
MOV M,A
INX H
SHLD TEMPS ;save the pointer

LAST 	MUV A,B
RLC ; rotate left the shift bit
MOV BA
DCR C ;is all 8 bits checked ?
JNZ CONT6 ;NO , 	jump to cont6
MV I A , OAOH
MOV B,A ;YES, 	save the no. of bytes-to be transmitted
LXI H.0B3C0H ;in B and initialise the HL with the starting

;address of the block
WAIT6 	IN OF1H

ANI 01H
JZ WAIT6 ;output a byte
MOV AM
OUT OFOH
INX H ;increment the pointer
DCh B
JNZ WAIT6 ;NO, 	Jump to wait6
POP PSW
FOP D
POP B
FOP H ;YES, 	retrieve registers

RET

DISE LAY F'USH 	H
PUSH B
PUSH D
PUSH PHW
LXI B.03COH

WA 11' 7
LXI
IN
ANI
JZ
MUV
OUT
I N X
DCX
Mov
ORA
JNZ
POP
POE'
POP
POP

H2OBOOOH
ØF
01H
WAIT7
A,M
OFOH
H
B
A,U
B
WAIT?
PsW
L
B

;wain aasplay sub. to display all valueslrms,avrag-eto) of 16 analog
;variable in decimal form

;save registers
;no, of bytes to be transmitted in BC
;register pair
;starting address of block in HL reg pair

;transmit one byte

is all bytes over ?
;NO, jump to wait7 to transmit rest of the bytes

;restore registers

;main display sub. to display all valueslrms,avrag-etc) of 16 analog
;variable in decimal form

DISPLAY PUSH 	H
PUSH B
PUSH D
PUSH PSW
LXI B4O3COH

LXI
	

H. OBOOOH
WAIT7 IN OF1H

ANI
	

01H
JZ
	

WAIT7
MOV
	

AM
OUT
	

OFOH
INX
	

H
DCX
	

B
MOV
	

A,C
ORA
	

B
JNZ
	

WAIT'i
POE'
	

PSW
POP
	

L
POP
	

B
F-~UP
	

H
kE `C

;save registers
;no, of bytes to be transmitted in BC
;register pair
;starting address of block in HL reg pair

;transmit one byte

;is all bytes over ?
;NU, Jump to wait7 to transmit rest of the byte:

;restore registers

;i.s.s-this gives the command to start swt.device

t1ø 	PUSH H
PUSH B
PUSH L
PUSH PSW ;save registers
MVI E,OOH ;initialise bit counter in E and shift
MV]. B,l1H ;count in B
IN 51H ;input from port and store in memory
STA MEM16

AGAIN00 LDA MEM16
ANA B ;check interrupt from which device NO. jump

;to check next bit
JZ CHECKOi
Nov A,E
STA MEM17 ;YES, save the bit no. 	in MEM17
CALL DISP1 ;call display to 	display comand

CHECKOO INk E ;increment bit count
MOV A.B
FLC ;shift count
MUV

B.A
hNi 01H ;all bits checked ?
JZ AUAIN0f ;NO, jump to againOO
FOP FSW
POP U
POP B
pop H ;YES, restore registers
FtET

DISP1 	PUSH H
PUSH B
PUSH D
PUSH PSW ;save registers
LXI H.OB500H ;initialise starting address of the block
MVI B,1EH ;save the no. of bytes to be transmitted in B

WAI`iOO IN OF'1H
ANI 01H

JZ WAITOO
INX H
MOV A,M
OUT OFOH ; transmit one byte
DC.k B ;decrement count
JNZ WAIT00 ;is all bytes transmitted ? NO,transmit next
L»A MEM17
ADI 30H
[4.JV B, A

WAIT01 ::N OF1H
ANI 01H
JZ WAITf 1
[WV AB
OUT OFOH ;transmit the bit no.

WAIT02 IN OFIB
ANI 01H
JZ WAITO2
MV I A 0DH
OUT OFOH ;transmit UR code

WAIT03 IN OF1H
ANI 01H
J

wtil1'J3
Mv1 A,~tiH
.)U 1 sJNu3t~ 	 ; t-rans,rmit 	Li' 	QOde
POP PSW
FOP D
POP B
POE, H ;restore registers
RET

;IRI. 1R2,IR3 are exactly similar procedures but each one transmits
;a sligtiy different command

;i.s.s-this gives the command to start plant
IR1 PUSH H

PUSH B
PUSH D
PUSH PSW ;save registers
MVI E,OOH
MVI B, ø1H
1N 52H ;port-c of 8255-1
STA MEM16

A.AINOI LDA MEM16
ANA B
JZ CHECK01
MOV A,E
STA MEM17
CALL DISP2

CHECK01 INR E
MOV A,B
RLC
M0V B, A
ANT o1H
JZ AGAIN01
POP PSW
POP D
POP B
POP H
RET

DISP2 PUSH H
PUSH B
PUSH D

PUSH PSW ;save registers

'ix!
MVI

WAIT1GO IN
tNI
Jz
INX
MOV
OUT
DCR
JNZ
LDA
ADI
MOV

WAIT11 IN
ANI
JZ
MOV
OUT

WAIT12 IN
ANI
JZ
MVI
OUT

WAIT13 IN
ANI
JZ
MV1
OUT
POP
POP
POP
PUP
RET
i. 5.5-

1R2 PUSH
PUSH
PUSH
PUSH
MVI
MVI
IN
STA

AGAIN02 LDA
ANA.
iz
MOV
STA
CALL

H,+J1000H
B, 18H
OF1H
~)1H
WAIT10
H
A,M
OFOH
B
WAIT10
MEM17
30H
B,A
OF1H
O1H
WAIT11
A,B
OFOH
OF1H
01H
WAIT12
A,ODH
OFOH
OF1H
01H
WAIT13
A. OAH
OFOH
PSW
D
B
H

this interrups when any swt. device has to be stopped
H
B
L
PSW
E. OOH
B4O1H
54H

;PORT-A OF 8255-2
MEM16
MEM16
B
CHECK02
A,E
MEM17

Ll~F'9
','HEQ 	J41 lti

1,1UV A, b
kL'j
MO V
A141 01H
JZ AGAIN02
POP PSW
PUP D
PU'F B
P01 H
hET

DISF3 PUSH H
PUSH B

PUSH D
PUSH PSW
LXI H2 OB700H
MVI B.1DH

WAIT20 IN OF1H
ANI 01H
JZ WAIT20
IFIX H
Mc)V AM
OJT 0FOH
DR B
JNZ WAIT20
LDA MEM17
AD I 30H
MOV B.A

WAIT21 IN 0FIH
ANI 01H
JZ WAIT21
MOV A,B
OUT 0F0H

WAIT22 IN 0F1H
ANI 01H
JZ WAIT22

t•l r 1

WxITk: i 	IW kTh lH
tLJ1 OiH
J G WtiIl'G
t1 i ti , OAH
iU'1' &'Oh
POE' PSW
POP D
POP B
Flop' H
RET
EXTRN MADC,CHNUM

ADCREAD PUSH H
PUSH B
PUSH D
PUSH PSW
LDA CHNUM
OUT OBOH
CALL DELAY

WAIT2 IN OB2H
RLC
JO WAIT2
XhA A
IN OB1H
kAL
MOV B,A
MVI: A.0
hAL
NOV C,A
XRA A
NOV A,B
hAL
NOV B,A
NOV A.0
RAL
NOV H,A
IN 0B2H
ANT 03H

r

;save registers

;initialise channel
;wait for 2ørns so adc conversion is over

is conversion over?NO.wait
;YES,read higher byte and store its 2 MSB'S
;in register h and LSB'S in register b

;read lower byte
;mask six higher order bits ADD

M

NOV L,A

;store in 1 registers

)TILL HADU ;5t.re digital value in memory
E'uf

1W
I)

fvk b
Fuk' H ; resL%jre registers
hI'1

UELtii EUbH H
EUaH b
PUSH D
PUSH PS W ;save registers
LXI B.0002H ;initialise the delay count in register B

LUUF8 DCX B ;decrement the count
MOV A.0
ORA B ;check 	if period is over
JNZ L00P3 ;no. 	,lump to decrement count
FOP PSW
POP L
PUP B
FOP H ;restore registers
RET

;display wrong code pressed

DISF4 PUSH H
PUSH B
PUSH D
PUSH PBW ;save registers
LXI H2OB900H
MVI B,1DH

WAIT40 IN 0F1H
ANI 01H
JZ WAIT40
INX H
MOV A.M
OUT OFOH
DCR B
JNZ WAIT40
LDA MEM17
ADI 30H
MOV B.A

WAIT41 IN 0F1H
ANI 01H
JZ WAIT41
MOV A.B
OUT OFOH'

WAIT42 IN OF'lH
AN

WA1'1'43

1 u)1H
WA1T4~

H V 1 t ODH
OUT OFOH
1.14 Jb'iH
AN1 X71H
J'L WKi'1'43
['IV!

Hk— 1'aW

1'VE' b
H

hE`1'
l:tJli

ORG 40960
;initialisation of all memory locations
RMS1S SET 0D508H
AVRAG1S SET OD510H
MAXIS SET OD520H
MINIS SET 0D530H
MEMINS SET 0BOAEH
MEMMIN SET OB1EEH
MEMMAX SET OB19EH
MAVRAG1 SET OB23EH
MPOINT SET 9400H
COUNTI SET 9492H
MEMO SET 9404H
MEM94A SET 9406H
MEM90 SET 9408H
MEM92 SET 940AH
MBINTA SET 940CH
TEMP4 SET 940E11
MDIV16 SET 9410H
MEM95 SET 9412H
MEM100 SET 9414H
MEM101 SET 9415H
MEM102 SET 9416H
MEM103 SET 9417H
MEM104 SET 949.8H
MEM105 SET 94;..9H
MEM106 SET 941AH
MEM107 SET 941BH
HEM94B SET 941CH
MEM94C SET 941EH
MAXMAX SET 0A420H
BYTEMAX SET 0A422H
BYTEST SET OA423H
TEMPI SET 9424H
MEM86 •SET 9426H
MEM88 SET 9428H
MEM6 SET 942AH
TEMP2 SET 942CH
MMULT16 SET 942EH
MADD32 SET 9430H
MEMA SET 9432H
TEMPMUL SET 9434H
MRMS SET OB32EH
MADC SET 9436H
MINMIN SET OA438H
BYTEMIN SET OA43AH
BYTESTO SET OA43BH

STORE00 SET 	9000H
STORE04 SET 	9010H
STORE05 SET 	STORE04+100
STORE06 SET 	STORE05+100
STORE07 SET 	STORE06+100
STORE08 SET 	STORE07+100
STORE09 SET 	STORE08+100
STOREOA SET 	STORE09+100
STOREOB SET 	STOREOA+100
STOREOC SET 	9500H
STOREOD SET 	STOREOC+64
STOREOE SET 	STOREOD+64
STOREOF SET 	STOREOE+64
TEMP00 SET 	9800H
TEMP04 SET 	9802H
TEMP05 SET 	9804H
TEMPO6 SET 	9806H
T'EMP07 SET 	9808H
TEMPOS SET 	980AH
TEMP09 SET 	980CH
TEMPOA SET 	980EH
TEMPOB SET 	9810H
TEM?OC SET 	9812H
TEMPOD SET 	9814H
TEMPOE SET 	9816H
TEMPOF SET 	9818H
TEMP10 SET 	981AH
TEMP20 SET 	981011
TEMP30 SET 	981EH
MAVRAGO SET 	9820H
MRMS1 SET 9822H
MMAX1 SET 9824H
MMIN1 SET 9826H
CHNUM SET 9828H
MEM16 SET 982AH
MEM17 SET 982CH
MSTATUS SET 	OB41EH
TEMPS SET 982EH
TEMPSO SET 	9830H
ADCCH EQU OBOH
HIBYT EQU OB1H
LOBYT EQU OB2H

;define public and external variables
PUBLIC MEM16,MEM17,MSTATUS,TEMPS,TEMPSO
PUBLIC MAVRAG1,STORE04,STORE05,STORE06,STORE07,STORE08,STORE09, STORE fC
PUBLIC STOREOB, MEMMAX. MEM94B. MEM940:f , MEMMIN BYTEMAX, MAXMAX, BYTE ST , I1Itm
PUB

AGAIN1.

AGAIN2

LIC STOREOC,STOREOD,STOREOE,STOREHF`,MEM100,MEM1O1,MEM1O2,MEM103,MEM.
PUBLIC MEM105,MEM106,MEM107.TEMP1,MEM86,MEM88,MEM6,TEMP2,MMULT16,MEMA,'
PUBLIC TEMPI0,TEMP20,ADCCH,CHNUM,LOBYT,HIBYT,MADC,SLOW,FAST,AGAIN4,AUA.
PUBLIC MPOINT,MEM4,TEMP4,MEM94A,MEM95,MEM90,MEM92,MBINTA,MDIV16,CUUN'1'1
PUBLIC AVRAGIS,MAXIS,MINIS,RMSIS,MAVRAGO,MRMSI,MMAX1,MMIN1
EXTRN ADCREAD,BINTA
;main program

MVI A,1DH

SIM ;enable RST7.5, RST6.5, RST5.5

MVI A,0

STA TEMP10

STA TEMP20 ;initialise memory contents to 0

MVI A, 70H

OUT OF7H

MV I A , 80H

OUT OF5H ;initialisation of counter 2 of 8253

MVI A.07H

OUT OF5H

MVi A,37H

OUT OF7H

MV I A , 1 OH

OUT OF4H ;initialisation of counter 1 of 8253

MVI A.00H

OUT OF4H

MVI A.4FH

OUT OF1H

MVI A, OSH

OUT OF1H ;initialisation of 8251 txd and rxd enable

MVI A,9BH

OUT 53H

OUT 57H ;initialisation of 8255-1 and 8255-2

MVI A,16H

CUT OF2H ;initialisation of 8259

Mv1 A,8AH

	

OUT 	0F3H 	;unmask IR0,IR1,IR2

MVI A,OF8H

OUT OF3H
MACRO

LXI H , ST'ORE0O
SHLD TEMPOO
ENDM
MACRO

LXI H,STORE04
SHLD TEMP04

LXI H,STOREQ5
SHLD TEMP05

LXI H.STORE06
SR

LL TEMPO6
LXI H,aTOEE07 ;initialisation of memory location
SHLL TEMP07 ;tor uncontrolled slow variables
LXI H,GTORE08
SHLIL TEMP08
LXI H, STORE09
SHLD TEMP09
LXI H, STORE0A
SHLD TEMPOA
LXI H,STOREOB
SHLD TEMPOS
ENDM

AGAIN3 MACRO
LXI H, STOREOC
SHLD TEMPOC
LXI H,STOREOD ;initialisation of memory location for fast
SHLD TEMPOD ;variables
LXI H. STOREOE
SHLD TEMP®E
LXI H S'TOREOF
SHLD TEMPOF
ENDM

STORE MACRO
MOV ME
INX H
MOV MD
INX H
ENDM
AGAINI
A(AIN2
AGAIN3
LXI H,MEMINS ;initialisation of memory for slow controlled
OHLD MBINTA ;variables
ALL SLOW ;call slow to input slow analog variables

JMP G02 ;jump to got
A(.AIN4 PUSH H

PUSH B
PUSH D
PUSH PSW
AGAIN3
POP PSW
POP D
POP B
FOP H
RET

AGAIN5 PUSH H
PUSH B
PUSH D
PUSH

PSW
AGAIN2
POP PSW
POP
POP B
POP H
[ET

SLOW PUSH H
YUSH B
PUSH U
PUSH PSW
LXI H,MEMINS
SHLD MBINTA
MVI Aø
STA CHNUM

CONT6 CALL ADCREAI)
LHLD MADC
XCHG
LHLD TEMPOO
STORE
SHLD TEMPOO
XCHG
SHLIU MEM4
CALL BINTA
LDA CHNUM
INR A
STA CHNUM
UPI 04H
JZ LOOY6
JHP CONT6

L00Y6 .AGAINI
CALL SLOW1
POP PSW
FOP D
POP B
POP H
RET

G02 CALL FAST
HAULT RI

HLT
imp HAULT

STORE1 MACRO
INR B
Mov A,B
STA CHNUM
CALL

;initialise pointer from memory instantaneous
;and store in memory MBINTA

;initialise channel no.
;read the ADC

;save the digital value in memory

;convert the binary no, into ASCII

;increment the channel no.

