MICROCOMPUTER-BASED TWO LEVEL SUPERVISORY
CONTROL AND DATA ACQUISITION SYSTEM

A DISSERTATION

Submitted in partial fulfilment of the
requirements for the award of the degree
of
MASTER OF ENGINEERING
in

ELECTRICAL ENGINEERING o

Liruty

By
ANUPAMA SINGHAL
“‘::") I v Jé’;&.:._‘

. o5
Acc. No, 2'4 3 HG"‘ "‘.

H ‘; 0 ¥

Dleg Me_'L'S”S X &4

% (t«, 4«%;’
/,, f”/"‘

l‘f‘rryf(.«""

AR

DEPARTMENT OF ELECTRICAL ENGINEERING
UNIVERSITY OF ROORKEE
ROORKEE-247 667 INDIA
FEBRUARY, 1990

CANDIDATE'S DECLARATION

I hereby certify that the work presented in this disser-
tation entitled,' MICROCOMPUTER-BASED TWO LEVEL SUPERVISORY CON-
TROL AND DATA ACQUISITION SYSTEM" in partial fulfilment of the
requirements for the award of degree of '"MASTER OF ENGINEERING"
(ELECTRICAL) with specialization in '"MEASUREMENT AND INSTRUMEN-
TATION" submitted in the Department of Electrical Engineering,
University of Roorkee, Roorkee(India) is an authentic record of
my own work carried out during the period of July 1989 to Febru-
ary 1990, under the supervision of Dr. H.K. Verma, Professor,

Electrical Engineering Department, University of Roorkee, Rcorke=.
India.

The matter embodied in this dissertation has not submict-
ed by me for any other degree or diploma.

Dated: 26+n Feb; 1990 (Anupama Singhal)

This is to certify that the above statement made by the
candidate is correct to the best of my knowledge.

M —

Dated: 267k Fob ~,l990 ' Dr. H.K. VERMA

Professor

Electrical Engg. Deptt.
University of Roorkee
ROORKEE, U.P. INDIA

ACKNOWLEDGEMENT

The author considers it a pleasent duty to express her
heartiest appreciation and gratitude to Dr. H.K. VERMA, Professor,
Department of Electrical Engineering, University of Roorkee, Roor-
kee for his keen interest, invaluable and painstaking excellent

guidance, continuous calms and throughout advice during each and

evefyphase of present work.

I, owe, my sincere thanks to Dr. R.B., SAXENA, Professor
and Head, Department of Electrical Engineering for providing all

the facilities.

I also take the privilege of thanking Mr. G.R.Verma,
Mr.C.P. Kansal and Mr. S.D. Mishra who took keen interest and great

pleasure to enhance my enthusiasm for this dissertation.

I am again greatly thankful to Mr. M.K. Vasantha, Profe-
ssor in Electrical Engineering, Dr.J.D. Sharma, Professor in Elec-
trical Engineering who did their best to co-ordinate me in succ-

essful completion of this work.

I also sincerely thank my parents, my in~laws and my hus-
band Mr. Pankaj Agarwal, who constantly inspired me even though

from a distance, during this work.

M*’WW

Anupama Singhal

SYNOPSTIS

The industrial systems in which there are distinct units
of operation, often unattended and which require supervision from
a central facility, use supervisory control and data acquisition
(SCADA), where in control centre operators can monitor and con-
trol the devices at remote place. Functionally, SCADA cqnsists
in the acquisition of data from the controlled system, process-
ing the data, displaying the processed data'ata central computer
system and giving the commands to operate devices at remote pla-

ces from the control centre.

A review of the developments in remote control, telemetry
and supervisory control techniques since the World War II has
been carried out. trends in communication with respect to the im-
pact of the development of transistors, large automatic tracking
antennas, phase locked FM detector and teéhnologically superior

communication mediams, are also looked at. The use of computers

in SCADA is overviewed.

A two level SCADA system has been developed in this project.
For the hardware of the remote terminal unit (RTU) of this systenm,
Intel 8085 micro-processor based card cage micro-computer system
is used. With the help of different modules of the micro-computer
system, various facilities of SCADA on RTU side are achieved. Data
of analog and digital variables/quantities is acquired, integra-
tion of variables in the form of pulses is carried out and the

data is processed and relevant information is displayed on CRT.

viii)

Relevant information is sent to MCS also. Provision is made to

enable the operator to give control commands from keyboard.

The Master Control Station (MCS) is based on 80286 PC. It
acquires relevant information from RTU at intervals. System con-
figuration in the form of a mimic diagram is displayed along with
the real time information. Hard copy of this display and data can

be obtained on'printer. The MCS issues control command for RTUs.

The communication of information between RTU and MCS is
done via RS 232 C link using the standard three wire configura-
tion. A protocol for exchange of information between the two sta-
tions, is designed in a manner as could ensure minimum error dur-~

ing communication.

The entire software for the RTU is written in the assembly
langauge of 8085. The control and communication software for the
MCS has been developed in the assembly langauge of 8086 while

Fortran-77 has been used for writing the display software in the

MCS.

Suggestions are made at the end for further work on the

project.

CANDIDATE'S DECLARATION
ACKNOWLEDGEMENT

SYNOPSIS

CHAPTER-1
1.1
1.1.1
1.1.2
1.1.3
1.1.4

1.1.4.
1.1.4.2
1.1.4.

1.2
1.2.1
1.2.2

1.3

CHAPTER-2

2.1
2.2
2.3
2.4
2.4.,1
2.4.2
2.4.3
2.4.4
2.5
2.5.1
2.5.2
2.5.3

CONTENTS

Page

ii

iii-iv

INTRODUCTION | Al - 19
What is SCADA |

Remote Terminal Equipment

Communication System

Computer System (Control Centre)
SCADA Software

Data acquisition software
Supervisory control software
Man-machine interface software
Scope of Present Work-Objectives
Facilities in RTU

Facilities in MCS

Organisation of Dissertation

LITERATURE SURVEY 2-1 - 2-13

Early Conception

Later Manifestation

Example for Telecontrol of a Remote Plant
Trends in Communication
Transistorized circuits

Large automatic tracking antennas
Phase locked FM Discriminators
Communication Media

Computers in SCADA

Centralised computer control
Distributed Computer Control
Centralized or Decentralized

contd.

Contents(contd.) Page

2.6 Modern SCADA Systems using Distributed Com-
puter Control
2.6.1 Necessity of Computer Control
2.6.2 Heirarchical Control
2.6.3 Description
CHAPTER-3 REMOTE TERMINAL UNIT 3-1 - 3-19
3.1 Facilities Provided
3.2 Hardware
3.2.1 Hardware Description
3.2.2 + Use of the Data Acquired at RTU
3.3 Software
3.5.1 Data acquisition, Processing Software
3.3.2 Application Example Software
3.3.3 Display Software
3.3.4 Communication Software
3.3.5 Control Software
CHAPTER-4 MASTER CONTROL STATION 4=1 - 4-4
4.1 Facilities Provided
4.2 Hardware
4.3 Software of MCS
4.3.1 Communication Software
4.3.2 Control Software
4,3.3 Display Software
CHAPTER-5 COMMUNICATION 5-1 - 5-12
5.1 Communication Link
5.2 Communication Protocol
5.3 Data Structure
5.4 RTU Software for Communication
5.5 MCS Software for Communication

contd.

Contents(contd.) Page

CHAPTER-6 CONCLUSIONS AND SCOPE OF FURTHER WORK 6-1 - 6-3
Conclusions
6.2 Scope of Further Work
REFERENCES
APPENDICES:
A - REMOTE TERMINAL UNIT (RTU) SOFTWARE
B - MASTER CONTROL STATION (MCS) SOFTWARE
C - COMMUNICATION SOFTWARE
D - THE MODULAR MICRO COMPUTER SYSTEM TYPE

EP-131
DOS INTERRUPTS
F - GRAPHIC SOFTWARE PACKAGE (GRAPH-X)

m

1.1 WHAT IS SCADA

SCADA stands for supervisory control and data acquisition
system. Supervisory control consists of telemetry and telecontrol.
Telemetry implies measuring a quantity or quantities from a pri-
mary sensor, transmitting the results to a distant station, and
then there interpreting, indicating aqd/or recording the quanti-
ties measured[1]. Remote control includes any system of control
which requires a definite communication system to contrdl action
at a distance from the control point. The essence of the systems
is that some part of the system must be located at a remote loca-
tion., Interest in the remote location in most cases stems from
the need to avoid a hostile environment, at the same time accom-
plishing the necessary measurement or control. Examples are air-
craft test flights, missile remote control, nuclear reaction test,

space-satellite monitoring, power plant monitoring, etc.

SCADA systems are typically found in industries where there
are distant units of operation, often unattended, that require
supervision from a control facility [2]. The main components of

SCADA are

Remote terminal equipment
. Communication system

Computer system

5w N -

SCADA software

1.1.1 Remote Terminal Equipment

The data is captured from the field by suitable transducers
and special equipment and consolidated at .remote stations in a
microprocessor based terminal equipment (called as remote termi-
"~ nal unit or RTU)[2]. The RTU's at various stations send the data
to the control centre under computer control via data communiéa-

tion links. Typically the RTUs perform the following functions:

1. Support communication line protocol and message formats

2. Maintain a local data base of the current state of field
data.

3. Receive and analyse requests from the control centre

4. Execute control functions

The RTU works as telemetry and telecontrol equipment. It
acquires, moﬁitors and controls various parameters(generator vol-
tage, bus voltage, generator power, CB condition etc.). It scans
its inputs at predetermined intervals, compares the readings with
previously stored data, thus enabling detection of any change of
state and alarms[3]. This information is kept ready by RTU for

onward transmission to the control centre when called for.

1.1.2 Communication system

It provides a path for data and control signals between RTU's
and the computer system at the control centre{2]. Quite often
existing communication links between stations and the control4
centre are used for data communication purposes in SCADA applica-

tions. The data communication media could be

1-2.

1. Voice-grade line

2. Power line carrier link
3. VHF link

4. Microwave/UHF link

5. Fibre optic link

6. Satellite link

A communication link may be a combination of one or more
types with suitable interfaces. RTUs are connected via MODEMS to
the communication systems.However,if the RTUs are in close proxi-
mity to the master control station, data is transmitted to the
host computer in digital form using RS-232C links format and em-

ploying MODEMS or line drivers if necessary.

The security of the transmitted data distinguishes a SCADA
system from normal data acquisition systems[3]. This security

includes multiple data transmission, encryptions for coding the
data, bit data techniques to assume correct messages and software

for generating statistics on the number and types of errors.

Reliability of transmission and flexibility in communica-
tion are high priority items in SCADA systems[3]. The communica-
tion control modulegs that poll the RTUs arnd concentrate. data for
transmission to the host can handle more than one communication

protocol to communicate with various systems.

Accuracy of data depends more on the sensors than the SCADA
system. However, as accuracy demands increase, they will have an

effect on transmission systems [3].

1-3

1.1.3 Computer System(Control Centre)

The computer at the control centre is responsible for gath-
ering the data from the RTUs using pre-defined protocols. The
following two types of protocols are used for acquisition of da-

ta [2].

1. - Polling

2. Interrupt

In the polling protocol, the computer and RTUs follow the
master/slave pattern where RTU sends data only on request from
the master [2}. In the interrupt protocol the RTU sends data as
soon as it is ready and this is treated as an interrupt by the

control centre computer which processes it immediately.

Various configurations of the control centre computer are
possible [2]. Earlier systems had a single computer to perform
all functions. A modern trend has been to incorporate a front-

end system to carry out the task of data acquisition.

Fig.1.1 shows a configuration overview of the computer sys-
tem for a typical SCADA application [2]. The system reliability
is enhanced by providing two super micro computers, the on-line
system dedicated to the supervisory control of the remotes where-
as off-line system used as cold standby or for the purpose of
operator training [4]. It has been found necessary to provide
such computers in order to maintain a reasonable scan time and

yet provide for the large amount of data processing. Moreover

1-4

S3NIT

e e -

¥
t

NOILVIINNWIWOD }

t

§
t
!

¥3140D 03aiA _?

"SOW 398V V IV W3ILSAS H¥3ILNdWOD L-1791d

(17v8 NOVHL I3NVd HONOL

¥31107d

\

‘gyvo8 A3 ‘182 ¥3Nn0102

3710SN0D SY01VHdO

QXTI I LTI X YD

/

b4

aN3 INOY J

nLy

NOllvlS

A,

L/.‘HIIIIL ﬂv AN

t
anN3 LNOYd

YILINING

Sdvi

370SNQOJ
Y¥31NdWOI

z

YNIT Q33dS H9H

t

NIVW

39VH0LS NIVW

Censigy

¥31NdAWO0D
NIV

I

Y3LNINd

Sdvl

wm._omzouw

3J9VA01LS
NIVN

the demand on processor time for task scheduling in a system such
as this makes the choice of such large computers an unavoidable

necessity.

The health of the on-line and off-line system is continuous-
ly monitored through Watchdogs and in case of on-line system fai-

lure a manual change over is done to standby system[4].

The Master Controller supports two operator workstations for
controlling predefined and physically demarcated section of the
OHE. Each work station is provided with two colour VDUs, one on-
line and one standby and a keyboard containing functional and al-
phanumeric keys [4]. One of the VDUs can be configured as an op-
erator console to view alarms, graphs etc. whereas the other can
be configured as an engineer console from which commands can be
given to the remote controllers. Various alarm, status, log and
database displays and graphs, histograms, and trend curves are

possible on master controller.

The Master Controller supports two printers which can be us-
ed to log alarm data and other either on demand or on event tri-

gger (4],

A mimic diagramboard can be connected through suitable inter-
face to the Master. This MDB provides a visual indication of the
state of the equipment at the various stations.[4]. The dual front-
end computers perform the functions of data acquisition[2]. The
'active' front-end carries out data acquisition from RTU and the
other one (called 'standby') waits for the failure of 'active' com-

puter to take over immediately.

1-5

1.1.4 SCADA Software

SCADA software can be classified as

1. Data acquisition software
2. Supervisory control software
3. Man-machine interface software

1.1.4.1 Data acquisition software:

It supports data exchange between RTUs and computer systems
at the control centre, generates the necessary commands for infor-
mation required, performs error checking to ensure the validity
of the data, proper completion of scan requests, and updates and
maintains the data base [2]. It also provides support for the su-
pervisory control functions by transmitting commands and perform-

ing error checks.

The data acquisition software allows for multiple cyclic
scans(for obtaining data), each having assigned priority and in-
terval between scans [2]. For each such scan, the software formats
the appropriate data request, transmits the request and checks
the return transmission for errors. All valid received data is
then subjected to processing according to the data type. The re-
ceived and any associated calculated data are then entered into
the data base. Typical processing requirements are primarily ori-

ented to detection and treatment of alarm conditions.

1.1.4.2. Supervisory control software:

This software is primarily responsible for the formatting

of the control messages, transmission of the messages and valida-

1-6-

tion of the check back responses according to the defined message

protocol [2].
1.1.4.3 Man-machine interface software:

The software provides the following capabilities [2[

1. CRT Displays : Typically, the following picture types may be

supported:
- Tabular data displays

- Trend ~ graphs of variables with time

- Bar charts

- Data entry forms

- Menus for selection of CRT pictures, data logs, and initia-
tion of application programs.

2. Wall diagrams/strip chart recorders and other special analog

and digital displays.

These are output devices only [1].

1.2 SCOPE OF PRESENT WORK - OBJECTIVES

Trends in SCADA system are studied. Some typical systems made
by world class manufacturers are reviewed and compared. Important
application of SCADA systems in India are also identified. On the
basis of the state-of-art information " A MICRO COMPUTER BASED TWO
LEVEL SCADA SYSTEM" of general purpose type has béen developed.
In this general purpose type system B0286- based PC is used for
the master control station and 8085 based micro computer system
for RTU (Remote Terminal Unit). Following facilities are provided

in the MCS and RTU.

1-7

1.2.1 Facilities in RTU:

Data Acquisition:

Raw analog and digital data is acquired from the real world.
Analog data 1is acquired with thehelp of an ADC unit and digital
data with the help of digital I/O subsystem.

Data Display:

After acquiring and processing the analog and digital data
it is displayed on CRT screen. The data is displayed in table for-
mat. Linking of CRT with 8085 is done serially with the RS232C link
and all the communication between micro-computer & CRT is in serial

form with a baud rate of 2400.

Control Functions:

A facility to control some analog variables by PID controll-
er is provided. Some control commands can also be given by the op-
eration through keyboard. Through one interrupt of 8259 (progra-
mmable interrupt controller) a start command is given for the pl-
ants. Through a second interrupt of 8259 a start command is given
for the switching devices. One interrupt serves to switch off a
failing switching device. This interrupt comes from the protection

units of the switching devices.

1.2.2 Facilities in MCS:
The MCS has these following general purpose facilities:
1) It displays on PC monitor the information received from each

RTU alongwith the mimic diagram of the controlled system. Data

received from the various RTUs are displayed in sequence.

1-8

2) It gives all the control commands to the RTU including the
reference values for the PID controllers.

3) It has a PID controller of its own.

Communication between RTU & MCS is serial via RS232C link
using a USART (Universal synchronous & asynchronous receiver
transmitter) at either end. Protocol is designed to ensure flaw-

less transmission of data and repeating the message in case an

error is detected by the receiver.

1.3 ORGANISATION OF DISSERTATION:

Followed by this introduction, a literature survey on the
subject will be presented in the second chapter. The third chap-
ter presents the details of the RTU, including the facilities pro-
vided, the hardware used, the software and the display of infor-
mation on CRT. The fourth chapter discusses similarly the details
of the MCS. Fifth chapter deals with the communication between RTU
and MCS. Sixth and last chapter summarises the total work and

brings forth the scope of further work.

1-9

In this chapter, the trends in remote control, telemetry and
supervisory control since the World War II are reviewed. Trends
in communication, with respect to the impact of the development

of transistor, large automatic tracking antennas, phase-I locked

FM detector and technologically superior communication mediams,
are also looked at. Finally the use of computers in SCADA is over-
viewed. Some interesting and representative examples are also pre-

sented to highlight some important advancements.

2.1 EARLY CONCEPTION

An early conception of remote control was the bridge tele-
graph system between a ship bridge and engine room [5]. This sys-
tem required human intervention to read signals and to activate
the hecessary éontrol valves. Later, in the process plant control,
these were actuated remotely. Telemetered data were used to esta-

blish the need for valve control and the extent of control.

2.2 LATER MANIFESTATION

The development of remote control has been principally cen-
tered around the drove and missile programs of the armed forces,
that began during World War II1[5]. Early droves were piloted air
craft with the pilots removed and autopilots with remote radio con-
trol substituted. During test phases a pilot was usually carried

to perform take offs and landings and to observe the results and

deficiencies of the control equipment. Whenthe drove was used as
a weapon the pilot was removed and the equipment functioned both
automatically and by remote control. It soon became apparent that
these missiles could be made smaller, of higher performance, and

more economically if in their initial design no provision was made

for a pilot.

One of the early missiles of pilotleés design was designated
as IB-2. Remote-control equipment from the drone programs was ad-
apted to the IB-2 [6]. Telemetry was developed to measure the per-
formance of the control equipment and the missile. In this evolu-
tion it is apparent that remote control equipment preceded tele-
metry by some years, but it was an "on-off'" system rather than one
permitting a continuous control. Furthermore, remote control was
an intermittent function in as much as the vehicles were stabilized
by internal automation equipment. Telemetry, on the other hand,
reqﬁired proportional and linear transmission of measurements on
a continuous basis consequently, remote control systems were 'ad-

opted" in concept only and development of telemetering-equipment

proceeded independently.

Another forerunner was telemetry and supervisory control in

electric and gas utility transmission and distribution systems([6].

The public-utility measurements were made slowly, requiring
only a very narrow band of frequencies for intelligence. With wire
connections, there were no problems of radio fading, and many of
the systems could be used only with continuous links between trans-

mitter and receiver. Fades such as were normally occuring in

2-2-

radio systems would render the data valueless. Transducers were
large and weighty, made for durability and easy servicing. They
were not considered expendable-and were chosen largely with a view

toward long life and reliability; their response was slow.

Instead of techniques being borrowed from the utility field,
the reverse trend has now appeared and utility telemetering has

borrawed from the techniques of radio telemetering developed for

missile testing.

2.3 EXAMPLE FOR TELECONTROL OF A REMOTE PLANT

A characteristic example for telecontrol of associated re-
mote plant is the telecontrol of dam installations in hydro power
stations which draw their driving water from a distant dam through
a canal or a tunnel [7]. To use the water influx as effectively
as possible, the control and supervision of the dam installation
must be carried out from the power station control room. An early
installation (year 1956) of great technical significance is the
Runserau dam installation of the IMST power station in the Tyrol,
Austria. The Runserau Dam installation of the Imst power station
on the river Inn in the Tyrol was linked with the power station
by a tunnel approximately 12.5 km long, which cuts off the bend
of the river Inn at Landeek. The dam installation consisted of
- three sluice gate assemblies. It was manned by only one attendent
who had the sole task of maintaining the mechanical equipment. The

dam installation was remotely controlled from the power station.

2-3-

However, since this could only be traversed during inspec-
tion periods, there would have been the fear that a possible break-
down in the cable could not be repaired for months or could re-
quire the emptying of the tunnel thus increasing the time of an
operational failure [7]. The cost of the cable and its laying would
have amounted to at least & 10000, whereas renting costs for the
27 km long telephone link with two superimposed audio frequency
channels amounted to about ¥ 3000 in ten years. The cost for the

cable would thus be more than three times as large as this amount.

As the transmission method for both the commands for contro-
lling the sluice gates, as well as for the signals from the dam
installation, including the position values of the sluice gates
and two water-level quantities, the pulse telegram method was cho-
sen. The pulse telegram apparatus worked in both transmission di-
rections each over an a.m. audio transmission channel on duplex
traffic [7]. (Semi duplex equipment could not be used, so that the
commands, especially the stop command, could be transmitted at any
time even during the transmission of messagés). The pulse telegranm
were transmitted in rest current operation over the audio trans-
mission channels. An emergency stop command was superimposed on
the command channel, if the command signal is not received for
longer than about 0.5s in the dam installation, sluice gates which
happen to be in motion are brought automatically to a halt. This
ensures that the sluice gates, during a failure of the transmi-
ssion line and audio transmission apparatus or after a breakdown
in the pulse telegram equipment, cannot move further into an unde-

sired position. (This is one of the most important safety require-

2-4.

ments in the tele-control of dam installations). The telecontrol

installation went into operation in 1956.

If it had been designed according to the state of telecon-

trol engineering at the time, the following major difference would

be then:
1) FM audio transmission channels would probably be used.
2) In place of control by means of high, low and stop commands,

servo control would be considered today.

2.4 TRENDS IN COMMUNICATION

The 50's saw the pulse telegram method as the transmission
method for commands and messages [6]. The pulse telegram apparatus

worked in both transmission directions each over an a.m. audio
transmission channel on duplex traffic. The pulse telegrams were

transmitted in rest current operation.

In the late 60's, electronic pulse methods with PCM or PDCM
transmission were being used. FM audio transmission channels also

came into use. Some major developments in the area of communica-

tion are reviewed below :

2.4.1 Transistorized Circuits:

The development of the transistor, and'particﬁlarly the sili-
con transistor, has been very significant, especially to missile
control [6]. It has permitted the reduction of size, weight, and
power requirements - éhree factors which are of vital importance

to missile operations. The replacement of the vacuum tube has been

2-5-

a gradual process, however, sincestable operation over a wide
range of temperature is more difficult with transistors. High fre-

quency operation is just being achieved.

Other solid-state components were developed which can be used
at micro-wave frequencies between 3 GHz to 10 GHz. These include
the tunnel (Esaki) diode and the varactor. The former can be used
as oscillator, switch, or r-f amplifiers and the later as switch
or frequency multipliers. Microwave components based on travell-
ing wave amplification have been developed with sufficient compact-

ness and ruggedness for operation upto 10 GHz.
2.4.2 Large Automatic Tracking Antennas:

The development of large immovable parabolic reflecting an-
tennas was largely accompliéhed under studies of forward-scatter
propagation and the antennas were later adopted to telemetry use.
[6]. The high gain of the large reflectors dictates that the beanm
width be relatively narrow and, therefore, tracking difficulties

"are presented in missile and satellite operations. It waé not un-
til the automatic tracking feature was added to the forward-scatter
propogation antenna that it became practical for telemetering

from guided missiles. Basically, there is a 10-db improvement in
reception over previous techniques. This has made continuous data
reception possible where otherwise there were losses due to fading.
On the other hand, for the same performance characteristics, the

missile transmitter power may be reduced by a factor of 10.

2-6

2.4,3 Phase-locked FM Discriminators:

Another improvement in telemétry receiving techniques has
been the phase-locked frequency modulation (FM) discriminator, or
detector[6]. The phase locked principle is one in which the fre-
quency of a local oscillator is varied to correspond with the in-
coming frequency. This makes it possible to transmit.the resulting
beat frequency through a filter of narrow bandwidth. The local
beat fréquency oscillator is voltage controlled, the control vol-
tage being the demodulated signal. The detector is a phase detec-
tor or multiplier instead of the conventional heterodyne detector.
In a typical design, this technique added another 6-db of improve-
ment to telemetry receiving stations, and this improvement increa-
sed to 15 db when the phase locked principle was also applied to

the higher subcarriers [5]. N
2.4.4 Communication Media:

SCADA system's functioning is totally dependent on the comm-
unication system for transmitting voice, data and signal [8]. Power
line carrier communication happens to be the most common form from
earlier time and this is supplemented by switched telephone, radio
communication and dedicated lines (Hot line despatcher-telephone
system). Fibre optics is now becoming more popular communication

medium due to technological superiority.

capabilities in the same mainframe. So these mainframe computer

were superceded by minicomputers.

¢
The mini computers were effectively superceded by the large cen-
tralised computer system for process control tasks in the early

1970's. They were developed to satisfy the requirements of DDC[9].

The large models of mini-computers, in fact, form the basis
for néarly all supervisory control installations at present. How-
ever, for the smaller installations they have been superceded by

the microprocessor.
2.5.2 Distributed Computer Control:

Withthe emergence of microprocessor and micro-computers an

argument quickly developed in favourof distributed control.

As the control processes are often distributed over a wide
area, it is natural that the computing power required to manage
the plant is also distributed and concentrated where most work is
required, to limit the data flow and achieve greater independence
in case of failure of parts of the plant [9]. A general rule is
that the structure of the control system should match the struc-
ture of the plant it controls. A process control system today is
distributed among computing system whether or not it is portrayed

in that way. Only the small data acquisition stations exhibit a

concentrated structure.

2.5.3 Centralized or Decentralized:

A centralized system can respond faster, requires less inter-

2 -9-

action and the operator can control it better [9]. A decentralized
system requires more local intelligence and imposes a communica-
tion overhead, but is less sensitive to pa}tial outages and can
be more easily tested and expanded. In fact the choice is quanti-
tative, how much should be decentrdlized and how much to be cen-

tralized.

2. 6 MODERN SCADA SYSTEMS USING DISTRIBUTED COMPUTER CONTROL

Thé advent of computefised process control and distributed
control systems has enabled revolutionising the control of chemi-
cal and other industrious process, from simple parametric control
to one of object and goal-oriented control system, leading to eco-
nomic optimisation of the process. Petroleum refineries world-over
have done pioneering work in fuller utilisation of the power of
distributed control systems since the location of these refineries
are geographicaliy distributed. These systems mainly help in push-
ing the operating units to its maximum level of output, while keep-

ing track of the dynamic constraints that exist in any given point

of time.
2.6 .1 Necessity of Computer Control:

The fundamental aim of process control is to keep a process
value as close to a desired value, for as much time as possible.
The proper solution of these desired process variable value depend
on various factors such as through put, better product yields, con-
sistent product qualities and demand of the products. While the

conventional controls using either pneumatic or electronic instru-

2-10-

mentation do a fairly good job in maintaining the individual pro-
cess values to the desired value, they grossly fail to take care
of the several interactions that exists between various variables
and to that extent the control performance becomes inferior.
Further there are unnumerable process values which are not direct-
ly measured, but are only calculated based on input of several
vafiables. The conventional controls provide no answer to control
them. Thirdly, the proper‘solution desired process values which
is the main controlling factor is achieving the set objectives
of the plant, ére purely left to the operator's judgement. With
the introduction of distributed control system with its supervi—'
sory computers answers to these problemsahave become possible.

Computer control have come to state, in solving many of the vagg-

ing problems in the management and control of complex process in-

dustries and help to increase productivity.

The whole technology of computer control is built on the
bottom-up control levels approach, which ensures certain level
of controllability even when the higher level layer fails. This
is very important aspect, without which the whole control systen

will fail like a pack of cards when failure occurs in one level.

2.6.2 Heirarchical control:

In large systems, the control is provided in four heirarchi-

cal levels. Functions incorporated at each level are as follows:

2-11

LEVEL-0:

Control of basic parameter using PID type regulating con-
trol.
LEVEL-1:

Dynamic computer control using certain advanced control
techniques such as fuel forward control, adaptive gain control,
calculation variable control etc.

LEVEL~2:
Optimisation of set points with minimisation/maximisation

of suitably defined objective functionwhile ensuring quality and
quantity of produbtion.

LEVEL-3:
Time and space scheduling of production using techniques

of operation research.

Fig.2.1 shows the general heirarchical structure of compu-

ter control.

2.6.3 Description:

LEVEL-0: aims at identifying basic regulatory controls like con-
ventional flow, temperature, pressure and level controls. Proper
pairing of variables are considered and basic loops are tuned

scientifically based on process responses.

LEVEL 1 : is built over level-0, uses certain advanced control
techniques. This is based on the stability and variability of the
desired control. If interactions from other variables contribute

substantially, it may be required to feed forward the effects of

2-12-

CORPORATE PLAN

CONTROLLED SYSTEM PLAN

STEADY STATE CONTROL

LEVEL-3 ON LINE UNIT OPTIMIZATION FUNCR'ONS
y
LEVEL- 2 CONSTRAINT CONROLS DYNAMIC CONTROL
FUNCTIONS
LEVEL -1 ADVANCED REGULATORY CONTROLS
r
LEVEL -0 REGULATORY CONTROLS
' PROGESS
FIG. 21 CONTOL SYSTEM HIERACHY

these variables to control the desired variables. There may be
instances where the desired variables to be controlled may not
be a variable, which is directly measured. But it is controlled
through other measured variables. In order to stabilise them, cal-
culated or inferential controls are used. For example in a Dis-
tillation column, the desired controlled variable is the end
point of the side draws. The variation in this affects the product
quality. The variable which is controlled is the side draw pro-
duct flows, which may not yield the desired stability in the end
point. In such cases, advanced controls are used in which the
calculated end points are the controlled variables and set point
to the basic flow controllers are calculated to achieve the de-

sired end point.

