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Abstract 

"Outlier" is a scientific term to describe things or phenomena that lie outside normal 

expectation or behaviour. In data mining outlier detection is a type of data analysis 

technique that seeks to determine and report such data objects which are grossly 

different from or inconsistent with the remaining set of data. The technique is used 

for data cleansing, spotting emerging trends and recognizing unusually good or bad 

performers. Typical applications are financial data analysis, intrusion detection, event 

detection in sensor networks, biomedicine etc. 

The existing outlier detection schemes aim to detect the global outliers from the entire 

time series data and therefore fail to detect the local outliers. The detection of local 

outliers is helpful as they tell the degree of isolation of objects from their immediate 

neighbourhood. The existing schemes process outliers by working on the entire 

outlier time sequences. But in case of streaming time series data, this is not possible 

as the data keeps on arriving from the source. 

In the proposed work, we aim to develop an algorithm that detects outliers from 

streaming time series. The outliers are extracted as abnormally behaving 

subsequences in the data. The emphasis is on detecting the local outliers in addition 

to global outliers. The notion of "outlierness" has also been introduced which is used 

to capture the extent of abnormal behaviour shown by the outliers. Further, the type is 

also defined. It refers to the deviation of outliers above or below the normal 

behaviour. The HOT SAX algorithm has been extended to detect the local outlier 

subsequences in the time series streams. The outlier distribution is generated on the 

basis of reference set, to develop a rule based adaptive model to classify outliers into 

local and global classes. 

The proposed work has been evaluated on real life datasets. The first dataset used is a 

daily vehicular traffic dataset, that is, Gotthard tunnel dataset- number of motorcycles 

in one direction (in year 2005). The other dataset used is ECG dataset. 
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Chapter 1: Introduction 

1.1Data Mining 

Across a wide variety of fields, data are being collected and accumulated at a dramatic 

pace. There is an urgent need for a new generation of computational theories and tools 

to assist humans in extracting useful information from the rapidly growing volumes of 

digital data [1]. 

Of late, data mining in databases have been attracting a significant amount of interest 

in wide variety of areas, such as science, marketing, finance, health care, retail, and 

many other fields [1]. By performing data mining the discovered knowledge can be 

applied to decision making, process control, information management, and query 

processing [1]. Some widely used data mining methods are [2]: concept/class 

description (that is characterization and discrimination), mining frequent patterns, 

associations and correlations, classification and prediction, cluster analysis, and 

outlier analysis. 

1.2 Time Series Streams 
The past decade has seen a wealth of research on time series data. The vast majority 

of research has concentrated on data mining techniques that are calculated in batch 

mode and can store in physical media [3]. 

However, data streams have received considerable attention in various communities 

due to the increasing deployment of mobile devices and real time sensors such as in 

network analysis, sensor network monitoring, moving object tracking, financial data 

analysis, and scientific data processing. All these applications have in common that, 

(i) massive amounts of data arrive at high rates, which make traditional database 

systems prohibitively slow, and (ii) users, or higher-level applications, require 

immediate responses with high accuracy [3]. These two requirements have brought 

home the need for mining techniques that is adaptable with the continuous inflow of 

data, and can provide with optimum storage requirement. 
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1.3 Outlier Analysis 

Outliers are the data objects that do not comply with the general behaviour or model 

of the data [2]. Figure 1.2 shows two data objects as outliers 0/ and 02, isolated from 
other data objects in C/ and C2. Searching for outliers in data streams is an important 

area of research in the world of data mining with numerous applications, including 

credit card fraud detection, discovery of criminal activities in electronic commerce, 
weather prediction, etc [4]. 

Figure 1.1: Shows two isolated data objects as outliers 0/ and 02 

Recently mining outliers in data stream attracts more and more attention. It becomes a 

challenge work due to the characteristics of data streams. Stream data differ from 

conventional stored relational data since a data stream is an ordered sequence of data 

that arrive continuously and change fast [4]. It is unlimited in size and not possible to 

save in a physical media. Thus it needs to be processed differently to quickly extract 

nearly real-time information. 

1.4 Motivation 

Recently outlier detection in stream data is becoming very important, as discussed in 

section 1.3, due to its wide application in areas such as Internet traffic analysis, sensor 

network monitoring, moving object search, financial data analysis, and the like. Most 

existing outlier detection techniques, however, process outliers by working on the 
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entire outlier time sequences, which is computationally expensive and incapable to 

adapt with the continuously incoming data streams. Also, these schemes aim to detect 

the global outliers from the entire time series data and therefore fail to detect the local 

outliers. The detection of local outliers is helpful as they tell the degree of isolation of 

objects from their immediate neighbourhood. 

1.5 Problem Statement 

The objective of this dissertation work is as follows: 

"Adaptive detection of outlier subsequences from streaming time series data". 

The following sub-problems have been addressed: 

• To extend the Heuristically Ordered Time series using Symbolic Aggregate 

Approximation (HOT SAX) algorithm to extract local outlier subsequences 

from data streams. 

• To develop an adaptive rule-based classification model for classifying outliers 

into local or global classes. 

• To establish the type for the outliers. That is, to further classify the outliers as 

"above normal" or a "below normal" depending upon the deviation shown by 

them about the normal behaviour. 

• To identify the degree of "outlierness". That is, to capture the extent of 

abnormal behaviour shown by outliers in terms of severe or mild abnormal 

behaviour. 

1.6 Organization of the Report 

The organization of this dissertation report is as follows: 

Chapter 2 gives a brief overview of the distance measure and the classification 

method. The literature review is also done of various outlier techniques been 

proposed so far, for time series data. The research gaps found in them are also 

discussed with a possible solution for it, which we proposed in our work. 
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Chapter 3 discusses the proposed work. It provides the overall architecture for the 

proposed algorithm. The various subsections provide the details of the proposed 

algorithm for detecting the adaptive outliers in time series stream data. 