;is channel no. = 04 ?
;YES,cali SLOW next
;NO,,jum p to input channel value

;call slow to input variables(05- 12)

;restore registers

;input fast variables
;enable interrupts
;halt
;.jump to wait for next interrupts

ADCREAD
LHLD MADC
XCHU
ENDM

SLOWI PUSH H
PUSH B
PUSH D
PUSH f'HW
MVI A,04H ;initialise channel no to 4
STA CHNUM
NOV B,A ;save the value in register B
CALL ADCREAU ;read the ADC
LHLD MADC store the value
xCw
LHLD TEMPT 4
STORE
HHLD TEMP04 ;increment the channel no. to ØB and read
STORE1 ;adn store
LHLD TEMPT 5
STORE
SHLD TEMP05
STOREI
LHLD TEMP06
STORE
SHLD TEMP06
STOREI
LHLD TEMP07
STORE
SHLD TEMP07
STORE1
LHLD TEMP08
STORE
SHLD TEMP08
STORE1
LHLD TEMPQ9
STORE
SHED TEMP09
STORE1
LHLD TEMPfA
STORE
SHLD TEMPOA
STORE1
LHLD TEMPOB
STOKE
SHLD

0

'1'EMPOB
POE PSW
POP D
POP B
POP H ;resotre registers
RE r

FAST 	PUSH H
PUSH B
LUSH D
PUSH PSW
HVI A . IDCH
STA CHNUM ;initialise chanel no. 	to OCH
MOV BA ;save the value in register B
CALL ADCREAD ;read the ADC
LHLD MADU ;store the value
XUHU
LHLD TEMPOC
STORE
SHLD TEMPOC
STORE 1
LHLD TEMPOD
STORE
SHLD TEMPOD
STORE1
LHLD TEMPOE
STORE
SHLD TEMPOE ;increment the channel no. to OFH and
STORE1 ;read and store their value
LHLD TEMPOF
STORE
SHLD TEMPMF
POP PSW
POP D
POE B
PUP PSW ;restore registers
RET
END

:32848
FUSH H
PUSH B
PUSH D
PUSH PSW
EXTRN MRMSI,RMSlS, STATUS. DISPLAY
EXTRN MINMIN,BYTEMIN,BYTESTO,MMIN1, MINIS.MAXIS,MMAX1,MAVRAGO,AVRAGIS
EXTRN TEMPMUL,MEM6,, MMULT16,MAVRAGI,STORE04,STORE05,STORE06,STORE07,S7
EXTRN STOREOA.STOREOB,MEMMAX,MAX,MEMMIN,MIN,MAXMAX,BYTEMAX,BYTEST
EXTRN STOREPC,STORE D,STOREOE,STOREOF,MEM94A,MEM95,MEM100,MEMA,RMS,MW
EXTRN AVRAG,TEMP10,TEMP20,CHNUM, SLOW. FAST.AGAIN4,AGAIN5,COUNTI,MBINTE
MVI A,80H
OUT 0F5H
MVI A,07H
OUT 0F5H ;relode the counter
LDA TEMP10
INR A
STA TEMP10 ;increment the count stored in TEMP10
CPI 10H ;check if 20mS period over
JNZ G01 ;NO,jump to G01
LDA TEMP20 ;YES,increment the counter which counts the 1s~
INR A
STA TEMP20
CPI 32H ;is lsec over?
JZ G02 yes, jump to calculate MAX.MIN,AVRAG of slow

;variable
CALL LESS ;call LESS
CALL AGAIN4 ;initialise memory for fast variables
JMP ENDD ;Jump to last

LESS PUSH H
PUSH B
PUSH D
PUSH PSW ;save registers
XRA A
STA TEMPIO ;clear memory
CALL SLOW ;call SLOW to input slow variables
LXI H,STOREOC
SHLD MEM95
LXI H,MRMS
SHLD MBINTA
LXI H,RMS1S
SHLD MRMS1
CALL RMS ;calculate RMS value of four fast variables
LXI

H,STOREOD ;and conert them into ASCII and store

SHLD MEM95
CALL RMS
LXI H.STOREOE
SHLD MEM95
CALL RMS
LXI H,STOREOF
SHLD MEM95
CALL 1MS
POP PSW
POP D
POE B
FOE H ;restore registers
RET

GUI 	CALL FAST ;call FAST to input fast variables
JMF' ENDD ;jump to end

G02 	MVI A,32H ;set count
STA COUNT1
STA MEM94A
LXI H,MAVRAG1
SHLD MBINTA
LXI H . STORE04
SHLD MEM95
LXI H,AVRAGIS
SHLD 1AVRAGO
CALL AVRAG
MVI 1, 32H
STA MEM94A
LXI H.STORE05
SHLD MEM95
CALL AVRAG ;calculate AVERAGE value of eight slow variable
MVI A,32H ;and conert them into ASCII and store
STA MEM94A
LX1 H,STORE06
SHLD MEM95
CALL AVRAG
MVI A,32H
STA MEM94A
LXI H,STORE07
SHLD MEM95
CALL AVRAG
MVI A,32H
STA MEM94A
LXI H. STORE08
SHLD HEM

95
CALL AVRAG
MVI A,32H
STA MEM94A
LXI H,STORE09
SHLD MEM95
CALL AVRAG
MVI A.32H
STA MEM94A
LXI H,STOREOA
SHLD MEM95
CALL AVRAG
MVI A,32H
STA MEM94A
LXI H,STOREOB
SHLD MEM95
CALL AVRAG
LXI H,9F00H
SHLD MAXMAX
MVI A, OOH
STA BYTEMAX
MVI A, 01H
STA BYTEST
LXI H,MEMMAX
SHLD MBINTA
LXI H,STORE04
SHLD MEM95
LXI H,MAXIS
SHLD MMAX1
CALL MAX
LXI H,STORE05
SHLD MEM95
CALL MAX
LXI H,STORE06
SHLD MEM95
CALL MAX
LXI H,STORE07
SHLD MEM95
CALL MAX
LXI H,STORE08
SHLD MEM95
CALL MAX
LXI H, S'TORE09
SHLD MEM95
CALL MAX
LXI H,STO

;calculate MAX value of eightslow variables
;and conert them into ASCII and store

ENDD

REOA
SHLD MEM95
t.ALL MAX
LXI H,STOREOB
bHLD MEM95
CALL MAX
LXI H.9F10H
SHLD MINMIN
MVI A,OOH
STA BYTEMIN
MVI A, 01H
STA BYTESTO
LXI H,MEMMIN
SHLD MBINTA
LXI H,STORE04
SHLD MEM95
LXI H.MIN1S
SHLD MMIN1
CALL MIN
LXI H,STORE05
SHLD MEM95
CALL MIN
LXI H.STORE06
SHLD IIEM95
CALL MIN
LXI H,STORE07
SHLD MEM95
CALL MIN
LXI H,STORE08
SHLD MEM95
CALL MIN
LXI H,STOREC9
SHLD MEM95
CALL MIN
LXI H.STOREOA
SHLI) MEM95
CALL MIN
LXI H,STOREOB
SHLD MEM95
CALL MIN
CALL LESS

CALL DISPLAY
CALL STATUS
JMY G03
POP FSW
POP D
POP B

:calculate MIN value of eightslow variables
;and conert them into ASCII and store

;call LESS to calculate RMS value of four fast
;vairables and conert them into ASCII and store
;call DISPLAY to display processed data
;call status to display status of switching de'

O 3

FOE' 	H
RET
CALL 	AGAIN5
JMF 	ENDD
END

;restore registers

;initialise memory for slow variables

EXTRN IRS. Ihl, IF2. DISPLAY, STATUS
;initilaise memory block for interrupts of 8255

imp 31
UHF 32
JHP 33
JMF 34
JMP 34
JM~ J4
JME 34

34 PUSH PSW
HVI A. 20H
OUT 0F2H ;eoi command
FOP PSW
El
RE '1

31 CALL 1Fø ;call IRO to display start switching device
CALL DISPLAY ;call display to display analog data
CALL STATUS ;call status to display status of switching

;devices
PUSH PSW
[JV I A ,, 20H
OUT OF2H ;eoi command
POP PSW
El
RET

32 CALL Ikl ;call IR1 to display start plant
CALL DISPLAY ;call display to display analog data
CALL STATUS ;call status to display status of switching

;devices
PUSH F'SW
MVI A,21H
OUT OF2H ;eoi command
POP PSW
El
RET

J3 CALL IR2 ;call IR2 to display stop switching device
CALL DISPLAY ;call display to display analog data
CALL STATUS ;call status to display status of switching

;devices
PUSH PSW
MVI A,22H
OUT OF2H
FOP YSW
El
RET

;eoi command

I

uhu 6000H
EXTERN READOO, READ01, MEM17, DISP3, DISP2, DISP1, DISP4, SUB38, SUB39
EXTERN WRONG
;this program takes command from operator and takes action accordingly
PUSH H
PUSH B
PUSH D
PUSH PSW
CALL 3COCH ;read keyboard
CPI O1H
JNZ STEP03
CALL SUBO1
JMp D0180 ;check if type is 01, if yes call SUB01 and Jump to LA:

;TEPO3 CPI 02H
JNZ STEP04
CALL SUB02
JMF D0180 ;check if type is 02, if yes call SUB01 and Jump to LA

3TEI'04 CP1 03H
JNZ STEP05
CALL SUB03
JMP D0180 ;check if type.is 03, if yes call SUB01 and .jump to LA

3TEP05 CPI 04H
JNZ STEP06
CALL SUB04
JMP D0180 ;check if type is 04, if yes 	: call SUB01 and Jump to LA

OTEP06 CPI 05H
JNZ STEP07
CALL SUB05
JMY D0180 ;check if type is 05, if yes 	: call $UB01 and ,jump to LA

3T ;P07 CPI 06H
JNZ STEP08
CALL SUB06
JHP D0180 ;check if type is 06, if yes 	: call SUB01 and jump to LA

3TEP08 CPI 07H
JNZ STEP09
CALL SUB07
JMP D0180 ;check if type is 07, if yes call SUB01 and jump to LA

3TEP09 C'PY 08H
JNZ STEP010
CALL SUB08
JMP D0180 ;check if type is 08, if yes call SUB01 and jump to LY

3TEP010 CPI 09H
JNZ STEP011
CALL SUB09
JMP D0180 ;check if type is 09, if yes-: call SUB01 and jump to LF

~TEP011 CPI OAH
JNZ

I'EPs 12
CALL SUBOA
imp D0180 ;check if type is OA, 	if Yes : 	call SUB01 and jump to LP

TELØ12 CPI GBH
JNZ STEP013 ;check if 	ØB 	is pressed, 	if yes call SUBOB and 	,lump t
CALL SUBOB
JMP DO180

~T'EF'o13 CALL WRONG ;if no call display "Wrong code pressed"
)0180 POP PSW

POE D
POP B
POP H
FET
;this routine again reads the plant no. and displays tostart the pl

SUB01 PUSH H
PUSH B
PUSH .0
PUSH PSW
CALL .3GOCH :read plant no.
STA MEM17
CALL DTSP2 ;store the accumulator in MEM17 and call display
POP PSW
POP D
POP B
FOP H
RE '1'
:this routine again reads the plant no. and displays to stop the p1

SUB02 PUSH H
PUSH B
PUSH D
PUSH PSW
CALL 3COCH ;read the plant number
S`IIA MEM17
GALL DISP4 store the accumulator in MEM17 and call display
POP P5W
POP D
POP B
FOP H
RET
;this routine reads the switch no. and displays to starts that device

SUB03 PUSH H
PUSH B
PUSH D
PUSH P5W
CALL 3COCH
STA MEt°!17 ;read switch device no. 	and 	store in MEM17
CAL

L 	LIHF1 	;call (display
EUE P~~W
k-uP D
PUk' B
FOE, H
RE '1
this routine resets

SUB04 PUSH H
PUSH B
PUSH U
PUSH PSW
CALL 3COCH
STA MEM17
CALL DISP3
FOP P5W
POP D
Pu? B
POE, H
RET
;this routine resets

'3UBO3 CALL SUB38
RET
this routine resets

SUBO9 CALL SUB39
RET
;this routine reads

SUBOA CALL READ00
RET
;this routine reads

SUBOB CALL READ01
RET

the counter to FFFFH

the counter 0 to FFFFH

the counter 1 to FFFFH

the counter-O to FFFFH

the counter 1 to FFFFH

APPENDIXOMB

SU6ROU(1NE 8C
LUU}1UN.LUUN FE, NK,Nk5°NOVR,NL,NU IV, NPHASE, NUB lS,NO[IV,NL4
LUMMbN/SvS1/N1,N: ,lUU1,lBUS,lBAR,NVX2,1HX1,1HY1,lHX2,IHY2,W,1ULl

i,Lu61,61,62`83,61
u1MENS1UN 8(10)V1 10),xH1t10),lX1\1(2fl ,iii (0),lW(10),IVX1(10)