LEVEL-2 : constraint control is an important and easy computer
control tool for optimisation of yield in many of the process
applications. Thus constraint controls fit into LEVEL-2 in the

hierarchy of computer controls.

In addition to constraint controls, LEVEL=-2 controls also
uses various optimisation techniques. This-.requires building up
mathematical models of the problem and to derive optimum set points
for critical variables using optimisation algorithms like linear
programming, or generalised reduced gradient algorithm whenever

non-linear optimisation is required.

LEVEL-3 : refers to problems of optimisation of whole process.
Generally, optimisation should consider steady-state of the pro-

cess rather than the dynamics which are handled by advanced control.

2-13-

_ CHAPTER-3
REMOTE TERMINAL UNIT

This chapter discusses the details of the RTU of our systen.
Intel 8085 micro processor b;sed card cage micro-computer system
is used for hardware of RTU. With the help of different modules
of the micro computer system, various facilities of SCADA on RTU
side are achieved. All the facilities available in our éystem are
given in detail along with an example for each facility. The hard-
ware & software to achieve these facilities are described. Fi-
nally, detailed description on how the data or information is dis-

played on CRT is given.
3.1 FACILITIES PROVIDED
The following facilities are provided in the present system.

1. PID Control : PID control is used to control 4 analog vari-

able.
2, l6bstatus inputs from switching devices
3. 16-status outputs for switching devices
4. l6-Analog inputs
5. Display : Out of 16 analog variable 4 analog variable are
sampled at a rate of 1.25 ms and after the colleétioﬁ of every
16 samples their RMS values are calculated and displayed on CRT.
Next 8 analog variables are sampled at a rate of 20 ms and after
collection of every 50 samples, their average, minimum and maxi-

mum values are calculated. These values are displayed on the CRT

3-1

after every second. The last 4 analog variables are controlled
by PID controller and there are also sampled at a rate of 20 ms.
Reference and actual (instantaneous) values are displayed on the

CRT repeatedly at an interval of 1 sec.

6. Monitoring : Maximum and minimum value of 8 analog variables
are monitored and compared by their higher and lower limits stor-
ed in memory. In case of any variable exceeds its limit, one bit
corresponding to the variable number is set in memory and an

alarm is also given to indicate the fault, -

/. Integration : Two variables are integrated by taking running

sum of pulses representing the variable.

8. Control Command from Keyboard : Some of the operator control

commands can be given by key board. The programs to achieve this
is described under control software in software section.

-

9. Control Commands : Following two control command can be gi-

ven by operator:

i) STOP SWITCHING DEVICE

ii) STOP PLANT

The functional block diagram of RTU is shown in Fig.3.1.(a).

With the help of this system the above facilities are achieved.

3-2.

Niyd 40 WvHOVIQ ¥D018 TIVNOILONNA (p)L-€ OId

9 € T

[[1]

1Ndin0 90TTVNV

1g 8
mAlllnlll — Iv
IIZ 2| Lndino IVLINIC K=
za— v e —————2
| —— %“l\l NOILVYI93LNI
i
8 ————
 ZS==31 LNdNI VLI9I0 >
{ ——
W3L1SAS
¥31NdWOD
a3sve . st
“ d1r s8os ————
10dNI - —-——
(="' 901YNV |m— — — -
, svguzane | 1 o= —
¥o1vy3do < kE——————> e ~ 0 Ly e
f INIHOVHW NV DUNE———
e |

3.2 HARDWARE
3.2.1 Hardware Description:

The hardware of RTU is shown in Fig.3.1(b). Sixteen analog in-
puts are multiplexed through one Analog to digital convertors (ADC-
573). Each ADC 573 is 'a 10-bit ADC.4 of these inputs are controll-
ed by a software PID controller and the controlled outputs are fed
to digital to analog controller (DAC 0800). 16 digital inputs are
fed through 8255 (programmable peripheral interface) to the 8085
pp. To control 8 switching devices, control commands are given via
a port of 8255, Similarly the control 8 plants 8 control commands

are given by 8255.

A programmable timer of IC 8253 is made to generate a periodic
interrupts at every 1.25 msec. Two counters of IC 8253 are used to

count the pulses from integral device.

4 control commands can be giveh via the 4 interrupts of 8259
(Programmable interrupt controller). Each interrupt of 8259 is a
logical OR of 8 interrupts from different devices. To identify the
interrupting device, the ports of 8255 are polled. The processed
data is displayed on CRT, which is interfaced serially to 8085 yup
through USART (Universal synchronous.asynchronous receiver trans-
mitter IC 8251). The communication between the RTU up and the Master

Control Station (MCS) also takes place via 8251,

‘The keyboard is interfaced to the pp via IC 8279 (key board in-

terrupt controller).

3-3

N'L'd 40 OJILVW3HOS 3YVMAYVH (9) I-€ OId

sindLno Iv1isig SiNdNt V1910

9L ¢
z2-ssz8 |D LN¥Od|8 1¥0d v L¥80d|D 1¥0d
1§31 N 2 sces { ssz8
ommﬁ f
|
6528 _ L
(T F . . [imooso oval— % siadino
HL _: W 9 1¥0d = = 1(1)0080 OVQ }——w SO0TVNY
= > v 1¥0d : 3 '
1-5528
‘ . |(2)0080 OVa—> $1081n0
S321A30 . > (1)0080 OVQ }— & 907VNV
ONIHI1IMS ¥Od gyvosa L
, 6L28 >
AN
SINVId O3 : | eotsavTE
XOW | _
W3LSAS anNo 3
NOILD310¥8d/ 108 LNOD AVNINY3L 28 4
WOo¥d STIVNOIS Ly2 axy ¢ T - €4S _ 1NdNt
axiL ¥0SS300ud OQMIIW [Sav H/S) 501YNY
Z INdNI TV¥9ILNI— IR = > 5'9 s808 K= ! gocsavl™s e
L LOGNI IVY¥O3ILNI— EE iSY XOW !
ZHW § | ——e o9 b— T A t
€528 tsz8
anso|axy| axi
Woud3 WY Saam—
: ' tsz8 '
. : AN :
WOoO0Y 101N03J ! d :
' [
' :
: N

CLRCUIT BREAKER STATUS

G N L
" | CBL ON CBS OFF
:T1 wle 13 (B2 ON CB1® OFF
651 301 ss1 42 §s2__ <3 CB3 ON CB11 ON
- -}-_*

CB5 ON CB13 ON
CB6 ON CB14 ON

| (87 ON CBIS ON
| (B8 O

|
i

ih ¥(7 108 49 1184011 Ch4 ON (B1Z2 ON
|
!
!

| o BUS UOLTAGE(KY)
1015 +014 0134012 681 132
(4 om0 682 132
G52 833
W ATe 415 881 132
ey b 82 132
L6 §83 1327

VOLTARGE(XV) POWERCHMW) HAX TEMPC Q)
REF I¥STR REF INSTA BEARING WINDING
GENT 11 8.8 6@ 181 g0 &8
GENZ 15 18.2 208 198 85 65

DIS. VOLTAGE(KV)
81 3
S8z 1
883 1

Temporary storage of program and intermediate data are stored

in a RAM area of addresses BOOU- BFFFw . RAM address area is
‘ ko DFFER.

‘ .
also between 4000H to AFFF COO0, IC 6264 (RAM) chips are used and IC

2716 (ROM) chips are used in RAM and ROM cards respectively.
3.2.2 Use of the Data Acquired at RTU :

We have assumed that our RTU is for the (generating station-
1) (GSA) of Fig.3.2. The Fig.3.2 is example of a power system
genérating and distributing network.

Following variables are sensed at this generating station.

a) Generator Voltage:

Generator is generating power at a certain voltage and that
voltage should remain constant at a value, so that voltage is sen-
sed and controlled by PID controller. The reference of the vol-

tage is set by Master Station or by operator.

b) Generator Power

How much power is generated by generator is sensed and it is
again a controlled variable. The generator power is again contro-
lled by a PID controller whose reference value is given by Master

station or operator.

The two controlled variables are sampled at a rate of 20 ms.

¢) Bus voltage:

The bus voltage after the transformation of the generator

5-4-

voltage is sensed. This parameter is a uncontrolled parameters
which is sampled at a rate of 1.25 ms and after one cycle its rms
and average values are calculated. The rms value of this variable

is sensed and given to master station.

d) Bearing Temperature :

The temperature of bearing is sensed at O rate of 20 ms and
after every 1 sec i.e. after collection of 50 samples its maximum
temperature is seen and sent to master station. The maximum tem-
perature is also checked up by its higher limit, If it is exceed-

ing its higher limit operator can give a command to stop the plant.

e) Winding Temperature

The temperature of winding is sensed at a rate of 20 ms and
after every 1 sec i.e. after collection of 50 samples its maxi-
mum temperature is also checked up by its higher'limit. If it

is exceeding its higher limit operator can give a command to stop

the plant.

f) Positions of CB1l, CB6, CB/ are sensed. These inputs are the

digital input in form of 3 bits. If bit is set implies that CB

is closed (ON) else OFF.

g) Energy generated by generator is also sensed by pulsed input

and that can be read by master by giving command.

3.3 SOFTWARE

Software for RTU is divided into several subsection accord-

ing to the use of software.

3.3.1 Data Acquisition, Processing Software:

a) Input Analog Value:

This routine inputs the analog variable for the specified
channel. In this routine channel number is latched and then a de-
lay of 20 ps is called, so that conversion (Analog to Digital)
is over by Analog to Digital Convertor (ADC). Then higher and
lower bytes of digital .O/P is read. The lower byte contains use-
ful information only in two L.S.Bs, so the higher 6 bits are mask-
ed. The lower 6 bits of higher byte are shifted to the higher 6
bits of lower byte and bit 6 and 7 of higher byte are shifted to
bit 0 and bit 1. So the 10 bit of result are placed properly in

the memory. Flow chart is shown in Fig.3.3.

b) Delay :

\
This routine gives a delay of 20 jus. The delay count is in

register'pair BC and the count is decremented till it is zero

which gives a delay of 20 mus. The flow chart is shown in Fig.3.4.

c) Output Analog Value :

This routine outputs the equivalent analog value of 8-bit

data. In this routine initialise the channel number and output

3-6

“ENTER

| SAVE REGISTERS |

[LOAD ACC. WITH CHANNEL NO.|

[MATCH CHANNEL ADDRESS

[CALL 20 S DELAY |

[READ LOWER BYTE

ROTATE LEFT

| READ HIGHER BYTE

SAVE HIGHER TWO BITS OF REGISTER H

SAVE LOWER SIX BIfS OF REGISTER B

[READ LOWER BYTE

| MASK HIGHER SIX BITS

)
ADD WITH B TO GET LOWER
8 BITS OF NO

Y
MOVE LOWER 8 BITS IN REGISTER L

| SAVE THE DIGITAL VALUE IN MEMORY

[RETRIEVE REGISTERS]

(RETURN)

Fig.3.3 : Routine to Read Analog Inputs

2
¥

ENTER

SAVE REGISTERS

L
[COUNT IN BC REGISTER PAIR]

DECREMENT COUNT

SC

[RETRIEVE NOS|

(- RETURN -)

Fig.3.4 : Routine to give 20 us delay

the digital value to that channel. The flow chart is shown in
Fig.3.5.

d) Input digital value
)
This routine inputs the 16-bit digital input via input port.

of 8255. The digital values are the status of 8-switching device
and 8 plants. \
e) Output digital value
\ !
This routine outputs the control command (8-bit) to 8-switch-

ing devices. and for 8 plants also.
f) Multiplication (16-bit by 16-bit multiplication):

This subroutine multiplieé the contents of Register pair D
by the contents of register pair B. Multiplier and multiplicant
trom the memory are load in subsequent register pairs. The 32-
bit result will be contained in register pair H (the two least
significant bytes) and register pair D (the most significant by-
tes). Finally the result is stored in memory. The flow chart for

this routine is shown in Fig.3.6.
g) Division (16-bit by 16-bit division):

This subroutines divideé the 16-bit quantity in register pair
D by the 16-bit quantity in register pair B. The divident in DE
and divisor in BC can be loaded from memory. The result can be
stored in register pair D, which is finally stored in a memory

location. The flow chart for division routine is shown in Fig.3.7.

3-7

ENTER

| SAVE ALL REGISTERS

4

INITIALISE CHANNEL NO.

MOV THE COUNT TO BE OUTPUTED IN ACC

[OUTPUT IT TO PARTICULAR CHANNEL |

RETRIEVE REGISTERS

* RETURN -

Fig.3.5 : Routine to output analog value

ENTER

| SAVE REGISTERS

LOAD THE ACCUMULATOR WITH THE
NO. OF BITS IN MULTIPLIER

:

INITIALISE MEMORY POINTER AND GET
MULTIPLIER IN DC REGISTER PAIR

INITIALISE MEMORY POINTER AND GET
MULTIPLICANT IN BC REGISTER PAIR

A
SAVE O AS THE MSW OF PARTIAL

<:j€:> SUM IN STACK

A
|GET MULTIPLIER MSB IN CARRY]

ARRY ?

ADD MULTIPLICANT TO LSW OF
PARTTAL SUM IN HL

o ~<CARRY ?

ADD 1 TO THE MSW WHICH IS SAVED
ON TOP OF THE STACK

pe

[DECREMENT THE BIT COUNT]

(=

=07

GEI THE MSW OF RESULT LN DE AND
LSW OF RESULT IN BC

INITIALISE MEMORY POINIER WLTH THI]
MEMORY WHICH WILL BE SAVED

A

SAVE THE RESULT IN MEMORY

RETRIEVE REGISTERS

Gy

@ .

ROTATE LSW OF RESULT LEFT

[GET MSW OF RESULT IN HL

SAVE ACCUMULATOR & CARRY

4

ROTATE MSW LEFT

4

RETRIEVE COUNT & CARRY

o
<_CARRY ?

INCREMENT MSW BY 1

4

SAVE BACK MSW IN STACK

Fig.3.6: Routine for 16 x 16 Bit multiplication

N4

SAVE REGISTERS

TINITIALISE MEMORY POINTER

4

SAVE DIVISOR IN TWO SUBSEQUENT MEMORY
LOCATION -

l

SAVE THE COUNT IN NEXT MEMORY
LOCATION

CLEAR REMINDER REGISTER PAIR

|

GET DIVIDENT INTO DE REGISTER PAIR
.|

INITIALISE THE MEMORY POINTER WHERE THE
BIT COUNT IS STORED

|

GET THE MSB OF 16 BIT DIVIDENT
IN CARRY & SAVE DIVIDENT IN DE

DECREMENT THE BIT COUNT

O

Y

-ISTORE THE RESULT IN MEMORY y

RETRIEVE REGISTERS

1
(RETURN)

ROTATE THE MSW OF DIVIDENT INTO
PARTIAL DIVIDENT IN BC

SUBSTRACT THE DIVISOR FROM
PARTIAL DIVIDENT

CARRY ? ‘

Y

ADD DIVISOR TO THE RESULT OF SUBSTRACTION
SO THAT THE PREVIOUS VALUE OF PARTIAL
DIVIDENT IS RESTORED

COMPLIMENT CARRY

Fig. 3.7 : Routine for 16 x 16 Bit Division

h) Addition (32-bit):

This subroutine adds the contents of four consecutive memory
location to the content of register B,C,D and E. Register E con-
tains the least significant byte,and stores in memory location with
the lowest memory address. The result is finally stored in mem-
ory. Largest number for this system is 20 bit number and maximum
50, 20 bits no.-canbe added, so the result never exceeds by 32

bit. The flow chart is shown in Fig.3.8.

i) Average (16-Bit):

This subroutine calculates the average value of 50 or 16 16
bit data stored in sequential memory location. The ADC O/P is a
10 bit output. The result of addition of 50, 10-bit (max) number
will never be more than 16-bit. So the procedure of 16-bit addi-
tion is right. After getting the addition result the result is
then divided by the count and finally the average value is- cal-

culated and stored in memory. The flow chart is shown in Fig.3.9Y.
j) Binary to ASCII conversion

Binary data is converted to ASCII before being output to dis-
play device. Binary numbers are easily converted to BCD through
repeated division by binary ten.. Then 30H is added to this BCD
no. to convert it into ASCI1 No. This method is useful if the
microprocesses has a divide instructioin. A binary to ASCII con-

version method that is useful when a divide instruction is not

3-8

N

SAVE ALL REGISTERS

INITIALISE MEMORY POINTER IN HL
& THE COUNT IN ACCUMULATOR

CLEAR REGISTER PAIR D&B SO
PARTIAL SUM IS ZERO

4

ADD PARTIAL SUM TO 32 BIT
NO. STORED IN MEMORY :

DECREMENT THE COUNT

N

COUNT = O
\Y/v

STORE THE 32 BIT RESULT IN 4
MEMORY LOCATIONS WHOSE ADDRESS IS IN
HL REGISTER PAIR

Y

RETRIEVE REGISTERS

—]
- RETURN -

Fig.3.8 : Routine for 32 Bit Addition

INITIALISE THE NO. OF DATA WORDS
IN ACCUMULATOR

A

INITIALISE THE MEMORY POINTER
AND SAVE IN BC REGISTER PAIR

CLEAR THE PARTIAL SUM IN HL
AND SAVE IN STACK '

STORE THE COUNT

;

GET BYTE & ADD WITH PARTIAL SUM

SAVE SUM IN STACK

DECREMEN[" COUNT

COUNT=0?

SAVE THE COUNT IN DIVISOR MEMORY

{SAVE THE RESULT IN DIVIDENT

MEMORY

CALL DIVISOR TO CALCULATE
AVERAGE

Fig.3.9

SAVE THE VALUE IN
MEMORY

CALL BOTH SO IT IS AVAILABLE
FOR DISPLAY

1

RETRRIEVE REGISTERS

¥
(RETURN)

* Routine to calculate average of N

16 Bit Numbers

available is repeated substraction if powers of ten in binary.

The highest power of ten possible in the binary number is repeat-

edly subtracted from the no. until the difference becomes negative.

The number of times the subtraction can be accompolished without
a negative difference provides the digit associated with the power
of ten being subtracted. The next highest power of ten is then
substracted from the positive binary difference resulting from
the determination of previous digit. When the digit associated
with 10° is obtained, the positive remainderis the digit corres-
ponding to 10°. Every time a decimal digit is obtained add 30H
to convert it into ASCII. This procedure (shown in Fig.3.10) con-
verts the binary no. in HL pair to its ASCII equivalent. Binary
no. can be laod in HL from memory and finally the ASCII no. is

also stored in menmory.
k) Square root (32-bit number):

Simplest way of finding the square root of a number is by
using successive approximation algorithm. Successive approxima-

tion works as follows

Let B be the value for which the square root is desired and
A be the guess value of B. The value of A is squared and compared
to the value of B. If A% is greater than B, A is decreased, but
if A* is less that B, then A is increased by any arbitary number.
This procedure is repeated until A? is approximately equal to B.
The user decides how close A? needs tobe compared to B before the

loop is terminated.

ENTER

SAVE REGISTERS

INITIALISE THE DIGIT COUNTER
B,N-1

4

LOAD DE WITH POINTER DIGIT
STORAGE AREA

SAVE POINTER IN TEMP
MEMORY

LOAD HLL WITH THE NO. TO BE
CONVERTED

4

PLACE POWER OF TEN CONSTANT
ON STACK

GET POWER OF TEN OF DIGIT TO BE
CALCULATED

CALL DIGIT = SUBROUTINE RETURNS
DIGIT NC

SAVE BINARY DIFFERENCE AND
STORE DIGIT

INCREMENT & STORE POINTER

HL

GET BINARY DIFFERENCE Iﬂ

DECREMENT COUNTER

N\ N
] j =\COUNT=O?

-.I/Y

STORE LAST DIGIT

RETRIEVE REGISTERS

(RETURN)

Fig.3.10.1 Part of Binary to ASCII Conversion

INITIALISE C TO 1

INCREMENT C|

SUBSTRACT LOWER ORDER POWER
OF TEN FROM BINARY NO.

SUBSTRACT HIGHER ORDER POWER OF
TEN FROM BINARY NO.

POSITIVE

DIFFERENCE ?
NEGATIVE

NEGATIVE

RESTORE THE DIFFERENCE

CONVERT C INTO ASCII
(RETURN)

Fig.3.10.2 : Digit Calculation

Fig.3.10 : Routine for Binary to ASCII Conversion

Calculation of square root of a 32-bit no. is shown in Fig.
3.11. The no. whose square root has to be calculated is stored
in memory location MEM100, MEM101, MEM102, MEM103. Highest byte
in memory location MEM103 and lowest byte in MEM100. The approxi-
mate no. A is taken as the middle of the 16-bit No. 1i.e. the com-
parison starts from 8000H. And If A2>B than highest bit is reset
and next higher bit is set i.e. 4000H. And If _A2¢ B than the next
higher bit is also set COOO H. Like this way the comparison is
performed. The square root of 32 bit no.by the comparison is per-
formed. The square root of 32 bit no. 1is a 16-bit no. in register

pair BC which is finally stored in memory.
1) Square (This program square the no. in BC register pair):

This routine squares the 16 bit no. in register pair BC. As
for this routine multiplier and multiplicand are the same so load
the contents of BC pair to the DE pair also. The result will be
stored in memory location (MEM107 to MEM 104). The highest sig-
nificant byte is MEM107 and lowest significant byte of result in

MEM 104. The flow chart is shown in Fig.3.12.
m) RMS (16-bit numbers):

This routine calculates the RMS of sixteen 16-bit numbers
stored in sequential memory location. The logic used for RMS cal-
culation is first thé squares of all sixteen nos. are calculated
and again the result is stored in sequential memory location.
Then addition of these sixteen nos. by calling ADD32 subroutine
is done. Now instead of calculating the mean of the result first

3-10 145196 - X
(entral Library Univers OF ROTRE:

SAVE ALL REGISTERS

GEI' MSB OF SHIFT COUNTER IN HL

CLEAR THE BINARY VALUE IN BC

GET THE BINARY VALUE IN BC

1

SQUARE THE VALUE

- Y BYTE 3 BYTE 3 OF
. NO. 2

BYTE 2 BYTE 2 OF

NO.?

BYTE 2 = BYTE 2 OF
NO.?

:/‘ \

)
K
(\'t/
[RESET THE BIT IN BINARY NO.
(L)&
NS

SHIFT COUNTER RIGHT

Y

CEL THE DIFFERENCE OF BYTE 0
AND BYTE OF NO.

SAVE THE COUNTER ROOT IN MEMORY

RETRIEVE REGISTERS

e)

Fig.3.11 : Routine for square root calculation of a
32-Bit Number

ENTER

SAVE REGISTERS

LOAD ACCUMULATOR WITH THE NO.
BITS IN MULTIPLIER

INITIALISE MULTIPLIER DE WITH THE
COUNTERS OF MULTIPLICANT IN BC

SAVE O AS THE MSW OF PARTIAL
SUM IN STACK

2

GET MULTIPLIER MSB IN CARRY

CARRY ?

ADD MULTIPLICANT TO LSW OF
PARTIAL SUM IN HL

ADD 1 TO THE MSW WHICH IS SAVED
ON TOP OF THE STACK

DECREMENT THE BIT COUNT

ROTATE LSW OF RESULT
LEFT

[EET MSW OF RESULT IN HL GET THE MSW OF RESULT IN DE AND
LSW OF RESULT IN BC AND STORE
IN MEMORY 107 TO MEMORY 107

SAVE ACC. AND CARRY

ROTATE MSW LEFT RETRIEVE REGISTERS

[RETRIEVE COUNT & ‘CARRY |
,‘.l!!==!¥',, (RETURN)

[INCREMENT MSW BY 1|

SAVE BACK MSB IN

STACK

Fig.3.12 : Routine to square BC register pair

its square root is calculated by calling SQRT subroutine. Now the
result of SQRT routine is divided by the square root of the to-

tal nos. i.e. it is divided bythe 04 decimal. The flow chart of

this routine is shown in Fig.3.13.
n) Search Max No.:

This routine finds the Max Number (16-bit) from the N 16-bit
numbers stored in sequential memory location. After getting the
max no. from the block of data it compares it with its highest
limit.If the max no. is exceeding higher limit it setcone corres-
ponding bit in memory location BYTEMAX. The flow chart is shown

in Fig.3.14.
o) Search Min No.:

This routine finds minnumber (16-bit) from the N 16-bit num=-
bers stored in sequential memory locatioin. After getting the min
no. from the block of data it compares it with its lowest values.
If the min no. is lower than its lowest limit it setsone corres-
ponding bit in memory location BYTEMIN. The logic used is the com-

parison logic. The flow chart is shown in Fig.3.15.
3.3.2 Application Example Software:

To show the use of data acquired and processed one example:
is coated. In this example 16 analog variables are subdivided in-
to fast and slow variables. Fast variables are sampled at a rate

of 1.25 ms and slow variables are sampled at a rate of 20 ms.

3-11-

its square root is calculated by calling SQRT subroutine. Now the
result of SQRT routine is divided by the square root of the to-
tal nos. i.e. it is divided bythe 04 decimal. The flow chart of

this routine is shown in Fig.3.13.
n) Search Max No.:

This routine finds the Max Number (16-bit) from the N 16-bit
numbers stored in sequential memory location. After getting the
max no. from the block of data it compares it with its highest
limit.If the max no. is exceeding highef limit it setcone corres-
ponding bit in memory location BYTEMAX. The flow chart is shown

in Fig.3.14,
o) Search Min No.:

This routine finds minnumber (16-bit) from the N 16-bit nunm-
bers stored in sequential memory locatioin. After getting the min
no. from the block of data it compares it with its lowest values.
If the min no. is lower than its lowest limit it setszone corres-
ponding bit in memory location BYTEMIN. The logic used is the com-

parison logic. The flow chart is shown in Fig.3.15.
3.3.2 Application Example Software:

To show the use of data acqu%red and processed one example-
is coated. In this example 16 analog variables are subdivided in-
to fast and slow variables. Fast variables are sampled at a rate

of 1.25 ms and slow variables are sampled at a rate of 20 ms.

3-11-

ENTER

INITIALISE ALL MEMORY LOCATION
THEIR MEMORY POINTERS

LOAD THE COUNT IN ACC. AND
STORE IN TEMP 2

Y
GET 16 BIT DATA WORD]

[CALL MULT 16 TO SQUARE THE WORD

STORE IN MEMORY

DECREMENT THE COUNT

CALL ADD 32 TO ADD THE SQUARED DATA

CALL SORT TO CALCULATE SQUARE
ROOT

\
CALL DIV 16 TO CALCULATE THE RMS

A

SAVE THE RMS VALUE IN MEMORY

CALL BINTA TO CONVERT IT INTO
ASCII AND STORE

RETRIEVE REGISTERS

(RETURN)

Fig.3.13 : Routine for RMS Calculation

B

INITIALISE COUNT 50 D IN B
REGISTER AND STORE IN MEM 94B

Y

INITIALISE MAX NO.
PAIR DE

AS O IN REGISTER

5,

COMPARL THE NO

. WITH MAX NO.

REPLACE MAX. NO. WITH THENO.
IN MEMORY

>

| DECREMENT COUNT |

STORE THE NO. IN MSM & FOR BINTA
CONVERSION

STORE THE NO.

IN MMAX1 ALSO

INITIALISE MEMORY

POINTER WHERE THE

HIGHER LIMIT IS STORED

COMPARE THE MAX NO. BY ITS
HIGHER LIMIT

SET CORRESPONDING BIT IN BYTE
MAX MEMORY

r

ROTATE THE TEST BYTE

SAVE THE POINTER

CALL BINT A

Crenm)

Fig.3.14 : Routine for finding maximum number in a string

P

INITIALISE COUNT 50 DECIMAL IN B
REGISTER AND STORE IN MEMORY 94C

INITIALISE MIN NO. AS FFFFH
IN REGISTER PAIR DE

COMPARE THE NO. WITH THE
MINIMUM NO.

REPLACE MIN NO. WITH THE NO. IN
MEMORY

DECREMENT COUNT

N@
Y

STORE THE NO. IN MEM 4 FOR BINTA
CONVERSION

STORE THE NO. IN MMINI ALSO

INITIALISE MEMORY POINTER WHERE THE
LOWER LIMIT IS STORED

COMPARE THE MIN, NO. WITH
ITS LOWER LIMIT

v@

N
SET CORRESPONDING BIT IN BYTEMIN |
MEMORY

®

ROTATE THE TEST BYTE

SAVE THE POINTER

) CALL BINT A CONVERSION

Cransi)

Fig. 3.15 : Routine to find Minimum Number in a String

There are four number of fast variable and 12 no. of slow variable,
again in which 4 variables are controlled. These analog variables
are the variable of a plant. There are 8-status inputs from swi-
tching devices like C.B etc. The status of switching devices are
repeatedly sensed at a rate of 1 sec. To get an interval of 1.25
ms, interrupt RST 6-5 is used. The O/P of the counter 1 is conn-
ected to the RST 6.5. The counter 1 is initialised to mode O
(interrupt on terminal count) and then loaded to give an interrupt
after 1.25 ms. In ISS inspite of other work done in that routine
the counter is again loaded to give again an interrupt after 1.25

ms, so in this manner repeated interrupts are generated after

1.25 ms.