Chapter 4 presents the description of datasets used, results of the experiments 
performed and its analysis. 

Chapter 5 concludes the report and also presents the suggestions for future work. 
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Chapter 2: Literature Review 

2.1 Distance Metric 
A distance metric measures the dissimilarity between two datapoints in terms of some 

numerical value. It also measures similarity; we can say that more distance less 

similar and less distance more similar [2]. 

To define a distance metric, we need to designate a set of points, and give a rule, 

d(X, 17), for measuring distance between any two points, X and Y, of the space. 

Mathematically, a distance metric is a function, d, which maps any two points, X and 

Y in the n-dimensional space, into a real number, such that it satisfies the following 

three criteria [2]. 

Criteria of a Distance Metric 

• d(X, 19 is positive definite: If the points X and Y are different, the distance 

between them must be positive. If the points are the same, then the distance 

must be zero. That is, for any two points X and Y, 

i. if (X /1), d(X, Y)> 0 
ii. if (X = Y), d(X, Y)= 0 

• d(X, 19 is symmetric: The distance from X to Y is the same as the distance 

from Yto X. That is, for any two points X and Y, 

d(X, Y) = d(Y, X) 

• d(X, 19 satisfies triangle inequality: The distance between two points can 

never be more than the sum of their distances from some third point. That is, 

for any three points X, Y and Z, 

d(X, Y) + d(Y, Z)d(X, Z) 

Among the possibilities, Manhattan, Euclidian, and Max distance metrics are 

common. 

5 



By far the most common distance measure for time series is the Euclidean distance 

measure [5]. Given two time series Q and C of the same length n, their Euclidean 

distance is measured by the following equation (2.1): 

D(Q, CT) 	l± -ci) 

2 	

(2.1) 

It is simple to understand and easy to compute. It also allows scalable solutions for the 

problems such as time series indexing and clustering. 

2.3 Streaming Time Series Classification 
Classification is a form of data analysis that can be used to extract models describing 

important data classes or to predict future data trends. Such analysis can help provide 

us with a better understanding of the data at large. 

Data classification is a two-step process [2]: 

• First step: a classifier is built describing a predetermined set of data classes or 

concepts. This is the learning step (or training phase), where a classification 

algorithm builds the classifier by analysing or "learning from" a training set 

made up of database tuples and their associated class labels. 

• Second step: the model is used for classification. First, the predictive 

accuracy of the classifier is estimated a test set is used, made up of test tuples 

and their associated class labels. These tuples are randomly selected from the 

general data set. The accuracy of a classifier on a given test set is the 

percentage of test set tuples that are correctly classified by the classifier. If the 

accuracy of the classifier is considered acceptable, the classifier can be used to 

classify future data tuples for which the class label is not.known. 

The above discussed traditional classification process is unable to deal with the 

streaming time series data. The major difficulties introduced in applying the 

traditional classification methods to streaming time series are discussed below [2]: 

• The traditional techniques will scan the training data multiple times. The 

first step of model construction is typically performed off-line as a batch 



process. In streaming time series the data flow in so quickly that storage 

and multiple scans are infeasible. 

• In traditional schemes decision tree algorithms tend to follow the same 

basic top-down, recursive strategy, yet differ in the statistical measure used 

to choose an optimal splitting attribute. However, in the stream 

environment, it is neither possible to collect the complete set of data nor 

realistic to rescan the data. 

• The most distinguishing characteristic of data streams is that they are time-

varying, as opposed to traditional database systems, where only the current 

state is stored. This change in the nature of the data takes the form of 

changes in the target classification model over time and is referred to as 

concept drift. Concept drift is an important consideration when dealing 

with stream data. 

2.4 Outlier Detection Techniques 
The existing outlier detection methods that have been proposed so far over static data 

and stream data are discussed below: 

Statistical Based Approaches 

These methods assume that the dataset follows a statical model, e.g. a normal or 

Poisson distribution. With these methods we detect objects that deviate from the 

model as outliers using a discordancy test. Application of the test requires knowledge 

of the data set parameters such as the assumed data distribution, knowledge of 

distribution parameters such as the mean and variance, and the expected number of 

outliers [2]. 

There are two basic types of procedures for detecting outliers in this approach that is 

[2]: 

• Block procedures: In this case, either all of the suspect objects are 

treated as outliers or all of them are accepted as consistent. 

• Consecutive (or sequential) procedure: An example of such a 

procedure is the insideout procedure. Its main idea is that the object 

that is least "likely" to be an outlier is tested first. If it is found to be an 
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outlier, then all of the more extreme values are also considered 

outliers; otherwise, the next most extreme object is tested, and so on. 

This procedure tends to be more effective than block procedures. 

However, statistical approaches have following major drawbacks [2, 6]: these 

approaches make a lot of assumptions about the distribution model, and have 

difficulty dealing with streams, and do not guarantee that all'outliers will be found. 

Cluster Based Approaches 

The cluster based approachei, such as CLARANS [7], DBSCAN [8], BIRCH [9], 

Wave Cluster [10], CLIQUE [11], etc have been used for outlier detection in diverse 

datasets. The main problem of these clustering approaches is that they detect outliers 

as by-products. In most cases, the main objective is to find clusteis in the dataset. For 

that reason, this approach sometimes does not focus entirely on outlier detection [12]. 

Density-Based Approaches 
These methods adopt a Local Outlier Factor (LOF) for outlier detection [13]. It 

assigns to each object an outlier factor with respect to its surrounding neighbourhood. 

The outlier factor depends on how the data object is closely packed in its locally 

reachable neighbourhood. Since LOF uses threshold to differentiate outliers from 

normal objects the same problem of parameter setting arises. A lower outlier-ness 

threshold will produce problem of false detection rate, while a high threshold value 

will result in missing genuine outliers [14]. Besides top-n and top-n LOF, other 

approaches are connectivity—based (COF) [15] and Resolution cluster-based (RB-

outlier) [16] they alleviate the difficulty of parameter setting but their detection 

method is not generic in nature. 