1,1Vv1(10),lNX1 10>,lNY1(10),1Bx1(10/,1BY1(10),[YPE(10) v IG1\1w/
.;,1RX1 10),lRY1(10),icx\20>, icy (20/,itxu20) ° ity(20)

DIMENSION 8 (20),BB(20),lUV\20/,lMVH(20),1X2(20),IY2(20),IX3(20/

L.:HHRHCTER * S 8,B,8B81,82,B~
L 	 4 Vi
CHAhHL.|ER «5b N
CH.R~L|ER *5 XH1,G1
CHARACTER *3 CCB(20),C8
character *2 Lrna'20)
nvx1=14
NV~2=15
N1=5
N2=/
1UU.1=1
[O81=l
lUG1=0
18US=10
l8AR=20
opit wniL=nvx1,fi1e=
REWIND NVX1

HEAD .NVX1,il1l/ N
1111 FURMH|\H5b/
1o.o FuRMA|~~~B/

1Fclu6l.NE.0) READ(NVX1,l0b)/ 8,I31
10b0 FUkMA[`H8,H5)

RE~U~NVtL,1000)(8tI) ~ V1(1/,XA1(1),1=1,N1)
1Dwu FUHM,'|~*8 A4 Ab/ . 	'

uU JQ i1 J'42
lUV 1/=~
HE~b`NV. 1,1010/ 8- 1),88tI},X1 ~ 1MVA(I)

101k) FUKMA|~.H8 v H4,I5/
IF xl.EU. DV I .DR.X1.EQ. OV 2'> 1DV(I>=1

J0 CUN|1NUE
~LUSE~UNl!=NVX1)
UPEN(UNl[=NVX2,FlLE= 1N.DHT
READ`NVX2 ° */ ixc,iyc
REAU<NVX2,1020) IHX1,IHY1,IHX2,1HY2

1020 FORMAT (4I3/
RE~b(NVX2,1030)(TYPE(I),lX1 ti) ,lY1ti) ,lW(1>,IVX1(I),IVY1(I)

l,lNX1 'ii ,lNY1(l)IBX1(I),lBY1 ti) ,IG1(I),iRX1(I)lRY1\I),I1,N1/
1IJ.3VJ FURMt-,l(*i,9l3,11,2l3)

RErD(NV'Xlø40)(lX~\1)`1Y~cl>,lX3c[),Iy3(I),iX4(I)"i"v'4<%>
1,1X5(1) ~ IY5(I/,1=1,N~/

1W4J FURMH[(8l3/
read`nvx4,*/ncb
read(nvx. 33~5i(ccb\ii,tc; .i), icy ci/,i=1,ncb)

3J55 format \a3, 2i4)
read nvx4,*)ntr'
read(nvxi,7777)(Lrna~i),itx(i),ity(i),i=1,ntr)

7J77 format(a4,~i4/
REW1NI) NVXi
LLOSE U" '1

I_ ***
do1111=1,o1

ivx1(i)=ivx1(i)-ixc

inxl(i/inx1(i)-ixc
ibx1(i)=ibx1(i)-ixc
irx1\i/=irx1\i)-ixc
iy1`i)=zy1\i)-iyc
1,yi`i/=ivy1(i)-iyc
iny1`i/=iny1(i)-iyc
ib>l\i/=iby1`i/-iyc
1ry1\i,=iry1\i)-iyc

111 	conLinue
dol12i=1,n2

\I,=ix2 ci/ -ixc

ix4ci/=ix4ci)-ixc
ix5`i)=ix5\i)-ixc
iy4 i,=iy4(i/-iyc
iy3(i/=iy3`i)-iyc
iy4`i>=ir4{i)-iyc
iy5ci/=1y5(i>-iyc

112 	continue
doll Ji=1,ncb
icx\i/=icx(i/-ixc

REAUcNVX.4l040)(lX~(1)"1 	1 ,lX. l),I/3(l),IX4(I) ° lY4(I)
1,1X5`i/,IY5(1/,l=1,N~/

1v.J4W FURMH|~8~J/
read\nvx.,*/ncb
re~d(nvx~,3.355/(ccb),ic)' i),iCy`i/,i=1,ncb)

3355 +ormat\a3,2i4)
r 	nvx. *}ntr'
read\nvx. 77 2 7>(Lrna i),itx(i),ity(i>,i=1,ntr)

7777 format`a2,2i4)
FE.W1NU NVX4
t,LOSE(UNll=1NVk2)

L. **
do11111,1i1
ix]~i/ixl\i)-ic
ivx1(i/=ivx1(i)-ixc

inxl(i/=inx\(i/-ixc
ibx1(i)=ibx1(i)-ixc
irx1\j/=irx1`i/-ixc.
iy1(i/ .y1\i>-iyc
ivy1`i/=ivy1(i)-iyc
1ny1(//=iny1(i)-iyc
ib,i(i,=iby1`i>-irc
3ry1`i/=iry1\i)-iyc

111 	continue
dol12i=1,n2
i 	(i/=ix. (i/ -ixc
ixJ~i)=ix3(i)-ixc
ix4(i/=ix4(i)-ixc

)=ix5(i)-ixc
iv~ci`=iv~(i)-iyc
iv3ci`=iy3ci}-iyc
iy4`i)=iv4ci)-i,c
iy5ci^=iy5(i)-iyc

112 	:or' 1:1
do11Ji=1,ncb
icx(i)=icx(z/-ixc

zcy(z/=`Ly(i)-iyc
i]... 	continue

dn1l4z=1,ntr
I 	i/=1tx"i/-ixc 	 _
ity(i/=ztyci)-iyc

|i4 	conL iii ue
L --

CHLL GRHF
LHLL HEAD
DO 40 1=1,N1
L.tiLL U8US(8(1),V1\l/,AA1\l) IX! (1),l/1(l),IW(l),IVX1(I),IVY1(l)

11NX](1,,IN1<1/,lX1(1)li1<I),[vPE(l/)
iF\161<l).EQ.1/C~LL GENERclX1cl/,1/1\/),|~PE(I),IR~1(I),IRY1\l)/
z+czg1~i/.eg.2) ca1l 1oad`ix1ci,iy1(i,irx1(i/,iry1\i))

40 	i.UA|lNUE
DO 50].1 ,N$

5U
1~lX5cl/1Y5c1)/
do/1i=1,ncb
icx1=icx(i)
icy1=icy(i/
cb=ccb<i/
ca]1 ckb\icxi,icyl,cb/

71 	continue
do8ii=1,ntr
cal1 Lrancitx(i),ity`i/,Lrna(i/)

8) 	continue
nc~=4
ca11 Lextfcl/0,1,nct

L Lc. }MOb
c -------------------

WH1|E~*,1I2I/
11~/ 	formatct10, GS1 ~J0, GS2,T60, CIRCUIT 8REAKER`SIATUS'/

1 GEN VOL.] (rms) ,T15,'(REF)',T25,'GEN VOLT (rms)',T45,'(REF/
~ (b0, 081 , !70, 'CB2')

c--------------------------------
E top
END
SU8RUUllNE 6RHF
E [ERN~L 6MIJDE,GPA8E ,DI SP,LEVEL,CLRSCR

DAlA 1UNE/1/

..ALL 6MODE
CALL GPAGE(lUNE/
L;6LL b1SP(lONE>
CALL LEVEL (IONE)
~ALL LLRGCR
RE|UH(i
ENU
5U8RUU|lNE HEAD
EX|ERNAL |EX
LOMMDN/SYS1/N1,N2,lOU1,18US,18AR,NVX2,1HX1 ° lHY1,IHX2,IHY ,N,lU81

l,lO61,B1,B2BJG1
LHARHL|ER *56 N
CHARHClER *1b A1,~~

[.;H~R~L.lER *8 Di. ,82,63
CHAR~CiEH *5 U,G1

|ER *4 M
LHHRHC|ER *13 3,A4
bA|~ ~1/ LOAD FLUW SlUbY 	2/ 	OUTAGE STUDY
DI H A3/ 	BRANCH OU\ /,A4/ GENERATOR OUT
DA| 	U/ uROP= /II, M. W. ,
I11)
lF2=5~
lFJ=8
.1F4=5
11 5=1
1Fo=4
lX3=1HX2+153
1x4=lHX2+279
lX5=1HX2+360
1Xb=lHA2+414
1X7=1HX2+4b8
1.ALL 1EX|F~IHX1,1HY1 ` lF2 1 N,
RE|UFd~

ENU

6U8RUU[INE DBUS(B,V,A,IX1,1~1,IW r IVX1,lVY~,INX1,INY1,lBX1
l.l8)1,[YPE>
LH~RAC|ER *8 8
CHARACTER *4 V
CHARAC[ER *5 H
EX|ERNHL 8LkFIL,lEXTF
[5=J
lb=4

l8=5
11=1~1-1W/~
l2=lY1+1

14=1X1+1W/2
IF [,PE.EQ. H) CLL. 8LKF IL. (l1,I2,IW,I5)
lF(lYPE.EQ.'V) CALL 8LkF1L(I3,14,I5° lW)
L.ALL IEXlF(IBX1,lBY1,I7,B>

c 	CALL TEX[F(lVX1.lVy1"16,V)
;ALL ~EXTF<lN~1~lWY1,l8,A}

RL.|UHN
EAU
:U8HUU!lNE DLlN(1H)~,~X2,1~2,IXJ,l/3,lX4"IY4 ^ IX5,IY5>
E)(|EHHrL PUiP/.bL1NE:.

|ER * 8 HA ~ 88
]~~lMV~.E~.0/ RE|URN
L-LL FU|P)(lX2,1/2,

CALL bLINE(1X3,lY3/

~ALL ULlNE(IX4,lv4)
CALL bLlWE(lX5,lY5)
AE)UHN
END
6U8RL)U/1NE MOD
EX[ERWAL HRDCPY,CLSCk,TMODE,\EXTF
CHHH*L[ER *20 A,8
DA|A A/ 1. HARDCOP, 2. EXll
DA} i 8/ 	 /
U--I4 l2/~,

| 	11/1/
D~|A iWO' 2 /
lx =1
l/=J40

\EA|F`lX,l`,1,~/
HEeb'*,*/ N
uU !U ii,~0/,N

L. 1m 	 tEx|F\1a,1`,1,8/
HRUCPY WU/

c ~0 	L-LL L;LkSCR

~~|]- |HUUE.