Following routines and main program are used to simulate the
example:

a) Main:

This main programs (shown in Fig.3.16) intialises all the
interfacing chips, define public and external variables and ini-
tialise all the memory location. This wili unmask all the three
interrupts (RST 7.5,RST 6.5, RST 5.5) and then inputs all the
. 16-analog variables and store their value in memory. Analog vari-
ables inputted by call slow and fast subroutine. Load the counter

1 with 1.25 ms count and waits for an interrupt.

b) Slow:

This subroutine (shown in Fig.3.17) inputs the value of four

analog controlled variable (01 to 04) and store their value in

3-12

Fig.3.16

INITIALISE ALL MEMORY LOCATIONS

DEFINE PUBLIC AND EXTERNAL VARIABLES

ENABLE RST 7.5,RST 6.5
AND RST 5.5

INITIALISATION OF CHIPS
8255,8259,8251,8253

SET TEMP 10, TEMP 20 MEMORY
LOCATION TO ZERO

CALL SLOW

CALL FAST

LOAD COUNTER 1 WITH 1.25 ms
COUNT

ENABLE INTERRUPT SYSTEM

: Routine to input fast and slow analog variables

ENTER

| SAVE ALL REGISTERS]

INITIALISE MEMORY POINTER WITH MEMINS

SET CHANNEL NO. TO OO AND STORE

>

CALL READ ADC

STORE THE VALUE IN MEMORY MEMINS
AND INCREMENT POINTER

INCREMENT CHNUM

N

CHNUM + 04

STORE STORED O IN TEMPOO

<GL S1oW >

RETRIEVE REGISTERS

(- RETURN -)

-

Fig.3.17 : Routine to input 4 analog variables
(01,02,03,04) (SLOW)

memory. These values are also converted into ASCII to directly

1
display on CRT. Within this routine SLOW{ is called.
c¢) Slow 1:

This subroutine (shown in Fig.3.18) inputs the value of 8

analog uncontrolled variable (05 to 12) and store them in memory.

d) Fast 1:

This subroutine (shown in Ffig.3.19) inputs the value of 4

analog variable (13-16) and store them in memory.
e) Interrupt service subroutine for RST 6.5:

The following functions are performed in this routine. The

flow chart is shown in Fig.3.20.

1) It reloads the counter 1 with 1.25 ms count. ‘

2) It checks if the one cycle of 50 Hz is over by checking if

the 16 samples of fast variables are taken.

2a) If 16 samples are over, it calculates average and rms values
of those variable and store in memory after converting them into

ASCII. And increment the count for slow variables and input slow

variables. If Q0O ms period i.e. 16 samples are not over it inputs
the value of fast variable by calling fast subroutine and returns
to the main program.

3) It checks if the 50 samples of slow variables are over. If

the 50 samples are not over, it repeats the step 2(a). If the 50

samples i.e. 1 sec period is over, it calculates the average,

Max, Min values for wvariable (05-12) and again calculate rms

3-13-

ENTER

SAVE ALL REGISTERS

SET CHNUM TO 04

CALL READ ADC

STORE DIGITAL VALUE IN STORE MEMORY
1

SAVE" PQINTER
Y

INCREMENT CHNUM

CHNUM =0B

RETRIEVE REGISTERS

Fig.3.18 : Routine to input 8 analog Variables (05-12)
(SLOW) :

ENTER

SAVE ALL REGISTERS

SET CHNUM TO OC

CALL READ ADC

STORE THE VALUE IN MEMORY

INCREMENT CHNUM

RETRIEVE REGISTERS

(- RETURN -)

Fig. 3.19 : Routine to input 4 analog variable(0C-0OF)
(FAST)

T

DEFINE EXTERNAL VARIABLES

A

SAVE ALL REGISTERS

RELOAD THE COUNTER

LOAD ACCUMULATOR WITH TEMP10

INCREMENT COUNTER AND STORE
IN TEMP10

COMPARE WITH 16 DECIMAL

SALL rAST

LOAD ACCUMULATOR WITH TEMP20

INCREMENT THE COUNT & STORE IN TEMP20

COMPARE WITH 32 H

(gm0 >
‘ N
CALL LESS

CALL AGAIN 1

——mC

RETRIEVE REGISTERS

- RETURN -

STORE 32H IN COUNT & MEM94A

CALCULATE THE AVERAGE VALUES OF 50
SAMPLES OF EACH VARIABLE (05-12)
AND STORE THEM IN MEMORY

\

CALCULATE THE MAX VALUE OF EACH
VARIABLE (05-12) FROM THE 50
SAMPLES OF EACH VARIABLE

/

CALCULATE THE MIN VALUE OF EACH VARIABLE
(05-12) FROM THE 50 SAMPLES OF
EACH VARIABLE

CALL LESS

CALL DISPLAY

CALL STATUS

CALL AGAIN 5

Fig.3.20 : Routine to Input, Process and Display Analog and
digital variables (INT 65)

SAVE ALL REGISTERS

CLEAR ACC. AND STORE IN TEMP 10

CALL SLOW B

CALCULATE THE RMS VALUE OF FACH
VARIABLE (13-16) FROM THE 16 SAMPLES
OF EACH VARIABLE

Y

CALCULATE THE AVERAGE VALUE OF EACH VARIABLE
(13-16) FROM THE 16 SAMPLES OF EACH VARIABLE

RETRIEVE REGISTERS

(- RETURN -)

Fig.3.21 Routine to calculate RMS and Average Values
: for Fast Variables ,

ENTE

SAVE REGISTERS

INITIALISE MEMORY LOCATIONS
FOR VARIABLES (13-16) AND STORE

1
RETRIEVE REGISTERS

(+ RETURN -)

Fig.3.22 : Routine for Initialisation of Memory Location for
Fast Variables (Again &)

ENTER

| SAVE ALL REGISTERS |

INITIALISE MEMORY LOCATION FOR
VARTABLES (05-12) AND STORE

1
RETRIEVE REGISTERS

(- RETURN -)

Fig.3.23 : Routine for Initialisation of Memory Location for
slow variables (Again 5)

value for fast variables (13-16). After the whole proce-
ssing it calls display routine to display the whole processed
data on CRT. It also calls status routine will inputs the status
of 8-switching device and displays on CRT their ON & OFF position.

Then it returns to the main program.

In this manner the application example is developed to show

the use of various inputs.

3.3.3 Display Software:

The display software manages to display the information shown
in Table 3.1 on CRT. In the table it self the memory location
where the codes (IN ASCII) are stored for each line is also shown,
- The whole block (B:000 H to B:45FH) is used to store this infor-
mation. To achieve this first the whole block is filled with the
ASCII code of blank: (20) then from the program itself the value
for instantaneous, maximum, minimum, average, RMS comes which are
stored in proper memory location. The status of 8 switching de-
vices are also sensed and it is also stored in proper memory lo-
cation. The constant data for example codes for variable No. etc.
are permanently stored in memory location. When the whole block
is filled with ASCII data bytes then following two routines are

called to transmit the information on CRT.
a) Display Analog Information

The routine flow chart is shown in Fig.3.24. This routine

initialises the counter with the length of memory block and initia-

1

- PR

3-14-

Corresponding
Memory Location

BOOO va
B050 RE
BOAO I
BOFO
B140 va
B190 alt
B1EO mIfix
B230 AV
B280 "
B2DO VA
B320 RM
B376
B3C0 A SW’

© B410 st4°

X

08
X

(ON OR OFF)

Corresponding

Memoty Location DISPLAL O CRT

300 MR W 0w

051 REFEREACE WO v

BA TUSTAVTNROU OO

00 |

al WIEE W B % 0% B oW ou L
B0 oL QR Q1 O 1 11 QO B 1 1
BlE MK A
A AARAGE e
A |

- WEE W, B W B 5

B0 RS BORN R

B8

W0 wmmiE w0 R onou B % o0
Bl STANS RS G SR GRS SR S SR 1}

TLE 3,0 THFORAATTON DISBLAY ON R

>

INITIALISE TOMERO OF 8253
TO GIVE REGISTER

| INITIALISE 8251 |

INITIALISE THE LENGTH OF MEMORY
BLOCK IN REGISTER PAIR BC

INITIALISE HL WITH THE STARTING
ADDRESS OF THE BLOCK

CHECK IF TRANSMITTER READY

N s
Y
TRANSMIT BYTE|

DECREMENT COUNT

RETRIEVE REGISTERS

(RETURN)

Fig.3.24 : Routine to display a block of memory on CRT

§

lises the memory pointer with the starting address of memory block.
After this it checks if the transmitter of 8251 is ready to trans-
mit byte, when it is ready it transmits one byte and in this ma-
nner the whole information is transmitted. The starting address

of memory block is BOOOH.
b) Display Digital Information

The flow chart for this subroutine is shown in Fig.3.25. This
routine first inputs the status of 8-switching deviced from 8255
and checks the status of devices (ON OR OFF) and stores the corres-
ponding code in memory. The status is checked bybit shifting.
After the status of all 8-devices are checked the information is

displayed on CRT. The starting address of memory block is B3COH.

3.3.4 Communication Software:

The communication with MCS is achieved by using a definite
protocol and according to that protocol software for RTU is de-

veloped which is discussed in Chapter 5 on communication.

3.3.5 Control Software:

a) PID Controller

The control signal O/P of PID controller is as follows

4 t
- e + ;—__—edt+M
mlt er _ KD az— KI o o}
e = r-b
T = reference value
p = true or instantaneous value

2-15-

N

[SAVE ALL REGISTERS

INITIALISE MEMORY POINTER WITH
MSTATUS () -

| STORE THE POINTER

INITIALISE COUNTER 08 IN C

A

INITIALISE B WITH O1 N
CHECK Bn

INITIALISE 8255 AND RFAD THE
STATUS AND STORE

4
LOAD FROM TEMP MEM

CHECK IF BIT IS ZERO

ZERO FLAG=?

N
SAVE CODE FOR
Nolpi SAVE CODE FOR "ON" IN
OFF"' IN MSTATUS MSTATUS-AND STORE PQIN-|
AND STORE POINTER LER
|

ROTATE THE CHECK BIT

DISPLAY STATUS OF VARIOUS
SWITCHING DEVICE

\

RETRIEVE ALL REGISTERS

Gt

Fig..3.25 Routine to display status ol switching

e = error signal

Mo = initial value when no. error

t = sampling interval

Kp = proportional constant
KD=TD = differentiation constant
Ky = L = Integration constant

1 T,
$ e
m, = Kp e * KI 3-0 ej t + KDE_ + Mo
n

mo = KP e+ KI T ep KD (en e) + MO (1)

four constants Kp, KI', Kb and MO are stored in memory.

The equation (1) is simulated for PID control action and its flow

chart is shown in Fig.3.26.

b) Control Commands via Interrupts
Two control commands as follows

1) Stop switching device

2) Stop plant

Command comes via two interrupt of 8259 (programmable interrupt con-
troller). These interrupts are IRO, IR1l. Each command can come

from eight control/protection units. The eight signals for each co-
mmand are ORed and the output of OR gate is given to the interrupt

pins of 8259. These control commands are sensed and then displayed

3-16

Fig.3.26.1

el

SAVE ALL REGISTERS

READ r, bn, Mo, Kp,Ks',Ko'
FROM MEMORY

CALCULTE en=(r-bn)

\

CALCULATE Pn=Kb en

A

CALCULATE In = In-1+Ki en

It

CALCULATE Dn = KD' (en-en-1)

CALCULTATE Mn = Pn + In + Dn + Mo

SAVE IN MEMORY

RETRIEVE ALL REGISTERS

e

Routine to calculate Mn (MORE)

SAVE ALL REGISTERS

INITIALISE IN-1, en-1

READ SET POINT (r) AND STORE

READ bn AND STORE

CALL MORE TO CALCULATE Mn

OUTPUT Mn TO THE DAC

STORE en Cn en-1 and In as In-1]

RETRIEVE REGISTER

Caa)

Fig.3.26 : Routine for PID Controller

on CRT. The two routines developed for individual commands are
shown in Fig.3.27. The logic used to display the commands are same

but only the contents of memory location changes according to the

control command.
Display Control Command:

The two routine named IRO, IRl are developed according to the

control command interrupt. The logic to develop these routines is

shown in Fig.3.27.

In these two interrupt service subroutine, the status of 8 in-
‘puts for each routine are sensed through ports of 8255 (programmable
peripheral interface) and then by checking the status of each bit
it is known, from which devices or plant control commands are com-
ing. After sensing the status of various devices display subrout-

ine (DISP) is called to display the control command.

Display Information (DISP):

This routine (shown in Fig.3.28) transmits the byte to CRT stored
from a particular memory location. For interrupt IRO, ASCII data

is stored from B500, ASCII data for IR2 is stored from B600 memory

loéation.
B500 STOP SWT. DEVICE NO.
B600 STOP PLANT NO.

3-17

P

SAVE ALL REGISTERS

INITIALISE COUNTER E WITH OOH

4

INITIALISE CHECK BIT IN B(O1H)

READ THE 8-COMMANDS VIA
A PORT OF 8255

SAVE THE VALUE IN MEMORY

r

LOAD THE ACC. FROM MEMORY

4

CHECK IF BIT IS ZERO

LOAD THE VALUE OF E IN MEM17

CALL DISP

i

INCREMENT THE COUNTER

ROTATE THE CHECK BIT

4

CHECK IF ALL BITS
CHECK CD MEMS

Fig.3.27

7ZERO FLAG ?
N
[RETRIEVE REGISTERS]

¢ Routine which checks various commands and

displays

ENTER

| SAVE REGISTERS| |

INITIALISE THE LENGTH OF MEMOR
BLOCK IN REGISTER B

INITIALISE HL WITH THE STARTING
ADDRESS OF THE BLOCK

. -

CHECK IF TRANSMITTER READY

N

TRANSMIT BYTE

DECREMENT COUNT

Fig.3.28 :

TRANSMIT THE NO. OF PLANT OR
SWITCHING DEVICE

TRANSMIT THE CODE OF CR(OD)

TRANSMIT THE CODE FOR LF(OA)

L

RETRIEVE REGISTERS

- RETURN -

Routine to 'display the control command

Before displaying control commands on CRT, the screen is cl-
eared via BLANK OUT CODES then these commands are displayed. Af-
ter the display of command display of analog and digital infor-
mation is also done by calling their routines. The codes for blank-
ing OUT CRT screen are [1B,5B,4B,5B,32,4A]. The blocking out of

screen is done to display commands more clearly.
c) Control Commands via Keyboard:

The control command given by MCS to RTU can also be given in

RTU by operator. The operator can gives following commands via

key-board.

CODE FUNCTION OF THE CODE
1 START PLANT

2 STOP PLANT

3 START DEVICE

4 STOP DEVICE

5 REVIEW REFERENCE VALUE
6 CHANGE HIGHER LIMIT
7 CHANGE LOWER LIMIT

8 RESET COUNTER O

9 RESET COUNTER 1

A READ COUNTER O

B READ COUNTER 1

If any other code is pressed, than it will display "WRONG

CODE PRESSED". The logic for these control commands are the same

3-18

as used for MCS control commands, the only difference is for MCS
control commands values are provided by MCS and in these the val-
ues for different commands are given via keyboard. The details

of these codes are discussed in Chapter-5.

These commands are useful in case of any communication fail-
ure occurs and if the operator wants to override the MCS then by
using these commands operator can perform its job.

4

3-19

CHAPTER-4
MASTER CONTROL STATION

L

This chapter discusses the details of master control station
(MCS) of our system. WIPRO 80286 based PC is used for hardware
of MCS; With the help of different hardware modules of PC various
facilities of SCADA on MCS side are achieved. The hardware and

software to achieve these facilities are described.

4.1 FACILITIES PROVIDED;

The following facilities are provided in the present MCS.
1. Collection of information from RTU's and displaying it in
the form of MIMIC diagram.
2. Control command from MCS: Different control commands are
given to RTU's via operator's key board on MCS. These commands

are read by the CPU of MCS and sends that to RTU.

3. Hard copy : A printer is used for getting hard copy of the

information with in the MCS.

4.2 HARD WARE:

Various hardware modules are used for achieving different
facilities of MCS, shown in the form of a block diagram in Fig.
4.1. Two communication ports 1 and 2 are provided through 8251
(universal synchronous asynchronous receiver transmitter). Two
different RTU's are connected by these communication ports. The

communication between MCS and RTU is a serial communication. For

A_l..

SOW 40 WvyoVvia o078 L-¥ 9ld

Y3LINIYd

(71371vuvd)
L¥0d Y3INIYd

Z-1¥0d

Al - W02 A“"v
¢ 0y IvIy3s
(-1¥0d

1 NLiy A““v WOD A"”“v
aviyg3s

Quvo8 A3 K= =

JINO AV dSIG 034lA A= S

ndd

dIf 98Z0¢

Hnoy

WYY

3InnNa
ASIa a¥vH

3Jnlya
Add0d

the display of information one video display unit is linked with
80286 up. The information displayed can be graphical as well as
in text or tabular form. For the permanent storage hard disc is
used. This disc contains the operating systemand users software.
For transporting soffware, a floppy disc drive is incorporated.

RAM is used to store the programs transferes from hard disc and
to execute them. ROM contains some of the monitor program. One
parallel printer is provided for obtaining hard copy of any dis-

play or software when required.

4.3 SOFTWARE OF MCS:
MCS software is divided into 3 parts on the basis of the
use as below :

4.3.1 Communication of Software:

Protocol for the communication is described in Chapter-5.

The software for the MCS end has been written in the assembly lan-

guage of 8086.

4,3.2 Control Software:

Control commands to be sent to RTU can be given by operator
through keyboard of MCS. The PC reads the key board by using INT

16H of DOS. The function of INT 16 is described as follows[11 |.

i) Interrupt:

16H keyboard I/0

ii1) Function Request:

OOH Read next keyboard character
To activate this function request AH should contain OOH and AL

will contain the keyboard character pressed.

iii) Description:

This function request reads a character type at the keyboard.
If the character has already been typed, and resides in the key
board puffer, the character is returned immediately. Otherwise,

this function request waits until a character is typed.

This function request returns with the ASCII code of the

character typed in AL.

In this way the command inputted byoperator is registered

in PC and which is further used.

Various Control Command:

Type Function

0 SEND PREASSEMBLED PACKET
1 START PLANT

2 STOP PLANT

3 START DEVICE

4 STOP DEVICE

5 RENEW REFERENCE VALUE

6 CHANGE HIGHER LIMIT

7 CHANGE LOWER LIMIT

8 RESET COUNTER 0O

4-3

9 RESET COUNTER 1
A READ COUNTER O

B READ COUNTER 1

If any other than these codes is pressed an glarm is given

in the form of a keep.

The plant and device number to be stopped or started is
input through keyboard. Similarly the reference, higher and lower
limits are also input through keyboard. This control software has

also been written in assembly langauge of 8086.

4.3.5 Display software:

The display includes a mimic diagram pf the system being
controlled and numerical information in tabular form. The mimic
is made using the graphic software package GRAPH-X (Details given
in the Appendix-F). The display software has been written in For-

tran-77. An example of display is given in Fig.4.2.

i L L
o | |
3T 12 413

g1 101 gga__:§2 g2 43

#Ch 107 18 109 {18011

.-

- !

1015 ;014 10134012
04 s
L I

x,'f_G""i L
UOLTAGE(KY) POWER(MW) MAX TEMP(C)
REF INSTA REF INSTA BEARING WINDING
GEN! 11 18.8 168 181 g8 68
GENZ 15 8.2 268 198 85 65

|

CIRCUIT BREAKER STATUS
(B1 ON CB9 OFF
B2 ON CBi8 OFF
CB3 ON CB11 ON
CB4 ON CB1Z2 ON
CB5 oN CB13 ON
(B ON CB14 ON
CB? ON CB15 ON
(B8 ON

BUS VOLTAGE(KV)

631 132
682 132
881 132
ss2 132
833 132

DIS. VOLTAGE(KVY)
§s1 33
Nz 1
583 11

In this chapter the link used for communication between Re-
mote Terminal Unit(RTU) and Master Control Station(MCS) is des-
cribed. This is followed by a detailed discussion on the protocol
used for the ex%hange of information between the two stations.
Data structure for communication between the two stations is dis-

cussed and finally the software for Master Control Station and

Remote Terminal Unit are presented.

5.1 COMMUNICATION LINK:

The communication link used between MCS and RTU is an RS232C
link. This is a serial communication link. It is achieved by co-
nnecting only three lines (TXD, RXD & GND) between the 8251 (Uni-
versal Synchronous Asynchronous Receiver Transmitter) IC's of
the two stations with 3 wires. Following format of serial communi-

cation is used.

No. of start bits = 1
No. of data bits = 8
Parity bit = 1
Stop bit = 1

For the transmission of one byte of data, the transmitter
of 8251 formats the data byte by adding start, parity and stop
bits. The number of bits in the formatted data is eleven and tra-

nsmission is done at a rate of 4800 bauds.

-1

5.2, COMMUNICATION PROTOCOL:

The protocol for communication between MCS & RTU is similar
for both MCS & RTU. The system that wants to send a message has
to go through the following steps. In the present system requests

always go from MCS to RTU at an interval of every one second.

1) MCS sends a request in the form of ”Identity Number" of RTU

and then enters a time out-routine.

2) If MCS gets an acknowledgement for the request, it termina-
tes the time .. out routine and goes to step(5).
3) If the acknowledgement is not received in the time out perod,

MCS repeats step (1) twice more.

4) In case the acknowledgement is not received after the third
attempt too, MCS goes to an error routine.

5) MCS sends a byte to specify the type of communication bet-
ween RTU & MCS and again enters the time out routine.

6) If MCS gets an acknowledgement for the type, it terminates
the time out routine and goes to step (8) providéd the type sent
was other than zero. If the type is zero, then MCS goes to step
(11).

7) If the acknowledgement is not received within the time out
period MCS repeats step (5) twice more. If even after the third
time, acknowledgement is not received,MCS goes to the error rou-
tine.

8) MCS sends the message which is kept ready in the prescribed
structure (the data structure of the message is explained in the

next section of this chapter).

5-2

9) MCS enters the time out routine and waits for the message

received acknowledgement.

10a)- If MCS gets the acknowledgement for the receipt of message,
it terminates the time out routine and goes to step(12).

10b) If the acknowledgement is ﬁot received within the time out

routine period MCS repeats step (9) twice more. If the acknow-

ledgement is not received after third time also, MCS goes to the

error routine.

11) MCS starts receiving the preassembled packet from RTU till

end of transmission (EOT) byte is received and within the period

of time out routine sends acknowledgement(ACK) or negative ac-

knowledgement (NAK) depending upon the validity of data. If ac-

knowledgement, it goes fo step (12). If negative acknowledgement,
MCS waits to again receive the same packet.(The step (11) is re-

peated twice more in case of NAK and after the third time it goes
to error routine).

12) End of message transfer

The steps performed by MCS for this protocol is shown in

Figure 5.1.
Codes;

For the transmission of data between RTU & MCS, some stan-
dard ASCII Codes are used for the data transmission which are

as follows
ASCII Code (Hex)

SOH - Start of header = 01

ACK - Acknowledgement = 06

SOH - STORE OF HEADER BYTE
ACK-~ ACKNOWLEDGEMENT BYTE
NAK~NEGATIVE ACKNOWLEDGEMENT

‘ START)

COUNTER~*O

e

BYTE

EOT~ END OF TRANSMISSION BYTE

1

SEND SOH (START OF HEADER)

15 mS WAIT ROUTINE

COUNTER=0
SEND
PACKET

15mS WAIT

COUNTER"

=COUNTER +1

N E
Y

COUNTER
=COUNTER#

COUNTER=0

SEND TYPE

15 mS WAIT

COUNTER
=COUNTER+1

READ BYTE

==

CALCULATE
CHECK-SUM
AND CHECK IF
ANY ERROR

1 SEC DELAY

ERROR

SEND NAK

ERROR 7 Y
N

SEND ACK

COUNTER=COUNTER +1

B

FIG. 5-1 STEPS PERFORMED BY MCS

~

2.

(4

]
i

NAK

Negative Acknowledgement 15

EOT End of transmission 04

it
n

STEPS PERFORMED BY RTU:

When MCS interrupts RTU for data communication, following
steps are performed by RTU. RTU CPU interrupts its main programme
and branches to I.S.S. for communication. In this I.S.S. there
are 4 entry points and according to the prior conditions CPU will
branch to relevant entry point but initially the entry point=1.
The concept of entry points are used to eliminate the work of CPU
and to reduce the time of operation. Every time one byte comes
from MCS,gives an interrupt to RTU in the form of RXReady interr-
pt. This RXReady interrupt is connected to RST 5-5 of RTU. RTU
can perform its work irrespectable to when MCS wants to communi-
cate. As and when MCS wants to communicate with RTU it sends byte

and after reading the byte RTU with itself decide where to branch

out i.e. which entry point.

(a) Entry Point 1:

1) Read byte sent by MCS and check if this byte is SOH(start
of header).

2) YES - send an acknowledgement, set counter=0 and entry point
=2 and return to the main program.

3) NO: Return to the main progranm.

(b) Entry Point 2:

1) Read type sent for data communication and check if the type

is valid.

5-4

2) YES : Type sent is valid. RTU sends acknowledgement and
then identifies the type sent. If type = O, then set counter=0
and calls entry poinF.3 and return to the main program.

Type=Any other, then set entry step = 4 and counter=0 and
return to the main progranm.
3) NO: Type sent is not valid. RTU increments the counter and
checks if counter = 3.

YES : Entry point sets to =1 and return

NO : Entry point sets to = 2 and return.

(c) Entry Point 3:

1) RTU sends the preassembled packet and enters the time out

routine of 15 ms.(and waits for ACK).

2) If ACK : Sets the entry point to 1 and returns.
3) If NAK : Increments the counter by one and checks if count-
ter=3.

YES : sets the entry point to 1 and returns.

NO : Repeat point (1) of entry step=3.

(d) Entry Point -4:

1) Read byte until EOT & store. After checking the validity of

data received send ACK or NAK. |

2) If ACK : Set entry point to 1 and return

3) If NAK : Increment the counter and check whether counter=3.
YES : Entry point is set to 1 and return to the main program.
NO : Entry point is set to 4 and return to the main érogram.

Points performed by RTU are given in Fig.5.2.

5-5

ENTER

SAVE REGISTERS

CHECK THE
ENTRY POINT

CALL IT'S ROUTINE

RETRIEVE REGISTERS

e

FIG.5-2(a) 1.5+S FOR RST 5:5 THIS PROGRAM CALLS
DIFFERENT ENTRY POINTS

S’

(a) ENTRY POINT-)

READ BYTE :

<o >

Y

[SEND ACK

SET COUNTER=0 &
ENTRY POINT =2

(RETURN >

FIG.5-2-1(b) READ SOH BYTE

(b) ENTRY POINT=-2

READ BYTE (TYPE)

N __|COUNTER =
COUNTER +1

Y

N ENTRY
SEND ACK | POINT =2

Y

ENTRY POINT=1

COUNTER=0

SENT COUNTER =0
ENTRY POINT=4

CALL ENTRY POINT=3

v

—(RETURN)

FIG.5-2-2(b) READ TYPE BYTE FOR COMMUNICATION

(C) ENTRY POINT-3 NENTER

SEND PREASSEMBLED PACKET

15 mS WAIT

Y COUNTER=COUNTER + 1

COUNTER*3
1

Y

SET ENTRY POINT=)

RET

FiIG.5-2-:3(b SEND PACKET TO MCS

(d) ENTRY POINT-4

K

READ BYTE

i

CHECK THE VALIDITY (CS)
OF DATA RECEIVED

N

COUNTER =
COUNTER+1

b

READ TYPE

CALL ITS SUB ROUTINE

<>

SET ENTRY POINT =1

p

SET ENTRY POINT=4

RETURN’

FI1G.5-2-4(b) RECEIVE PACKET FROM MCS
FIG. 5-2(b) DETAILS OF DIFFERENT ENTRY POINTS

5.3 DATA STRUCTURE:

All the messages which fly between MCS & RTU should be put
in the format shown in Figure 5.3. It is a simple data structure

with one byte message header.

The communication between the two stations is always in
ASCII Code. The STX, ETX & EOT all the three .have standard ASCII
codes. STX and ETX are used so that the start and ena of data co-
mmunication are indicated. The number of data bytes is dependent
upon the type of communication between 'RTU and MCS. The one byte
of data is always split into two bytes for transmission between
the two stations. For example if the byte 2A has to be transmi-
tted then this byte will be transmitted as 32 and ‘41 between RTU
and MCS. This implies that number of data bytes for transmission
are just the half the number of bytes that are transmitted. For
this reason checksum is also transmitted in two bytes although

the checksum itself is a single byte data.

Between the ETX and EOT, Checksum is sent to check the vali-
dity of received data. At the end EOT byte is sent to indicate

the end of transmission between,two stations.

5.4 RTU SOFTWARE FOR COMMUNICATION:

Following subroutines and main program comprise the RTU

software:

a) HEX TO ASCII CONVERSION:

(HXTA) - This subroutine converts a block of hex data stored
in memory to its ASCII equivalent and stores it the latter in

other memory area sequentially as shown in Fig.5.4.2. One byte

) 5-6-

HEADER STX

TEXT (INFORMATION) N BYTES

END OF TEXT ETX

CS (HIGHER BYTE)

CHECK SUM
¢S (LOWER BYTE)
END OF TRANSMISSION EOT ‘
ASCII CODE (HEX)
STX - START OF TEXT : 02
ETX- END OF TEXT | 03
EOT - END OF TRANSMISSION 04

FIG. 5-3 DATA STRUCTURE

32
2D 7{

(44

{ 31

10 -

30

4
4A ;{ 3

41
35 =.{ 33

35
HEX ASCIt

FIG.5:41 EXAMPLE ON HEX TO ASCIl CONVERSION

N4

SAVE ALL REGISTERS

!

INITIALISE COUNTER AND MEMORY
POINTER OF BOTH THE BLOCKS

LOAD DATA FROM MEMORY

SAVE BYTE

!

| MASK LOWER FOUR BITS |

|

| SHIFT RIGHT FOUR TIMES |

!

[ADD 30H 1
N
Y
[app07H |
K
R
[STORE AND INCREMENT POINTER |
l
[BRING BYTE IN ACCUMULATOR]
}
[MASK HIGHER 4 BITS]
I
l ADD 30 H 1

[STORE AND INCREMENT POINTER |

!
[DECREMENT POINTER |

N

COUNT=09

Y
[RETRIEVE REGISTERS |

FIG.5-4'2 LOGIC TO CONVERT HEX TO ASCII

(o~

’
o

of hex data is split into two bytes of ASCII. An example is shown
in Fig.5.4.1.

From the example of Fig.5.4.1, ASCII it is clear that memory

requirement after conversion is just double.

b) CALCULATION OF CHECKSUM:

Checksum is the one's compliment of the sum of all the data
bytes. The sum is done by discarding the carry and it is an 8-bit
number. The ASCII equivalent of checksum is a two byte data.This
routine calculates checksum of data stored in a‘block of memory
and stores and then converts it into its ASCII format and again
store so that it is really available for communication. The flow

chart is shown in Fig.>.5.