Distance-Based Approaches 
The distance based approach is a simpler and more common approach. Several 

efficient algorithms for mining distance-based outliers have been developed. Such as 

index based algorithms, nested loops or cell based [2]. The Local Distance—based 

Outlier Factor (LDOF) [14] approach is used for outlier detection in scattered data. It 

simply uses the relative location of an object to its neighbours to determine the degree 

to which the object deviates from its neighbourhood. The Continuous Distance 
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Based-Outlier detection (CDB-Outliers) [12] approach is used for continuously 

detecting outliers over stream data. It employs DB-Outlier, based on the Cell Based 

algorithm for quick processing. 

2.5 Research Gaps 

Some of the research gaps found in the previous work are: 

• Statistical approaches make a lot of assumptions about the distribution model, 

have difficulty dealing with stream data, and do not guarantee that all outliers 

will be found. 

• The main problem of clustering approaches is they detect outliers as by-

products. In most cases, the main objective is to find clusters in the dataset. 

For that reason, this method does not focus entirely on outlier detection. 

• Density based approaches mainly suffer from the requirement of setting 

parameter values correctly. 

Hence, the proposed work undertakes to present a methodology that work on the 

above mentioned research gaps by following these strategies: 

• By developing an approach that adaptively builds a distribution model so as to 

capture the real nature and characteristics of the data and does not have to 

make unnecessary assumptions. 

• By utilising the concept of detecting outliers in local segments, and then 

classifying them into local or global outliers will alleviate the problem of 

limited detection of outliers. 

• By extending the HOT SAX algorithm, that requires only one parameter and 

that too the length of the outlier subsequence, in streaming time series, the 

proposed approach does not suffer from the difficulty of setting too many 

parameter values, correctly. 
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Chapter 3: Proposed Work 

3.1 Overall Architecture 

The overall architecture for proposed algorithm is presented in the following Figure 

3.1. The block diagram provides an overview of flow of control between various 

blocks of the proposed algorithm. It also shows the function performed by each 

block. 

1. Streaming time 
series data (e.g. 
daily vehicular 

traffic data 

3. Local outlier detection 

4. Generation of 
reference set for 

outlier classification 

Local 
segment 

from 
data 

streams 

Local outliers 

2. Managing 
data buffer 

Unseen 
outlier 

5. Generating outlier 
distribution (for 

identification of degree of 
"outlierness & type) 

Mining results 
Classified data 

(Outliers classified as 
local or global outliers) 

6. Rule based classifier model 
generation (for classification of 

outliers into local & global 
classes 

•	 

Figure 3.1 The overall architecture for proposed algorithm 
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A brief description of the block diagram of Figure 3.1 is as follows: 

The time series stream data is being generated by some source, say by monitoring of 

vehicular traffic on a highway, is captured and stored in data buffer. The capacity of 

data buffer is limited and predetermined, and is dependent on the data that is being 

used. The sliding window concept is used to manage the storage of data in the buffer. 

That is, as new data objects are generated, they are inserted into the beginning of the 

buffer and a corresponding number of data objects are removed' from the end of the 

buffer. 

In each local segment, collected in data buffer from stream data, the local outlier is 

detected. The HOT SAX algorithm has been extended to find the local outliers in 

local streams. The Local outliers detected are stored in a vector of predetermined 

capacity. The capacity of this vector is also dependent on the data that is being used 

and, follows the sliding window concept to manage the storage of outliers. The vector 

is used for generating reference set. Once this vector is full to its maximum capacity, 

the first reference set is generated. 

The reference set is used for generating the outlier distribution. It is generated by 

measuring the dispersion of local outliers received in the reference set. Then rules are 

formulated which are used for classification of outliers and further, for identifying the 

degree of "outliemess" and the type of these outliers. 

Rule-based classification model is used to classify the outliers into local or global 

classes. This model is adaptive in the sense that, every time the reference set is 

updated by new arrival of local outliers, the outlier distribution is also updated. The 

rules formulated on the outlier distribution are also updated. Every time the rules are 

updated, the classification model adapts itself according to the dynamics of streaming 

time series. Thus, we are able to capture the adaptive outliers in the streaming time 

series. 

The following sections provide a detailed description of the functions performed by 

each block shown in the Figure 3.1. 
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Window length (i.e. w) 

3.2 Data Buffer 

The data buffer is used to store the captured time series stream data generated by 

some source, say by monitoring of vehicular traffic on a highway. The capacity of 

data buffer is limited and predetermined, and is dependent on the data that is being 

used. The sliding window concept is used to manage the storage of data in the buffer. 

The concept of sliding window is defined as follows: 

Sliding window: Suppose, we use time series data buffer say DB to contain the local 

segment of flowing time series. In general, at a certain time. point t, suppose time 
series buffer DB contains a time series of length n, that is, DB = T = tl, 6, ...., t,„ and 
t„,„, is the next arriving time series data point. At next time t+1, the time series buffer 
data is changed as DB m T' = t2, •• • tn, tnew. The Figure 3.2 clearly explains the sliding 
window concept [2]. 

Timestamp (i.e. T = t1, t2, • • ••) 

6 7 8 9 10 12 

Window slides upon receipt of 
new data point 

Figure 3.2: Explains the concept of sliding window for streaming time series. 

We use the notation (m, n) (t) to denote the time series subsequence in the data buffer. 
Where m is the position in the data buffer and it is the length of the subsequence at 
time t. Therefore, (p-1, n) (t+1) and (p, n) (t) are the same time series subsequence 

for a given time series stream, at two different timestamps t and t+1. 
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3.3 Local Outlier Detection 

The HOT SAX algorithm [17] has been extended to fmd the local outliers in each 

local segment, collected in data buffer captured from streaming time series data. It 

follows a simple approach for finding local outliers in the given local segment of 

streaming time series data. It simply takes each possible subsequence and finds the 

distance to the nearest non-self match. The subsequence that has the greatest such 

value is the outlier. This is achieved with nested loops, where the outer loop considers 

each possible candidate subsequence, and the inner loop is a linear scan to identify the 

candidate's nearest non-self match. 