~Nu
~UkRUU\11E
~x|ERN,-L LEVEL ,bL1NE,PU|~|
1l=1

Li-LI.' LEVEL
VU ltJ l=1 ,2W0
L.,LL FU|P|~l~~,1/~/
LILL bLlNE(lx~,IYJ/
~~~.L uL1WE~1A4,l,4/ 
L-iLL bLlNE<IX5,lY5/ 

I 

	

	LUN|1HUE  
U.HLL LEVE.L 11/ 

 

LW Li 
6UbkuU|1NE GENER~lxi,1,i,|~PE,IRXi,lRY1/ 
EX1EH1'JHL PU|P|,L1FC,bLlNL,LEVEL,TE.TF 

*1 6 
DA|H 6/ 6 /  
11=l 
I2=~ 
1=l5 
lH1lHHD*~/3 
1RJ=~KXi-4 
lk4=]H/1+3 
1[ !/PE.EQ. V ) 6U IL) 10 
kHLL PUlP\SIKx1,1,.I/ 
LiLL uL1NE(lRx1,1R/i/ 
~oLL ClkL(lHX1,l~y1,lHHD/ 
L~LL i-U\PT(IRX1 `1RY1/ 
LALL LEVEL (l2/ 

~1R,1.6l.1i1/ )HEN 
l[1=IY1+8  
lR~=lR1 .... 1R1  

SE 
lR~=1R,1+1H1 
1|1=IY1-8 

E]4D1F 
~HLL uLl\lE\1RX1,1~~/ 

LHLL LEVEL(11) 



~~LL ~EX!F(lRJ,lR4l1 ^ 6) 
HE\URN 

l) 	L:1LL , L|IFl(lX1,lR,1/ 
L.ILL 	1RX1,.1H,1/ 

C[HL\1RX1 ° lR/1,lRA1)/ 
C(-LL FUlP|(lRa1,lRv2> 
L~LL LEVEL(I2) 
lF~lRX1.G7.lX1/ THEN 

1R2=iRXi-lRAD 
ELSE 

1R21RX1+lRAU 
ENDlF 
C~LL uL1NE'%R~,lRY~/ 
CALL LEVEL(l1) 
~ALL E~!F(lR3,1R4,11,G> 
RE}URN 
EAU 
bURUU|1NE ILLS 
EXTERN~L l MODE, GMUUECLHSCR 
L;-LL El|ODE 
C~LL CLRSCR 
L~LL FMODE  
RE'FURN 
END 

C------------------------------------------- 
SUBROLllNE cktb<IX1,1Y1,cb> 
EXTERNoL PU[P[,ClRC,DLlNE,LEVBL,[EX}F 
CH-RAIL [ER *3 cb 
icx1i°1-3 
Icy 1=iy1-3 
ca11 putptcicx1icy1/ 
1c2ix1+3  
icy2=i/1+J 
cl1 dline(icx2,icy2) 
icyi=iylJ 
call putpt(cx2,zcy1) 
icx~=ix1-3 
icy2=i,1+3 
ca1l d1ine(icx2 ° icy2) 
call textf(ix1+4,iy1+2,3,cb) 
return 
end 

SUBROUTINE tran(IX1,IY1,tr) 
EX7ERNAL PUTPT,CIRC,DLINE,LEVEL,TEXTF 
CHARACTER *2 t 



call putpt(ix1,iy1/ 
call live! (0) 
call dline\ixJ,iy1+2~ 
call 1evel(1) 
call ciline~ix1-3,iy1-3) 
c~ll d1ine(ix1-b,iy1) 
call putpt(ix1,iy1) 
call d1ine(ix1+3,iy1-3) 
call d1ine(ix1+ iy1) 
iy1=iy1+2 
call putpt(ix1,iy1) 
call d1ine(ix1-J,iy1+3) 
call dline(ix1-6,iy1/ 
call putpt(ix1,iy1) 
call dline(ix1+3,iy1+3/ 

call dline(ix1+iy1) 
call textf (ix 1+7 ,iy1 ,2 ,tr/ 
return 
end 

SUBRUU[INE load\lX1,IY1,irx1,iry1/ 
EXlERNAL PUTP[ CIRC DLINE LEVEL t . 	" 	, 	,EXTF  
CHAR"~|ER *1 LD 
üA\i-½ LU/'L'/ 
CALL PU\Pl(IRX1,IY1> 
L.:-LL bLlNE(1RX1,lRY1) 
if iy1.gt.iry1) then 

call dline(irx1-4,iry1+4) 
call putpt(irx1,iry1) 
call dline(irx1+4"iryi+4> 

e1se 
call d1ine(irx1-4,iry1-4) 
call putpt(irx1,iry1) 
call dline~irx1+4,iry1-4) 

endi+ 
call textf(irx1+b,iry1+b,1,LQ) 

return 
and 



APPENDIXemC 



HEx|~ 

UUl 

ukG 	1b384  
Ex|HN |EMP02,MEM0: EM03,/EMP01,STORE2,STORE3 ~ MEMSUM1,SUM1 
L.XlRE 	COUNlER,ENlR ,STOKE4 
EXlRN 	\1EM4,M8IN[,,/yPE,MEM17,81NTA,D}SP1,DISP2,DISP3 
ExlRN 	Di. SF4~REAU1°REAb0 
Lx|RH WHONG,HEHWQ,STU~E0,6|(/RE1.[EMP00,SUM0,MEM01,MEMSUM0 
:inpnt +rom MEM00,IEHP0  III, S|OREV 

in M:M01,SlU~E1 
/ouLine converts a block of HEX BYTES TO its ASCII equu`'alent 

FU~H 	H 
~'USH 
PUSH 	1) 
~UE@\ 	PSW 	 all registers 
1. Hit. 	G[ORE0 ;i ii. tia1ise the memory pointer from where HEX 8iU~k 

; Marts 
XLHG 
LHLU STORE1 ;initia1ise the memory pointer for storing ASCII 	no 
XCH6 
LUA \EMP00 ;1oad the number of bytes for conversion 
NOV 8,H ;store in register 	8 
MUV H ;get no. 	inAccumulator 
~Nl tFOH 

RRC 
IRE. 
KR... 
OFF ~WH ; convert 	higher 	nibble to ASCII 
~L}|G 

\i,A ;store 	i ::iii 	memory 
I 113 
^L|ki 

H 

MOV A,M 
l 0FH 

;convert: 	1ower 	nibble 	L:o ASCII 
H 

.t CHI. 
MUY M,A ;sLore 	:i 's 	value 
1Nt H 
^i'Hu 

B ;check 	if 	conversion 	Is over 	for 	al1 	bytes 
DOS uul 

 
;if 	not 	.Loop 	to 	DO1 

~UP PSW ;if 	yes retrive registers 

°L| 	 ;return 



UKG 	i~3B4  
EX|RN 	lEMP02"MEM02,|1EM03,~EMP01,GTORE2,STORE3,MEMGUM1,SUM1 

IRH CUUNTER,ENlRy,S|ORE4 
~^|N.I 	i1EM4,M8lN[A,11PE ` HEM17`81N|A,DISp1,DISP2,DIGP3~DISP4,RE~D1 
L.x(NJ READ0 
L^||`W 	NHOUG ~ MB1iL ^ SlOR~0,S\OREi,[EMP00,8UM0,M 1101"MEMSUM0 

opot from1iEM00,l2MP00,STO~~~0 
;m/LpL in HEM01,STURE1 

Lhi' 	o' , tine cooverts i b1ock of HLX BYlES TO its AE3CII equiva|e./~ 
PUSH 	H 

It. 	S\f 1.) 
H]~H ~SW ;save a11 	regzsLers 

SlURE0 ;initialise the memory pointer 	from where 
;HEX BLOCK starLs 

A[JG  
LOU S(ORE1 ;initia1ise the memory pointer for storing ASCI 	no. 
XCH6 
LU~ |EMP00 ;load the number of bytes for conversion 
NOV 8,A ;store in register B 
Nov A,M ;get. 	no. 	in 	accumulaLor 
i-Ni. 0F0H 
kRL 
HRC 
FcRC 
Ric:. 
URl ;convert higher nibble to ASCII 
xCHG 
MUV M,* ;stbre it 	in memory 
~Nx H 
Al.1HG 
HUV HII 
HNl 4  
ORi 
l 

,:0H 
H 

;coovert 	lower nibble to ASCII 

.LHG 
|iOV M,A ;store its value 
lNX H 
xL|\u 
u[P 8 ;check 	if conversion is over for all 	bytes 
JN UU1 ;if 	not 	loop to DO1 
PSP PSW ;if 	yes retrive registers 

U PUP 
 

~UP 8 
PUP H 
HEl ;return 

nput from MEH00,1EMP00 
;output in MEMSUM0,SUM0 



routine calculates the check sum1 stores and converts 
;into zts ASCII equivalent 

 

R|6H 
~USH 	8 
~i|SH 	D 
PUSH 	PSW 	ves the registers 
U4'0 	S ORE0 ;initiathe memory pointer from where the 

; HEX block starts 
LDA 	TEMP00 ;load the no of bytes in the block in accumulator 
|1OV 	8,A 	;and save in B 
XRH 	H 	;c~ear accumulator 

UUz 	MOV 	C,M 
AUb 	C 
1NX 	H 

DCR 	B 
JNl 	002 	;add all the bytes of string 
CMH 	 ;complement to get the checksum 
|'0V 	C,A 
S|A 	1EMP01 ;store the checksum 
LHLL' 	SUMO 

	
;initialise memory pointer in which ASCII equu 	]eol 

~N1 	0F0H 
 

of checksum will be stored 
P L 
RRC 
PP  
RRC 
DPI 	30H 	;convert higher nibble to ASCII and store 
MUV 	M,A 

 

1Nx 	H 
NOV 	A ^ C 
HNl 	0F  
URI 	30H 	;convert lower nibble to ASCII and store 
MUV 	M,A 
F OP 	SW 
POP 	D  
~OP 	~ 
FLIP 	H 	;reLrive all registers 
RE) 	 ;return  
;input from mem1,sto 



re1  
~uutput to the 3251 

[UHMUN 	RO   
IN 	0FlH 

01H  
ENUM  

~UU IL. AU I:.. 	H 
PUSH 	B 
PUSH 	U 
PUSH 	PSW 	;save a1  registers 
LHLU 	SlORE1 
LbA 	1EMP00 ;initialise the memory pointer from where the ASCII 
ADU 	A 	;block is stored 
MDV 	8,A 	;1oad no. of bytes in register C 

UUJ 	COHNUN 
J~ 	DO3 
MV 	A,02H 
UUT 	~F0H 	;Lransmit S[X  

0U4 	COMMON  
ui 004 
MOV 	A,M 
OUT 	0F0H 
lN~ 	H 
OCR 	B 
JNZ 	D04 	;transmit the ASCI  block 

DU5 	COMMUN 
JZ 005 
MVl 	A,03H 
out 	0F 0H 	;transmit ETX 
LHLD 	SUM0 
MVI 	8° 02H 	;iniLialise the memory pointer where 

~ checksum is stored 
0Ub 	COMMON 

JZ DD6 
MOV A,M 
UU[ 0F0H 
1Nx H 
UCr 8 
uNl DOb ;transmit two bytes of checksum 

DO7 	COMMON 



' 	
HV] ii 1 04H ;transmit 	EUT 

 

UU| 0F0H 
PUP PSW 
POP D 
POP 8 
PUP H ;restore all 	registers 
RE ;return 
;inpuL rum HEM02,SlORE2,SUM1,GTORE3 
;output 1 	MEM03,MEMSUM1 ° TEMP02 
;Lhi 	routine converts a block of 	ASCII no. 	to its HEX equivalent 

H 	hUSH H 
PUSH 8 
PUSH D 
PUSH PSW ;save registers  
MV'i C,0 ;clear 	counter 
LHLD SlUHE2 ;i iii L1alise the memory pointer to the 	tarting add/es 
x~H~ 

 
of 	the block 

LHLb SlORE3 ;iniLia1ise the mempry pointer from where to store 
~C|H~ 
1NX H 

UU8 	MOV A,M 
51.11 lWH 
RLC 
HLC 
HLL 
RLL 
MiJV ;Lake the first byte and get the higher nibble in C 
lNX H 
MOV A,M 
6Ul 30H ;take the second byte and get the lower nibble 
ADU 6 ;add to get HEX number 

NOV M ° A 
!NR C ;store in memory 
NOV A,C 
~{* IEMP02 ;store the no. 	of bytes 
J,NX H 
xCHG 
1NX H 
MOV A,M all 	bytes over 	/ check ETX 
CE  03H ;ETX 
JNi DOB ;NU : 	loop 	to 008  
lNA H 
XCHG 

 

LHLD SLIM! ;initia1ise the memory pointer from where 
; 	to store checksum 

ACH6 



HUV A,M 
SU] J0H 
HL Li 
KL~ 
RL[ 
RLC 
NOV B,A ;get first byte and store higher nibble in B 	registe 
IN  H 
MDV H,M 
SU1 30H ;get se~ond byte and convert it 	into lower nibble 
*DD B ;add to get byte 
~CHG 
NOV M ° A store checksum  
PO~ PSW 

6N1HY1 

UU2~ 

F-' OF- B 
PUP H ;restore registers 
RE | ;return 
;U`is routine checks for SOH 
;it 	i . for 	entry STEP -I and checks if SOH is recieved from MCS 
PUSH H 
PUSH 8 
PUSH D 
PUEU~ PSW ;save registers 
lN 0F1H 
ANl 02H 
JL 0023 ;check 	for reciever ready 
IN 0F0H ;input the byte 	and save in register B 
Nov 8,A 

Ni 08H ;check for error  

JNZ D09 ;return on error 
NOV A,8 
CF  01H ;compare with SOH on no error 
JNZ D09 ;NU : 	 jump to return bac:k 

(IV! A,0 ;YES : 	load counter with 	0 byteE and 
; 	initiall 	e 	entry 

S|A COUNtER ;entry step for next interrupt 
MVl A,02H 
STA ENTRY 
MVl A,0~ 
lN 0F 1H 
ANl 01H 
JZ DOi0 ;send ACK 



o 

U 	•1| 0F 0H 
i 	L P PSW 
~UP D 
pUP B 

HL\ 
;resLore registers 

;thia r 	ne tests 	the va1i di. ty of [YPE of data communication 
|H{1 PUSH H 

F1]SH ~ 
PUSH b 
PUSH PSW ;save registers 

UU22 lN 0F 1H  
0LH ;check for reciever ready 

JZ DU22 ;wait 	till 	reciever ready 
;read byte 

S!A [;PE 
)BH ;check for 	error 

j   NO ;jump to NO on error 
LDA |~PE 
CPl 30H 
JNi SlEP1 
lN 0F 1H 
~~'11 01H 
Jl F1 

^ MVl ~,06H 
~ALL ENlR'i3 
Jill-" LHS~ 
UU} 0F0H 
[^ALL ENTRY3 ;check 	if 	type is 0 
JM~ LAS| ;yes : 	send ACk and call 	entry STEP3 and jump tu LhS| 

|LP\ If1 1H 
JI STEP2  
UPI 32H 

JL 	SlEP2 



~Pi 
Ji 

J3H 
S\~P2 

~1'\ J4H 
J~ (EP~ 

u S 

J~ /EP2 
u-1 J/H  
JL S|EI~ 

P1  

./1 6l~P2 
LP1 ~9H 
J 	. SI I:.F~ 

I 4111 
Jl S\Ep~ 
UPI 4.H ;check 	for 	va1id code 
Jl STEP2 ;jump to STEP2 
JMP ML ;No valid code, 	increment the count and return bv 

;jumping to NU 
|~P... TI) I. A.02H 

ENlR~ 
JMF rES 

4u Lb~ L{]UNTER 
.1.  

CUUNTER ;increment counter 
CPl 03H ;check 	if 	counter 	is 3 ~~ 

uU11 ;if 	counter.  = 	J 	initla1ise entry step 	1 
MV I. ° 02H ;No: entry step 	remains two, jump to LAST 

EN}Ry 
3111' LAS( 

uUI! HV1 A, 	1H 
S[A ENTRY 

LAS[ ;iniLia1ise 	entry 	sLep 	I 	and jump to LAS  
vE6 MV1 ,0 H 
bU1~ 1N (LF1H 

AN\ 01H 
i)U1~ 

UU\ F0H ;send 	HLK 
I . |'uP -SW 

b |U| 
PUP 6 
PUP H ;restore 



regis~ers 
HL.| 

s routine sends a preassambled packet 
~BEFURE entering this routine SET COUNTER to 00 

LNIH,J 	PUSH H 
PUSH D 
PU H 
PUSH PSW 	;save registers 

UU]o 	CALL ADDHEAD 
LALL DELAY 

UU~4 	1 i 0F1H 
l 02H  

JL UO24 
~N 0F0H 	;recieve 	byte 	if reciever 	ready else loop 
MO;  

JZ DO13 	;Jump to 

0013 	if ACK'recieved 
L COUNTER  
1NR A *' 

S|A COUNTER ;increment counter 	if ACK not raacieved 
CP] 03H 
J~ D013 ;if 	counter 	is 3 junp to D013 
imp 001  ;e1 se send packet again 

UU|: 	NV  A,01  
5)~ ENlRv ;set 	enLery step 
POP PSW 
~UP D 
PUP B 
FUR H ;re~tore regisLers 
HL  
;this routine tests the 	validity f data received 
;BEFURE entering this routine SET COUNTER to 00 

EN|H'T4 	PUSH H 
PUSH B 
PUSH D 



UU14 

UEL~, 

UUi/ 

CHELk 

~USH PSW ;save registers 
LHLb 8|DRE2  

lN 0F1H 
AMl 02H 
Ji' DU14  
1N 0F0H ;recieve byte if 	reciever 	ready else loop back 
MUV B ^ ~ 
EL 1 04H ;ElX 	? 
JI DOW ;yes 	jump to DO15 
|(DV M,8 ;store this byte 
1 H 
uM~ 0u14 ;np 	: 	recieve next byte 
L,HLL CHECI:.. 
PuP PSW 
RUE U 
PJP 8 \ 
POP 
HLl 

H ;rest.ore registers  

PUSH H 
PUSH B 
PUSH D 
PUSH PSW ;save registers 
LX1 £3,0 ;load count 
ULx 8 
Nov H,~ 
UHA 8 ;check 	if 	count 	is 0 
JNL D01, no 	: 	1oop again 
POP PSW ;yes 
POP D 
POP 8 

OF H ;restore registers 
RE! 
PUSH H 
PUSH B 
RUSH D 
PUSH PSW ;save registers 
CALL ASTH ;convert ASCII to otLs equivalent HEX 
LDA lEMP02 
SlA TEMF00 
LHLU STORE3 
SHLD STORE0 ;initialise memory to calculate checksum 
CALL CHKSUM ;calcu1ate checksum 
LHLD BUM1 
NOV B~M 
LDA [EMP0i 
~MP 8 ;correct data recieved 

JNl 	SENDNAk ;no : send NACk 



iuo I 	PE 
LPi 31H 
o|L: STEM  

80831 
JMF DO1B 

5\EP~ CP~ 32H 
JNI S[EP4 
CALL SU832 
~MP DUi8 

:|:f-4 (..P1 3JH 
UNf. STEP5 
CALL SUE JJ 
JMP UO18 

S[EE5 CPl 34H 
JNZ STEP6 
CALL 80834 
.]MP DC) 18 

B[EP6 CP1 35H 
JN% S|EP7 
L.-LL SUB~5 
JH~ ~O18 

: II:::, L~1 3~H 
/U/ S|EP8 
~*LL GUB3~ 

MP DD1B 
.`|~~8 i['l J/H 

JNZ S|EP9 
CALL SU837 
JMP 0018 

b|EP9 CPl 38H 
JNI STEP10 
CALL SUB38 
JMF' 0018 

S|EP10 CPl 39H 
J|~l S!E~11 
L:LL ~U8J9 
oM[ DO18 

!EP11 LFl 4ill 
/Nl S[EP12 
C~LL SUB41 
JMF' UO18 

~|EP1~ CALL SUB42 
bU]8 MVl H°01H 

6|A ENTRY 
MV] H,00 
6~A SET 

;yes 

;check which code is recieved and call its subrouLin* 

;initialise entry step to 1 

;load memory set with zero count 



Uu]~ 	1N ~~.1H 
sN1 0111 

DU19 
||/1  
uU| (F Oil ;send ACk 

;ju*p 	io return 
ENUNH| Lb- COUNlEH 

iNR 
S|~ LOUN|~H 
LPl ;increment counter 	and 	check 	if = 3 
Jl 1)020 ;yes : 	jump to DO20  
MV1 p ~ 04H 

EN[R' no 	entry step 4 
I' IV A,F 
.| T ;load memory with FF Hew 

1)U50 1N 0F1H 
NI .1 01H 

JI DO20 
HV| 15H 
UU| ON OH ;seod NAK 
|iVl 04H 
6 ENTRY ;make 	entry step to 4 

UO2J POP PSW 
PuP L) 
POP B 
POP H ;restore registers 
RB 

UU.:0 MV.I a,00 
S|~ SEl 
MVl 

 

|A ENTRY ;set entry step 	to I and memory set to 0 