~) ASCII TO HEX CONVERSION (ASTH):

The routine converts a block of ASCII data‘collected from

MCS to its HEX equivalent. The logic is shown in Fig.5.6.1, 5.6.2.

d) TRANSFERS THE BLOCK OF DATA TO MCS: (DATA TRANSFER):

This routine adds STX, ETX & EOT to the block of ASCII Data
stored in memory. The flow chart is shown in Fig.5.7.2. and exam-

ple shown in Fig.5.7.1.

This block of Fig.5.7.1 is transfer first by adding STX(02)
then data (30,35) after that ETX(03) and then CS(%QWKU and then
EOT (04).

02,30,35,03,41,46, 01

N4

SAVE ALL REGISTERS

INITIALISE MEMORY POINTER &
SAVE COUNT IN REGISTER B

CLEAR ACCUMULATOR & CARRY
FLAG

LOAD BYTE IN MEMORY

ADD BYTE TO ACCUMULATOR

DECREMENT THE COUNT

Y

ONE'S COMPLIMENT
OF ACCUMALATOR

r
STORE CHECK SUM

INITIALISE THE MEMORY POINTER
TO STORE CHECK SUM

CALL HEX TO ASCII
CONVERSION

STORE THE ASCIl BYTES

RETRIEVE ALL REGISTERS

(RETURN >

FIG.5-5 CALCULATION ON CHECK SuM

MEM POINTER 1 STX ——n

01

35

K}

in

51

|+——MEM POINTER 2

32

Y

30

12

38

32

o8

43

Y

ETX——>

03

2C

32

és---{

35

|

Y

ASCIl BLOCK

25

«——MEM POINTER 3

HEX BLOCK

FIG.5-6-1 EXAMPLE TO CONVERT ASCIl BLOCK

TO HEX BLOCK

S

SAVE ALL REGISTERS

INITIALISE BOTH THE MEMORY

POINTERS (182)

INCREMENT POINTER 1 TO POINT
DATA BYTE LOCATION

4

LOAD DATA BYTE IN ACCUMULATOR

SUB TRACT 30 H

Y

SUB° TRACT 07 H

ROTATE LEFT & TIMES

!

STORE IN B REGISTER

INCREMENT POINTER

LOAD BYTE

SUB TRACT 30 H

Y
SUB TRACT 07H

ADD ACC. TO REG. B

STORE THE HEX BYTE

!

INCREMENT BO0TH THE POINTERS

!

LOAD NEXT BYTE

BYTE =037%

INCREMENT POINTER

:

INCREMENT POINTER 3

LOAD BYTE

|

SUB TRACT 30 H

Y
SUB.07H

N g

ROTATE LEFT & TIMES

STORE IN REG. B

4

INCREMENT POINTER 1

LOAD BYTE IN ACC.

SUB TRACT 30H

RESULT > 09 H?

sus 07 H

ADD REGISTER B WITH ACC.

STORE CHECK-SUM IN MEMORY

3

RETRIEVE ALL REGISTERS

4

RETURN -

FIG. 5-6-2 ASCII TO HEX CONVERSION

INTER-1—| 30 TER -2 —w| 4
POINTER 2 DATA POIN 4; CHECK - SUM

FIG. 5-711 DATA AND CHECK SUM EXAMPLE TO BE TRANSFERED

X

SAVE ALL REGS

INITIALISE MEMORY POINTER (1&2)

INITIALISE COUNTER WITH A COUNT
EQUAL TO NO. OF ASCIl BYTES

1
TRANSMIT STX

TRANSMIT BYTE

DECREMENT COUNT

COUNT =0
?

TRANSMIT ETX

TRANSMIT BOTH THE BYTES OF CS /

RETRIEVE ALL REGISTERS

RETURN

FI1G.5.7.2 SEND PACKET

Details of subroutine and flowcharts for all the four entry
points are given earlier.

There are different type of data communication according to
the type sent by MCS, RTU will respond. The details of different

types are as follows:

Type:

0 - for sending all the data from RTU to MCS
1 - Start Plant

2 - Stop plant

3 - Start device

4 - Stop device

The number of the device or plant to be started or stopped is

sent by MCS only.

5 - Renew ri:ference value of variable (given by MCS)
6 - Change the higher limit of variabiz

7 - Change the lower limit of wvariable

8 - Resei counter O

9 - Reset counter 1

A - Read counter O

B - Read counter 1

e) DISPLAY THE COMMAND (SUB31 TO SUB 34):

The logic used for these four subroutines are same and their
flow chart is shown in Fig.5.8. This subroutine displays the co-
mmand start or stop the plant or start or stop the switching de-

vice. The number of plant or switching device is loaded in MuM17

5-8 :

f) RENEW REFERENCE VALUE (SUB 35):

This subroutine is for type-5 of control command. This will
renew the reference value of the variable. The variable number

is sent by MCS itself. The flow chart is shown in Fig.5.9.

g) CHANGE HIGHER OR LOWER UNIT (SUB 36 AND SUB 37):

These two routine changes the higher or lower limit of vari-

able whose value is given by MCS.

h) _RESET COUNTER (SUB 38 AND SUB 39):

These routine reset the counter 0 or counter 1 to FFFFH.

i) READ COUNTER (SUB 41 AND SUB 42):

These routine reads the value of counter 0 or counter 1 from

RTU.

j) I1.S.S. OF RST 5.5:

In this interrupt service routine the entry point is check-
ed by the number stored in memory Entry and accordingly the en-

Lry point routine is called. After performing these functiors the

routine returnsback to main program.

5.5 MCS SOFTWARE FOR COMMUNICATION:

(a)Main Programme:

Main program for communication is always loaded from 100H

and code & data segment are initialised in one segment.

In main program following functions are performed:

5-9.

ENTER

SAVE ALL REGISTERS

LOAD THE NO. OF PLANT TO
BE STARTED OR STOPPED OR
LOAD THE DEVICE NO.IN MEM.17

r

CALL DISPLAY

[
(RETRIEVE ALL REGISTERS]

RETURN

FIG. 58 DISPLAY ROUTINES (SUB’ 31 TO SUB 34)

/

ENTER

SAVE ALL REGISTERS

READ THE VARIABLE NO.

READ (TS NEW REFERENCE
VALUE AND REPLACE FROM
OLDER ONE

RETRIEVE ALL REGISTERS

(RETURN)

FIG. 5-9 RENEWWREFERENCE VALUE (SUB 35)

ENTER

SAVE ALL REGISTERS

READ THE VARIABLE NO.

READ ITS NEW MAX.OR MIN
VALUES AND REPLACE FROM
OLDER ONE

Y

RETRIEVE ALL REGISTERS

(RETURN)

FIG.5-10 CHANGE HIGHER OR LOWER LIMIT
(SuB 36 OR SuB 37)

ENTER

SAVE ALL REGISTERS

INITIALISE COUNTER 0
OR COUNTER 1.TO FFFFH

\
RETRIEVE REGISTERS

. (RETURN)

FI1G.511 INITIALISE COUNTER O OR COUNTER 1
(SUB 38 OR SuUB 39)

ENTER

SAVE ALL REGISTERS

READ THE COUNTER
0 OR1

CONVERT ITS VALUE
INTO ASClH

CALCULATE
CHECK SUM

SEND IT TO MCS

RETRIEVE = REGISTERS

y
‘ RETURN)

FIG. 5:12 READ COUNTER 0 OR COUNTER 1 AND TRANSMIT
TO MCS

1) Gives an interrupt to RTU by sending SOH at an interval of

1 second.

2) After sending the SOH it reads keyboard to input the type
of data transmission. If the type is beyond the range of (30H to
42 H) it displays the error in the form of a beat. And if the type
is valid then it performs its function. the flow chart is shown

in Fig.5.1.

b) Initialisation of Communication Port(Init):

The subroutine initiales the communication port for 4800
bands, even parity, 1 stop bit and 8 bits per character. The pro-

cedure is shown in Fig.5.1.3.

c) Send byte to communication port:(send-byte):

This subroutine shown in Fig.5.14 sends the byte in regis-
ter AL to communication port by using INT14. This function is re-

peated thrice in case of any error.

d) Send the whole preassembled packet(send-pkt):

In the routine shown in Fig.5.15 the whole packet which is
preassembled earlier is sent to RTU with the help of routine send-
byte. In this procedure, the offset of transmitter buffer is
loaded in SI(Source Index) register that will final give the EA
(effective address) and the number of‘bytes to be transferred

is loaded in CX register.

e) Receive byte from RTU (get-byte):

This routine shown in Fig.5.16 receives a byte in AL sent
on communication port and checks for any error. In case of error
that byte is read thrice with the help of INT 14H.

5-10

ENTER

MOVE ZERO TO AH AND

- - " . |THE CW IN AL AND CALL

INT 14 H TO INITIALISE
THE PORT

(RETURN)

FIG.5-13 INITIALISATION OF COM -PORT

N

INITIALISE ERROR COUNT

LOAD AH WITH O1H AND

AL WITH THE BYTE TO BE

TRANSFERED AND THEN CALL
INT 14

ANY ERROR ‘>

(RETURN)

FIG. 5-14 SEND BYTE TO COM-PORT

N

INITIALISE REGISTER
sI AND DI

e)
LOAD BYTE IN AL

|

[caLL sewp Bv1e |

ALL BYTE

INCREMENT COUNTER

RANSFERED

FIG.5-15 SEND PACKET

|

INITIALISE ERROR
COUNT IN CL

INITIALISE AH WITH
O2H

READ BYTE IN AL
BY INT 14 H

ANY ERROR T N

1Y
DECREMENT ERROR COUNT

, N *oum:oq

Y
{ RETURN)

FIG. 5-16 GET BYTE FROM COM-PORT

f) Receive packet from RTU (GET PKT):

This routine (shown in Fig.5.17) receive packet from RTU

till EOT and store the packet in RX-buffer.

g) Make packet of number of HEX Data byte(make-pkt):

This subroutine (shown in Fig.5.18) converts the Hex data
bytes to equivalent-ASCII bytes and then adds STX, ETX & EOT to
ASCII data. With in this routine checksum is also calculated and
added between ETX & EOT. Before calling this routine CX should

contain number of hex data bytes.

h) Convert HEX byte to Numeric ASCII Word(HEX-to-ASCIII):

This routine (shown in Fig.5.19) converts hex byte to ASCII
word. This should be called with the Hex byte in Al register. And

this routine returns with word in Ax register.

i) Convert - ASCII word to Hex byte(ASCII-to-HEX):

This subroutine (shown in Fig.5.20) converts the ASCII word

in register AX to HEX byte. This routine return with byte in AL

register.

j) Calculate checksum(CHK-SUM):

This routine(shown in Fig.5.21) calculates the check-sum

and returns with checksum in AL.

k) Send the whole packet to RTU(send-out):

This routine (shown in Fig.5.22) first nakes the packet from
HEX data and then sends the packet to RTU. Check if ACK is received

or not. In case acknowledgement is not received within 15 ms then

5-11-

the packet is sent twice and if after sending the packet three
times acknowledgement is not received then goes to error routine.
Before entering the routine ex should be loaded with the number

of HEX bytes.

1) Receive the whole packet from RTU(GET-IN):

This routine (shown in Fig.5.23) receive the whole packet
from RTU and then checks if the packet is received correctly by
checking checksum sent by RTU to the checksum calculated by MCS.
If the packet is received properly without any error, acknowled-
gement is sent to RTU else, NAK acknowledgement is sent to RTU

and accordingly Nak-error thus is set.

5-12

: ENTER;

GET BYTE FROM
RTU AND STORE

>

\f

RETURN

FIG.517 RECEIVE PACKET

INITIALISE SI TO OFFSETT-BUFFER
AND DI TO OFFSET TX-BUFFER

1

| save cx]

|

STORE STX IN FIRST LOCATION
OF TX BUFFER

LOAD BYTE FROM
T~-BUFFER

!

|conveRT NTO ascit |

[STORE THIS WORD IN TX-BUFFER |

STORE ETX IN NEXT MEMORY J

CALCULATE CHECK SUM AND
CONVERT T INTO ASCIl

[STORE THE CHECK-SUM IN MEMORY|

] STORE EOT IN MEMORY |

RETURN

FI1G.5-18 MAKE PACKET

A

INITIALISE REGISTER
st AND DI

_—e |

M |

LOAD BYTE IN AL

|

CALL SEND BYTE

|

INCREMENT COUNTER]

ALL BYTE
RANSFERED

RETURN

FIG.5-15 SEND PACKET

—\—ENTE;

INITIALISE ERROR
COUNT IN CL

INITIALISE AH WITH

O2H
READ BYTE IN AL
BY INT 14 H

DECREMENT ERROR COUNTY

FIG. 516 GET BYTE FROM COM-PORT

COUNT=09

Y

(RETURN)

\ENTER /

SAVE CX AND AX REGISTERS

MASK HIGHER NIBBLE OF
AL REGISTER

ADD 30H IN BYTE TO CONVERT

IT INTO ASCH
N
Y
L ADD 07 H]
L
[3

[BRING (AX) IN (DX)

NOW BYTE IS IN DL REGISTER
MASK LOWER NIBBLE

:

ROTATE LEFT FOUR TIMES

ADD 30H TO GET HIGHER BYTE
OF AScu

ADD O7H

MOVE HIGHER BYTE IN AH FROM
DL REGISTER

RETRIEVE REGISTERS

(RETURN)

FIG.5.19 HEX BYTE TO ASCIl WORD CONVERSION

—

SUBSTRACT 30H FROM AL
T0 GET LOWER NIBBLE

t

SUBSTRACT 07 H

*

SUBSTRACT 30 H FROM AH
TO 6ET HIGHER NIBBLE

if

SUBSTRACT 07 H

ROTATE LEFT AH 4 TIMES
T0 PLACE HIGHER NIBBLE
IN PROPER PLACE

ADD (AL) TO (AH) TO GET
BYTE IN AL REGISTER

{ RETURN)

FIG.5:20 ASCIl WORD TO HEX BYTE

CONVERSION

:ENTER ;

CLEAR ACCUMULATOR

LOAD BYTE IN AL REGISTER

ADD WITH PARTIAL SUM IN AH

ACC BYTES
OVER 9

Y

MOVE SUM IN AL

COMPLIMENT THE AL CONTENTS
TO GET CHECK SUM

(RETURN)

FIG.5-21 CALCULATION OF CHECK-SUM
| cALL MAKE PACKET |

!

SAVE CX

!

SET READ-ACK T0 ZERO |

|
—

SET CX WITH NO. OF BYTES 10
BE TRANSFERED

[SEND PACKET |
I

| 15ms wair |

| INCREMENT COUNTER 1

COUNTER=<03

Y

MOVE 01 H TO ERROR
FLAG.

|
(RETURN)

FIG.522 SENDS PACKET

N

SET SI TO OFFSET Rx-BUFFER

RELIEVE THE PACKET IN BUFFER

CONVERT THE DATA INTO HEX AND
STORE IN R-BUFFER

CALCULATE THE CHECK SUM

CONVERT T INTO ASCIl

ARE BOTH THE CHECK
SUM EQUAL ?

SET NAK ERROR FLAG
T01

CLEAR THE WHOLE BUFFER

>

(RETURN)

FIG.523 GET~IN THE PACKET

ﬁ

CHAPTER-6
- CONCLUSIONS & SCOPE
OF FURTHER WORK

- ﬂ?k?’:‘
city of PR

inrart T
(entral Librard umt™,

6.1 CONCLUSIONS

A review of the developments in remote control, telemetry
and supervisory control techniques since the World War II has
been presented. Trends in communication with respect to the im-
pact of the development of transistor, large automatic tracking
antennas, phase-locked FM detector and technologically superior
communication mediams, are also seen in detail. The use of compu-
ter in SCADA is overviewed. Based on this knowledge and the know-
ledge of computers a "Two level SCADA System'" with one master con-

trol station (MCS-80286 PC based) and one remote terminal units

(RTU-8085 uc based) has been developed and implemented.

Some important facilities necessarily required at the re-
mote terminal units that are achieved by using the hardware mo-
dules of micro computer are the inputting, display and monitor-
ing of analog & digital wvariables, PID control, digital control

and integration of pulse inputs.

Software routines and programs has been developed for data
acquisition, processing of the data, displaying the relevant in-
formation on CRT and transmitting it to the master control sta-

tion on demand.

Facilities at the master control station are broadly the
control of variable, display of received information and communi-

cation with remote terminal units.

6-1

The software for these facilities has been developed and
implemented. Display software is in Fortran-77, and communication

and control software is in 8086 assembly langauge.

Communication between RTU and MCS is serial using RS232C
link. A protocol for exchange of information between the two sta-

tions for minimum error during communication has been designed

and implemented.
6.2 SCOPE FOR FURTHER WORK:

The system can be explained using additional RTU's by pro-

viding additional communication ports in the hardware of the MCS

By adding sufficient processing capabilities with physica-
lly distributed RTU's. This system can be developed into a power-
ful computer network with the help of a proper networking soft-

ware. The configuration for networking can be either a ring or

a star.

Modems can be used where different RTU's are placed at phy-
sically very large distances. To obtain high communication effi-
ciency, optical fibre can be used as the communication medium.

This can improve communication speed and almost eliminate data

loss.

To enhance user RTU interface in the system, graphic soft-
ware can be used to display system configuration and its relevant

information in the form of mimic diagrams. Colour graphic display

can be done on MCS to improve readability of the mimic diagram.

To enhance facilities on RTU, processing capabilities of
the CPU and RTU can be increased by using 16 bit processor. Fast
speed, high throughput and better real time interface can thus

be obtained. Similarly a 32-bit system for MCS can be used.

A 12-bit instead of 10-bit ADC can be used in the RTU to
provide better resolution, reduce the quantisation error and im-

prove sensitivity.

From the MCS software one of the more popular and control
oriented language like C can be used in place of assembly lang-
uage. This will improve maintainability of software and hardware
improve portability of software and most importantly facilitate

changes in the software.

Real time system.like iRMS is used to increase the through-

put.

The SCADA system can be expanded into a powerful management
information system using on appropriate Data Base Management
package like ORACLE, INGRESS, FOCUS and UNIFY. Different statis-
tics about the performance, maintenance etc. of all RTU's could
be captured into the data base and statistical reports for a RTU

could be taken out at a later stage for any period of operation.

6-3%

REFERENCES

1. ELLIOT L. GRUENBERG (1967) : Fundamentals in 'Hand book of Tele-
metry and Remote Control' (Page 1-2 - 1-4)

2. H. RAMESH, S.GHOSH, M.G. DANIEL (1988): Systems Engineering
Approach : Relevance to SCADA in 'All India Seminar on SCADA for
Power Systéms and Industries' (Page 11-4-1-11-4-11)

3. SURENDER KUMAR (1988) : Trends in SCADA Systems in 'All India

Seminar on SCADA for Power Systems and Industries'(page 1-1-5)

4., SURESH KAMATH, S.SUNDARARAJAN, SATISH MOKKAPATI: An Optimal So-
lution to SRC/DAS for 25 KV Traction Supply in 'All India Seminar
on SCADA for Power Systems and Industries' Page (11-6-3-11-6-4)

5. J.G. TRUXAL, M.L. SHOOMAN, W.B. BLESSER, J.W. CLARK: Remote Con-

trol in 'Hand book of Telemetry and Remote Control' Page (15-2-
15-3).

6. C.H. HOEPPNER, C.H. DOERSAM, J.H. SMITH, J.F.BRINSTER, HANS
SCHARIA-NIELSEN, LAVEAGNE E-WILLIAMS :-RADIO-TELEMETRY SYSTEMS in
'Handbook of Telemetry and Remote Control' Page (4-2-4-3,4-24-
4-25). '
7. GUNTHER SWOBOOA: The Design of Telecontrol Installations in

'Telecontrol : Mwethods and applications of Telemetering & Re-
mote Control' Page (312-314),

8. SUBHASH.C. CHOPRA, RAVI RAINA: Supervisory Control and Data Ac-
quisition System - An Overview in 'All India Seminar on SCADA
for Power Systems and Industries' Page (111-4-4-111-4-5).

9. LAMBA, Y.P.SINGH(1989): Architectures for Computer Control Sys-
tems in 'National Workshop on Distributed Computer Control Sys-
tems' Page (1-3).

10. C.N. VASUDEVAN(1989): Advanced Control and Optimisation in Re-
fineries in 'National Workshop on Distributed Computer Control
Systems' page (1-8 .

11. ARMBRUST & FORGERON (1988) : BIOS Interrupts and Function Request

in 'Programmers Reference Manual for IBM Personal Computers' page
(504-707).

b d49lve

,Jelfine external and public variables

EXTEKN MEMo 1, MAVRAGY . MMIN1 . MMAX1

FUBLIC ADCREAD,DISF4.DISFL.DISPZ,LISES3

EXTEKN MEMMIN . MEMY94C . MAXMAX, BYTEMAX,BYTEST .MINMIN, BYTEMIN, BYTEST?, MEM1
FUBL1C RMS.MULT16,DIV.ADD32.AVRAG,BINTA, SQRT,.MAX,MIN, IR@.IR1.IR2.5TATL
EXTEN MEM100,MEM1¢1 . MEM192 ,MEM103 ,MEM104 . MEM1@5 ,MEM196 , MEM107 , MEM4
EXTEN TEMF1,MEM99 . MEMS2 , MEM38 . MEM8B6 , MEM35 , TEMP2 , MEM34A , MEMMAX , MEMY4B
EXTEKN MADD3Z ,MMULT16 .MEM6,MDIV16,MEMA,MPOINT, TEMP4,MBINTA, TEMFMUL

This routine calculates the EMS value of N numbérs (19-bit) stored
iin sequential memory location.

K] FUSH H
FUSH B
FUSH D
FUBH FoW .save registers
Lxl H.MEM1dw iinitialise the memory pointer of addition rout
ok LD MADD32 istore in MADD3Z2
LX1 H.MEMY 2 vinitialise the memory pointer for divident men
ohol MEMA :and store in MEMA
LA H. TEMPMUL vinitialise the pointers for multiplication &
LHLD MEM6 istore in memory multl6 & mem6
oHLD MMULT16
MY 1 A.10H iload count in accumalator
LHLD MEMYE
FIOY C.L
MOV BE.H isave the starting address of block in BC
LXI U.MEM88 ;multiplicant memory in in DE
LRI H.MEM86 imultiplier memory in HL
JOO0F4 STA TEMEF 2 . save the count
LDAX B .
MOV M. A
XCHG
MOV M. A
INX H
INX B
INX D
LDAX B
MOV M.A
XUHG .set multiplier & multiplicant with the
MUV M. A number to be squared
CALL MULT16 icall multle (for 16 by 16 Bit. multlplicatlon)
DCX D
pCX H decrement D,H pointer

INX B

JOF4

b
cdeline
EXTEN
FUBLLC
EXThN
FUBL1C
EXTEN
EXTREN
EXTEN

491lbce

external and public variables

MEMs1.MAVRAGY. MMIN1 . MMAX1

ADUCREAD . DISF4 . DISFL.DISPZ.DISF3

MEMMIN,MEM34C ., MAXMAX,BYTEMAX . BYTEST.MINMIN, BYTEMIN, BYTEST@ . MEM1
RMS .MULT16,DIV,ADD32.AVRAG, BINTA, SQRT,MAX,MIN, IR@. IR1.IR2,STATU
MEM1¥9 . MEM1¢1 . MEM1©2 . MEM1©3 . MEM1@4 ,MEM1925 , MEM19@6 , MEM137 , MEM4
TEMP1,MEM990.MEM92 ,MEM88 , MEM86 , MEM95, TEMP2 , MEM94A , MEMMAX , MEMY4B
MADD3Z . MMULT16 .MEM6,MDIV16.MEMA,MPOINT, TEMP4,MBINTA, TEMFMUL

vThis routine calculates the REMS value of N numbers (19-bit) stored
1in sequential memory location.

FUSH
FUSH
FUSH
FUBH
LxI
ok LD
LXL
ShLb
LX I
sHLD
SHLD
MV 1
LRLD
MOY
MOV
LXI
LXI
STA
LDAX
MOV
XCHG
MOV
INX
INX
INX
LDAX
MOV
XUHG
MUV
CALL
LCX
DCX
INX

. | \
B .
b
FowW .save registers
H,MEM1WWY vinitialise the memory pointer of addition rout
MADD3Z store in MADD32
H.MEMYZ vlnitialise the memory pointer for divident men
FIEMA and store in MEMA
H. TEMPMUL iinitialise the pointers for multiplication &
HMEMB6 istore in memory multl6é & memé
MMULT106
A,10H iload count in accumalator
MEMY 5
C. 0L
E.H :save the starting address of block in BC
D.MEM88 ymultiplicant memory in in DE
H.MEM86 ' imultiplier memory in BL
TEMEZ i save the count
B -
M, A
M, A
H
B
D
B
M.A
iset multiplier & multiplicant with the
M. A snumber to be squared
HULT16 icall multl6 (for 16 by 16 Bit multiplication)
9]
H .decrement D.H pointer

B

I'lo

317

Ll
LUk
JN
CALL
CALL
LXI
SHLD
CALL
LHLD
oHLD
XCHG
LHLD
MOY
1INX
MOV
INX
oHLD
CALL
FUF
FOF
FUF
FOF
KET

I'EMFE

A

LOuE4
ADD3%
SohT
H.9YWw4H
MEM9©
DIV
MD1V1e
MEM4

MRMS1
M.E

H

M.D

H
MEMS 1
BINTA
ESW
D

B

H

15 all number over

‘no loopA to square next number

.yes:call ADD3 to get the addition of numbers
call SKT

;oall dvision to get rms value

:save the rms value in MRMS1
convert the value to ASCII

.restore registers

:This routine multipies the contents of register pair DE by the
.contents of register pair BC. The 32 bit result will be obtained

FUSH
FUSH
PUSH
FUSH
MV I
L1
MOV
INX
MOV
LXI
MOV
LNX
MOV
LX1
FUSH
XCHG
DAD
XCHG

JNL

Lal

NOADD
b

1save registers :
:load the acc. with no. of bits in multiplier

Zet the multiplier in DE

imultiplier in BC
:set register vair H and the last entry on stack

get the multiplier into H&L
rotate the MSB into the carry
.put the multiplier back into DE

cIp carry = o, don't add. The multiplicand
‘to the partial result and the stack
;it 1., add BC to HL, result in HL

JNC

XTHL
INX
XTHL
NOADD - DCR
JNZ

POP

PUSH

POP
LALD

MOV
INX
MOV
INX
MOV
INX
MOV
INX
SHLD
POP
FOF
POF
FOF
RET
NOTEND DAD
XTHL
FUSH
DAD
FOP
JNC

INX
NOMSB XTHL
JMP

ithis routine adds 2¢ bit no.

NOADL

H

A
NOTEND

D
H
B
MMOLT16

M,C

H

M.B

H

M.E

H

M,D

H
MMULT16
psw

NXTBIT

1r 1, add BU to HL. resuit in HL

:should a 1 be added to the MSB's ot the
‘result stored on the stack 7

iYes. exchange HL and the stack entry.
iincrement the l6-bit MSW by 1

ithen save it back on the stack

.decrement the bit count

ithe count is non zero. so test another bit
1of multiplier.

ipop the 16-bit result.

;initialise the memory pointer

.store the result in memory

*

restore registers

irotate LSW of the result lett

iget the MSW into HL

:save the count and carry on the stack

irotate the MSW once to the left

ipop the count and carry off of the stack

iwas there a carry from the LSW ? no. then
do not add 1 to MSW

iincrement the MSW by 1

put the MSW on the stack

iand test another bit in the multiplier

which is stored in sequenced

i memory 1ocapion and result ins 3% bit

ADD32 PUSH
PUSH
FUSH
PUSH

LHL

H
D
B
PSW

.8ave registers

CONT3

AVRAG

MVI
LX1
LXI
oTA
MOV
ADD
MOV
INX
MOV
ADC
MOV
INX
MOV
ADC
MOV
INX
MOV
ADC
MOV
INX
LDA
DCR
JNZ
LHLD
MOV
INX
MOV
INX
MOV
INX
MOV
INX
SHLD
POF
FPOP
POF
FOF
RET

MEM6
A, 10H
B.©
D.®
TEMF 1
AM

>

> T > =T > X

EMF1

CGPrEOoornCGPrRTe>ImEm

<
=z
~3
w

MADD3z

T
Lo B 5

M.C
M!B

MADD32
PSW

¢initialise the mem. pointer
vinitialise the counter
:initialise register pair B & D with zero a

.8ave count

add partial rsult with 32 bit no.
:load and decrement the count

iis count zero .no:loop to add remaining no.
.ves:initialise pointer from where 3Z bit no

.s5tore no. in memory

isave the pointer

retrieve reg.s)
ithis routine calculates the average of N 1Y

ithis routine calculates the average of N 14-bit numbers.