Before presenting the details of HOT SAX algorithm some basic notations and 

concepts that have been used in it are being discussed as follows [17]: 

• Non-Self Match: Given a time series 7', containing a subsequence C of length 

n beginning at position p and a matching subsequence M beginning at q, if 

p — qi > n, we say M is a non-self match of C and their distance is 

Dist (M, C). 

• Non-Similar Distance: Given a time series T, for any subsequence P of T, Q 

is the nearest non-self match of P, the distance from P to Q is the non-similar 

distance of P. 

• Time Series Outlier: Given a time series T, the subsequence D of length n 

beginning at position 1 is said to be the outlier of T if D has the largest 

distance to its nearest non-self match. That is, V subsequences C of T, non-

self matches MD of D, and non-self matches MC of C, 

min (Dist (D, MD)) > min (Dist (C, MC)). 

• Symbolic Aggregate Approximation (SAX) [5]: allows a time series of 

arbitrary length n to be reduced to a string of arbitrary length w, (w < n, 

typically w << n). It first transforms the data into the Piecewise Aggregate 

Approximation (PAA) representation [5]. Then symbolizes the PAA 

representation into a discrete string, two parameters are required for it. The 

SAX word size w is the number of symbols required to represent the 
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subsequences in the low dimensional approximation, and the cardinality of 

the SAX alphabet size a, that is the number of discrete symbols needed to 

represent the SAX word. 

Brief Review of HOT SAX Algorithm 

The HOT SAX algorithm follows the following procedure to find the outlier in the 

given time series data [17]: 

• SAX representation of the time series: A SAX repraentation of the given 

time series is created first, by sliding a window of length say n across the 

given time series. The length of the outlier subsequence n is given in advance. 

• Creation of two data structures: HOT SAX algorithm creates two data 

structures to support the nested loop heuristics. The two heuristics are used for 

optimization of nested loop computation. The first data structure is an array 

containing extracted subsequences converted into SAX words, where the 

index refers back to the original sequence. Once we have this ordered list of 

SAX words, we can imbed them into an augmented trie another data structure 

where the leaf nodes contain a linked list index of all word occurrences that 

map there. The count of the number of occurrences of each word can be 

mapped back to the rightmost column of the array. 

• Find the distance to the nearest non-self match: The,nested loops are used 

for this purpose, where the outer loop considers each possible candidate 

subsequence, and the inner loop is a linear scan to - identify the candidate's 

nearest non-self match..To efficiently find the distance to the nearest non-self 

match the nested loop heuristics are used. The subsequence that has the 

greatest such value is declared as outlier. 

The intuition behind the two heuristics is as follows [17]; unusual subsequences are 

very likely to map to unique or rare SAX words. By considering the candidate 

sequences that map to unique or rare SAX words early in the outer loop, there is an 

excellent chance of giving a large value to a variable used to store the best distance 

found so far, early on, thus allowing more early terminations of the inner loop. The 
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inner heuristic also leverages off the two data structures. When candidate say i is first 

considered in the outer loop, we look up the SAX word that it maps to, by examining 

the ith word in the array. We then visit the trie and order the first items in the inner 

loop in the order of the elements in the linked list index found at the terminal nodes. 

The Figure 3.3 shown below gives the visual intuition of the two data structures that 

are being used to support the two heuristics. 

tr....A.4  Subsequence extracted 

Figure 3.3: The two data structures used to support the Inner and Outer heuristics in 

HOT SAX algorithm. 

3.4 Reference Set Generation 

Since we are dealing with streaming time series data we don't have any prior data 

knowledge so as to build a classifier for describing a predetermined set of data classes 

or concept for learning, as used in traditional classification method. Therefore, in the 

proposed algorithm we generate a reference set that can be used for learning the 
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nature of stream data that is being used. This reference set is continuously updated so 

as to capture the dynamics of the streaming time series. 

The Local outliers detected from local segments are stored in a vector of 

predetermined capacity. The capacity of this vector is dependent on the data that is 

being used and, follows the sliding window concept to manage the storage of outliers. 

The vector is used for generating the reference set. The reference set is used for 

generation of outlier distribution. Once this vector is full to its maximum capacity, 

the first reference set is generated. 

3.5 Outlier Digtribution Generation 

The outlier distribution is generated for formulating rules for classification model. It 

is generated by measuring the dispersion of local outliers received in the reference set. 

The measurement of dispersion of data is very useful in PloViding typical properties 

and characteristics about the data [2]. The most common measures of data dispersion 

are quartiles, interquartile range, standard deviation, etc. 

In the proposed algorithm we calculate the first quartile, the third quartile and the 

interquartile range to measure the dispersion of local outliers stored the in reference 

set. 

The definition of these three measures of dispersion is as follows [2]: 

• The first quartile: Also dented by Qi , is the 25th  percentile of a set of data 

sorted in increasing order. This means that 25 percent of the data entries in a 

given sorted data set lie at or below the value of first quartile. The first quartile 

is calculated as the median of the lower half of the data, sorted in increasing 

order. 

• The third quartile: Also dented by Q3, is the 75th  percentile of a set of data 

sorted in increasing order. This means that 75 percent of the data entries in a 

given sorted data set lie at or below the value of third quartile. The third 

quartile is calculated as the median of the upper half of the data, sorted in 

increasing order. 
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• Interquartile range (I&R): It , is defined as the distance between the first and 

third quartile. It is a simple measure of spread that gives the range covered by 

the middle half of yhe data. 