JMP D050 ;jump to 1)050 to send NAk 
;this subroutine is for 	[YPE 	1 	which prompts to start 

;a particular plant 
SUB31 PUSH H 

PUSH B 



SU~JJ 

PUSH 
FUSH PSW 

II. 	1, 6)U~~~ 
n/Jv H 

|iB'U/ 
C~LL 

 
I) :t 

PU| P6W 

~UP 8 
PPUF H 
REi 
PU5H H 
PUSH B 
PUSH D 
PUSH PSW 
LHLb SlO~E~ 
HOV M 
6|* MEM1> 
[ALL blSP4 

PSW 
PUP U 
I UP H 
PUP H 
RE| 
FUSH H 
~USH B 
PUSH D 

PSW 
L|tLU S | OREJ 
HUV Ni 
S LIEN!) 

UlSP1 
POP PSW 
FuF b 
PUF B 
F 	: H 
RE\ 
PUSH H 
PUSH B 
PUSH U 
PUSH PSW 

;sa,e repisters 

;save registers 

;save reqisters 

.1 :;:d the pi ant number and store in MEM1? 
;cal1 DISPLAY to display start plant number 

;restore registers 
return 

;1uad p1 ant number in MEM17 
;call display to display "Stop Plant No." 

;restore registers 
;return 

;sLart switch device number 

LHLb 	SWRE3 



6U~J~ 

MOV A.M 
6[A MEM17 

D1SP3 ;stop switchh 	device number 
~OP PSW 
POP 1) 
PUP 8 
PUP H 
RB 
PUSH H 
PUSH 8 
PUSH D 
PUSH PSW ;sa"e registers 
LHLD STOH~3 
NOV .M ;load the variable number in accumulator 
~8l 7 5H 
~UL) ~ 
NOV 8,A ;calculate ihe offset to be added in 	address 
lNx and save in B register 
MOV 0  
lNX H 
NOV E,M ;save the max. 	value : in DE pair 
XCHG  
LX  H,9F00H  
MU) A ° L 
p.4DU B 
MU) L ~ H 
MOV M ° E 
lNX H 
NOV M `D the number in memory location 
POP H 
FOP U 
FOE 8 - 
PUP PSW 
RE~ 
PUSH H 	' 
~USH 8 
PUSH 1) 
PUSH PSW ;save registers 
LHLU STORE3 
MOV H,II 
S81 05H 
A1.) I.) 
'kJV B, 1oad the variable number and make an offset 
1NY\ H and store in 	register 	C 
Nov D,M 
lNk H 



I 

	

HUV 	E,H 	;get the max. va1. in DE reg pair 
xCHb 

	

LX1 	H,9Fl0H 

	

MUV 	 L 
;seI the memory pointer 

	

II 	L"A 
|1UV II,E 

	

1Nx 	H 

	

MUV 	M,U 	;store the value in memory 

	

POP 	H 

	

FUP 	U 

	

POP 	B  

	

P~P 	PSW 	;restore reqisters 
 

~U8J5 ~USH H 

bO25 

1) O' 

rUSH 
FUSH U 
HUSH PSW ;save registers 
LHLb S[UHE3 
MUV H,M ;1oad the variable no. 	in Accumulator 
LPl 01H 
3 .t. DO25 
CP1 02H 
uI U~~b 
CPI ø.H ;compare the no. 	and 	jump 	to its relevant location 
JI UO2/ 
L~1 H 
SHLU H8U'iiA ;set the memory pointer for 04 variable 

; 	and Jump to 0028 
 

JMP UU2~ ' 
LX1 H,0805EH 
bHLU MBIN(A ;8set the memory pointer for 01 variable 

;and ]ump to D028 
JMP DO28 
LX  



bU~8 

SUB3G 

H ° 080b4H 
S|lLb M8lNTA ;set 	the memory pointer for 02 variable 

and jump to D028 
JMP UO28 
Lx1 H,080bAH 
~HLu M8lNTA ;set Lhe memory pointer for 03 variable 

;and jump to 0O28 
LHLU S|OR~3 
/|Ix H 

MUV U,M 
l|x H 
HUV E,M ;1oad 	the reference variable in DE reg. 	pair 
XLI'kG 
SHLD MEM4 ;bring I 	in HL pair and store HL in MEM4 to convert 

; 	it  
LHLL 81N| into HSLIl  
POP H 
POF D 
PDP 8 
POP PSW 
RE) 
PUSH H 
PUSH 8 
PUSH D 
FUSH PSW ;save registers 
MV! A,0FFH 
UU! 58H 
MV! A,0FFH 
our 5BH ;initialise 	the 	counter 0 to FFFFH 
POP P8W 
POP D 
FOP B 
FOP H 
PEI 
PUSH H 
PUE~{ 8 
(III b 

PUSH PSW 
HVl H,0FFH 
UUS 59H 
|\Vl A,0FFH 
UUi 59H ;initialise the counter 	to FFFFH 
PUP PSW 



SUk41 

POF 8 
PUF H 
HEl 
F'U5H H 
PUSH 
PUSH D 
PUSH PSW 
NV J.  
OW 58H 
IN 58}i 
CM~ 
|1UV L,A 
111 58H 

' 	LHA 
MOV H ~ ~ 
~HLU READ0 ;read counter 0 and store in RECD(2) 
POE PSW  
FLIP U 

frUP H 
H~| 
FUSH H 
PUSH B 
EUSH U 
PUSH PSW 
NV   ,40H 
UU( 5BH 
I  59H 
CM~ 
MDV L,A 
lN 59H  
CH.' 
|\UV H,H 
SHLb REHU1 ;read counter 	1 and store in READ0 
POF PSW 
PUP D 
POF B 
POP H 
RB 
;Lhis routine reads Lhe value of 	counter 0 	and sends 
;that value to MCS 
AJSH H 
PUSH El 
FUGH 1,) 
PUSH PSW 
\*LL. HEHD00 ;read the va1ue of counter 	0 



, 

MV). 	A^04H 
~| 	[EMF~0 
L~l 	H,READ0 
SHLD 	STORE0 
CALL 	HEXTA 	;convert it into ASCII 
CALL 	CHKSUM ;call CHKSUM to calculate checksum 
CALL 	ADDHEAD ;send packet to MCS 
POF 	PSW 
PUP 	D 
POP 	~ 
PUP 	H 	 estore regis~ers 

;thi routine reads the va1ue of counter i and 
;seods Lhat value to MCS 

~Uu~. 	PUSH 	H  

PUSH 8 
PUGH D 
PUSH PSW 
CALL REAu01 
MV! A,ø4H 
SiA |EMP00 
LA! H,READ1 
5HL1) S[ORE0 
L*LL HEXlA 
I. 	L CHKSLtI! 
LHLL AUDHEHb 
PUP PSW 
PUP b 
~OP 8 
POt- H 
FE| 

~N0 



de segment. 
assume cs:code, ds:code, es:nothing, ss:nothing 
org 100H 
start: jmp main 

_-------.---------------data area-----------------------_ 
150 
pkt_len dup(0, 
2olpkt(0) 
8 
? ;0-read data from K.B. 

0 
pktlen dup(0) 
201 dup(0) 
"Fatal error Existing $" 
0 ; 0-Ack_Rcd , 1-Ack_not_rcd 
? ; 0-Nak_ not _Rcd , 1-Nak_Rcd 
06h 
O1h 
-3 
04h 
02h 
03h 
the comport to 4800 baud, even parity, 1 Stop bi 

k 

7  
pktlen 	LB 
'x_~Buf 	 DB 

T_buf 	 DB 
T 
K 
C

ype 	DB 
B_F'LAG 	 DB 
ounter 	 DB

ix Buf 	 DB 
Buf 	 DB 

ER_MSG 	DB 
Rcd ACK 	DB 
Nakerror 	 DB 
ACK 	EQU 

0H 	 EQU 
4x_Rtky 	EQU 
OT 	 EQU 

STX 	 EQU 
ETX 	 EQU 
;This procedure initializes 
INI'1'; 	 PROC 	NEA 

MOV 9H,0 
MOV AL, 0C/ 
INT 14H 
RET 

I N 11' 	 ENDF' 
SENU_bYTE 	PROC 
;Call with al=byte to be 
;is sent thrice 

In case of rerror byte 
NEAR 
trantered 

MOV CL,3 ;error count 
Si: MOV AH,1 

INT 14H ; SEND BY'T'E IN AL 
TEST AH.80H ;COMPARE 	IF ERROR 
JZ 62 ;IF NOT EXIT 
DEC CL ;DECREMENT COUNTER 
JNZ 61 :RETRY IF ERROR 

2 : RET 
SEND BYTE: END? 
; This routine sends packet to RTU 
SEND 	 KT PROC NEAR 
This procedure sends the packet , using send_byte Procedure 

SEND NEXT : 
MOV SI,0FFSE'1' 'I'x_BUF 	;start of buffer 
LUDSB 	;Load byte in AL 
CALL SEND BYTE 
LOOP SEND_NEXT ;Repeat till the and of Buffer 
R 



SEWb PKT  
This routine gets byte comport in AL, in case ot-error repeats three times 
..4E ' BYTE 	F'hOC 	 NEAR 

HOV UL,3  ;Retry Count 
ti!; 	 MOV AH, 2 

INT 14H 
CMP AH,O  ;Compare for error 
JZ G2  ;no error,exit 
DEC CL  ; error 
JNZ G1 

G 2 : 	 RE'1' 
taL1' bY'1'I 	END? 
% :t ,. 11;: ii~a ment:~i 	of rac. butter, CX=Packet Size 
GET_PKT  PROC  NEAR 
G1:  MOV CX'O 

CALL GET BYTE  ;Receive byte 
STOSB ;Store it 
INC CX 
CMP AL,EOT ;if cot 
JZ G3 ;exit 
JMMMP U1 

G3: RET 
GET_PKT END? 

MOV DI,OFFSET kx_BUF 
;no need of packet size 
MAKE _F'KT PROC NEAR 

MOV SI,OFFSET IBUFFER 
PUSH CX 
MOV DI,OFFSET Tx_BUFFER 
MOV AL ,STX 
STOSB 

Ml: LODSB 
CALL HEX_to_ASCII ;Convert 
STOSW 
LOOPNZ MI 
MOV AL,ETX 
STOSB 
MOV SI,OFFSET T_Buf 
INC Si ;Leave STX 
POP CX 
CALL CHK SUM ;calculate 
MOV AL,CHK_SUM 
CALL HEX_to__ASCII ;convert 
STOSW ;save it 
MOV AL,EOT 
STOSB 
RET 

MAKE 

to numeric ASCII 

check sum 

cs to ASCII 



_PKT ENDP 
;before calling the routine load CX with no. of HEX data bytes 
;and load dx with the no. 	of AaCil bits 	- 
HEX toASCII PROC NEAR 
;This routine converts a byte to numeric ASCII word 
;That is 3C is 33 3C 	, 	tall with AL=bytes to convert 

PUSH CX 
PUSH AX ;save registers 
AND AL,OFH ;mask higher nibble 
ADD AL,30H ;convert into ASCII 
POP DX ;get no. 	in DL 
AND DL,OFOH ;mask lower nibble 
MOV CL,4 
SHR DL,CL ;Rotate right the byte 4 times 
ADD DL,30H ;convert into ASCII 
MOV AH,DL ;get the higher byte in AH 
POP CX ;Pop registers 
RET ;returns code AX 

HEX-to ASCII ENDP 
;this routine converts the numeric ASCII word in AX to Hex byte in AL 
ASCII_to_HEX PROC NEARR 

SUB AL.30H ;convert into lower nibble 
SUB AH,30H ;get higher 4 bits in AH 
MOV UL, 4 
SHL AH,UL 
OR AL,AH ;get byte in AL 
RET 

ASCII_to_HEX ENDP 
;this routine calculates the checksum and returns with check sum in AL 
CHK_SUM PROC NEAR 

XOR AX,AX ;AX=0 
Cl: LODSB ;get byte in AL 

XOR AH,AL ;add to partial result 
LOOPNZ Cl ;if bytes over , 	no:loopl 
MOV AL,AH ;yes 	:get sum in AL 
NEG AL ;convert into checksum 

CHK SUM ENDP 
this routine makes the packet sends the packet to comm port and ckecks 
;if ACK reed, or not. 	In case ACK not recd. 	, packet is sent twice 
SEND_OUT PROC NEAR 

PUSH CX ;save no. 	of hex bytes 
CALL MAKE_PKT ;make packet 
PUP CX ;get hex data bytes 

01: MOV RECD_ACK,O 
SHL CX,1 
ADD CX,6 ;get packet size in cx 
CALL WAIT1b ;15 ms wait 
CMP RECD AC 



r 

I~ r
L..
~ 

K/ 

SE[1D OUT 
this routine 
valid, 5~L1.d5 

u.1' 	iii 

UMP RECD_ACK,1 ;is ack recd.? 
JNZ 02 	;NO error exit 
INC COUNTER 	;else increment counter 
CMP COUNTER,MAX_RETKY 
JF 01 	;not exceeding, so go back 
MOV ERROR, 1 	; exceeds max retry, set error flag 
RET 
ENDP 

recieves the packet from RTU and checks its validity. If 
AC,K else sends NAk 

t-kuu' NEAR 
MOV DI,OFFSET Rx_BUFFER ; initialise DI 
PUSH DI 	;save offset 
CALL GET_PKT 	;recieve packet 
PUSH CX 	;save packet length 
POP SI 	;get starting address of 
MOV DI,OFFSET R_,BUFFER ; initialise DI 

with offset Fxbutfer 

block in SI 
with offset R but f e r 

INC SI 
SUB CX,S 	;get data length in CX 

U1: 	LOLSW 
GALL ASCII_TO_HEX 
STOSB 	;convert the data into hex 
LOOPNZ U1 
PUSH SI 
NOV SI,OFFSET k_BUFFER ;initialise SI with adress of checksum 
CALL CHK_SUM 	;calculate checksum 
CALL HEX_TO_ASCII; convert checksum into ASCII 
POP SI 
NOV DL, [SI] 
INC SI 
NOV DH,[SI] 
CMP AX,DX 	;compare two checksums for validity of packet 
JZ SAME 	;valid, jump to save 
NOV AL,1 
NOV NAK_ERROR,1 ;no, 	set nak_error flag to 1 
NOV DI,OFSET Rx_BUFFER 
POP CX 
NOV AX,O 

FLUSH. STOSW 
LOOP FLUSH ;clear the buffer 
NOV AL, NAK 
CALL SEND_BYTE ;send NAK 
JMP OT 

SAME: MOV AL,ACK ;send ACK 
CALL SEND_'BYTE 
NOV AL,O 
NOV NAK_ERROR,1 

OT: RET ;return. 
CaET_1N ENDP 



PUBLIC ....DISPLAY 
MAIN PUSH CS 

FOP DS 
PUSH CS 
PUP ES 

W1: MOV CL.3 
W5: MOV AH,1 

h1OV AL, SOH 
INT 14H 
CALL WAIT15 
[luV AH,2 
INT 14H 
CMF' CL ACK 
JZ W4 
DEC CL 
JIJZ W5 
JMF PhCS__ERROh 

W4: !1OV AH, 1 
INT 16H 
JL W1 
MOV AH,O 
INT 16H 
CMP AL, 42H 
JG ERROR 
CMP AL , 30H 
JL ERROR 
IIOV DI ,OFFSET T_BUF 
CMS' AL, 38H 
JZ ZERO BYTE 
CMF AL,39H 
JZ ZERO BYTE 
CM'? AL,35H 
JZ FIVE BYTES 
CM? AL.36H 
JZ FIVE BYTES 
CM? AL,37H 
JZ FIVE BYTES 
CM?' AL , 3t0H 
JZ c ET PACKET 
CMF' AL,31H 
JZ ONE BYTE 
Clip AL.32H 
JZ ONE BYTE 
CM?' AL,33H 
JZ ONE BYTE 
Clip' 

;transmit SOH 

;wait for 15 ms 

;read kbd. 

;is key pressed within our codes 
; NO, jump to error routine 

;initalise all segments to same value 
;set the counter to 3 

;read it acknowledgement recieved 
;is ACK recd? 
.YES. jump to read type from kbd. 
;NO, decrement the counter 
;if counter zero NO, send SOH again 
;YES, Jump to process error 

;check keyboard for any key pressed 

;YES , initialise DI with offset trans. buffer 
;is byte 38H 
;YES, jump to send zero byte 
;NO, is byte 39H 
;YES jump to send zero byte 
;NO is byte 35H 
;YES jump to send five bytes 
;NO is byte 36H 
;YES jump to send five bytes 
;NO is byte 37H 
;YES jump to send five bytes 
;NO is byte 30H 
;YES get packet from RTU 
;NO is byte 31H 
;YES jump to send one byte 
;NO is byte 32H 
;YES jump to send one byte 
;NO is byte 33H 
;YES Jump to send one byte 



AL.34H :NO is byte 34H 

JZ ONE BYTE ;YES jump to send one byte 

ERROR:  HOVE AH,2 
Nov AL,7 ;error routine to give one beep if wrong 
INT 21H ;code pressed 
CALL WAIT1 ;wait one second 
JMY W1 ;jump to start again 

ZERO BYTE:CALL SEND_BYTE ;send type 
CALL WAIT1 ;wait one second 
JMP WI ;,jump to start again 

ONE BYTE:CALL SENU_BYTE ;send type 
W2:  MOV AH,1 

INT 16H 
JZ W2 ; get next byte from kbd. 
MOV AH 0 
INT 16H 
• STOS B 

tr10V CX, l 
J MF F'REP ._PKT Jump to prepare packet 

THREE BYTE:CALL SEND.BYTE ;send type 
NOV CX. S 

W3;  MOV AH,1 
INT 16H 
JZ W3 -  ;get five bytes from kbd. 
[10V AH , 0 
INT 16H 
STOS B 
LOOP W3 
MOV CX , :, 

PREP_.PKT :CALL SEND_OUT ;send the packet out 
CMP EkhOR,1 ;is any error? 
JZ PRCS.__ERROR ;YES ,  jump to process error 
CALL WAIT1 ;wait one second 
JMP W1 ;jump to start again 

PRCSERROR:MOV DX,OFFSET ERROR_MSG ;mov into DX offset of error message 
MOV AH,9 
INT 21H ;dispaly error message 
CALL WAIT1 ;wait one second 
JMF W1 ;jump to start again 

GET._P'KT ; MOV CX, MAX__RETRY ;mov into CX the MAX retry count 
TRY_AGAIN:PUSH CX ;save count 

CALL GET_IN ;recieve the packet 
POP CX ;get count 
CM? NAK_ERROk,b ;is nak_error flag set ? 
JZ RECD_OK ;NO,  the pakcet is recd.  U.K. 
LOOP TRY_AGAIN ;else loop to get packet 2 more times 
3M? PR 

r 



tERFOR ;max retry over, 	jump to proccess error 
RECD UK:CALL DISPLAY ;call display routine 

GALL WAIT1 ;wait one second 
JMB W1 ;jump to loop again 

CODE 	ENDS 
END 	START 
WAIT1; 	PROC NEAR 

XOR CX,CX 
XOR DX,DX 
NC V HH , 2 DH 
1I T 21H ; set time to 0 

WA.1T_ CYCLE.: M0U ' AH, 20H ;set AH for one sec delay 
INT 21 
CM? ILH. 1 ;is delay over ? 
CL WAIT_CYCLE ;no, 	jump to wait cycle again 
RET ;YES return 