PUSH
FUSH
PUSH
FUSH

PSW
H
B
D

CONT®

DIV

EXTEN
LDA
LHLD
MOV
MOV
LXI
FUSH
STA
LDAX
MOV
INX
LDAX
MOV
POF
DAD
PUSH
LNX
LDA
DCK
JNZ
MVI
LDA
MOV
SHLD
FOF
SHLD
CALL
LHLD
SHLD
XCHG
LALD
MOV
INX
MOV
INX
oHLD
CALL
POF
FOF
FOF
FOF
RET

COUNT1
MEMI4A
MEM39bH
C.L
B.H
H.¥

H
MEMY4A
B

>

Zmooxooorm
x

EM84A

Cs
<
=
-3
L]

H.9
COUNT1
L.A
MEM99
H
MEM9Z
DIV
MDIV1e
MEM4

MAVRAGO
M E

H

M.D -

H
MAVRAGR
BINTA

D

B

H

FoW

ave registers

:load the count in acc.
iinitialise memory pointer

.save the pointer in BC reg. pair
;initialise partial result with zero
.save result

iload 2 byte in DE reg pair

.add the 16 bit no. to partial result

icheck if all the no.s addtion is over.no:loo

yves

;call 32 bit by 16 division routine
;get the avg.
save in memd

;initialise the pointer from where avg.

value in memory

1store the value
isave the pointer
vcall BIN to ASCII routine which converts no.

retrieve reg.

ireturn

value

ithis routine divides the 16-bit gquantity in register pair DE by the

v1lo-bit quantity in register pair BC

NXTBIT1

CONT1

FUbH
FUSH
FUSH
rUsH
LXI
LX1
LDAX
HOV
INX
INX
LDAX
MOV
INX
MVI
LXI
LX1
MOV
INX
MOV
LX1

MOV
Kal
MOY
MOV
EAL
MOV
DCK
JNZ
MOV
MOY
BHLD
FOF
FUF
PUF
FOF
KET
MOV
KAL
MOV
MOV
RAL
MOV
DCX
DCX
MOV
pU

. TEMP4
 MEM9®

oo

>

1
W

S =

H
D
D
M
H
M.11H
B.@000H
H.MEM8Z

E
H
D
H

=g

==

W
H, TEMP4+2

(save registers

iinitialise DE with divisor mem loc.

isave the divisor in mem '
.save the count 17 decimal in memory

:load register pair H with the memmory
iaddresses where the bit count is stored
:get the L3 Byte of the dividend into A
irotate the MSE into the carry

isave the LS byte of the dividend back in E
;get the MS byte of the dividend into A
rotate the MSB into the carry

.save the dividend’s MS byte in D
:decrement the bit count

i1f count not egual to zero., Jump to CONTI1

;save the result in memory.

retrieve reg.

irotate the MSB of the dividend into the parti
:dividend stored in registers B and C

.decrement the memory address so that HL
ipoints to the divisor in memory
.get the LS Byte of the partial dividend

NOADD1

SRT

SuRT1

b
MOY
INX
MOV
SBB
MOV
JNC

beX
MOV
ADD
MOV
INX
MOV
ADU
MOV
CMC
JMP

:this routine calculates the

PUSE
FUSH
FUSH
FUSH
LX1
LXI
MOV
ORA
MOV
MOV
CKA
MOV
CALL
LDA
MOV
LDA
CMP
JC
JdNZ
LDA
MOV
LDA
CMF
JU
JNZ

D.A

i

Uih

H

AB

M

B.A
NOADD1

H
A C
M
C.A
H
A\B
M
B.A

NXTBIT1

H

B

D

FsW

H. 80WJH
B, 1000H

(2N velie ol S @il mulie e
(@

& -)
L3 T
to

(o}

[
&=
=
—
(>
~3

RST
SHET
MEM1W6

MEM1Q2
D

RoT
SHET

(subtract the LY byte of the divisor

isave the result back in €

increment the address

&8t the MS Bvte of the partial dividend
isubtract with borrow the divisor in memory
save the resuit in B

it the carry is zero, do not add the divisor
ito the result of the previous subtrction
ithe divisor is larger than the partial
idividend.so the divisor must be added to the
iresult ot subtraction so that the previous
ivalue of the partial dividend is reestablishe

;complement the carry _
ithen test another bit in divisor

square root of 32 bit no.

1set MSB of shift counter
iclear the bin value
.8et a binary value set a bit in C

iBget binary value set a bit in B
i8square binary value in BC reg. pair

Lba MEM105

MOV D.A
LDA MEM1@1
CMF D
Je R8T
JNZ SHET
LDA MEM1©4
MOV A.D
LDA MEM19©
CMF D
JNC SHFT
RST MOV A.C
XKA L
MOV C.A
MOV AB
XRA H
MOV B.A
SHFT MOV A.H
KAK
MOV H.A
MOV AL
KAk
MOV L.A -
JNC SQRT1
CALL SQRBC
LDA MEM1©4
MOV D.A
LDA MEM10©
SUB D
CMF C
JC DONE
Ji DONE
1Nk ¢
DONE LHLD MEMA
MOV M,C
INX H
MOV M,B
POF PSW
POF D
POP B
POF H
RET

:this routine squares the contents of BC register pair
vand result is stored in memory
yinput-rp

SRBC

NXTBIT4

NOADD4

NOTEND4

(B

;output-MEM194 . MEM106 , MEM1¥6 . MEM1©7 (ms-BYTE)

PUSH
FUSH
FUSH
FUSH
MOV
MOV
MVI
LXI
FUSH
XCHG
DAD
XCHG
JNC

DAD
JNC

ATHL
INX
XTHL
DCk
JNZ

FOF
JNZ

FOF
MOV
STA
MOV
STA
MOV
oTA
MOV
STA
FOP
FOP
POF
FOP
RET
DAD
XTHL
FUSH
DA

T I:E}'FJ‘C"'UC‘UJI

NOADD4

B
NOADD4

H

A
NOTEND4

D
NOTENDA4

D

A,D
MEM1©7
A.E
MEM106
AH
MEM106
AL
MEM194
POW

D

B

H

H

PoW

;8et the multiplier into B&L

irotate the MSB into the carry

;put the multiplier back into DE

It carry = ©, don’t add. The multiplicand
ito the partial result and the stack

+if 1, add BC to HL, result in HL

+should a 1 be added to the MBB’s of the
.result stored on the stack ?

iYes, exchange HL and the stack entry.
iincrement the 16-bit MSW by 1

:then save it back on the stack

idecrement the bit count

ithe count is non zero. so test another bit
of multiplier.

:pop the 16-bit result.

ithe count is non zero, so test another bit
iof multiplier.

ipop the 16-bit result.

.save the result in memory

srestore registers

.rotate LoW of the result left
.g&et the MSW into HL
1save the count and carry on the stack

NOMSB4

BINTA

LOUOF1

¥ H rotate the MW once to the left

POF FSW .pop the count and carry oftf of the stack

JNC NOMbB4 iwas there a carry trom the LSW 7 no, then
do not add 1 to MSW

INX H iincrement the MsSW by 1

XTHL iput the MSW on the stack

JMF NXTBI1T4 ;and test another bit in the multiplier

:this routine converts the binary number in HL pair to
vits ASCII equivalent

PUSH H .

FUSH B

FUSH D ;save registers |

FUSH FowW ‘

LHLD MBINTA :load HL with the address where the
iresult will be stored

XCHG :save address in DE ‘ '

LXI H.MFOINT

MOV M.E

INX H

MOV M.D save the address in memory

MV1 B.1©W3H :load the count in B

LHLD MEM4 i:load binary number in HL

LXl D, gwAH iplace powers of te LXI I, oAl

FUSH D

LXI D.9wW64H

FUSH D

LX1 D.©Y3EBH

FUSH L ' N

FOF D Zet power of ten of digit to be computed

CALL DIGIT subroutine returns digit in C

FUSH H .save binary difference

LHLD MPOINT g6t pointer to digit storage area

MOV M.C ‘store digit

INX H iincrement pointer

SHLD MPOINT :store pointer

POP H iget binary difference

DCK E

JNZ LOOF1 :more than one digit must still be determined

MOY A,bL

ADI 30H

MOV C.A

LHLD MFOINT

LIGIT
AGAIN

MAX

CONTZ

Hov
INX
INX
INX
SHLD
POF
FOF
FOF
FOF
KE"Y
MV1
INk
MOV
SUB
MOV

MOV
SBB
MoV
JNC

DAD
MOV
ADI
MOV
RET

:this routine finds the

M,

H

B

H
MBINTA
FoW

D

B

H

C.OFFH
¢
A.L
E
L.A

AH

D
H.A
AGAIN

b

A.C
30H
C.A

N numbers

FUSH
FUSH
FUSH
FUSH
MVI
STA
LDA
MOV
LXI
LHLD
MOV

H

B

D

FSW
A,32H
MEM94B
MEM94B

D.o
MEMY5
A‘M

.get poanter to digit storage area
store digit

:save the pointer

.retrieve registers
:initialise ¢ to -1

;subtract lower order power '
:0f ten from binary number

isubtract higher order power of ten from
‘binary number

1is ditfterence positive, go back to subtract
v again
iis ditference negative, restore

.convert the digit into ASCII

maximum number (19-bit) from a string ot

.save registers

iinitialise count 5@ decimal to MEM 84B and
:8tore it in register B

iinitialise maximum number in DE reglster pair
¢initialise memory pointer

Luwuk g

Luokde

INX
Fluv
wbb
Ju
MOV
pexX
MOV
INX
1NX
DCR
JNZ
XCHG
SHLD
XCHG
LHLD
MOV
INX
MOV
INX
oHLD
LHLD

MOV
sUB
INX
MOV
SkE
JNC
LDA
MOV
LDA
OKA
STA
LDA
RLC
STA
INX
SHLD
CALL
FOF
POF
FOF
POF
KET

ALl

Louukd
D.M

[volte siengicalje sl

CONT2
MEM4

MMAX1
M.E

H

M.D

H
MMAX1
MAXMAX

AM

E

H

AM

D
LOOPWZ
BYTEMAX
B.A
BYTEST
B
BYTEMAX
BYTEST

BYTEST
H
MAXMAX
BINTA
FoW

D

B

H

scompare number with maximum number

1is number > maximum number., NO jump to loopd
yves, store number as maximum number

compare with next number
ils comparison over.NO jumpto contd

‘YES, store the number in memory

:store the number in MAX1

:load HL wit the address of the higher limit
;of the number

LN

ONTH

VOED

10.0)2%23

FUsH
FUsH
t UvH
FUsH
MV I
oTA
LDA
MOV
LXI
LHLD
MOY
sSUB
INX
MOV
oBB
JNC
MUY
DCX
MOV
INX
INX
DCK
JNZ
XCHa
SHLD
XCHG
LHLD
MOV
INX
MOV
INX
SHLD
LHLD

MOV
SUB
INX
MOV
obB
JC

LDA
MOV
LDA
ObkA
oTA
LDA
ELC

H

b

b

FoW

A, 32H
MEMY4C
MEM94C
B'A
D.OFFFFH
MEMYS
AM

E

H

AM

b
LOOFS
D.M

H

E.M

H

H

B
CONTH

MEM4

MMIN1
M.E

H

M.D

H
MMIN1
MINMIN

AM

E

H

AM

D
LOOF©0S
BYTEMIN
B.A
BYTEST®@
B
BYTEMIN
BYTEST®

.save registers

‘initialise count 53 decimal to MEM 94C and
istore it in register B

vinitialise minimum number in DE register pair

initialise memory pointer

compare number with minimum nymber

:is number < minimum number. NO jump to loopbd

ives, store number as minimum number

.compare with next number
.18 comparison over.NQ jumpto contb

:YES. store the number in memory

;store the number in MINI1

:load HL wit the address of.the lower limit
0f the number

;compare if number i1s less than lower limit

‘NO, jump to loopi@dd

YES, make that bit 1 in bytemin location

ishitt the bit

wla BiTEL1lw

INX H

SHLD MINMIN istore the addresss of next lower limit
CAL BINTA iconvert the minimum number into ASCIIL
FOF FSW

POF D

FOF B :

FOF H .restore reglsters

KET

.displays the status of digital input in the form of ON or OFF
vinput port-A of 825Hb-1

STATUS FUSH H

PUSH B
FUSH Iy} :
FUSH PoW isave registers
LXI H,MSTATUS :initialise the memory pointer and save its
SHLD TEMPS :value in temps
MVI A, 9BH iinitialisation of 8266-1
QUT 53H ;all input ports
MVI C.08H iinitialise count
MV1 B.9J1H ‘8ave shift bit count in reg. B
IN 50H iread the status
oTA TEMFSQ .store its value
CONT6 LDA TEMPS® vload status in accumulator
ANA B .check if bit is ¢
Ji OFF JYES, jump to store code of OFF
LHLD TEMPS
MVI A.20H
MOV M.A
INX B
MVI A.4FH
MOV M.A
INX H
MVI A,4EH store the ASCII code of " ON " in memory
MOV M.

OFF

LAST

WAITGE

INX
Iivi
oy
INX
SHLD
JME
LHLD
MV1
MOV
INX
MVI
MOV
INX
MVI
MOV
INX
MOV
INX
SHLD
MOV
RLC
MOV
DCR
JNZ
MVI1
MOV
LX1

IN

ANI
JZ

MOV
OUT
INX
DCR
JNZ
FOF
FOF
POF
FOF

RET

A
H
A, <t
M.oa
H
TEMFS
LAGT
TEMFS
A, 20H
M A

B.A

C

CONT®6
A,QAQH
BE.A
H.©¥B3CoH

OF18
©W1H
WAITS6
AM
OFgH
H

B
WAIT6
FSW

D

B

H

:save the pointer

:store the ASCII code of "'OFF " in memory

.save the pointer
irotate left the shift bit

:is all 8 bits checked 7
+NO , jump to contb

:YES, save the no. of bytes-to be transmitted
in B and initialise the HL with the starting
;address of the block

;output a byte

increment the pointer

:NO, jump to wait6

:YES, retrieve registers

DISFLAY

WAITY

imain Jdisplay sub. to display all valuesirms,avrag-etc) of 16 analog
:variable in decimal torm

FUSH
PUSH
FUSH
FUSH
LXI

LXI
IN

AN1
JZ

Moy
OUT
INX
DCX
MOV
OKA
JNZ
FOP
POF
FOP
FOP

H

B

D

FSW :save registers

B.©3COH :no. of bytes to be transmitted in BC
sregister pair

H. @BY?YH istarting address of block in HL reg pair

WF1H

P18

WAIT7

AM

YFOH stransmit one byte

H

B

A, G

B :is all bytes over ?

WAILTY NO, jump to wait? to transmit rest of the bytes

FSW

D

B

5 . irestore registers

D1SPLAY

WAIT7

LRD

AGAINwW

CHECK@O

:main display sub. to display all values(rms,avrag-etc) of 16 analog
ivariable in decimal torm

PUSH
FUSH
FUSH
FUSH
LX1

LXI
IN

ANI
JZ

MOV
oaT
INX
DCX
MOV
UKA
JNZ
FOP
POF
FOF
FOP
KET

vi.s

PUSH
FUSH
PUSH
FUSH
MVI
MVI
IN
STA
LDA
ANA

J
MOV
oTA
CALL
INK
MOV
RLC
MOV

H

B

D

FSW 8ave registers

B.©3COH ‘no, of bytes to be transmitted in BC
iregister pair

H.0BYYIH _ .starting address of block in HL reg pair

YF1H

W1H

WAIT7 ‘

AM ‘

WFJH stransmit one byte

H

A,.C
B 1is all bytes over 7
WAITY ‘NO. Jjump to wait7? to transmit rest of the byte:
PoW
D
- B
H .restore registers

.s-this gives the command to start swt.device
H
B
D
PSW .save registers .
E.0idH iinitialise bit counter in E and shift
B.Y1H icount in B
51H vinput from port and store in memory
MEM16
MEM16
B icheck interrupt from which device NO. jump
:to check next bit
CHECK@oQ
AE
MEM17 :YES, save the bit no. in MEM17
DISP1 vcall display to display comand
E iincrement bit count
A.B

+shitt count

DISF1

WAT T

WAITO1

WAIT@Z

WAIT@I3

aNl
JZ
FOP
FOF
FOF
FOP
RET
PUSH
PUGH
FUSH
PUSH
LXI
MV1
IN
ANI

Jz

INX
MOV
OUT
DCK
JNZ
LA
A0l
MOV

ANT
JZ
MOV
ouT
IN

ANI
Ja

MVI
ouT
IN

ANI

H.0B50WH
B.1EH
WF1H

©01H

WAITOO
H

AM
©WFoH

B
WA1TwR
MEM17
3YH
B.A
WF1H
©0lh
WAITO1
A.B
©OFH
OF1H
01H
WALTOZ
A,QDH
2)3%);|
WF1H
©U1H

;all bits checked 7
NO, Jjump to againid?d

YES. restore registers

.save registers
vinitialise starting address of the block
.save the no. of bytes to be transmitted in B

:transmit one byte
idecrement count
vis all bytes transmitted ? NO,transmit next

stransmit the bit no.

stransmit CR code

4 Wallw3

Mv 1 A.WAH

WUt WwiYH cLransmit LI code
FOF PSW

FOF D

POF B

FOF H irestore registers
RET

1IR1. IRKZ,IK3 are exactly similar procedures but each one transmits
ia sligtly different commard

1i.8.8-this gives the command to start plant

IR1 FUSH H
PUSH B !
FPUSH D
PUSH FSW 18ave registers
MVI E,9JH
MVI B.91H
1IN 5¢H sport-c of 3825b5-1
STA MEM16b
AGAINY! LDA MEM16
ANA B
J2z CHECK®@1
MOV AE~
STA MEM17
CALL DISPZ
CHECK®@1 INR E
MOV A,B
RLC
MOV B.A
ANI W1H
Ji AGAING1
FOF PSW
FOF D
FOF B
FOP H
RET
DISP2 PUSH H
PUSH B
PUSH D

FPUSH PSW .save registers

LX1 H, wbBowiH

MV 1 B.18H
WALTL® N OF1H

ANI WLH

2 WALT10

INX H

MOV AN

OUT OFgH

DCK B

INZ WALT10

LDA MEM17

ADI 30H

MOV B,A
WAIT11 IN QF1H

ANI o1H ‘

JZ WAIT11

MOV A.B

OUT . QFQH
WAIT1Z IN @F1H

ANI O1H

JZ WAIT12

MVI A.@DH

ouT @F@H
WAIT13 IN QF1H

ANI O1H

JZ WAIT13

MV 1 A.@AH

QUT OFQH

FOF PSW

POF D

FOF B

FOF H

RET

:1.5.5- this interrups when any swt. device has to be stopped
IRZ2 PUSH H

FUSH B

PUSH D

FUGSH FSwW

MVI E.o0H

MV B,01H

IN 54H ‘PORT-A OF 82b55-2

STA MEM16
AGAINO2 LDA MEM16

ANA B

Jz CHECK®@2

MOV A.E

S5TA MEM17

CALL

vhHivhoe Lih

DISE3

WAITZ0

WAITZ21

WAITZZ

Moy
KLC
MOV
ANIL
JZ
FOP
FOF
POF
FOF
KRET
FUSH
PUSH

FPUSH
PUSH
LXI
MV1
IN
ANI
JZ
INX
MOV
QUT
DR
JINZ
LDA
ADI
MOV
IN
AN1
JZ
MOV
ouT
IN
ANI
J2

DIBES
b
A.b

b.A

©O1H
AGAIN@DZ
POW

D

B
H
H
B

D

PSW
H,0B700H
B.1DH
©YF1H
©1H
WAITZ29
H

AM
OFPZH

B
WAITZ0
MEM17
3oH
B.A
YF1H
28!
WAITZ1
A.B
JFdH
¥F1H
©O1H
WAITz2

biv i A.WLH

WU WEWH
Wallzi LN WF1H

ANL WiH

Ji Wallz3

Myl A, JYAH

S1INY WHWH

FPOP PSW

POF D

FOF B

POF H

RET

EXTRN MADC,CHNUM
ADCREAD PUSH H ,'

FUSH B

FUSH D

FUSH FSW .save registers

LDA CHNUM

OuT WB@WH :initialise channel

CALL DELAY iwait for 2¥ms so adc conversion is over
WAITZ INM WBZH

KLC

JC WAITZ i1is conversion over?7NO.wait

XKA A YES.read higher byte and store its 2 MSB’'S

IN ¥B1H iin register h and LSB’S in register b

KAL

MOV B.A

MVI AQ

RAL

MOV C.A

XRA A

MOV A.B

KAL

MOV B.A

MOV A.C

RAL

MOV H.A

IN ©¥BzZH iread lower byte .

ANI YW3H imask six higher order bits ADD B

MOV L,A .store in 1L registers

LlbAay

LOOF8

DISP4

WAIT40

WAIT41

WALT4z

oHLD
FUE
FOk
ot
For
0y}
tUSH
FUoH
FUSH
FUSH
LX1
DX
MOV
WURA
JNZ
FOP
FOF
FOF
FOP
KET

vSstore digital value in memory

restore registers

.save registers
iinitialise the delay count in register B
idecrement the count

check 1f pericd is over
no. Jjump to decrement count

.restore registers

idisplay wrong code pressed

FUSH
FUSH
PUSH
PUSH
LX1
MVI
IN
ANI
J2
INX
MOV
ouT
DCR
JNZ
LDA
ADI]
MOV
IN
ANI
JiZ
MOV
OUT
IN
AN

o

PSW

H, ©B%0wH
B, 1DH
©OF1H
J1H
WAIT4¥
H

A.M
YFJH

B
WAIT4u
MEM17
30H
B.A
YF1H
©¥1H
WAIT41
A.B
OFOH
WF1H

18ave registers

WAll43

Ji
Myl
WIsH\
1N
AN1
JiZ
MVl
Vil

FOF
For

POF
tOF
RET
KND

WiH
WALT4Y
A.oLH
WEwH
WF1H
01lH
WalTl43
A.WAH
WFuH
Fow

b

b

H

iinitialisation

EMS18
AVRAG1S
MAX15
MIN1S
MEMING
MEMMIN
MEMMAX
MAVRAG1
MPOINT
COUNT1
MEM4
MEM94A
MEMS9
MEM92
MBINTA
TEMP4
MDIV1e
MEM95
MEM10@
MEM1021
MEM102
MEM103
MEM104
MEM1@5
MEM106
MEM1027
MEMY94B
MEM94C
MAXMAX
BYTEMAX
BYTEST
TEMF1
MEM86
MEM88
MEM6
TEMF2
MMULT16
MADD3z
MEMA
TEMPMUL
MEMS
MADC
MINMIN
BYTEMIN
BYTESTY

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

_SET

SET
oET
SET

" SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
oET

- SET

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

OKG 41969
of all memory locations
JDHP8H
@D512H
@D520H
PD530H

YBJAEH

¥B1EEH
?B19EH
WB23EH

9400H

9492H

9404H

9406H

94QA8H

940AH

949CH

940EH

9410H

9412H

" 9414H

9415H
9416H
9417H
941 8H
94.9H
941AH
941BH
941CH
941EH
VA420H
0A422H
BA423H
v424H
9426H

- 9428H

942AH
942CH
942EH
9430H
9432H
9434H
¥B32EH
9436H
OA438H
0A43AH
WA43BH

S5TORE®QW SET 177%)5)

STOREQ4 SET 9910H
STORE®5 SET STOREQ®4 + 100
STORE®6 SET STOREQ@S5+ 100
STOREQ7 SET STOREQ6+109
STORE@8 SET STOREQ@T + 109
STOREQY SET STORE®S+109
STORE@A SET STOREQS+190
STORE@B SET STOREQA+100
STOREQC SET 95@2H
STORE@D SET STORE@C+64
STOREQE SET STORE@D+64
STORE@F SET STOREQE+64
TEMPQ@ SET 98Q2H
TEMP@4 SET 9892H °
TEMF@5 SET 98Q4H
TEMP@6 SET 98@6H
TEMP@7 SET 9898H
TEMF@8 SET 980AH
TEMF@9 SET 98@CH
TEMP@A SET 98QEH
TEMEF@B SET 9819H
TEMPQC SET 9812H
TEMF@D SET 9814H
TEMPQE SET 9816H
TEMP@F SET 9818H
TEMP1@ SET 981AH
TEMP2® SET 981CH
TEMP3@ SET 981EH
MAVREAGY SET 9820H

MRMS1 SET 9822H

MMAX1 SET 9824H

MMIN1 SET 9826H

CHNUM SET 9828H

MEM16 SET 982AH

MEM17 SET 982CH
MSTATUS SET @B41EH
TEMFS SET 982EH
TEMPS@ SET 983@H

ADCCH EQU ¥BOH

HIBYT EQU @B1H

LOBYT EQU UBZH

idefine public and external variables

FUBLIC MEM16,MEM17,MSTATUS,TEMPS,TEMPS®

FUBLIC MAVRAG1,STORE@4,STOREZS, STOREZ6, STOREQDT, STOREDS, STOREZI, STOREL
FUBLIC STOKEZB.MEMMAX,MEMY4B.MEMP4C . MEMMIN, BYTEMAX, MAXMAX, BYTEST . MINY
FUB

LIC STORE@C,STOREZD,STOREQE . STOREDF ,MEM19@, MEM191 , MEM1@2 ,MEM123 , MEM.
PUBLIC MEM1@5,MEM1@6,MEM1@7 ., TEMP1,MEM86 ,MEM88, MEM6, TEMP2,MMULT16, MEMA,'
FUBLIC TEMP1@,TEMP2@,ADCCH, CHNUM, LOBYT,HIBYT,MADC, SLOW,FAST, AGAIN4 ,AGA.
PUBLIC MPOINT,MEM4, TEMP4,MEM94A,MEM95, MEM99,MEM92, MBINTA,MDIV16, COUNT1
PUBLIC AVRAG1S.MAX1S,MIN1S,RMS15,MAVRAGY,MRMG1,MMAX1,MMIN1
EXTREN ADCREAD.BINTA
imain program

MVI A.1DH
SIM ienable RST7.5, RST6.5, RS8TH.H
MV1 A.©
STA TEMFP 19
STA TEMF2@ : iinitialise memory contents to ¢
MVI A.70H
ouT OFTH
MVI A.80H ‘
ouT JF5H iinitialisation of counter 2 of 82563
MV1 A.Q7H
ouUT @F5H
MVI A.37H
ouT OFTH
MV1L A,10H
OUT WF4H iinitialisation of counter 1 of 8253
MVI A.OYH
oUT UF4H
MVI A.4FH
OUT QF1H
MVI A.95H ,
ouT JF1H .initialisation of 8251 txd and rxd enable
MVI A, 9BH
OUT 53H
ouT 57H ;initialisation of 8255-1 and 8256-2
MVI A,1l6H
¢BT WFZH iinitialisation of 8259
MVI A, 8AH
ouT QF3H sunmask IR®,IR1,IR2
MVI A,0OF8H
QUT WF3H
AGAIN1 MACRO
LX1 H,STOREQY
SHLD TEMPOQ
ENDM
AGAINZ MACRO
LXI H.STOREQJ4
SHLD TEMP@4
LXI H.,STORE@5
oHLD TEMP@5
LXI H.STORE@6

SH

AGAIN3

STORE

AGAIN4

AGAIND

Lb
LX1
SHLD
LX1
SHLD
LXI
SHLD
LX1
SHLD
LX1
SHLD
ENDM
MACRO
LXI
SHLD
LXI
SHLD
LXI
SHLD
LXI
SHLD
ENDM
MACRO
MOV
INX
MOV
INX
ENDM
AGAINI1
AGAINZ
AGAINS
LXI
SHLD
CALL
JMP
FUSH
FUSH
FUSH
FPUSH
AGAIN2Z
FOF
POF
POP
FOP
RET
PUSH
PUSH
FUSH
PUSH

TEMF©Q6
H, 8TORE@A7
TEMPR7
H.,STORE@ZS
TEMP@8
B, STOREQS
TEMP29
H.5TOREQA
TEMPOA
H, STORE@B
TEMPOB

H.STOREQC
TEMF@C
H, STORE@D
TEMF@D
H. STOREQZE
TEMPOE
H,STOREQF
TEMPOF

M.E
H

M.D
H

H,MEMINS
MBINTA
SLOW

GOz

rinitialisation of memory location
ifor uncontrolled slow variables

iinitialisation of memory location for fast
ivariables

iinitialisation of memory for slow controlled
ivariables

icall slow to input slow analog variables

i Jump to go2

o LOW

CONT®

LOOPE

302
HAULT

STOREL

AGAINZ
POF
POP
FOF
POF
RET
FUSH
FUSH
FUSH
FUGH
LXI
SHLD
MVI
STA
CALL
LHLD
XCHG
LHLD
STORE
SHLD
XCHG
SHLD
CALL
LDA
INK
ST A
UF1
Ja
JMF
AGAIN1
CALL
POF
FOF
FOF
FOF
RET
CALL
El
HLT
JMF
MACRO
INK
MOV
STA
CALL

oW
PSW

Ccmx TwT

FPSW
H.MEMINS
MBINTA
A2
CHNUM
ADCKEAD
MADC

TEMPO@
TEMP0Q

MEM4
BINTA
CHNUM
A
CHNUM
¥4H
LOOF6
CONT®
SLOW1
PSW

D

B
H

FAST
HAULT

A.B
CHNUM

iinitialise pointer from memory instantaneous
;and store in memory MBINTA

;initialise channel no.
iread the ADC

.save the digital value in memory

:convert the binary no, into ASCII
increment the channel no.