Now we present how the three measures of dispersion are calculated from the 

reference set: 

The non-similar distance of local outliers collected in reference set are first sorted in 

an increasing order. Then the first and the third quartiles are calculated by finding the 

median value of the upper and the lower half of the reference set. These two values 

are then used to calculate the interquartile range. The calculated interquartile range is 

stored to generate the conditions for the rule used for classification of outliers into 

global or local outliers. 

Every time the reference set is updated the value of these three measures of dispersion 

is also re-evaluated. If the value of the new interquartile range is same as the previous 

value of the interquartile range then the conditions of the rule used for classification is 

not re-evaluated, otherwise the new values are set for the conditions of the rule. By 

doing this we are able to generate an adaptive classifier model that is capable of 

capture the dynamic nature of the streaming time series. 

3.6 The Rule-Based Classifier Model 

The rule-based classification Model is used to classify the outliers into local or global 

classes. This model is adaptive in the sense that, every time the reference set is 

updated by new arrival of local outliers, the outlier distribution is also updated. 

Therefore, rules formulated on the outlier distribution are also updated accordingly. 

We have defined the three measures of dispersion in section 3.5 and now we will 

formulate the rules for classification model. 

Now we present the conditions for rule formulation are developed as follows: 

Condition 1: Identifying repeated outliers 

To check this condition we compare the location, in the data buffer, of the newly 

detected local outlier, say at time 1+1, with the location of the previously detected 
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outlier, at time t. If the location is different from the previous location we consider 

the newly detected outlier as distinct, else we consider it as repeated. 

• That is, if we say that local oltlier at time t is LO(1, n) (t) and the local outlier at time 

t+1 is LO(k, n) (t+1), then they are distinct if 1 k. As discussed in section 3.2 that, 

(p-1, n) (t+1) and (p, 	(t) are the same time series subsequence for a given time 

series stream, at two different timestamps t and t+1, therefore two local outliers 

detected at time t and t+1 are distinct if: 

Cl: (Value of location at-time 1+1)# ((Value of location at time t) —1) 

The condition CI, is thus used to prevent the classification =of repeated outliers. Now 

we will present the next condition that is used to determine the outliers that are 

interesting from the rest of local outliers detected so far. 

Condition2: Avoiding trivial local outliers 

The three measure of dispersion defined provide a holistic view of the data 

distribution. Based on this holistic view of data distribution, a common rule of thumb 

for identifying suspected outliers in a given set of data is to single out values falling at 

least 1.5 * IQR above the third quartile or below the first quartile [2]. Therefore, to 

determine whether the newly detected local outlier is an interesting outlier or not, we 

have generated two conditions, which are given as follows: 

C2: Unseen outlier < (1.5 * IQR — Qi) 

C3: Unseen outlier > (1.5 IQR + Q3 ) 

The conditions C2 and C3 are thus used to determine whether the unseen outlier is 

interesting from the rest of the outliers detected so far. 

The conditions generated above will now be used to formulate the classification rule 

for classifying the outliers into global and local. Therefore, the rule generated from 

the above three conditions is: 

Rule: IF Cl A (C2 v C3) THEN global outlier -yes 
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Now we present how the classifier utilises the above rule to classify outliers into local 

or global and also to establish the type of the global outlier detected: 

The rule generated first checks whether the unseen outlier•is a repeated outlier or not, 

that is it checks the condition Cl. If the unseen outlier is a repeated one, it is discarded 

else it checks the other two conditions. The other two conditions are used to 

determine wether the unseen outlier is interesting or not. If any one of the two 

conditions is fulfilled the classifier declares the unseen local outlier as global outlier, 

otherwise it is a local outlier. 

Identification of degree of "outlierness" and type for the global outliers 

Based on these rules the proposed algorithm also establishes the type of the global 

outlier. If the non-similar distance of the unseen outlier fulfilled the condition C2 

then it is considered as "below normal" type of outlier. Otherwise, if the condition C3 

is fulfilled the outlier is an "above normal" type. 

The degree of "outlierness" is also identified for both types of outliers. The proposed 

algorithm considers the length of reference set as the set of degrees that will be 

mapped to outliers. We first sort the two vectors containing "above normal" and 

"below normal" outliers in the decreasing order. In the "above normal" type the 

severe degree is mapped to that outlier that has the largest value of non-similar 

distance and then the rest are considered as having mild degree. Whereas in the 

"below normal" type the severe degree is mapped to that outlier that has the smallest 

value of the non similar distance, and rest of them are considered as mild. 
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Chapter 4: Results and Discussions 

This dissertation work has been implemented in Matlab R2006a running in Windows 

Vista. All the experiments were performed and results are obtained on Intel Core 2 
Duo 2.10 GHZ processor with a 4 GB RAM. 

The proposed work has been evaluated on real life datasets. The first dataset used is a 

daily vehicular traffic dataset, that is, Gotthard tunnel dataset- number of motorcycles 

in one direction (in year 2005). The other dataset used is ECG dataset. We have used 

colour scheme to show the degree of "outlierness" to which the global outliers are 

mapped to. The red colour is used to show the "severe" degree and the green is used 
to depict the "mild" degree. The type of outlier can be visualised from the graphs, 

that is wether it is of "above normal" type or "below normal" type. 

4.1 Gotthard Tunnel Dataset- Number of Motorcycles in One 

Direction (in Year 2005). 

The St. Gotthard Tunnel in Switzerland is the third longest road tunnel in the world. 

This road forms part of the shortest road link from Hamburg, Germany to Sicily 

in Italy. The dataset consists of daily transportation data. It measures the frequency 

of motorcycles passing in one direction through Gotthard tunnel each day in a week. 

It contains 365 records from Jan 2005 to Dec 2005 1181. 

We first present the analysis of general traffic conditions in Gotthard tunnel all the 
year round and then we analyze the Gotthard tunnel dataset- Number of motorcycles 

in one direction, that is being used by the proposed algorithm for the detection of 

outliers, to visualize the anomalies in the dataset. 