WAIT15: 	PROC NEAR 
XOR CX,CX 
XOR DX,DX 
MOV AH,2DH 
INT 21H ;set time to zero 

WA1T11: 	MOV AH,2CH ;move count in AH to get 15 ms delay 
INT 21H 
CM? DL, a 5 ;is 15ms over 	? 
JG WAI 	...._OVER ;YES, 	jump to wait over 
CALL GET _BYTE 
CM? AL,ACK ;check if ACK recd. 
J Z ACK__RECL ;YES, 	jump to ACK reed. 
MOV READ ACK,Q 
JMP WkIT11 ;else jump to wait again 

ACK_RECD: MOV READ _ACK, 1 ;set recd_ack flag to one 
WAIT _OVER: FEET ; return 

ENDF 



APPENDIX-D 

50Up,CE • MODULAR 	 COMF/Tt Sysii' 
r6COfMCA1. 'DEsc*IPT,OM 

P** 	 EsEcrp,o,N,c 	Paceaucr3 3 



THE MODULAR MICRO COMPUTER SYSTEM TYPE EP. 131 

A l  INTRODUCTION 

The NUCLEUS bus structure provides a common element for 
communication between a wide variety of system modules which 
includes: Processors, memory, digital input/ output,, analog 1/0 ' 
industrial I/O! peripheral controllers, plug.-in power supply.  
modules and mist, utility modules. Implementation of NUCL UB 
system and nomenclature of different modules is shown in figure A..1. 

The purpose of this application note is to help you develop a 
working knowledge of the NUCLEUS bus specification. This knowledge 
is essential for configuring a system containing multiple modules. 
This application note provides an in depth examination of the bus 
-signals, operating characteristics, and bus interface circuits. 

A.2 FEATURES 

Uses standard Euro size (100 x 220 mm and 233.4 x 220mm) cards 
.'.,Uses high reliability 2 part 64/ 96 pin standard Euro connector. 

Uses uSIC (Microprocessor based System for Industrial Control) 
compatible bus using well defined IEEE 796 (Intel Multibus) 
electrical signals on standard Euro size hardware. This bus is 
well defined for 8; 16 and also 32 bit systems allowing for 
easy upgradability of the hardware. 

A; 3 DESCRIPTION 

The mechanical outline of NUCLEUS system single height shown in 
Fig. A-2. To support 8 bit hardware the signals on  the row A and 
C remain used. The 16 bit modules use 96 pin connector (with rows 
A ' B and C of 32 pins each) while 8 bit modules use 64 pin 
connector (with rows .,-A . and C) , For bravity,,  the back panel 
connector pin assignments of 64 pin connector for 8 bit systems 
is reproduced in Table A..1. 

The signals on the back panel are bussed isa pin 1 anf all the 
back panel connectors is connected together, similarly pin 2 of 
all connectors is connected together and so on. This rule has a 
few exceptions which have been mentioned with the description of 
the non... bussed signals. This bussing of the signals allows any 
module of the system to work in any slot on the sub-rack: 

The NUCLEUS bus signal lines can be grouped in the following 
categories: address lines, bidirectional data lines, multilevel 
interrupt, lines, and several bus control, timing and power supply 
lines. The address and data lines are driven by three- state 
devices, while the interrupt and some other control lines are 
open- collector driven. 



The modules that use the NUCLEUS bus have a master- sla8te 
relationship. A bus master module can drive the command and 
address lines i:e it can control the bus. A Processor module 
is an example of a bus master. A bus slave can not control the 
bus. Memory and I/O expansion boards are examples of bus slaves. 

Notice that a system may have a number of bus misters. Bite 
arbitration results when more than one master request control of 
the bus at the same time. A bus clock is usually provided by one 
of the bus masters and may be derived independently from the 
processor clock. The bus clock provides a timing reference for 
resolving bus contention among multiple requests from bus masters. 
For example, a processor and a DMA (direct memory access) module 
may both request control of the bus. This feature allows different 
speed masters to share resources on the same bus. Actual transfers 
via the bus however, proceed asynchronously with respect to the bus 
clock. Thus, the transfer speed is dependent on the transmitting and 
receiving devices only. The bus design prevents slow master modules .. 
from being handicapped im their attempts to gain control of the bus, 
but doesnot restrict the speed at which faster modules can transfer 
data via the same bus. Once a bus request is granted, single or 
multiple read/ write transfers can proceed. The most obvious applica-
tions for the master- slave capabilities of the bus are multiprocessor 
configurations and high- speed direct- memory- access (DMA) operations. 
However, the master- slave capabilities of the bus are by no means 
limited to these two applications. 

r 



NUCLEUS bus for 8 1-,it sve~n:; 

PIN 	--- ----` 	l,f)t~! ROW ROW 
'i0. A R C 

I (;ND - i;ND 
2 +5V - f5V 

3 -15V - --15V 
+ l5V _. ,-15V 

5----------- -D'I'0 J - D•1•1/ 

6 DT2/ - DT3/ 

7 D14/ - DT5/ 

8 DT6/ - D1'7 J 

• 9 ADRO/ - ADRI/ 

10 ADR2 / - ADR3 / 
11 ADR4/ - ADR5J 
12 ADR6 / - ADR7 / 
13 ADR8/ - ADR9/. 

• 1.4 ADR1O/ - ADRI l J 
15 ADRI.2/ - ADR13/ 
16 AUR14 / - ADRI 5 / 

17 INTO/ 
----------------------------------------------------------------- 

OR NMI 	 - INT1/ 
18 INT2/ - INT3/ 
1.9 INT14/ - 1N'r5/ 
20 IN'1'6/ - 10T7/ 

21 cu(/ - r131;Q/ 	OR 	HOLD/ 
22 IOTA! (*) 	 - I0112/ 	(-•) 
23 ,;A.CK/ (*) 	 - Iid 'rll./ 	(`) 
24 I0iiCi - IOVIC/ 
25 MRDc/ - N1 TC/ 
26 BUSY! UR 	IILDA 	 - BI;r:.q/ 	(*) 
27 BPRN/ (*) 	 - BPRU/ 	(*) 
28 BCLK/ (-`) 	 - I011/ 

29 COD • - GNI) 
30 +5V - +5V 
31 +V - +5V 
32 GND - CND 

Note: (*) - Not used in LEVEL. 1 moclul-.:s 

r 



P. 1 13 

PIOCLLi) 	 -' 

'-4--- 

MEMORY 

R AM 

__ 	 ExtK 

INPUT PORTS 
OEvlC( rr-,J 	OUTPUT PORTS 

E 

ANALOG !;kD 

DACS rnn 

- 	I PERIPHERAL INTERFACE 
PEIrA 	 UART 	V 	_____ 

0EV!"t 	 PRINTER INTERFACE. 	>CLifIL. 
CRT  

MOTOR 	 .- - 

INDUSTR\LI/o  
OPTO—INPUT 

SatE OlD 	
ij

RTPLA4CY 
 

VALVE 

POWER 

U'IRi IJ 
IDIGI TAL 

H 
	

IL 

E 1sX 	 I 	- 
MISC CARDS 

 CARD ETENDI.r5 
G  CARDS 	.LXIEEL_ : 

TI r 

sc0R 

STE M 



G 

U 
O 

r" G GG) 

m c m 
C) 

m n1 

C r (n I+ N 
ON 
t~ CJ 

n c 2► 
irk 

0 



APPENDIX- E 

SOURCE - PRoERMME*s 

rem 
REFS*EMcG MOSUAL 



n DOS Interrupt 21H 
Invoke a DOS Function Request 

Interrupt: 
21H Invoke a DOS Function Request 

DOS Version: 
1.0, 1.1, 2.0, 2.1, 3.0, 3.1, 3.2 

Description: 
This interrupt is used to invoke all of the standard DOS function requests. 
Chapter 4 describes each of the function requests in detail and explains how 
to set -up the registers properly so that you can invoke the function request 
you want. 

Input: 
.Before issuing this interrupt, you must set registers as follows: 

AH Place the number of the DOS function request in this register. 
Set other registers as required by the individual function requests. Refer to 
Chapter 4 for details. 

Output: 
After control returns, the' registers will be set as appropriate for each func-
tion request. Refer to Chapter 4 for details. 



DOS Function Request 02H 
Display a Character 

Function Request: 
02H Display a character at the standard output device 

DOS Version: 
1.0, 1.1, 2.0, 2.1, 3.0, 3.1, 3.2 

Description: 
This function request displays a character at the standard output device (usu-
ally the display screen). It displays the character at the current location of 
the cursor and then advances the cursor one position. 

If the character displayed is a backspace character, this function request 
moves the cursor one position to the left. However, it does not erase that 
character. 

When the function request displays a character at the end of the line (the 
right edge of the screen), the cursor moves to the left edge of the next line. If 
the cursor is at the bottom right corner of the screen, the screen scrolls up 
one line when the cursor moves. 

This function request checks for a Ctrl-Break after displaying the character. 
If the operator has entered a Ctrl-Break, the function request invokes an 
interrupt 23H to start the Ctrl-break handler. 

With DOS 2.0 (and later versions), you can redirect the standard output. de-
vice. Redirection enables programs that use this function request to write to 
other devices, such as printers and disk files, instead of writing only to the 
screen. 

Input: 
Before invoking this function request, you must set registers as follows: 

AH This register must contain 02H, indicating the number of this func-
tion request. 

DL ASCII code for the character to be displayed. 



D DOS Function Request 09H 
Display a Character String at the 
Standard Output Device 

Function Request: 
09H Display a character string at the standard output device 

DOS Version: 
1.0, 1.1, 2.0, 2.1, 3.0, 3.1, 3.2 

Description: 
This function request displays a string of characters at the standard output 
device (usually the display screen). It displays the characters starting at the 
current location of the cursor and then advances the cursor one position. 

To determine the end of the string, this function request assumes that the 
last character of the string is a $ character (ASCII code 24H). It does not 
display the $. Because of this string-ending convention, you should not use 
this function request to display information containing dollar signs, such as 
financial data. 

If any character in the string is a backspace character, it causes the cursor to 
move one position to the left. 

When the function request displays a character at the end of the line (the 
right edge of the screen), the cursor moves to the left edge of the next line. If 
the cursor is at the bottom right corner of the screen, the screen scrolls up 
one line when the cursor moves. 

This function request checks for a Ctrl-Break after displaying the character. 
If the operator has entered a Ctrl-Break, the function request invokes an 
interrupt 23H to start the Ctrl-Break handler. 

DOS 2.0 (and later versions) allows you to redirect the standard output de-
vice. Redirection enables programs that use this function request to write to 
other devices, such as printers and disk files, instead of writing only to the 
screen. 



DOS Function Request 091-1- 
Display a Character String at,the 

Standard Output Device 

Input: 
Before invoking this function request, you must set registers as follows: 

AH 	This register must contain 09H, indicating the number of this 
function request. 

DS:DX This register pair must point to the start of the character string 
in memory. The function request displays char icters until it en-
counters a $ character (ASCII code 241-1), which terminates the 
string. The $ character is not displayed. 

Output: 
None. 

See Also: 
02H—Display a character at the standard output device. 

Example Programs: 
Each of the following three examples uses function request 09H to display a 
string of characters terminated with a dollar sign on the screen. Most of the 
assembly language examples listed in this book use this function request to 
perform screen output. 

Assembly Language Usage Example: 

DISPLAY STRING (09H) 

code segment public 
assume cs:code,ds:code 

org 100h 
start: jmp begin 
msg db 'Hi!  This 
begin: mov ax,cs 

mov ds,ax 
mov dx,offset 
mov ah,09h 
int 21h 

is a dollar sign terminated string.','$' 
;set up ds 

msg  ;set up to display message 
;display string function request 
;call DOS 



Ej DOS Function Request 2CH 
Get the Time 

Function Request: 
2CH Get the time 

DOS Version: 
1.0,1.1,2.0,2.1,3.0,3.1,3.2 

Description: 
'I'hts- function request returns the time (hours, minutes, seconds, and hun-
dredths of seconds) as maintained by DOS. The DOS time is based on a value 
the user entered (or that was retrieved from a clock/calendar) after turning 
on or rebooting the computer. 

Input:  
Before invoking this function request, you must set the following: 

AH This register must contain 2CH, indicating the number of this func-
tion request. 

Output: 
After control returns, the following are set: 

CII Indicates the current hour in 24-hour format (0 through 23). 

CL Indicates the current minute (0 through 59). 

DH Indicates the current second (0 through 59). 

DL Indicates the current 1/100 of a second (0 through 99). 

See Also: 
2AH—Get the date. 
2BH—Set the date. 
2DH--Set the time. 

Example Programs: 
Each of the following three examples uses function request 2CH to retrieve 