:is channel no. = 94 7

YES,call SLOW next

‘NO. jum p to input channel value

icall slow to input variables(@5- 12)

.restore registers

:input fast variables

ienable interrupts

‘halt i

; Jump to wait for next interrupts

oLOW1

LHLD
XCHG
ENDM
PUGH
PUSH
PUGH
PUSH
MVI
oTA
MOV
CALL
LHLD
XCHG
LHLD
STORE
SHLD
STORE1
LHLD
STORE
SHLD
STORE1
LHLD
STOKRE
SHLD
STOKE1
LHLD
5TORE
SHLD
STORE1
LBLD
STOKRE
SHLD
STORE1
LHLD
STORE
SHLD
STORE1
LHLD
STORE
SHLD
STORE1
LHLD
STORE
SHLD

ADCKREAD
MADC

TEMP@4
TEMP@4
TEMP25
TEMP®@5
TEMP26
TEMP@6
TEMFP@7
TEMP@7
TEMPO8
TEMP©O8
TEMP29
TEMP@9
TEMPQ@A
TEMFPOA
TEMPOB

iinitialise channel no to 4

:save the value in register B
read the ADC
.store the value

vincrement the channel no. to 9B and read
yadn store

TEMF@B

POF PSW
FOF D
POV B
POP H .resotre registers
RET
FAST © FUSH H
FUSH B
FULH D
FUSH PoW
MVI A.WYCH
STA CHNUM vinitialise chanel no. to 9CH
MOV B.A isave the value in register B
CALL ADCREAD iread the ADC
LHLD MADC istore the value
XCHG
LHLD T'EMPQC
STORE A
SHLD TEMFQC
STORE1
LHLD TEMFQAD
STORE
SHLD TEMF@D
STORE1L
LHLD TEMPJE
S3TORE
SHLD TEMPYE iincrement the channel no. to 9FH and
- STORE1L :read and store their value
LHLD TEMFQF
STORE
SHLD TEMPOF
POF PSW
FOF D
FPOF B
FOF POW ;restore registers
RET

END

LESS

URG
FUSH
PUSH
PUSH
FUSH
EXTEN
EXTREN
EXTRN
EXTRN
EXTEN
EXTRN
MVl
OuUT
MVI
OUT
LDA
INK
oTA
CPI
JNZ
LDA
INEK
STA
CP1
JZ

CALL
CALL
JMF
PUSH
PUGH
FUGH
FUSH
XRA
STA
CALL
LXI
SHLD
LXI
SHLD
LXI
SHLD
CALL
LXI

32843
H

B

D
PoW

MRMb51,RMB515.,5TATUS,DISFLAY

MINMIN, BYTEMIN, BYTEST@, MMIN1 .MIN1S.MAX1S, MMAX1,MAVRAGD, AVRAGLS
TEMFMUL , MEM6 ,MMULT16 ,MAVRAG1 , STORE®4 , STORE®S , STORED6 , STOREDT , 5
STOREQA . STORE@B, MEMMAX , MAX , MEMMIN, MIN.MAXMAX, BYTEMAX, BYTEST
STOREQC . STORE®QD, STOREQE , STOREQF , MEM94A ,MEM95 , MEM10@ . MEMA , KMS , M/
AVRAG.TEMP1@, TEMP20, CHNUM, SLOW, FAST . AGAIN4, AGAINS, COUNT1.MBINT/

A, 80H
@F5H
A,Q7H
@YF5H
TEMF12
A
TEMF10
10H
GO1
TEMPZ@
A
TEMPZ1
32H
GO2

LESS
AGATN4
ENDD

H

B

D

FSW

A

TEMF 19
SLOW
H.STOREQC
MEMS5
H,MRMS
MBINTA
H,RMS18
MRMS1
RMS

irelode the counter

" :increment the count stofed in TEMP19

;check if 2UmS period over
(NO, jump to GO1
YES,increment the counter which counts the 1ls

iis lsec over?

yes, jump to calculate MAX,MIN,AVRAG of slow
ivariable
;call LESS

iinitialise memory for fast variables
; Jump to last

.save registers

iclear memory
;call SLOW to input slow variables

calculate KMS value of four fast variables

H.,oTOREQD and conert them into ASCII and store
SHLD MEMY5

CALL EMS

LXI H.STOREQE

SHLD MEM95

CALL RMS

LXI H.STOREQF

SHLD MEM95

CALL EMS

POF PoW

FOF D

POF B

FOF H irestore registers

RET
GOL CALL FAST icall FAST to input fast variables

JMF ENDD ; jJump to end
302 MVI A,32H :set count

STA COUNT1

STA MEMS4A

LXI H.MAVRAG1

SHLD MBINTA

LXI H.STOREQ4

SHLD MEM35

LXI H.AVRAG1S

SHLD ~ MAVRAGO
CALL AVKAG

MVI A.32H

oTA MEMS4A

LXI H.S5TORE®S

SHLD MEM95

CALL AVRAG icalculate AVERAGE value of eight slow variable
MVI A, 32H iand conert them into ASCII and store

STA - MEM894A

LX1 H.STOREQG

SHLD MEMS5
CALL AVRAG

MVI A,32H
STA MEM94A
LXI H.5TOREQ7

SHLD MEMS5
CALL AVRAG

MV1 A,32H
STA MEM894A
LX1 H.STORE®S

SHLD MEM

-~

CALL
MVI
STA
LXI
SHLD
CALL
MVI
STA
LXI
SHLD
CALL
MVl
STA
LXI
SHLD
CALL
LXI
SHLD
MVI
oTA
MVI
STA
LX1
SHLD
LXI
SHLD
LXI
SHLD
CALL
LX1
SHLD
CALL
LXI
SHLD
CALL
LXI
SHLD
CALL
LXI
SHLD
CALL
LXI
SHLD
CALL
LXI

95
AVRAG
A.32H
MEM94A
H,STORE®@9
MEM95
AVRAG
A,32H
MEM34A
H, STOREQA
MEM85
AVRAG
A,32H
MEM94A
H, STOREZB
MEM95
AVRAG
H. 9F@0H
MAXMAX
A, QvH
BYTEMAX
A.Q1H
BYTEST
H, MEMMAX
MBINTA
H.STOREQ4
MEMS5
H,MAX1S
MMAX1
MAX
H, STORE®5
MEMS5
MAX
H,STORE®6
MEM395
MAX
H.,STORE®7
MEMS5
MAX
H.STORE®S8
MEMS5
MAX
H.STORE®Y
MEMS5
MAX
H,S5TO

icalculate MAX value of eightslow variables
iand conert them into ASCII and store

ENDD

303

SHLD
ZALL
LX1
oHLD
CALL
LXI
SHLD
MVI
STA
MVI
STA
LXI
SHLD
LXI
SHLD
LXI
SHLD
CALL
LXI
SHLD
CALL
LXI
SHLD
CALL
LXI
SHLD
CALL
LXI
SHLD
CALL
LX1
SHLD
CALL
LX1
SHLD
CALL
LX1I
SHLD
CALL
CALL

CALL
CALL
JMP
FOF
FOF
POF

FOP
RET
CALL
JMP
END

REQA
MEM95
MAX
H.5TOREGB
MEM95
MAX
H.SF10H
MINMIN
A, OQH
BYTEMIN
A.91H
BYTEST®
H.MEMMIN
MBINTA
H,STORE@Q4
MEM95
H.MIN1S
MMIN1
MIN
H.STORE@S
MEM95
MIN
B, STORE®6
MEMS5
MIN
H.STOREW@7
MEM95
MIN
H,STOREZS8
MEM9IS
MIN
H, STOREQS
MEMS5
MIN
H.STOREQA
MEM95
MIN
H.STORE@B
MEM95
MIN
LESS

DISPLAY
STATUS
GO3

PSHW

D

B

H

AGAINS
ENDD

;calculate MIN value of eightslow variables
;and conert them into ASCII and store

:call LESS to calculate RME value of four fast
vairables and conert them into ASCII and store
icall DISPLAY to display processed data

icall status to display status of switching de

‘restore registers

iinitialise memory tor slow variables

J1

Jz

J3

whu
EXTEN

OJ MP
JMFE
JMF
JHME
JMFE
JME
JMF
FUSH
MVI
OuUT
FOF
El
KET
wALL
CALL
CALL

FUsSH
HvI
wUT
FOP
El
KET
CALL
CALL
CALL

FUSH
MVI
OuUT
FOF
El
RET
CALL
CALL
CALL

FUSH
MVI
WUT
FOF
El
KET

35346

IRkY.IR1.1IR2.DISFLAY,STATUS
;initilaise memory block for interrupts of 8254

J1
Je
J3
J4
Jd
Jé
Ji
ESW
A, Z0H
WFZH
F5SW

IR©
DISFLAY
STATUS

PSW
A.20H
WFeH
PSW

IRK1
DISPLAY
oTATUS

FoW
A,21H
WFzH
PSW

Ike
DISFLAY
STATUS

PoW
A.22H
©WF2H
FSW

;201 command

icall IR to display start switching device
;call display to display analog data

;call status to display status of switching
;devices

;e0i command

icall IRl to display start plant

.call display to display analog data

.call status to display status of switching
.devices

801 command

:call IR2 to display stop switching device
icall display to display analog data

.call status to display status of switching
idevices

ie0l command

e~

3TEPO3

STEFD4

STEFOH

>TEFO6

STERGT

5TEP©8

3TEFPYY

3TEFQ10

STEFP11

EXTERN
EXTERN
this

PUSH
FUSH
FPUSH
FUSH
CALL
CEl
JNZ
CALL
JMF
Ccpl
JNZ
CALL
JME
CFrl1
JNZ
CALL
JMF
CFrl
JNZ
CALL
JMF
CFr1
JNZ
CALL
JMF
CFl
JNZ
CALL
JMF
CFI
JNZ
CALL
JMP
CP1
JNZ
CALL
JMP
CPI
JNZ
CALL
JMP
CPI
JNZ

wha

READYW, READ@1L.

WRONG

6WVYH

MEM17,

DISE3,

DisF2, DIGP1,

DISP4, SUB38,

SUB39

program takes command from operator and takes action accordingly
H

B

D

PSW
3COCH
W1H
STEFJ3
SUBY1
DO189
©0ZH
STEPZ4
SUB©WZ
DO18©
¥3H
STEP@5
SUBW3
DO189
©04H
STEFQ6
SUB®4
DO189
©05H
STEFPQ7
SUB@S
DO189
©¥6H
STEPQZ8
SUB©D6
DO189
©OTH
STEF@9
SUBWT7
DO18Y
08H
STEP@19
SUB@8
DO18w»
@9H
STEPZ11
SUBQY
DO18w
OAH

read keyboard

:check
icheck
icheck
:check
: check
icheck
‘check
icheck

.check

if

if

if

if

if

it

if

if

it

type

type

type

type

type

type

type

type

type

is

is

‘is

is

is

is

is

is

is

91,

a2,

43,

04 .

25,

6 ,

a7.

28,

29,

if

if

if

if

if

if

if

if

if

yes

yes

yes

yes :

yes -

yes :

yes

yes

yes. :

call

call

call

call

call

call

call

call

call

SUB@1

SUBA1

5UB@1

SUB@1

SUB@1

sUB@1

sUBQ1

SUB@1

SUB@1

and

and

and

and

and

and

and

and

and

Jump

Jump

Jump

Jump

Jump

Jump

Jjump

Jump

Jump

to

to

to

to

to

to

to

to

to

LA

LA

LA

LA

LA

LA

LA

Lé

L#

SIEFOL1Z
CALL SUBRA .
JMF DO18Y ccheck if type is @A, if yes : call SUB@1 and jump to L#

TEFW12 CPL WBH
JNZ STEPP13 :check if @B 1s pressed. if yes call SUBUB and jump
CALL SUBWE
JMF po18Y

yTEFOL13 CALL WRONG :if no call display "Wrong code pressed”
Y0180 FOF FSW

FOF D
POF B
FOF H
RET

:this routine again reads the plant no. and displays to start the pl
sUBR1 FUSH H

FUsSH B

FUSH D

FUSH PSW

CALL 3CYCH :read plant no.
STA MEML17

CALL DISP2 istore the accumulator in MEM17 and call display
FOF PSW

FOF D

FOF B

FOF H

KET

. :this routine again reads the plant no. and displays to stop the ple
SUBwe FUSH H

FUSH B

FUSH D

FUSH FSW

CALL 3COCH iread the plant number
STA MEM17

CALL DISF4 :store the accumulator in MEM17 and call display
FOF FSW

FOP D

FOF B

FOF H

RET

ithis routine reads the switch no. and displays to starts that device
SUB@3 FUSH H

FUSH B

PUSH D

FUSH FSW

CALL 3CYCH :

oTA MEM17 iread switch device no. and store in MEM17

CAL

sUBW4

“UBWES

BUB©GY

SUBQA

SUBZB

L DISF1 call display

FOF P&W
FOF D
POP B
FOF H
RET

:this routine resets the counter v to FFFFH
PUSH H

FUSH B
PUSH D
FUSH PoW
CALL 3CQCH
oSTA MEM17
CALL DISFE3
FOF EoW
FOF D

FOF B

POF H

KET

;this routine resets the counter ¥ to FFFFH
CALL oUB38

RET

;this routine resets the counter 1 to FFFFRH
CALL SUB39Y

RET

:this routine reads the counter ¥ to FFFFH
CALL READZ®

RET

:this routine reads the counter 1 to FFFFH
CALL READ@1

KET

LWL

BN

l APPENDIX-B I

SUBROUT L ARC

LU GOUNTE WE G NES NOVR ML WO Y NFHASE (NUS TS NOT IV, NLE
COMMIUIMNZBYB L /ND N, TOUL , 1BUS , TRAR (NVRZ AHAL g TRy L g THXZ , THy e N, Lok
P iUl g B 8BS BE AL

PDIFENSLTUR 8 01@) (W L) o AAL 1) IX L a1@) 071 A1) , TWaI@) , IVXE (1
1,V (1@ GIMXTCI@) G INY T CL@) dBX1 (100 L IByL (1@) JIYFE(1@) ,1G1 (1w,
Ay FRXL UL (IRY 1 CI@) yicxval) sioy (L8 (i b v2@) , ity (2@

DIMENSTION BR(Z0) (EBECED) IOV 200 IMVAZO) (IX2020) , Iy 20 , IXA (20
Pal v 3200 W X4 0200 o Urd L)) LAS) , [v8 Ca '
CHARACTER * 8 BB, e, 081 12, B

LHBRECTER ® 4 V1

CHARMUTER ¥56 N

CHBRABUITER *5 Xal 6l

CHARACTER *3 COR(20) LR

characteyr #®2 Lyna (2@)

vk l=14

AV S

N =

[7

Toul=1

100G =@

TERS=1d

L ank=20

openwunit=nvrl,file= t.dat)

REWIND WVXL
; READ VAL LELL) N
110 FURMKYT (Abés
T FukPE T i)

IF UG HE.®) RESLNVEL, LB B2,61
16 FURMAT Gad A5)

READ NV L LRBE) (B 1) (VI G A A/L Gy g E=1 11
TG FURM- T GRS Rg A

FTRY e G N

LU O d =

REMAL NVAL 1@10) Bl (BROD) XL, IMVACTD)
110 FURMAT (2Rd,Rd, 15)

TFvai EW. OV L JURGXELGER. UV 270 1OV Tr=1
S CUid i LNUE

CLUBE JUNL T =NVYX 1)

UFENCUNT I =NVXz, FlLE= LIN.DAT

READ (NRVXE, %) iwc,iye

READ (NVXE,1@820) ITHXL, IHY 1, IHX2,1HY2
100 FUORMEAT (413)

RERAD (INVXE L@E0) (TYFE D) g IX1 0D o v Lk g IWED y VXL ¢ L IVYL (D)

POAIMNXL oD G INYE (L) EBX Gy W IBY L (1), IG1 (1) G BRX1 (D) G IRY L (1) g 1=1 141
Hasa FORMaT (el o905, 010,215

READ ONV A« L04D) CEXE D) Ly el W TX3 L) JIY30D 144010 ,IY4 (D)
P lxS by f XIYE T o h=1 Nty

19 FURF B LE)
read (v, %) nch
read invid, S358 (ceb i) yion i) yieyti) yi=1l,neh)

xasy tormabt (a3, did)
read vk ntr
read(nvid,7777) (brnavi) yibx (i) yity (1) yi=lyntr)

7777 tormatlald, 214
REWIND NVX
CLOSE (UNTT=NVr)

Uo B X2 0 06 0 300 0606 2603 360 030K e e R0 A K
dollii=i,nl
il vl =ixlil)—ine a
iveliy=ivelli)~ixc

inslily=inl i) ~iuc’
ibstl{i)=1ibuwl{ir—-inc
irsl e r=iryliiy~1a0
iyldir=ryl 1) —ive

bvylvir=ivyltir~iye
inylavr=inyl(l)~iyc

iryliio=iryliii—-iyc
114 continue .

dollzi=1,n<

il =ixng (1) ~ixe
indli)=ixEd)—~ixg
ixdir=ixgdi)—ixc

14D () =158l —ixg
iyLli)=iya(l)-1vyc
iyditid=iy3ti)—-iyc
iydiir=iy4{i)~iyc
iyStir=1ySHi)~iyc

Lie conbinue

=1 el

loir=icn(1)~1ixC

READ ONVAL L 1040) (IXL 0D By el X2) g Iy3 () , IX4) . IY4(1)
Lo dnaely IYSCLy fd=1 Ny
luwd@ FURMa T ELS)
readinvid.®)nch
read inviid GRAEE) (ceb (i) yiox i) yiey i) yi=l,neb)
HAGE format (al,did)
read ANyt)Rty
readinvid 7777) (trmaci) yibx (i) ity (i) ,i=L,ntr)
2777 tormat ial,214)
REWIND NVUXY
CLOSE (UNT T =NV
Y T R T I Ry R R R R L R R R R R R R s
dolili=i,nl
ixdbvir=1xlii)-ixng |
ivsldiy=ivrl (1) —-iug

inrlilr=insl (i) ~inc
ibxl{it=ibxl{is—~1xc
irslUo=irelily~ixe,
iyldir=tyl(l)~ivyc
iwylvir=ivyl (i) ~iye
iyl (ro=irnyl(ii-iyc
ibyldi=ibyl (1) —-iyc
iyl =irylii)~iyc
11 continue

dollzi=1,ng

g () =ixg (1) ~ixe
1A r=1451)~inug
prdir=ixd i) -ine
158 =in8l) ~ixe
PyLti)=lyL{i)~iyC
1y3Gir=iy3(i)~iyc
tyd i) =lyd{i)~1iye
Ly Gii=1ySl)~iye

L corntinue

dollii=1,nch

T tir=1on (1) —1xC

1Cy (L= Cy Ll) ~1yo
[) continue

doiildr=1,ntr

yEsci) =i kvl) s

ity io=ityii)~ilyc
bl conbinue

Crll bBRak
Ll HERD
DO 4 f=1 NI ‘
bl DEUS (B OL) W VI VD) W XALAD) DX Gy Wy Syl O G TWCT) , IVXE (L) IVY LD
P AR CL) INY L Ly G ABXE 0L o byl , IYFE (L))
APl CEG. D UALL GEMERIXL O oIy L0 EYPECD) JIRAL (D) , IRY 1 (1)
ttgliiy.eqed) call Joad Gxlii) iyl G ,irxl (i) qiryl (i)
4 LA L NLE
DO HE L=l (N
i bbb DLANCEFIVACT) g Lx200) f Iy@ CL) FXSB L) o LY 30 3 IXA4¢E) yhYa(l)
TL1XEL) ,IvS 1))
do/li=1l,nch
icsli=icsii)
loyl=icy (i)
ch=ccbh i)
call chtbliexlaicyl, ch)
71 continue
doBli=l.ntr
call btrantitx i) ity (i) ,trmadi))
B continue
Frg bo=eg
call btexbtt ol /@41 .not

Uil THOD
(5 o s 1 i 342 it S s s s e et e
WELIBE W, LLZ7)
1les format (L@, G681 ,ti0, 682,160, CIRCUIT BREAKER STATUS' /
1 GEN VOLLY (rms) 5 T15, " (REF) ", T25, "GEN VOLLT (rms) ,T45, (REF
< led, LERL 178, CBZ')
5 e < e e v s 2 2o e et 2 e 2 e e e o e
stop
END
SUBRUOUT INE GRAF
EX VERNAL GMUDE , GFAGE . DISF,LEVEL , CLRSUR

Datey JONEAL,

Ll GHMODE

Call GRAGE CTORE

Lkl DISE CTONED

Call. LEVEL (ITONE)

Uikl CLRBUR

RETURI

END

HURBKUOUT ITNE HESD

EXTERNGL TEXITF

LOMIMON/SYyS1/RL NS TOUL, LRUS, ERARGNVXZ THXT IHY L, THXS L THY M, fOR L
L A0G1 B RS BA,GI :

LHERALTER #5956 W

CHARGCITER #*#16 Al , Al i

UHARMUTER #8 BI1 ., 82, B

CHARMCTER %9 LG

LHERAU TER *4 1

CHARAC TER * 1% AR, A4

DA Al LUAD FLUW Sy /it DUTAGE STUDY 7/
DETe A3y BRANCGH OUT 7 ,Ad/ GENERATOR OUT 7/

LETA D DROFP= /7 M/ Hal 7 .

—

PXE= I HR 26153

(h4=HY2+379

1 XSz LHX 2+ 360

Lio=HAZ+414

Lx 7= L HRA R4 68

UALL TEXTF CIHX L AHY L, IF2 0 ~
| U

ERD

SUREOUTINE DEUS (B, V,A, IX1, 1y, 1w, IVX1, VY1, TNX1, INV1, IEX1
LolBSy L, TYRE) -
LHRRAEC TER *8 R

CHARACTER %4 V

CHERACTER *5 A

EXVERNAL BLEFIL, TEXTE

[

Loz

i/7=8

L3 e bn
=

A v b

1a=1vi+1

La=lal-l

Jg=LX1+ LW/

IF Oy FEGER. H) Calkl BLEFILGIL, 12, IW, 15

LR CIYRELER, V) CAll BLEFLLOLIA,14,13,1W)
Call TEXTFIBXL, I8y L, {7, 8)

CAalL, TEXTFOIVXL LMY 16,V)

CAall, TEXTE CONRL L ENY $ L 18,0)
Feke UK
ED
AJERULT CHE DLIN GRS DA, Ll TAS Do 1 X4, IY4,IXS, 1YE)
A SR Y SN R W S W o B BT B 13
Lok VER % 8 ke e
TE LI E L B @) FETURN
Leksbo e FLITF T CLAE . L
Catl DLIMECLXA IYE

bl DLINECLXS D4

Gl DLINE (ITXS, 1y

FE T UK

END

SUEBRUUT INE THOD -
EXTERNAL HRDCFY, CLSCR, THODE 1 EXTF
CHeRalU TER ®*28 AR

ODATA &7 1. HARDCOFY 2. EXIT 4
DAla Ry ;
Dl Lir ey

estey LDy by

Déxdbis 1wWas 2y

Ll TERIF O 070 L gy
Pl c% %) W
Gt U vi@d @y G
v bl TEATFCLA by o L By
Call HRDURFY QT
24 Lofalih. LLRKRSCR

2\

Jowd

el THULE
Pl) L
AW
UBRUL INE B AN A d v LRSIy i, bx4 174, LRSS, IvS)
A ERNmL LEVEL DL N JFU T
{ds=]
IR
LAbd, LEVEL (L)
Loy =1, 200
kb, FUTF IO s vy
Gl DLLINECLRE, T3y
Ll DLIMECLAd L4
Lrlde DL LNE CEXS Lyl
LUK LRIUE
LAl LEVEL LD
Febe b L
SUERULT THE GERERCLAL Ll o VvFE, TRAL L IRY 1)
ERTERNAL FUTHFI LR, DL IRE , LEVEL , TEXTF
WHeRml TR ®# 1 @
DivlA Gs G s
Llas
L=
LForgloss L8

)
=/

- { 4

i iy 1+5
IE v FELGER. V) @l Ty 1@
Gl FUTFECTRAL Ly 1)
Lol DLIME CLRAL (IR L)
bl CLRUOLRKL IR Y L, LMD
bl FUTEVCIRAL (AR L)
Call LEVEL (12
(P s IRy i.8T. 171y JHEN

Lri=1yYL1+8

[Re=IRy i~ 1K1 *

ool
ITR2=IRY 1+ iR
Lii=1v1i-8

ERD L

CALL ULINE CIRA L . R

Gkl LEVELOLLD)

L)

CAlL, TEATF OIREIRG T, e

ek L UIRK

skl FUHIF T CIXL ARy L

il b DL ANE CIRX L, LIy 1

Loigbote CIRLOIRXE IR L TR

CALL PUTFTCIRX Ly IRYE)

el LEVEL (1)

IR CIRX1.6T.1X1) THEN
[REé=IRX1~L{RAD

ELSE :

IRE=TRX 1+ IRAD

END L

bl DLINE CIR& ERY .

Call LEVEL (11

sl TEATF CIREVIRS 1L, &)

Pk UM

kil

LURROUTTHE CLS

EXTERNmAL THODE , GMOLE ,CLRECR

Ll GhIDE

Catl CLRSBCR

Lall fH0ODE

RETURN

END

bUBRUUILNL chtb{IXi, in,Lb)

CEXTERNAL FUTFV,CIRC, DL INE LEVEL

CHARALTER #3 cbr
iesd=1xl-3
icyl=1yl-3&

call putptdioexl, icyls
ione=1xl+s
iuy;uiylki

1Cyl 1Yi”$
call putptiiexd,icyl)
ioxd=inl-3

loy@=iyl+d
call dlinelicxdicy?)

call tesxttiixl+d, 1y1+¢,- o)
return

erd

SUBROUTINE tran(IXxl,IY1l,tr)
Ex TERNAL FUIFI‘LIHL‘DLLNL LEVEL
CHARACTER *2 b

 TEXTF

2 TEXTF

v
call putptiiulyivly

call level (@)

call diipetisl,iyl+ey

call level (1)

call dlinetixl-3,1yl-2

call diinelixl-o.1y1)

call putptdixi,iyl) -
call dlinedixi+d, iyl-X)

call dliinedixli+ée,iyl)

iyl=iyl+e :

call putptiixt,iyl)

call diinedixl-3, iyl+d)

call dline(ixl-6,1vl)

call putptdisiasiyl)

call dlinedixl+i, iyl+d)

call diinedixltoiyl)

call textd xl+7,iyl,2,try
aEturn

end

SUBRGUTINE loadolxt, Iyl ivrulil,iryl:
EXTERNASL FUTFIL,CIRC, DLINE LEVEL ,TEXTF
CHARGACIER *1 LD
Omdn L 'L/
CAalLL FUIFTIRX1,1IYYL)
sl Lo DLINE CIRX1 . IRY D)
itiiylagtaivryl) then
call dlinelirxl-4,iryl+4)
call putptQrxl,iryl)
call dlinedtirxi+d,iryli+4)
else
call dlinedrxl-4,iryl-4)
call putpt(irxl,iryl)
call diinedirxl+d,iryl-4)
el +
call textt dirsl+o,iryl+e, LD

return
end

U X v

L0l

NG

RN
EXTRE
£ X Tkl
X VIR
L X TN

ARRRIWIRRY

1&384

PEFIF@ FE MO MEMAS, TEMP@L STORER STOREZ , MEMSUML , SUML
COUNTER JENTRY y &TORE4

PIEPR MBI TS Dy PE FEML 7, BINTA L DISFL,DISFZ2,DISFE
D1SF4 VREADL L RERLG

WERUNG PR SV CHRE @, S TURE L, TEMPQO , SUME ,MEMD 1 , MEMSLIMEG
troom MEMGG ., L EMFO@ ., 51 ORE Y

sonchpock i PREMEL S ORE

$lhos
FUIH
b LI
FLISH
b LI
oL L

RHG
LML D
X ClHi
Lo
MO\
RTNRY
i
Foladl
RIRC
RE
L
LIF
KA
i)
1K
FAWE [
MO
rald f
(WIS
Lz
AUHG
RIS
THX
AU
Uk
' l] I.f '
O
F O
l.‘.v L] l.',:

bk

powbive converts o bhiock of HEX BYTES TO ite ABCILT equrvalent
I '
[
[0
F S
STORE®

vave all registers
indtialise the memory pointer from where HEX LUK
starts

‘xe -ag 3%

CBIOREL ginitialise the memory pointer for storing ASCIT no

FEMFUB 3l oad the number of bytes for conversion
| istore in register &

S| iget no.s in accunulator

A O

S soorivert hiaber nibble to ASCIIL

IR istore b dm aemory
H

Al

WFH

RE1E sconvert lowsr nibble bto ABCII
H

(R sebtore ite value
2|

t: seheck Af conversion 1s over for all bytes
Ou st onot loop ta DOY

Fal it oyes retrive registers

12

£

sreturn

PHZ X b s

il

i

Lk | &584 .
EATRN TEMPDE, MEM@E , ENOS, TEMPOL STOREZ 5 TORES , MEMSUML , SUM1
EXiRN COUNTER,ENTRY (BT0RES

o TR FEMS B INTALTYFE JMEML7 JBINTADISFL,DISF2,DISFIDISF4 REMDI

bz A T READY

oa bV WEONE MEMUBA, STORES , 8 ORE L, TEMPOG , SUMD , MEMB 1 , MEMSLIMO
prmput trom MEMOA L TEMFOO, STOREY

sovtbpul in MEMO) JSTOREL

sthis rountineg converts o block of HEX BYTES TO its ABCIT equivalent

Pt 2]

RIS £3

R WIERR D

R BERE b isave all regilsters

LHL LD STURED sinitialise the memory pointer from where
sHEX BLOCE sterbs

ALHG

LML STORELD 3initialise the memory pointer for storing ASCIIT no.

X Ot

L L TEMFB® 3load the number of bytes for conversion
MOy B,A istore in register B

WLV ol sget no. in accuwndd ator

Fifd g B OH

W

HRC

R

FRIRC

URI ABH sconvert higher nibble to ASCII
RUHG

RINEW My e satiore 10 1n memory

LR H

ALHIS

UV Ayl

Fild L WF H :

Gt RUAR] sconvert lower nibble to ASBCII
s H

AUHG

NTWAY Iy £ sstore its value

Lidx H

Al

Ll {2 scheck if conversion is over for all bytes
Jid Ly iid pot loop to DOIL

FigF F&aW sit yes retrive registers '
- Lk u

fUF 3]

ek H

e sreturn

sanput from MEMOG, TEMFOW

soutput in MEMSUMA, SUMG

\;

skhis routine calcwlates the checksum, Etwfes and converts it
§into 1ts ABCLL egquivalent

LRk SHiF B HISH H
FLISH]
FLSH 0
F F&sig
LD STORED

ysaves bthe registers
sinitiathe memory pointer from where the
i HEX block starts

DA TEMFOO load the no. of bytes in the block in accuwmnunl ator

MOy B.A iand save in B
X6 A sclear accumul ator

DU MY CoH
b G
IR H

DCR R

JML Doz sadd &ll the bytes of string

G scomplement to get the checksum

BRI Cai

e TEMFOL sstore the checksum

LHL L SUMB sinittialise memory pointer in which ASCLL equi vl e
rshd g @F B+ sof checksum will be stored

Rl

e

FoieC

FRC

QRS S0H seonvert higher nibble to ABCII and stors
MUV M6

1NX H

MoV A,C

P L Gk H

LRI S0H sconvert lower nibble to ABCII and store
MU M, A

b 5w

R D

FQF &

HE H srebrive all registers
i) greturn

vinput from meml,sto

UNSILIC NI

;output
e ke
(V]

PRI
N1

Pl DOHEMRD FUSH

LIS

bu4

DU

(WIRF

Doy

FLSH
FeLIgsH
FUSH
LHLD
LD
AL
HOY
COMMUM
S

MV L
Gy
COMMON
WL

MO
aut
TR
DCR
JNZ
COMMOM
Ji

MV
O
LHLD
M L

COMMON
JZ

MOy
NINN)
LHX
LR
JIE

COMMON

to the

aFiH
@AiH

H

B

D

=

8 TURE 1
IEMFOQ
2]

B A

DO
. 02H
@F OH

DO
P
OF OH
H

K
L4

DO

Fi . 05H
GF Bk
5UMO
8, @2H

[RIRTY
oM

| AF@H

H
£2
W8T

tel

291

UJ

ssave all registers
sinitialise the memory pointer from where the ALCILI

sbhlock is stored
sload no. of bytes in register ©

stransmit HIX |

stransmit the ABCIIT block

stramsmit ETX

iinitialise the memnory pointer
3 checksum is stored

where

sbtiransmit two bytes of checksum .