Analysis of general traffic conditions in Gotthard tunnel all the year round 

The Gotthard Road Tunnel is open all the year round. Normally the traffic is fluid, 
too. The peak days are Easter and also the beginning of the Italian Summer holidays 

that is from mid May to August. A lot of Italians who live in Switzerland then drive 
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analysis shown in the Figure 4.1 and Figure 4.2. 

provides the evidence of the above statements. Table 4.1 is used t 
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back their home-country, meaning that the traffic really increases [21]. We have used 

two datasets of year 2002 and 2003 of Gotthard Tunnel to prove the above mentioned 

statements. 

These two datasets consists of number of all types of vehicles passing in both 

direction per day through Gotthard tunnel in year 2002 and 2003 [18]. The Figure 4.1 

and Figure 4.2 are used as proof of the above mentioned statements and Figure 4.3 

Figure 4.2: The Gotthard tunnel traffic of all types of vehicles in both direction in year 
2003. 
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The analysis presented in the above two graphs is explained in the following Table 

4.1: 

Table 4.1: The explaination of the two graphs of Gotthard tunnel traffic in year 2002 

and 2003 showing the general traffic all the year round. 

Section of the graph 

explained 

Traffic condition in year 

2002 

Traffic condition in year 

2003 

Section 1 (Jan to Feb) Lean traffic Lean traffic 

Section 2 (Mar to Apr) 

Traffic is high in last week of 

March due to Easter falling 

on 31' of March'02 

Traffic is high in last week of 

April due to Easter falling on 

20th  ofApril'03 

Section 3 (May to Aug) Hike in traffic Hile in traffic 

Section 4( Sept to Dec) Lean traffic Lean traffic 

Evidence: The evidence is presented here of the above analysis describing the 

Gotthard tunnel traffic all the year round. 
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Figure 4.3: Snapshot of the site www.en.all.experts.com  which gives information 

about the traffic condition in Gotthard tunnel all round the year. 
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Now we present the analysis of the dataset that is used in the proposed algorithm for 

detecting outliers. 

Analysis to visualize outliers: The following graphs in the Figures 4.4 and 4.5 

visualize outliers in the Gotthard tunnel dataset- number of motorcycles in one 
direction (in year 2005). The Table 4.2 explains the analysis shown in Figure 4.4 and 

Figure 4.5. 
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Table 4.2: The outliers detected in Gotthard tunnel dataset- number of motorcycles in 

one direction 

Section of the graph 
explained 

Traffic condition in year 
2003 

Traffic condition in year 
2005 

Section 1 (Jan to Feb) Lean traffic Lean traffic 

Section 2 (Mar to Apr) 

Traffic is high in last week of 

March due to Easter falling 
on 20th  of April'03 

Outlier detected: Traffic is 

high in last week of March 
due to Easter falling on 27th  
of March'05 

Outlier detected: A very 
high rise is seen in the first 
few weeks of April. 

Section 3 (May to Aug) Hike in traffic Hike in traffic 

Outlier detected: A sharp 
fall is seen in the last few 

weeks of August. 
Section 4( Sept to Dec) Lean traffic Lean traffic 

The next section presents the outliers detected by the proposed algorithm. The 

detailed analysis of the detected outliers is presented and the evidences are also given 

to prove the analysis done. 

4.1.1 Results with Gotthard Tunnel Dataset: Number of Motorcycles in One 

Direction (in Year 2005). 

The data buffer size is taken 30. The outlier subsequence length is taken 8. Since the 

data is being generated per day so we are detecting the anomalous weeks per month. 

The reference set size is also taken as 30. 

In the following discussion we analyse each outlier detected by the proposed 

algorithm: 
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Outlier detected: Easter Festival 27th  of March 2005 

Easter and the holidays that are related to it are moveable feasts, in that they do not 

fall on a fixed date in the Gregorian or Julian calendars (which follow the motion of 

the sun and the seasons). Instead, they are based on a lunar calendar. The Easter Rule, 

which stated that Easter shall be celebrated on the first Sunday that occurs after the 

first full moon on or after the vernal equinox. The ecclesiastical "vernal equinox" is 

always on March 21. Therefore, Easter can be celebrated as early as on March 22 or 

as late as on April 25 [20]. The Figure 4.6 shows the outlier detected due the Easter 

festival on 27th  March 2005. The following Table 4.3 presents the reason behind the 

excessive hike in traffic on 19th  and 27th  of March. The evidence of the reason for the 

detected outlier is presented in the Figure 4.7. 

Figure 4.6: Outliers detected in the month of March for motorcycles passing in one 

direction in year 2005. 
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Easter. Date 

liVANW.godweb,Orgiee" 

23 April 2000 
15 Apn12001 

31 Math 2002 
20 April 2003 
11 Apti 2004 

27 March 2005 
16 Apri 2006 
8 A442.007 

23 March 2008 
12 Apri 2009 

WESTERN 

30  Afd 2000 
15 Api 2001 
5 May 2002 

27 Apra 2003 
11 April 2004 
1 May 2005 

23 Apol 2006 
April 2007 

27 April 2008 
19 April 2009 

ORTHODOX 

Table 4.3 presents the analysis for the detected outlier on 19th  and 27th  of March '05. 

S.No. Name Analysis 

1.  Peak 1 
People who planned extented 
vacation, 	started 	travel 	a 
week 	befor 	the 	Easter 
festival. 

2.  
Peak2 

People who moved in the 
same week of easter festival 
are high in number , that is 
planned a short vacation. 

Evidence for the outlier detected: Easter festival was on 27th  March in the year 

2005. 
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Figure 4.7: Snapshot of the site www.godweb.org gives information about the Easter 

date in year 2005. 