the current time. The program displays the time on the screen. 



L! DOS Function Request 2DH 
Set the Time 

Function Request: 
2DH Set the time 

DOS Version: 
1.0, 1.1, 2.0, 2.1, 3.0, 3.1, 3.2 

Description: 
This function request is similar to function request 2011. It sets the DOS 
time. 

This function request is useful for programs such as those that work with 
battery-powered clock/calendars. The program can retrieve the date and time 
from the clock/calendar and use this function request (and function request 
2IiFD to set the DOS date and time accordingly. If the program is invoked 
from the AUTOEXEC.BAT file, the user never needs to enter the date or time 
manually. 

Programs can also use this function request to set the time to 0 in prepara-
tion for using the DOS clock as an event tinier. 

Input: 
Before invoking this function request, you must set the following: 

AU This register must contain 2D1-1, indicating the number of this func-
tion request. 

CH1 This register must contain a value indicating the current hour in 24-
hour format (0 through 23). 

CL This register must contain a value indicating the current minute 
(0 through 59).  

DH This register must contain a value indicating the current second 
(0 through 59). 

1)14 This register must contain a.value indicating the current 1/100 of a 
second (0 through 99). 



DOS Function Request 2DH 
Set the Time 

Output: 
After control returns, the following is set: 

AL Indicates the status of the operation, as follows: 

0011 	The time you supplied was valid, and DOS was able to set its 
time accordingly. 

FFH 	At least one of the time components you supplied was invalid 
(such as 25 hours or 63 seconds). The function request did 
not set the time. 

See Also: 
2A11—Get the date. 
2BH—Set the date. 
2CH—Get the time. 

Example Programs: 
Each of the following three examples uses function request 2DH to set the 
current time to 00:00:00.0. 

Assembly Language Usage Example: 

; .SET TIME 	(2DH) 

code segment public 
assume cs:code,ds:code 

org 100h 
start: jmp begin 
msg db 'Time set to  00:00:00.00',0dh,0ah,'$' 
begin: mov ax,cs ;set up ds 

mov ds,ax ;to same  as cs. 
mov ah,2dh ;set time function request 
mov ch,0 ;hours 
mov c1,0 ;minutes 
mov dh,0 ;seconds 
mov d1,0 ;hundredths 
int 21h ;call DOS 
mov  ~dx,of.fset msg  ;address of message 
mov ah,09h ;display string  fundtion request 



BIOS Interrupt 1411 
RS-232 Serial I/O 

Interrupt: 
14I-I RS-232 serial I/O 

Description: 
The BIOS function requests invoked via this interrupt let you control the 
actions of the RS-232 serial communications ports. These ports are actually 
standard communication paths that allow programs to cornmuriicate with 
modems, serial printers, and other computers. 

There are four function requests associated with this interrupt. You choose 
the function request you want by setting the All register to the appropriate 
value and then issuing an interrupt. 1411. The following function requests are 
available via this interrupt: 

AH Function Request 

OOH Initialize serial port. 

01H Send one character. 

02I-I Receive one character. 

03I[ Get serial port status. 

The next several pages describe these RS-232 Serial Port function request! 
in detail. 



• J BIOS Interrupt 14H 
RS-232 Serial I/O 
Function Request OOH—Initialize Serial Port 

Interrupt: 
1411 RS-232 serial 1/0 

Function Request: 
(W11 Initialize serial port 

Computers: 
PC, PCjr, XT, Portable, and AT 

Description: 
This function request sets up the serial port for transmission or reception of 
information. You can set the baud rate, parity, number of stop bits, and the 
character length. 

Input: 
Before invoking this function request, you must set the following: 

AH This register must contain 0011 to specil;y the Initialize Serial Port 
function request. 

AL Set this register to contain the encokd initialization parameters, as 
follows: 

Bits 

7 6 5 1 3 2 1 0 

Bit 	 Description. 

7-5 	Baud rate. Set this three-bit field to indicate the number of 
characters that should be transmitted each second. Possible 
binary values include: 

Value 	Baud Rate 

000 	110 

001 	150 



BIOS Interrupt 14H 
RS-232 Serial I/O 

Function Request OOH—Initialize Serial Port 

Value Baud Rate 

010 	300 

011 	600 

100 	1200 

101 	2400 

110 	4800 

111 	9600 

On the PCjr, only baud rates up to 4800 are supported. At-
tempts to set the baud rate to a higher value actually set the 
baud rate to 4800. 	 ; 

4-3 	Parity. Set this two-bit field to indicate the parity checking 
scheme used by the serial port to ensure that no data is lost 
during transmission. Possible binary values include: 

Value 	Parity 

00 	No parity checking.  

01 	Odd parity. 

10 	No parity checking,. 

11 	Even parity. 

2 	Number of stop bits. Set this hit to specify the number of 
bits that are sent after each character to indicate the end of 
that character. Possible vrilues are: 

Value 	Number of slap hits 

0 	One stop bit is used. 

1 	Two stop bits are used. 
1-0 	Character length. Because information is sent over a serial 

line one bit at a time, the processor must know how many bits 
are contained in each character. Set this two-bit field to one of 
the following binary values: 



• BIOS Interrupt 14H 
RS-232 Serial I/O 
Function Request 00H—Initialize Serial Port 

Value 	Character size 

10 	seven-bit characters 
(stan(Iard ASCII) 

11 	eight-hit characters 

DX Set this register to indicate the serial port. you want to initialize, as 
follows: 

0 	The first. (or only) serial port. 

1 	The st'cond serial port. 

Output: 
The seriv! communications port. is set up as directed. In addition, the fol.low-
in;; registers contain status information. This information is the same as that 
returned by function request 0,311 t(Cct Serial I'url t;tt.rtti). 

All - This register contains the encoded line status, as follows. The status 
information is true if t.(lt, currespondintr lit. i; set. 

I3it 	 I)esc:riptwn 

7 	Time-out error has occurr#~d. 

6 	Transfer shift register is empty. 

5 	Transfer holding register empty. 

4 	Break occurred. 

3 	Framing error occurred. 

2 	Parity error occurred. 

1 	Overrun error occurred. 

U 	Data is ready. 

0 



BIOS Interrupt 14H 
RS-232 Serial I/O 

Function Request 0011--Initialize Serial Port 

AL This register contains the encoded modern status, as follows. The 
status information is true if the corresponding bit is set. 

NUMMEN0D 
flit 	 Description 

7 	Received line signal detect (a carrier signal was detected). 

6 	Ring indicator was detected. 

5 	Data set is ready (1)SR). _ 

4 	Clear to send ICTS). 

3 	A change in the receive line signal detect (carrier signal) oc- 
curred. 

2 	Trailing edge ring detector. 

1 	A change in the data set ready (DS1{) signal occurred. 

0 	A change in the clear to send (CTS) signal occurred. 

See Also: 
Interrupt 1411, function request 0311—Get serial port. status. 



BIOS Interrupt 14H 
RS-232 Serial I/O 
Function Request 01H—Send One Character 

Interrupt: 
14H RS-232 serial I/O 

Function Request: 
0111 Send one character 

Computers: 
PC, PCjr, XT, Portable, and AT 

Description: 
This_function request sends a single character through the RS-232 serial port. 

Input: 
Before invoking this function request, you must set the following: 

AH This register must contain 01H to specify the Send One Character 
function request. 

AL Set this register to contain the ASCII code for the character you wish 
to send. 

DX Set this register to indicate the serial port to which you want to send 
the character, as follows: 

0 	The first (or only) serial port. 

1 	The second serial port. 

Output: 
Unless an error occurs, the character is sent to the serial port. 

Error Conditions: 
The following register indicates the success or failure of this function request: 

AI-I If this register is set to 0, no error has occurred. However, if bit 7 is 
set to 1, an error of some sort has occurred. The remaining bits are 
encoded to indicate the line status, as follows: 



BIOS Interrupt 14H 
RS-2092 Serial I/O 

Function Request 0111—Send One Character 

Bits 

1 7161 5 4 3 2 	1̂   0 

Bit 	 Description 

6 	Transfer shift register empty. 

5 	Transfer holding register empty. 

4 	Break-detect error. 

3 	Framing error. 

2 	Parity error. 

1 	Overrun error. 

0 	Data is ready. 

The errors reported in this register are a subset of the ones reported 
by function request 03I-I (Get Serial Port Status). The one error con-
dition that cannot be reported here is the time-out error, which is 
normally reported in hit 7. Funcion request 01I-I uses bit 7 as a gen-
eral error flag and therefore cannot use it to report a specific error. To 
ensure a complete error report, check only bit 7 of this register. If bit 
7 is set, invoke function request 0311 to get. the complete error status. 

See Also: 
Interrupt 14H, function request 031-1—Get serial port status. 



Iii BIOS Interrupt 14H 
RS-232 Serial I/O 
Function Request 02H—Receive One Character 

Interrupt: 
14I1 RS-232 serial I/O 

Function Request: 
02H Receive one character 

Computers: - 
PC, I'Cjr, Xi', Portable, and AT 

Description: 
This function request receives one character from the serial port. When the 
function request gains control, it waits until a character is available from the 
serial port, or until a time-out occurs. Therefore, if you don't want to be forced 
to wait, you should invoke function request 0311 (Get Serial Port Status) first 
to determine whether data is ready to be, received. 

Input: 
Before invoking this function request, you must set the following: 

AI-I This register must contain 0211 to specify the Receive One Character 
function request. 

DX Set this register to indicate the serial port from which you want to 
receive the character, as follows: 

0 	The first (or only) serial port. 

1 	The second serial port. 

Output: 
Unless an error occurs, the following register is set after control returns: 

AL This register contains the ASCII code for the character that was re-
ceived. 



BIOS Interrupt 14H 
RS-232 Serial I/O 

Function Request 02H—Receive One Character 

Error Conditions: 
The following register indicates the success or failure of this function request: 

AH If this register is set to 0, no error has occurred. However, if bit 7 is 
set to 1, an error of some sort has occurred. The remaining bits are 
encoded to indicate the line status, as follows:• 

©0©0©©010 
Bit 	 Description 

6 	Transfer shift register empty. 

5 	Transfer holding register empty. 

4 	Break-detect error. 

3 	Framing error. 

2 	Parity error. 

1 	Overrun error. 

0 	I)ata is ready. 

The errors reported in this register are a subset of the ones reported 
by function request 03I1 (Get Serial Port Status). The'one error con-
dition that cannot be reported here is the time-out error, which is 
normally reported in hit 7. Vu uctiori  request 0111 uses hit 7 as a gen-
eral error flag and therefore cannot use it to report a specific error. To 
ensure a complete error report, check only bit 7 of this register. If bit 
7 is set, invoke function request 031-1 to get the complete error status. 

See Also: 
Interrupt 14H, function request 031-I—Get serial port status, 



BIOS Interrupt 16H 
Keyboard I/O 

Interrupt: 
16H Keyboard I/O 

Description: 
'i'he 13IOS function requests invoked via this interrupt allow you to receive 
characters from the keyboard and check to see whether a keyboard entry has 
been made. With the BIOS function requests, as opposed to the DOS function 
requests that perform the same operations, you can skip some of the function 
processing that DOS performs automatically. For example, if a Ctrl-C is 
pressed, the DOS character-handling routines automatically assume that 
character to be a special signal; that is, to abort the program. However, the 
BIOS function requests make no assumptions about the characters they 
receive. 

You choose the function request you want by setting the AH register to the 
appropriate value and issuing an interrupt 16H. The function requests avail-
able via this interrupt are the following: 

AH 	 Function Request 

OOH Read next keyboard character. 