V) v WAH stransmit E0T
i G oM

FF FSuW

O D

(R £

FOF H irestore all registers
RE | sreturn

sinput From PEMOE S1T0REZ,SUML ,STORES

youtput an MEM@EFENSUML TEMFAZ

sthis roubtine converts a block of ASCIT no. bo its HEX eguivalent
P)k FUSH H

CORUSH £

FUSH D

FLIEH FHW isave reglsters

ML L9 sclear counter

LD SIOREZ ginitialise the memory pointer to the starting addres

XUHUG jof the block

LD STORE? jimitialise the mempry pointer from where to store

XUHG

L IX H
103 MOV Ay

YR Samr

RLC

LG

LG

R L

1WAV} (L2 sbake the firsl byte and get the higher nibble in O

LHX H

My #a bl

@l A0H stake the second byte and get the lower nibble

DD B = sadd to get HEX number

KCHE

MOV MyA

IR G istore in memory

HOw AL

oA TEMFP@E sstore the no. ot bytes

X H

ALME

ANX 15

MOy AyM iall bytes over & check ETX

CEl BEH JETX

JNZ £HO8 N s loop to DUB

INA H

AUHG

LD RN sinitialise the memory pointer from where

j to store checksum .

t

=

KCHUG

HTWAY i

SU SO

kel

RiL

RLC

RI-C

MOV B4 f sget firset byte and store bhigher nibble in B registe
LINX H

MOV HaM

Bl Ao rget second byte and convert it into lower nibble
ADLD B jadd to get byte

ROHG

(WL M@ store checksum

FOF FSW

U K

F L H srestore reglsters
FE sreturn

sthis routine checks for S0H

it o iw for entry STEF-1 and checks if B0OH is recieved from MUS
ENTRYL FUSH H

FLISH £

FLUSH D

FUSH FSW isave registers
DS IN @F 1H

Fabd B2H

JZ DOZA scheck for reciever ready

N G- aH sinput the byte and save in register B
[0V [T ’

AN QeH scheck for errvor

JNZ DO preturn on error

oV AR

(RSN GiH icompare with SO0H on no error

JMZ DOY sNO 2 Jump to retuwn back
Myl A0 1YES ¢ Joad counter with @ bytes and
7 initialise entry
ST COUNTER sentry step for next interrupt is 082
MV 1 A,Q2H
BT ENTRY
MV AL,B6
PG M GF I H
AN WK
S DUle s send ACE

[WANARY

b R

e

R R o

L
NI
L
‘. (“\ '.."
Fua
.

sthis routine tests the validity of

LISH
FiteaH
FUSH
FLISH
1M
fald
Ji
I
Sy
rabd g
S
LGy
CH1
JW g
N
Fabd L
Ji
(RS
Ul L
G
LIl
(AT
JME
LoFd
J L
M|

J L

G 214
FEW
[
£}
H

3
kL

D

FSW
ABF1H
BaH
DOZL
aF

[o
JEH

NO

1y FE
SO
S1EFT
G- 1M
BiH

1

5 D&M
ENTRY 2
LAt
OF OH
ENTRY A
LRG|
AEH
STERZ

Hih

STEFZ

srestore registers

ssave reqglsters

scheck for
iwait till
iread byte

o G
to NO on

icheck

3

icheck if
syes @ osend ACK

Feciever
reclever

e ar

Lype i @
and

I'vFeE of data communication

tready
ready

call entry STEFZ and jump

(W]

vy

R N EN

(RN

il

¥y RS

() (W] l s

Cratn

I 2
Ji
(I
Ja

N
LE L
\J 4
RN
Ji
Lk
g

(W)

J 2

wLF

e

Bl =R
A4
ol
AV
STER
Bk
Sk
A7H
Skl
SR

Lo A s
A9H

PR R
d ik

Rl I X
et
STEF
(]W]

b
EMTRY
75
COLINTER
¥t

UL TER

g
4 B2H
ER Ry
LSy
g 1
ENTRY
LRSS
1 WEk
W L
AR NE]
IRIND S
W @i
jll} ‘__) w

|0

It

H

chec

-
"
“
*
.
A
"
L]

sincremsnt
icheck if

HE

iNosentry

oy

Counter =

valid code
Jump to STEF:
Mo valid code,
siumping to N

oot e
cour ter

AW

is

pinitialise entry sbep

s sernd

PR Loy e

[2101EA

increment the count

inttialise
Femailng

two,

i

and

and return

entry step 1
Jump to LAST

Jump to LAE)

b 3%

registers

ML

ithis routine sends & preassambled packet

P BFURE entering this routine SET CUUNTER to 0@
ENIRYS FUGSH H

FlUSH D

FlLIEH [

FUSH Fal isave registers
DU e CAlL.L ADDHERAD

Lol L DEL.AY
Dby i @F 14

IR 2H

Ji U4

LM @BFaH irecieve byte i+ reciever ready else loop

LY HaA

L g AaH

J 7 DOLA iump to

A DOLE if ACK recieved
Lk COUNTER

LR A ‘

SR COUNTER sincrement counter i+ ACK not recieved
CFd ¥3H
JE DOLA 1if counter is A junp to DO13
JME DULe selse send packet again
DUL3 IMAVEY 1, B1H
)6 ENTRY smet entery step
O FoW
b O
f L B
HUF H srestore regiebers

sthis routine tests the validity of data received
REFURE entering this routine SET COUNTER to @0
ENDRY S FLSH H
P j
- FUSH o

vyl g

LY

DEL &y

Il

CHECE

FLIGH
LHLL
N
0L
S

In
oy
L g
JZ
Oy
Lix
WHAE
Lerab L
]TZI' U FZ‘
Ok
Ok

F O
(R}
FUSH
FUSH
FLISH
FLSH
L.x1
DL X
SRV
(IRes
JINE
FOF
O
FOF
F(F
RE T
FUSH
FUSH
FLISH
FLSH
CAall.
L-DA
Q1A
LD
SHL.D
CAL.L
LHLD
MOV
LDA
Lo

Jids

FESW
STOREL
OF LH
@QiH
DUL4
@F aH
B.i
B4
Dars
[I 4

IH
HOL4A
CHECE.
FEW

0]

H

b4

FoW
ASTH
TEMF@
TEMFO
G1ORES
STORE®
CHESUM
SUM1
K, M
TEMFOL
&

BEMDNAL.

rEave r“'eqi sters

irecieve byte if reciever ready else
stE1X
syes @ jump to DOLS

ystore this byte

ino @ recieve next byte

irestore registers

reave registers
load count

soheck if count ig @
IO Loop ageain

Py RS

irestore regliesters

isave registers
jconvert ASCLI to ots equivalent HEX

loop

sinitialise memory to calculate checksum

icalocul ate checksum

seorrect data recieved

3no send NACK

back

S EF .S

Srek4

S TERS,

SIEFG

SEE

RR R

SIEFRY

SIEFLG

Wikl 1l

[WIRE RS

I Lory
LAt
I
Ll
S
oF A
S
Cal.l.
JEE
{.F 1
dINE
Gl
TR
CH1
JNZ
AL
IV
CFd
JWL
Gl
JIF
Ll
Sy
Lol L
G
Lt
JHE
(Y=
I
(E
JHE
T
JIE
CrL
WS
bt t
S
G-
ey
Ll
JPIF
T
V]
8145
MY
otk

I 7 FE
S1H

STEF3
SUR31
po1R
HEH

&H1EF4

alREL

LY RE

A4
STEF®
BURZ4
noig
EoH
SIEF7
SLRAS
DO
AbH
sSiEFR
BUELe
noie
A
STERS
SURIY
ool
28H
STEF1@
GLIREE
nolg
A9H
SIERLY
SLIRES
polg
414
DlEFLY
G4
Lols
GUE4
FadIH

scheck which code is recieved

ENTRY sinitialise entry step to 1

-, 00

SET s load

MEMOI Y

st

with

Tero count

and call

its

asubrout ine

IR

SENUNAL.

DL

LS

DU

SUBS)

I

=INN]
Jr

IRV
L
NENIE
L L#
LMK
Se
(ST
Ji

KAV
v)
MV L
wh | 6

IR

EINR
JZ

AV
Lt
I L
ST
FOF
FOF
FOR
FrOE
i
b
S
AV
=S e

JME

sthis subroutine

FUSH
Bl

ik d
@i
Ll

iy Bésld
@F Q-
[RININ
CUOUNTER
r
COUNITER
WAH
DUz

14 DA4H
ENTRY
o B

HSET

OF 11
@1H
DD
My L5H
OF OH
by B4k
ENTRY
FSW

D

B B

M

iy W)
SE
A0l
ENTRY
DS

H
&

"
S

pincrement

-
H

send
JLng)

yes

NG 8

AL

Lo return

ot er

2 Jump to DO

and check if

H

w

make entry step 4

load memory with FF Hesx

ssend NAK

;inake

entry step to 4

irestore registers

set
Jump
1e f

entry step to 1

ta DOSE

to send

]

and memory set to @
NAE.

o TYFE 1 which prompts to start
e particular plant

Sl

BLIESA

Hiii4

FUls
PSS H
L
NLNAS
W d ey
it
Bt
LRI
b L
FFOF
R
FE0
FLISH
FLISH
FLISH
(R]
BINLY)
SR
Lorld
LI
F -
b Lb
PR
RE
LIS
Fl b5
F LIS
[EIME X
LA
I
S
Lo L
e
Fb
- L=
’_:.‘u FZA
EY
FLIGH
FUSH
FUSH
FUSH

LHLD

L
F&wW

o URE S
ey
FEML /
DSk
et

1

£

H

H

]

0

P

S 0OKES
Fiy
FErHL >
1 15F4
FaW

1

3

M

H

4]

D

el
S10RE.S
a4
MLy
DiISFL
F5W

{3

&

H

S5TORE

PEave reglisters

gload the plant number and store in MEMLY
seall DISFLAY to display start plant rnumber

irestore registers
sireturn

isave registers

lwad plant number in MEMLI?
call display to display "Stop FPlant No."

-2z &S

irestore registers
sreturn

rsave registers

isbart swilbtech device number

18 AN

wliled i

MUY
Wl
Lol b
-1
-
O
FoCb
FE
FLiEsH
FLUSH
FLISEH
FUSsH
LD
Ny
Bl
w0
oV
1iX
MOV
INX
HINLY
XCHG
LAl
Mov
w0
MO
MOV
TRIX
MOV
O
f= CHE
i
F L
RE |
FLISH
LIS
FLISH
FLISH
LHLD
MY
SEL
YW1V
LY
LA
HIWAV
IRR NS

Ao

MEMLY

DIGFXA rstop switbteh device number
g

0

B

&

H

B

D

Faw ssave registers
STORES

Fo i 1load the variable number in accumul ator

WSH

2]
B, calculate the offset to be added in

i
DK
H
ELH ssave bhe meax. valuwe in DE pair

u
L}
.
hd

and save in B register

H.5FQ0H -
Ayl

&

LA

M.E

H

M, 0 satore the nunber in memory location
H

Y

B

Fresw

H

<

0

FSW isave registers
ST OKE X

At

BEH

[

By sload the variable number and make an offset

H sand store in register C

D

H

IOV E LK sget the max. val. in DE reg. pair
ACHL

LAY H,9F L EH

POV Pl

TRI] £ isel bhe menory pointer
R[N L. A

R MLE

LHX b

fAGN .0 istore bthe value in memnory
fr GO t

- QF [0}

[~ #

FOF FoW irestore registers

SUBZS FUSH H

RS] B

FLUSH b

B FSW isave registers

LHLD STURES

IV = sload the variable no. in Accumid ator
Ll QiH

Jdoo DOES
(WEy! QieH
S L WL e

LRl A3 scompare the no. and jump to its relevant location
Ji Dl
.X {4 H oy @A 7 H
SHLD FISINTA sset the memory pointer for @4 variable
3 oand Junp to LOZS i
JMF puzs
OUOZS LAl M, EASEH
SHLL MEINIA jBset the memory pointer for @1 variable
sand Jump to DULY
J MF DOzE
DO Lx1

e,

RTRPE

SURAE

SUEAY

sHLD

JME
Xl
sl L

LHLL
Llda
N
fix
RINEY
ALHG
HHL O

AL
FUOF
Ok
FOF
FUF
KE |
FUSH
FUEH
FUSH

FisH

PV L
L
MV
Qur
FOF
FOF
FOR
F O
HEN

FUGH

FLIGH
L
FLISH
VL
UL
Fit I
LU
FUF

KLk

H., @G &G

MBIMTH 3set the memory pointer for 02 variable
sand jump to DUXE

pozsg

i, BEOHAH

MEIMTA sset bhe memory pointer for @3 variable
sand jump to DOLB

S10RE.S

H

LM

It

B sload the reterence variable in DE reg. pair

MEF4 sbhring it in BL pair and store HL in MEM4 to convert
i it . .

BINIA sinto ASCIL ‘

H

0

&

FEW

H

&

y

FaW izave registers
HyOFFH

S8H

ALBFFH

H8H tinitialise the counter @ to FFFFH
FoW

0O

-

H

H

I

L}

FHW

4y EFFH

S57H

A, OFFH

59H sinitialise the counter to FFFFH
FoW

V]

REMLEWY

POl

sUr4l

O
FUF
RE
Bl
FUSH
FLI&H
FUSH
VI
QU
IH
Calfq
OV
g
(=
0V
S0
O
Fuk
Uk
fiap
AN
[RENE!
FLEH
B LS
FUSH
IV
ULt
Y
CiHFa
Y
1N
Gl
WY
B L
FOF
U
FOF
FOF
RE

B
H

H

£

0

oW
i 0 WIBH
SEH
SH8H

Lo b
SBH

Moy
KREADD
FSW

W)

B

H

k4

I

W]

FSW
1 4 48
SEH

55 H

Ll #

S9H

Mooy
RERDI
ol
0

K

H

ithis routine

sthat

FLIBH
FUSH
FUSH
FLUSH

LAkl

value

H

B

W]

FHW
RERDUA

sread counter @ and store

in READD

sread counter 1 and store in READY

reads the value of

to MCS

sread bthe valus of

counter @

counter

@

and sends

[ARY

MV
RN
Lxl
SHL.O
Cmlb
CilL.
(T
f
F
= OF
f
fRE

1, B4H

TEMFOB

H . READY

STORE®@

HEXTA sconvert 1t into ASCTI
CHESUM scall CHESUM to calculate checksum
ADDHERD jsend packet to MUES
FOW

D

B .

B irestore registers

sthis routine reads the value of Counter 1 and

peends

FISH

FUBH
FUoH
FUsSH
Al
MY L
Sk
AL
SHL.D
CoAlt
Lorsho L.
CAlld
F L
e
F O
O
KE)

hNU

that value to MCS

H

B

D

FSW
READLO
B, O4H
FEMPRG
M, RESDL
SYOREQ
HEX T A
CHESL
ALUDHEAD
FEW

v

K

H

code segment
assume cs'code,
org 100YH

start: jmp main

¢ i e aa A S M mm e M e e o e e Am T e

ds:code. es:nothing, ss:nothing

150

data area~--—————~--~-—~—-smsomm—m——

pkt_len dup(©)
201pkt(Q)

8

%)

?7 ;@-read data from K.B.

pktlen dup(d)

201 dup(@)

"Fatal error Existing $"

@ . @-Ack_Rcd , 1-Ack_not_rcd
? ; ©¥-Nak_not_Kcd , 1-Nak_Rcd

J6h
J1h
-3

D4h
P2h
J3h

y This procedure initializes the comport to 4800 baud, even parity,

:Call with al=byte to be trantered . In case of rerror byte

This routine sends packet to RTU

pkt _len DB
Tx_Buft DB
T_buf DB
Type DB
KB_FLAG DB
Counter DB
kx_Buf DB
K_But DB
ERK_MSG DB
Recd_ACK DB
Nak_error DB
ACK EQU
SOH EQU
Mx_KRtRy EQU
EOT EQU
5TX EQU
ETX EQU
INIT: PROC NEAR
MOV 9H.®
MOV AL, WCTH
INT 14H
RET
INLT ENDF
SEND_BYTE EFROC NEAK
;is sent thrice
MOV CL.3
51 MOV AH,1
INT 14H
TEST AH. 8©H
JZ 82
DEC CL
JNZ 51
B RET
SEND _BYTH: ENDP

;error count

+8END BYTE IN AL

; COMPARE , IF ERROR
; IF NOT EXIT

y DECREMENT COUNTEEK
‘RETRY IF ERKOR

SEND_FKT FROC NEAR

:This procedure sends the packet , using send_byte Procedure
MOV B1,0FFSET Tx_BUF :start of buffer

SEND_ NEXT: LODSE iLboad byte in AL

CALL SEND_BYTE
LOOF SEND_NEXT

K

:Kepeat till the end of Butfer

1 Stop bi

, Wy
SENU_FKYL

ENDF
;'This routine gets byte comport in AL,
ubll BY'TE FROC
MOV UL, 3
ul: MOV AH.Z
INT 14H
CMP AH.Q
JZ G2
DEC CL
JNZ G1
U RE1
dlll by TR ENDF
the wnll Beidizbeegment ! attsat
GET_PKT PROC
Gl: MOV CX.,9
CALL GET_BYTE
STOSB
INC CX
CMP AL,EOT
JZ @3
JMP Gl
G3: RET
GET _PKT ENDF

MOV DI1,OFFSEYT
yho need of packet size
MAKE _PKT FROC
MOV S[,0FFSET
PUSH ¢X
MOV DI,OFFSET
MOV AL ,S8TX
STOSB

M1: LODSB

CALL HEX_to_ASCII

STOSH

LOOFPNZ M1

MOV AL,ETX
STOSB

MOV S1,0FFSET
INC 51

POFP CX

CALL CHK_SUM

MOV AL, CHK_SUM
CALL HEX_to_ASCIl

STOSW
MOV AL.EOT
STOUSB
RET
MAKE

NEAK
‘Retry Count

Compare for error
yno error,exit
arror

ot rec. bufter, CX=Packet Size
NEAR,

;iReceive byte
Store it

if eot
vexit

kx_BUF

NEAR
IBUFFER

Tx_BUFFER

;Convert to numeric ASCII

T_Buf
i Leave STX

;calculate check sum

sconvert cs to ASCII
ysave it

in case ot error repeats three times

_PKT ENDP
;before calling the routine load CX with no. of HEX data bytes
rand load dx with the no. ot AbCli bits .
HEX to_AbCII FROC NEAR
i''his routine converts a byte to numeric AbUll word
;That is 3C 1s 33 3C ., Call with AL=bytes to convert

FUSH CX

PUSH AX isave registers

AND AL, ©@FH ;mask higher nibble

ADD AL, 30H ;convert into ASCII

POP DX ;g@et no. in DL

AND DL, OFOH ;mask lower nibble

MOV CL, 4

SHR DL,CL ;Rotate right the byte 4 times
ADD DL, 30H ;convert into ASCII

MOV AH, DL .get the higher byte in AH
POP CX iPop registers

RET ireturns code AX

HEX_to_ASCI1L ENDF
;this routine converts the numeric ASCII word in AX to Hex byte in AL
ASCII_to_HEX PROC NEARK

oUB AL. 30H ;convert into lower nibble
SUB AH, 30H ;get higher 4 bits in AH
MOV CL.4

SHL AH,CL

OR AL, AH ;get byte in AL

KET

- ASCIT _to_HEX END§F
ithis routine calculates the checksum and returns with check sum in AL
CHK_SUM PROC NEAR -

XOR AX.,AX VAX=0
Cl: LODSEB ;get byte in AL

XOR AH, AL ;add to partial result

LOOPNZ C1 ;if bytes over , no:loopl

MOV AL, AH ;yes :get sum in AL

NEG AL iconvert into checksum
CHK_SUM ENDF
ithis routine makes the packet sends the packet to comm port and ckecks
yif ACK recd. or not. In case ACK not recd. , packet is sent twice
SEND_QUT FROC NEAK

PUSH CX isave no. of hex bytes

CALL MAKE_PKT ;make packet

POP CX iget hex data bytes
21 MOV RECD_ACK,©

SHL CX,1

ADD CX.6 iget packet size in cx

CALL WAIT1b ;15 ms wait

CMFP RECD_AC

UMP RECD_ACK.1 :is ack recd.?

JNZ vz 'NO error exit

INC COUNTEER ielse increment counter

CMF COUNTEK.,.MAX_RETRKY

JF 91 not exceeding. so go back

MOV ERROK, 1 ; exceeds max retry, set error flag
Je RET
SEND _OUT ENDF

:this routine recieves the packet from RTU and checks its validity. It
ivalid, sends ACK else sends NAK

Gl LN FhuU NEAK
MOV DI,OFFSET Ex_BUFFER ; initialise DI with oftset Kx butfer
PUSH DI i save offset '
CALL GET_PKT irecieve packet
PUSH CX ; save packet length
POP S1 iget starting address of block in 5l
MOV DI,OFFSET K_BUFFEER ; initialise DI with oftset K_butfer
INC 81
sUB CX., b get data length in CX

ul: LODSW
CALL ASCII _TO_HEX ‘
oTOSB ;convert the data into hex
LOOFPNZ G1
PUSH SI
MOV SI,OFFSET R_BUFFER ;initialise SI with adress of checksum
CALL CHK_SUM ycalculate checksum
CALL HEX_TO_ASCII; convert checksum into ASCII
POFP SI .
MOV DL, [S1]
INC SI
MOV DH,[SI]
CMP AX,DX .compare two checksums for validity of packet
JZ SAME yvalid, jump to save
MOV AL.1

MOV NAK_EKROK.,1 ;no, set nak_error flag to 1
MOV DI,OFSET Rx_BUFFEER
FOF CX
MOV AX.Q
FLUSH: STOSW
LOOF FLUSH iclear the buffer
MOV AL, NAK
CALL SEND_BYTE :send NAK
JMF OT _
HAME : MOV AL,ACK ;send ACK
CALL SEND_BYTE
MOV AL.®
MOV NAK_ERROR. 1
OT: RET . return
GET_IN ENDP

MAIN

Wl:
W5:

Wd .

FOBLIC ..

PUSH
FOF
PUSH
FOP
MOV
MOV
MOV
INT
CALL
MOV
INT
CMF
JZ
DEC
JNZ
JMF
MOV
INT
J2
MOV
INT
CMF
JG
CMF
JL
MOV
CMF
JZ
CMF
JZ
CMF
JZ
CMF
Jz
CMF
Q.JZ
CMEF
JZ
CME
JZ
CMF
Ja
CMFE
Jo
CHE

DISFLAY

)

DS

Co

ES

CL.3

AH.1
AL.S0H

14H

WAIT15
AH. ¢

14H
CL,ACK

W4

CL

Wb

PRCS. ERROK
AH.1

16H

Wi

AH, 9

16H

AL, 42H
ERROR

AL, 3@H
ERROR
DI.OFFSET T_BUF
AL, 38H
ZERO BYTE
AL, 39H
ZERO BYTE
AL, 35H
FIVE BYTES
AL.36H
FIVE BYTES
AL.37H
FIVE BYTES
AL. 30H

GET _PACKET
AL, 31H

ONE BYTE
AL.32H

ONE BYTE
AL, 33H

ONE BYTE

iinitalise all segments to same value

iset the counter to 3
.transmit S50H

‘wait for 15 ms

:read if acknowledgement recieved
.1s ACK recd?

YES, jump to read type trom kbd.

i NO, decrement the counter

iif counter zero NO, send SOH again
yYES, Jjump to process error

icheck keyboard for any key pressed

iread kbd.

i1s key pressed within our codes
NO, Jjump to error routine

‘YES , initialise DI with offset trans.

i1s byte 38H

YES, Jjump to send zero byte
:NO, is byte 39H =

:YES jump to send zero byte
:NO is byte 35H

i YES jump to send five bytes
;NO is byte 36H

YES jump to send five bytes
;NO is byte 3TH

YES jump to send five bytes
iNO is byte 30H

YES get packet from RTU

‘NO is byte 31H

YES jump to send one byte
;NO is byte 32H

YES jump to send one byte
yNO is byte 33H

‘YES jump to send one byte

butfer

JZ ONE BYTE
ERROK: MOVE AH,2
MOV AL.7
INT 21H
CALL WAIT1
JMP Wl
ZEKO BYTE:CALL SEND_BYTE
CALL WAIT1
JMF W1
ONE BYTE:CALL SEND_BYTE
W : MOV AH.1
INT 16H
JZ W2
MOV AH.©
INT 16H
. STOS B
HOV CX. L
JMF FREP EKT
THREE BYTE:CALL SEND_BYTE
MOV CX.5
W3: MOV AH. 1
INT i6H
JZ W3 -
MOV AH.Q
INT 16H
STOS B
LOOP W3
MOV CX.5
PREP_PKT:CALL SEND_QUT
CMP ERKOR. 1
JZ PRCS_ERROR
CALL WAIT1
JMP Wi
PRCS_ERROR:MOV DX,OFFSET ERROR_MSG
~ MOV AH,9
INT 21H
CALL WAIT1
JMP Wi
GET_PKT: MOV CX.MAX_RETRY
TRY AGAIN:FUSH CX
CALL GET_IN
POP CX
CMF NAK_ERKOK. @
JZ RECD_OK
LOOF TRY_AGAIN
JMP FK

AL, 34H

(NU is byte 34H
;YES jump to send one byte

error routine to give one beep if wrong
code pressed

.wait one second

i jump to start again

.send type

iwait one second

;Jjump to start again

;send type

.get next byte from kbd.

jump to prepare packet
. send type

get rfive bytes from kbd.

:send the packet out

iis any error?

:YES . jump to process error

iwait one second

;jump to start again

imov into DX offset of error message

.dispaly error message

;wait one second

sjump to start again

imov into CX the MAX retry count
.save count

i recieve the packet

get count

;1s nak_error flag set 7

‘NO. the pakcet is recd. 0.K.

;else loop to get packet Z more times

~

RECD_OK:CALL
GALL
JMF
CODE ENDS
END START
WAIT1: FROC
XOK
XOR
MOV
INT
WALIT CYCLE: MOV
INT
uMFE
JL
KET
WAIT15: PROC
XOR
XOK
MOV
INT
WAIT11: MOV
INT
CMFE
JG
CALL
UME
JZ
MOV
JMFP
ACK_RECD: MOV
WAIT_OVEK:RET
ENDF

o _ERROK
_DISFLAY
WAIT1
W1

NEAK

CX,CX
DX.DX

BH, 2DH

<1H

AH.ZCH

el

DH. 1
WAIT_CYCLE
NEAR

CX,CX
DX, DX

- AH.Z2DH

1B

AH, <CH

21H

DL.15

GET _BYTE
AL, ACK
ACK_RECD
READ_ACK, 9
WAIT11
READ_ACK, 1

‘max retry over,

icall display routine
iwait one second
i jump to loop again

set time to ¥

.set AH for one sec delay

iis delay over 7

o,
YES return

jump to wait cycle again

set time to zero

move count in AH to get 15 mé delay

iis 15ms over
;YES, Jjump to

check if ACK
;YES, jump to

else jump to
;set recd_ack
sreturn

?
A

wait_over

recd.

ACK recd.

wait again
flag to one

jump to proccess error

SOURCE - MobutAR MicRo- COMPUTE SYSTEM
Técrmmear DEscrRIFriON

C Proressionar EtccTropie Pronuers)

THE MODULER MICRO COMPUTER SYSTEM TYPE EP=- 131

. A;1 INTRODUCTION

The NUCLEUS bus structure provides a common element for
communication between a wide variety of system modules which ..
" includes: Processors, memory, digital input/ output, analog 1/0;
industrial I/0,!' peripheral controllers, plug-in power supply
modules and misc. utility modules, Implementation of NUCLEUS
system and nomenclature of different modules is shown in figure A-l,

The purpose of this application note is to help you develop &
vorking knowledge of the NUCLEUS bus specification, This knowledge
is essential for configuring a system containing multiple modules,
This application note provides an in depth examination of the bus
-signals, operating characteristics, and bus interface circuits,

A2 FEATURES

- Uses standard Euro size (100 x 220 mm and 233,4 X 220mm) cards
d-Uses high reliability 2 part 64/ 96 pin standard Euro connector.