Conclusion: So we can conclude that the outliers are detected correctly by the 
proposed algorithm. The figure 4.6 and Table 4.3 together explains the sudden rise of 

traffic of motorcycles in one direction in Gotthard tunnel. Also Figure 4.7 presents 

the evidence that Easter was on 27th  of March in year 2005, which makes our analysis 

more concrete. 
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Outlier detected: May 3-14, 2005 UEFA European Under-17 Football 
Championship in Italy 

The 2005 UEFA European Under-17 Football Championship was the fourth edition 

of UEFA's European Under-17 	Football 	Championship. Italy hosted the 

championship, during May 3-14, 2005 [23]. The Union of European Football 
Associations (UEFA) represents the national football associations of Europe, runs 
Europe wide national and club competitions, and controls the prize money, 

regulations and media rights to those competitions. UEFA is the biggest of six 

continental confederations of FIFA [23]. The following Figure 4.8 and Table 4.4 

present the analysis of the detected outliers. Also the evidence of the given analysis is 
shown in Figure 4.9, Figure 4.10 and Figure 4.11. 
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Figure 4.8: Outliers detected in month of May for motorcycle passing in one direction 

through Gotthard tunnel. 

The following Table 4.4 presents the reasons behind the development of three peaks 
on dates 3rd, 5th  and 14th  of May 2005, shown in Figure 4.8. 
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Table 4.4: Presents the reason for the three peaks on 3rd, 5th  and 14th  of May 2005. 

S.No. Name Analysis 

1.  

Peak 1 

The UEFA under-17 football 

championship 	started 	on 	3rd  

May. 	Group 	matches 	were 

scheduled, between: 

Belarus & England, Italy & 

Turkey, Isreal & Switzerland, 

croatia & Netherlands 

2.  

Peak2 

On 5th  May, the group matches 

were between: 

Italy 	& 	Belarus, 	Turkey 	& 

England, 	Switzerland 	& 

Netherland, Isreal & Croatia. 

3.  Peak3 Final was on le May, between 

Netherland & Turkey. 

Now we give the evidences that the UEFA under-17 championship started on 3rd  

May'05 in Italy. Then we present the evidence for the group matches held on 3rd  and 

5th  May'05. After that we present evidence for the final match on 14th  May. 

Evidence: UEFA under-17 football championship started on 3" May'05 in Italy 

2085 UEFA astpeen land- w 

Figure 4.9: Snapshot of www.wikipedia.com site giving information about the host 

and date of UEFA under-17 football championship. 
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Figure 4.10: Snapshot of www.wikipedia.com site giving information about the group 

matches on 3rd  and 5th  May'05. 

Evidence: Group matches that held on 3" and 5th  May'05 

Figure 4.11: Snapshot of www.wikipedia.com site giving information about the group 

matches on 3rd  and 5th  May'05 
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Evidence: Finals on 14th  of May'05 

Figure 4.12: Snapshot of www.wikipedia.com site giving information about the final 

match on 14 May'05. 

Conclusion: So we can conclude that the outlier is detected correctly by the proposed 

algorithm. The figure 4.8 and Table 4.4 together explains the sudden rise of traffic of 

motorcycles in one direction in Gotthard tunnel. Also Figure 4.9, Figure 4.10, Figure 

4.11 and Figure 4.12 presents the evidence that UEFA under-17 championship was 

on 3rd  May in year 2005 in Italy, which makes our analysis more concrete. 

Outlier detected: June 15-29, 2005 FIFA Confederations Cup in Germany 

Confederations Cup football tournament was the seventh FIFA Confederations Cup. 

It was held in Germany between 15 June and 29 June 2005 [23]. The following Figure 

4.13 and the Table 4.5 present the analysis of the detected outlier. The Figure 4.14 and 

Figure 4.15 are used to present the evidence for the analysis done. 
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Figure 4.13: Outliers detected in month of June for motorcycle passing in one 

direction through Gotthard tunnel. 

The following Table 4.5 presents the reasons behind the development of peaks peaks 

on dates 18th  and 25th  of June 2005, shown in Figure 4.13. 

Table 4.5: Presents the reason for the two peaks on 18th  and 25th  of June 2005. 

S.No. Name Analysis 

1.  

Peak 1 

The group match of FIFA 

football 	championship 	on 

18th  of June were scheduled, 

between: 

Tunisia 	& 	Germany, 

Australia & Argentina 

2.  

Peak2 

On 25th  June, the semifinal 

was held between: Germany 

and Brazil 

1st Aug 

180 

160 

140r 

120 r 
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Now we give the evidences that the FIFA confederation cup started on 15th  June'05 in 

Germany. Then we present the evidence for the group match held on 18th  of June and 

semifinal on 25th  June. 

Evidence: FIFA confederation cup started on 15th  June to 29s' June in Germany 
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Figure 4.14: Snapshot of www.wikipedia.com showing Germany was host of FIFA 

Confederation cup 2005. 

Evidence: Group match that held on 186  June'05 

Figure 4.15: Snapshot of wikipedia site showing group match held on 18th  of June'05. 
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Evidence: Semi-final match that held on 25th  June'05 

Figure 4.16: Snapshot of www.wikipedia.com showing the semifinal match held on 
25th  of June'05. 

Conclusion: So we can conclude that the outlier is detected correctly by the proposed 

algorithm. The figure 4.13 and Table 4.5 together explains the sudden rise of traffic of 

motorcycles in one direction in Gotthard tunnel. Also Figure 4.14, Figure 4.15 and 

Figure 4.16 presents the evidence that FIFA confederation cup 2005 was on 15th  June 
year 2005 in Germany, which makes our analysis more concrete. 

Outlier detected: Heavy rainfalls in Switzerland from Saturday August, 20th to 
Monday August, 22nd, 2005. 