01H Determine whether character is available. 

02H Get current shift status. 

The next several pages describe these keyboard I/O function requests in 
detail. 



BIOS Interrupt 16H 
Keyboard I/O 
Function Request OOH—Read Next 
Keyboard Character 

Input: 
Before invoking this function request, you must set the following: 

All This register must contain 0011 to specify the Read Next KiAyboard 
function request. 

Output: . 
Control does not return until a character is typed at the key3oard. After con-
trol return', the following registers are set: 

AL This register contains the ASCII code ul' the key that was pressed. if 
the 1'ey does not correspond to one of the 256 ASCII characters,. this 
register will be set to 0. 

AH This register contains the extended code for the character. This will 
either be the keyboard scan code shown in Figure 5-1 or 5-2, or an 
extended code listed in 'fable ;i--2. 

See Also: 
Interrupt 16H, function request 01H—Deterrnine whether character is 
available. 
Interrupt 16H, function request 02H—Get current shift status. 



ID BIOS Interrupt 161-1 
Keyboard I/O 

Function Request OOH—Read Next 
- 	 Keyboard Character 

Interrupt: 
1611 Keyboard I/O 

Function Request: 
0011 Read next keyboard character 

Computers: 
PC, PCjr, XT, Portable, and AT 

Description: 
This function request reads a character typed at the keyboard. If the charaa-
ter has already been typed, and resides in the BIOS keyboard buffer, the 
character is returned immediately. Otherwise, this function request waits un-
til a character is typed. 

This function request return-, two pieces of inferruation about the character 
typed: its ASCII code and its extended code. The ASCII code is the standard 
code by which the character is known in many programming languages and 
computer systems. The extended code is the specific code that the BIOS uses 
to refer to an individual pressed key or key combination. 

Both the ASCII and extended codes are returned for a couple of reasons. First, 
not all the keys on the IBM keyboard correspond to ASCII characters. For 
those characters and for certain combinations of' characters and the Shift, 
Ctrl, or Alt key, the ASCII code is returned as a 0, and only the extended code 
serves to distinguish the character. Second, some of' the keys, such as the 
numeric keys, the shift keys, and the asterisk keys, are duplicated on the 
IBM keyboard. Their ASCII codes are the same, but their extended codes are 
different. By returning both the ASCII code and the extended code, you can 
tell exactly which key has been pressed. E'or example, you can differentiate 
between the numbers on the numeric keypad and the numbers on the top 
row. 

In most instances, the €Atendled code returned by this function request is the 
keyboard scan code of the primary key that was pressed. The keyboard scan 



BIOS Interrupt 16H 
Keyboard I/O 
Function Request 001—Read Next 
Keyboard Character 

codes are specific codes that the IBM keyboard sends in response to a pressed 
key. Keyboard scan codes apply only to the individual keys. There are no 
separate codes for uppercase (shifted) characters or characters entered while 
the Ctrl or Alt key is pressed. In most cases, to determine whether the Shift, 
Ctrl, or Alt key was pressed with another key, you must use function request 
0211 (Get Shift Status). 

Figures 5-1 and 5-2 show the keyboard scan codes for the two standard IBM 
keyboards. Figure 5-1 illustrates the keyboard used for the IBM PC, XT, and 
Portable. Figure 5--2 illustrates the AT keyboard. 

Figure 5-1. Keyboard Scan Codes for the IBM PC, XT, and Portable 

wN 1CN OW 	0}N 	~W. 	(a—» 	dN 	Uw 	or» 	oieN 	A 

oFN 	101
4 	1 NU.3..112- 

	,~N 	IsN 	ISN 	Iw 	IrN 	Iw 	IYN 	IAN 	lo» 1[1N XN ICN 	.1N 	M» .w 	.~N 

ra 
a LU- 	® El El LLJ ® El®® El D D E ~ 	ILJ E 	— 

41N .M 

47N 

El 
NN MN 	 ]OM 	 ]AN 

E1r1 r-- - 	I rri 
SI» 	 NN 

rii 

For some key combinations, where both a standard key and a shift key 
(either the Shift, Alt, or Ctrl key) are pressed at the same time, this function 
request returns an extended code that is different from the standard key-
board scan code. Table 5-2 lists those key combinations and extended codes. 

If your program is not willing to wait until a key is pressed, it' can invoke 
function request 01H (Determine Whether Character is Available) to deter-
mine whether a character is waiting to be received. 



BIOS Interrupt 16H 
Keyboard I/O 

Function Request OOH—Réad Next 
Keyboard Character 

Figure 5-2. Keyboard Scan Codes for the IBM AT 

ñ  E] E] El ff I El KI ff] KI E,  19110 [fl El E I El L-1 B H E,  @ 

	

J 	DDIIflJJ 

	

09 	El 19 El El In El El El 11 U1Ej El Q  09 in  
i rr - 	- ii flflLiJ * 

1 

Table 5-2 Extended Codes for Special Key Combinations 

Extended 	 Character 
Code 	 Combination 

03H Nul character. 
54H-5DH Shift plus Fl through F10. 
5EH-67H Ctrl plus Fl through F10. 
68H-71 H All plus Ft through F10. 
72H Ctrl plus PrtSc. 
73H Ctrl plus left arrow. 
74H Ctrl plus right arrow. 
75H Ctrl plus End. 
76H Ctrl plus PgDn. 
77H Ctrl plus Home. 
78H-83H Alt plus 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 
84H Ctrl plus PgUp. 



APPENDIX- F 

Sou*c( - GRAPH )c MANu*►~.. 



Main Features of GRAPH--X 

Graph-X can be used for plotting points drawing lines, cir-

cles, arcs and rectangles. It allows text writing. It allow to 

switch colour levels from dark to green. 

On Screen graphic facilities 

Following on screen graphic facilities are available: 

INT 10.COM 
	

-  extension to DOS for on screen 

graphics 

FOR 2 GRH, OBJ 
 

-  linkage to FORTRAN 

HCG. COM 
 

-  confugration file for graphi- 

ic card. 

Printing facilities 

Following print facilities are available 

HARCOPY. COM 	 -  extension to DOS for screen 

printing 

PRINTER. DEF  -  definition file for IBM 

or Epson dot matrix printer. 

Both INTIO.COM and HARCOPY. COM must be loaded before us- 

ing graphics. 

Coordinate system: 

Graphic screen may be considered as two dimension array with 

X being horizontal and Y--being vertical axis. The origin of the 

axis is the upper left corner. The addressable pixels are: 

X(horizontal) : 0 to 719 

Y(vertical) : 0 to 347 

Any part of figure outside the legal boundary is clipped 

at the edges. 



Any letter crossing the boundary is suppressed fully. 

Height of the pixel is 1.5 times more than to its width. 

To draw figures with same scales on both axises, vertical dimen-

sions are multiplied 2/3. 

Screen Colour Level 

Figures may be drawn green or black in any background, also 

the figure may be drawn in colour opposite to the background. 

The colour levels are : 

0  -  causes the figure to be drawn 

black 

1  -  causes the figure to be drawn 

green 

2  -  causes pixel to change colour 

it causes green figures on 

black colour and black figures 

on green background 

Repeated drawing of a figure with level 2 will cause it to 

blink. 

Text WritinL: 

Text is drawn 9 pixel wide and 14 pixel high. Background 

and the colour of the text depends on the- set level. The charac-

ter must be inputed in ASCII form. If the character are more they 

may be defined as double precision or character. 

Graphic pages: 

There are two independent pages in which graphic display 

is stored. Each graphic page is independent and requires 16 K 

memory. Both these pages can be used independently for display 



and writing. Caution has to be taken while using page 0. The first 

4K of page 0 is shared by text mode buffer. Any text mode opera-

tion will contaminate graphic page 0. The run time error are ec-

lipsed when the screen is in graphic mode. 

Using GRAPH-X with fortran: 

Few precaution are necessary for using GRAPH-X with FORTRAN. 

Each function or subroutine of GRAPH-X must be declared as 

EXTERNAL in the program. Variables should not be passed directly 

to GRAPH-X routine. Number must be assigned to a variable, which 

is then passed as an argument to the routine. 

GRAPH-X defined subroutine: 

GRAPH-X provide subroutine to set up graphics, draw figures 

and print hard copy. The subroutines defined by GRAPH-X are des-

cribed below : 

Subroutine ARC: 

This subroutine draws a quarter circle on the screen give 

the centre of the arc radius and the guardrant in which the arc 

is to be drawn: 

Calling sequence:  CALL ARC(X,Y,RADIUS,QUAD) 

Arguments: 

X,Y  =  Coordinates of Centre of the arc. 

RADIUS  =  Number of pixel between point X,Y 

and the arc in X-ax is 

QUAD  =  Number of quadrant in which arc 

is to be drawn. Numbers are from 1 

through 4 with first quadrant as 1 and 

increasing counter clockwise. 



Subroutine BLKFIL 

Given height, width and the lower left corner, this sub-

routine draws a solid rectangle. 

Calling sequence:  CALL BLKFIL(X,Y, WIDTH, HEIGHT) 

Arguments : 

X,Y  =  Coordinates of lower left corner 

WIDTH  =  width in pixels 

HEIGHT  =  height in pixels. 

Subroutine CIRC 

Given the centre and the radius the subroutine draws 

a circle 

Calling sequence:  CALL CIRC(X,Y, RADIUS) 

X,Y  =  coordinates of centre  point 

RADIUS  =  number of pixels between centre and cir- 

cumference on X-axis 

Subroutine CLSCR 

This subroutine clears the graphic page currently wri-

tten into : 

Calling sequence:  CALL CLRSCR 

Subroutine DISP 

This subroutine set the page to be displayed on the 

screen 

Calling sequence : CALL DISP(BUFPACE) 

Arguments : 
0 

BUFPAGE  =  or buffer page 
1 



Subroutine DLINE: 

This subroutine draws a line from current cursor position 

to specified cursor position. 

Calling sequence:  CALL DLINE (X,Y) 

Arguments  X,Y = coordinates of end position 

Subroutine FILL: 

This subroutine fills the area in a convexpolygon by 

reverse colour, given a point inside the polygon. 

Calling sequence:  CALL FILL(X,Y) 

Arguments: 

X,Y  =  Coordinates a of a point lying inside the 

corvex polygon. 

Subroutine PUTPUT arguments; 

This subroutine moves the imagiiary cursor to specified 

position on the screen may be used with DLINE subroutine. 

Calling sequence:  CALL PUTPUT(X,Y) 

Arguments: 

X,Y  =  Coordinates of the imaginary cursor 

Subroutine GETPT: 

This subroutine reads the intensity of a given pixel any 

where within legal coordinates. 

Calling sequence :  CALL GETPT(X,Y) INTENS) 

Arguments: 

X,Y  =  Coordinate of the point whose intensity 

is needed 

INTENS  =  Intensity value 

0 - Black 

1 - Green 



Subroutine GMODE 

This subroutine puts graphic card into graphic mode. It 

must be called before calling any graphic function or subroutine. 

Calling sequence 

CALL GMODE 

Subroutine GPAGE 

Subroutine determine the page to be written into 

Calling sequence : CALL GPAGE (BUFPAGE) 

Arguments: 

BUFPAGE = Buffer page 0 or 1 

Subroutine LEVEL 

Subroutines sets the level to be used by subsequent gra- 

phic function. 

Calling sequence . CALL LEVEL ( INTENS) 

Arguments: 

INTENS = 0 black 

1 Green 

2 XOR 

Subroutine PLOT 

Plots a given point on the screen depending on the colour 

level set. 

Calling sequence : CALL PLOT (X,Y) 

Arguments: 

X,Y  =  Coordinates of points to be plotted. 

Subroutine TMODE; 

This subroutine puts graphic card into normal text mode: 



Calling sequence : CALL TMODE 

Subroutine TEXTS: 

This subroutine writes array of characters at a desired 

point on screen character are written horizontally. Upto 4 charac-

ter may be accommodated in single precision, 8 characters in 

double precision and upto 132 in CHARACTER xn declaration. 

 

Calling sequence :  CALL TEXTP(X,Y,LEN, MSG) 

Arguments 

X,Y  =  Coordinate of first letter in the array. 

The coordinate is of lower left corner. 

LEN =  Length of character in text string 

MSG =  Array of character 

Subroutine HRDCPY 

This subroutine generates hard copy of the graphic page 

on the dot matrix printer. 

Calling sequence : CALL HRDCPY (OPT CHAR) 

Arguments : 

OPTCHAR  =  '1' Graphic page 0 

'2' Graphic page 1 

'3' Graphic page 0 reverse video 

'4' Graphic page 1, reverse video 

'5' graphic page 1 and page 0 

'6' Graphic page 0 and page 8 reverse video. 

Urt 


	Title 
	Synopsis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