~ Uses uSIC (Microprocessor based System for Industrial Control)
compatible bus using well defined IEEE 796 (Intel Multibus)
electrical signals on standard Euro size hardware, This bus is
well defined for 8, 16 and also 32 bit systems allowing for
@asy upgradabllity of the hardware,

As3 DESCRIPTION

The mechanical outline of NUCLEUS system single helight shown in
Fig. A-~2, To support 8 bit hardware the signals op the row A and
C remain used, The 16 bit modules use 96 pin connector (with rows
A, B and C of 32 pins each) while 8 bit modules use 64 pin
connector (with rows:-A.and C), For bravity, the back panel
connector pin assignments of 64 pin connector for 8 bit systems
18 reproduced in Table Awl,

The signals on the back panel are bussed ises pin 1 aaf all the
back panel connectors is connected together, similarly pin 2 of
~all connectors is connected together and so on, This rule has a
few exceptions which have been mentioned with the description of
the non- bussed signals, This bussing of the signals allows any
module of the system to work in any slot on the sub-racke

The NUCLEUS bus signal lines can be grouped in the following
categories: address lines, bidirectional data lines, multilevel
interrupt lines, and several bus control, timing and power supply
lines, The address and data lines are driven by three. state

devices, while the interrupt and some other control lines are
open- collector driven,

The modules that use the NUCLEUS bus have a master- slage
relationship. A bus master module can drive the command and
address lines i.es it can control the bus, A Processor module
18 an example of a bus master. A bus slave can not control the
bus, Memory and I/0 expansion boards are examples of bus slaves,

Notice that a system may have a number of bus m3sters., Bys

arbitration results when more than one master request control of
. the bus at the same times A bus clock is usually provided by one

of the bus masters and may be derived independently from the
processor chock. The bus clock provides a timling reference for
resolving bus contention among multiple requests from bus masters,

For example, a processor and a DMA (direct memory access) module
may both request control of the bus, This feature allows different
speed masters to share resources on the same bus, Actual transfers

via the bus however, proceed asynchronously with respect to the bus
clock, Thus, the transfer speed is dependent on the transmitting and
recelving devices only. The bus design prevents slow master modules.
from being handicapp@d im their attempts to gain control of the bus,
but doesnot restrict the speed at which faster modules can transfer
data via the same bus;, Once a bus request is granted, single or
multiple read/ write transfers can proceed, The most obvious applica-
tions for the master~ slave capabilities of the bus are multlprocessor
-configurations and high- speed direct- memory- access (DMA) operations.
Howewer, the master- slave capabllities of the bus are by no means
limlted to these two applications,

NUCLEUS bus for & bLit svstems

PIN ROW RO ROW
R{e) A B C
L GND - CND
2 +9V - 5V
3 -15V - -15V
4 +19V =15V
5 DTO/ - D11/
6 DT2/ - DT3/
7 DT4/ - NTS/
8 D16/ - D17/
-9 o ADRO/ - ADR1/
10 ADR2/ - ADR3/
11 ADRG / - ' ADRS/
12 ADRG/ - ADR7/
13 ADRS/ - ADRY/
14 ADR10/ - ADR11/
15 ADR12/ - ADR13/
16 ADR14/ .- ADR1S/
17 INTO/ OR NMI = INT1/
18 INT2/ - INT3/
19 1UTA/ - INTS/ N
20 . INTG/ - IHNT7/
21 CCLK/ - CBRQ/ OR HOLD/
22 INTA/ (%) - INH2/ (%)
23 NACK/ (%) - INHY/ (%)
24 T10RCY - 1OWG/
25 MRDC/ - MWTC/
26 BUSY/ OR HLDA - BREQ/ (*)
27 BPRN/ (%) - BPRO/ (%)
2 BCLK/ (%) - TNIT/
29 GND - GND
30 +HV - +5Vy
31 +5Y - +95V
32 GiD - GND

e e e e e et ke e e e e ve e e Y e ms e e e e e ek e ea e v e e e e e o o o . -— - -

b [1=0s5x o |
¢ [,\-’('.. - |
PROCESLORS N — f
I 0{\1 \ P T‘J—l - ‘
A CTIITIOLL |
\ L . l
L ot bU\J(U BN — l
@, I o4
f R TR nl (B O
j £)- 10 [\'\C’L‘\T 0
A s E“I ':)
— SN
MEMORY S L B
RAM \{:iiﬁitllwnb
ROM %

e
&wc Lﬁlﬁ]
T

Ech___T""—‘\rn

E1-2%% -
DIGITAL IO

INPUT . PORTS
OUTPUT PORTS

AHALOG 0
DRIVEAS J/\‘l

l ANAL(;(J_—-—
L_SEMSORS 0’

E1-3%XX
ANALQOG 10

DACS
aAQCsS

PERIOHE DAL .
CEVKE - l

PERIPHERAL INTERFACE

C1 -4 XX S “

© UART
PRINTER INTERFACF,
CRi

MOTOR

B

YALVE o N

EN-Sxx
INDUSTRIAL 1[0
OPTO~INPUT

E1-8X
POWER SUPPLIES

D61 1AL
THREE QUTPUT

Uy

j b5 EN-uax

N e - ———

ey

MISC CARDS

CARD EXTENDLAS s W
GP CARDS

0 o o e e
£71C Cir

A AR
<5 3HCGY

STHING A

FIGURE- A

= Il

NUOCLEUS BUS FoR §-a)T
SYSTEM

. e e ari e & o ™

220mm

r_&»
c(n
33
33

,
-OY

—

(¥P]

Q0
S
33

-

T

+04mm
{ LOOKING FROM CCMPCHNENTS SIDE)
Flg UrRE—A-2 NUCLE Cm BUS
» SINGLE HEIGHT CARD 4

SOURCE - PROCRMMERS REFERENCE Manvpge

For Iam PERsSONAL CompuiER.

DOS Interrupt 21H
Invoke a DOS Function Request

Interrupt:
' 21H Invoke a DOS Function Request T

DOS Version:
1.0, 1.1, 2.0, 2.1, 3.0, 3.1, 3.2

Descnptlon.
This interrupt is used to invoke all of the standard DOS function requests.
Chapter 4 describes each of the function requests in detail and explains how
to set up the registers properly so that you can invoke the function request
you want.

Input:
Before issuing this interrupt, yt/)u must set registers as follows:

AH Place the number of the DOS function request in this register.
Set other registers as required by the individual function requests. Refer to
Chapter 4 for details.
" OQutput:

After control returns, the registers will be set as appropnate for each func-
tion request Refer to Chapter 4 for details.

D - DOS Function Request 02H

Display a Character

Function Request:

02H Display a character at the standard output device

DOS Version:

1.0, 1.1, 2.0, 2.1, 3.0, 3.1, 3.2

Description:

Input:

This function request displays a character at the standard cutput device (usu-
ally ‘the display screen). It displays the character at the currvent location of
the cursor and then advances the cursor one position.

If the character displayed is a backspace character, this function request
moves the cursor one position to the left. However, it does not erase that

"character.

When the function request displays a character at the end of the line (the
right edge of the screen), the cursor moves to the left edge of the next line. 1f
the cursor is at the bottom right corner of the screen, the screen scrolls up
one line when the cursor moves.

This function request checks for a Ctrl-Break after displaying the character.
If the operator has entered a Ctrl-Break, the function request invokes an
interrupt 23H to start the Ctri-Break handler.

With DOS 2.0 (and later versions), you can redirect the standard output de-
vice. Redirection enables programs that use this function request to write to
other devices, such as printers and disk files, instead of writing only to the
screen.

Before invoking this function request, you must set registers as follows:

AH This register must contain 02H, indicating the number of this func-
tion request.

DL ASCII code for the character to be displayed.

D DOS Function Request 09H
Display a Character String at the
Standard Output Device

Function Request:
09H Display a character string at the standard output device

DOS Version:
1.0, 1.1, 2.0, 2.1, 3.0, 3.1, 3.2

Description:

This function request displays a string of characters at the standard output
device (usually the display screen). It displays the characters starting at the
current location of the cursor and then advances the cursor one position.

To determine the end of the string, this function request assumes that the
last charactér of the string is a $ character (ASCII code 24H). It does not
display the $. Because of this string-ending convention, you should not use
this function request to display information contammg dollar signs, such as
ﬁnanc1al data.

If any character in the string is a buckspuce character, it causes the cursor to
move one position to the left.

When the function request displays a character at the end of the line (the

~ right edge of the screen), the cursor moves to the left edge of the next line. If
the cursor is at the bottom right corner of the screen, the screen scrolls up
one line when the cursor moves.

This function request checks for a Ctrl-Break after displaying the character.
If the operator has entered a Ctrl-Break, the function request invokes an
interrupt 23H to start the Ctrl-Break handler.

- DOS 2.0 (and later versions) allows you to redirect the standard output de-
vice. Redirection enables programs that use this function request to write to
other devices, such as printers and disk files, instead of writing only to the
screen.

DOS Function Request 09H
Display a Character String at-the
Standard Output Device.

Input:

Output:

See Also:

/

Before invoking this function request, you must set registers as follows:

AH This register must contain 09H, indicating the number of this
function request.

DS:DX - This register pair must point to the start of the character string .
in memory. The function request displays characters until it en-
counters a $ character (ASCII code 24H), which terminates the
string. The $ character is not displayed.

None.

02H—Display a character at the standard output device.

Example Programs:

Assembly L

; DISPLAY S

]

code seqg

assume cs:cC
org

start: Jmp

msg db

begin: mov
mov
mov
mov
int

Each of the following three examples uses function request 09H to display a
string of characters terminated with a dollar sign on the screen. Most of the
assembly language examples listed in this book use this function request to
perform screen output.

anguage Usage Example:

TRING (09H)

ment public

ode,ds:code
100h
begin
'Hi! This is a dollar sign terminated string.','$'
ax,Cs iset up ds
ds,ax
dx,offset msg ;set up to display message :
ah,0d9h ;display string function request

2lh ;ycall DOS

[:I‘ DOS Function Request 2CH
Get the Time

Function Request:
2CH Get the time

DOS Version:
1.0, 1.1, 2.0, 2.1, 3.0, 3.1, 3.2

Description:
This function request returns the time (hours, minutes, seconds; and hun-

dredths of seconds) as maintained by DOS. The DOS time is based on a value
the user entered (or that was retrieved from a clock/calendar) after turning

on or rebooting the computer.

Input: -
Before invoking this function request, you must set the following:
AH This register must contain 2CH, indicating the number of this func-
tion request.
Output:
After control returns, the following are set:
CH Indicates the current hour in 24-hour format (O through 23).
CL Indicates the current minute (0 through 59).
DH Indicates the current second (0 through 59).
DL Indicates the current 1/100 of a second (0 through 99).

S_ee Also:

2AH—Get the date.
. 2BH—Set the date.
2DH-—Set the time.

Example Programs:
Each of the following three examples uses function request 2CH to retrieve

the current time. The program displays the time on the screen.

D DOS Function Request 2DH
Set the Time

Function Request: |
2DH Set the time o /

DOS Version:
1.0, 1.1, 2.0, 2.1, 3.0, 3.1, 3.2

Description:

This function request is similar to function request 2(Jll It sets the DOS
time.

This function request is useful for programs such as those that work with
battery-powered clock/calendars. The program can retrieve the date and time
from the clock/calendar and use this function request (and function request
2BH) to set the DOS date and time accordingly. If the program is invoked
from the AUTOEXEC.BAT me the user never needs to enter the date or time
manually.

Programs can also use this function request to set the time to 0 in prepara-
tion for using the DOS clock as an event timer.

Input:
Before invoking this function request, you must set the following:

AH This register must contain 2DH, indicating the number of this func-
tion request.

CH This regisier must contain a value indicating the current hour in 24-
hour format (0 through 23).

CL This register must contain a value indicating the current minute
(0 through 59).

DH This register must contain a value indicating the current second
(0 through 59).

DL This register must contain a.vualue indicating the current 1/100 of a
second (0 through 99).

DOS Function Request 2DH
Set the Time

Output:

After control returns, the following is set:
AL Indicates the status of the operation, as follows:

00H The time you supplied was vahd and DOS waq able to set its
time accordingly. /

FFH At least one of the time components you supplied was invalid
(such as 25 hours or 63 seconds). The function request did
not set the time.

Sce Also:

2AH—Get the date.
2BH—Set- the date.
2CH—Get the time.

Example Programs: _
Each of the following three examples uses function request 2DH to set the
current time to 00:00:00.0.

Assembly Language Usage Example:

1

; .SET TIME (2DH)

code segment public
assume cs:code,ds:code
org 100h
start: Jjmp begin
msg db 'Time set to 00:00:00.00',04h,0ah,'$!
begin: mov ax,cs ;set up ds
mov . ds, ax ;to same as cs.
mov ah,2dh ;set time function request
mov ch,O s hours
mov cl,O sminutes
mov dh,0 ;seconds
mov dl,0 yhundredths
int clh ;call DOS
mov “dx,offset msq ;address of message

mov ah,09h ;display string fundtion request

< L:] BIOS Interrupt 14H
RS-232 Serial 1I/0

Interrupt:
14H RS-232 serial I/O

Description:

The BIOS function requests invoked via this interrupt let you control the
actions of the RS-232 serial communications ports. These ports are actually
standard communication paths that allow programs to communicate with
modems, serial printers, and other computers. ‘

There are four function requests associated with this interrupt. You choose
the function request you want by setting the All register to the appropriate
value and then issuing an interrupt 1411. The following function requests are
available via this interrupt:

AH Function Request
00H Tnitialize serial port.
01H Send one character.
02H Receive one character.
03 Get serial port status.

The next several pages describe these RS-232 Serial Port function request:
in detail.

| D BIOS Interrupt 14H
RS-232 Serial I/O
- Function Request 00H—Initialize Serial Port

Interrupt:

14H RS-232 serial I/O

Function Request:

Computers:

Description:

Input:

00H Initialize serial port

PC, PCjr, XT, Portable, and AT

;

This function request sets up the serial port for transmission or reception of
information. You can set the baud rate, parity, number of stop bits, and the
character length. '

Before invoking this function request, you must set the following:

AH This register must contain 00H to specify the Initialize Serial Port
= ° function request. '

AL Set this register to contain the encoded initialization parameters, as
follows:

‘Bus

Bit Description

7-5 Baud rate. Set this three-bit field to indicate the number of
characters that should be transmitted each second. Possible
binary values include:

Value Baud Rate
000 110
001 150

BIOS Interrupt 14H
RS-232 Serial 1/0

Function Request 00H—Initialize Serial Port

4-3

Value Baud Rate

010 300

011 600

100 1200

101 2400

110 4800

111 9600)

On the PCjr, only baud rates up to 4800 are supported. At-
tempts to set the baud rate to a higher value actually set the
baud rate to 4800. Y

Parity. Set this two-bit field to indicate the parity checking
scheme used by the serial port to ensure that no data is lost
during transmission. Possible binary values include:

Value Parity

00 No parity checking.
01 Odd parity.

10 No parity checking.
11 Even parity.

Number of stop bits. Set this bit to specify the number of
bits that are sent after each character to indicate the end of
that character. Possible values are:

Value Number of stop bits
0 One stop bit is used.
1 Two stop bits are used.

Character length. Because information is sent over a serial
line one bit at a time, the processor niust know how many bits
are contained in each character. Set this two-bit field to one of
the following binary values:

BIOS Interrupt 14H
RS-232 Serial I/O
Function Request 00H—Initialize Serial Port

Value Character size
10 seven-bit characters
(standard ASCID
11 eight-bit characters
DX Set this register to indicate the serial port you want to initialize, as

follows:
0 The first (or only) serial port.
! The second serial port.

Qutput:

The seriel communications port is set up as directed. In addition, the follow-
Jing registers contain siatus information. This information is the same as that
returned by function request H3H (Cet Serial Port Status).

A - This register contains the encoded line status, as follows. The status
information is true if the corresponding bit 15 set.

— - . (RIS _
CERLETEL
Bit ' Description
7 Time-out error has occurred.
6 Transfer shift register is cmpty.
5 Transter holding register empty.
4 Break occurred.
3 Framing error occnrred.
2 Parity error occurred.
1 Overrun error occurred.

0 Data is ready.

BIOS Interrupt 14H
R1S-232 Serial I/0
Function Request 00li—Initialize Serial Port

AL This register contains the encoded modem status, as follows. The
status information is true if the corresponding bit is set.

Bits
LrlsfsTafafe]1]0]
Bit Description
7 Received line signal detect (a carrier signal was detected).
6 Ring indicator was detected.
5 Data set is ready (DSR),
4 Clear to send (CTS).
3 A change in the reccive line signal detect (carrier signal) oc-
curred.
2 Trailing edge ring detector.
1 A change in the data set ready (DSR) signal occurred.
0 A change in the clear to send (CT8) signal occurred.

See Also:

Interrupt 14H, function request 03H—Cet serial port status.

D BIOS Interrupt 14H
RS-232 Serial 1/0
Function Request 0Q1H—Send One Character

Interrupt:
14H RS-232 serial 1/0
Function Request:
"O01H Send one character
Computers:
PC, PCjr, XT, Portable, and AT
Description:

This_function request sends a single character through the RS-232 serial port.

Input:
~ Before invoking this function request, you must set the following:
AH This register must contain 01H to specify the Send One Character
function request.
AL Set this register to contain the ASCII code for the character you wish
to send.
DX Set this register to indicate the serial port to which you want to send
the character, as follows:
0 The first (or only) serial port.
1 The second serial port.
Output:

Unless an error occurs, the character is sent to the serial port.

7

‘Error Conditions:
The following register indicates the success or failure of this function request:

AH If this register is set to 0, no error has occurred. However, if bit 7 is
set to 1, an error of some sort has occurred. The remaining bits are
encoded to indicate the line status, as follows:

BIOS Interrupt 14H
RS-232 Serial I/O
Function Request 01H—Send One Character

Bits

Bit Description
6 Transfer shift register empty.
5 Transfer holding register empty.

4 Break-detect error.
3 Framing error.

2 Parity error.

1 Overrun error.

0 Data is ready.

The errors reported in this register are a subset of the ones reported
by function request 03H (Get Serial Port Status). The one error con-
dition that cannot be reported here is the time-out error, which is
normally reported in bit 7. Funclion request O1H uses bit 7 as a gen-
eral error flag and therefore cannot use it to report a specific error. To
ensure a complete error report, check only bit 7 of this register. If bit
7 is set, invoke function request 03I to get the complete error status.

See Also:
~ Interrupt 14H, function request 03H—Get serial port status.

(] BIOS Interrupt 14H
RS-232 Serial 1/0 |
Function Request 02H—Receive One Character

Interrupt:
14H RS-232 serial 1/0

Function Request:

02H Receive one character

Computers: -
PC, PCjr, X'T, Portable, and AT

Description:

This function request receives one character from the serial port. When the
function request gains control, it waits until a character is available from the
serial port, or until a time-out occurs. Therefore, if you don't want to be forced
to wait, you should invoke function request 03 (Get Serial Port Status) first
to determine whether data is ready to be received.

Input:
Before invoking this function request, you must set the following:

AH This register must contain 02H to specify the Receive One Character
function request.

DX Set this register to indicate the serial port from which you want to
receive the character, as follows:

0 The first (or only) serial port.

1 The second serial port.
Output:
Unless an error occurs, the following register is set after control returns:

AL This register contains the ASCII code for the character that was re-
ceived.

BIOS Interrupt 14H
RS-232 Serial 1/0
Function Request 02H—Receive One Character

Error Conditions:
The following register indicates the success or failure of this function request:

AH If this register is set to 0, no error has occurred. However, if bit 7 is
set to 1, an error of some sort has occurred. The remaining bits are
encoded to indicate the line status, as follows:"

Bits

7161514312110

4 Bit Description
6 - Transfer shift register empty.
5 Transfer holding register empty.
4 Break-detect error.
3 Framing error.
2 Parity error.
1 Overrun error.
0 Data is ready. B

The errors reported in this register are a subset of the ones reported
by function request 03H (Get Serial Port Status). The one error con-
dition that cannot be reported here is the time-out error, which is
normally reported in bit 7. FFunction request O1H uses bit 7 as a gen-
eral error {lag and therefore cannot use it to report a specific error. To
ensure a complete error report, check only bit 7 of this register. If bit
7 is set, invoke function request 03H to get the complete error status.

See Also:

Interrupt 14H, function request 03H-—Get serial port status.

D BIOS Interrupt 16H
Keyboard 1/0Q

Interrupt:

16H Keyboard O

Description:

The BIOS function requests invoked via this interrupt allow you to receive
characters from the keyboard and check to see whether a keyboard entry has
been made. With the BIOS function requests, as opposed to the DOS function
requests that perform the same operations, you can skip some of the function
processing that DOS performs automatically. For example, if a Ctrl-C is
pressed, the DOS character-handling routines automatically assume that
character to be a special signal; that is, to abort the program. However, the
BIOS function requests make no assumptions about the characters they
receive.

You choose the function request you want by setting the AH register to the
appropriate value and issuing an interrupt 16H. The function requests avail-
able via this interrupt are the following:

AH Function Request

00H Read next keyboard character.

O01H Determine whether character is available. .
02H Get current shift status.

The next several pages describe these keyboard IO function requests in
detail.

BIOS Interrupt 16H

Keyboard 1/0

Function Request 00H—Read Next
Keyboard Character

Input:
Before invoking this function request, you must set the following:
AH This register must contain OUH to specily the Read Next Keyboard
function request.
Gutput: . i
Control does not return until a character is typed at the keyboard. After con-
trol returns, the following registers are set:
AL This register contains the ASCIl code of the key that was pressed. 1f
the ey does not correspond to one of the 256 ASCII characters, .this
register will be set to 0. R
AH This register contains the extended code for the character. This will
either be the keyboard scan code shown in Figure 5-1 or 5-2, or an
extended code listed in Table 52,
See Also:

Interrupt 16H, function request O1H—Determine whether character is
available. ‘
Interrupt 16H, function request 02H—Get current shift status,

[3 BIOS Interrupt 16H
Keyboard I/0

Function Request (0H—Read Next
Keyboard Character

Interrupt:
16H Keyboard I/0

Function Request:

00H Read next keyboard character
Computers:

PC, PCjr, XT, Portable, and AT
Description:

This function request reads a character typed at the keyboard. If the charac-
ter has already been typed, and resides in the BIOS keyboard buffer, the
character is returned immediately. Otherwise, this function request waits un-
til a character is typed.

This function request returns two picces of infermation about the character
typed: its ASCll code and its extended code. The ASCIH code is the standard
code by which the character is known in many programming languages and
computer systems. The extended code is the specific code that the BIOS uses
to refer to an individual pressed key or key combination.

Both the ASCII and extended codes are returned for a couple of reasons. First,
not all the keys on the IBM keyboard correspond to ASCII characters. For
those characters and for certain combinations of characters and the Shift,
Ctrl, or Alt key, the ASCII code is returned as a 0, and only the extended code
serves to distinguish the character. Second, some of the keys, such as the
numeric keys, the shift keys, and the asterisk keys, are duplicated on the
IBM keyboard. Their ASCII codes are the same, but their extended codes are
different. By returning both the ASCII code and the extended code, you can
tell exactly which key has been pressed. Fov exanple, you can differentiate,
between the numbers on the numeric keypad and the numbers on the top
row. ’

In most instances, the estended code returned by this function request is the
keyboard scan code of the primary key that was pressed. The keyboard scan

BIOS Interrupt 16H

Keyboard I/Q

Function Request 00H—Read Next
Keyboard Character

codes are specific codes that the IBM keyboard sends in response to a pressed
key. Keyboard scan codes apply only to the individual keys. There are no
separate codes for uppercase (shifted) characters or characters entered while
the Ctrl or Alt key is pressed. In most cases, to determine whether the Shift,

Ctr], or Alt key was pressed with another key, you must use function request
0211 (Get Shift Status).

Figures 5~1 and 5~2 show the keyboard scan codes for the two standard IBM
keyboards. Figure 5-1 illustrates the keyboard used for the IBM PC, XT, and
Portable. Figure 5-2 illustrates the AT keyboard.

Figure 5-1. Keyboard Scan Codes for the IBM PC, XT, and Portable

WH 3CH ol o 0H [[Ve o 08t v oA [ocH o0k otH anm L)
' 0 E D BB B D TED CEC
B E D E B BB R EE B O CE]
304 3MH OFH 106 114 2™ 13 oM 184 ALl AtL} 18- - 1AH \BH 1ICH oM 48n o Ll
| = i T Uy
FECEDECEE O D EHHEE L
»r 40H D% €M N 0m RALY m I ELL] ™ E, ol b2l 2604 bl N ACH -1 4EN
! e . la tl 1 = T — =
B E | O=0 B E R OB B OB HoEEE
M am AN 28H H T0m 2EM WH bl 1m ™ pi Rl bl b M e 80N, 1
| Tl el B E R Oed B R B B
[| 0= 6 B EE O . 18
aan i

BE

For some key combinations, where both a standard key and a shift key
(either the Shift, Alt, or Ctrl key) are pressed at the same time, this function
request returns an extended code that is different from the standard key-
board scan code. Table 5-2 lists those key combinations and extended codes.

If your program is not willing to wait until a key is pressed, it'can invoke
function request 01H (Determine Whether Character is Available) to deter-
mine whether a character is waiting to be received.

BIOS Interrupt 16H

Keyboard I/Q

Function Request $0H—Read Next
Keyboard Character

Figure 5-2. Keyboard Scan Codes for the IBM AT

s 3 8 3
x b 3 1 z

-
~

EX

=
&
m"

-8
MR

-
b3

| R R

o8 o0on Oabe Ot OC H (L) 7b oLn o O A e
3 U T . o el [w bk
7 9 0 . it) act

e Yar Tan o k)

Tabie 5~2 Extended Codes tfor Special Key Combinations

Extended Character
Code Combination
~ 03H Nul character.
54H~50H Shift plus F1 through F10.
S5EH-67H Ctrl pius F1 through F10.
68H-71H Alt plus F1 through F10.
72H Ctrl plus PrtSc.
73H Ctrl plus left arrow.
74H Ctrl plus right arrow.
75H Ctrl plus End.
76H Ctrl plus PgDn.
77H Ctrl plus Home.
78H-83H Altplus 1,2,3,4,5,6,7,8,9,0,-, =
" 84H Ctrl plus PgUp.

SOURCE - GRAPH X MaNuaL

Main Features of GRAPH-X

Graph-X can be used for plotting points drawing lines, cir-
cles, arcs and rectangles. It allows text writing. It allow to
switch colour levels from dark to green.

On Screen graphic facilities

Following on screen graphic facilities are available:

INT 10.COM - extension to DOS for on screen
graphics

FOR 2 GRH, OBJ - linkage to FORTRAN

HCG. COM - confugration file for graphi-
ic card.

Printing facilities

Following print facilities are available :

HARCOPY. COM - extension to DOS for screen
printing
PRINTER. DEF - definition file for IBM

or Epson dot matrix printer.
Both INTIO.COM and HARCOPY. COM must be loaded before us-
ing graphics.

Coordinate system:

Graphic screen may be considered as two dimension array with
X being horizontal and Y-being vertical axis. The origin of the
axis is tﬁe upper left corner. The addressable pixels are:
X(horizontal) : 0 to 719

Y(vertical) : 0 to 347

Any part of figure outside the legal boundary is clipped

at the edges.

Any letter crossing the boundary is suppressed fully.

Height of the pixel is 1.5 times more than to its width.
To draw figures with same scales on both axises, vertical dimen-
sions are multiplied 2/3.

Screen Colour Level

Figures may be drawn green or black in any background, also
the figure may be drawn in colour opposite .to the background.

The colour levels are

0 - causes the figure to be drawn
black

1 - causes the figure to be drawn
green

2 - causes pixel to change colour

it causes green figures on
black colour and black figures
on green background
Repeated drawing of a figure with level 2 will cause it to
blink.

Text Writing:

Text is drawn 9 pixel wide and 14 pixel high. Background
and the colour of the text depends on the set level. The charac-
ter must be inputed in ASCII form. If the character are more they
may be defined as double precision or character.

Graphic pages:

There are two independent pages in which graphic display
ls stored. Each graphic page is independent and requires 16 K

memory. Both these pages can be used independently for display

and writing. Caution has to be taken while using page 0. The first
4K of page 0 is shared by text mode buffer. Any text mode opera-
tion will contaminate graphic page 0. The run time error are ec-

lipsed when the screen is in graphic mode.

Using GRAPH-X with fortran:

Few precaution are necessary for using GRAPH-X with FORTRAN.

Each function or subroutine of GRAPH-X must be declared as
EXTERNAL in the program. Variables should not be passed directly
to GRAPH-X routine. Number must be assigned to a variable, which

is then passed as an argument to the routine.

GRAPH-X defined subroutine:

GRAPH-X provide subroutine to set up graphics, draw figures

and print hard copy. The subroutines defined by GRAPH-X are des-

cribed below :

Subroutine ARC:

This subroutine draws a quarter circle on the screen give
the centre of the arc radius and the guardrant in which the arc

is to be drawn:

Calling sequence: CALL ARC(X,Y,RADIUS,QUAD)
Arguments:

X,Y = Coordinates of Centre of the arc.
RADIUS = Number of pixel between point X,Y

and the arc in X-ax is

QUAD = Number of quadrant in which arc
is to be drawn. Numbers are from 1
through 4 with first quadrant as 1 and

increasing counter clockwise.

Subroutine BLKFIL
Given height, width and the lower left corner, this sub-

routine draws a solid rectangle.

Calling sequence: CALL BLKFIL(X,Y, WIDTH, HEIGHT)
Arguments
X,Y = Coordinates of lower left corner
- WIDTH = width in pixels
HEIGHT = height in pixels.

Subroutine CIRC

Given the centre and the radius the subroutine draws

a circle
Calling sequence: CALL CIRC(X,Y, RADIUS)
X,Y = coordinates of centre point
RADIUS = number of pixels between centre and cir-

cumference on X-axis

Subroutine CLSCR

This subroutine clears the graphic page currently wri-
tten into

Calling sequence: CALL CLRSCR

Subroutine DISP

This subroutine set the page to be displayed on the

screen
Calling sequence : CALL DISP(BUFPAGE)

Arguments
0

or buffer page
1

BUFPAGE

Subroutine DLINE:

This subroutine draws a line from current cursor position
to specified cursor position.
Calling sequence: CALL DLINE (X,Y)
Arguments : X,Y = coordinates of end position
Subroutine FILL:

This subroutine fills the area in a convexpolygon by

reverse colour, given a point inside the polygon.

Calling sequence: CALL FILL(X,Y)
Arguments:
X,Y = Coordinates a of a point lying inside the

corvex polygon.
Subroutine PUTPUT arguments;
This subroutine moves the imagipary cursor to specified

position on the screen may be used with DLINE subroutine.

Calling sequence: CALL PUTPUT(X,Y)
Arguments:
X,Y = Coordinates of the imaginary cursor

Subroutine GETPT:

This subroutine reads the intensity of a given pixel any

where within legal coordinates.

Calling sequence : CALL GETPT(X,Y) INTENS)
Arguments:
X,Y = Coordinate of the point whose intensity

is needed

INTENS

Intensity value

0 - Black

1 - Green

Subroutine GMODE

This subroutine puts graphic card into graphic mode. It
must be called before calling any graphic function or subroutine.
Calling sequence

CALL GMODE
Subroutine GPAGE
Subroutine determine the page to be written into
Calling sequence : CALL GPAGE (BUFPAGE)
Arguments:

BUFPAGE = Buffer page 0 or 1
Subroutine LEVEL

Subroutines sets the level to be used by subsequent gra-
phic function. |
Calling sequence : CALL LEVEL (INTENS)
Arguments:

INTENS = 0 black

1 Green
2 XOR

Subroutine PLOT

Plots a given point on the screen depending on the colour
level set.
Calling sequence : CALL PLOT (X,Y)
Arguments:

X,Y = Coordinates of points to be plotted.
Subroutine TMODE; |

This subroutine puts graphic card into normal text mode:

Calling sequence : CALL TMODE
Subroutine TEXTF:

This subroutine writes array of characters at a desired
point on screen character are written horizontally. Upto 4 charac-
ter may be accommodated in single precision, 8 characters in

double precision and upto 132 in CHARACTER xn declaration.

Calling sequence : CALL TEXTP(X,Y,LEN, MSG)
Arguments
X,Y = Coordinate of first letter in the array.

The coordinate is of lower left corner.
LEN = Length of character in text string
MSG = Array of character
Subroutine HRDCPY
This subroutine generates hard copy of the graphic page
on the dot matrix printer.
Calling sequence : CALL HRDCPY (OPT CHAR)
Arguments
OPTCHAR = 'l'" Graphic page 0
'2' Graphic page 1
'3' Graphic page O reverse video
'"4' Graphic page L .reverse video
'5' graphic page 1 and page O

'6' Graphic page 0 and page 8 reverse video.

Coreal Viyarg Ir apm

k' 8

	Title
	Synopsis
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