The most heavy rainfalls since more than 100 years in Switzerland in 2005 (and ever 

since precise statistics are available) from Saturday August, 20th  to Monday August, 
22th0  have devastated large regions of the country [24]. The prealpine regions 

Entlebuch (west of Lucerne), Obwalden and Bernese Oberland and the roads and 

railroads between Zurich / Lucerne and St. Gotthard at the foot of prealpine Mount 

Rigi were hit by landslides and rivers Schachen and Reuss flooded the region. The 

following Figure 4.17 and Table 4.6 present the analysis of the detected outlier. Also 

the evidence of the given analysis is shown in Figure 4.18. 

33 



? 200 

= 
1-- 180 
"2 
_2 

160 rg 
0 
fa 140 
E 

-w) 80 -  

ii 
ca 60 

120 

A*  

2 
100 

' 

'5 

g.- 40 

No. of motorcycles 
••••••••••• passing in month of 

July, Aug & Sept 

Dip 1 
25th Aug 

0 
0 	 _r 

1st  Jul 10th Jul 20th Jul 1 Aug 10 Aug 20 Aug 1Sep 
Days (in year 2005) 

20 

10 Sep 20 Sep 

Analysis for the outlier detected 

Figure 4.17: Outlier detected in month of August for motorcycle passing in one 

direction through Gotthard tunnel. 

Table 4.6: Presents the reason for the dip on 25th  of Aug'05 

S.No. Name Analysis 

1. 

Dip 1 

Due to heavy rainfall and 

landsides on 20 to 22 Aug 

all 	traffic 	routes 	were 

severly damaged and so 

25th  of Aug saw a severe 

dip in traffic. 

Now we present the evidence that heavy rainfall and landslides in Switzerland on 20th  

Aug to 22nd  Aug 2005, hit the transportation system severely. 
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August 2005 

The most heavy retards since more than 100 years in Switzerland (and ever since precise statistics are lineable) from Sidorday August, 20th to Monday Aiwa, 2201 
have devastated large regions off :country. Five people are reported to have been killed, Moire Mei missing. Estimates of material•damages go from 500 mann 

Francs (333,000 US 5) to 2000 million Swiss Francs (1.3 tenon$). Major roads and railroads crossing the as  (SL Gotthard, Ledschberg) have been cut for 
days, but Southern Switzerland could always be reached over the San. Etentatedno route. The Latschberg railway One Is operational again since Wednesday 
24th. 

he meaOlne regions. Entlebuch (west of Lucerne), Obwalden and Bemese Oberland and the roads and railroads between Zurich Luceme and St. Gotthard at the 
of prealpine Mount RIO were hit by landslides and rivers Soh/wheel and Reuss flooded the region around Altdorf (Uri) at the upper end of Lake Lucerne, cutting ofd 

matt transit route to southern Switzerland. 

The floods of Rivers Kleine Ewe, Reuss, Aare and of many small brooks,  that have become huge rivers have carried away some roads and bridges and caused the 
lakes of Semen, Lucerne, Thorn and Biel to reach Stet 100 year high level marks. 

Evidence: Heavy rainfall and landslides in Switzerland on 20th  Aug to 22nd  
Aug'05 

Figure 4.18: Snapshot of site www.all-about-swtizerland.info provides information 
about the devastating floods and landslides in Swtizerland in August 2005. 

Conclusion: So we can conclude that the outlier is detected correctly by the proposed 
algorithm. The figure 4.17 and Table 4.6 together explains the sudden dip of traffic of 

motorcycles in one direction in Gotthard tunnel. Also Figure 4.18, presents the 

evidence that heavy rainfall and landslides really occurred, which makes our analysis 
more concrete. 

4.2 ECG Dataset- Itstdb_20221_43 

The dataset is taken from UCR Time Series Data Mining Archive. The dataset has 

been used for discord discovery and pattern matching algorithms [19]. It contains 
3000 records. 

35 



Analysis of the ECG dataset 

The electrocardiogram (ECG) is a diagnostic tool that measures and records the 
electrical activity of the heart in exquisite detail. Interpretation of these details 

allows diagnosis of a wide range of heart conditions. These conditions can vary from 
minor to life threatening. The ECG records this electrical activity and depicts it as a 

series of graph-like tracings, or waves. The shapes and frequencies of these tracings 

reveal abnormalities in the heart's anatomy or function [19]. The Figure 4.19 shows 

the graph of the given ECG dataset. 

500 	1000 	1500 	2000 	2500 	3000 
Time 

Figure 4.19: The graph shows the ECG reading of a heart with three abnormal beats. 

4.2.1 Results with ECG Dataset-Itstdb_20221_43 

Detected outliers 

The ECG dataset-Itstdb 20221 43 time series is used here as streaming time series. 

The data buffer size is taken 500. The outlier subsequence is taken 150, since the 

length of one heart beat is approximately 150. The proposed algorithm detects the 

adaptive outliers as the anomalous heart beats with irregular shape and size. The 

Figure 4.20 shows that the three abnormal heartbeats were detected as outliers. 
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Figure 4.20: Three abnormal heartbeats were detected in received streaming ECG data 
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion 
In this dissertation work, we considered the problem of detecting adaptive outliers in 

streaming time series data. After the completion of the dissertation work, we have 

reached the following conclusions about our proposed algorithm: 

• The HOT SAX algorithm has been extended successfully to detect the local 

outlier subsequences in the streaming time series data. 

• The outliers has been classified successfully into global and local outliers by 

adaptive rule-based classifier. 

• The type has also been established successfully that is, "above normal" or 

"below normal" for each outlier classified as global. 

• The degree of "outlierness" has also been identified successfully in terms of 

severe and mild abnormal behaviour. 

5.2 Future Work 
Some suggestions for future work in the proposed algorithm are as follows: 

• The proposed algorithm can be extended to detect the outlier from other types 

of data such as, multidimensional or categorical data. 

The other distance measures can be used, instead of Euclidean distance 

measure, to evaluate the distance between the two subsequences in HOT SAX 

algorithm for detecting local outliers. 

• Various other existing, outlier detection techniques can be extended, just like 

HOT SAX algorithm, for detecting local outliers. 
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